Modern JS Cheatsheet

Cheatsheet for the JavaScript knowledge you will frequently
encounter in modern projects.

View on GitHub

Modern JavaScript Cheatsheet

JavaScript ©

Cheatsheet

Image Credits: Ahmad Awais #

Introduction

e KK atabton.com

This document is a cheatsheet for JavaScript you will frequently encounter in modern projects and
most contemporary sample code.

This guide is not intended to teach you JavaScript from the ground up, but to help developers with
basic knowledge who may struggle to get familiar with modern codebases (or let's say to learn
React for instance) because of the JavaScript concepts used.

Besides, | will sometimes provide personal tips that may be debatable but will take care to mention
that it's a personal recommendation when | do so.

Note: Most of the concepts introduced here are coming from a JavaScript language
update (ES2015, often called ES6). You can find new features added by this update here;
it's very well done.

(c) ketabton.com: The Digital Library

Complementary Resources

When you struggle to understand a notion, | suggest you look for answers on the following
resources:

e MDN (Mozilla Developer Network)

e You don't know JS (book)

e ES6 Features with examples

e WesBos blog (ES6)

e Javascript Basics for Beginners - a free Udacity course
e Reddit (JavaScript)

e Google to find specific blog and resources

e StackOverflow

Table of Contents

e Modern JavaScript cheatsheet
o Introduction
= Motivation
= Complementary resources
o Table of contents
o Notions
» Variable declaration: var, const, let
= Short explanation
= Sample code
= Detailed explanation
m External resource
Arrow function
= Sample code
= Detailed explanation
= Concision
» thisreference
m Useful resources
Function default parameter value
m External resource
Destructuring objects and arrays
= Explanation with sample code
m Useful resources
Array methods - map / filter / reduce
= Sample code

(c) ketabton.com: The Digital Library

= Explanation
= Array.prototype.map()
= Array.prototype.filter()
= Array.prototype.reduce()
m External Resource
m Spread operator “..."
= Sample code
= Explanation
= |niterables (like arrays)
= Function rest parameter
m Object properties spreading
m External resources
m Object property shorthand
= Explanation
m External resources
= Promises
= Sample code
= Explanation
m Create the promise
= Promise handlers usage
m External Resources
= Template literals
= Sample code
m External resources
= Tagged Template Literals
m External resources
= |mports / Exports
= Explanation with sample code
= Named exports
m Default import / export
m External resources
m JavaScript this
m External resources
m Class
= Samples
m External resources
» Extends and super keywords
= Sample Code
m External Resources
= Async Await

(c) ketabton.com: The Digital Library

= Sample code
= Explanation with sample code
= Error handling
m External resources
= Truthy/ Falsy
m External resources
= Static Methods
= Short Explanation
m Sample Code
= Detailed Explanation
m Calling other static methods from a static method
» Calling static methods from non-static methods
m External resources
o Glossary
m Scope
= Variable mutation

Notions

Variable declaration: var, const, let

In JavaScript, there are three keywords available to declare a variable, and each has its differences.
Those are var, let and const.

Short explanation

Variables declared with const keyword can't be reassigned, while let and var can.

| recommend always declaring your variables with const by default, and with 1let if you need to
mutate it or reassign it later.

Scope Reassignable Mutable Temporal Dead Zone
const Block No Yes Yes
let Block Yes Yes Yes
var Function Yes Yes No

Sample code

(c) ketabton.com: The Digital Library

const person = "Nick";
person = "John" // Will raise an error, person can't be reassigned

let person = "Nick";
person = "John";
console.log(person) // "John", reassignment is allowed with Let

Detailed explanation

The scope of a variable roughly means “where is this variable available in the code”.

var

var declared variables are function scoped, meaning that when a variable is created in a function,
everything in that function can access that variable. Besides, a function scoped variable created in a
function can't be accessed outside this function.

| recommend you to picture it as if an X scoped variable meant that this variable was a property of
X.

function myFunction() {
var myVar = "Nick";
console.log(myVar); // "Nick" - myVar is accessible inside the function

}

console.log(myVar); // Throws a ReferenceError, myVar is not accessible outside the functior

4

Still focusing on the variable scope, here is a more subtle example:

function myFunction() {

var myVar = "Nick";
if (true) {
var myVar = "John";

console.log(myVvar); // "John"
// actually, myVar being function scoped, we just erased the previous myVar value "NicR'

}

console.log(myvar); // "John" - see how the instructions in the 1if block affected this val

}

console.log(myVar); // Throws a ReferenceError, myVar is not accessible outside the functior

4

(c) ketabton.com: The Digital Library

Besides, var declared variables are moved to the top of the scope at execution. This is what we call
var hoisting.

This portion of code:

console.log(myVar) // undefined -- no error raised
var myVar = 2;

is understood at execution like:

var myVar;
console.log(myVar) // undefined -- no error raised
myVar = 2;

let

var and let are about the same, but 1let declared variables

e are block scoped
e are not accessible before they are assigned
e can't be re-declared in the same scope

Let's see the impact of block-scoping taking our previous example:

function myFunction() {

let myvar = "Nick";

if (true) {
let myvar = "John";
console.log(myVar); // "John"
// actually, myVar being block scoped, we just created a new variable myVar.
// this variable is not accessible outside this block and totally independent
// from the first myVar created !

}
console.log(myVar); // "Nick", see how the instructions in the if block DID NOT affect thi

}

console.log(myVar); // Throws a ReferenceError, myVar is not accessible outside the functior

< >

Now, what it means for /et (and const) variables for not being accessible before being assigned:

console.log(myVar) // raises a ReferenceError !
let myvar = 2;

(c) ketabton.com: The Digital Library

By contrast with varvariables, if you try to read or write on a /et or constvariable before they are
assigned an error will be raised. This phenomenon is often called Temporal dead zone or TDZ.

Note: Technically, /et and constvariables declarations are being hoisted too, but not
their assignation. Since they're made so that they can’t be used before assignation, it
intuitively feels like there is no hoisting, but there is. Find out more on this very detailed
explanation here if you want to know more.

In addition, you can't re-declare a /et variable:

let myvar = 2;
let myVar = 3; // Raises a SyntaxError
const

const declared variables behave like /et variables, but also they can't be reassigned.
To sum it up, constvariables:

e are block scoped

e are not accessible before being assigned
e can't be re-declared in the same scope

e can't be reassigned

const myVar = "Nick";
myVar = "John" // raises an error, reassignment is not allowed

"Nick";
"John" // raises an error, re-declaration is not allowed

const myVar
const myVar

But there is a subtlety : const variables are not immutable ! Concretely, it means that object and
array const declared variables can be mutated.

For objects:

const person = {
name: 'Nick'

}s

person.name = 'John' // this will work ! person variable is not completely reassigned, but n
console.log(person.name) // "John"

person = "Sandra" // raises an error, because reassignment is not allowed with const declare

< >

(c) ketabton.com: The Digital Library

For arrays:

const person = [];
person.push('John'); // this will work ! person variable is not completely reassigned, but n

console.log(person[@]) // "John"
person = ["Nick"] // raises an error, because reassignment is not allowed with const declare

< >

External resource

e How let and const are scoped in JavaScript - WesBos
e Temporal Dead Zone (TDZ) Demystified

Arrow function

The ES6 JavaScript update has introduced arrow functions, which is another way to declare and use
functions. Here are the benefits they bring:

e More concise
e thisis picked up from surroundings
e implicit return

Sample code

e Concision and implicit return

function double(x) { return x * 2; } // Traditional way
console.log(double(2)) // 4

const double = x => x * 2; // Same function written as an arrow function with implicit retur
console.log(double(2)) // 4

e thisreference

In an arrow function, this is equal to the this value of the enclosing execution context. Basically,
with arrow functions, you don't have to do the “that = this” trick before calling a function inside a
function anymore.

function myFunc() {
this.myvar = 0;

(c) ketabton.com: The Digital Library

setTimeout(() => {
this.myVar++;
console.log(this.myvar) // 1

}, 9);
}

Detailed explanation

Concision

Arrow functions are more concise than traditional functions in many ways. Let’s review all the

possible cases:
e Implicit VS Explicit return

An explicit return is a function where the return keyword is used in its body.

function double(x) {
return x * 2; // this function explicitly returns x * 2, *return* keyword is used

}

In the traditional way of writing functions, the return was always explicit. But with arrow functions,
you can do implicit return which means that you don't need to use the keyword returnto return a

value.

To do an implicit return, the code must be written in a one-line sentence.

const double = (x) => {
return x * 2; // Explicit return here

}

Since there only is a return value here, we can do an implicit return.
const double = (x) => x * 2;

To do so, we only need to remove the brackets and the return keyword. That's why it's called an
implicit return, the return keyword is not there, but this function will indeed return x * 2.

Note: If your function does not return a value (with side effects), it doesn't do an explicit
nor an implicit return.

(c) ketabton.com: The Digital Library
Besides, if you want to implicitly return an object you must have parentheses around it since it

will conflict with the block braces:

const getPerson = () => ({ name: "Nick", age: 24 })
console.log(getPerson()) // { name: "Nick", age: 24 } -- object implicitly returned by arrou

>

e Only one argument

If your function only takes one parameter, you can omit the parentheses around it. If we take back

the above double code:

const double = (x) => x * 2; // this arrow function only takes one parameter

Parentheses around the parameter can be avoided:

const double = x => x * 2; // this arrow function only takes one parameter

e No arguments

When there is no argument provided to an arrow function, you need to provide parentheses, or it

won't be valid syntax.

() => { // parentheses are provided, everything is fine

const x = 2;
return x;

=> { // No parentheses, this won't work!
const x = 2;
return Xx;

}

this reference
To understand this subtlety introduced with arrow functions, you must know how this behaves in
JavaScript.

In an arrow function, this is equal to the this value of the enclosing execution context. What it
means is that an arrow function doesn’t create a new this, it grabs it from its surrounding instead.

(c) ketabton.com: The Digital Library

Without arrow function, if you wanted to access a variable from this in a function inside a function,
you had to use the that = this or self = this trick.

For instance, using setTimeout function inside myFunc:

function myFunc() {
this.myvar = 0;
var that = this; // that = this trick
setTimeout(
function() { // A new *this* is created in this function scope
that.myVar++;
console.log(that.myvar) // 1

console.log(this.myVar) // undefined -- see function declaration above

}s
0

)s
}

But with arrow function, this is taken from its surrounding:

function myFunc() {
this.myvar = 0;
setTimeout(
() => { // this taken from surrounding, meaning myFunc here
this.myVar++;
console.log(this.myvar) // 1

}s
0

)5
}

Useful resources

e Arrow functions introduction - WesBos
e JavaScript arrow function - MDN
e Arrow function and lexical this

Function default parameter value

Starting from ES2015 JavaScript update, you can set default value to your function parameters
using the following syntax:

(c) ketabton.com: The Digital Library

function myFunc(x = 10) {
return x;

}

console.log(myFunc()) // 10 -- no value is provided so x default value 10 is assigned to x 1
console.log(myFunc(5)) // 5 -- a value 1is provided so x 1s equal to 5 in myFunc

console.log(myFunc(undefined)) // 10 -- undefined value 1is provided so default value 1s assi
console.log(myFunc(null)) // null -- a value (null) 1is provided, see below for more details

< >
The default parameter is applied in two and only two situations:

e No parameter provided
e undefined parameter provided

In other words, if you pass in nullthe default parameter won't be applied.
Note: Default value assignment can be used with destructured parameters as well (see
next notion to see an example)

External resource

e Default parameter value - ES6 Features
e Default parameters - MDN

Destructuring objects and arrays

Destructuring is a convenient way of creating new variables by extracting some values from data
stored in objects or arrays.

To name a few use cases, destructuring can be used to destructure function parameters or
this.props in React projects for instance.
Explanation with sample code

e Object

Let's consider the following object for all the samples:

const person = {
firstName: "Nick",
lastName: "Anderson",
age: 35,

(c) ketabton.com: The Digital Library

sex: "M"

Without destructuring

const first = person.firstName;
const age = person.age;
const city = person.city || "Paris";

With destructuring, all in one line:

const { firstName: first, age, city = "Paris" } = person; // That's it !

console.log(age) // 35 -- A new variable age is created and is equal to person.age

console.log(first) // "Nick" -- A new variable first 1is created and is equal to person.first
console.log(firstName) // Undefined -- person.firstName exists BUT the new variable created
console.log(city) // "Paris" -- A new variable city 1is created and since person.city 1is unde

< >

Note:In const { age } = person; , the brackets after const keyword are not used to declare an
object nor a block but is the destructuring syntax.

e Function parameters
Destructuring is often used to destructure objects parameters in functions.

Without destructuring

function joinFirstLastName(person) {
const firstName = person.firstName;
const lastName = person.lastName;
return firstName + '-' + lastName;

joinFirstLastName(person); // "Nick-Anderson"

In destructuring the object parameter person, we get a more concise function:

function joinFirstLastName({ firstName, lastName }) { // we create firstName and LastName vc

return firstName + '-' + lastName;

joinFirstLastName(person); // "Nick-Anderson"

(c) ketabton.com: The Digital Library

Destructuring is even more pleasant to use with arrow functions:

const joinFirstLastName = ({ firstName, lastName }) => firstName + '-' + lastName;

joinFirstLastName(person); // "Nick-Anderson”

e Array

Let’'s consider the following array:
const myArray = ["a", "b", "c"];

Without destructuring

const Xx
const y

myArray[@];
myArray[1];

With destructuring

const [x, y] = myArray; // That's it !

console.log(x) // "a"
console.log(y) // "b"

Useful resources

e ES6 Features - Destructuring Assignment
e Destructuring Objects - WesBos
e Exploring)S - Destructuring

Array methods - map / filter / reduce

Map, filter and reduce are array methods that are coming from a programming paradigm named
functional programming.

To sum it up:

e Array.prototype.map() takes an array, does something on its elements and returns an array
with the transformed elements.

(c) ketabton.com: The Digital Library

e Array.prototype.filter() takes an array, decides element by element if it should keep it or not
and returns an array with the kept elements only

e Array.prototype.reduce() takes an array and aggregates the elements into a single value
(which is returned)

| recommend to use them as much as possible in following the principles of functional
programming because they are composable, concise and elegant.

With those three methods, you can avoid the use of forand forEach loops in most situations. When
you are tempted to do a forloop, try to do it with map, filter and reduce composed. You might
struggle to do it at first because it requires you to learn a new way of thinking, but once you've got
it things gets easier.

Sample code

const numbers = [0, 1, 2, 3, 4, 5, 6];

const doubledNumbers = numbers.map(n => n * 2); // [0, 2, 4, 6, 8, 10, 12]
const evenNumbers = numbers.filter(n => n % 2 === 0); // [0, 2, 4, 6]
const sum = numbers.reduce((prev, next) => prev + next, 9); // 21

Compute total grade sum for students above 10 by composing map, filter and reduce:

const students = [
{ name: "Nick", grade: 10 },
{ name: "John", grade: 15 },
{ name: "Julia", grade: 19 },
{ name: "Nathalie", grade: 9 },

15

const aboveTenSum = students
.map(student => student.grade) // we map the students array to an array of their grades
.filter(grade => grade >= 10) // we filter the grades array to keep those above 10

.reduce((prev, next) => prev + next, 9); // we sum all the grades above 10 one by one

console.log(aboveTenSum) // 44 -- 10 (Nick) + 15 (John) + 19 (Julia), Nathalie below 10 is 1

< >

Explanation

Let's consider the following array of numbers for our examples:

const numbers = [0, 1, 2, 3, 4, 5, 6];

(c) ketabton.com: The Digital Library

Array.prototype.map()

const doubledNumbers = numbers.map(function(n) {
return n * 2;

})s
console.log(doubledNumbers); // [0, 2, 4, 6, 8, 10, 12]

What's happening here? We are using .map on the numbers array, the map is iterating on each
element of the array and passes it to our function. The goal of the function is to produce and
return a new value from the one passed so that map can replace it.

Let's extract this function to make it more clear, just for this once:

const doubleN = function(n) { return n * 2; };
const doubledNumbers = numbers.map(doubleN);
console.log(doubledNumbers); // [0, 2, 4, 6, 8, 10, 12]

numbers.map(doubleN) produces [doubleN(®), doubleN(1l), doubleN(2), doubleN(3), doubleN(4),
doubleN(5), doubleN(6)] whichisequalto [e, 2, 4, 6, 8, 10, 12].

Note: If you do not need to return a new array and just want to do a loop that has side
effects, you might just want to use a for / forEach loop instead of a map.

Array.prototype.filter()

const evenNumbers = numbers.filter(function(n) {

return n % 2 === 0; // true if "n" 1is par, false if "n" isn't
1)
console.log(evenNumbers); // [0, 2, 4, 6]

We are using .filter on the numbers array, filter is iterating on each element of the array and passes
it to our function. The goal of the function is to return a boolean that will determine whether the
current value will be kept or not. Filter then returns the array with only the kept values.

Array.prototype.reduce()

The reduce method goal is to reduce all elements of the array it iterates on into a single value. How
it aggregates those elements is up to you.

const sum = numbers.reduce(
function(acc, n) {
return acc + n;

(c) ketabton.com: The Digital Library

¥
© // accumulator variable value at first iteration step

)5

console.log(sum) //21

Just like for .map and .filter methods, .reduce is applied on an array and takes a function as the first
parameter.

This time though, there are changes:
e .reduce takes two parameters
The first parameter is a function that will be called at each iteration step.

The second parameter is the value of the accumulator variable (acc here) at the first iteration step
(read next point to understand).

e Function parameters

The function you pass as the first parameter of .reduce takes two parameters. The first one (acc
here) is the accumulator variable, whereas the second parameter (n) is the current element.

The accumulator variable is equal to the return value of your function at the previous iteration
step. At the first step of the iteration, accis equal to the value you passed as .reduce second
parameter.

At first iteration step

acc = @ because we passed in 0 as the second parameter for reduce
n = o first element of the number array

Function returns acc+ n->0+0->0

At second iteration step
acc = @ because it's the value the function returned at the previous iteration step
n = 1 second element of the number array

Function returns acc+ n->0+1 ->1

At third iteration step

acc = 1 because it's the value the function returned at the previous iteration step

(c) ketabton.com: The Digital Library

n = 2 third element of the number array

Function returns acc+ n->1+2->3

At fourth iteration step

acc = 3 because it's the value the function returned at the previous iteration step
n = 3 fourth element of the number array

Function returns acc+ n->3+3->6

[...] At last iteration step

acc = 15 because it's the value the function returned at the previous iteration step
n = 6 last element of the number array
Function returns acc+ n->15+ 6 -> 21

As it is the last iteration step, .reduce returns 21.

External Resource

e Understanding map / filter / reduce in JS

Spread operator “...”

The spread operator ... has been introduced with ES2015 and is used to expand elements of an
iterable (like an array) into places where multiple elements can fit.

Sample code

const arrl
const arr2

[“a") "b") "C"];
[. . .ar‘l"l, Ildll, llell’ II_FII]; // [Ha") ”b ") "C”J "d") He "J "f”]

function myFunc(x, y, ...params) {
console.log(x);
console.log(y);
console.log(params)

}

myFunc("allJ Ilbll, IICII, Ildll’ Ilell, II_FII)

(c) ketabton.com: The Digital Library

// "a”
/] b"
/7 [7c", ", e, "f']

const { x, vy, ...z } = { x: 1, y: 2, a: 3, b: 4 };
console.log(x); // 1
console.log(y); // 2
console.log(z); // {

Q

: 3, b: 4}

N

const n = { x, vy,
console.log(n); // {

s
: 1, y: 2, a: 3, b: 4}

X

Explanation

In iterables (like arrays)

If we have the two following arrays:

const arrl
const arr2

["a", "b", "c"];
[ar\r.l’ "dll, "e", II_FII]; // [["au’ "b”, ucn]J "d”J nen) ”_f"]

arr2 the first element is an array because arr1 is injected as is into arr2. But what we want is arr2 to
be an array of letters. To do so, we can spread the elements of arr7into arr2.

With spread operator

const arrl
const arr2

[llallJ Ilbll) IICII];
[. . .ar‘r‘l_’ "d", "e"’ "'F"]_; // ["a") nb "_, "C"J "d"J "e "J "f"]

Function rest parameter

In function parameters, we can use the rest operator to inject parameters into an array we can
loop in. There is already an argument object bound to every function that is equal to an array of all
the parameters passed into the function.

function myFunc() {
for (var i = 90; i < arguments.length; i++) {
console.log(arguments[i]);
}
}

(c) ketabton.com: The Digital Library
myFunc("Nick", "Anderson", 10, 12, 6);
// "Nick"
// "Anderson"
// 16

// 12
// 6

But let's say that we want this function to create a new student with its grades and with its average
grade. Wouldn't it be more convenient to extract the first two parameters into two separate
variables, and then have all the grades in an array we can iterate over?

That's exactly what the rest operator allows us to do!

function createStudent(firstName, lastName, ...grades) {
// firstName = "NickR"
// lastName = "Anderson"
// [16, 12, 6] -- "..." takes all other parameters passed and creates a "grades" array var

const avgGrade = grades.reduce((acc, curr) => acc + curr, 9) / grades.length; // computes

return {
firstName: firstName,
lastName: lastName,
grades: grades,
avgGrade: avgGrade

const student = createStudent("Nick", "Anderson", 10, 12, 6);
console.log(student);

/7 A

// firstName: "NicR",

// LastName: "Anderson",

// grades: [10, 12, 6],

// avgGrade: 9,33

/7 }

Note: createStudent function is bad because we don't check if grades.length exists or is
different from 0. But it's easier to read this way, so | didn’t handle this case.

Object properties spreading

For this one, | recommend you read previous explanations about the rest operator on iterables and
function parameters.

(c) ketabton.com: The Digital Library

const myObj = { x: 1, y: 2, a: 3, b: 4 };

const { X, y, ...z } = myObj; // object destructuring here
console.log(x); // 1

console.log(y); // 2

console.log(z); // { a: 3, b: 4 }

// z 1s the rest of the object destructured: myObj object minus x and y properties destructi

const n={x,y, ...z };
console.log(n); // { x: 1, y: 2, a: 3, b: 4 }

// Here z object properties are spread into n

External resources

TC39 - Object rest/spread

Spread operator introduction - WesBos
JavaScript & the spread operator

6 Great uses of the spread operator

Object property shorthand

When assigning a variable to an object property, if the variable name is equal to the property
name, you can do the following:

const x = 10;
const myObj = { x };
console.log(myObj.x) // 10

Explanation

Usually (pre-ES2015) when you declare a new object literal and want to use variables as object
properties values, you would write this kind of code:

const x
const y

10;
20;

const myObj = {
X: X, // assigning x variable value to myObj.x
y: y // assigning y variable value to myObj.y

}s

(c) ketabton.com: The Digital Library

console.log(myObj.x) // 10
console.log(myObj.y) // 20

As you can see, this is quite repetitive because the properties name of myObj are the same as the
variable names you want to assign to those properties.

With ES2015, when the variable name is the same as the property name, you can do this

shorthand:
const x = 10;
const y = 20;

const myObj = {
X,
y

s

console.log(myObj.x) // 10
console.log(myObj.y) // 20

External resources

e Property shorthand - ES6 Features

Promises

A promise is an object which can be returned synchronously from an asynchronous function (ref).

Promises can be used to avoid callback hell, and they are more and more frequently encountered
in modern JavaScript projects.

Sample code

const fetchingPosts = new Promise((res, rej) => {
$.get("/posts")
.done(posts => res(posts))
.fail(err => rej(err));

1)

fetchingPosts
.then(posts => console.log(posts))
.catch(err => console.log(err));

(c) ketabton.com: The Digital Library

Explanation

When you do an Ajax request the response is not synchronous because you want a resource that
takes some time to come. It even may never come if the resource you have requested is
unavailable for some reason (404).

To handle that kind of situations, ES2015 has given us promises. Promises can have three different
states:

e Pending
o Fulfilled
e Rejected

Let's say we want to use promises to handle an Ajax request to fetch the resource X.

Create the promise

We firstly are going to create a promise. We will use the jQuery get method to do our Ajax request
to X.

const xFetcherPromise = new Promise(// Create promise using "new" keyword and store it intc
function(resolve, reject) { // Promise constructor takes a function parameter which has re
$.get("X") // Launch the Ajax request
.done(function(X) { // Once the request 1is done...

resolve(X); // ... resolve the promise with the X value as parameter

)

.fail(function(error) { // If the request has failed...
reject(error); // ... reject the promise with the error as parameter

1

}
)
4 »

As seen in the above sample, the Promise object takes an executor function which takes two
parameters resolve and reject. Those parameters are functions which when called are going to
move the promise pending state to respectively a fuffilled and rejected state.

The promise is in pending state after instance creation and it's executor function is executed
immediately. Once one of the function resolve or rejectis called in the executor function, the
promise will call its associated handlers.

Promise handlers usage

(c) ketabton.com: The Digital Library

To get the promise result (or error), we must attach to it handlers by doing the following:

xFetcherPromise
.then(function(X) {
console.log(X);

1)

.catch(function(err) {
console.log(err)

})

If the promise succeeds, resolve is executed and the function passed as .then parameter is
executed.

If it fails, rejectis executed and the function passed as .catch parameter is executed.

Note : If the promise has already been fulfilled or rejected when a corresponding
handler is attached, the handler will be called, so there is no race condition between an
asynchronous operation completing and its handlers being attached. (Ref: MDN)

External Resources

JavaScript Promises for dummies - Jecelyn Yeen
JavaScript Promise API - David Walsh

Using promises - MDN

What is a promise - Eric Elliott

JavaScript Promises: an Introduction - Jake Archibald
Promise documentation - MDN

Template literals
Template literals is an expression interpolation for single and multiple-line strings.

In other words, it is a new string syntax in which you can conveniently use any JavaScript
expressions (variables for instance).

Sample code

const name = "Nick";
"Hello ${name}, the following expression is equal to four : ${2+2} ;

// Hello Nick, the following expression is equal to four: 4

(c) ketabton.com: The Digital Library

External resources

e String interpolation - ES6 Features
e ES6 Template Strings - Addy Osmani

Tagged template literals

Template tags are functions that can be prefixed to a template literal. When a function is called this
way, the first parameter is an array of the strings that appear between the template’s interpolated
variables, and the subsequent parameters are the interpolated values. Use a spread operator ...
to capture all of them. (Ref: MDN).

Note : A famous library named styled-components heavily relies on this feature.

Below is a toy example on they work.

function highlight(strings, ...values) {
const interpolation = strings.reduce((prev, current) => {
return prev + current + (values.length ? "<mark>" + values.shift() + "</mark>" : "");

Y ")

return interpolation;

}

const condiment = "jam";
const meal = "toast";

highlight I like ${condiment} on ${meal}. ;
// "I Like <mark>jam</mark> on <mark>toast</mark>."

A more interesting example:

function comma(strings, ...values) {
return strings.reduce((prev, next) => {
let value = values.shift() || [1;
value = value.join(", ");
return prev + next + value;
")
}

const snacks = ['apples’', 'bananas', 'cherries'];
comma I like ${snacks} to snack on. ;
// "I Like apples, bananas, cherries to snack on."

(c) ketabton.com: The Digital Library

External resources

e Wes Bos on Tagged Template Literals
e Library of common template tags

Imports / Exports

ES6 modules are used to access variables or functions in a module explicitly exported by the
modules it imports.

| highly recommend to take a look at MDN resources on import/export (see external resources
below), it is both straightforward and complete.

Explanation with sample code

Named exports
Named exports are used to export several values from a module.

Note : You can only name-export first-class citizens that have a name.

// mathConstants.js
export const pi = 3.14;
export const exp = 2.7;
export const alpha = 0.35;

// myFile.js

import { pi, exp } from './mathConstants.js'; // Named import -- destructuring-like syntax
console.log(pi) // 3.14

console.log(exp) // 2.7

// mySecondFile.js

import * as constants from './mathConstants.js'; // Inject all exported values into constant
console.log(constants.pi) // 3.14

console.log(constants.exp) // 2.7

While named imports looks like destructuring, they have a different syntax and are not the same.
They don't support default values nor deep destructuring.

(c) ketabton.com: The Digital Library

Besides, you can do aliases but the syntax is different from the one used in destructuring:

import { foo as bar } from 'myFile.js'; // foo is 1imported and injected into a new bar varic

< >

Default import / export

Concerning the default export, there is only a single default export per module. A default export
can be a function, a class, an object or anything else. This value is considered the “main” exported
value since it will be the simplest to import. Ref: MDN

// coolNumber. js
const ultimateNumber = 42;
export default ultimateNumber;

// myFile.js

import number from './coolNumber.js';

// Default export, independently from its name, 1is automatically injected into number variat
console.log(number) // 42

Function exporting:

// sum.js
export default function sum(x, y) {
return x + y;

}
/) mmmmmmmmmmeee

// myFile.js

import sum from './sum.js’;
const result = sum(1l, 2);
console.log(result) // 3

External resources

e ES6 Modules in bulletpoints

e Export- MDN

e |Import- MDN

e Understanding ES6 Modules

e Destructuring special case - import statements

(c) ketabton.com: The Digital Library

e Misunderstanding ES6 Modules - Kent C. Dodds
e Modules in JavaScript

JavaScript this

this operator behaves differently than in other languages and is in most cases determined by how
a function is called. (Ref: MDN).

This notion is having many subtleties and being quite hard, | highly suggest you to deep dive in the
external resources below. Thus, | will provide what | personally have in mind to determine what
thisis equal to. | have learned this tip from this article written by Yehuda Katz.

function myFunc() {

// After each statement, you find the value of *this* in myFunc
myFunc.call("myString", "hello") // "myString" -- first .call parameter value is injected ir

// In non-strict-mode
myFunc("hello") // window -- myFunc() is syntax sugar for myFunc.call(window, "hello")

// In strict-mode
myFunc("hello") // undefined -- myFunc() 1is syntax sugar for myFunc.call(undefined, "hello")

< >

var person = {

myFunc: function() { ... }
}
person.myFunc.call(person, "test") // person Object -- first call parameter is injected intc
person.myFunc("test") // person Object -- person.myFunc() is syntax sugar for person.myFunc.

var myBoundFunc = person.myFunc.bind("hello") // Creates a new function in which we inject '
person.myFunc("test") // person Object -- The bind method has no effect on the original mett
myBoundFunc("test") // "hello" -- myBoundFunc is person.myFunc with "hello" bound to *this*

< >

External resources

e Understanding JavaScript Function Invocation and “this” - Yehuda Katz
e JavaScript this - MDN

(c) ketabton.com: The Digital Library

Class

JavaScript is a prototype-based language (whereas Java is class-based language, for instance). ES6
has introduced JavaScript classes which are meant to be a syntactic sugar for prototype-based
inheritance and not a new class-based inheritance model (ref).

The word class is indeed error prone if you are familiar with classes in other languages. If you do,
avoid assuming how JavaScript classes work on this basis and consider it an entirely different
notion.

Since this document is not an attempt to teach you the language from the ground up, | will believe
you know what prototypes are and how they behave. If you do not, see the external resouces listed
below the sample code.

Samples

Before ES6, prototype syntax:

var Person = function(name, age) {
this.name = name;
this.age = age;

}

Person.prototype.stringSentence = function() {
return "Hello, my name is " + this.name +

}

and I'm " + this.age;

With ES6 class syntax:

class Person {
constructor(name, age) {
this.name = name;
this.age = age;

}

stringSentence() {
return "Hello, my name is
}
}

+ this.name + " and I'm " + this.age;

const myPerson = new Person("Manu", 23);
console.log(myPerson.age) // 23
console.log(myPerson.stringSentence()) // "Hello, my name is Manu and I'm 23

(c) ketabton.com: The Digital Library

External resources
For prototype understanding:

e Understanding Prototypes in JS - Yehuda Katz
e Aplain English guide to JS prototypes - Sebastian Porto
e Inheritance and the prototype chain - MDN

For classes understanding:

e ES6 Classes in Depth - Nicolas Bevacqua
e ES6 Features - Classes
e JavaScript Classes - MDN

Extends and super keywords

The extends keyword is used in class declarations or class expressions to create a class which is a
child of another class (Ref: MDN). The subclass inherits all the properties of the superclass and
additionally can add new properties or modify the inherited ones.

The super keyword is used to call functions on an object’s parent, including its constructor.

e super keyword must be used before the this keyword is used in constructor
e Invoking super() calls the parent class constructor. If you want to pass some arguments in a
class's constructor to its parent’s constructor, you call it with super(arguments) .

e |f the parent class have a method (even static) called X, you can use super.x() tocallitina
child class.

Sample Code

class Polygon {
constructor(height, width) {
this.name = 'Polygon’;
this.height = height;
this.width = width;
}

getHelloPhrase() {
return "Hi, I am a ${this.name} ;
}
}

class Square extends Polygon {
constructor(length) {

(c) ketabton.com: The Digital Library

// Here, it calls the parent class' constructor with lLengths

// provided for the Polygon's width and height

super(length, length);

// Note: In derived classes, super() must be called before you
// can use 'this'. Leaving this out will cause a reference error.
this.name = 'Square’;

this.length = length;

getCustomHelloPhrase() {
const polygonPhrase = super.getHelloPhrase(); // accessing parent method with super.X()
return ~${polygonPhrase} with a length of ${this.length} ;

}

get area() {
return this.height * this.width;
}
}

const mySquare = new Square(10);

console.log(mySquare.area) // 100

console.log(mySquare.getHelloPhrase()) // 'Hi, I am a Square' -- Square inherits from Polygc
console.log(mySquare.getCustomHelloPhrase()) // 'Hi, I am a Square with a length of 10'

Note : If we had tried to use this before calling super() in Square class, a ReferenceError would
have been raised:

class Square extends Polygon {
constructor(length) {
this.height; // ReferenceError, super needs to be called first!

// Here, it calls the parent class' constructor with Lengths
// provided for the Polygon's width and height
super(length, length);

// Note: In derived classes, super() must be called before you

// can use 'this'. Leaving this out will cause a reference error.
this.name = 'Square’;

External Resources

e Extends- MDN
e Super operator - MDN

(c) ketabton.com: The Digital Library

e |nheritance - MDN

Async Await

In addition to Promises, there is a new syntax you might encounter to handle asynchronous code
named async / await.

The purpose of async/await functions is to simplify the behavior of using promises synchronously
and to perform some behavior on a group of Promises. Just as Promises are similar to structured
callbacks, async/await is similar to combining generators and promises. Async functions a/ways
returns a Promise. (Ref: MDN)

Note : You must understand what promises are and how they work before trying to
understand async / await since they rely on it.

Note 2: await must be used in an async function, which means that you can't use await
in the top level of our code since that is not inside an async function.

Sample code

async function getGithubUser(username) { // async keyword allows usage of await in the funct
const response = await fetch(https://api.github.com/users/${username}’); // Execution 1is
return response.json();

}

getGithubUser('mbeaudru')
.then(user => console.log(user)) // lLogging user response - cannot use await syntax since
.catch(err => console.log(err)); // if an error 1is thrown in our async function, we will c

< >

Explanation with sample code
Async / Await is built on promises but they allow a more imperative style of code.

The async operator marks a function as asynchronous and will always return a Promise. You can
use the await operator in an async function to pause execution on that line until the returned
Promise from the expression either resolves or rejects.

async function myFunc() {
// we can use await operator because this function 1is async
return "hello world";

}

(c) ketabton.com: The Digital Library

myFunc().then(msg => console.log(msg)) // "hello world" -- myFunc's return value is turned 1

4

When the return statement of an async function is reached, the Promise is fulfilled with the value
returned. If an error is thrown inside an async function, the Promise state will turn to rejected. If no
value is returned from an async function, a Promise is still returned and resolves with no value
when execution of the async function is complete.

await operator is used to wait for a Promise to be fulfilled and can only be used inside an async
function body. When encountered, the code execution is paused until the promise is fulfilled.

Note : fetchis a function that returns a Promise that allows to do an AJAX request

Let's see how we could fetch a github user with promises first:

function getGithubUser(username) {
return fetch(https://api.github.com/users/${username}”).then(response => response.json()),

}

getGithubUser('mbeaudru')
.then(user => console.log(user))
.catch(err => console.log(err));

Here's the async / await equivalent:

async function getGithubUser(username) { // promise + await keyword usage allowed

const response = await fetch(https://api.github.com/users/${username}’); // Execution stc
return response.json();

}

getGithubUser('mbeaudru')
.then(user => console.log(user))
.catch(err => console.log(err));

async / await syntax is particularly convenient when you need to chain promises that are
interdependent.

For instance, if you need to get a token in order to be able to fetch a blog post on a database and
then the author informations:

Note : await expressions needs to be wrapped in parentheses to call its resolved value’s
methods and properties on the same line.

(c) ketabton.com: The Digital Library

async function fetchPostById(postId) {
const token = (await fetch('token_url')).json().token;
const post = (await fetch(/posts/${postId}?token=${token})).json();
const author = (await fetch(" /users/${post.authorId})).json();

post.author = author;
return post;

fetchPostById('gzIrzeo64")
.then(post => console.log(post))
.catch(err => console.log(err));

Error handling

Unless we add try / catch blocks around await expressions, uncaught exceptions - regardless of
whether they were thrown in the body of your async function or while it's suspended during await -
will reject the promise returned by the async function. Using the throw statement in an async
function is the same as returning a Promise that rejects. (Ref: PonyFoo).

Note : Promises behave the same!

With promises, here is how you would handle the error chain:

function getUser() { // This promise will be rejected!
return new Promise((res, rej) => rej("User not found !"));

function getAvatarByUsername(userId) {
return getUser(userId).then(user => user.avatar);

function getUserAvatar(username) {
return getAvatarByUsername(username).then(avatar => ({ username, avatar }));

getUserAvatar('mbeaudru')
.then(res => console.log(res))
.catch(err => console.log(err)); // "User not found !"

The equivalent with async / await.

async function getUser() { // The returned promise will be rejected!
throw "User not found !";

(c) ketabton.com: The Digital Library

}

async function getAvatarByUsername(userId) => {
const user = await getUser(userId);
return user.avatar;

}

async function getUserAvatar(username) {
var avatar = await getAvatarByUsername(username);
return { username, avatar };

}

getUserAvatar('mbeaudru')
.then(res => console.log(res))
.catch(err => console.log(err)); // "User not found !"

External resources

e Async/Await - JavaScript.Info

e ES7 Async/Await

e 6 Reasons Why JavaScript's Async/Await Blows Promises Away
e JavaScript awaits

e Using Async Await in Express with Node 8

e Async Function

e Await

e Using async/ await in express with node 8

Truthy / Falsy

In JavaScript, a truthy or falsy value is a value that is being casted into a boolean when evaluated in
a boolean context. An example of boolean context would be the evaluation of an if condition:

Every value will be casted to true unless they are equal to:

e false

e 0

e "" (empty string)
® null

® undefined

e NaN

Here are examples of boolean context.

(c) ketabton.com: The Digital Library

e if condition evaluation
if (myvar) {}

myVar can be any first-class citizen (variable, function, boolean) but it will be casted into a boolean
because it's evaluated in a boolean context.

o After logical NOT ! operator

This operator returns false if its single operand can be converted to true; otherwise, returns true.

19 // true -- 0 1is falsy so it returns true
110 // false -- @ is falsy so !0 returns true so !(!0) returns false
""" // false -- empty string is falsy so NOT (NOT false) equals false

e With the Boolean object constructor

new Boolean(®) // false
new Boolean(1l) // true

e In aternary evaluation
myVar ? "truthy" : "falsy"

myVar is evaluated in a boolean context.

External resources

e Truthy (MDN)
e Falsy (MDN)
e Truthy and Falsy values in JS - Josh Clanton

Static Methods

Short explanation

The static keyword is used in classes to declare static methods. Static methods are functions in a
class that belongs to the class object and are not available to any instance of that class.

(c) ketabton.com: The Digital Library

Sample code

class Repo{
static getName() {
return "Repo name is modern-js-cheatsheet”

}
}

//Note that we did not have to create an instance of the Repo class
console.log(Repo.getName()) //Repo name is modern-js-cheatsheet

let r = new Repo();
console.log(r.getName()) //Uncaught TypeError: repo.getName is not a function

Detailed explanation

Static methods can be called within another static method by using the this keyword, this doesn't
work for non-static methods though. Non-static methods cannot directly access static methods
using the this keyword.

Calling other static methods from a static method.

To call a static method from another static method, the this keyword can be used like so;

class Repof
static getName() {
return "Repo name is modern-js-cheatsheet”

}

static modifyName(){
return this.getName() + '-added-this'

}
}

console.log(Repo.modifyName()) //Repo name is modern-js-cheatsheet-added-this

Calling static methods from non-static methods.

Non-static methods can call static methods in 2 ways;

1. Using the class name.

(c) ketabton.com: The Digital Library

To get access to a static method from a non-static method we use the class name and call the static
method like a property. e.g ClassName.StaticMethodName

class Repo{
static getName() {
return "Repo name is modern-js-cheatsheet”

}

useName (){
return Repo.getName() + ' and it contains some really important stuff'

}

// we need to instantiate the class to use non-static methods

let r = new Repo()
console.log(r.useName()) //Repo name 1is modern-js-cheatsheet and it contains some really img

4

1. Using the constructor

Static methods can be called as properties on the constructor object.

class Repo{
static getName() {
return "Repo name is modern-js-cheatsheet”

}

useName (){
//Calls the static method as a property of the constructor
return this.constructor.getName() + ' and it contains some really important stuff'

}

// we need to instantiate the class to use non-static methods

let r = new Repo()
console.log(r.useName()) //Repo name 1is modern-js-cheatsheet and it contains some really img

4

External resources

e static keyword- MDN
e Static Methods- Javascript.info
e Static Members in ES6- OdeToCode

(c) ketabton.com: The Digital Library

Glossary

Scope

The context in which values and expressions are “visible,” or can be referenced. If a variable or
other expression is not “in the current scope,” then it is unavailable for use.

Source: MDN

Variable mutation

A variable is said to have been mutated when its initial value has changed afterward.

var myArray = [];
myArray.push("firstEl") // myArray is being mutated

A variable is said to be immutable if it can't be mutated.

Check MDN Mutable article for more details.

modern-js-cheatsheet is maintained by mbeaudru.
This page was generated by GitHub Pages.

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

