Introduction to Programming CS201

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
) IETeia b (<A (o T N 3
LECtUIC INO. 2 oottt e e e e e e e e e e e e e e e et e e e e e e e eeenarreeeeas 9
LeCtUIE INO. 3 .ot e e e e e e e e e e e e e e ettt r e e e e e e eeennraaes 15
| I<Te100 8 (I A [T SRR 24
LECtUIE INO. 5 ettt e e e e e et e e e e e e e e e e artreeeeeeeeennnnaaees 33
LECtUTE INO. 6 oottt e e e e e et e e e e e e e e seraataeeeeeeesennnnaeees 45
) IESTedn b (S (o T AR 55
) IS Ten b (S (o TR SRR 66
J I Teia b (<A (o S RPN 77
) IETeia b1 (<A (o N O RRRRRRRN 88
) IETeia b1 (<A (o N RN 99
LeCture INO. 12 .o e e e e e e e e e s reaaeeeeeeennnes 112
LeCture INO. 13 ..ot e e et e e e e e e e ee s e e e e e e eeeenanes 124
LECtUIC INO. 14 oot e e e e e e e e e e et reeeeeeeseenaaes 143
LeCtUIE INO. 15 oot e e e e e e e e e e et ee e e e e e e eennaes 158
LECtUIE INO. 16 oeeeeveeiiiiiiiieeeeeeeee ettt e e e e e e et e e e e e e e e e enanaes 171
) IESTen b (S (o T AN 186
) IS Ten b (Sl A (o TR SN 198
LEeCtUIE INO. 19 oo ssnaa s s ssnnssnnsssnssnnnnnnnnns 211
) IETeia 01 (<IN (o A O N 228
) IETela b (<A (o 0 RN 245
LeCtUIE INO. 22 .ottt e e e e e e et e e e e e e e e eestareeeeeeeeeeennnes 255
LeCtUre INO. 23 .ottt e e e e e e e e e e e e e eesarreaeeeeeeeenanes 268
LECtUIC INO. 24 ..ot e e e e e e e e e eesarreeeeeeeeeennnes 278
LECtUIE INO. 25 oottt e e e e e et e e e e e e e e esaatreeeeeeeeeennaes 291
LECtUIE INO. 26 ..ottt e e e e e e e e e e e eestarreeeeeeeeeennnes 304
LECHUIE INO. 27 oottt e e e e e e e e e e e e e e eesaatreeeeeeeeeennnes 318
LECtUIE INO. 28 ..ottt e e e e e et e e e e e e e e sesnsateeeeeeeeeeenanes 328
) IS Ten b (SR (o A RN 344
) IESTen b (S A (o TN 1O N 358
) IS Ten b (S (o N B N 368
) IETeln 01 (<A (o TN 3N 381
) IETela b1 (<R (o TG 1C TN 394
) I Teln b1 (I[N 7 N 407
LeCtUIE INO. 35 oot e e e e e e e e e e e et e e e e e e e e eennaes 421
LeCtUIE INO. 36 .ot e e e e e e e e e e e e s eaeeeeeeeennnes 432
LECtUIE INO. 37 ettt e e e e e e e e e e e e e esaatraeeeeeeseenaees 443
LeCtUIE INO. 38 oottt e e e e et e e e e e e e e e esatr e e e e e e e e eennnes 453
LeCtUIE INO. 39 oottt e e e e e e e e e e e et e e e e e e e eennaes 468
) IESTen b (S A (o TR (O N 481
) IESTen b (S A (o TR N 496
LECUIE INO. 42 .o aasssssansssssnnnssnnssnnnsnnnsnnnnnn 509
) I Tein b (<A (o T o TN 519
LECtUIE INO. 44 ..o sssnns s s snsnsssnssnnnsnnnnnnnnns 528
LECtUIE INO. 45 ..ot e e e e e e e e e e e e etaraeeaeeeeeeenaaes 552
2

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 1

Summary

0 What is programming

Why programming is important

What skills are needed

Develop a basic recipe for writing programs
Points to remember

©Oo0oo0oo

What is programming

As this course is titled “Introduction to programming”, therefore it is most essential
and appropriate to understand what programming really means. Let us first see a
widely known definition of programming.

Definition: "A program is a precise sequence of steps to solve a particular problem.”

It means that when we say that we have a program, it actually means that we know
about a complete set activities to be performed in a particular order. The purpose of
these activities is to solve a given problem.

Alan Perlis, a professor at Yale University, says:

"It goes against the grain of modern education to teach children to program. What fun
is there in making plans, acquiring discipline in organizing thoughts, devoting
attention to detail and learning to be self-critical? "

It is a sarcastic statement about modern education, and it means that the modern
education is not developing critical skills like planning, organizing and paying
attention to detail. Practically, in our day to day lives we are constantly planning,
organizing and paying attention to fine details (if we want our plans to succeed). And
it is also fun to do these activities. For example, for a picnic trip we plan where to go,
what to wear, what to take for lunch, organize travel details and have a good time
while doing so.

When we talk about computer programming then as Mr. Steve Summit puts it

“At its most basic level, programming a computer simply means telling it what to do,
and this vapid-sounding definition is not even a joke. There are no other truly
fundamental aspects of computer programming; everything else we talk about will
simply be the details of a particular, usually artificial, mechanism for telling a
computer what to do. Sometimes these mechanisms are chosen because they have
been found to be convenient for programmers (people) to use; other times they have
been chosen because they're easy for the computer to understand. The first hard thing
about programming is to learn, become comfortable with, and accept these artificial
mechanisms, whether they make ““sense" to you or not. *

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Why Programming is important

The question most of the people ask is why should we learn to program when there
are so many application software and code generators available to do the task for us.
Well the answer is as give by the Matthias Felleisen in the book ‘How to design
programs’

“The answer consists of two parts. First, it is indeed true that traditional forms of
programming are useful for just a few people. But, programming as we the authors
understand it is useful for everyone: the administrative secretary who uses
spreadsheets as well as the high-tech programmer. In other words, we have a broader
notion of programming in mind than the traditional one. We explain our notion in a
moment. Second, we teach our idea of programming with a technology that is based
on the principle of minimal intrusion. Hence, our notion of programming teaches
problem-analysis and problem-solving skills without imposing the overhead of
traditional programming notations and tools.”

Hence learning to program is important because it develops analytical and problem
solving abilities. It is a creative activity and provides us a mean to express abstract
ideas. Thus programming is fun and is much more than a vocational skill. By
designing programs, we learn many skills that are important for all professions. These
skills can be summarized as:

o Critical reading
o Analytical thinking
o Creative synthesis

What skills are needed

Programming is an important activity as people life and living depends on the
programs one make. Hence while programming one should

Paying attention to detail

Think about the reusability.

Think about user interface

Understand the fact the computers are stupid
Comment the code liberally

©Oo0oo0oo0oo

Paying attention to detail

In programming, the details matter. This is a very important skill. A good programmer
always analyzes the problem statement very carefully and in detail. You should pay
attention to all the aspects of the problem. You can't be vague. You can't describe
your program 3/4th of the way, then say, "You know what [mean?", and have the
compiler figure out the rest.

Furthermore you should pay attention to the calculations involved in the program, its
flow, and most importantly, the logic of the program. Sometimes, a grammatically
correct sentence does not make any sense. For example, here is a verse from poem
"Through the Looking Glass" written by Lewis Carol:

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

“Twas brillig, and the slithy toves
Did gyre and gimble in the wabe

The grammar is correct but there is no meaning. Similarly, the sentence, "Mr. ABC
sleeps thirty hours every day", is grammatically correct but it is illogical.

So it may happen that a program is grammatically correct. It compiles and runs but
produces incorrect or absurd results and does not solve the problem. It is very
important to pay attention to the logic of the program.

Think about the reusability

When ever you are writing a program, always keep in mind that it could be reused at
some other time. Also, try to write in a way that it can be used to solve some other
related problem. A classic example of this is:

Suppose we have to calculate the area of a given circle. We know the area of a circle
is (Pi * r*). Now we have written a program which calculates the area of a circle with
given radius. At some later time we are given a problem to find out the area of a ring.
The area of the ring can be calculated by subtracting the area of outer circle from the
area of the inner circle. Hence we can use the program that calculates the area of a
circle to calculate the area of the ring.

Cuter Circle

Inner Circle

Area of outercirele - Arsa of inner circle = Avrea of the ring

Think about Good user interface

As programmers, we assume that computer users know a lot of things, this is a big
mistake. So never assume that the user of your program is computer literate. Always
provide an easy to understand and easy to use interface that is self explanatory.

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Understand the fact that computers are stupid

Computers are incredibly stupid. They do exactly what you tell them to do: no more,
no less-- unlike human beings. Computers can't think by themselves. In this sense,
they differ from human beings. For example, if someone asks you, “What is the
time?”, “Time please?” or just, “Time?” you understand anyway that he is asking the
time but computer is different. Instructions to the computer should be explicitly
stated. Computer will tell you the time only if you ask it in the way you have
programmed it.

When you're programming, it helps to be able to "think" as stupidly as the computer
does, so that you are in the right frame of mind for specifying everything in minute
detail, and not assuming that the right thing will happen by itself.

Comment the code liberally

Always comment the code liberally. The comment statements do not affect the
performance of the program as these are ignored by the compiler and do not take any
memory in the computer. Comments are used to explain the functioning of the
programs. It helps the other programmers as well as the creator of the program to
understand the code.

Program design recipe

In order to design a program effectively and properly we must have a recipe to follow.
In the book name ‘How to design programs’ by Matthias Felleisen.and the co-worker,
the idea of design recipe has been stated very elegenlty as

“Learning to design programs is like learning to play soccer. A player must learn to
trap a ball, to dribble with a ball, to pass, and to shoot a ball. Once the player knows
those basic skills, the next goals are to learn to play a position, to play certain
strategies, to choose among feasible strategies, and, on occasion, to create variations
of a strategy because none fits.

The author then continue to say that:

“A programmer is also very much like an architect, a composers, or a writer. They are
creative people who start with ideas in their heads and blank pieces of paper. They
conceive of an idea, form a mental outline, and refine it on paper until their writings
reflect their mental image as much as possible. As they bring their ideas to paper, they
employ basic drawing, writing, and playing music to express certain style elements of
a building, to describe a person's character, or to formulate portions of a melody. They
can practice their trade because they have honed their basic skills for a long time and
can use them on an instinctive level.

Programmers also form outlines, translate them into first designs, and iteratively
refine them until they truly match the initial idea. Indeed, the best programmers edit
and rewrite their programs many times until they meet certain aesthetic standards.
And just like soccer players, architects, composers, or writers, programmers must
practice the basic skills of their trade for a long time before they can be truly creative.
Design recipes are the equivalent of soccer ball handling techniques, writing
techniques, arrangements, and drawing skills.

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Hence to design a program properly, we must:

Analyze a problem statement, typically expressed as a word problem.
Express its essence, abstractly and with examples.

Formulate statements and comments in a precise language.

Evaluate and revise the activities in light of checks and tests and

Pay attention to detail.

O0OO0OO0O0

All of these are activities that are useful, not only for a programmer but also for a
businessman, a lawyer, a journalist, a scientist, an engineer, and many others.

Let us take an example to demonstrate the use of design recipe:

Suppose we have to develop a payroll system of a company. The company has
permanent staff, contractual staff, hourly based employees and per unit making
employees. Moreover, there are different deductions and benefits for permanent
employees and there is a bonus for per unit making employees and overtime for
contractual employees.

We need to analyze the above problem statement. The company has four categories of
employees; i.e.; Permanent staff, Contractual staff, hourly based employees and per
unit making employees. Further, permanent staff has benefits and deductions
depending upon their designation. Bonus will be given to per unit making employees
if they make more than 10 pieces a day. Contractual employee will get overtime if
they stay after office hours.

Now divide the problem into small segments and calculations. Also include examples
in all segments. In this problem, we should take an employee with his details from
each category. Let’s say, Mr. Ahmad is a permanent employee working as Finance
Manager. His salary is Rs.20000 and benefits of medical, car allowance and house
rent are Rs.4000 and there is a deduction of Rs.1200. Similarly, we should consider
employees from other categories. This will help us in checking and testing the
program later on.

The next step is to formulate these statements in a precise language, i.e. we can use
the pseudo code and flowcharting. which will be then used to develop the program
using computer language.

Then the program should be evaluated by testing and checking. If there are some

changes identified, we revise the activities and repeat the process. Thus repeating the
cycle, we achieve a refined solution.

Points to remember

Hence the major points to keep in mind are:

o Don’t assume on the part of the users

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

User Interface should be friendly

Don’t forget to comment the code

PAY ATTENTION TO DETAIL

Program, program and program, not just writing code, but the whole
process of design and development

©Oo0oo0oo

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 2

Reading Material

Deitel & Deitel — C++ How to Program chapter 1
1.2, 1.3, 1.4, 1.6,
1.7
1.11,1.12,1.13
Summary
o Software Categories
0 System Software
0 Application Software
0 History of C language
(o] Development Environment of ‘C’
Software Categories
Software is categorized into two main categories
(o] System Software
o] Application Software

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Sraphics

Applications Softweare

Fil= Mgrt
Todl s

Systems Software

Cornputer Hardware

System Software

The system software controls the computer. It communicates with computer’s
hardware (key board, mouse, modem, sound card etc) and controls different aspects of
operations. Sub categories of system software are:

0 Operating system

0 Device drivers

o Utilities

Operating system

An operating system (sometimes abbreviated as "OS") is the program that manages all
the other programs in a computer. It is a integrated collection of routines that service
the sequencing and processing of programs by a computer. Note: An operating system
may provide many services, such as resource allocation, scheduling, input/output
control, and data management.

Definition

“Operating system is the software responsible for controlling the allocation and usage of hardware
resources such as memory, central processing unit (CPU) time, disk space, and peripheral devices. The
operating system is the foundation on which applications, such as word processing and spreadsheet
programs, are built. (Microsoft)”

10

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Device drivers

The device driver software is used to communicate between the devices and the
computer. We have monitor, keyboard and mouse attached to almost all PC’s; if we
look at the properties of these devices we will see that the operating system has
installed special software to control these devices. This piece of software is called
device driver software. When we attach a new device with the computer, we need
software to communicate with this device. These kinds of software are known as
device drivers e.g. CD Rom driver, Sound Card driver and Modem driver. Normally
manufacturer of the device provide the device driver software with the device. For
scanners to work properly with the computers we install the device driver of the
scanner. Nowadays if you have seen a scanner, it comes with TWAIN Drivers.
TWAIN stands for Technology Without An Interesting Name.

Utility Software

Utility software is a program that performs a very specific task, usually related to
managing system resources. You would have noticed a utility of Disk Compression.
Whenever you write a file and save it to the disk, Compression Utility compresses the
file (reduce the file size) and write it to the disk and when you request this file from
the disk, the compression utility uncompressed the file and shows its contents.
Similarly there is another utility, Disk Defragmentation which is used to defragment
the disk. The data is stored on the disks in chunks, so if we are using several files and
are making changes to these files then the different portions of file are saved on
different locations on the disk. These chunks are linked and the operating system
knows how to read the contents of file from the disk combining all the chunks.
Similarly when we delete a file then the place where that file was stored on the disk is
emptied and is available now to store other files. As the time goes on, we have a lot of
empty and used pieces on the disk. In such situation we say that the disk is
fragmented now. If we remove this fragmentation the chunks of data on the disk will
be stored close to each other and thus reading of data will be faster. For the purpose of
removing fragmentation on the disk the Defragmentation utility is used.

The compilers and interpreters also belong to the System Software category.

Application software

A program or group of programs designed for end users. For example a program for
Accounting, Payroll, Inventory Control System, and guided system for planes. GPS
(global positioning system), another application software, is being used in vehicles,
which through satellite determines the geographical position of the vehicle

History of C language

The C language was developed in late 60’s and early 70’s, in Bell Laboratories. In
those days BCPL and B languages were developed there. The BCPL language was
developed in 1967 by Martin Richards as a language for writing operating systems
software and compilers. In 1970 Ken Thompson used B language to create early

11

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

versions of the UNIX operating system at Bell Laboratories. Thus both the languages
were being used to develop various system software even compilers. Both BCPL and
B were ‘type less’ languages, every data item occupied one ‘word’ in memory and the
burden of treating a data item as a whole number or real number, for example was the
responsibility of the programmer.

Dennis Ritchie developed a general purpose language, called C language, by using
different features of BCPL and B languages. C uses many important concepts of
BCPL and B while adding data typing and other features. In the start C became
widely known as the development language of the UNIX operating system, and the
UNIX operating system was written by using this C language. The C language is so
powerful that the compiler of C and other various operating systems are written in C.
C language has almost unlimited powers to do with computers. You can program to
turn on or off any device of computer. You can do a lot to hard disk and other
peripherals. It is very easy to write a program in C that stops the running of computer.
So be careful while programming in C.

The C language and UNIX operating system widely spread in educational and
research institutions. There was C and UNIX everywhere. Due to the wide spread of
C, different researchers started to add their features in the language. And thus
different variations in C came into existence. Many universities developed their own
C by adding different features to the C language developed by Ritchie. These
variations led to the need of a standard version of C. In 1983 a technical committee
was created under the American National Standards Committee on Computer and
Information Processing to provide an unambiguous and machine-independent
definition of the language. In 1989 the standard was approved. ANSI cooperated with
the International Standard Organization (ISO) to standardize C worldwide.

Tools of the trade

As programmer we need different tools to develop a program. These tools are needed
for the life cycle of programs

Editors

First of all we need a tool for writing the code of a program. For this purpose we used
Editors in which we write our code. We can use word processor too for this, but word
processors have many other features like bold the text, italic, coloring the text etc, so
when we save a file written in a word processor, lot of other information including the
text is saved on the disk. For programming purposes we don’t need these things we
only need simple text. Text editors are such editors which save only the text which we
type. So for programming we will be using a text editor

Compiler and Interpreter

As we write the code in English and we know that computers can understand only 0Os
and 1s. So we need a translator which translates the code of our program into machine
language. There are two kinds of translators which are known as Interpreter and
Compilers. These translators translate our program which is written in C-Language
into Machine language. Interpreters translates the program line by line meaning it
reads one line of program and translates it, then it reads second line, translate it and so
on. The benefit of it is that we get the errors as we go along and it is very easy to
correct the errors. The drawback of the interpreter is that the program executes slowly

12

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

as the interpreter translates the program line by line. Another drawback is that as
interpreters are reading the program line by line so they cannot get the overall picture
of the program hence cannot optimize the program making it efficient.

Compilers also translate the English like language (Code written in C) into a language
(Machine language) which computers can understand. The Compiler read the whole
program and translates it into machine language completely. The difference between
interpreter and compiler is that compiler will stop translating if it finds an error and
there will be no executable code generated whereas Interpreter will execute all the
lines before error and will stop at the line which contains the error. So Compiler needs
syntactically correct program to produce an executable code. We will be using
compiler in our course

Debugger

Another important tool is Debugger. Every programmer should be familiar with it.
Debugger is used to debug the program i.e. to correct the logical errors. Using
debugger we can control our program while it is running. We can stop the execution
of our program at some point and can check the values in different variables, can
change these values etc. In this way we can trace the logical errors in our program and
can see whether our program is producing the correct results. This tool is very
powerful, so it is complex too

Linker

Most of the time our program is using different routines and functions that are located
in different files, hence it needs the executable code of those routines/functions.
Linker is a tool which performs this job, it checks our program and includes all those
routines or functions which we are using in our program to make a standalone
executable code and this process is called Linking

Loader

After a executable program is linked and saved on the disk and it is ready for
execution. We need another process which loads the program into memory and then
instruct the processor to start the execution of the program from the first instruction
(the starting point of every C program is from the main function). This processor is
known as loader. Linker and loaders are the part of development environment. These
are part of system software.

The following figure represents a graphical explanation of all the steps involved in
writing and executing a program.

13

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Cme b
Preprocessor program
-<—> -> processes the code.
Compiler creates object
-<—>- > code and stores

it on disk.

-<—>- > Linker links the object
code with the libraries

Primary Memory

Loader puts program
in memory.

anary Memory CPU takes each

instruction and
executes it, possibly
storing new data
values as the

program executes.

© Copyright Virtual University of Pakistan

14

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 3

Reading Material
Deitel & Deitel — C++ How to Program chapter 1
1.19, 1.20, 1.21,
1.22
Summary

First C program

Variables

Data Types

Arithmetic Operators
Precedence of Operators
Tips

First C program

The best way to learn C is to start coding right away. So here is our very first program
in C.

include <iostream.h>

main()

{
}

cout << "Welcome to Virtual University of Pakistan";

We will look at this code line by line and try to understand them.

include <iostream.h>

#include: This is a pre-processor directive. It is not part of our program; it is an
instruction to the compiler. It tells the C compiler to include the contents of a file, in
this case the system file iostream.h. The compiler knows that it is a system file, and
therefore looks for it in a special place. The features of preprocessor will be discussed
later. For the time being take this line on faith. You have to write this line. The sign #
is known as HASH and also called SHARP.

<iostream.h>

This is the name of the library definition file for all Input Output Streams. Your
program will almost certainly want to send stuff to the screen and read things from the
keyboard. iostream.h is the name of the file in which has code to do that work for you

15

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

main()

The name main is special, in that the main is actually the one which is run when your
program is used. A C program is made up of a large number of functions. Each of
these is given a name by the programmer and they refer to each other as the program
runs. C regards the name "main" as a special case and will run this function first. If
you forget to have a main function, or mistype the name, the compiler will give you
an error.

Notice that there are parentheses (“()”, normal brackets) with main. Here the
parentheses contain nothing. There may be something written inside the parentheses.
It will be discussed in next lectures.

{}

Next, there is a curly bracket also called braces("{ }"). For every open brace there
must be a matching close. Braces allows to group together pieces of a program. The
body of main is enclosed in braces. Braces are very important in C; they enclose the
blocks of the program.

cout << “ Welcome to Virtual University of Pakistan”

cout:

This is known as out put stream in C and C++. Stream is a complicated thing, you will
learn about it later. Think a stream as a door. The data is transferred through stream,
cout takes data from computer and sends it to the output. For the moment it is a
screen of the monitor. hence we use cout for output.

<<

The sign << indicates the direction of data. Here it is towards cout and the function of
cout is to show data on the screen.

“ Welcome to Virtual University of Pakistan”

The thing between the double quotes (“) is known as character string. In C
programming character strings are written in double quotes. Whatever is written after
<< and within quotation marks will be direct it to cout, cout will display it on the
screen.

There is a semicolon (3) at the end of the above statement. This is very important. All
C statements end with semicolon (3). Missing of a semicolon (3) at the end of
statement is a syntax error and compiler will report an error during compilation. If
there is only a semicolon () on a line than it will be called a null statement. i.e. it does
nothing. The extra semicolons may be put at the end but are useless and aimless. Do
not put semicolon () at a wrong place, it may cause a problem during the execution of
the program or may cause a logical error.

In this program we give a fixed character string to cout and the program prints it to
the screen as:

Variables

During programming we need to store data. This data is stored in variables. Variables
are locations in memory for storing data. The memory is divided into blocks. It can be
viewed as pigeon-holes. You can also think of it as PO Boxes. In post offices there are
different boxes and each has an address. Similarly in memory, there is a numerical
address for each location of memory (block). It is difficult for us to handle these
numerical addresses in our programs. So we give a name to these locations. These
names are variables. We call them variables because they can contain different values
at different times.

16

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The variable names in C may be started with a character or an underscore (). But
avoid starting a name with underscore (). C has many libraries which contain
variables and function names normally starting with underscore (). So your variable
name starting with underscore () may conflict with these variables or function
names.

In a program every variable has

Name

Type

Size

Value

The variables having a name, type and size (type and size will be discussed later) are
just empty boxes. They are useless until we put some value in them. To put some
value in these boxes is known as assigning values to variables. In C language, we use
assignment operator for this purpose.

Assignment Operator

In C language equal-to-sign (=) is used as assignment operator. Do not confuse the
algebraic equal-to with the assignment operator. In Algebra X =2 means the value of
X is 2, whereas in C language X = 2 (where X is a variable name) means take the
value 2 and put it in the memory location labeled as X, afterwards you can assign
some other value to X, for example you can write X = 10, that means now the
memory location X contains the value 10 and the previous value 2 is no more there.
Assignment operator is a binary operator (a binary operator has two operands). It must
have variable on left hand side and expression (that evaluates to a single value) on
right hand side. This operator takes the value on right hand side and stores it to the
location labeled as the variable on left hand side, e.g. X =5, X=10+5,and X=X
+1.

In C language the statement X = X + 1 means that add 1 to the value of X and then
store the result in X variable. If the value of X is 10 then after the execution of this
statement the value of X becomes 11. This is a common practice for incrementing the
value of the variable by ‘one in C language. Similarly you can use the statement X =
X - 1 for decrementing the value of the variable by one. The statement X = X + 1 in
algebra is not valid except when X is infinity. So do not confuse assignment operator
(=) with equal sign (=) in algebra. Remember that assignment operator must have a
variable name on left hand side unlike algebra in which you can use expression on
both sides of equal sign (=). For example, in algebra, X +5 =Y + 7 is correct but
incorrect in C language. The compiler will not understand it and will give error.

Data Types

A variable must have a data type associated with it, for example it can have data types
like integer, decimal numbers, characters etc. The variable of type Integer stores
integer values and a character type variable stores character value. The primary
difference between various data types is their size in memory. Different data types
have different size in memory depending on the machine and compilers. These also
affect the way they are displayed. The ‘cout’ knows how to display a digit and a
character. There are few data types in C language. These data types are reserved
words of C language. The reserve words can not be used as a variable name.

Let’s take a look into different data types that the C language provides us to deal with
whole numbers, real numbers and character data.

Whole Numbers
17

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The C language provides three data types to handle whole numbers.

int
short
long

int Data Type

The data type int is used to store whole numbers (integers). The integer type has a
space of 4 bytes (32 bits for windows operating system) in memory. And it is
mentioned as ‘int” which is a reserved word of C, so we can not use it as a variable
name.

In programming before using any variable name we have to declare that variable with

its data type. If we are using an integer variable named as ‘i’, we have to declare it as
inti;

The above line is known as declaration statement. When we declare a variable in this

way, it reserves some space in memory depending on the size of data type and labels

it with the variable name. The declaration statement int i ; reserves 4 bytes of memory

and labels it as ‘i’. This happens at the execution time.

Sample Program 1

Let’s consider a simple example to explain int data type. In this example we take two
integers, add them and display the answer on the screen.
The code of the program is written below.

#include <iostream.h>
main()
{
int x;
inty;
int z;
xX=35;
y = 10;
z=XtYy;
cout << “x =
cout << x;
cout << “ y=*
cout <<y;
cout <<“z=x+y="%
cout <<z,

}

The first three lines declare three variables x, y and z as following.

int X;
inty;
int z;

18

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

These three declarations can also be written on one line. C provides us the comma
separator (,). The above three lines can be written in a single line as below
intx,y, z;

As we know that semicolon (;) indicates the end of the statement. So we can write
many statements on a single line. In this way we can also write the above declarations
in the following form

int x; int y; int z;
For good programming practice, write a single statement on a single line.
Now we assign values to variables x and y by using assignment operator. The lines x
=5; and y = 10 assign the values 5 and 10 to the variables x and y, respectively. These
statements put the values 5 and 10 to the memory locations labeled as x and y.
The next statement z = x + y; evaluates the expression on right hand side. It takes
values stored in variables x and y (which are 5 and 10 respectively), adds them and by
using the assignment operator (=), puts the value of the result, which is 15 in this case,
to the memory location labeled as z.
Here a thing to be noted is that the values of x and y remains the same after this
operation. In arithmetic operations the values of variables used in expression on the
right hand side are not affected. They remain the same. But a statement like x =x + 1;
is an exceptional case. In this case the value of x is changed.

The next line cout << “ x = “; is simple it just displays ‘ x = © on the screen.
Now we want to display the value of x after ‘x =’. For this we write the statement
cout <<x;

3

Here comes the affect of data type on cout. The previous statement cout << “x =“;
has a character string after << sign and cout simply displays the string. In the
statement cout << x; there is a variable name x. Now cout will not display ‘x’ but the
value of x. The cout interprets that x is a variable of integer type, it goes to the
location x in the memory and takes its value and displays it in integer form, on the
screen. The next line cout <<’y =”; displays ‘ y = ‘ on the screen. And line cout <<y;
displays the value of y on the screen. Thus we see that when we write something in
quotation marks it is displayed as it is but when we use a variable name it displays the
value of the variable not name of the variable. The next two lines cout <<“z=x +y =
”; and cout << z; are written to display ‘z=x +y =’ and the value of z that is 15.
Now when we execute the program after compiling, we get the following output.

x=5y=10z=x+y=15

short Data type

We noted that the integer occupies four bytes in memory. So if we have to store a
small integer like 5, 10 or 20 four bytes would be used. The C provides another data
type for storing small whole numbers which is called short. The size of short is two
bytes and it can store numbers in range of -32768 to 32767. So if we are going to use
a variable for which we know that it will not increase from 32767, for example the
age of different people, then we use the data type short for age. We can write the
above sample program by using short instead of int.

/*This program uses short data type to store values */
19

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

#include <iostream.h>
main()
{
short x;
short y;
short z;
X =35;
y =105
z=XtYy;
cout << “x =*;
cout <<x;
cout << y=*;
cout <<vy;
cout <<“z=x+y="%
cout << z;

long Data Type
On the other side if we have a very large whole number that can not be stored in an int
then we use the data type long provided by C. So when we are going to deal with very

big whole numbers in our program, we use long data type. We use it in program as:

long x = 300500200;

Real Numbers

The C language provides two data types to deal with real numbers (numbers with
decimal points e.g. 1.35, 735.251). The real numbers are also known as floating point

numbers.

float
double

float Data Type

To store real numbers, float data type is used. The float data type uses four bytes to
store a real number. Here is program that uses float data types.

/*This program uses short data type to store values */

#include <iostream.h>

main()

{
float x;
float y;
float z;

20

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

x =12.35;

y =25.57;

z=XtYy;

cout << “x="*;

cout << x;

cout << “y="*

cout <<y;
cout<<“z=x+y="%
cout << z;

}

double Data Type

If we need to store a large real number which cannot be store in four bytes, then we
use double data type. Normally the size of double is twice the size of float. In

program we use it as:

double x = 345624.769123;

char Data Type

So far we have been looking on data types to store numbers, In programming we do
need to store characters like a,b,c etc. For storing the character data C language
provides char data type. By using char data type we can store characters in variables.
While assigning a character value to a char type variable single quotes are used
around the character as ‘a’.

/* This program uses short data type to store values */

#include <iostream.h>

main()
char x;
X - ’a’;
cout << “The character value in x = “;
cout << x;

Arithmetic Operators

In C language we have the usual arithmetic operators for addition, subtraction,
multiplication and division. C also provides a special arithmetic operator which is
called modulus. All these operators are binary operators which means they operate on
two operands. So we need two values for addition, subtraction, multiplication,
division and modulus.

ARITHMETIC ARITHMETIC ALGEBRAIC C
OPERATION OPERATOR EXPRESSION EXPRESSION
Addition + Xty Xty
Subtraction - X—y X-y

21

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
Multiplication * Xy x*y
Division / X+y,x/y x/y
Modulus % x mod y x%y

Addition, subtraction and multiplication are same as we use in algebra.

There is one thing to note in division that when we use integer division (i.e. both
operands are integers) yields an integer result. This means that if, for example, you
are dividing 5 by 2 (5 / 2) it will give integer result as 2 instead of actual result 2.5.
Thus in integer division the result is truncated to the whole number, the fractional part
(after decimal) is ignored. If we want to get the correct result, then we should use float
data type.

The modulus operator returns the remainder after division. This operator can only be
used with integer operands. The expression x % Yy returns the remainder after x is
divided by y. For example, the result of 5 % 2 will be 1, 23 % 5 will be 3 and 107%10
will be 7.

Precedence of Operators

The arithmetic operators in an expression are evaluated according to their precedence.
The precedence means which operator will be evaluated first and which will be
evaluated after that and so on. In an expression, the parentheses () are used to force
the evaluation order. The operators in the parentheses () are evaluated first. If there
are nested parentheses then the inner most is evaluated first.

The expressions are always evaluated from left to right. The operators *, / and % have
the highest precedence after parentheses. These operators are evaluated before + and —
operators. Thus + and — operators has the lowest precedence. It means that if there are
* and + operators in an expression then first the * will be evaluated and then its result
will be added to other operand. If there are * and / operators in an expression (both
have the same precedence) then the operator which occurs first from left will be
evaluated first and then the next, except you force any operator to evaluate by putting
parentheses around it.

The following table explains the precedence of the arithmetic operators:

OPERATORS OPERATIONS PRECEDENCE (ORDER OF
EVALUATION)

() Parentheses Evaluated first

* /[, 0or% Multiplication, Evaluated second. If there are

Division, Modulus several, they are evaluated from

left to right

+ or - Addition, Subtraction Evaluated last. If there are several,
they are evaluated from left to
right

Lets look some examples.

What is the result of 10+ 10 *5?

The answer is 60 not 100. As * has higher precedence than + so 10 * 5 is evaluated
first and then the answer 50 is added to 10 and we get the result 60. The answer will
be 100 if we force the addition operation to be done first by putting 10 + 10 in
parentheses. Thus the same expression rewritten as (10 + 10) * 5 will give the result
100. Note that how the parentheses affect the evaluation of an expression.

22

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Similarly the expression 5 * 3 + 6 / 3 gives the answer 17, and not 7. The evaluation
of this expression can be clarified by writing it with the use of parentheses as (5 * 3) +
(6 /3) which gives 15 +2 = 17. Thus you should be careful while writing arithmetic
expressions.

Tips

Use spaces in the coding to make it easy to read and understand

Reserved words can not be used as variable names

There is always a main() in a C program that is the starting point of execution
Write one statement per line

Type parentheses ’()’ and braces ‘{ } in pairs

Use parentheses for clarification in arithmetic expressions

Don’t forget semicolon at the end of each statement

C Language is case sensitive so variable names x and X are two different variables

23

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 4

Reading Material

Deitel & Deitel — C++ How to Program chapter 1
1.22

Summary

Sample Program
Examples of Expressions
Use of Operators

Tips

©Oo0oo0oo

Sample Program

Problem statement:

Calculate the average age of a class of ten students. Prompt the user to enter the age of
each student.

Solution:

Lets first sort out the problem. In the problem we will take the ages of ten students
from the user. To store these ages we will use ten variables, one variable for each
student’s age. We will take the ages of students in whole numbers (in years only, like
10, 12, 15 etc), so we will use the variables of data type int. The variables declaration
statement in our program will be as follow:

int agel, age2, age3, age4, ageb, ageb, age7, age8, age9, agel0;

We have declared all the ten variables in a single line by using comma separator (,).
This is a short method to declare a number of variables of the same data type.

After this we will add all the ages to get the total age and store this total age in a
variable. Then we will get the average age of the ten students by dividing this total
age by 10. For the storage of total and average ages we need variables. For this
purpose we use variable TotalAge for the total of ages and AverageAge for average of
ages respectively.

int TotalAge, AverageAge;

We have declared AverageAge as int data type so it can store only whole numbers.
The average age of the class can be in real numbers with decimal point (for example if
total age is 173 then average age will be 17.3). But the division of integers will

24

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

produce integer result only and the decimal portion is truncated. If we need the actual
result then we should use real numbers (float or double) in our program.

Now we have declared variables for storing different values. In the next step we
prompt the user to enter the age of first student. We simply show a text line on the
screen by using the statement:

cout << “Please enter the age of first student : ™ ;

So on the screen the sentence “Please enter the age of first student:” will appear.
Whenever we are requesting user to enter some information we need to be very clear
i.e. write such sentences that are self explanatory and user understands them
thoroughly and correctly. Now with the above sentence everyone can understand that
age would be entered for the first student. As we are expecting only whole numbers
i.e. age in years only i.e. 10, 12 etc, our program is not to expect ages as 13.5 or 12.3
or 12 years and 3 months etc. We can refine our sentence such, that the user
understands precisely that the age would be entered in whole number only.

After this we allow the user to enter the age. To, get the age entered by the user into a
variable, we use the statement:

cin >> agel;

Lets have a look on the statement cin >> agel; cin is the counter part of the cout.
Here cin is the input stream that gets data from the user and assigns it to the variable
on its right side. We know that the sign >> indicates the direction of the flow of data.
In our statement it means that data comes from user and is assigned to the variable
agel, where agel is a variable used for storing the age entered for studentl. Similarly
we get the ages of all the ten students and store them into respective variables. That
means the age of first student in agel, the age of second student in age2 and so on up
to 10 students. When cin statement is reached in a program, the program stops
execution and expects some input from the user. So when cin >> agel; is executed,
the program expects from the user to type the age of the studentl. After entering the
age, the user has to press the 'enter key'. Pressing 'enter key' conveys to the program
that user has finished entering the input and cin assigns the input value to the variable
on the right hand side which is agel in this case. As we have seen earlier that in an
assignment statement, we can have only one variable on left hand side of the
assignment operator and on right hand side we can have an expression that evaluates
to a single value. If we have an expression on the left hand side of assignment
operator we get an error i.e. X = 2 + 4; is a correct statement but X + y = 3+ 5; is an
incorrect statement as we can not have an expression on the left hand side. Similarly
we can not have an expression after the >> sign with cin. So we can have one and
only one variable after >> sign i.e. Cin >> X; is a correct statement and cin >> X +y;
is an incorrect statement.

Next, we add all these values and store the result to the variable TotalAge. We use
assignment operator for this purpose. On the right hand side of the assignment
operator, we write the expression to add the ages and store the result in the variable,
TotalAge on left hand side. For this purpose we write the statement as follow:

25

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

TotalAge = agel + age2 + age3 + age4 + ageb + age6 + age7 + age8 +
age9 + agel0;

The expression on the right hand side uses many addition operators (+). As these
operators have the same precedence, the expression is evaluated from left to right.
Thus first agel is added to age2 and then the result of this is added to age3 and then
this result is added to age4 and so on.

Now we divide this TotalAge by 10 and get the average age. We store this average
age in the variable i.e. AverageAge by writing the statement:

AverageAge = TotalAge / 10;

And at the end we display this average age on the screen by using the following
statement:

cout << *“ The average age of the students is : ** << AverageAge;

Here the string enclosed in the quotation marks, will be printed on the screen as it is
and the value of AverageAge will be printed on the screen.

The complete coding of the program is given below:

/* This program calculates the average age of a class of ten students after prompting
the user to enter the age of each student. */

#include <iostream.h>

main ()

{
// declaration of variables, the age will be in whole numbers
int agel, age2, age3, age4, age5, age6, age7, age8, age9, agel0;
int TotalAge, AverageAge;

// take ages of the students from the user
cout << “Please enter the age of student 1: ”’;
cin >> agel;

cout << “Please enter the age of student 2: ”’;
cin >> age2;

cout << “Please enter the age of student 3: ”’;
cin >> age3;

cout << “Please enter the age of student 4: ”’;
cin >> age4;

cout << “Please enter the age of student 5: ”’;
cin >> age5;

cout << “Please enter the age of student 6: ”’;
cin >> age6;

cout << “Please enter the age of student 7: ”’;
cin >> age7;

cout << “Please enter the age of student &: ”’;
cin >> age8;

26

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

cout << “Please enter the age of student 9: ”’;
cin >> age9;

cout << “Please enter the age of student 10: ;
cin >> agel0;

// calculate the total age and average age

TotalAge = agel + age2 + age3 + age4 + age5 + age6 + age7 + age8 + age9 +
agel0;

AverageAge = TotalAge / 10;

// Display the result (average age)
cout << “Average age of class is: “ << AverageAge;

A sample output of the above program is given below.

Please enter the age of student 1: 12
Please enter the age of student 2: 13
Please enter the age of student 3: 11
Please enter the age of student 4: 14
Please enter the age of student 5: 13
Please enter the age of student 6: 15
Please enter the age of student 7: 12
Please enter the age of student 8: 13
Please enter the age of student 9: 14
Please enter the age of student 10: 11
Average age of class is: 12

In the above output the total age of the students is 123 and the actual average should
be 12.3 but as we are using integer data types so the decimal part is truncated and the
whole number 12 is assigned to the variable AverageAge.

Examples of Expressions

We have already seen the precedence of arithmetic operators. We have expressions
for different calculations in algebraic form, and in our programs we write them in the
form of C statements. Let’s discuss some more examples to get a better
understanding.

We know about the quadratic equation in algebra, that is y = ax’ + bx + c. The
quadratic equation in C will be writtenasy =a * x * X + b * x + ¢. In C, it is not an
equation but an assignment statement. We can use parentheses in this statement, this

27

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

will make the expression statement easy to read and understand. Thus we can rewrite
itasy=a*(x*x)+(b*y)+c.
Note that we have no power operator in C, just use * to multiply the same value.

Here is another expression in algebra: x = ax + by + cz% In C the above expression
will be as:

X=a*x+b*y+c*z*z

The * operator will be evaluated before the + operator. We can rewrite the above
statement with the use of parentheses. The same expressions can be written as:

x=(@*0)+(b*y)+c*(2%2)

Lets have an other expression in algebra as x = a(x + b(y + ¢z%)). The parentheses in
this equation force the order of evaluation. This expression will be written in C as:

x=a*x+b*(y+c*z*2))

While writing expressions in C we should keep in mind the precedence of the
operators and the order of evaluation of the expressions (expressions are evaluated
from left to right). Parentheses are used in complicated expressions. In algebra, there
may be curly brackets { } and square brackets [| in an expression but in C we have
only parentheses
(). Using parentheses, we can make a complex expression easy to read and
understand and can force the order of evaluation. We have to be very careful while
using parentheses, as parentheses at wrong place can cause an incorrect result. For
example, a statement X = 2 + 4 * 3 results X = 14. As * operator is of higher
precedence, 4 * 3 is evaluated first and then result 12 is added to 4 which gives the
result 14. We can rewrite this statement, with the use of parentheses to show it clearly,
that multiplication is performed first. Thus we can write it as X = 2 + (4 * 3). But the
same statement with different parentheses like x = (2 + 4) * 3 will give the result 18,
so we have to be careful while using parenthesis and the evaluation order of the
expression.

Similarly the equation (b? — 4ac)/2a can be written as (b *b-4*a*c)/(2*a).
The same statement without using parentheses willbe asb *b—-4*a*c/2 * a. This
is wrong as it evaluates to b? — 4ac/2a (i.e. 4ac is divided by 2a instead of (b?-4ac)).

Use of Operators

Here are sample programs which will further explain the use of operators in
programming.

Problem Statement:

28

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Write a program that takes a four digits integer from user and shows the digits on the
screen separately i.e. if user enters 7531, it displays 1,3,5,7 separately.

Solution:

Let’s first analyze the problem and find out the way how to program it.

Analysis:

First of all, we will sort the problem and find out how we can find digits of an integer.
We know that when we divide a number by 10, we get the last digit of the number as
remainder. For example when we divide 2415 by 10 we get 5 as remainder. Similarly
3476 divided by 10 gives the remainder 6. We will use this logic in our problem to get
the digits of the number. First of all, we declare two variables for storing number and
the digit. Let’s say that we have a number 1234 to show its digits separately. In our
program we will use modulus operator (%) to get the remainder. So we get the first
digit of the number 1234 by taking its modulus with 10 (i.e. 1234 % 10). This will
give us the digit 4. We will show this digit on the screen by using cout statement.
After this we have to find the next digit. For this we will divide the number by 10 to
remove its last digit. Here for example the answer of 1234 divided by 10 is 123.4, we
need only three digits and not the decimal part. In C we know that the integer division
truncates the decimal part to give the result in whole number only. We will use integer
division in our program and declare our variable for storing the number as int data
type. We will divide the number 1234 by 10 (i.e. 1234 / 10). Thus we will get the
number with remaining three digits i.e. 123. Here is a point to be noted that how can
we deal with this new number (123)?

There are two ways, one is that we declare a new variable of type int and assign the
value of this new number to it. In this way we have to declare more variables that
mean more memory will be used. The second way is to reuse the same variable
(where number was already stored). As we have seen earlier that we can reassign
values to variables like in the statement X = X + 1, which means, add 1 to the value of
x and assign this resultant value again to x. In this way we are reusing the variable x.
We will do the same but use the division operator instead of addition operator
according to our need. For this purpose we will write number = number / 10. After
this statement we have value 123 in the variable number.

Again we will get the remainder of this number with the use of modulus operator,
dividing the number by 10 (i.e. 123 % 10). Now we will get 3 and display it on the
screen. To get the new number with two digits, divide the number by 10. Once again,
we get the next digit of the number (i.e. 12) by using the modulus operator with 10,
get the digit 2 and display it on the screen. Again get the new number by dividing it
by 10
(i.e. 1). We can show it directly, as it is the last digit, or take remainder by using
modulus operator with 10. In this way, we get all the digits of the number.

29

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

YU

Now let’s write the program in C by following the analysis we have made. The
complete C program for the above problem is given below. It is easy to understand as
we are already familiar with the statements used in it.

/* A program that takes a four digits integer from user and shows the digits on the

screen separately i.e. if user enters 7531, it displays 7,5,3,1 separately. */

#include <iostream.h>

main()

{

// declare variables
int number, digit;

// prompt the user for input
cout << "Please enter 4-digit number:";
cin >> number;

// get the first digit and display it on screen
digit = number % 10;

cout << "The digits are: ";

cout << digit << ", ";

// get the remaining three digits number
number = number / 10;

// get the next digit and display it
digit = number % 10;
cout << digit << ", ";

// get the remaining two digits number
number = number / 10;

// get the next digit and display it
digit = number % 10;
cout << digit << ", ";

// get the remaining one digit number
number = number / 10;

// get the next digit and display it
digit = number % 10;
cout << digit;

A sample output of the above program is given below.

Please enter 4-digit number: 5678
The digits are: 8,7, 6, 5

© Copyright Virtual University of Pakistan

30

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Problem Statement:

Write a program that takes radius of a circle from the user and calculates the diameter,
circumference and area of the circle and display the result.

Solution:

In this problem we take the input (radius of a circle) from the user. For that we can
use Cin statement to prompt the user to enter the radius of a circle. We store this radius
in a variable. We also need other variables to store diameter, circumference and area
of the circle. To obtain the correct result, we declare these variables of type float,
instead of int data type, as we know that the int data type stores the whole numbers
only. Here in our problem the area or circumference of the circle can be in decimal
values. After getting the radius we use the formulae to find the diameter,
circumference and area of the circle and then display these results on the screen. The
solution of this program in coding form is given below.

/* Following program takes the radius of a circle from the user and calculates the
diameter, circumference and area of the circle and displays the result. */
#include <iostream.h>
main ()
{
// declare variables
float radius, diameter, circumference, area;

// prompt the user for radius of a circle
cout << "Please enter the radius of the circle " ;
cin >> radius ;

// calculate the diameter, circumference and area of the circle

// implementing formula i.e. diameter = 2 r circumference =2 i r and area =1 1’
diameter = radius * 2 ;

circumference = 2 * 3.14 * radius ; // 3.14 is the value of 1 (P1)

area = 3.14 * radius * radius ;

// display the results

cout << "The diameter of the circle is : " << diameter ;

cout << "The circumference of the circle is : " << circumference ;
cout << "The area of the circleis : " << area ;

A sample output of the above program is given below.

Please enter the radius of the circle 5
The diameter of the circle is : 10

The circumference of the circle is: 31.4
The area of the circle 1s : 78.5

31

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Tips

o Use descriptive names for variables

o] Indent the code for better readability and understanding

o] Use parenthesis for clarity and to force the order of evaluation in an
expression

o Reuse the variables for better usage of memory

o Take care of division by zero

o Analyze the problem properly, and then start coding (i.e. first think and then
write)

32

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 5

Reading Material

Deitel & Deitel — C++ How to Program chapter 2
24,25,2.6,2.19,
2.20
Summary
(o] Conditional Statements
(o] Flow Charting
e Sample Program 1
o] if/else structure
o Logical Operators
e Sample Program 2
o] Tips

Conditional Statements (Decision Making)

In every day life, we are often making decisions. We perform different tasks while
taking decisions. For example, the statement ‘if the milk shop is open, bring one liter
of milk while returning home from college’, involves this phenomenon.

In this statement, there is an element of decision making. We bring one litre of milk if
the shop is open. And if the shop is closed, we come back to home without milk.

Thus we are making a decision on the condition that the shop is open. The decision-
making process is everywhere in our daily life. We see that the college gives
admission to a student if he has the required percentage in his previous examination
and/or in the entry test. Similarly administration of a basketball team of the college
decides that the students having height more than six feet can be members of the
team.

In the previous lectures, we have written simple elementary programs. For writing
interesting and useful programs, we have to introduce the decision making power in
them. Now we will see what kind of decisions are there in programming and how
these can be used.

Every programming language provides a structure for decision making.

'C' also provides this structure. The statement used for decisions in 'C' language is
known as the 'if statement'. The if statement has a simple structure. That is

if (condition)
Statement (or group of statements)

The above statements mean, If condition is true, then execute the statement or a group

of statements. Here the condition is a statement which explains the condition on
which a decision will be made. We can understand it from the example that Ali can

33

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

become the member of the basket ball team if he has a height more than six feet .In
this case, the condition will be

if (Ali’s height is greater than six feet)
Ali can be a member of team

We have written the condition in English language. Now let's see how we can
implement this in terms of variables, operators and C statements. In the program, we
will write the condition in parentheses, followed by a statement or group of statements
to be executed.

Now here is the concept of block of statements. We use braces { } to make a group
(block) of a number of statements. We put “{’ before first statement and ‘}’ after the
last statement. Thus if we have to do many things after the if statement. The structure
of if statement becomes as under

if (condition)
{
statement;
statement;

statement;

}

Note the indentation of the lines and semi-colon after each statement. Semi-colons are
necessary after every C statement. The indentation is only a matter of style. It makes
the code easy to read and understand from where a block starts, ends and what kind of
block it is. It does not affect the logic of the program. But the braces can affect the
logic. We can also write a comment line to state the purpose of code block.

Let's consider a simple example to explain the if statement. Suppose, we have ages of
two students (say for the time being we have got these ages in variables). These
variables are- agel and age2. Now we say that if the agel is greater than age2, then
display the statement ‘Student 1 is older than student 2°.

The coding for this program will be as below

#include <iostream.h>

main()

{
int agel, age2;
agel = 12;
age2 = 10;

if (agel > age2)
cout << “Student 1 is older than student 2”;

}

Here, in our code we see a new operator i.e. * > © (greater than) in the if statement. We
need such operators (like greater than, less than, equal to etc) while making decisions.
These operators are called 'relational operators'. These are almost the same relational
operators we use in algebra. Following table summarizes the relational operators.

34

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Algebraic | In C | Example Meaning

language

Greater than > > X>y X is greater than y
Equal to = == X==y X is equal toy
Less than < < x<y x is less than y
Greater than or | > >= X>=y x 1is greater than or
equal to equal to 'y
Less than or | < <= X <=y x is less than or equal
equal to toy
Not equal to # 1= x!=y X is not equal to y

Note that there is no space between ==, >=, <= and !=.

These are considered as single operators.

The operator == (equal to) is different from the operator =. We know that operator =
is the assignment operator which is used in assignment statement to assign a value to
a variable.

Don't confuse the assignment operator (=) with equal to operator (==). If we write
single = in condition of if statement. For example, if we write if (x =2), the compiler
will not give error. This means that it is not a syntax error. The conditional expression
in if statement returns a value. In this case, x = 2 will also have some value but it will
not in the form of true or false. So it will create a logical error. So be careful while
using equal to condition in if statement.

Flow Charting

There are different techniques that are used to analyze and design a program. We will
use the flow chart technique. A flow chart is a pictorial representation of a program.
There are labeled geometrical symbols, together with the arrows connecting one
symbol with other.

A flow chart helps in correctly designing the program by visually showing the
sequence of instructions to be executed. A programmer can trace and rectify the
logical errors by first drawing a flow chart and then simulating it.

Flow Chart Symbols

Below are some of the main symbols used in the flow chart.

Start or Stop D Decision O

Process Continuation Mark O

Flow Line el
35

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The flow chart for the if structure is shown in the figure below.

i If Structure

If condition is
true

Then——» Process

Y

Sample Program 1

Now let’s see the usage of relational operators by an example. There are two students
Amer and Amara. We take their ages from the user, compare them and tell who is
older?

As there are two students to be compared in terms of age, we need to declare two
variables to store their ages. We declare two variables AmerAge and AmaraAge of
type int. The variable names are one continuous word as we can’t use spaces in a
variable name.

Here is an important point about variables declaration. We should assign an initial
value (preferably O for integers) to variables when we declare them. This is called
initialization of variables.

We can do this in one line while declaring a variable like int X = 0; This statement
will declare a variable of name x with data type int and will assign a value 0 to this
variable. Initializing a variable in this way is just a matter of style. You can initialize a
variable on a separate line after declaring it. It is a good programming practice to
initialize a variable.

Now we prompt the user to enter Amer’s age and store it into variable AmerAge.
Then similarly we get Amara’s age from the user in the variable AmaraAge.

While comparing the ages, we will use the if statement to see whether Amer’s age is
greater than Amara’s. We will use > (greater than) operator to compare the ages. This
can be written as if (AmerAge > AmaraAge) .

With this if statement, we write the statement cout << "Amer is greater than Amara" ;
It’s a simple one line test i.e. ‘if Amer’s age is greater than Amara's’, then display the
message ‘Amer is older than Amara’.

The flow chart for the above problem is as under.

36

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Sample Program

if structure

If
(AmerAge >
maraAge

Display “ Amer is
older than Amara”

« v

Then ——————#

v

Stop

The complete code of the program is given below.

/* This program test that if the age of Amer is greater than Amara’s age and displays the result.
*/

include <iostream.h>

main ()
{
int AmerAge, AmaraAge;
//prompt the user to enter Amer’s age
cout << “Please enter Amer’s age “;
cin >> AmerAge;
//prompt the user to enter Amara’s age
cout << “Please enter Amara’s age *;
cin >> AmaraAge;
//perform the test
if (AmerAge > AmaraAge)
cout << “ Amer is older than Amara”;

In our program, we write a single statement with the if condition. This statement
executes if the condition is true. If we want to execute more than one statements, then
we have to enclose all these statements in curly brackets { }. This comprises a block
of statements which will execute depending upon the condition. This block may
contain a single statement just like in our problem. So we can write the if statement as

follow.
if (AmerAge > AmaraAge)
{
cout << " Amer is older than Amara";
§

37

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

A sample execution of the program provides the following output.

Please enter Amer’s age 16
Please enter Amara’s age 14
Amer is older than Amara

Now think what happens if the condition in the if statement is not true i.e. Amer’s age
is not greater than Amara’s. In this case, if the user enters Amer’s age less than
Amara’s, then our program does nothing. So to check this condition, another if
statement after the first if statement is required. Then our program will be as:

/* This program checks the age of Amer and Amara’s and
displays the appropriate the message. The program is using
two if statements.*/

include <iostream.h>

main ()
{
int AmerAge, AmaraAge;
//prompt the user to enter Amer’s age
cout << “Please enter Amer’s age *;
cin >> AmerAge;
//prompt the user to enter Amara’s age
cout << “Please enter Amara’s age “;
cin >> AmaraAge;
//perform the test

if (AmerAge > AmaraAge)
{

H
if (AmerAge < AmaraAge)

cout << “ Amer is younger than Amara”;

}

cout << “ Amer is older than Amara”;

}

Now our program decides properly about the ages entered by the user.
After getting ages from the user, the if statements are tested and if statement will be
executed if the condition evaluates to true.

If/else Structure

We have seen that the if structure executes its block of statement(s) only when the
condition is true, otherwise the statements are skipped. The if/else structure allows the
programmer to specify that a different block of statement(s) is to be executed when
the condition is false. The structure of if/else selection is as follows.

if (condition)

38

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)
{
statement(s);
}
else
{
statement(s);
}

Thus using this structure we can write the construct of our program as

if (AmerAge > AmaraAge)
{
cout << " Amer is older than Amara";
}
else
{
cout << " Amer is younger than Amara";
}

In this construct, the program checks the condition in if statement .If the condition is
true, then the line "Amer is greater than Amara" is printed. Otherwise (if condition is
not true), the statement related to else is executed and the message "Amer is younger
than Amara" is printed. Here in if/else structure an important thing is that the else part
is executed for all the cases (conditions) other than the case which is stated in the if
condition.

And in the comparison, we know that there are three conditions i.e. first value is
greater than the second value, first value is less than the second value and first value
is equal to the second value. Here in the above program construct the else part
competes the greater than conditions and covers both less than and equal to
conditions.

Thus in the above program construct, the message "Amer is younger than Amara" is
displayed even if Amer’s age is the same as Amara’s age. This is logically incorrect
and so to make this correct, we should display the message "Amer is younger than or
is of the same age as Amara". Now this statement describes both the cases other than
the one ‘Amer is greater than Amara'.

The use of else saves us from writing different if statements to compare different
conditions, in this way it cover the range of checks to complete the comparison.

If we want to state the condition "Amer is greater than or is of the same age as
Amara’s" then we use the greater than or equal to operator (i.e. >=) in the if statement
and less than operator (<) in the else statement to complete the comparison.

It is very important to check all the conditions while making decisions for good,
complete and logical results. Make sure that all cases are covered and there is no such
case in which the program does not respond.

39

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Sample Program

if/felse structure
Start

Y

If
(AmerAge is greater
than AmaraAge)

Display “ Amer is
older than Amara”

- v

Then ———m

Display “ Amer is
Else ——» younger than
Amara”

Y

A

A
Stop

Logical Operators

There are many occasions when we face complex conditions to make a decision. This
means that a decision depends upon more than one condition in different ways. Here
we combine the conditions with AND or OR. For example, a boy can be selected in
basket ball team only if he is more than 18 years old and has a height of 6 feet. In this
statement a boy who wants to be selected in the basket ball team must have both the
conditions fulfilled. This means that AND forces both the conditions to be true.
Similarly we say that a person can be admitted to the university if he has a BCS
degree OR BSC degree. In this statement, it is clear that a person will be admitted to
the university if he has any one of the two degrees.

In programming we use logical operators (&& and ||) for AND and OR respectively
with relational operators. These are binary operators and take two operands. These
operators use logical expressions as operands, which return TRUE or FALSE.

The following table (called truth table) can be used to get the result of the &&
operator and || operator with possible values of their operands. It is used to explain the
result obtained by the && and || operators.

Expression 1 Expression 2 Expression 1 && | Expression 1 ||
Expression 2 Expression 2
True False false True
40

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

True True true True
False False false False
False True false True

The && operator has a higher precedence than the || operator. Both operators
associate from left to right. An expressions containing && or || is evaluated only until
truth or falsehood is known. Thus evaluation of the expression (age > 18) && (height
> 6) will stop immediately if age > 18 is false (i.e. the entire expression is false) and
continue if age > 18 is true (i.e. the entire expression could still be true if the
condition height > 6 is true).

There is another logical operator that is called logical negation. The sign ! is used for
this operator. This operand enables a programmer to ‘reverse’ the meaning of a
condition. This is a unary operator that has only a single condition as an operand. The
operator ! is placed before a condition. If the original condition (without the !
operator) is false then the ! operator before it converts it to true and the statements
attached to this are executed.
Look at the following expression

if (! (age>18))

cout << “ The age is less than 18”;

Here the cout statement will be executed if the original condition (age > 18) is false
because the ! operator before it reverses this false to true.

The truth table for the logical negation operator (!) is given below.

Expression ! Expression
True False
False True

Sample Program 2

Problem statement

A shopkeeper announces a package for customers that he will give 10 % discount on
all bills and if a bill amount is greater than 5000 then a discount of 15 %. Write a C
program which takes amount of the bill from user and calculates the payable amount
by applying the above discount criteria and display it on the screen.

Solution

In this problem we are going to make decision on the basis of the bill amount, so we
will be using if statement. We declare three variables amount, discount and
netPayable and initialize them. Next we prompt the user to enter the amount of the
bill. After this we implement the if statement to test the amount entered by the user.
As we see in the problem statement that if the amount is greater than 5000 then the
discount rate is 15 % otherwise (i.e. the amount is less than or equal to 5000) the

41

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

YU

discount rate is 10 %. So we check the amount in if statement. If it is greater than
5000 then the condition is true then the if block is executed otherwise if amount is not
greater than 5000 then the else block is executed.

The analysis and the flow of the program is shown by the following flow chart.

(amount >
5000)

Sample Program 2
if/felse structure

Then ———m

Calculate the discount at
15 % and display the net
payable amount

y

Else ——»

Calculate the discount at
10 % and display the net
payable amount

y

A

A
Stop

© Copyright Virtual University of Pakistan

42

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The complete program code is given below:

/* This program calculates the discount amount for a customer. As different discount
percentage applies on different amount so program is using if statement for deciding
which discount is applicable and display the result. */

include <iostream.h>

main ()
{
double amount, discount, netPayable ;
amount =0 ;
netPayable =0 ;
discount=10 ;

// prompt the user to enter the bill amount

cout << "Please enter the amount of the bill " ;
cin >> amount ;

//test the conditions and calculate net payable

if (amount > 5000)
{
//calculate amount at 15 % discount
discount = amount * (15.0/ 100);
netPayable = amount - discount;
cout << "The discount at the rate 15 % is Rupees " << discount << endl;
cout << "The payable amount is Rupees " << netPayable ;

else

// calculate amount at 10 % discount
discount = amount * (10.0 / 100);
netPayable = amount - discount;
cout << "The discount at the rate 10 % is Rupees " << discount << endl ;
cout << "The payable amount is Rupees " << netPayable ;

}

In the program we declared the variables as double. We do this to get the correct
results (results may be in decimal points) of the calculations. Look at the statement
which calculates the discount. The statement is
discount = amount * (15.0 / 100) ;

Here in the above statement we write 15.0 instead of 15. If we write here 15 then the
division 15/ 100 will be evaluated as integer division and the result of division (0.15)
will be truncated and we get 0 and this will result the whole calculation to zero. So it
is necessary to write at least one operand in decimal form to get the correct result by
division and we should also declare the variables as float or double. We do the same
in the line discount = amount * (10.0 / 100);

A sample execution of the program is given below

43

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Please enter the amount of the bill 6500
The discount at the rate 15 % is Rupees 975
The payable amount is Rupees 5525

Tips

Always put the braces in an if/else structure

Type the beginning and ending braces before typing inside them

Indent both body statements of an if and else structure

Be careful while combining the conditions with logical operators

Use if/else structure instead of a number of single selection if
statements

44

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 6

Reading Material
Deitel & Deitel — C++ How to Program chapter 2
2.7,2.8,2.9,2.20
Summary

Repetition Structure (Loop)
Overflow Condition
Sample Program 1
Sample Program 2
Infinite Loop
Properties of While loop
Flow Chart
Sample Program 3
Tips
Repetition Structure (Loop)
In our day to day life, most of the things are repeated. Days and nights repeat
themselves 30 times a month. Four seasons replace each other every year. We can see
similar phenomenon in the practical life. For example, in the payroll system, some
procedures are same for all the employees. These are repeatedly applied while dealing
with the employees. So repetition is very useful structure in the programming.
Let’s discuss a problem to understand it thoroughly. We have to calculate the sum of
first 10 whole numbers i.e. add the numbers from 1 to 10. Following statement may
be one way to do it.

cout << “Sum of first 10 numbers is=“<<1+2+3+4+5+6+7+8+9 +
10;
This method is perfectly fine as the syntax is right. The answer is also correct. This
procedure can also be adopted while calculating the sum of numbers from 1 to 100.
We can write the above statement adding all the digits from 1 to 100. But this method
will not be suitable for computing the sum of numbers from 1 to 1000.The addition of
a very big number of digits will result in a very ugly and boring statement. Let’s
analyze it carefully. Our first integer is 1, is there any other way to find out what is the
next integer? Yes, we can add 1 to the integer and get the next integer which is 2. To
find the next integer (i.e. 3) we add 1 to the previous integer (i.e. 2) and get the next
integer which is 3. So whenever we have to find out the next integer, we have to add 1
to the previous integer.
We have to calculate the sum of first 1000 integers by taking a variable sum of type
int. It is a good programming practice to initialize the variable before using it. Here,
we initialize the variable sum with zero.

int sum = 0;
Now we get the first integer i.e. 1. We add this to the sum (sum becomes 0 + 1 =1).
Now get the next integer which can be obtained by adding 1 to the previous integer
i.e. 2 and add it to the sum (sum becomes 1 + 2 = 3). Get the next integer by adding 1
to the previous integer and add it to the sum (sum becomes 3 + 3 = 6) and so on.

This way, we get the next integer by adding 1 to the previous integer and the

45

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

new integer to the sum. It is obvious that we are repeating this procedure again and
again i.e. adding 1 to the previous integer and add this new integer to the sum. So we
need some repetition structure in the programming language. There are many looping
constructs in C Language. The repetition structure we are discussing in this lecture is
'while loop structure'. ‘while’ is also a key word of 'C' so it cannot be used as a
variable name.
While means, 'do it until the condition is true'. The use of while construct can be
helpful in repeating a set of instructions under some condition. We can also use curly
braces with while just like we used with if. If we omit to use the braces with while
construct, then only one statement after while will be repeatedly executed. For good
programming practices, always use braces with while irrespective of the number of
statements in While block. The code will also be indented inside the while block as
Indentation makes the code easy to understand.
The syntax of while construct is as under:
while (Logical Expression) {
statement];
statement2;

The logical expression contains a logical or relational operator. While this logical
expression is true, the statements will be executed repeatedly. When this logical
expression becomes false, the statements within the while block, will not be executed.
Rather the next statement in the program after while block, will be executed.
Let’s discuss again the same problem i.e. calculation of the sum of first 1000 integers
starting from 1. For this purpose, we need a variable to store the sum of integers and
declare a variable named sum. Always use the self explanatory variable names. The
declaration of the variable sum in this case is:
int sum = 0;

The above statement has performed two tasks i.e. it declared the variable sum of type
int and also initialized it with zero. As it is good programming practice to initialize all
the variables when declared, the above statement can be written as:

int sum;

sum = 0;
Here we need a variable to store numbers. So we declare a variable number of type
int. This variable will be used to store integers.

int number;
As we have declared another variable of int data type, so the variables of same data
type can be declared in one line.

int sum, number;

Going back to our problem, we need to sum up all the integers from 1 to 1000. Our
first integer is 1. The variable number is to be used to store integers, so we will
initialize it by 1 as our first integer is 1:

number = 1;

Now we have two variables- sum and number. That means we have two memory
locations labeled as sum and number which will be used to store sum of integers and
integers respectively. In the variable sum, we have to add all the integers from 1 to

46

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

1000. So we will add the value of variable number into variable sum, till the time the

value of number becomes 1000. So when the value of number becomes 1000, we will
stop adding integers into sum. It will become the condition of our while loop. We can
say sum the integers until integer becomes 1000. In C language, this condition can be
written as:

The above condition means, 'perform the action until the number is 1000 or less than
1000'. What will be the Action? Add the number, the value of number is 1 initially,
into sum. This is a very simple statement:

sum = sum + number;

Let’s analyze the above statement carefully. We did not write sum = number; as this
statement will replace the contents of sum and the previous value of sum will be
wasted as this is an assignment statement. What we did? We added the contents of
sum and contents of number first (i.e. 0 + 1) and then stored the result of this (i.e. 1) to
the sum.

Now we need to generate next integer and add it to the sum. How can we get the next
integer? Just by adding 1 to the integer, we will get the next integer. In ‘C’, we will
write it as:

number = number + 1;
Similarly in the above statement, we get the original contents of number (i.e. 1). Add
1 to them and then store the result (i.e. 2) into the number. Now we need to add this
new number into sum:
sum = sum + number;

We add the contents of sum (i.e. 1) to the contents of number (i.e. 1) and then store
the result (i.e. 2) to the sum. Again we need to get the next integer which can be
obtained by adding 1 to the number. In other words, our action consists of only two
statements i.e. add the number to the sum and get the next integer. So our action
statements will be:

sum = sum + number;

number = number + 1;
Putting the action statements in while construct:

while (number <=1000) {

sum = sum + number;
number = number + 1;

}
Let's analyze the above while loop. Initially the contents of number is 1. The
condition in while loop (i.e. number <= 1000) will be evaluated as true, contents of
sum and contents of number will be added and the result will be stored into sum. Now
1 will be added to the contents of number and number becomes 2. Again the condition
in while loop will be evaluated as true and the contents of sum will be added to the
contents of number .The result will be stored into sum. Next 1 will be added to the
contents of number and number becomes 3 and so on. When number becomes 1000,
the condition in while loop evaluates to be true, as we have used <= (less than or equal

47

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

to) in the condition. The contents of sum will be added to the contents of number (i.e.
1000) and the result will be stored into the sum. Next 1 will be added to the contents
of number and number becomes 1001. Now the condition in while loop is evaluated to
false, as number is no more less than or equal to 1000 (i.e. number has become 1001).
When the condition of while loop becomes false, loop is terminated. The control of
the program will go to the next statement following the ending brace of the while
construct. After the while construct, we can display the result using the cout
statement.

cout << *“ The sum of first 1000 integers starting from 1 is * << sum;

The complete code of the program is as follows:

/* This program calculate the sum of first 1000 integers */
#include <iostream.h>

main()

{

/ldeclaration of variables
int sum, number;

/lnitialization of the variables
sum = 0;
number = 1;

Il using the while loop to find out the sum of first 1000 integers starting from 1

while(number <= 1000)
{

/I Adding the integer to the contents of sum
sum = sum + number;

/I Generate the next integer by adding 1 to the integer
number = number + 1;

}

cout << "The sum of first 1000 integers starting from 1 is " << sum;

}

The output of the program is:

The sum of first 1000 integers starting from 1 is 500500

While construct is a very elegant and powerful construct. We have seen that it is very
easy to sum first 1000 integers just with three statements. Suppose we have to
calculate the sum of first 20000 integers. How can we do that? We just have to change
the condition in the while loop (i.e. number <= 20000).

Overflow Condition:

We can change this condition to 10000 or even more. Just try some more numbers.
How far can you go with the limit? We know that integers are allocated a fixed space
in memory (i.e. 32 bits in most PCs) and we can not store a number which requires
more bits than integer, into a variable of data type, int. If the sum of integers becomes
larger than this limit (i.e. sum of integers becomes larger than 32 bits can store), two
things can happen here. The program will give an error during execution, compiler
can not detect such errors. These errors are known as run time errors. The second
thing is that 32 bits of the result will be stored and extra bits will be wasted, so our
result will not be correct as we have wasted the information. This is called overflow.

48

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

When we try to store larger information in, than a data type can store, overflow
condition occurs. When overflow condition occurs either a run-time error is generated
or wrong value is stored.
Sample Program 1:
To calculate the sum of 2000 integers, we will change the program (i.e. the while
condition) in the editor and compile it and run it again. If we need to calculate the sum
of first 5000 integers, we will change the program again in the editor and compile and
run it again. We are doing this work again in a loop. Change the program in the editor,
compile, execute it, again change the program, compile and execute it and so on. Are
we doing this in a loop? We can make our program more intelligent so that we don’t
need to change the condition every time. We can modify the condition as:
int upperLimit;
while (number <= upperLimit)
where upperLimit is a variable of data type int. When the value of upperLimit is 1000,
the program will calculate the sum of first 1000 integers. When the value of
upperLimit is 5000, the program will calculate the sum of first 5000 integers. Now we
can make it re-usable and more effective by requesting the user to enter the value for
upper limit:
cout << “Please enter the upper limit for which you want the sum ”’;
cin >> upperLimit;
We don’t have to change our program every time when the limit changes. For the sum
of integers, this program has become generic. We can calculate the sum of any
number of integers without changing the program. To make the display statement
more understandable, we can change our cout statement as:
cout << “ The sum of first “ << upperLimit << * integers is “ << sum;
Sample Program 2:
Problem statement:
Calculate the sum of even numbers for a given upper limit of integers.
Solution:
We analyze the problem and know that while statement will be used. We need to sum
even numbers only. How can we decide that a number is even or not? We know that
the number that is divisible by 2 is an even number. How can we do this in C
language? We can say that if a number is divisible by 2, it means its remainder is
zero, when divided by 2. To get a remainder we can use C’s modulus operator i.e. %.
We can say that for a number if the expression (number % 2) results in zero, the
number is even. Putting this in a conditional statement:
If ((number % 2) ==0)
The above conditional statement becomes true, when the number is even and false
when the number is odd (A number is either even or odd).
The complete code of the program is as follows:
/* This program calculates sum of even numbers for a given upper limit of
integers */
#include <iostream.h>

main()
{
/ldeclaration of variables
int sum, number, upperLimit;

/Mnitialization of the variables
sum = 0;

49

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

number = 1;

/l Prompt the user to enter upper limit of integers
cout << “Please enter the upper limit for which you want the sum ”;
cin >> upperLimit;

// using the while loop to find out the sum of first 1000 integers starting from 1
while(number <= upperLimit)
/I Adding the even integer to the contents of sum

if ((number% 2)==0)
{

}

/I Generate the next integer by adding 1 to the integer
number = number + 1;

}

cout << "The sum of even numbers of first “ << upperLimit << “ integers starting
from 1is " << sum;

}

sum = sum + number;

The output of the program is:

Please enter the upper limit for which you want the sum 10
The sum of even numbers of first 10 integers starting from 1 is 30

Suppose if we don’t have modulus operator in the C language. Is there any other way
to find out the even numbers? We know that in C integer division gives the integer
result and the decimal portion is truncated. So the expression (2 * (number / 2)) gives
the number as a result, if the number is even only. So we can change our condition in
if statement as:

if ((2 * (number /2)) == number)
Infinite Loop:
Consider the condition in the while structure that is (number <= upperLimit) and in
the while block the value of number is changing (number = number + 1) to ensure that
the condition is tested again next time. If it is true, the while block is executed and so
on. So in the while block statements, the variable used in condition must change its
value so that we have some definite number of repetitions. What will happen if we do
not write the statement number = number + 1; in our program? The value of number
will not change, so the condition in the while loop will be true always and the loop
will be executed forever. Such loops in which the condition is always true are known
as infinite loops as there are infinite repetitions in it.
Property of while loop:
In the above example, if the user enters 0, as the value for upper limit. In the while
condition we test (number <= upperLimit) i.e. number is less than or equal to
upperLimit (0), this test return false. The control of the program will go to the next
statement after the while block. The statements in while structure will not be executed
even for a single time. So the property of while loop is that it may execute zero or
more time.
The while loop is terminated, when the condition is tested as false. Make sure that the
loop test has an adequate exit. Always use braces for the loop structure. If you forget

50

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

to put the braces, only one statement after the while statement is considered in the
while block.

Flow Chart:
The basic structure of while loop in structured flow chart is:
While Loop
While

Is Loop
Condition
true?

No— Exit

Yes

)

Processes

At first, we will draw a rectangle and write while in it. Then draw a line to its right
and use the decision symbol i.e. diamond diagram. Write the loop condition in the
diamond and draw a line down to diamond which represents the flow when the
decision is true. All the repeated processes are drawn here using rectangles. Then a
line is drawn from the last process going back to the while and decision connection
line. We have a line on the right side of diamond which is the exit of while loop. The
while loop terminates, when the loop condition evaluates to false and the control gets
out of while structure.

Here is the flow chart for sample program 2:

51

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Sample Program 2:

Flow Chart

sum =0
number = 1

l

upperLimit = User Input

while 7y
number <= .
upperLimit No-» Exit
Yes
Display the
result

If (number is
even)

Stop Add number to
——Then——»
sum

Add 1 to
number

|

So far, we have been drawing flow charts after coding the program but actually we
have to draw the flow chart first and then start coding.

Sample Program 3:

Problem statement:

Calculate the factorial of a given number.

Solution:
The factorial of a number N is defined as:
N(N-1)(N-2)............. 3.2.1

By looking at the problem, we can see that there is a repetition of multiplication of
numbers. A loop is needed to write a program to solve a factorial of a number. Let's
think in terms of writing a generic program to calculate the factorial so that we can get
the factorial of any number. We have to multiply the number with the next
decremented number until the number becomes 1. So the value of number will
decrease by 1 in each repetition.

Here is the flow chart for the factorial.

52

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

Flow Chart

Start

factorial = 1

number = User Input

while

No—» Exit

N
Display the Yes

result l
factorial = factorial * number

Subtract 1 from number
Here is the code of the program.

/*This program calculates the factorial of a given number.*/
#include <iostream.h>

main()

{

/ldeclaration of variables
int factorial, number;

/Nnitialization of the variables

factorial = 1;

number = 1;

/I Prompt the user to enter upper limit of integers
cout << “Please enter the number for factorial ” ;
cin >> number;

/l using the while loop to find out the factorial

while(number > 1)

factorial = factorial * number;
number = number - 1;

}

cout << "The factorial is “ << factorial;

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
}
Exercise:
Calculate the sum of odd integers for a given upper limit. Also draw flow chart of the
program.

Calculate the sum of even and odd integers separately for a given upper limit using
only one loop structure. Also draw flow chart of the program.

Tips

Always use the self explanatory variable names

Practice a lot. Practice makes a man perfect

While loop may execute zero or more time

Make sure that loop test (condition) has an acceptable exit.

54

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 7

Reading Material

Deitel & Deitel — C++ How to Program Chapter 2

2.11,2.12,2.14,2.15, 2.17

Summary

Do-While Statement

Example

for Statement

Sample Program 1
Increment/decrement Operators
Sample Program 2

Tips

Do-While Statement

We have seen that there may be certain situations when the body of while loop does
not execute even a single time. This occurs when the condition in while is false. In
while loop, the condition is tested first and the statements in the body are executed
only when this condition is true. If the condition is false, then the control goes directly
to the statement after the closed brace of the while loop. So we can say that in while
structure, the loop can execute zero or more times. There may be situations where we
may need that some task must be performed at least once.

For example, a computer program has a character stored from a-z. It gives to
user five chances or tries to guess the character. In this case, the task of guessing the
character must be performed at least once. To ensure that a block of statements is
executed at least once, C provides a do-while structure. The syntax of do-while
structure is as under:

do
{

statement(s);

}

while (condition) ;

Here we see that the condition is tested after executing the statements of the loop
body. Thus, the loop body is executed at least once and then the condition in do while
statement is tested. If it is true, the execution of the loop body is repeated. In case, it
proves otherwise (i.e. false), then the control goes to the statement next to the do

55

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

while statement. This structure describes ‘execute the statements enclosed in braces in
do clause' when the condition in while clause is true.

Broadly speaking, in while loop, the condition is tested at the beginning of the loop
before the body of the loop is performed. Whereas in do-while loop, the condition is
tested after the loop body is performed.

Therefore, in do-while loop, the body of the loop is executed at least once.

The flow chart of do-while structure is as follow:

l

Do While

A #

Process

Example

Let’s consider the example of guessing a character. We have a character in the
program to be guessed by the user. Let’s call it ‘z’. The program allows five tries
(chances) to the user to guess the character. We declare a variable tryNum to store
the number of tries. The program prompts the user to enter a character for guessing.
We store this character in a variable c.

We declare the variable ¢ of type char. The data type char is used to store a single
character. We assign a character to a variable of char type by putting the character in
single quotes. Thus the assignment statement to assign a value to a char variable will
be as ¢ = ‘a’. Note that there should be a single character in single quotes. The
statement like ¢ = ‘gh’ will be a syntax error.

Here we use the do-while construct. In the do clause we prompt the user to enter a
character.

After getting character in variable ¢ from user, we compare it with our character i.e
‘z’. We use if\else structure for this comparison. If the character is the same as ours
then we display a message to congratulate the user else we add 1 to tryNum variable.
And then in while clause, we test the condition whether tryNum is less than or equal
to 5 (tryNum <= 5). If this condition is true, then the body of the do clause is repeated
again. We do this only when the condition (tryNum <= 5) remains true. If it is
otherwise, the control goes to the first statement after the do-while loop.

If guess is matched in first or second try, then we should exit the loop. We know that

the loop is terminated when the condition tryNum <=5 becomes false, so we assign a
value which is greater than 5 to tryNum after displaying the message. Now the

56

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

Y,

condition in the while statement is checked. It proves false (as tryNum is greater than
5). So the control goes out of the loop. First look here the flow chart for the program.

=

Do while 7y #

Prompt the user for input;
check for the character;
increment the counter;

No

Yes

) J

(o)

The code of the program is given below.

//This program allows the user to guess a character from a to z
//do-while construct is used to allow five tries for guessing

include <iostream.h>

main ()
{

//declare & initialize variables
int tryNum =0 ;

charc;

// do-while construct

do
{
cout << “Please enter a character between a-z for guessing :
cin>>c¢;
//check the entered character for equality
if(c=="°2")
{
cout << “Congratulations, Your guess is correct” ;
tryNum = 6;
}
else
{
tryNum = tryNum + 1;
}
}

while (tryNum <= 5);

I3

b

© Copyright Virtual University of Pakistan

57

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

There is an elegant way to exit the loop when the correct number is guessed. We
change the condition in while statement to a compound condition. This condition will
check whether the number of tries is less than or equal to 5 and the variable ¢ is not
equal to ‘z’. So we will write the while clause as while (tryNum <=5 &&c!=7");
Thus when a single condition in this compound condition becomes false, then the
control will exit the loop. Thus we need not to assign a value greater than 5 to variable
tryNum. Thus the code of the program will be as:

//This program allows the user to guess a character from a to z
//do-while construct is used to allow five tries for guessing

include <iostream.h>

main ()
{
//declare & initialize variables
int tryNum =0 ;
charc;

// do-while construct, prompt the user to guess a number and compares it

do
{
cout << “Please enter a character between a-z for guessing :
cin >> ¢ ;
//check the entered character for equality
if (c=="2")
{
cout << “Congratulations, Your guess is correct” ;
H
else
{
tryNum = tryNum + 1;
h
h
while (tryNum <=5 && c != 72");
h

The output of the program is given below.

Please enter a character between a-z for guessing : g
Please enter a character between a-z for guessing : zZ
Congratulations, Your guess is correct

58

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

for Loop

Let’s see what we do in a loop. In a loop, we initialize variable(s) at first. Then we set
a condition for the continuation/termination of the loop. To meet the condition to
terminate the loop, we affect the condition in the body of the loop. If there is a
variable in the condition, the value of that variable is changed within the body of the
loop. If the value of the variable is not changed, then the condition of termination of
the loop will not meet and loop will become an infinite one. So there are three things
in a loop structure i.e. (i) initialization, (ii) a continuation/termination condition and
(ii1) changing the value of the condition variable, usually the increment of the variable
value.

To implement these things, C provides a loop structure known as for loop. This is the
most often used structure to perform repetition tasks for a known number of
repetitions. The syntax of for loop is given below.

for (initialization condition ; continuation condition ; incrementing condition)

{
}

statement(s) ;

We see that a 'for statement’ consists of three parts. In initialization condition, we
initialize some variable while in continuation condition, we set a condition for the
continuation of the loop. In third part, we increment the value of the variable for
which the termination condition is set.

Let's suppose, we have a variable counter of type int. We write for loop in our
program as

for (counter = 0 ; counter < 10 ; counter = counter +1)

{

cout << counter << endl;

}

This 'for loop’ will print on the screen 0, 1, 2 9 on separate lines (as we use endl in
our cout statement). In for loop, at first, we initialize the variable counter to 0. And in
the termination condition, we write counter < 10. This means that the loop will
continue till value of counter is less than 10. In other words, the loop will terminate
when the value of counter is equal to or greater than 10. In the third part of for
statement, we write counter = counter + 1 this means that we add 1 to the existing
value of counter. We call it incrementing the variable.

Now let's see how this loop executes. When the control goes to for statement first
time, it sets the value of variable counter to 0, tests the condition (i.e. counter < 10). If
it is true, then executes the body of the loop. In this case, it displays the value of
counter which is 0 for the first execution. Then it runs the incrementing statement (i.e.
counter = counter + 1). Thus the value of counter becomes 1. Now, the control goes
to for statement and tests the condition of continuation. If it is true, then the body of
the loop is again executed which displays 1 on the screen. The increment statement is
again executed and control goes to for statement. The same tasks are repeated. When
the value of counter becomes 10, the condition counter < 10 becomes false. Then the
loop is terminated and control goes out of for loop.

59

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The point to be noted is that, the increment statement (third part of for statement) is
executed after executing the body of the loop. Thus for structure is equivalent to a
while structure, in which, we write explicit statement to change
(increment/decrement) the value of the condition variable after the last statement of
the body. The for loop does this itself according to the increment statement in the for
structure. There may be a situation where the body of for loop, like while loop, may
not be executed even a single time. This may happen if the initialization value of the
variable makes the condition false. The statement in the following for loop will not be
executed even a single time as during first checking, the condition becomes false. So
the loop terminates without executing the body of the loop.

for (counter = 5 ; counter < 5 ; counter ++)

{

cout << “The value of counter is “ << counter ;

Sample Program 1

Let’s take an example to explain for loop. We want to write a program that prints the
table of 2 on the screen.

In this program, we declare a variable counter of type int. We use this variable to
multiply it by 2 with values 1 to 10. For writing the table of 2, we multiply 2 by 1, 2,
3 .. upto 10 respectively and each time display the result on screen. So we use for loop
to perform the repeated multiplication.

Following is the code of the program that prints the table of 2.

//This program display the table of 2 up to multiplier 10

include <iostream.h>

main ()
{ .
int counter;
//the for loop
for (counter = 1 ; counter <= 10 ; counter = counter + 1)
{
cout << “2 x “ << counter << “=“ << 2 * counter << “\n” ;
}
}

This is a simple program. In the for statement, we initialize the variable counter to 1
as we want the multiplication of 2 starting from 1. In the condition clause, we set the
condition counter <= 10 as we want to repeat the loop for 10 times. And in the
incrementing clause, we increment the variable counter by 1.

60

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

In the body of the for loop, we write a single statement with cout. This single
statement involves different tasks. The portion ‘<< *2 x **” displays the string “2 x
on the screen. After this, the next part ‘<< counter’ will print the value of counter.
The ‘<< * =" will display * = © and then the next part ‘<< 2 * counter’ will display
the result of 2 multiply by counter and the last <<’’\n”’ (the new line character) will
start a new line. Thus in the first iteration where the value of counter is 1, the cout
statement will display the following line

2x1=2
After the execution of cout statement, the for statement will increment the counter
variable by 1. Thus value of counter will be 2. Then condition will be checked which
is still true. Thus the body of for loop (here the cout statement) will be executed again
having the value of counter 2. So the following line will be printed.

2x2=4
The same action will be repeated 10 times with values of counter from 1 to 10. When
the value of counter is 11, the condition (counter <= 10) will become false and the
loop will terminate.

The output of the above program is as the following.

2x1=2
2x2=4
2x3=6
2x4=8
2x5=10
2x6=12
2x7=14
2x8=16
2x9=18
2x10=20

Now what will we do, if some one says us to write a table of 3, or 4 or 8 or any other
number. Here comes the point of re-usability and that a program should be generic.
We write a program in which a variable is used instead of a hard code number. We
prompt the user to enter the number for which he wants a table. We store this number
in the variable and then use it to write a table. So in our previous example, we now
use a variable say number where we were using 2. We also can allow the user to
enter the number of multipliers up to which he wants a table. For this, we use a
variable maxMultiplier and execute the loop for maxMultiplier times by putting the
condition counter <= maxMultiplier. Thus our program becomes generic which can
display a table for any number and up to any multiplier.

Thus, the code of our program will be as below:

//This program takes an integer input from user and displays its table
//The table is displayed up to the multiplier entered by the user

include <iostream.h>

61

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

main ()

{

int counter, number, maxMultiplier ;

// Prompt the user for input

cout << “Please enter the number for which you want a table : “;
cin >> number ;

cout << “Please enter the multiplier up to which you want a table : “;
cin >> maxMultiplier ;

//the for loop
for (counter = 1 ; counter <= maxMultiplier ; counter = counter + 1)
cout << number << “ x “ << counter << “ = “ << number * counter << ‘“‘\n” ;

The output of the program is shown as follows:

Please enter the number for which you want a table : 7
Please enter the multiplier up to which you want a table : 8
Tx1=7

7x2=14

7x3=21

7x4=28

7x5=35

7x6=42

7x7=49

7x8=56

Here is a guideline for programming style. We should avoid using constant values in
our calculations or in long routines. The disadvantage of this is that if we want to
change that constant value later, then we have to change every occurrence of that
value in the program. Thus we have to do a lot of work and there may be some places
in code where we do not change that value. To avoid such situations, we can use a
variable at the start and assign that constant value to it and then in the program use
that variable. Thus, if we need to change the constant value, we can assign the new
value to that variable and the remaining code will remain the same. So in our program
where we wrote the table of 2, we can use a variable (say number) and assign it the
value 2. And in cout statement we use this variable instead of constant 2. If we want
that the program should display a table of 5, then we just change the value of the
variable. So for good programming, use variables for constant values instead of
explicit constant values.

Increment Decrement Operators
62

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

We have seen that in while, do-while and for loop we write a statement to increase the
value of a variable. For example, we used the statements like counter = counter + 1;
which adds 1 to the variable counter. This increment statement is so common that it is
used almost in every repetition structure (i.e. in while, do-while and for loop). The C
language provides a unary operator that increases the value of its operator by 1. This
operator is called increment operator and sign ++ is used for this. The statement
counter = counter + 1; can be replaced with the statement

counter ++ ;

The statement counter++ adds 1 to the variable counter. Similarly the expressions i =
i+1;and j=j+1;areequivalent to i++ ; and j++; respectively. There is also an
operator -- called decrement operator. This operator decrements, the value of its
operand by 1. So the statements counter = counter - 1; and j = j - 1; are equivalent to
counter--; and j--; respectively.

The increment operator is further categorized as pre-increment and post-increment.
Similarly, the decrement operator, as pre-decrement and post-decrement.

In pre-increment, we write the sign before the operand like ++j while in post-
increment, the sign ++ is used after the operand like j++. If we are using only variable
increment, pre or post increment does not matter. In this case, j++ is equivalent to
++j. The difference of pre and post increment matters when the variable is used in an
expression where it is evaluated to assign a value to another variable. If we use pre-
increment (++j), the value of j is first increased by 1. This new value is used in the
expression. If we use post increment (j++),the value of j is used in the expression.
After that it is increased by 1. Same is the case in pre and post decrement.

Ifj =5, and we write the expression

X=++7;

After the evaluation of this expression, the value of x will be 6 (as j is incremented
first and then is assigned to x). The value of j will also be 6 as ++ operator increments
itby 1.

If j =5, and we write the expression

X =jt++;

Then after the evaluation of the expression, the value of x will be 5 (as the value of j
is used before increment) and the value of j will be 6.

The same phenomenon is true for the decrement operator with the difference that it
decreases the value by 1. The increment and decrement operators affect the variable
and update it to the new incremented or decremented value.

The operators ++ and -- are used to increment or decrement the variable by 1. There
may be cases when we are incrementing or decrementing the value of a variable by a
number other than 1. For example, we write counter = counter + 5; or j = j — 4;. Such
assignments are very common in loops, so C provides operators to perform this task
in short. These operators do two things they perform an action (addition, subtraction
etc) and do some assignment.

These operators are +=, -=, *=, /= and %=. These operators are compound assignment
operators. These operators assign a value to the left hand variable after performing an

63

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

action (i.e. +, -, *, / and %). The use of these operators is explained by the following

examples.

Let’s say we have an expression, counter = counter + 5;. The equivalent of this

expression is counter +=5;. The statement counter +=5; does two tasks. At first, it

adds 5 to the value of counter and then assigns this result to counter. Similarly the
following expressions

Xx=xXx+4;

X=Xx-3;

X=x%*2;

X =x/2;

X =X %3;
can be written in equivalent short statements using the operators (+=, -=, *=, /=, %=)
as follows

x +=4;

X =3

X *=2;

X /=2

X %=3;

Note that there is no space between these operators. These are treated as single signs.
Be careful about the operator %=. This operator assigns the remainder to the variable.

These operators are alternate in short hand for an assignment statement. The use of

these operators is not necessary. A programmer may use these or not. It is a matter of

style.
Example Program 2
Let’s write a program using for loop to find the sum of the squares of the integers

from 1 to n. Where n is a positive value entered by the user (i.e. Sum = 1> + 2° + 37

The code of the program is given below:

+

//This program displays the sum of squares of integers from 1 to n
include <iostream.h>

main ()
{
//declare and initialize variables
int 1, n, sum;
sum=0;

//get input from user and construct a for loop
cout << “Please enter a positive number for sum of squares: 7 ;
cin >> n;

© Copyright Virtual University of Pakistan

64

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

for(i=1;i<=n;i++)
{
sum+=1%*1;

}

cout << “The sum of the first ” << n << “ squares is ““ << sum << end]l ;

}

In the program declared three variables i, n and sum. We prompted the user to enter a
positive number. We stored this number in the variable n. Then we wrote a for loop.
In the initialization part, we initialized variable i with value 1 to start the counting
from 1. In the condition statement we set the condition i less than or equal to n
(number entered by the user) as we want to execute the loop n times. In the increment
statement, we incremented the counter variable by 1. In the body of the for loop we
wrote a single statement sum +=i * i ;. This statement takes the square of the counter
variable (i)and adds it to the variable sum. This statement is equivalent to the
statement sum =sum + (i * i) ; Thus in each iteration the square of the counter
variable (which is increased by 1 in each iteration) is added to the sum. Thus loop
runs n times and the squares of numbers from 1 to n are summed up. After
completing the for loop the cout statement is executed which displays the sum of the
squares of number from 1 to n.

Following is the output when the number 5 is entered.

Please enter a positive number for sum of squares: 5
The sum of the first 5 squares is 55

Tips

Comments should be meaningful, explaining the task

Don’t forget to affect the value of loop variable in while and do-while loops

Make sure that the loop is not an infinite loop

Don’t affect the value of loop variable in the body of for loop, the for loop does this
by itself in the for statement

Use pre and post increment/decrement operators cautiously in expressions

65

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 8

Reading Material

Deitel & Deitel — C++ How to Program Chapter 2

2.16,2.18

Summary

Switch Statement

Break Statement

Continue Statement

Guide Lines

Rules for structured Programming/Flow Charting
Sample Program

Tips

O O0OO0O0OO0O0O0

Switch Statement

Sometimes, we have multiple conditions and take some action according to each
condition. For example, in the payroll of a company, there are many conditions to
deduct tax from the salary of an employee. If the salary is less than Rs. 10000, there is
no deduction. But if it falls in the slab Rs. 10000 - 20000, then the income tax is
deducted. If it exceeds the limit of Rs. 20000, some additional tax will be deducted.
So the appropriate deduction is made according to the category or slab of the salary.
We can also understand this from the example of grades secured by the students of a
class. Suppose we want to print description of the grade of a student. If the student has
grade ‘A’ we print ‘Excellent’ and 'Very good', 'good', 'poor' and 'fail' for grades B,
C, D, and F respectively. Now we have to see how this multi-condition situation can
be applied in a program. We have a tool for decision making i.e. 'if statement’. We can
use 'if statement' to decide what description for a grade should be displayed. So we
check the grade in if statement and display the appropriate description. We have five
categories of grades-- A, B, C, D, and F. We have to write five if statements to check
all the five possibilities (probabilities) of grade. So we write this in our program as
under-
if (grade == ‘A’)
cout << “Excellent” ;
if (grade ==‘B’)
cout << “Very Good” ;
if (grade == ‘C”)
cout << “Good” ;
if (grade == ‘D)
cout << “Poor” ;

66

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

if (grade == ‘F’)
cout << “Fail” ;

These statements are correct and perform the required task. But the 'if statement’ is
computationally one of the most expensive statements in a program. We call it
expensive due to the fact that the processor has to go through many cycles to execute
an if statement to evaluate a single decision. So to make a program more efficient, try
to use the minimum number of if statements. This will make the performance of the
program better.

So if we have different conditions in which only one will be true as seen in the
example of student’s grades, the use of if statement is very expensive. To avoid this
expensiveness, an alternate of multiple if statements can be used that is if/else
statements. We can write an if statement in the body of an if statement which is
known as nested if. We can write the previous code of if statements in the following
nested if/else form.

If (grade == ‘A")
cout << “Excellent” ;

else if (grade == ‘B’)
cout << “Very Good” ;

else if (grade == ‘C’)
cout << “Good” ;

else if (grade == ‘D’)
cout << “Poor” ;

else if (grade == ‘F’)
cout << “Fail” ;

In the code, there is single statement with each if statement. If there are more
statements with an if statement, then don’t forget the use of braces and make sure that
they match (i.e. there is a corresponding closing brace for an opening brace). Proper
indentation of the blocks should also be made.

In the above example, we see that there are two approaches for a multi way decision.
In the first approach, we use as many if statements as needed. This is an expensive
approach. The second is the use of nested if statements. The second is little more
efficient than the first one. In the 'nested if statements' the nested else is not executed
if the first if condition is true and the control goes out of the if block.

The C language provides us a stand-alone construct to handle these instances. This
construct is switch structure. The switch structure is a multiple-selection construct
that is used in such cases (multi way decisions) to make the code more efficient and
easy to read and understand.

The syntax of switch statement is as follows.

switch (variable/expression)

{

case constantl : statementLlistl ;
case constant2 : statementLlist2 ;

case constantN : statementListN ;
default : statementList ;

67

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

}

In the switch statement, there should be an integer variable (also include char) or an
expression which must evaluate an integer type (whole numbers only, the decimal
numbers 2.5, 14.3 etc are not allowed). We can’t use compound conditions (i.e. the
conditions that use logical operators && or ||) in switch statement and in case
statements. The constants also must be integer constants (which include char). We
can’t use a variable name with the case key word. The default statement is optional. If
there is no case which matches the value of the switch statement, then the statements
of default are executed.

The switch statement takes the value of the variable, if there is an expression then it
evaluates the expression and after that looks for its value among the case constants. If
the value is found among the constants listed in cases, the statements in that
statementList are executed. Otherwise, it does nothing. However if there is a default
(which is optional), the statements of default are executed.

Thus our previous grade example will be written in switch statement as below.

switch (grade)

{
case ‘A’ : cout << “Excellent” ;
case ‘B’ : cout << “Very Good” ;
case ‘C’ : cout << “Good” ;
case ‘D’ : cout << “Poor” ;
case ‘F’ : cout << “Fail” ;

}

We know that C language is 'case sensitive'. In this language, ‘A’ is different from
‘a’. Every character has a numeric value which is stored by the computer.. The
numeric value of a character is known as ASCII code of the character. The ASCII
code of small letters (a, b, ¢ etc) are different from ASCII code of capital letters (A,
B, C etc). We can use characters in switch statement as the characters are represented
as whole numbers inside the computers.
Now we will see how the use of ' the letter a' instead of 'A’' can affect our program.
We want our program to be user- friendly. We don’t want to restrict the user to enter
the grade in capital letters only. So we have to handle both small and capital letters in
our program. Here comes the limitations of switch statement. We can’t say in our
statement like
case ‘A’ or ‘a’ : statements ;
We have to make two separate cases so we write

case ‘A”:

case ‘a’:

statements;

In the switch statement, the cases fall through the case which is true. All the
statements after that case will be executed right down to the end of the switch
statement. This is very important to understand it. Let's suppose that the user enters
grade ‘B’. Now the case ‘A’ is skipped. Next case ‘B’ matches and statement cout <<
“Very Good” ; is executed. After that, all the statements will be executed. So cout <<
“Good” ; cout << “Poor™ ;and cout << ““Fail” ; will be executed after one another.

68

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

We don’t want this to happen. We want that when a case matches, then after
executing its statement, the control should jump out of the switch statement leaving
the other cases. For this purpose we use a key word break.

Break Statement

The break statement interrupts the flow of control. We have seen in switch statement
that when a true case is found, the flow of control goes through every statement down
ward. We want that only the statements of true case should be executed and the
remaining should be skipped. For this purpose, we use the break statement. We write
the break statement after the statements of a case. Thus, when a true case is found and
its statements are executed then the break statement interrupts the flow of control and
the control jumps out of the switch statement. If we want to do the same task for two
cases, like in previous example for ‘A’ and ‘a’, then we don't put break statement
after the first case. We write both the cases (or the cases may be more than two) line
by line then write the common statements to be executed for these cases. We write the
break statement after these common statements. We should use the break statement
necessarily after the statements of each case. The break statement is necessary in
switch structure, without it the switch structure becomes illogic. As without it all the
statement will execute after first match case is found.

The above code does nothing if the grade is other than these five categories (i.e. A, B,
C, D and F). To handle all the possibilities of grade input, we write a default
statement after the last case. The statement in this default case is executed if no case
matches the grade. So in our program, we can write the default statement after the
last case as under.

default : cout << “Please enter grade from AtoD or F ”;

The break statement is also used in decision structures other than switch structure. We
have seen that in while, do-while and for loops, we have to violate some condition
explicitly to terminate the loop before its complete repetitions. As in a program of
guessing a character, we make a variable tryNum greater than 5 to violate the while
condition and exit the loop if the correct character is guessed before five tries. In these
loops, we can use the break statement to exit a loop. When a break statement is
encountered in a loop, the loop terminates immediately. The control exits the inner
most loop if there are nested loops. The control passes to the statement after the loop.
In the guessing character example, we want that if the character is guessed in first or
second attempt,. then we print the message ‘Congratulations, You guess is correct’
and exit the loop. We can do this by using a break statement with an if statement. If
the character is guessed, we print the message. Afterwards, the break statement is
executed and the loop terminates. So we can write this as follows.
if (¢ =="2") // cis input from user
{

cout << “Great, Your guess is correct” ;

break;
}
Thus, break statement can be used to jump out of a loop very quickly.
The flow chart of the switch statement is similar to if statement and is given below.

69

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

The flow chart of switch statement

The number of case statement can vary fror
1 to any number. Thus there are same
number of process blocks as cases.

case const 1

v

Process

break

A

case const2

v

Process

break /

A

Now we can write the complete code for the program that prints the description of the

grade entered by the user.
The flow chart of the program is given below.

© Copyright Virtual University of Pakistan

70

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)
The flow chart of a program that displays the description of a grade
using switch statement
switch (grade)
case 'A’
Display "Excellent"
break |
case 'B'
Display
"Very Good"
» break |
case 'C'
Display "Good"
P break
case 'D'
Display "Poor"
» break |
case 'F'
Display "Fail"
P break |
default
Display " Please
enter grade A-D or
e
P break
A4
Stop
The code of the program is given below.
//This program gets a grade from user and displays a description accordingly

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

include <iostream.h>
main ()
{
char grade ;
cout << “Please enter the student’s grade : 7 ;
cin >> grade ;
switch (grade)

{
case ‘A’ : // grade was upper case A
case ‘a’: // grade was lower case a
cout << “Excellent” ;
break : // necessary to exit switch
case ‘B’ : // grade was upper case B
case ‘b’ : // grade was lower case b

cout << “Very Good” ;
break : // necessary to exit switch
case ‘C’: // grade was upper case C
case ‘c’: // grade was lower case ¢
cout << “Good” ;
break : // necessary to exit switch
case ‘D’ : // grade was upper case D
case ‘d’: // grade was lower case d
cout << “Poor” ;
break : // necessary to exit switch
case ‘F’: // grade was upper case F
case ‘f": // grade was lower case f
cout << “Fail” ;
break : // necessary to exit switch
default :
cout << “Please enter grade from AtoD or F 7 ;

}
h

A sample out put of the program is shown here.

Please enter the student’s grade : b
Very Good

continue Statement

There is another statement relating to loops. This is the continue statement.
Sometimes we have a lot of code in the body of a loop. The early part of this code is
common that is to be executed every time (i.e. in every iteration of loop) and the
remaining portion is to be executed in certain cases and may not be executed in other
cases. But the loop should be continuous. For this purpose, we use the continue
statement. Like the break statement, the continue statement is written in a single line.
We write it as

continue ;

72

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The continue forces the immediate next iteration of the loop. So the statements of the
loop body after continue are not executed. The loop starts from the next iteration
when a continue statement is encountered in the body of a loop. One can witness very
subtle things while using continue.

Consider the while loop. In while loop, we change the value of the variable of while
condition so that it could make the condition false to exit the loop. Otherwise, the
loop will become an infinite one. We should be very careful about the logic of the
program while using continue in a loop. Before the continue statement, it is necessary
to change (increment/decrement) the value of the variable on which the while
condition depends. Similarly it is same with the do-while loop. Be careful to
increment or decrement the conditional variable before the continue statement.

In for loop, there is a difference. In a while loop when continue is encountered, the
control goes to the while statement and the condition is checked. If condition is true
the loop is executed again else the loop exits. In a for loop, the three things i.e.
initialization, condition and increment/decrement are enclosed together as we write
for (counter = 0 ; counter <=5 ; counter ++) . In the for loop when a continue is
encountered, the counter (i.e. loop variable) is incremented at first before the
execution of the loop condition. Thus, in 'for loop' the increment to the loop variable
is built in and after continue the next iteration of the loop is executed by incrementing
the loop variable. The condition is checked with the incremented value of the loop
variable. In while and do-while loop, it is our responsibility to increment the value of
the loop variable to test the condition. In a for loop, the continue automatically forces
this increment of value before going to check the condition.

goto Statement

Up to now we have covered the basic programming constructs. These include
sequences, decisions and repetition structures (i.e. loops). In sequences, we use the
simple statements in a sequence i.e. one after the other. In decisions construct we use
the if statement, if/else statement, the multi way decision construct (i.e. the switch
statement). And in repetition structures, we use the while, do-while and for loops.
Sometime ago, two computer scientists Gome and Jacopi proved that any program
can be written with the help of these three constructs (i.e. sequences, decisions and
loops).

There is a statement in the computer languages COBOL, FORTRON and C. This
statement is goto statement. The goto is an unconditional branch of execution. The
goto statement is used to jump the control anywhere (back and forth) in a program. In
legacy programming, the programs written in COBOL and FORTRAN languages
have many unconditional branches of execution. To understand and decode such
programs that contain unconditional branches is almost impossible. In such programs,
it is very difficult, for a programmer, to keep the track of execution as the control
jumps from one place to the other and from there to anywhere else. We call this kind
of traditional code as spagatti code. It is very difficult to trace out the way of
execution and figure out what the program is doing. And debugging and modifying
such programs is very difficult.

When structured programming was started, it was urged not to use the goto statement.
Though goto is there in C language but we will not use it in our programs. We will

73

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

adopt the structured approach. All of our programs will consist of sequences,
decisions and loops.

Guide Lines

In general, we should minimize the use of break statement in loops. The switch
statement is an exception in this regard where it is necessary to use the break
statement after every case. Otherwise, there may be a logical error. While writing
loops, we should try to execute the loops with the condition test and should try to
avoid the break statement. The same applies to the continue statement. The continue
statement executes some statements of the loop and then exits the loop without
executing some statements after it. We can use the if statement for this purpose
instead of continue. So never use the goto statement and minimize the usage of break
and continue statements in loops. This will make the code easy to understand for you
and for others. Moreover the additions and modifications to such code will be easy, as
the path of execution will be easy to trace.

Make a program modular. This means that divide a large program into small parts. It
will be easy to manage these small parts rather than a larger program. There should be
single entry and single exit in every module or construct. The use of break statement
in a construct violates this rule as a loop having a break statement can exit through
break statement or can terminate when the loop condition violates. As there are two
exit points, this should be avoided. The single entry- single exit approach makes the
execution flow simple.

Here is an example from daily life, which shows that single entry and single exit
makes things easy. You would have often seen at a bus stop, especially in rush hours,
that when a bus reaches the stop, everyone tries to jump into the bus without caring
for others. The passengers inside the bus try to get down from the vehicle. So you see
there a wrestling like situation at the door of the bus. Separate doors for entering or
exiting the bus can be the solution. In this way, the passengers will easily enter or exit
the bus.

We have applied this single entry and single exit rule in drawing our flow charts. In
the flow charts, we draw a vertical line from top to down. The point where the line
starts is our entry point and downward at the same line at the end is our exit point.
Our all other processes and loops are along or within these two points. Thus our flow
charts resemble with the code.

Rules for Structured Programming/Flow Charting

There are few simple rules for drawing structured flow charts of programs. One
should be familiar with these.

Rule No:1-Start with the simple flow chart. This means that draw a start symbol,
draw a rectangle and write in it whatsoever you want to do and then draw a stop
symbol. This is the simplest flow chart.

Rule No:2- Any rectangle (a rectangle represents a process which could be input,
output or any other process) can be replaced by two rectangles.

This concept is the same as taking a complex problem and splitting it up into two
simpler problems. So we have ‘split it up’ method to move towards a modular

74

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

approach. So start with a block (rectangle) and then any rectangle can be replaced by
two rectangles (blocks).

Rule No:3- Any rectangle can be replaced with a structured flow charting construct.
These construct include decisions, loops or multi- way decision. This means that we
can put a structure of an if construct or switch construct in the place of a rectangle.
Here we come to know the advantage of single entry and single exit concept. This
single entry and single exit block can be replaced with a rectangle.

Rule No: 4- This rule states that rule number 2 and 3 can be repeated as many times
as you want.

By using these rules we are splitting a problem into simpler units so that each part can
be handled either by sequences (one rectangle, second rectangle and so on) or by a
decision (if, if/else, switch or by a loop). Through this approach, a large problem can
be solved easily.

The flow charts drawn with these rules and indented to the left side will have one to
one correspondence with our code. Thus it becomes very easy to identify the code that
is written for a specific part of the flow chart. In this way the code can easily be
debugged.

Sample Program

Let’s consider a problem. In a company, there are deductions from the salary of the
employees for a fund. The deductions rules are as follows:

If salary is less than 10,000 then no deduction

If salary is more than 10,000 and less than 20,000 then deduct Rs. 1,000 as fund

If salary is equal to or more than 20,000 then deduct 7 % of the salary for fund
Take salary input from user and after appropriate deduction show the net payable
amount.

Solution

As we see that there is multi way decision in this problem, so we use switch
statement. The salary is the switch variable upon which the different decisions
depend. We can use only a single constant in case statement. So we divide the salary
by 10000 to convert it into a single case constant. As we know that in integer division
we get the whole number as the answer. Thus if answer is 0 the salary is less than
10000, if answer is 1 then it is in range 10000 to 19999 (as any amount between
10000 — 19999 divided by 10000 will result 1). If the answer is greater than 1, it
means the salary is equal to or more than 20000.

Following is the complete code of our program.

// This program gets salary input from user and calculates and displays the net payable
// amount after deduction according the conditions

include <iostream.h>
main ()
{
int salary ;
float deduction, netPayable ;
cout << “Please enter the salary : “;
cin >> salary ;
// here begins the switch statement

75

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

switch (salary / 10000) // this will produce a single value
{
case 0 : // this means salary is less than 10,000
deduction = 0; // as deduction is zero in this case
netPayable = salary ;
cout << “Net Payable (salary — deduction) = *;

cout << salary << “ - ” << deduction << *“ = *“ << netPayable;
break; //necessary to exit switch
case 1 : // this means salary is in range 10,000 — 19,999

deduction = 1000 ;
netPayable = salary — deduction ;
cout << “Net Payable (salary — deduction) = “;

cout << salary << “ - ”” << deduction << “ = *“ << netPayable;
break; //necessary to exit switch
default : // this means the salary is 20,000 or more

deduction = salary * 7 /100 ;

netPayable = salary — deduction ;

cout << “Net Payable (salary — deduction) = *;
cout << salary << “ - << deduction << ““ = *“ << netPayable;

h
i

Here is the out put of the program.

Please enter the salary : 15000
Net Payable (salary — deduction) = 15000 — 1000 = 14000

Tips

Try to use the switch statement instead of multiple if statements

Missing a break statement in a Switch statement may cause a logical error
Always provide a default case in switch statements

Never use goto statement in your programs

Minimize the use of break and continue statements

© Copyright Virtual University of Pakistan

76

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 9

Reading Material

Deitel & Deitel — C++ How to Program chapter 2
3.1, 3.2, 3.3, 34,
3.5,3.6

Summary

Introduction

Functions

Structure of a Function

Declaration and Definition of a Function
Sample Program 1

Sample Program 2

Sample Program 3

Summary

Tips

o

OO0OO0OO0O0OO0OO0OOo

Introduction

Now our toolkit is almost complete. The basic constructs of programming are
sequence, decision making and loops. You have learnt all these techniques. Now we
can write almost all kinds of programs. There are more techniques to further refine the
programs. One of the major programming constructs is Functions. C is a function-
oriented language. Every program is written in different functions.

In our daily life, we divide our tasks into sub tasks. Consider the making of a
laboratory stool.

It has a seat and three legs. Now we need to make a seat and three legs out of wood.
The major task is to make a stool. Sub tasks are, make a seat and then fabricate three
legs. The legs should be identical. We can fashion one leg and then re-using this
prototype, we have to build two more identical legs. The last task is to assemble all
these to make a stool. We have a slightly difficult task and have broken down it into
simpler pieces. This is the concept of functional design or top-down designing. In top
design, we look at the problem from top i.e. identification of the problem. What we

77

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

have to solve? Then refine it and divide it into smaller pieces. We refine it again and
divide it into smaller pieces. We keep on doing it as long as we get easily manageable
task. Let's consider an example like home construction. From the top level, we have to
construct a home. Then we say that we need design of the home according to which
the building will be constructed. We need to construct rooms. How can we construct a
room? We need bricks, cement, doors, windows etc. Procurement of all of these
things is tasks. Once we come down to the level where a task is easily manageable
and doable, we stop doing further refinement. When we break up a task into smaller
sub tasks, we stop at a reasonable level. Top-down designing mechanism is based on
the principle of 'divide and conquer' i.e. we divide a big task into smaller tasks and
then accomplish them.

Let's have a look at a simple example to understand the process of dividing big task
into simple ones. Suppose we want to know how many students are currently logged
in the LMS (Learning Management System) of VU. This task will be handed over to
the network administrator to find out the number of students currently logged in LMS
of the university. The network administrator will check the network activity or get this
information from the database and get the list of students currently logged in. The
number of students is counted from that list and the result is given back to us. What
has happened in this whole process? There was a simple request to find the number of
students currently logged in LMS. This request is delegated to the network
administrator. The network administrator performs this task and we get the result. In
the mean time, we can do some other task as we are not interested in the names or list
of students. We only want the number of students. This technique is known as parallel
processing. In terms of programming, network administrator has performed a function
i.e. calculation of the number of students. During this process, the network
administrator also gets the list of students which is hidden from us. So the information
hiding is also a part of the function. Some information is given to the network
administrator (i.e. the request to calculate the number of students currently logged in
the LMS) while some information is provided back to us (i.e. the number of students).

Functions

The functions are like subtasks. They receive some information, do some process and
provide a result. Functions are invoked through a calling program. Calling program
does not need to know what the function is doing and how it is performing its task.
There is a specific function-calling methodology. The calling program calls a function
by giving it some information and receives the result.

We have a main () in every C program. ‘main ()’ is also a function. When we write a
function, it must start with a name, parentheses, and surrounding braces just like with
main (). Functions are very important in code reusing.

There are two categories of functions:

1. Functions that return a value
2. Functions that do not return a value

Suppose, we have a function that calculates the square of an integer such that function
will return the square of the integer. Similarly we may have a function which displays

78

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

some information on the screen so this function is not supposed to return any value to
the calling program.

Structure of a Function
The declaration syntax of a function is as follows:

return-value-type function-name(argument-list)

{
}

declarations and statements

The first line is the function header and the declaration and statement part is the body
of the function.

return-value_type:

Function may or may not return a value. If a function returns a value, that must be of a
valid data type. This can only be one data type that means if a function returns an int
data type than it can only return int and not char or float. Return type may be int,

float, char or any other valid data type. How can we return some value from a
function? The keyword is return which is used to return some value from the
function. It does two things, returns some value to the calling program and also exits
from the function. We can only return a value (a variable or an expression which
evaluates to some value) from a function. The data type of the returning variable
should match return_value_type data type.

There may be some functions which do not return any value. For such functions, the
return_value_type is void. ‘void’ is a keyword of ‘C’ language. The default
return_value_type is of int data type i.e. if we do not mention any return_value_type
with a function, it will return an int value.

Function-name:
The same rules of variable naming conventions are applied to functions name.
Function name should be self-explanatory like square, squareRoot, circleArea etc.

argument-list:

Argument list contains the information which we pass to the function. Some function
does not need any information to perform the task. In this case, the argument list for

such functions will be empty. Arguments to a function are of valid data type like int
number, double radius etc.

Declarations and Statements:
This is the body of the function. It consists of declarations and statements. The task of

the function is performed in the body of the function.

Example:

//This function calculates the square of a number and returns it.

79

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

int square(int number)

{
int result = 0;
result = number * number;
return result;

}

Calling Mechanism:

How a program can use a function? It is very simple. The calling program just needs
to write the function name and provide its arguments (without data types). It is
important to note that while calling a function, we don’t write the return value data
type or the data types of arguments.

Example:

//This program calculates the square of a given number

#include <iostream.h>

main()

{
int number, result;
result = 0;
number = 0;

// Getting the input from the user
cout << “ Please enter the number to calculate the square ;
cin >> number;

// Calling the function square(int number)
result = square(number);
cout << “ The square of “ << number << “ is *“ << result;

Declaration and Definition of a Function

Declaration and definition are two different things. Declaration is the prototype of the
function, that includes the return type, name and argument list to the function and
definition is the actual function code. Declaration of a function is also known as
signature of a function.

As we declare a variable like int X; before using it in our program, similarly we need
to declare function before using it. Declaration and definition of a function can be
combined together if we write the complete function before the calling functions.
Then we don’t need to declare it explicitly. If we have written all of our functions in a
different file and we call these functions from main(') which is written in a different
file. In this case, the main(') will not be compiled unless it knows about the functions

80

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

declaration. Therefore we write the declaration of functions before the main()
function. Function declaration is a one line statement in which we write the return
type, name of the function and the data type of arguments. Name of the arguments is
not necessary. The definition of the function contains the complete code of the
function. It starts with the declaration statement with the addition that in definition,
we do write the names of the arguments. After this, we write an opening brace and
then all the statements, followed by a closing brace.

Example:

If the function square is defined in a separate file or after the calling function, then we
need to declare it:

int square (int);

int square (int number)

{
}

return (number * number) ;

Here is the complete code of the program:

//This program calculates the square of a given number
#include <iostream.h>

// Function declarations.
int square(int);

main()

{
int number, result;
result = 0;
number = 0;

cout << “ Please enter the number to calculate the square ;
cin >> number;

// Calling the function square(int number)

result = square(number);

cout << “ The square of “ << number << “ is “ << result;

81

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

// function to calculate the square of a number
int square (int number)

{
;

return (number * number) ;

A function in a calling program can take place as a stand-alone statement, on right-
hand side of a statement. This can be a part of an assignment expression.

Considering the above example, here are some more ways of function calling
mechanism.

result = 10 + square (5);

or

result = square (number + 10);
or

result = square (number) + square (number + 1) + square (3 * number);
or

cout << “ The square of “ << number << “is *“ << square (number);

In the above statements, we see that functions are used in assignment statements. In a
statement result = square(5); The square(5) function is called and the value which is
returned from that function (i.e. the value returned within the function using the
return keyword) is assigned to the variable result. In this case, the square(5) will
return 25, which will be assigned to variable result. There may be functions which do
not return any value. These functions can't be used in assignment statements. These
functions are written as stand-alone statements.

Sample Program 1

C is called function-oriented language. It is a very small language but there are lots of
functions in it. Function can be on a single line, a page or as complex as we want.

Problem statement:
Calculate the integer power of some number (x").

Solution:

We want to get the power of some number. There is no operator for power function in
C. We need to write a function to calculate the power of x to n (i.e. x"). How can we
calculate the power of some number? To get the power of some number x to n, we
need to multiply x with x up to n times. Now what will be the input (arguments) to the
function? A number and power, as number can be a real number so we have to declare
number as a double date type and the power is an integer value so we will declare the
power as an integer. The power is an integer value so we will declare power as an
integer. The result will also be a real number so the return value type will be of double
data type. The function name should be descriptive, we can name this function as
raiseToPow. The declaration of the function is:

double raiseToPow (double x, int power) ;

82

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

To calculate the power of X up to power times, we need a loop which will be executed
power times. The definition of function is:

// function to calculate the power of some number
double raiseToPow (double x , int power)
{
double result ;
inti;
result=1.0;
for (i=1;1i<=power;i++)
{
result *=x ; // same as result = result * x
}
return (result) ;
}

Here is the program which is calling the above function.

// This program is calling a function raiseToPow.
#include <iostream.h>

//Function declaration
double raiseToPow (double , int)

main ()
{
double x ;
inti;
cout << ““ Please enter the number * ;
cin >>x ;
cout << “ Please enter the integer power that you want this number raised to “;
cin >>1;
cout << x << “raise to power “<<i<<*“is equal to “ <<raiseToPow (x,1);

Now we have to consider what will happen to the values of arguments that are passed
to the function? As in the above program, we are passing x and i to the raiseToPow
function. Actually nothing is happening to the values of x and i. These values are
unchanged. A copy of values x and i are passed to the function and the values in the
calling program are unchanged. Such function calls are known as 'call by value'.

83

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

There is another way to call a function in which the function can change the values of
variables that are passed as arguments, of calling program. Such function call is
known as call by reference.

Sample Program 2

Problem statement:
Calculate the area of a ring.

Solution:

We know that a ring consists of a small circle and a big circle. To calculate the area of
a ring, we have to subtract the area of small circle from the area of big circle. Area of
any circle is calculated as Pi * r*. We write a function to calculate the area of a circle
and use this function to calculate the area of small circle and big circle.

Following is the code of the function circleArea:

// Definition of the circleArea function.

double circleArea (double radius)
{
// the value of Pi=3.1415926
return (3.1415926 * radius * radius) ;

Here is the complete code of the calling program.

// This program calculates the area of a ring
#include <iostream.h>

// function declaration.
double circleArea (double);

void main ()

{
double radl ;
double rad2 ;
double ringArea ;

cout << ““ Please enter the outer radius value: ” ;

cin >>radl ;

cout << ““ Please enter the radius of the inner circle: «;
cin >>rad2 ;

ringArea = circleArea (radl) — circleArea (rad2) ;

84

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

cout<< “ Area of the ring having inner raduis “ << rad2 << “ and the outer radius “ <<
radl << “is “ <<ringArea ;

h
double circleArea (double radius)
{
// the value of Pi=3.1415926
return (3.1415926 * radius * radius) ;
J

Sample Program 3

There are some other kinds of functions which are used to test some condition. Such
functions return true or false. These functions are very important and used a lot in
programming. In C condition statements, the value zero (0) is considered as false and
any value other than zero is considered as true. So the return type of such functions is
int. We usually return 1 when we want the function to return true and return 0 when
we want the function to return 0. Here is a sample program to elaborate this.

Problem statement:
Write a function which tests that a given number is even or not? It should return true
if the number is even, otherwise return false.
Solution:
We already know the method of deciding whether a number is even or not. The name
of the function is iSEven. Its return type will be int. It will take an int as an argument.
So the declaration of the function should be as below;

int isEven (int) ;
We can also use a function in the conditional statements like:

if (isEven (number))
If the number is even, the function will return none zero value (i.e. usually 1) and the
if statement will be evaluated as true. However, if the number is odd, the function will

return a zero value and the if statement is evaluated as false.

Here is a complete program.

// This program is calling a function to test the given number is even or not
#include <iostream.h>

// function declaration.
int isEven(int);

void main ()

85

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

int number;

cout << " Please enter the number: " ;
cin >> number ;

if (isEven (number))

{
cout << " The number entered is even " << endl;
H
else
{
cout << " The number entered is odd " << end];
h
H
int isEven (int number)
{
if (2 * (number / 2) == number)
{
return 1;
}
else
{
return 0;
H
}
Summary

Functions are very good tools for code reuse. We have seen in the above example that
the area of two circles has been calculated without rewriting the code. This means that
the code has been reused. We can reuse the circleArea function to find the area of any
circle.

A function performs a specific task. Functions also provide encapsulation. The calling
program does not know how the function is performing its task. So we can build up
modular form from small building blocks and build up more and more complex
programs.

If we are going to use a function in our program and the definition of the function is
after the calling program. The calling program needs to know how to call the function,
what the arguments are and what it will return. So its declaration must occur before
usage. If we do not declare a function before using, the compiler will give an error. If
we define a function before the calling program, then we do not need a separate
declaration. The function declaration is also known as function prototype or function
signature. Whenever, we need to build something, first of all we build a prototype of
that thing and then later on we build it. Similarly the function declaration is used as a

86

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

prototype. We are following the top- down methodology. We break the program into
smaller modules and just declare the functions and later on we can define these.

Exercise:
1. Modify the raise to power function so that it can handle negative power of x,

zero and positive power of x.

2. Modify the area of ring function put in error checking mechanism.

Tips
o We used functions for breaking complex problems into smaller pieces,
which is a top-down structured approach.
° Each function should be a small module, self-contained. It should solve a well
defined problem.
o Variable names and function names should be self- explanatory.
o Always comment the code.

87

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 10

Reading Material

Deitel & Deitel — C++ How to Program Chapter 3
3.7,3.11,3.12,3.14, 3.17

Contents

e Header Files
e Scope of Identifiers
e Functions
- Call by Value
— Call by Reference

Header Files

You have already been using a header file from day-zero. You know that we used to
write at the top before the start of the main() function <iostream.h>, with “.h’ as an
extension, you might have got the idea that it is a header file.

Now we will see why a Header file is used.

In the previous lecture, we discussed a little bit about Function Prototypes. One thing
is Declaration and other is Definition. Declaration can also be called as 'Prototype’'.
Normally, if we have lot of functions and want to use them in some other function or
program, then we are left with only one way i.e. to list the prototypes of all of them
before the body of the function or program and then use them inside the function or
program. But for frequent functions inside a program, this technique increases the
complexity (of a program). This problem can be overcome by putting all these
function prototypes in one file and writing a simple line of code for including the file
in the program. This code line will indicate that this is the file, suppose 'area.h’
containing all the prototypes of the used functions and see the prototypes from that
file. This is the basic concept of a header file.

So what we can do is:

Make our own header file which is usually a simple text file with ".h' extension (".h'
extension is not mandatory but it is a rule of good programming practice).

88

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Write function prototypes inside that file. (Recall that prototype is just a simple line of
code containing return value, function name and an argument list of data types with
semi-colon at the end.)

That file can be included in your own program by using the ‘#include’ directive and
that would be similar to explicitly writing that list of function prototypes.

Function prototypes are not the only thing that can be put into a header file. If you
remember that we wrote a program for calculating Area of a Circle in our previous
lectures. We used the value of 'pi' inside that and we have written the value of 'pi' as
3.1415926. This kind of facts are considered as Universal Constants or Constants
within our domain of operations . It would be nice, if we can assign meaningful
names to them. There are two benefits of doing this. See, We could have declared a
variable of type double inside the program and given a name like 'pi":

double pi = 3.1415926;
Then everywhere in the subsequent calculations we can use 'pi'.
But it is better to pre-define the value of the constant in a header file (one set for all)
and simply including that header file, the constant ‘pi’, is defined. Now, this
meaningful name ‘pi’ can be used in all calculations instead of writing the horrendous
number 3.1415926 again and again.

There are some preprocessor directives which we are going to cover later. At the
moment, we will discuss about ‘#define’ only. We define the constants using this
preprocessor directive as:

#define pi 3.1415926

The above line does a funny thing as it is not creating a variable. Rather it associates a
name with a value which can be used inside the program exactly like a variable. (Why
it is not a variable?, because you can’t use it on the left hand side of any assignment.).
Basically, it is a short hand, what actually happens. You defined the value of the ‘pi’
with ‘#define’ directive and then started using ‘pi’ symbol in your program. Now we
will see what a compiler does when it is handed over the program after the writing
process. Wherever it finds the symbol ‘pi’, replaces the symbol with the value
3.1415926 and finally compiles the program.

Thus, in compilation process the symbols or constants are replaced with actual values
of them. But for us as human beings, it is quite readable to see the symbol ‘pi’.
Additionally, if we use meaningful names for variables and see a line ‘2 * pi * radius’,
it becomes obvious that circumference of a circle is being calculated. Note that in the
above statement, ‘2 * pi * radius’; 2 is used as a number as we did not define any
constant for it. We have defined ‘pi’ and ‘radius’ but defining 2 would be over killing.

Scope of ldentifiers

An 'I[dentifier' means any name that the user creates in his/her program. These names
can be of variables, functions and labels. Here the scope of an identifier means its
visibility. We will focus Scope of Variables in our discussion.

89

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Suppose we write the function:

void func1()

{ . .
nt 1;
.. //Some other lines of code
intj=i+2; //Perfectly alright

}

Now this variable ‘i’ can be used in any statement inside the function func1(). But
consider this variable being used in a different function like:

void func2()
{

intk=1+4; //Compilation error

}

The variable ‘i’ belongs to funcl() and is not visible outside that. In other words, ‘i’
is local to funcl1().

To understand the concept of scope further, we have to see what are Code Blocks? A
code block begins with ‘{‘ and ends with ‘}’.Therefore, the body of a function is
essentially a code block. Nonetheless, inside a function there can be another block of
code like 'for loop' and 'while loop' can have their own blocks of code respectively.
Therefore, there can be a hierarchy of code blocks.

A variable declared inside a code block becomes the local variable for that for that
block. It is not visible outside that block. See the code below:

void func()
{
int outer; //Function level scope
{
int inner; //Code block level scope
inner = outer; //No problem
h
inner ++; //Compilation error
H

Please note that variable ‘outer’ is declared at function level scope and variable
‘inner’ is declared at block level scope.

The ‘inner’ variable declared inside the inner code block is not visible outside it . In
other words, it is at inner code block scope level. If we want to access that variable
outside its code block, a compilation error may occur.

90

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

What will happen if we use the same names of variables at both function level scope
and inner block level scope? Consider the following code:

Line

1 void increment()

2 {

3 int num; //Function level scope

4 .

5. {

6. int num; //Bad practice, not recommended
7 o

8 num ++; //inner num is incremented
9.

10. }

11. }

Note that there is no compilation error if the variable of the same name ‘num’ is
declared at line 6 inside the inner code block (at block level scope). Although , there
is no error in naming the variables this way, yet this is not recommended as this can
create confusion and decrease readability. It is better to use different names for these
variables.

Which variable is being used at line 8? The answer is the ‘num’ variable declared for
inner code block (at block level scope). Why is so? It is just due to the fact that the
outer variable ‘num’ (at function level scope) is hidden in the inner code block as
there is a local variable of the same name. So the local variable ‘num’ inside the inner
code block over-rides the variable ‘num’ in the outer code block.

Remember, the re-use of a variable is perfectly alright as we saw in the code snippet
above while using ‘outer’ variable inside the inner code block. But re-declaring a
variable of the same name like we did for variable ‘num’ in the inner code block, is a
bad practice.

Now, is there a way that we declare a variable only once and then use it inside all
functions. We have already done a similar task when we wrote a function prototype
outside the body of all the functions. The same thing applies to declaration of
variables. You declare variables outside of a function body (so that variable
declarations are not part of any function) and they become visible and accessible
inside all functions of that file. Notice that we have just used a new word ‘file’.

A file or a source code file with extension ‘.c’ or ‘.cpp’ can have many functions
inside. A file will contain one main() function maximum and rest of the functions as
many as required. If you want a variable to be accessible from within all functions,
you declare the variable outside the body of any function like the following code
snippet has declared such a variable ‘size’ below.

#include <iostream.h>

// Declare your global variables here
91

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

int size;

int main(...)

{
h

Now, this ‘size’ is visible in all functions including main(). We call this as 'file scope
variable' or a 'global variable'. There are certain benefits of using global variables. For
example, you want to access the variable ‘size’ from anywhere in your program but it
does have some pitfalls. You may inadvertently change the value of the variable ‘size’
considering it a local variable of the function and cause your program to behave
differently or affect your program logic.

Hence, you should try to minimize the use of global variables and try to use the local
variables as far as possible. This philosophy leads us to the concept of Encapsulation

and Data Hiding that encourages the declaration and use of data locally.

In essence, we should take care of three levels of scopes associated with identifiers:
global scope, function level scope and block level scope.

Let's take a look of very simple example of global scope:

#include <iostream.h>
//Declare your global variables here
int i;
void main()
{
1=10;
cout << “An” << “In main(), the value of i is: “ <<1i;
f0);
cout << ‘“\n” << “Back in main(), the value of i is: *“ <<
}
void ()
{
cout << “\n” << ”’In f(), the value of i is: “ << 1;
1=20;
}

Note the keyword ‘void’ here, which is used to indicate that this function does not
return anything.

The output of the program is:
In main(), the value of'i is: 10
In f(), the value ofiis: 10

92

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Back in main(), the value of i is: 20

Being a global variable, ‘i’ is accessible to all functions. Function f() has changed its
value by assigning a new value i.e. 20.

If the programmer of function f() has changed the value of ‘i’ accidentally taking it a
local variable, your program’s logic will be affected.

Function Calling

We have already discussed that the default function calling mechanism of C is a 'Call
by Value'. What does that mean? It means that when we call a function and pass some
arguments (variables) to it, we are passing a copy of the arguments (variables) instead
of original variables. The copy reaches to the function that uses it in whatever way it
wants and returns it back to the calling function. The passed copy of the variable is
used and original variable is not touched. This can be understood by the following
example.

Suppose you have a letter that has some mistakes in it. For rectification, you depute
somebody to make a copy of that letter, leave the original with you and make
corrections in that copy. You will get the corrected copy of the letter and have the
unchanged original one too. You have given the copy of the original letter i.e. the call
by value part.

But if you give the original letter to that person to make corrections in it, then that
person will come back to you with the changes in the original letter itself instead of its
copy. This is call by reference.

The default of C is 'Call by Value'. It is better to use it as it saves us from unwanted
side effects. Relatively, 'Call by Reference' is a bit complex but it may be required
sometimes when we want the actual variable to be changed by the function being
called.

Let's consider another example to comprehend 'Call by Value' and how it works.
Suppose we write a main() function and another small function f(int) to call it from
main(). This function f() accepts an integer, doubles it and returns it back to the
main() function. Our program would look like this:

#include <iostream.h>

void f(int); //Prototype of the function
void main()
{ . .
int1;
1=10;
cout << ‘“\n” << In main(), the value of i is: “ <<1i;
f(i);
cout << “\n” << Back in main(), the value of i is: *“ <<1;
}

93

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

void f (int 1)
{
1%=2;
cout << “\n” << “ In f(), the value of i is: “ << 1;

The output of this program is as under:
In main(), the value of i is: 10

In (), the value of i is: 20

Back in main(), the value of i is: 10

As the output shows the value of the variable ‘i’ inside function main() did not
change, it proves the point that the call was made by value.

If there are some values we want to pass on to the function for further processing, it
will be better to make a copy of those values , put it somewhere else and ask the
function to take that copy to use for its processing. The original one with us will be
secure.

Let's take another example of call by value, which is bit more relevant. Suppose we

want to write a function that does the square of a number. In this case, the number can
be a double precision number as seen below:

#include <iostream.h>

double square (double);
void main()
{
double num;
num = 123.456;
cout << “\n” << “ The square of ““ << num << “is “ << square(num);
cout << “\n” << “ The current value of num is *“ << num,;
H
double square (double x)
{
return x*x;
}

'C' does not have built-in mathematical operators to perform square, square root, log
and trigonometric functions. The C language compiler comes along a complete library

94

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

for that. All the prototypes of those functions are inside ‘<math.h>". In order to use
any of the functions declared inside ‘<math.h>’, the following line will be added.

#include <math.h>

Remember, these functions are not built-in ones but library is supplied with the C-
compiler. It may be of interest to you that all the functions inside ‘<math.h>’ are
called by value. Whatever variable you will pass in as an argument to these functions,
nothing will happen to the original value of the variable. Rather a copy is passed to
the function and a result is returned back, based on the calculation on that copy.

Now, we will see why Call by Reference is used.

We would like to use 'call by reference' while using a function to change the value of
the original variable. Let's consider the square(double) function again, this time we
want the original variable ‘X’ to be squared. For this purpose, we passed a variable to
the square() function and as a result, on the contrary to the ‘Call by Value’, it affected
the calling functions original variable. So these kinds of functions are ‘Call by
Reference’ functions.

Let us see, what actually happens inside Call by Reference?

As apparent from the name ‘By Reference’, we are not passing the value itself but
some form of reference or address. To understand this, you can think in terms of
variables which are names of memory locations. We always access a variable by its
name (which in fact is accessing a memory location), a variable name acts as an
address of the memory location of the variable.

If we want the called function to change the value of a variable of the calling function,
we must pass the address of that variable to the called function. Thus, by passing the
address of the variable to the called function, we convey to the function that the
number you should change is lying inside this passed memory location, square it and
put the result again inside that memory location. When the calling function gets the
control back after calling the called function, it gets the changed value back in the
same memory location.

In summary, while using the call by reference method, we can’t pass the value. We
have to pass the memory address of the value. This introduces a new mechanism
which is achieved by using ‘&’ (ampersand) operator in C language. This ‘&’
operator is used to get the address of a variable. Let's look at a function, which
actually is a modification of our previous square() function.

#include <iostream.h>

void square(double*);

main()
{
double x;
x = 123.456;
cout << “\n” << *“ In main(), before calling square(), x = “ <<x;
square(&x); //Passing address of the variable x

95

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

cout << “\n” << “ In main(), after calling square(), x = “ << x;

h
void square(double* x) //read as: x is a pointer of type double
{
*x o= kg *o¥x; //Notice that there is no space in *x
h

Here *x means whatever the x points to and &x means address of the variable x. We
will discuss Pointers in detail later.

We are calling function square(double*) with the statement square(&x) that is
actually passing the address of the variable x , not its value. In other words, we have
told a box number to the function square(double*) and asked it to take the value
inside that box, multiply it with itself and put the result back in the same box. This is
the mechanism of ‘Call by Reference’.

Notice that there is no return statement of square(double*) as we are putting the
changed value (that could be returned) inside the same memory location that was
passed by the calling function.

The output of the program will be as under:
In main(), before calling square(), x = 123.456
In main(), after calling square(), x = 15241.4

By and large, we try to avoid a call by reference. Why? Mainly due to the side-effects,
its use may cause. As mentioned above, it will be risky to tell the address of some
variables to the called function. Also, see the code above for some special
arrangements for call by reference in C language. Only when extremely needed, like
the size of the data to be passed as value is huge or original variable is required to be
changed, you should go for call by reference, otherwise stick to the call by value
convention.

Now in terms of call by reference, we see that there are some places in ‘C’ where the
call by reference function happens automatically. We will discuss this later in detail.
For the moment, as a hint, consider array passing in ‘C’.

Recursive Function

This is the special type of function which can call itself. What kind of function it
would be? There are many problems and specific areas where you can see the
repetitive behavior (pattern) or you can find a thing, which can be modeled in such a
way that it repeats itself.

96

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Let us take simple example of x'°, how will we calculate it? There are many ways of
doing it. But from a simple perspective, we can say that by definition x'° = x * x”* So
what is x’? It is x” = x * x® and so on.

We can see the pattern in it:
X" =x * x™!

To compute it, we can always write a program to take the power of some number.
How to do it? The power function itself is making recursive call to itself. As a
recursive function writer, you should know where to stop the recursive call (base
case). Like in this case, you can stop when the power of x i.e. nis 1 or 0.

Similarly, you can see lot of similar problems like Factorials. A factorial of a positive
integer ‘n’ is defined as:
n!=(n) * (n-1) * (n-2) * ... *2*1

Note that
n! =(n) * (n-1)!
and (n-1)! = (n-1) * (n-2)!

This is a clearly a recursive behavior. While writing a factorial function, we can stop
recursive calling whennis 2 or 1.

long fact(long n)
{
if(n<=1)
return 1;
else
return n * fact(n-1);
h

Note that there are two parts (branches) of the function: one is the base case (which
indicates when the function will terminate) and other is recursively calling part.

All the problems can be solved using the iterative functions and constructs we have
studied until now. So the question is: do we need to use recursive functions? Yes, it
adds little elegance to the code of the function but there is a huge price to pay for this.
Its use may lead to the problems of having memory overhead. There may also be
stacking overhead as lots of function calls are made. A lot of functions can be written
without recursion (iteratively) and more efficiently.

So as a programmer, you have an option to go for elegant code or efficient code,
sometimes there is a trade-off. As a general rule, when you have to make a choice out
of elegance and efficiency, where the price or resources is not an issue, go for
elegance but if the price is high enough then go for efficiency.

97

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

‘C’ language facilitates us for recursive functions like lot of other languages but not
all computer languages support recursive functions. Also, all the problems can not be
solved by recursion but only those, which can be separated out for base case, not
iterative ones.

Tips

Header file is a nice mechanism to put function prototypes and define constants
(global constants) in a single file. That file can be included simply with a single line
of code.

There are three levels of scopes to be taken care of, associated with identifiers: global
scope, function level scope and block level scope.

For Function calling mechanism, go for ‘Call by Value’ unless there is a need of ‘Call
by Reference’.

Apply the recursive function where there is a repetitive pattern, elegance is required
and there is no resource problem.

98

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 11

Reading Material

Deitel & Deitel - C++ How to Program chapter 4
42,43,44

Summary

o Introduction

Arrays

Initialization of Arrays
Sample Program 1
Copying Arrays
Linear Search

The Keyword ‘const’
Tips

© Copyright Virtual University of Pakistan

99

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Introduction

We have started writing functions, which will become a part of our every program. As
C language is a function-oriented language, so we will be dealing with too many
functions. Our programming toolkit is almost complete but still a very important
component is missing. We are going to discuss this component i.e. Arrays in this
lecture.

Let us consider an example about calculation of average age of 10 students. At first,
we will declare 10 variables to store the age of each student and then sum up all the
ages and divide this with 10 to get the average age. Suppose, we have 100 students
instead of 10, we have to declare 100 variables i.e. one for each student’s age. Is there
any other way to deal with this problem? Arrays are possible solution to the problem.

Array is a special data-type. If we have a collection of data of same type as in the case
of storage of ages of 100 students, arrays can be used. Arrays are data structure in
which identical data types are stored. The concept of arrays is being explained further
in the following parts of the lecture.

Arrays

In C language, every array has a data type i.e. name and size. Data type can be any
valid data type. The rules of variable naming convention apply to array names. The
size of the array tells how many elements are there in the array. The size of the array
should be a precise number. The arrays occupy the memory depending upon their size
and have contiguous area of memory. We can access the arrays using the array index.

Declaration:
The declaration of arrays is as follows:
data_type array _name [size] ;

for example:
int ages[10];

Let's consider an array int C[10]; This is an array of integer and has a name ’C'. It has
a size ten which depicts that the array ‘C’ can contain ten elements of int data type. In
the memory, the array occupies the contiguous area, in this case it will occupy forty
bytes (one int = 4 bytes). The elements of the array are manipulated using the index.
In C language, the index of array starts from zero and is one less than array's size.
Index of array is also called subscript.

Memory image of an array:

Name

100

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)
Memory
\‘c [0] 27
Cl1] 59
C[2] 35
Cl3]
Cl7]
Cl8]
Cl9]
Index

In the above figure, the memory chunk containing the array C is shown. On the first
line, C[0] is written while on the 2" line, C[1] is written and so on. The number in the
[]1s the index of the array. C[0] is used for the first element, followed by C[1] for
the second element and so on. It is important to note that in an array the index 6 ([6])
means the seventh element of the array and thus the eighth element will have an index
7. Thus, the index of the last element of the array will be 1 less than the size of the
array. On the right hand side, the values of the elements are shown in the memory i.e.
the value of the element at zero position (C[0]) is 24 while that of the element at
first position (C[1]) is 59 and so on. The important thing to be noted here is that the
indexing of the array starts from zero, not from one. So in the above example, the
index of the array C will be from C[0] to C[9]. If we have an array of size 25, its
index will be from 0 to 24.

Usage of Arrays

To declare arrays, we have to give their data type, name and size. These are fixed-size
arrays. In the coming lectures, we will discuss arrays without using size at declaration
time. Arrays may be declared with simple variables in a single line.

int 1, age [10];
int height [10], length [10] ;

To access array, we can’t use the whole array at a time. We access arrays element by
element. An index (subscript) may be used to access the first element of the array. In
this case, to access first element we write like age[0]. To access the 5" element, we
will write age[4] and so on. Using the index mechanism, we can use the array
elements as simple variables. Their use can be anywhere where there we can use a
simple variable i.e. in assignment statements, expressions etc. Please do not confuse
the usage of array and declaration of array. When we write int age [10], it means we
are declaring an array of type int, its name is age and its size is 10. When we write

101

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

age[5], it means we are referring to the single element of the array not the whole
array.

Consider the example of student’s ages again. Is there a way to calculate the average
age of all the students in an array?

As we know that arrays can be accessed with indexing. So we can use a 'for loop' as
under;

for(i=0;1<10; it++)

{
cout << “Please enter the age of the student “;
cin >> age [i];

}

In the above 'for loop' the value of i is changing from 0 to 9. Here the loop condition
is i<10. This means that the cin and cout statements will be executed 10 times. We
have used i as the index of the array. The index we are referring to the array needs to
be an integer. It can be 4, 5 or an integer variable like i. In the first repetition, the
value of i is 0, i.e. age[0] so the value of first element of the age will be read. In the
second repetition, the value of i becomes 1 i.e. age[1] so the value of 2™ element of
the age will be read and so on. We get all the 10 values from the user which will be
stored in the array age.

Now we will calculate the total of ages. We can use another 'for loop' to add up all the
elements of the array age.

int totalAge = 0;

for(i=0;i<10; it++)

{
}

totalAge += age [i];

In the above loop, all the elements of the array age will be added to the variable
totalAge. When the value of i is 0 i.e. age[0] the value of first element will be added
to the totalAge. As the value of i is changing from 0 to 9 so all the 10 elements of the
array will be added to the totalAge. By dividing this totalAge by 10 we will get the
average age.

Initialization of Arrays

There are many ways to initialize an array. Don't use the default initialization of
arrays. Compiler may assign some value to each declared array. Always initialize the
array in such a manner that the process is clear.

We can initialize an array using a 'loop’ while assigning some value.

int i, age [10];

102

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

for(i=0;1<10;i++)

{
h

agef[i] = 0;

With the help of this simple loop, we have initialized all the elements of array age to
zero. In the loop condition, we have used the condition i < 10, where the size of the
array is ten. As we know, the array index is one less than the size of the array. Here
we are using I as the index of array and its values are from 0 to 9.

We can also initialize the array at the time of declaration as:

intage [10]=1{0,0,0,0,0,0,0,0,0,0 };
The above statement creates an array age of integers and initializes all the elements
with zero. We can use any value to initialize the array by using any other number
instead of zero. However, generally, zero is used to initialize the integer variables.
We can do it by using the following shortcut.

intage [10]={0 };
The above statement has also initialized all the elements of the array to zero.
We have different ways of initializing the arrays. Initialization through the use of loop
is a better choice. If the size of the array gets larger, it is tedious to initialize at the
declaration time.
Consider the following statement:

intage[]=1{0,0,0,0,0,0,0,0,0,0 };
Here we have not mentioned the size of the array. The compiler is quite intelligent as
it detects the initialization list which consists of ten 0’s. Therefore, it creates an array
of 10 integers and initializes all the elements with zero.
The index of the arrays starts from the index 0 and is up to one less than the size of

the array. So if the size of the array is ten, the index will be from 0 to 9. Similarly, if
the size of the array is 253, the index will be from 0 to 252.

103

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Sample Program 1

Problem Statement:

Write a program which reads integers from the user and
stores these ones in an array. User can enter a maximum of 100
numbers. Stop taking input when user enters -1.

Solution:

We have to declare an integer array of size 100 to be used to store the integers. We
used a loop to get the input from the users. There are two conditions to terminate the
loop i.e. either user has entered 100 numbers or user entered -1. 'For' and 'while' loops
can execute zero or more times whereas ‘do-while’ may execute one or more times.
By analyzing the problem, the loop will be executed at least once so do-while loop
logically fits in this problem. We take an integer z to get the input from the user and i
as the counter so the condition will be as (z !=-1 && 1 < 100). && is used to
enforce that both the conditions are true. If any of the two conditions becomes false,
the loop will be terminated. The loop counter is less than 100 because the index of the
array will be from 0 to 99.

We will read a number from the user and store it at some particular location of the
array unless user enters -1 or 100 numbers are entered. In the loop, we will use the if
statement whether the number entered by user is -1 or not. If the number entered is
not -1, then we will store it in the array. The index of the array will also be
incremented in each repetition. We can assign some value to array element as:

c[3]=33;

In an assignment statement, we cannot use expression on the left hand side. Here c[3]
is used as a variable which represents the 4™ element of the array.

The complete code of the program as under:

// This program reads the input from user and store it into an array and stop at -1.
#include <iostream.h>
main()

{
int ¢[100];

104

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)
mntz,i=0;
do
{
cout << “Please enter the number (-1 to end input) “ << end];
cin>>z;
if(z!=-1)
{
cli]=z;
.}
1++;

} while (z!=-1&&1<100);

cout << “ The total number of positive integers entered by user is “ <<1i-1;

The above code shows that the assignment statement of the array is inside the if block.
Here the numbers will be assigned to the array elements when the 'if statement'
evaluates to true. When the user enters -1, the if statement will evaluate it false. So the
assignment statement will not be executed and next i will be incremented. The
condition in the 'while loop' will be tested. As the value of z is -1, the loop will be
terminated.

Now we have to calculate how many positive numbers, the user has entered. In the
end, we have incremented i so the actual positive integers entered by the users is I -1.
The above example is very useful in terms of its practical usage. Suppose we have to
calculate the ages of students of the class. If we don’t know the exact number of
students in the class, we can declare an array of integers of larger size and get the ages
from the user and use -1 to end the input from the user.

A sample out put of the program is as follow.

Please enter the number (-1 to end input) 1

NN AW

-1
The total number of positive integers entered by user is 6

Copying Arrays

Sometimes, we need to copy an array. That means after copying, both the arrays will
contain elements with same values. For being copy able, both arrays need to be of
same data type and same size. Suppose, we have two arrays a and b and want to copy
array a into array b. Both arrays are of type int and of size 10.

105

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

int array a[10];
int array b[10];

We know that a value can be assigned to an element of array using the index. So we
can write assignment statements to copy these arrays as:

b[0] = a[0] ;
b[1] = a[1];
b[2] = a2 ;
b[9] = a[9] ;

As the size of array is 10, its index will be from 0 to 9. Using the above technique, we
can copy one array to another. Now if the array size is 100 or 1000, this method can
be used. Is there some other way to do things in a better way? We can use the loop
construct to deal with this easily in the following way.

for(1i=0;1<10;i++)
{
b[i] = a[i];
}

With the help of loop, it becomes very simple. We are no more worried about the size
of the array. The same loop will work by just changing the condition. We are
assigning the corresponding values of array a into array b. The value of first element
of array a is assigned to the first element of array b and so on.

Example:
Take the sum of squares of 10 different numbers stored in an array.

Here is the code of the program:

// This program calculates the sum of squares of numbers stored in an array.

#include <iostream.h>

main()

{
int a[10];
int sumOfSquares = 0 ;
int i =0;

cout << "Please enter the ten numbers one by one " << endl;

// Getting the input from the user.
fori=0;1<10; it++)

{

106

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

cin >> a [i];

}

// Calculating the sum of squares.
for(i=0;i<10;i++)

{
}

sumOfSquares = sumOfSquares +a[i] * a[i];

cout << “The sum of squares is “ << sumOfSquares << end];

}

A sample out put of the program is given below.

Please enter the ten numbers one by one
1

e BEN e WLV, I NS I (9}

9
10
The sum of squares is 385

Linear Search

Arrays are used to solve many problems. As we have seen that loops are used along
with the arrays, so these two constructs are very important. Suppose, we are given a
list of numbers to find out a specific number out of them. Is the number in the list or
not? Let's suppose that there are 100 numbers in the list. We take an array of size 100
as int a [100]. For populating it, , we can request the user to enter the numbers. Either
these numbers can be stored into the array or we can just populate it with numbers
from 0 to 99. We can write a simple loop and assign the values as a[i] = i. This means
that at ith position, the value is i i.e. (a[5] =5), at 5th position the value is 5 and so
on. Then we can request the user to enter any number and store this number into an int
variable. To search this number in the array, we write a loop and compare all the
elements with the number. The loop will be terminated, if we found the number or we
have compared all the elements of the array, which means that number is not found.
We used a flag to show that we have found the number or not. If the value of found is
zero, the number is not found while the value 1 will mean that number has been
found. When we find the number, is there a need to compare it with other elements of
the array? May be not, so when we found the number, we just jumped out of the loop.
In the end, we check the variable found. If the value is 1, it means number has been
found. Otherwise number stands unfound.

107

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Here is the complete code of the program.

// This program is used to find a number from the array.
#include <iostream.h>

main()
{ . .
mtz,1;
inta[100];
// Initializing the array.
for (1=0;1<100;i++)

{
ali]=1;
}
cout << “ Please enter a positive integer “;
cin>>7z;
int found =0 ;

// loop to search the number.
for(i=0;1<100;1i++)

{
if(z==ali])
{
found=1;
break ;
§
§

if (found==1)

cout << “ We found the integer at index ” <<1i;
else

cout << “ The number was not found ” ;

}

The following is an output of the program.

Please enter a positive integer 34
We found the integer at index 34

The loop in the above program may run 100 times or less. The loop will terminate if
the number is found before the 100™ repetition. Therefore, in the linear search the
maximum limit of the loop execution is the size of the list. If the size of list is 100,
then the loop can execute a maximum of 100 times.

Using random function (Guessing Game):

We can turn this problem into an interesting game. If we as programmers do not
know, which number is stored in the array? We can make this a guessing game. How
can we do that? We need some mechanism by which the computer generates some
number. In all the C compilers, a random number generation function is provided. The
function is rand() and is in the standard library. To access this function, we need to

108

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

Y,

include <stdlib.h> library in our program. This function will return a random number.

The number can be between 0 and 32767. We can use this function as:

x =rand ();

The random function generates an integer which is assigned to variable x. Let's

consider the function-calling mechanism. The program starts its execution in the main
function. When the control goes to the statement containing a function call, the main

program stops here and the control goes inside the function called. When the function
completes or returns some value, the control comes back to the main program.

Here is the complete code of the program using rand().

{

}

main()

// This program is used to find a number from the array.

#include <iostream.h>
#include <stdlib.h>

intzi;
inta[100];
// Initializing the array.

for (1=0;i1<100;i++)
{

}

cout << “ Please enter a positive integer “;
cin>>z;
int found =0 ;

a[i] =rand() ;

// loop to search the number.
for(i=0;1<100;i++)

{
if(z==ali])
{
found=1;
break ;
§
§

if (found==1)

cout << “ We found the integer at position ” <<1i ;
else

cout << “ The number was not found ” ;

The following is an output of the program.

| Please enter a positive integer 34

109

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

| The number was not found

The function rand () returns a value between 0 and 32767. Can we limit the generated
random number in a smaller range? Suppose we have a die with six faces marked with
1,2,3,4,5and 6. We want to generate random die number i.e. the number should be
between 1 and 6 inclusive. Here we can use the modulus operator to achieve this.
Modulus operator returns the remainder. What will be the result of the statement?

rand () % 6

When 6 divides any number, the remainder will always be less than 6. Therefore, the
result will be between 0 and 5 inclusive. We want the number between 1 and 6,
therefore we will add 1.

1 +rand () % 6;

The above statement will give us the desired result. We need to know whether this is a
fair die or not. A fair die is a die when it is rolled 10 or 100 million of times. Then on
average, equal number of 1’s, equal number of 2’s, equal number of 3’s etc. will be
generated. Can we test our die i.e. it is fair or not? That is there are equal numbers of
chances of 1 or 2 etc. Think about generating a test for our random number generator.
Does it produce a fair die?

The random function is very useful. It can be used to guess the tossing of the coin.

There can be only two possibilities of tossing a coin. Therefore we can use rand () %
2 which will give 0 or 1.

The Keyword ‘const’:

To declare an array, we need its data type, name and size. We use simple integer for
the size like 10 or 100. While using arrays in loops, we use the size a lot. Suppose if
we have to change the size of the array from 10 to 100, it will have to be changed at
all the places. Missing a place will lead to unexpected results. There is another way to
deal this situation i.e. keyword construct. The keyword const can be used with any
data type and is written before the data type as:

const int arraySize = 100;
This statement creates an identifier arraySize and assigns it the value 100. Now the
arraySize is called integer constant. It is not a variable. We cannot change its value in
the program. In the array declaration, we can use this as:

int age [arraySize];
Now in the loop condition, we can write like this:

for (1= 0; 1< arraySize ;i ++)

110

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

If we have to change the size of the array, we only have to change the value of
arraySize where it is declared. The program will work fine in this case. This is a good
programming practice to use const for array size.

Tips

Initialize the array explicitly

Array index (subscript) starts from 0 and ends one less than the array size
To copy an array, the size and data type of both arrays should be same
Array subscript may be an integer or an integer expression

Assigning another value to a const is a syntax error

111

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 12

Reading Material

Deitel & Deitel - C++ How to Program chapter 4
44,45,4.6,4.8,4.9

Summary
o Character Arrays
o Initialization Of Character Arrays
o Arrays Comparison
o Sorting Arrays
o Searching arrays
o Functions And arrays
o Example 1

Multidimensional Arrays
o Example 2
° Tips

112

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Character Arrays

While dealing with words and sentences, we actually make use of character arrays.
Up to now, we were dealing with integer arrays and storing integer values. Here we
have to see what needs to be done for storing a name. A simple variable can't be used
to store a name (which is a string of characters) as a variable stores only a single
character. We need a character array to grab a name. A character array is not different
from an integer array. To declare a character array, we will write as under:
char name [100] ;
In this way, we declare a string or character array. There are some special properties
of character arrays. Suppose that we declare an array of 100 characters. We enter a
name with 15-20 characters. These characters in the array occupy 15-20 character
spaces. Now we have to see what has happened to the remaining character spaces in
the array. Similarly, a question arises, will an array displayed on the screen, show 100
characters with a name in 15-20 spaces and blanks for the remaining. Here C has a
character handling capability i.e. the notion of strings. When we place a string in a
character array, the computer keeps a mark to identify that the array was of this size
while the string stored in it is of the other size. That marker is a special character,
called null character. The ASCII code of null character is all zeros. In C language, we
represent the null character as “\0”. C uses this character to terminate a string. All
strings are terminated with the null character.
Now, we will see how the character arrays are stored in memory. While declaring a
character array, we normally declare its size larger than the required one. By using a
character array, it becomes easy to store a string. We declare a character array as
under.

char name [100] ;
Now we can store a string in this array simply by using the cin statement in the
following way.

cin >> name ;
In the above statement, there is an array on right hand side of cin instead of a simple
variable. The cin stream has a built-in intelligence that allows the compiler (program)
to read whole string at a time rather than a single character as in case of simple
variable of type char. The compiler determines that the name is not a simple variable.
Rather it is a string or character array. Thus cin reads a character array until the user
presses the enter key. When enter key is pressed, cin takes the whole input (i.e. string)
and stores it into the array name. The C language, by itself, attaches a null character at
the end of the string. In this way, the total number of spaces occupied in the array by
the string is the number of characters entered by the user plus 1 (this one character is
the null character inserted at the end of the string by C automatically). The null
character is used to determine where the populated area of the array has ended. If we
put a string larger than the size of the array in absence of a null character in it, then it
is not possible to determine where a string is terminated in the memory. This can
cause severe logical error. So, one should be careful while declaring a character array.
The size of array should be one more than the number of characters you want to store.

Initialization Of Character Arrays

113

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Now we will look into integer array initialization process that can provide a list of
integer values separated by commas and enclosed in curly braces. Following is the
statement through which we initialize an integer array.

int age [5] = {12, 13, 16, 13, 14};
If we don’t mention the size of the array and assign a list of values to the array, the
compiler itself generates an array of the size according the number of values in the
list. Thus, the statement int age [] = {14, 15, 13}; will allocate a memory to the
array of size 3 integers. These things also apply to character arrays as well. We can
initialize an array by giving a list of characters of the string, the way we assign integer
values in integer array. We write the characters of this string one by one in single
quotes (as we write a single character in single quotes), separated by commas and
enclosed in curly braces. So the initialization line will be as under

char name [100] = {’, ‘m’, ‘r’, ‘a’, ‘n’};
we can also write the string on right hand side in double quotes as

char name [100] = “imran” ;
The easy way to initialize a character array is to assign it a string in double quotes.
We can skip the size of the array in the square brackets. We know that the compiler
allocates the memory at the declaration time, which is used during the execution of
the program. In this case, the compiler will allocate the memory to the array of size
equal to the number of characters in the provided string plus 1 (1 is for the null
character that is inserted at the end of string). Thus it is a better to initialize an array in
the following way.

char name [] = “Hello World” ;
In the above statement, a memory of 12 characters will be allocated to the array name
as there are 11 characters in double quotes (space character after Hello is also
considered and counted) while the twelfth is the null character inserted automatically
at the end of the string.

We can do many interesting things with arrays. Let’s start with reading a string (for
example your name) from keyboard and displaying it on the screen. For this purpose,
we can write the following code segment
char name [100] ;
cout << “Please enter your name : “;
cin >> name ;
In the cin statement, when the user presses the enter key the previous characters
entered, that is a string will be stored in the array name. Now we have a string in the
array name. We can display it with cout statement. To display the string, we have
stored in name. We can write as under
cout << name ;
This will display the string. Alternatively, we can use a loop to display the string. As
the string is an array of characters, we can display these characters one by one in a 'for
loop'. We can write a loop as under
for(i=0;1<100;i++)
cout<<name[1i];
Thus this loop will display the characters in the array one by one in each iteration.
First, it will display the character at name [0], followed by that at name [1] and so on.
Here we know that the string in the array is terminated by a null character and after
this null character, there are random values that may not be characters (some garbage
data) in the array. We don’t want to display the garbage data that is in the array after
this null character. While using the statement cout << name; the cout stream takes

114

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

the characters of the array name up to the null character and the remaining part of the
array is ignored. When we are displaying the characters one by one, it is necessary to
stop the displaying process at the end of a string (which means when null character is
reached). For this purpose, we may put a condition in the loop to terminate the loop
when the null character is reached. So we can use if statement in the loop to check the
null character. We can modify the above for loop so that it could terminate when null
character reaches in the array.

for(i=0;i<100;i++)
{ if(name[i]=="0")
break ;

cout <<name [1i];

}

Here a while loop can also be used instead of a 'for loop'.

Arrays Comparison

We can use this character-by-character manipulation of the array to compare the
characters of two arrays of the same size. Two arrays can be equal only when first of
all their sizes are equal. Afterwards, we compare the values of the two arrays with one
to one correspondence. If all the values in the first array are equal to the
corresponding values of the second array, then both the arrays will be equal. Suppose,
we have two integer arrays num1 and num2 of size 100 each and want to find
whether both arrays are equal. For this purpose, we will declare a flag and set it to
zero, that means that arrays are not equal this time. For this flag, we write int equals
=0 ;

To compare the values of the arrays one by one, we write a for loop i.e. for (i=0;i
<100 ; i ++). In the body of the for loop, we use an if statement to check the values.
In the if statement, we use the not equal operator (!=). The advantage of using not-
equal operator is that in case if the values at some position are not equal to each other,
then we need not to compare the remaining values. We terminate the loop here and
say that the arrays are not equal. If the values at a position are equal, we continue to
compare the next values. If all the values are found same, we set the flag equal to 1
and display the results that both the arrays are identical. The same criterion applies to
character arrays. The comparison of character arrays is very common. While finding a
name in a database, we will compare two character arrays (strings). The comparison
of two strings is so common in programming that C has a function in its library to
manipulate it. We will discuss it later in the lecture on string handling. For the time
being, we will write our own function to find the equality of two strings.

Following is the code of a program, which takes two arrays of 5 numbers from the
user and compares them for equality.

// This program takes two arrays of 5 integers from user
//displays them and after comparing them displays the result

115

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

include <iostream.h>

main ()
{
int numl [5], num?2 [5], 1, equals =0 ;
// input of 5 integers of first array
cout << “Please enter five integers for the first array” << endl ;
for(i=0;i<5;i++)
cin>>numl [i];

// input of 5 integers of 2nd array
cout << “Please enter five integers for the second array” << endl ;
for(i=0;1<5;i++)
cin>>num2 [i];

//display the elements of two arrays
cout << “An The values in the first array are : “;
for(i=0;i<5;i++)
cout <<‘“\t”<<numl [1];
cout << “An The values in the second array are : “;
for(i=0;1<5;i++)
cout << “At” <<num?2 [1];

/I compare the two arrays
for(i=0;i1<5;1++)
{ if(numl [i] !'=num2[i])

{
cout << “\n The arrays are not equal *;
equals=0; //setthe flag to false
break ;
}
equals=1; //set flag to true
}
if (equals)
cout << “\n Both arrays are equal” ;
i

Similarly, we can write a program that compares two strings (character arrays) of the
same size. While comparing strings, a point to remember is that C language is case-
sensitive. In C-language ‘A’ is not equal to ‘a’. Similarly, the string “AZMAT” is not
equal to the string “azmat” or “Azmat”.

A sample out-put of the program is given below.

Please enter five integers for the first array
1
3

116

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

5
7
9
Please enter five integers for the second array

AN DN B~ W=

3
O

The values in the first array are : 1 3 5
The values in the first array are : 1 3 4 5 6
The arrays are not equal

Sorting

We want to sort an array in ascending order. There may be many ways to sort an
array. Suppose we have an array of 100 numbers. To sort it in ascending order, we
start from the first number (number at zero index) and find the smallest number in the
array. Suppose, we find it at sixteenth position (index 15). If we assign this number
directly to the first position, the number already placed at first position will be over
written. But we want that number should exist in the array. For this purpose, we use a
technique called swapping. In this technique, we swap two values with each other. For
this purpose, we declare a variable and assign the value of first variable to this
variable before assigning the second number (i.e. to be swapped) to the first variable.
Then we assign the value of second variable to the first variable. Afterwards, the
number, which we have stored in a separate third variable (that is actually the value of
first variable) is assigned to the second variable. In arrays, the single element of an
array is treated as a single variable so we can swap two numbers of an array with each
other with this technique.

In our sorting process, we declare a variable X and assign it the number at the first
position. Then assign the number at sixteenth position to the first position. After this,
we assign the number in X (that is actually the number that was at first position in the
array) to the sixteenth position. In programming, this can be done in the following

fashion.

x =num [0] ; // assign number at first position to x

num [0] =num [15] ; // assign number at sixteenth position to first position
num [15]=x; // assign number in X to sixteenth position

We have the smallest number at the first position. Now we start reading the array
from second position (index 1) and find the smallest number. We swap this number
with the second position before starting from index 2. The same process can be
repeated later. We continue this process of finding smallest number and swapping it
till we reach the last number of the array. The sorting of array in this way is a brute
force and a very tedious work. The computer will do fine with small arrays. The large
arrays may slow it down.

117

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Searching

The same applies to the search algorithms. For finding out a particular number in an
array, we can use technique of linear search. In this technique, there may be as many
comparisons as numbers in the array. We make comparison of the number to be found
with each number in the array and find it out if it matches any number in the array.
However, we can perform even better by using a binary search algorithm.

Binary Search Algorithm

In binary search algorithm, the ‘divide and conquer’ strategy is applied. This
algorithm applies only to sorted arrays in ascending or descending order. Suppose that
we want to search a number in an ascending array. For this purpose, we divide the
array into two parts (say left and right). We compare the target value with the value at
middle location of the array. If it does not match, we see whether it is greater or less
than the middle value. If it is greater than the middle value, we discard the left part of
the array. Being an ascending array, the left part contains the smaller numbers than
the middle. Our target number is greater than the middle number. Therefore, it will be
in the right part of the array. Now we have a sub-array, which is the half of the actual
array (right side portion of main array). Now we divide this array into two parts and
check the target value. If target value is not found, we discard a portion of the array
according to the result whether target value is greater or less than the middle value. In
each iteration of testing the target value, we get an array that is half of the previous
array. Thus, we find the target value.

The binary search is more efficient than the linear search. In binary search, each
iteration reduces the search by a factor of two (as we reduce to half array in each
iteration). For example, if we have an array of 1000 elements, the linear search could
require 1000 iterations. The binary search would not require more than 10. If an array
has elements 2" then the maximum number of iterations required by binary search
will be n. If there are 1000 elements (i.e. 2'°, actually it will 1024), the number of
iterations would not be more than 10.

Functions and Arrays

In C language, the default mechanism of calling a function is ‘call by value’. When
we call a function, say fn, and pass it a parameter X (argument value) by writing
statement fn(x), the calling mechanism puts the value of x at some other place. Then
calls the function and gives this value to it. This means a copy of the value is sent to
the program. The original X remains untouched and unchanged at its place. The
function uses the passed value (that has placed at some other place) and manipulates it
in its own way. When the control goes back to the calling program, the value of
original X is found intact. This is the call by value mechanism.

Now let’s see what happens when we pass an array to a function. To pass an array to a
function, we will tell the function two things about the array i.e. the name of the array
and the size. The size of the array is necessary to pass to the function. As the array is
declared in the calling function, it is visible there. The calling function knows its size
but the function being called does not know the size of the array. So it is necessary to
pass the size of the array along with its name. Suppose we have declared a character
array in the program by the following statement:

118

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

char name[50] ;
We have a function (say reverse, you should write it as an exercise) that reverses the
array elements and displays them.

Firstly, we need to write the prototype of the function reverse. We say that this
function returns nothing so we use the keyword void in its return type. Secondly, we
have to write the parameters this function will get. We write these parameters with
their type.
Now the prototype of this function will be written as

void reverse (char [], int) ;
In the above statement, the brackets [] are necessary. These brackets indicate that an
array of type char will be passed to the function. If we skip these brackets and simply
write char, it will mean that a single character will be passed to the function. In
addition, the second parameter i.e. of type int, is of array's size. Note that in the
prototype of the function we have not written the names of the parameters. It is not
necessary to write the names of the parameters in function prototype. However, if we
write the names, it is not an error. The compiler will simply ignore these names.
Now we will define the function reverse. In the function's definition, we will use the
array and variable names. These names are local to this function so we can give these
variables a name other than the one used in declaration in the calling program. We
write this as below.

void reverse (char characters [], int arraySize)

{
}

Here, the body of the function is left over for an exercise.

// The body of the function.

Let’s say we have a character array name and a name ‘adnan’ is stored in it. We call
the reverse function by passing the array name to it. For this we write reverse (
name, 100);

In this function call, we are sending the name of the array to the function i.e. name
and the size of the array that is 100. When this call of the function is executed the
control goes to the function reverse. The statements in this function are executed
which reverses the array and displays it. After this, the control comes back to the main
function to the statement next to the function call statement. The return type of the
function is void so it does not return any thing. Now in the main, we write the
statement cout << name; What will be displayed by this statement? Whether it will be
the original name ‘adnan’ or something else. It will display the reversed array. In this
instance, we see that whatever the function reverse did to the array (that was passed
to it) is appearing in the calling function. It means that the original array in the calling
program has been changed. Here we change (reverse) the order of the characters of
array in the function and find that the characters of the array in the calling function are
reversed. This means that the called function has not a copy of the array but has the
original array itself. Whereas in case of simple variables, a called function uses a copy
of variables passed to it in a 'call by value' mechanism, which is by default in case of
simple variables. In arrays, the by default mechanism is ‘call by reference’. While
passing arrays to a function, we don’t need to use & and * operators, as we use for
variables in call by reference mechanism.

Thus if we pass an array to a function, the array itself is passed to the function. This is
due to the fact that when we declare an array, the name of the array has the address of

119

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

the memory location from where the array starts. In other words, it is the address of
the first element of the array. Thus the name of the array actually represents the
address of the first location of the array. Passing the name of array to a function
means the passing of the address of the array which is exactly the same as we do in
call by reference. So whatever the function does to the array, it is happening in the
same memory locations where the array originally resides. In this way, any
modifications that the function does to the contents of the array are taking place in the
contents of the original array too. This means that any change to the array made by
the function will be reflected in the calling program. Thus an important point to
remember is that whenever we pass simple variables to a function, the default
mechanism is call by value and whenever we pass an array to a function, the default
mechanism is call by reference. We know that when we talk about a single element of
an array like x [3] (which means the fourth element of the array x), it is treated as
simple variable. So if we pass a single element of an array to a function (let’s say like
fn (x[3]);), it is just like a simple variable whose copy is passed to the function (as
it is a call by value). The original value of the element in the array remains the same.
So be careful while passing arrays and a single element of array to functions. This can
be well understood from the following examples.

Example 1

Suppose we declare an array in the main program and pass this array to a function,
which populates it with values. After the function call, we display the elements of the
array and see that it contains the values that were given in the function call. This
demonstrates that the called function changes the original array passed to it.

Following is the code of the program.

//This program demonstrates that when an array is passed to a function then it is a call by
//reference and the changes made by the function effects the original array

include <iostream.h>
void getvalues(int [], int) ;

main ()
{
int num [10],1;
getvalues (num, 10) ; /function call, passing array num
//display the values of the array
cout << “An The array is populated with values \n” ;
for(i=0;i<10;1i++)
cout << " num[" <<i<<"] =" <<num[i]<<endl ;

}
void getvalues (int num[], int arraysize)
{ . .
mnti;
for (1=0 ;1 <arraysize ;i ++)
num[i] =1;
}

120

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Here in the function getvalues, we can get the values of the array from user by using
the cin statement.

Following is the output of the execution of the program.

The array is populated with values
num[0] =0
num[1l]=1
num[2] =2
num[3] =3
num[4] =4
num[5]=5
num[6] =6
num[7] =7
num[8] =8
num|[9] =9

Multidimensional Arrays

There may be many applications of arrays in daily life. In mathematics, there are
many applications of arrays. Let’s talk about vectors. A vector is a set of values which
have independent coordinates. There may be two-dimensional vector or three-
dimensional vector. There are dot and cross products of vectors besides many other
manipulations. We do all the manipulations using arrays. We manipulate the arrays
with loops. Then there is a mathematical structure matrix, which is in rows and
columns. These rows and columns are manipulated in two-dimensional arrays. To
work with rows and columns, C provides a structure i.e. a two-dimensional array. A
two dimensional array can be declared by putting two sets of brackets [] with the
name of array. The first bracket represents the number of rows while the second one
depicts the number of columns. So we can declare an array humbers of two rows and
three columns as follows.

int numbers [2] [3] ;
Using two-dimensional arrays, we can do the addition, multiplication and other
manipulations of matrices. A value in a two-dimensional array is accessed by using
the row number and column number. To put values in a two-dimensional array is
different from the one-dimensional array. In one-dimensional array, we use a single
'for loop' to populate the array while nested loops are used to populate the two-
dimensional array.
We can do addition, multiplication and other manipulations of two-dimensional
arrays. In C language, we can declare arrays of any number of dimensions (i.e. 1, 2, 3
... n). We declare a n-dimensional array by putting n pair of brackets [] after the
name of the array. So a three-dimensional array with values of dimensions 3, 5 and 7
respectively, will be declared as int num [3] [5] [7] ;

Example 2

121

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Let’s have a matrix (two-dimensional array) of two rows and three columns. We want
to fill it with values from the user and to display them in two rows and three columns.

Solution
To solve this problem, we use a two-dimensional array of two rows and three
columns. First, we will declare the array by writing

int matrix [2] [3];
We declare different variables in our program. To put the values in the array, we use
two nested for loops, which can be written as under.

for (row = 0 ; row < maxrows ; row ++)

{

for (col = 0 ; col < maxcols ; col ++)
cout << “Please enter a value for position [“ << row << “,” << col << ”]”;
cin >> matrix [row] [col] ;

}
h
The inner for loop totals the elements of the array one row at a time. It fills all the
columns of a row. The outer for loop increments the row after each iteration. In the
above code segment, the inner loop executes for each iteration of the outer loop. Thus,
when the outer loop starts with the value of row 0, the inner loop is executed for a
number of iterations equal to the number of columns i.e. 3 in our program. Thus the
first row is completed for the three columns with positions [0,0], [0,1] and [0,2]. Then
the outer loop increments the row variable to 1 and the inner loop is again executed
which completes the second row (i.e. the positions [1,0], [1,1] and [1,2]). All the

values of matrix having two rows and three columns are found.
Similarly, to display these values one by one, we again use nested loops.

Following is the code of the program.

//This program takes values from user to fill a two-dimensional array (matrix) having two
//rows and three columns. And then displays these values in row column format.

include <iostream.h>
main ()
{
int matrix [2] [3], row, col, maxrows = 2, maxcols =3 ;
// get values for the matrix
for (row = 0 ; row < maxrows ; row ++)
{
for (col = 0 ; col < maxcols ; col ++)
{
cout << “Please enter a value for position [<< row <<, ” << col <<] 7 ;
cin >> matrix [row] [col] ;
}
H
// Display the values of matrix
cout << “The values entered for the matrix are “ << endl ;
for (row = 0 ; row < maxrows ; row ++)

122

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

{

for (col =0 ; col < maxcols ; col ++)

{

cout << “At” << matrix [row] [col] ;

}

cout << endl ; //to start a new line for the next row

A sample output of the program is given below.

Please enter a value for position [0,0] 1
Please enter a value for position [0,1] 2
Please enter a value for position [0,2] 3
Please enter a value for position [1,0] 4
Please enter a value for position [1,1] 5
Please enter a value for position [1,2] 6

The values entered for the matrix are
1 2 3
4 5 6

Tips

A character array can be initialized using a string literal

Individual characters in a string stored in an array can be accessed directly

using array subscript

Arrays are passed to functions by reference

To pass an array to a function, the name of the array(without any brackets) is passed
along with its size

To receive an array, the function’s parameter list must specify that an array will be
received

Including variable names in function prototype is unnecessary. The compiler ignores
these names.

123

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 13

Reading Material

Deitel & Deitel — C++ How to Program Chapter 4
4.5,4.9

Summary

Array Manipulation
Real World Problem and Design Recipe
Exercises

Array Manipulation

We have already discussed what an array is. Identical or similar values are stored in
an array. The identical and similar terms here are related to the context of the problem
we try to solve. For example, height or age of an individual is a number. We don't
store height and age in one array as, in contextual terms, they are different things.
These can not be mixed in one array. So the height of individuals will be stored in one
array and the age in some other one. The idea behind the array is that whenever you
have similar data with multiple values, it is easier and more elegant to store them in
an array.

Let's try to find out, how to process arrays. What is the easiest way and what are the
issues related to this process.

As discussed in previous lectures, whenever we come across an array, we start
thinking in terms of loops. We pick up the first element of the array and process it.
Then the second array element is processed and so on. Naturally that falls into an
iterative structure.

Let's try to understand how to process a two dimensional array. The following
example can help us comprehend it effectively.

Suppose we have a two-dimensional array of numbers. While dealing with a two-
dimensional array of numbers, we should try to understand it in terms of a matrix.
Matrices in mathematics have rows and column and there is always a number at each
row and column intersection. Suppose we have a matrix of dimension 3 * 3 i.e. a
simple two-dimensional array. We want to input some numbers to that array first.
After reading these numbers, we want to output them in such a fashion that the last

124

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

row is printed first, followed by second last and so on till the first row that is printed
at the bottom. We don't want to change the column numbers with this output. It is not
a difficult task. As it is a two-dimensional array so there is a row subscript and a
column subscript. Following example will make the matter further clear.

Suppose we have the following array:

int a[3][3];

We will access elements of it as: a[row index][column index] e.g. a[1][2]. This is a
single element at row 1 and column 2 of array a.

The flow chart to read in numbers into the two-dimensional array is given on the next
page. See the code snippet below:

const int maxRows = 3;
const int maxCols = 3;
int row, col;

int afmaxRows][maxCols];

// To input numbers in the array
for (row = 0; row < maxRows; row ++)

{
for(col=0; col < maxCols; col ++)
{
cout << "\n" << "Enter " << row <<"," << col << "element: ";
cin >> a[row][col];
§
§

Now let's see what this nested loop structure is doing. The outer loop takes the first
row i.e. row 0, then instantly inner loop begins which reads col 0, 1 and 2 elements of
the row 0 into the array. Afterwards, control goes back to the outer loop. The row
counter is incremented and becomes 1 i.e. row 1 or second row is taken for
processing. Again, the inner loop reads all the elements of second row into the array.
This process goes on until all the elements for three rows and three columns array are
read and stored in the array called a.

125

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

() Flow Chart to Input Two-dimensional Array

A 4

maxRows =n
maxCols =n

a[maxRows][maxCol
s]
\ 4 .
Exit
. oW < No
while 'y > maxRows >
Yes
col=0
v)
Exit
| - No
. CcO
while A ” maxCols I
v
row++
Read
a[row][col]
< A 4
v
< col++
v

D

126

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Now we want to reverse the rows of the matrix (flip the matrix) and display it. There
are several ways of doing it. You might have already started thinking of how can we
flip the matrix. We may declare a new matrix and copy the array elements into this
matrix while flipping the elements at the same time. But we should keep in mind the
problem statement. The problem statement is 'to read the array elements and then
simply display it in the reverse row order'. It does not state anything about storing the
elements inside the memory.

Please see the flow chart to display the flipped matrix on the next page.

Normally, we start our loops from zero and keep incrementing the counter until a
certain bigger value is attained. But this is not mandatory. We can start from a bigger
number and keep on decrementing the counter every time. To display the rows in
reverse order, we can start from the last row and go to the first row by decrementing
the row counter every time. It is very simple programming trick. However, we have to
take care of the value of the index.

We can write our code inside nested loops for flipping the elements as under-

// To flip the elements of the matrix
cout << '\n' << "The flipped matrix is: " <<"\n';

for (row = maxRows-1; row >= 0; row --)

{
for (col = 0; col < maxCols; col ++)
{
cout << a [row][col] << '\t';
§
cout << "\n";
h

Note the \t' character in the above code. It is a tab character that displays tab (spaces)
at the cursor position on the screen. Similary "\n' as told in previous lectures is newline
character which takes the cursor to the new line.

It is better to print the original matrix elements before showing the flipped matrix
elements so that you can really see whether your function has flipped the matrix or
not.

To run this function for the big-sized arrays, adjust the values of the maxRows and
maxCols constants as the rest of the program remains the same..

Whenever we work with arrays, normally the loops are there. If the array is single

dimensional, there will be one loop. A two-dimensional arrays is going to have pair of
nested loops and so on.

127

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

@ Flow Chart to Display Array Elements in the Reverse
v Row Order

maxRows =n
maxCols =n
almaxRows][maxCols]

A 4

Input the array ‘a’
elements

A 4

row = maxRows - 1

Exit
. . No R
while y > row >=0 >
Yes
col=0
v No
Exit
) _ col < S
while 7y > maxCols 4
v Yes
roOwW--)
Print
a[row][col]
< v
v

128

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

/* Array Manipulation - Flipping of a Matrix (reversing the row order): This program reads a

matrix (two-dimensional array), displays its contents and also displays the flipped matrix
*/

#include <iostream.h>

const int maxRows = 3;
const int maxCols = 3;

void readMatrix(int arr[[[maxCols]);
void displayMatrix(int a[][maxCols]);
void displayFlippedMatrix(int a[][maxCols]);

void main(void)

{

int afmaxRows][maxCols];

// Read the matrix elements into the array
readMatrix(a);

// Display the original matrix
cout << "\n\n" << "The original matrix is: " <<'\n';
displayMatrix(a);

// Display the flipped matrix
cout << "\n\n" << "The flipped matrix is: " <<'\n';
displayFlippedMatrix(a);

void readMatrix(int arr[][maxCols])

{

int row, col;

for (row = 0; row < maxRows; row ++)

{
for(col=0; col < maxCols; col ++)
{
cout << "\n" << "Enter " << row << ", " << col << " element: ";
cin >> arr[row][col];
cout <<"\n'";

}

void displayMatrix(int a[][maxCols])

129

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

{

int row, col;

for (row = 0; row < maxRows; row ++)

{
for(col = 0; col < maxCols; col ++)
{ cout << a[row][col] <<"\t';
(}:out <<"n";
}
}
void displayFlippedMatrix(int a[][maxCols])
{

int row, col;

for (row = maxRows - 1; row >= 0; row --)

{
for(col = 0; col < maxCols; col ++)
{ cout << a[row][col] << "\t';
(};out <<'\n';
}
;

130

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Till now, we have only solved very simple problems to understand processing of
arrays. You can test your capability of doing so through an exercise by inputting
(reading in) a matrix and print it in reverse column order. Here, the rows remain the
same.

Let's move on to slightly more practical problem. Before going ahead, we need to
understand the concept of Transpose of a Matrix. Transpose of a matrix means that
when we interchange rows and columns, the first row becomes the first column,
second row becomes the second column and so on. Mathematically, the transpose can
be written as:

A(i,j) should be replaced with A(j,i) where i and j are row and column indexes.

For this purpose, we take a square matrix (a matrix with equal number of rows and
columns) to transpose. Here, if you are thinking in terms of loops, you are absolutely
right. Let's say the array is 'a', with dimension as ‘arraySize’. Please see the flow chart
for this problem on the next page.

We write a pair of nested loops:

int temp;
for (row = 0; row < arraySize; row ++)
{
for (col = 0; col < arraySize; col ++)
{
// Interchange the values here using the swapping mechanism
temp = a[row][col]; // Save the original value in the temp variable
a[row][col] = a[col][row];
a[col][row] =temp; //Take out the original value
h

}

While interchanging values, we should be careful. We can't simply write: a[row][col]
= a[col][row]. We will lose information this way. We need a swapping mechanism
here to interchange the elements properly.

We have yet to do more to get the problem solved. You are strongly recommended to
write this program and run it to see the problem area.

It is something interesting that we are interchanging the value of first row, first
column with itself, which means nothing. When we are doing transpose of a matrix,
the diagonal elements will remain unchanged as the row and column indexes are the
same. Then we interchange the row 0, col 1 element with row 1, col 0. The row 0, col
2 element with row 2, col 0. What will happen when we process second row i.e. row
1. The row 1, col 0 will be swapped with row 0, col 1 but these are the same elements,
already swapped in the above iteration. Therefore, this is the problem area that
elements swapped once are swapped again to their original positions if the loops are
run in all the rows and columns. As a result, the resultant matrix remains unchanged.

131

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

@ Flow Chart of Transpose of a Square Matrix

A 4

arraySize =n
a[arraySize][arraySize]

v
Input the array ‘a’
elements
v
row =0
v
No .
while 'y > row < » Exit
arraySize
Yes
col = row
A 4
No
. . < X1
while A > col . Exit
arraySize
v Yes
FOW 4+ temp = a[row][col]
a[row][col] = a[col][row]
a[col][row] = temp
< A 4
v

f col++

132

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Then what is the solution of the problem?

Now draw a matrix on the paper and cut it diagonally. We will get two triangles i.e.
upper triangle and lower triangle. We only need to interchange one triangle with the
other and not the whole of the matrix. Now the question is, how we can determine the
limits of triangles? By looking at a triangle, let's say upper triangle, we can see that all
the rows are being processed as the triangle crosses every row. Similarly all the
columns are being processed because the first row in the upper triangle covers all the
columns. The only difference is that we will not process the beginning element before
starting each row. That means that we will not start the inner loop (columns loop)
with index 0. Rather we start with the current row number. Therefore, for first row i.e.
row 0, we will process from row 0, col 0 to row 0, col arraySize-1. For second row i.e.
row 1, we will process from row 1, col 1 to row 1, col arraySize-1 while in case of
third row i.e. row 2, we will go from row 2, col 2 to row 2 , col arraySize-1. If you
structure the loops in this manner, the correct behavior of matrix transposition will be
found.

The full source code to solve this problem by taking the upper triangle and swapping
it with the lower triangle is given below:

/* Array Manipulation - Transpose of a Square Matrix: This program reads a matrix (two-
dimensional array), displays its contents, transposes it and then displays the transposed matrix.
*/

#include <iostream.h>

const int arraySize = 3;

void readMatrix(int arr|][arraySize]);
void displayMatrix(int a[][arraySize]);

void transposeMatrix(int a[|[arraySize]);

void main(void)

{
int a[arraySize][arraySize];

// Read the matrix elements into the array
readMatrix(a);

// Display the matrix
cout << "\n\n" << "The original matrix is: " <<'\n';
displayMatrix(a);

//Transpose the matrix

transposeMatrix(a);

//Display the transposed matrix
cout << "\n\n" << "The transposed matrix is: " <<"\n';

133

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

displayMatrix(a);

void readMatrix(int arr[][arraySize])
{
int row, col;

for (row = 0; row < arraySize; row ++)

for(col=0; col < arraySize; col ++)

cout << "\n" << "Enter " << row << ", " << col << " element: ";
cin >> arr[row][col];
cout << '\n';

h
b

void displayMatrix(int a[][arraySize])
{

int row, col;

for (row = 0; row < arraySize; row ++)

{
for(col = 0; col < arraySize; col ++)
{
cout << a[row][col] <<'\t';
}
cout << '\n';
H
H
void transposeMatrix(int a[J[arraySize])
{
int row, col;
int temp;
for (row = 0; row < arraySize; row ++)
{

for (col = row; col < arraySize; col ++)
/* Interchange the values here using the swapping mechanism */

temp = a[row][col]; // Save the original value in the temp variable
a[row][col] = a[col][row];

134

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

a[col][row] = temp; //Take out the original value

}

135

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Real Word Problem and Design Recipe

We will take one problem that is not very complex but will follow it rigorously for all
steps of design recipe.

In practical life, the employees get salaries and pay taxes honestly. Sometimes, the
process of drawing salaries and payment of taxes may lead to some interesting
situation. Suppose, a person draws salary of Rs. 10,000 per month. A certain
percentage of tax is charged on that amount, which is deducted every month. But if
the salary of the person is more than Rs. 10,000 per month, then the tax rate is
different. Similarly if a person is getting Rs. 20,000 per month, he/she would be
charged more under a different tax rate slab. The interesting situation develops if there
is an anomaly in the tax rates i.e. a person who is getting higher salary takes home
lesser money as compared to the other person with less gross salary.

To further elaborate it, we suppose that there is company 'C' where 100 or less than
100 persons are employed. The salaries of the employees and their tax rates are
known to us. We are required to list those unlucky persons, who are getting lesser
take-home salary (net salary) than their colleagues with less gross salaries but lower
tax rates.

As per our design recipe, let's see what steps we need to follow.

A design recipe asks us to analyze the problem first and write it in a precise statement
that what actual the problem is. Also by formulating the precise statement, we need to
provide some examples to illustrate. At the design phase, we try to break up the
problem into functional units and resort to a detailed designing. Then we move to
implementation stage where the pseudo code is translated into the computer language
and then the program is compiled and run to ensure that it works as expected.

At the first step i.e Analysis, we try to have a precise problem statement. Once it is
established, we try to determine what are the inputs of this program. What data should
be provided to this program. We will also try to determine if there are some constants
required for calculation or manipulation. We list down all the constants. Then we split
it up into functions and modules.

Let's try to make a precise statement of the above problem. The precise problem
statement is:

"Given tax brackets and given employees gross salaries, determine those employees
who actually get less take-home salary than others with lower initial income."

Suppose the tax deduction law states that:

No tax will be deducted for persons with salaries ranging from Rs. 0 to Rs. 5,000 per
month or in other words tax deduction rate is 0%.

5% tax deduction will be made from the persons with salaries ranging from Rs. 5,001
to Rs. 10,000 per month.

136

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

For persons with salaries ranging from Rs. 10,001 to Rs. 20,000, a 10% tax deduction
rate would be employed.

For persons with salaries ranging from Rs. 20,001 and higher, 15% tax deduction
would be made.

Taking these rules, let's formulate the problem.

Consider the example of a person with a salary of Rs. 10,000 per month. As per rules,
he/she would be charged by 5% of tax rate. 5% of 10,000 is 500 rupees. So the take
home salary of the person is Rs. 9500.

Now the unfortunate individual, whose gross salary is Rs, 10,001 falls in the next
bracket of tax rate of 10%. He will have to pay tax worth Rs 1000.1. That means the
take home salary of this person is Rs. 9000.9, which is lesser than the person with
lower gross salary of Rs. 10,000. This is the problem.

We can calculate the net salaries of all individuals, determining all the unlucky ones.

Now we will carry out the analysis of the requirements. For looking into the
requirements, we have to see, how to input the salaries of these people.

As stated in the problem, the number of employees of the company 'C is at most 100.
So we know the size of the array. But for some other company, suppose company 'D',
we don't know the number of employees. Therefore, it makes sense to take input from
the user for the number of employees. Once we have determined the number of
employees, we will input the gross salary of each of employees. But where will we
store the gross salary? For this purpose, we will use the two-dimensional array. In the
first column, we will store the gross salary. Our program after calculating the net
salary for each employee will write (store) it in the second column of the array.

At the next stage, we will find out the unlucky individuals. This will be based on the
analysis of algorithms. At the higher level design, we assume that there would be a
way to determine the unlucky individuals. Finally, a list of unlucky employees would
be prepared. For that, we will simply output the employee numbers.

We want to workout the space and storage requirements of this problem. As earlier
mentioned, we will use a two dimensional array to store the gross and net salaries and
output the list of unlucky employees. That means we need a storage to store that list.
For this, we will take a single dimensional array of 'int' type. We will initialize the
array with zero. '0' means the individual is lucky. Therefore, by default, all
individuals are lucky. Whenever, we will find an unlucky individual by using the two
dimensional array, we will write '1' in single dimensional array for that individual. So
this is the storage requirement of the program.

Afterwards, we will discuss the interface issues. The interface guidelines are the same
i.e. be polite and try to explain what is required from the user. When the program runs
the user will know what is required from him/her. So there would be prompts in the
program where the user will key in the data. All the input data will be coming from
keyboard and displayed on the screen. This is a rudimentary interface analysis.

We have distributed the program into four major parts:
Input

Salary calculation

Identification of unlucky individuals and

Output

137

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Let's start the coding or detailed design phase of this program.
In a true tradition, all the four parts of the program should be function calls. The main
program is very simple as it contains functions:

Get input

Calculate salary

Locate unlucky individuals
Display output

The arrays will be declared inside the main function. As we already know the
maximum number of employees is 100, so we can declare it as a constant:

const int arraySize=100;
double sal[arraySize][2];
int lucky[arraySize] = {0}; //Notice the array initialization

Once this is done inside main, we want to run the input function to read the salaries of
the employees. Now, inside the input data function, we will get value for number of
employees from the user. We have already set the upper limit as 100 but the actual
number of employees will be entered by the user of the program. If we take that input
inside the input data function, what can be the problem. Well, there is no problem in
taking the input within that function but the problem is the declaration of the variable
'numEmps', which contains the current number of employees. If the 'numEmps'
variable is declared inside the input data function, it will be local to that function.
After the input data function returns, the mumEmps' will no longer be there because it
was local to input data function and not visible in any other function. So it is better to
declare the variables inside the main function. But the problem arises: how the input
data function will get information about it, if we declare it inside main function. We
will have to send it to input data function, either through call by reference or we can
declare mumEmp' as a global variable so that it is visible in all the functions. Global
variables are useful but tricky. They exist when we need them but they exist even
when we don’t need them. Therefore, it might be good to declare this variable
'numEmps' inside main function and then pass by reference to the input data function.

While passing one-dimensional array to the function, we write in the function
prototype as:

f(int a[]);

However, when we pass two-dimensional array to a function, we must specify the
number of columns because this depends on how a computer stores the two
dimensional array in the memory. The computer stores the rows in a contiguous (row
after row) fashion inside memory. Therefore , in order to locate where the first row
has finished or the second row starts, it should know the number of columns.
Whenever, we pass two-dimensional array to a function, the number of columns
inside that array should be specified. We will pass two dimensional array 'sal' to input
data function getInput() in the same manner. We also want to pass 'numEmps'

138

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

variable by reference using the '&' sign to this function. This will ensure that whatever
the user inputs inside this function getlnput(), will be available in the main function.
There is another way that we get input from the user inside the main function and then
pass this by value to the getInput() function. We are going to do the same in our
function.

getInput(double sal[][2], int numEmps);

{
for (int 1 = 0; i < numEmps; i ++) //Note that this numEmps is local to this
function
{
cin >> sal[i][0]; /I Get the gross salary for each employee
}
}

To calculate tax, we will write a function. This function will be passed in similar
parameters as getlnput function to calculate the taxes for all the employees. There is
one important point to reiterate here i.e. by default, arrays are passed by reference.
That means if getInput() function puts some values in the 'sal' array, these are written
in the 'sal' array and are available inside main function. The 'numEmps' variable on
the other hand is passed by value to getInput() function. Therefore, any changes done
by gelnput() function will not affect the original value of 'numEmps' inside the main
function.

We will continue with this problem to determine algorithm that what is the precise
sequence of steps to determine the unlucky employees. For this, we need to analyze a
bit more because it contains a complex 'if' condition. The function to calculate net
salary also has interesting issues which will be explained in the next lecture.

Here is the source code of the first cut solution for real world problem:

* This is the first cut of the program to solve the real world problem of
'Unlucky Employees' */

#include <iostream.h>

void getlnput(double sal[][2], int numEmps);

void calcNetSal(double sal[][2], int numEmps);

void findUnluckies(double sal[][2], int numEmps, int lucky[]);

void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int empNbr);
void printUnluckies(int lucky[], int numEmps);

void main(void)

{
const int arraySize=100;
double sal[arraySize][2];
int lucky[arraySize] = {0};
int numEmps;

/* Read the actual number of employees in the company */

139

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

cout << "\n Please enter the total number of employees in your company: ";
cin >> numEmps;
cout << '\n';

/* Read the gross salaries of the employees into the array 'sal' */
getlnput(sal, numEmps);

/* Calculate net salaries of the employees and store them in the array */
cout << "\n\n Calculating the net salaries ... ";
calcNetSal(sal, numEmps);

/* Find the unlucky employees */
cout << "\n\n Locating the unlucky employees ... ";
findUnluckies(sal, numEmps, lucky);

/* Print the unlucky employee numbers */
cout << "\n\n Printing the unlucky employees ... ";
printUnluckies(lucky, numEmps);

H
void getlnput(double sal[][2], int numEmps)
{
for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
cout << "\n Please enter the gross salary for employee no." <<i<<":";
cin >> sal[i][0]; // Store the gross salary for each employee
}
}
void calcNetSal(double sal[][2], int numEmps)
{
for (int 1 = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
if(sal[i][0] >= 0 && sal[i][0] <= 5000)
{
/* There is no tax deduction */
sal[i][1] = sal[i][0];
}
else if(sal[i][0] >= 5001 && sal[i][0] <= 10000)
{

/* Tax deduction is 5% */
sal[i][1] = sal[i][0] - (.05 * sal[i][0]);

}
else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)

/* Tax deduction is 10% */
sal[i][1] = sal[i][0] - (.10 * sal[i][0]);

}
else if (sal[i][0] >= 20001)

140

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

{

/* Tax deduction is 15% */
sal[i][1] = sal[i][0] - (.15 * sal[i][0]);
j

else
{
/* No need to do anything here */
h
H
h

void findUnluckies(double sal[][2], int numEmps, int lucky[])
{
for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function
{
if(sal[i][0] >= 0 && sal[i][0] <= 5000)
{

/* No need to check for unlucky employees for this tax bracket */
J
else if(sal[i][0] >= 5001 && sal[i][0] <= 10000)
{

}
else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)

{

}
else if (sal[i][0] >=20001)
{
markIfUnlucky(sal, numEmps, lucky, 20001, 1);

}
b

markIfUnlucky(sal, numEmps, lucky, 5001, 1);

markIfUnlucky(sal, numEmps, lucky, 10001, 1);

}

void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int empNbr)
{
for (int i = 0; i < numEmps; i++)
{
/*
See the if the condition below, it will mark the employee
unlucky even if an employee in the higher tax bracket is getting
the same amount of net salary as that of a person in the lower
tax bracket

*/
if (sal[i][0] < upperBound && sal[i][1] >= sal[empNbr][1])
{
lucky[empNbr] = 1; //Employee marked as unlucky
break;
!

141

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

b
b

void printUnluckies(int lucky[], int numEmps)

{
for (int 1 = 0; 1 < numEmps; i++)
{
if(lucky[i] == 1)
{

b
b

cout <<"\n Employee No.: " <<1i;

}

Exercises

Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a
program to input (read in) a matrix and print it in reverse column order, the rows
remain the same.

Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a
program to transpose the matrix, take lower triangle and swap it with upper triangle.

An Identity matrix is a square matrix whose diagonal elements are 'l' and remaining

elements are '0'. Suppose you are given a square matrix of size n * n. Write a program
to determine if this is an Identity matrix.

142

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 14

Reading Material

Deitel & Deitel - C++ How to Program

Chapter 5
5.1, 5.2, 53, 54,
5.5,5.6
Summary
1) Pointers
2) Declaration of Pointers

3) Example 1 (Bubble Sort)
4) Pointers and Call By Reference
5) Example 2

Pointers

In the earlier lectures, we had briefly referred to the concept of pointers.
Let’'s see what a pointer is and how it can be useful.

Pointers are a special type of variables in which a memory address is
stored. They contain a memory address, not the value of the variable.
The concept of the pointers can be well understood from the following
example.

Suppose, we request someone to take a parcel to the house of a
person, named Ahmad. Here the point of reference is a name.
However, if we specifically tell him the number of house and the street
number. Then this is a reference by the address of the house. It means
that we have two ways to locate an address. To understand further the
concept of memory address, the example of the computers can be
helpful. In computers, one can have a name x which is associated with
a memory location. We can have the memory address of x, say 6000 or
whatever it is. So the simple variable names are those of specific
locations in memory. But in terms of addresses, these are the
addresses of those memory locations. We can use these names and
addresses interchangeably to refer to memory locations. When a value
Is referred by a normal variable is known as direct reference. While the

143

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

value referred through the use of memory address may be known as
indirect reference.

To understand further the terms of direct reference and indirect
reference, suppose that we want to assign a value 10 to x. This can be
done by writing x = 10. In this statement, the value 10 will be
assigned to the memory location which has label (name) x. The second
way to assign a value to a memory location is with reference to the
address of that memory location. In other words, ‘assign a value to the
memory location whose address is contained in the variable (that is a
pointer) on right hand side of the assignment operator’. Operators are
used to refer the address of memory locations and to refer the values at
those addresses.

Following figure shows directly and indirectly referencing a variable.

x directly references xptr indirectly references a variable
whose value is 10 xptr X
a variable whose value is 10 EI 10
X
10

Now we will try to comprehend the concept with another daily life
example. Suppose, hundreds of people are sitting in an auditorium. The
host is going to announce a prize for a person amongst the audience.
There are two methods to call the prizewinner to dais. The host can
either call the name of the person or the number of the seat. These are
equivalent to ‘call by name’ and ‘call by address’ methods. In both
cases, the prize will be delivered to a person whether he is called by
name or referred by address (seat number in this case). In
programming, pointers are used to refer by the addresses.

Declaration of Pointers

Pointers work by pointing to a particular data type. We can have pointer
to an integer, pointer to a double, pointer to a character and so on. It

144

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

means that a type is associated to a pointer. Pointer, being a variable,
needs a name. The rules for naming a pointer are the same as for the
simple variable names. The pointers are declared in a specific way. The
syntax of declaring a pointer is:

data type *name ;

Here ‘name’ is the name of the pointer and data type is the type of the
data to which the pointer (name) points. There is no space between
asterisk (*) and the name. Each variable being declared as a pointer
must be preceded by *. The * is associated with the name of the
variable, not with the data type. To associate the * (asterisk) with data
type (like int*) may confuse the declaration statement. Suppose, we
want to declare a pointer to an integer. We will write as:

int *myptr;

Here myptr is the name of the pointer. The easiest way to understand
the pointer declaration line is the reading the statement from right to left.
For the above statement, we say that myptr is a pointer to an integer
(int). Similarly for the declaration double *x , x is a pointer to a data of
type double. The declaration of char *c shows that c is a pointer to a
data of type character. The declaration of multiple pointers requires the
use of * with each variable name. This is evident from the following
example which declares three pointers.

int *ptrl, *ptr2, *ptr3 ;

Moreover, we can mix the pointers declaration with simple variables on
one line.

int *ptr, x, a [10] ;

In this declaration ptr is a pointer to data of type int, x is a simple
variable of type int and a is an array of integers.

Whenever used, these pointers hold memory addresses.
145

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Now we will try to understand what address a pointer holds. Suppose,
we declare a pointer variable ptr and a variable x and assign a value 10
to it. We write this as under.

int *ptr ;
int X ;

Xx=10;

Here x is a name of a memory location where a value 10 is stored. We
want to store the address of this memory location (which is labeled as x)
into the pointer ptr. To get the address of x, we use address operator
i.e. & (itis & not &&, the && is logical AND). To assign the address of x
to pointer ptr, we write

ptr = &x;

This statement assigns the memory address of the location x to the
pointer ptr. The following figure shows a schematic representation of
memory after the preceding assignment is executed.

[]

The pointers contain whole numbers as they contain memory
addresses. An address can be represented only in whole numbers.
Therefore, a pointer is a whole number, sufficient enough, to hold any
memory address of the computer. The pointers have no specific data

type.

146

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

In the above assignment statement, we have a pointer to a memory
location. Now, it can be ascertained what value is stored in that memory
location. To get the value stored at a memory address, we use the
dereferencing operator, represented by asterisk (*). The * is used with
the name of the pointer to get the value stored at that address. To get
the value stored at the memory address ptr, we write *ptr which is read
as the value of whatever ptr points to. Thus the line z = *ptr; means, z
has the value of whatever ptr points to.

The following example can explain the representation of the pointer in
memory. Assume that variable x is stored at location 400000 and
pointer variable ptr is stored at location 500000.

ptr
X

400000 10

Address: 500000
400000

We can use this operator (*) to get the value and can do any arithmetic
operation with it. The following statements make it further clear.

Z="*ptr+2;
Z="*ptr*2,;
Z="ptr—-2,;

Here *ptr gives the value stored at memory address where the pointer
ptr points to.

We know that it is a good programming practice to initialize a variable
when we declare it. This will ensure that there will be no unknown value

in the variable at some later stage.

147

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Similarly, we should assign an initial value to a pointer after declaring it.
Taking the address of a variable and assigning it to the pointer is one
way of initializing a pointer. A pointer can be initialized by assigning
either value 0 or the word NULL. The NULL is a global variable declared
in many header files that we include at the start of the program. The
pointer initialized by NULL as ptr = NULL; is called null pointer which
points to nothing. Similarly, when we assign a zero to a pointer like ptr =
0; it means that the pointer is pointing to nothing at the moment. Here
zero is not considered as a valid address for a memory location.
However, at some later stage, we use the pointer in an assignment
statement either on left hand side to assign a value to it or as a part of
an expression on right hand side. The pointer must have a valid
memory address where a value should have stored. We get the address
of a variable by putting & operator before the name of the variable and
assign it to a pointer as in the following statement ptr = &x;

We know that in C language, the default mechanism of function call is
‘call by value’. Sometimes we want to make a call by reference. In call
by reference, we pass the address of the variable to a function by using
& operator.

One of the major usages of pointers is to simulate call by reference
while using it with function calls. In the calling function, we pass the
address of the variable to a function being called by using & operator.
We write a function call as fn(&x) where &x indicates that the address
of variable x is being passed to the function fn. In the receiving function,
the function must know that the parameter passed to it is an address.
So the declaration of the receiving function will be as

void fn (int *num)

{

statement(s) ;

The int *num in the function declaration indicates that the receiving
variable is a pointer to a memory address. In the body of the function,
we will use this variable as:

148

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

cin >> *num ;

This statement describes that the value entered through the keyboard
(as cin is used) will be stored at the memory address wherever the
pointer num is pointing to.

While using value associated with the pointer, we write *num and &num
in case of using the address. This thing can be summarized as follows

““num means the value of whatever the num points to and

&num means the address of the variable num”

The pointers can appear on the left hand side exactly like ordinary
variables. In this case, you would have an address statement on the
right hand side. The address (operator (&)) cannot be of an expression.
Rather, it is always of a simple variable. We cannot write &(x+y). The
address (&) would be either of x (&x) or of y (&y). The address operator
(&) operates on a simple variable. Precisely speaking, whenever we
have a pointer on left hand side, the right hand side should have an
address. If a pointer appears on the right hand side of an expression, it
can participate in any expression. In this case, we use the operator *
with the pointer name and get the value stored where the pointer points
to. Obviously we can do any calculation with this value (i.e. it can be
used in any expression).

Example (Bubble Sort)

You might be knowing the technique of bubble sorting. Its application
helps us compare two values each time and interchange the larger and
smaller values. In this way, we sort the arrays. To interchange the
position of larger and smaller value, the technique of swapping is used.
Swapping is very common in programming. While using this technique,
we put value of one variable in a temporary location to preserve it and
assign the value of second variable to the first. Then the temporary
value is assigned to the second variable.

Suppose, we want to swap the values of two variables x and y. For this
purpose, a third variable temp is used in the following fashion.

149

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

temp =X ;
X=VY;
y =temp ;

We can write the above three statements in a program to swap the
value of x and y. Now the question arises, can we call a function swap
(x, y) which has a code to swap the values of x and y. We call the
function swap by passing x and y. When the control comes back to the
calling function, the values of x and y are the same as before. These
are not swapped. This is mainly due to the fact that passing value to
function swap is a call by value. It does not change the values in the
calling function. The swap function receives a copy of the values and
interchanges the values in that copy. The original values remain the
same.

To interchange two values in a function, we make a call by reference to
the function. Here comes the use of pointers. To write the swap function
to interchange two values always use pointers in the function to get the
swapped values in the calling function. The code fragment in our main
program will be written as follows:

yptr = &y ; /[address of y is stored in
yptr

Xptr = &X ; /I address of x is stored in
Xptr

swap (yptr, xptr) ; // addresses are passed

The receiving function must know that addresses are being passed to it.
So the declaration of swap function will be:

swap (int *yptr, int *xptr)

150

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

This use of pointers implements a call by reference. We can use this
technique in bubble sort. The swap function can switch the elements of
the array by using pointers and * operator.

The code of the program that sorts an array by bubble sort and use the
swap function to interchange the elements of the array is given here.

I* This program uses bubble sorting to sort a given array.
* We use swap function to interchange the values by using pointers

*/

#include <iostream.h>

#include <stdlib.h>

/* Prototye of function swap used to swap two values */

void swap(int *, int *) ;

main()

{
intx [] = {1,3,5,7,9,2,4,6,8,10}:

inti, j, tmp, swaps;

for(i=0;i<10;i++)

{
swaps = 0;
for(j =0;)< 10;j++)
{

151

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

if (x[j] >x[j+1]) // compare two values and interchange if
needed

{
swaps++;

swap(&x[j]l,&x[j+1]);

}

/[display the array’s elements after each comparison
for (j=0; j<10; j++)
cout << x[j] <<\t
cout << endl;
if (swaps == 0)

break;

void swap(int *x, int *y) //function using pointers to interchange the values

{
int tmp;
if("x > *y)
{
tmp = *x;
X=Y,
*y = tmp;
}
}

152

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Following is the output of the program of bubble sort.

1 3 5 7 2 4 6 8
9 10

1 3 5 2 4 6 7 8
9 10

1 3 2 4 5 6 7 8
9 10

1 2 3 4 5 6 7 8
9 10

1 2 3 4 5 6 7 8
9 10

Pointers and Call By Reference

Suppose, we have a function that performs a specific task again and
again but with different variables each time. One way to do this is to
pass a different variable to the function, each time, by reference. We
can also write the function with pointers. In this case, before calling the
function, put the address of the simple variable in the pointer variable
and pass it to the function. This is a call by reference. Thus the same
pointer variable can be used each time by assigning it the address of a
different variable.

The mechanism behind calling a function is that, when we call a
function we pass it some variables. The values of these variables are
used with in the function. In call by value mechanism, the values of
these variables are written somewhere else in the memory. That means
a copy of these values is made. Then control goes to the called function
and this copy of values is used in the function. If we have to pass a
huge number of values to a function, it is not advisable to copy these
huge numbers of values. In such cases, it is better to pass the reference

153

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

of the variables, which is a call by reference phenomenon. We perform
a similar function in case of an array, where we can pass, say, 100
values (size of the array) to the called function, by only passing the
name of the array. When we pass an array to a function, actually the
starting address of the array is passed to the function. Thus the default
calling mechanism to call a function while passing an array to it is a call
by reference.

The problem with call by reference is that ‘we are letting the function to
change the values at their actual storage place in the memory’.
Sometimes, we want to do this according to the requirement of the logic
of the program. At some other occasion, we may pass the addresses for
efficiency while not affecting the values at that addresses. The use of
const can be helpful in overcoming this problem..

Let's look at the use of const. Consider the following line of declaration:

int *const myptr = &x ;

The right hand side of this assignment statement could be read as,
myptr is a constant pointer to an integer. Whenever we use the keyword
const with a variable, the value of that variable becomes constant and
no other value can be assigned to it later on. We know that when we
declare a constant variable like const int x ; it is necessary to assign a
value to x and we write const int x = 10 . After this, we cannot assign
some other value to x. The value of x can not be changed as it is
declared as a constant.

Now consider the previous statement

int *const myptr = &x ;

Here we declare a constant pointer to an integer. Being a constant
pointer, it should immediately point to something. Therefore, we assign
this pointer an address of a variable x at the time of declaration. Now
this pointer cannot be changed. The pointer myptr will hold the address
of variable x throughout the program. This way, it becomes just another
name for the variable x. The use of constant pointers is not much
useful.

154

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The use of keyword const in declaration statement is a little tricky. The
statement

int *const myptr = &x ;

means myptr is a constant pointer to an integer. But if we change the
place of const in this statement and write

const int *myptr = &x ;

This statement describes that myptr is a pointer to a constant integer.
This means that the value of pointer myptr can be changed but the
value stored at that location cannot be changed. This declaration is
useful. It has a common use in call by reference mechanism. When we
want to pass the arguments to a function by reference without changing
the values stored at that addresses. Then we use this construct of
declaration (i.e. const int *myptr) in the called function declaration. We
write the declaration of the function like

fn (const int *myptr)

{

This declaration informs the function that the receiving value is a
constant integer. The function cannot change this value. Thus we can
use the address of that value for manipulations but cannot change the
value stored at that location.

Example 2

Let’s consider an example in which we use the pointers to make a call by reference.
We want to convert the lowercase letters of a string (character array), to their
corresponding uppercase letters.

155

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

We write a function convertToUppercase, which processes the string s one character
at a time using pointer arithmetic. In the body of the function, we pass the character to
a function islower. This function returns true if the character is a lowercase letter and
false otherwise. The characters in the range ‘a’ through ‘z’ are converted to their
corresponding uppercase letters by function toupper. Function toupper takes one
character as an argument. If the character is a lowercase letter, the corresponding
uppercase letter is returned, otherwise the original character is returned. The functions
toupper and islower are part of the character handling library <ctype.h>. So we have
to include this header file in our program. We include it in the same way, as we
include <iostream.h>.

The complete code of the program is given below.

//This program converts a string into an uppercase string

include <iostream.h>
include <ctype.h>
include <stdlib.h>

//declare the functions prototype
void convertToUppercase (char *)
main ()
{
char s [30] = “Welcome To Virtual University” ;
cout << “The string before conversion is: “ <<s <<endl;
convertToUppercase (s); //function call
cout << “The string after conversion is: “ <<s;
}

void convertToUppercase (char *sptr)
{

while (*sptr !=\0")

{

if (islower (*sptr))

*sptr = toupper (*sptr); //convert to uppercase

++ sptr; // move sptr to the next

character

b
}

Following is the output of the program.

The string before conversion is : Welcome To Virtual University
The string after conversion is : WELCOME TO VIRTUAL UNIVERSITY

Exercise

1. Modify the above program so that it gets a string from user and converts it into
lowercase.

156

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

2. Write a program, which converts a string of uppercase letters into its
corresponding lowercase letters string.

157

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 15

Reading Material

Deitel & Deitel - C++ How to Program Chapter 5
5.7,5.8

Summary

6) Introduction

7 Relationship between Pointers and Arrays

8) Pointer Expressions and Arithmetic

9) Pointers Comparison

10) Pointer, String and Arrays

11) Tips
Introduction

In the previous lecture, we had just started the discussion on the topic of pointers.
This topic is little complicated, yet the power we get with the pointers is very
interesting. We can do many interesting things with pointers. When other languages
like Java evolve with the passage of time, pointers are explicitly excluded. In today’s
lecture, we will discuss pointers, the relationship between pointers and arrays, pointer
expressions, arithmetic with pointers, relationship between arrays and pointer, strings
etc.

Relationship between Pointers and Arrays

When we write int X, it means that we have attached a symbolic name X, at some
memory location. Now we can use X = 10 which replaces the value at that memory
location with 10. Similarly while talking about arrays, suppose an array as int y[10].
This means that we have reserved memory spaces for ten integers and named it
collectively as y. Now we will see what actually y is? 'y' represents the memory
address of the beginning of this collective memory space. The first element of the
array can be accessed as Y[0]. Remember arrays index starts from 0 in C language, so
the memory address of first element i.e. y[0] is stored in y.

“The name of the array is a constant pointer which contains the memory

address of the first element of the array”

The difference between this and an ordinary pointer is that the array name is a

constant pointer. It means that the array name will always point to the start of the
array. In other words, it always contains the memory address of the first element of

158

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

the array and cannot be reassigned any other address. Let's elaborate the point with
the help of following example.

int y[10];
int *yptr;

In the above statements, we declare an array Yy of ten integers and a pointer to an
integer i.e. yptr. This pointer may contain a memory address of an integer.

yptr=y;

This is an assignment statement. The value of y i.e. the address of the first element of
the array is assigned to yptr. Now we have two things pointing to the same place, Yy
and yptr. Both are pointing to the first element of the array. However, Yy is a constant
pointer and always points to the same location whereas yptr is a pointer variable that
can also point to any other memory address.

Pointer Expressions and Arithmetic

Suppose we have an array Y and yptr, a pointer to array. We can manipulate arrays
with both y and yptr. To access the fourth element of the array using Yy, we can say
y[3]; with yptr, we can write as *(yptr + 4). Now we have to see what happens when
we increment or add something to a pointer. We know that y is a constant pointer and
it can not be incremented. We can write y[0], y[1] etc. On the other hand, yptr is a
pointer variable and can be written as the statement yptr = y. It means that yptr
contains the address of the first element of the array. However, when we say yptr++,
the value of yptr is incremented. But how much? To explain it further, we increment a
normal integer variable like x++. If X contains 10, it will be incremented by 1 and
become 11. The increment of a pointer depends on its data type. The data type, the
pointer points to, determines the amount of increment. In this case, yptr is an integer
pointer. Therefore, when we increment the yptr, it points to the next integer in the
memory. If an integer occupies four bytes in the memory, then the yptr++; will
increment its value by four. This can be understood from the following example.

// This program will print the memory address of a pointer and its incremented address.

#include<iostream.h>

main()
{
int y[10]; // an array of 10 integers
int *yptr; // an integer pointer
yptr =y; // assigning the start of array address to pointer

// printing the memory address
cout << “The memory address of yptr = “ << yptr << endl ;
yptr++; // incrementing the pointer

// printing the incremented memory address
cout << “The memory address after incrementing yptr = << yptr << endl;

159

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

In the above program, the statement cout << yptr will show the memory address the
yptr points to. You will notice the difference between the two printed addresses. By
default, the memory address is printed in hexadecimal by the C output system.
Therefore, the printed address will be in hexadecimal notation. The difference
between the two addresses will be four as integer occupies four bytes and yptr is a
pointer to an integer.

“When a pointer is incremented, it actually jumps the number of memory
spaces according to the data type that it points to”

The sample out put of the program is:

The memory address of yptr = 0x22f50
The memory address after incrementing yptr = 0x22ft54

yptr which was pointing to the start of the array Y, starts pointing to the next integer in
memory after incrementing it. In other words, yptr is pointing to the 2" element of
the array. On being incremented again, the yptr will be pointing to the next element of
the array i.e. y[2], and so on. We know that & is address operator which can be used
to get the memory address. Therefore, we can also get the address of the first element
of the array in yptr as:

yptr = &y[0] ;

y[0] is a single element and its address can be got with the use of. the address
operator (&). Similarly we can get the address of 2™ or 3™ element as &y[1], &y[2]
respectfully. We can get the address of any array element and assign it to yptr.

Suppose the yptr is pointing to the first element of the array y. What will happen if we
increment it too much? Say, the array size is 10. Can we increment the yptr up to 12
times? And what will happen? Obviously, we can increment it up to 12 times. In this
case, yptr will be pointing to some memory location containing garbage (i.e. there
may be some value but is useless for us). To display the contents where the yptr is
pointing we can use cout with dereference pointer as:

cout << *yptr ;

The above statement will display the contents where yptr is pointing. If the yptr is
pointing to the first element of the array, cout << *yptr will display the contents of
the first element of the array (i.e. y[0]). While incrementing the yptr as yptr ++, the
statement cout << * yptr will display the contents of the 2" element of the array(i.e.
y[1]) and so on.

Here is an example describing different methods to access array elements.

/* This program contains different ways to access array elements */

160

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

#include <iostream.h>
main ()
{
int y[10] = {0,5,10,15,20,25,30,35,40,45};
int *yptr;
yptr =y; // Assigning the address of first element of array.
cout << “Accessing 6™ element of array as y[5] =" <<y[5] << endl;

cout << “Accessing 6™ element of array as *(yptr + 5) = << *(yptr + 5) << endl;

cout << “Accessing 6™ element of array as yptr[5] = « << yptr[5] << end];

}

The output of the program is:

Accessing 6th element of array as y[5] = 25
Accessing 6th element of array as *(yptr + 5) =25
Accessing 6th element of array as yptr[5] = 25

In the above example, there are two new expressions i.e. *(yptr+5) and yptr[5]. In the
statement *(yptr+5), yptr is incremented first by 5 (parenthesis are must here).
Resultantly, it points to the 6™ element of the array. The dereference pointer gives the
value at that address. As yptr is a pointer to an integer, so it can be used as array
name. So the expression yptr[5] gives us the 6 element of the array.

The following example can explain how we can step through an entire array using
pointer.

/* This program steps through an array using pointer */
#include <iostream.h>

main ()

{
int y[10] = {10,20,30,40,50,60,70,80,90,100};
int *yptr, i;

yptr =y; // Assigning the address of first element of array.

for(1=0;1<10;i++)

{
cout << “\n The value of the element at position ” << i << “is “ << *yptr;
yptr ++

161

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The output of the program is:

The value of the element at position 0 is 10
The value of the element at position 1 is 20
The value of the element at position 2 is 30
The value of the element at position 3 is 40
The value of the element at position 4 is 50
The value of the element at position 5 is 60
The value of the element at position 6 is 70
The value of the element at position 7 is 80
The value of the element at position 8 is 90
The value of the element at position 9 is 100

Consider another example to elaborate the pointer arithmetic.

/* Program using pointer arithmetic */

#include <iostream.h>

main()

{
int x =10;
int *yptr;
yptr = &x;

cout << “The address yptr points to = << yptr << end]l ;
cout << “The contents yptr points to =" << *yptr << end];

(*yptr) ++;

cout << “After increment, the contents are ” << *yptr << endl;
cout << “The value of x is = 7 << x << end];

The output of the program is:

The address yptr points to = 0x22ff7c
The contents yptr points to = 10
After increment, the contents are 11
The value of x is = 11

Here the statement (*yptr) ++ is read as “increment whatever yptr points to”. This
will increment the value of the variable. As yptr and X both are pointing to the same
location, the contents at that location becomes 11. Consider the statement *yptr + 3 ;
This is an expression and there is no assignment so the value of x will not be changed

162

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

where as the statement *yptr += 3; will increment the value of x by 3. If we want to
increment the pointer and not the contents where it points to, we can do this as yptr
++; Now where yptr is pointing? The yptr will be now pointing four bytes away from
the memory location of X. The memory location of X is a part of program, yet after
incrementing yptr, it is pointing to some memory area, which is not part of the
program. Take this as an exercise. Print the value of yptr and *yptr and see what is
displayed? Be sure, it is not illegal and the compiler does not complain. The error will
be displayed if we try to write some value at that memory address.

“When a pointer is used to hold the memory address of a simple variable, do
not increment or decrement the pointer. When a pointer is used to hold the
address of an array, it makes sense to increment or decrement the pointer “

Be careful while using pointers, as no warning will be given, in case of any problem.
As pointers can point at any memory location, so one can easily get the computers
crashed by using pointers.

Remember that incrementing the pointer and incrementing the value where the pointer
points to are two different things. When we want to increment the pointer, to make it
point to next element in the memory, we write as (yptr++); Use parenthesis when
incrementing the address. If we want to increment the value where the pointer points
to, it can be written as (*yptr) ++; Keep in mind the precedence of operator. Write a
program to test this.

The decrement of the pointer is also the same. yptr --; yptr -= 3 ; will decrement the
yptr. Whereas the statement (*yptr) --; will decrement the value where the yptr is
pointing. So if the yptr is pointing to X the value of X will be decremented by 1.

Pointers are associated to some data type as pointer to integer, pointer to float and
pointer to char etc. When a pointer is incremented or decremented, it changes the
address by the number of bytes occupied by the data type that the pointer points to.
For example, if we have a pointer to an integer, by incrementing the pointer the
address will be incremented by four bytes, provided the integer occupies four bytes on
that machine. If it is a pointer to float and float occupies eight bytes, then by
incrementing this pointer, its address will be incremented by eight bytes. Similarly, in
case of a pointer to a char, which normally takes one byte, incrementing a pointer to
char will change the address by one. If we move to some other architecture like
Macintosh, write a simple program to check how many bytes integer, float or char is
taking with the use of simple pointer arithmetic. In the modern operating systems like
windows XP, windows 2000, calculator is provided under tools menu. Under the view
option, select scientific view. Here we can do hexadecimal calculations. So we can
key in the addresses our programs are displaying on the screen and by subtracting, we
can see the difference between the two addresses. Try to write different programs and
experiment with these.

We have seen that we can do different arithmetic operations with pointers. Let's see
can two pointers be added? Suppose we have two pointers yptrl and yptr2 to integer
and written as yptrl + yptr2 ; The compiler will show an error in this statement.
Think logically what we can obtain by adding the two memory addresses. Therefore,
normally compiler will not allow this operation. Can we subtract the pointers? Yes,

163

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

we can. Suppose we have two pointers pointing to the same memory address. When
we subtract these, the answer will be zero. Similarly, if a pointer is pointing to the
first element of an integer array while another pointer pointing to the second element
of the array. We can subtract the first pointer from second one. Here the answer will
be one, i.e. how many array elements are these two pointers apart.

Consider the following sample program:

/* Program using the pointer subtraction */
#include <iostream.h>

main ()

{ int y[10], *yptrl, *yptr2;

yptrl = &y[0];
yptr2 = &y[3];

cout << “ The difference = “ << yptr2 - yptrl;

The output of the program is:

The difference = 3

In the above program, we have taken two integer pointers yptrl and yptr2 and an
integer array Y[10]. The pointer yptrl is pointing to the address of the first element of
the array while yptr2 is pointing to the 4™ element of the array. The difference
between these two pointers can be shown by using cout statement. Here the result
should be twelve. But the program will show the result as three. When we increment
an integer pointer by 1, we have seen that the address is changed by four. When we
subtract pointers, it tells us the distance between the two elements that the pointers
pointed to. It will tell us how many array elements are between these two pointers. As
the yptrl is pointing to y[0] and the yptr2 is pointing to y[3], so the answer is three. In
a way, it tells how many units of data type (pointers data type) are between the two
pointers. Pointer addition is not allowed, however, pointer subtraction is allowed as it
gives the distance between the two pointers in units, which are the same as the data
type of the pointer.

A memory image of an array with a pointer.

164

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Addresses: 3000 3004 3008 3012 3016

y[0] y[1] y[2] y[3] y[41]

® ®
yptr yptr++___, yptr

This diagram shows how an array occupies space in the memory. Suppose, we have
an integer array named Y and yptr is a pointer to an integer and is assigned the address
of the first element of the array. As this is an integer array, so the difference between
each element of the array is of four bytes. When the yptr is incremented, it starts
pointing to the next element in the array.

Pointer Comparison

We have seen pointers in different expressions and arithmetic operations. Can we
compare pointers? Yes, two pointers can be compared. Pointers can be used in
conditional statements as usual variables. All the comparison operators can be used
with pointers i.e. less than, greater than, equal to, etc. Suppose in sorting an array we
are using two pointers. To test which pointer is at higher address, we can compare
them and take decision depending on the result.

Again consider the two pointers to integer i.e. yptrl and yptr2. Can we compare
*yptrl and *yptr2? Obviously *yptrl and *yptr2 are simple values. It is the value of
integer yptrl, yptr2 points to. When we say *yptrl > *yptr2, this is a comparison of
simple two integer values. Whenever we are using the dereference pointer (pointers
with *), all normal arithmetic and manipulation is valid. Whenever we are using
pointers themselves, then certain type of operations are allowed and restrictions on
other. Make a list what can we do with a pointer and what we cannot.

Consider a sample program as follows:

/* Program using the dereference pointer comparison */
#include <iostream.h>

main ()

{

int x, y, *xptr, *yptr;

cout << “\n Please enter the value of x = ;
cin >>x ;

165

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

cout << “\n Please enter the value of y =

cin>>vy ;
xptr = &x;
yptr = &y;
if (*xptr > *yptr)
{
cout << “\n x is greater than y *;
}
else
{
cout << “\n y is greater than x “;
}

}

The output of the program is;

Please enter the value of x =6
Please enter the value of y =9

y is greater than x

Pointer, String and Arrays

We have four basic data types i.e. char, int, float and double. Character strings are
arrays of characters. Suppose, there is a word or name like Amir to store in one entity.
We cannot store it into a char variable because it can store only one character. For this

purpose, a character array is used. We can write it as:

char name [20];

We have declared an array name of 20 characters .It can be initialized as:

name[0] = ‘A’ ;
name[l] =‘m’ ;
name[2] = ‘1" ;
name[3] = ‘1’ ;

Each array element is initialized with a single character enclosed in single quote. We
cannot use more than one character in single quotes, as it is a syntax error. Is the
initialization of the array complete? No, the character strings are always terminated by
null character \0’. Therefore, we have to put the null character in the end of the array.

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

name[4] = \0" ;

Here we are using two characters in single quotes. But it is a special case. Whenever
back slash (\) is used, the compiler considers both the characters as single (also
known as escape characters). So “\n’ is new line character, ‘\t’ a tab character and \0’
a null character. All of these are considered as single characters. What is the benefit of
having this null character at the end of the string? Write a program, do not use the null
character in the string and try to print the character array using cout and see what
happens? cout uses the null character as the string terminating point. So if cout does
not find the null character it will keep on printing. Remember, if we want to store
fifteen characters in an array, the array size should be at least sixteen i.e. fifteen for
the data and one for the null character. Do we always need to write the null character
at the end of the char array by ourselves? Not always, there is a short hand provided in
C, i.e. while declaring we can initialize the arrays as:

char name[20] = “Amir”;
When we use double quotes to initialize the character array, the compiler appends null
character at the end of the string.

“Arrays must be at least one character space larger than the number of

printable characters which are to be stored”

Example:
Write a program which copies a character array into given array.

Solution:

Here is the complete code of the program:

/* This program copies a character array into a given array */
#include <iostream.h>

main()

{

char strA[80] ="A test string";
char strB[80];

char *ptrA; /* a pointer to type character */
char *ptrB; /* another pointer to type character */

ptrA =strA; /* point ptrA at string A */
ptrtB =strB; /* point ptrB at string B */

while(*ptrA !="0")

{

*ptrB++ = *ptrA++; // copying character by character
}
*ptrB ="0";

167

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

cout << “String in strA = << strA << endl; /* show strA on screen */
cout << “String in strB =" << strB << endl; /* show strB on screen */

The output of the program is:

String in strA = A test string
String in strB = A test string

Explanation:

Suppose, we have declared a char array named StrA of size 80 and initialized it with
some value say “A test String” using the double quotes. Here we don’t need to put a
null character. The compiler will automatically insert it. But while declaring another
array StrB of the same size, we declare two char pointers *ptrA and *ptrB. The
objective of this exercise is to copy one array into another array. We have assigned
the starting address of array StrA to ptrA and strB to ptrB. Now we have to run a loop
to copy all the characters from one array to other. To terminate the loop, we have to
know about the actual number of characters or have to use the string termination
character. As we know, null character is used to terminate a string, so we are using the
condition in 'while loop' as: *ptrA = “\0’ , simply checking that whatever ptrA is
pointing to is not equal to \0’. Look at the statement *ptrB++ = *ptrA++. What has
happened in this statement? First of all, whatever ptrA is pointing to will be assigned
to the location where ptrB is pointing to. When the loop starts, these pointers are
pointing to the start of the array. So the first character of strA will be copied to the
first character of strB. Afterwards, the pointers will be incremented, not the values
they are pointing to. Therefore, ptrA is pointing to the 2" element of the array StrA
and ptrB is pointing to the 2" element of the array StrB. In the 2nd repetition, the loop
condition will be tested. If ptrA is not pointing to a null character the assignment for
the 2™ element of the array takes place and so on till the null character is reached. So
all the characters of array StrA are copied to array strB. Is this program complete? No,
the array strB is not containing the null character at the end of the string. Therefore,
we have explicitly assigned the null character to strB. Do we need to increment the
array pointer? No, simply due to the fact that in the assignment statement (*ptrA++ =
*ptrB++;), the pointers are incremented after the assignment. This program now
successfully copies one string to other using only pointers. We can also write a
function for the string copy. The prototype of the function will be as:

void myStringCopy (char *destination, const char *source) ;

This function takes two arguments. The first one is a pointer to a char while second
argument is a const pointer to char. The destination array will be changed and all the
characters from source array are copied to destination. At the same time, we do not
want that the contents of source should be changed. So we used the keyword const
with it. The keyword const makes it read only and it can not be changed accidentally.

168

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

If we try to change the contents of source array, the compiler will give an error. The
body is same, as we have seen in the above program.

This function will not return anything as we are using pointers. It is automatically call
by reference. Whenever arrays are passed to functions, a reference of the original
array is passed. Therefore, any change in the array elements in the function will
change the actual array. The values will be written to the original array. If these are
simple variables, we will have to send the address and get the called program to
change it. Therefore, we do not need to return anything from this function after
successfully copying an array into the other.

Here is the code of the function. Write a program to test this function.

void myStringCopy (char *destination, const char *source)
{

while(*source = \0’)

{

*destination++ = *source++;

J

*destination = \0’;
}

We can also write the string copy function using arrays. Here is the code of the
myStringCopy function using arrays notation.

void myStringCopy(char dest[], char source[])
{

inti=0;

while (source[i] !="0"
{
dest[i] = source[i];
i++;
J
dest[i] ="0";
}

Exercise:
1) Print out the address and the value of a character pointer pointing to some
character.
2) Write a function which copies an array of integers from one array to other

Tips

o While incrementing the pointers, use the parenthesis

. Increment and decrement the pointers while using arrays

o When a pointer is incremented or decremented, it changes the address by the

169

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

number of bytes occupied by the data type that the pointer points to
. Use key word const with pointers to avoid unwanted changes
. The name of array is a constant pointer. It cannot be reassigned

170

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 16

Reading Material

Deitel & Deitel - C++ How to Program Chapter 5, 18
5.9,5.10,18.4

Summary
o Pointers (continued)
o Multi-dimensional Arrays
o Pointers to Pointers
o Command-line Arguments
o Exercises
. Tips

Pointers (continued)
We will continue with the elaboration of the concept of pointers in this lecture. To
further understand pointers, let's consider the following statement.

char myName[] = "Full Name";
This statement creates a 'char' type array and populates it with a string. Remember the
character strings are null ("\0') terminated. We can achieve the same thing with the

use of pointer as under:

char * myNamePtr = "Full Name";

myName | £y)l Name\o

myNamePtr ° Full Name\0

Y

Let's see what's the difference between these two approaches?
When we create an array, the array name, 'myName' in this case, is a constant pointer.
The starting address of the memory allocated to string "FullName" becomes the

171

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

contents of the array name 'myName' and the array name 'myName' can not be
assigned any other value. In other words, the location to which array names points to
can not be changed. In the second statement, the 'myNamePtr' is a pointer to a string
"FullName", which can always be changed to point to some other string.

Hence, the array names can be used as pointers but only as constant ones.

Multi-dimensional Arrays

Now we will see what is the relationship between the name of the array and the
pointer. Suppose we have a two-dimensional array:

char multi[5][10];

In the above statement, we have declared a 'char' type array of 5 rows and 10
columns.

oy (13 21 (31 [4 51 [6] [717 (8] [9] (0] [1]

75 72 68 82 80 79 69 67 73 77 83 80

I I

1% row 1% col 2" row 1% col

Multi-dimensional array in the memory

As discussed above, the array name points to the starting memory location of the
memory allocated for the array elements. Here the question arises where the 'multi'
will be pointing if we add 1 to ‘multi’.

We know that a pointer is incremented by its type number of bytes. In this case,
'multi' is an array of 'char' type that takes 1 byte. Therefore, ‘muti+1’° should take us to
the second element of the first row (row 0). But this time, it is behaving differently. It
is pointing to the first element (col 0) of the second row (row 1). So by adding '1' in
the array name, it has jumped the whole row or jumped over as many memory
locations as number of columns in the array. The width of the columns depends upon
the type of the data inside columns. Here, the data type is 'char', which is of 1 byte. As
the number of columns for this array 'multi' is 10, it has jumped 10 bytes.

Remember, whenever some number is added in an array name, it will jump as many
rows as the added number. If we want to go to the second row (row 1) and third
column (col 2) using the same technique, it is given ahead but it is not as that straight
forward. Remember, if the array is to be accessed in random order, then the pointer
approach may not be better than array indexing.

We already know how to dereference array elements using indexing. So the element

at second row and third column can be accessed as 'multi[1][2]'.
172

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

To do dereferencing using pointers we use '*' operator. In case of one-dimensional
array, "*multi' means 'the value at the address, pointed to by the name of the array'.
But for two-dimensional array "*multi' still contains an address of the first element of
the first row of the array or starting address of the array 'multi'. See the code snippet
to prove it.

/* This program uses the multi-dimensional array name as pointer */
#include <iostream.h>

void main(void)

{
//To avoid any confusion, we have used ‘int’ type below
int multi[5][10];
cout << "\n The value of multi is: " << multi;
cout << "\n The value of *multi is: " << *multi;
}

Now, look at the output below:

The value of multi is: 0x22feb0
The value of *multi is: 0x22feb0

It is pertinent to note that in the above code, the array ‘multi’ has been changed to
‘int” from ‘char’ type to avoid any confusion.

To access the elements of the two-dimensional array, we do double dereferencing like

"*multi'. If we want to go to, say, 4th row (row 3), it is achieved as 'multi + 3' . Once

reached in the desired row, we can dereference to go to the desired column. Let's say

we want to go to the 4th column (col 3). It can be done in the following manner.
((multi+3)+3)

This is an alternative way of manipulating arrays. So 'multi[3][3]' element can also be

accessed by "*(*(multi+3)+3)".

There is another alternative of doing this by using the normal pointer. Following code
reflects it.

/* This program uses array manipulation using indexing */
#include <iostream.h>

void main(void)

{
int multi [5][10];
int *ptr; // A normal ‘int’ pointer

173

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

ptr = *multi; // ‘ptr’ is assigned the starting address of the first row

/* Initialize the array elements */
for(int i=0; 1 < 5; i++)

{
for (int j=0; j < 10; j++)
{
multi[i][j] =1 * j;
H
§

/* Array manipulation using indexing */
cout << "\n Array manipulated using indexing is: \n";
for(int i=0; 1 < 5; i++)
{
for (int j=0; j < 10; j++)
{

}

cout << '\n';

}

cout << multi[i][j] <<\t

/* Array manipulation using pointer */
cout << "\n Array manipulated using pointer is: \n";
for(int k=0; k < 50; k++, ptr ++) //'5*10=50
{
cout << *ptr <<'\t';
}
}

The output of this program is:

Array manipulated using indexing is:

o o0 o0 O o o0 o0 o0
2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36

SO OO O
AW —=O

Array manipulated using pointer is:

0 0 0 0 0 0 0 0 0 0 0 1 2 3 4
6 7 8 9 0 2 4 6 8 10 12 14 16 18 0
6 9 12 15 18 21 24 27 O 4 8 12 16 20
28 32 36

The above line of output of array manipulation is wrapped because of the fixed width
of the table. Actually, it is a single line.

Why it is a single line? As discussed in the previous lectures, computer stores array in
straight line (contiguous memory locations). This straight line is just due to the fact
that a function accepting a multi-dimensional array as an argument, needs to know all
the dimensions of the array except the leftmost one. In case of two-dimensional array,

174

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

the function needs to know the number of columns so that it has much information
about the end and start of rows within an array.

It is recommended to write programs to understand and practice the concepts of
double dereferencing, single dereferencing, incrementing the name of the array to
access different rows and columns etc. Only hands on practice will help understand
the concept thoroughly.

Pointers to Pointers

What we have been talking about, now we will introduce a new terminology, is
actually a case of ‘Pointer to Pointer’. We were doing double dereferencing to access
the elements of a two-dimensional array by using array name (a pointer) to access a
row (another pointer) and further to access a column element (of ‘int” data type).

In case of single dereference, the value of the pointer is the address of the variable
that contains the value desired as shown in the following figure. In the case of pointer
to pointer or double dereference, the first pointer contains the address of the second
pointer, which contains the address of the variable, which contains the desired value.

address value

Y

address address value

Y

Y

Pointers to Pointers are very useful. But you need to be very careful while using the
technique to avoid any problem.

Earlier, we used arrays and pointers interchangeably. We can think that a pointer to
pointer is like a pointer to a group of arrays because a pointer itself can be considered
as an array. We can elaborate with the following example by declaring character
strings.

While using an array, we at first decide about the length of the array. For example,
you are asked to calculate the average age of your class using the array. What would
be the dimension of the array? Normally, you will look around, count the students of
the class and keep the same size of the array as the number of students, say 53. Being
a good programmer, you will look ahead and think about the maximum size of the
class in the future and decide to take the size of the array as 100. Here, you have taken
care of the future requirements and made the program flexible. But the best thing
could be: to get the size of the array from the user at runtime and set it in the program

175

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

instead of declaring the array of maximum size. We will cover this topic at some later
stage.

When we initialize an array with a character string, the number of characters in the
character string determines the length of array (plus one character to include the \0’
character). eg. it is a single-dimensional array:

char name[] = “My full name”;

The size of the ‘name’ array is 13.

Suppose, we have a group of character strings and we want to store them in a two-
dimensional array. As we already discussed, an array has same number of columns in
each row, e.g. a[5][10] array has 10 columns in each row. Now if we store character
strings of variable length in a two-dimensional array, it is necessary to set the number
of columns of the array as the length of the longest character string in the group (plus
1 byte for “\0’ character). But the space within rows of the array would be wasted for
all character strings with shorter length as compared to the number of columns. We
don’t want to waste this space and want to occupy the minimum space required to
store a character string in the memory.

If we use the conventional two-dimensional array like a [5] [10], there is no way of
using variable space for rows. All the rows will have fixed 10’ number of columns in
this case. But in case of an Array of Pointers, we can allocate variable space. An array
of pointers is used to store pointers in it. Now we will try to understand how do we
declare an array of pointers. The following statement can help us in comprehending it

properly.
char * myarray[10];

We read it as: ‘myarray is an array of 10 pointers to character’. If we take out the size
of the array, it will become variable as:

char * myarray[] = {“Amir”, “Jehangir’};

myarray

Amir\0

Y

Jehangir\0

®
A 4

For first pointer myarray[0], 5 bytes (4 bytes for ‘Amir’ plus 1 byte for \0’) of
memory has been allocated. For second pointer myarray[1], 9 bytes of memory is
allocated. So this is variable allocation depending on the length of character string.

What this construct has done for us? If we use normal two-dimensional array, it will
require fixed space for rows and columns. Therefore, we have used array of pointers
here. We declared an array of pointers and initialized it with variable length character
strings. The compiler allocates the same space as required for the character string to
fit in. Therefore, no space goes waste. This approach has huge advantage.

176

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

We will know more about Pointers to Pointers within next topic of Command-line
Arguments and also in the case study given at the end of this lecture.

Command Line Arguments

Until now, we have always written the ‘main()’ function as under:

main()

{
}

... // code statements

But we are now in a position to write something inside the parenthesis of the ‘main()’
function. In C language, whenever a program is executed, the user can provide the
command-line arguments to it like:

C:\Dev-cpp\work>Program-name argumentl argument? argumentN

177

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

We have so far been taking input using the ‘cout’ and ‘cin’ in the program. But now
we can also pass arguments from the command line just before executing the
program. For this purpose, we will need a mechanism. In C, this can be done by using
‘arge’ and ‘argv’ arguments inside the main() function as:

void main(int argc, char **argv)

{
}

Note that ‘argc’ and ‘argv’ are conventional names of the command line parameters
of the ‘main()’ function. However, you can give the desired names to them.

argc = Number of command line arguments. Its type is ‘int’.

argv = It is a pointer to an array of character strings that contain the arguments, one
per string. ‘**argv’ can be read as pointer to pointer to char.

178

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

This has been further explained in the following program. It counts down from a
value specified on the command line and beeps when it reaches 0.

/* This program explains the use of command line arguments */

#include <iostream.h>
#include <stdlib.h> //Included for ‘atoi()’ function

main(int argc, char **argv)

{
int disp, count;
if(arge < 2)
{

cout << "Enter the length of the count\n";
cout << "on the command line. Try again.\n";

return 1;
H
if(arge == 3 && !stremp(*(argv + 2), "display"))
{

disp = 1;
}
else
{

disp = 0;
}
for(count = atoi(*(argv + 1)); count; --count)
{

if(disp)

{

cout << count <<'';

}

}

cout <<'\a'; // "\a’causes the computer to beep

return 0;

}

You must have noted that if no arguments are specified, an error message will be
printed. It is common for a program that uses command-line arguments to issue
instructions if an attempt has been made to run it without the availability of proper
information. The first argument containing the number is converted into an integer
using the standard function ‘atoi()’. Similarly, if the string ‘display’ is present as the
second command-line argument, the count will also be displayed on the screen.

In theory, you can have up to 32,767 arguments but most operating systems do not
allow more than a few because of the fixed maximum length of command-line. These

179

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

arguments are normally used to indicate a file name or an option. Using command-
line arguments lends your program a very professional touch and facilitates the
program’s use in batch files.

Case Study: A Card Shuffling and Dealing Simulation

Now we want to move on to a real-world example where we can demonstrate pointer
to pointer mechanism.

Problem:
Write a program to randomly shuffle the deck of cards and to deal it out.

Some Facts of Card Games:

— There are 4 suits in one deck: Hearts, Spades, Diamonds and Clubs.

— FEach suit has 13 cards: Ace, Deuce, Three, Four, Five, Six, Seven, Eight, Nine,
Ten, Jack, Queen and King.

— A deck has 13 * 4 =52 cards in total.

Problem Analysis, Design and Implementation:

As obvious from the problem statement, we are dealing with the deck of cards,
required to be identified. A card is identified by its suit i.e. it may be one of the
Hearts, Spades, Diamonds or Clubs. Also every card has one value in the range
starting from Ace to King. So we want to identify them in our program and our
requirement is to use English like ‘five of Clubs’. We will declare one array of suit
like:

const char *suite[4] = {“Hearts”, “Diamonds”, “Clubs”, “Spades” };

The second array is of values of cards:
const char *face[13] = { “Ace”, “Deuce”, “Three”, “Four”, “Five”, “Six”,
“Seven”, “Eight”, “Nine”, “Ten”, “Jack”, “Queen” and “King”};

You must have noticed the use of array of pointers and ‘const’ keyword here. Both the
arrays are declared in a way to avoid any wastage of space. Also notice the use of
‘const’ keyword. We declared arrays as constants because we want to use these values
without modifying them.

Now we come to deck which has 52 cards. The deck is the one that is being shuffled
and dealt. Definitely, it has some algorithmic requirements.
Firstly, what should be size and structure of the deck. It can either be linear array of
52 elements or 4 suites and 13 values (faces) per suit. Logically, it makes sense to
have two-dimensional array of 4 suites and 13 faces per suit like:

int deck[4][13] = {0};

We will now think in terms of Algorithm Analysis.

The ‘deck’ is initialized with the O value, so that it holds no cards at start or it is
empty. We want to distribute 52 cards. Who will load the ‘deck’ first, shuffle the
cards and deal them out. How to do it?

180

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

As we want to select 52 cards (a deck) randomly, therefore, we can think of a loop to
get one card randomly in every iteration. We will randomly choose one out of the 4
suites and select one value out of 13 values and store the card with its card number
value in the deck. By this way, we will be writing numbers in the two-dimensional
array of ‘deck’ randomly. That functionality is part of ‘shuffle ()’ function.

void shuffle(int wDeck[][13])

{
int row, column, card;
for (card = 1; card <= 52; card++){
do{
row = rand() % 4;
column = rand() % 13;
} while(wDeck [row][column] =0);
wDeck[row][column] = card;
b
h

You have noticed the ‘rand()’ function usage to generate random numbers. We are
dividing the randomly generated number by 4 and 13 to ensure that we get numbers
within our desired range. That is 0 to 3 for suites and 0 to 12 for values or faces. You
also see the condition inside the ‘while statement, ‘wDeck[row][column] !=0 °.
This is to ensure that we don’t overwrite row and column, which has already been
occupied by some card.

Now we want to deal the deck. How to deal it?

“At first, search for card number 1 inside the deck, wherever it is found inside the
‘deck’ array, note down the row of this element. Use this row to get the name of the
suite from the ‘suite’ array. Similarly use the column to take out the value of the card
from the ‘face’ array.” See that the deal function is quite simple now.

void deal(const int wDeck[][13], const char *wFace[], const char *wSuit[])
{
int card, row, column;
for (card = 1; card <= 52; card++)
for(row = 0; row <= 3; row++)
for(column = 0; column <= 12; column++)
if(wDeck[row][column] == card)
cout << card <<". " <<wFace[column]
<< " of " << wSuit [row | <<'\n';

}

Here, we are not doing binary search that is more efficient. Instead, we are using
simple brute force search. Also see the ‘for loops’ carefully and how we are printing
the desired output.

Now we will discuss a little bit about the srand() function used while generating
random numbers. We know that computers can generate random numbers through the
‘rand()’ function. Is it truly random? Be sure , it is not truly random. If you call

181

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

‘rand()’ function again and again. It will give you numbers in the same sequence. If
you want your number to be really random number, it is better to set the sequence to
start every time from a new value. We have used ‘srand()’ function for this purpose. It
is a seed to the random number generator. Seed initializes the random number
generator with a different value every time to generate true random numbers. We call
‘srand()’ function with a different value every time. The argument to ‘srand()’
function is taken from the ‘time()’ function which is giving us a new value after every
one second. Every time we try to run the program, ‘time()’ returns a different number
of seconds, which are passed to ‘srand()’ function as an argument so that the seed to
the random number generator is a different number. It means that the random number
generator now generates a different sequence of random numbers.

Although, you can copy this program and see the output after executing it, but this is
not the objective of this exercise. You are required to study the problem and see the
constructs very carefully. In this problem, you have examples of nested loops, array of
pointers, variable sized strings in an array of pointers and random number usage in the
real world problem etc.

/* Card shuffling and dealing program */

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

void shuffle(int [] [13]);
void deal(const int [][13], const char *[], const char *[]);

int main()

{

const char *suite[4 | = {"Hearts", "Diamonds", "Clubs", "Spades" };

const char *face[13] = { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
"Eight", HNine"’ HTenH’ "Jackﬂ’ Y'Queenﬂ, HKingH};

intdeck[4][13]=1{0};

srand(time(0));

shuffle(deck);
deal(deck, face, suite);

return 0;

}

void shuffle(int wDeck[][13])
{

int row, column, card;

for (card = 1; card <= 52; card++){
do{
row = rand() % 4;
column = rand() % 13;

182

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

}+ while(wDeck [row][column | =0);

wDeck[row][column | = card;

}

void deal(const int wDeck[][13], const char *wFace[], const char *wSuit[])
{
int card, row, column;
const char *space;
for (card = 1; card <= 52; card++)
for(row = 0; row <= 3; row++)
for(column = 0; column <= 12; column++)
if(wDeck[row][column] == card)
cout << card << ". " <<wFace[column | << " of " << wSuit
[row] <<"n';

}

A sample output of the program is:

Six of Diamonds
Ten of Hearts

Nine of Clubs

King of Hearts
Queen of Clubs
Five of Clubs
Queen of Hearts
Eight of Hearts

Ace of Diamonds

. Ten of Diamonds

. Seven of Spades

. Ten of Clubs

. Seven of Clubs

. Three of Spades

. Deuce of Clubs
Eight of Diamonds
Eight of Clubs
Nine of Spades
Three of Clubs
Jack of Clubs

. Queen of Spades

. Jack of Hearts

. Jack of Spades
Jack of Diamonds
. King of Diamonds
. Seven of Hearts

. Five of Spades

. Seven of Diamonds

A AR ol e

[N T NG T NG T N T NS T NS T NG T NG T S g ey S S T e T

N
o)

183

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

Deuce of Hearts
Ace of Spades
Five of Diamonds
Three of Hearts
Six of Clubs

Four of Hearts

Ten of Spades
Deuce of Spades
Three of Diamonds
Eight of Spades
Nine of Hearts

Ace of Clubs

Four of Spades
Queen of Diamonds
King of Clubs

Five of Hearts

Ace of Hearts
Deuce of Diamonds
Four of Diamonds
Four of Clubs

Six of Hearts

Six of Spades
King of Spades
Nine of Diamonds

Exercises

Write the program ‘tail’, which prints the last n lines of its input. By default, n is
10,
let’s say, but it can be changed by an optional argument, so that
tail -n
prints the last n lines.

Tips

>

Pointers and arrays are closely related in C. The array names can be used as
pointers but only as constant pointers.

A function receiving a multi-dimensional array as a parameter must minimally
define all dimensions except the leftmost one.

Each time a pointer is incremented, it points to the memory location of the next
element of its base type but in case of two-dimensional array, if you add some

184

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

number in a two-dimensional array name, it will jump as many rows as the added
number.

» If the array is to be accessed in random order, then the pointer approach may not
be better than array indexing.

» The use of pointers may reduce the wastage of memory space. As discussed in this
lecture if we store a set of character strings of different lengths in a two-
dimensional array, the memory space is wasted.

» Pointers may be arrayed (stored in an array) like any other data type.

» An array of pointers is the same as pointers to pointers.

» Although, you can give your desired names to the command line parameters
inside ‘main()’ function but ‘argc’ and ‘argv’ are conventionally used.

185

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 17

Reading Material

Deitel & Deitel - C++ How to Program Chapter 5

5.29,5.30, 5.31, 5.32,
5.33,5.34

Chapter 16

16.16 —
16.33 (Pages 869 —
884)

Summary

o String Handling

o String Manipulation Functions
o Character Handling Functions
. Sample Program
o String Conversion Functions
o String Functions
. Search Functions

. Examples

° Exercises

String Handling

We have briefly talked about 'Strings' in some of the previous lectures. In this lecture,
you will see how a string may be handled. Before actually discussing the subject, it is
pertinent to know how the things were going on before the evolution of the concept of
'strings'.

When C language and UNIX operating system were being developed in BELL
Laboratories, the scientists wanted to publish the articles. They needed a text editor to
publish the articles. What they needed was some easy mechanism by which the
articles could be formatted and published. We are talking about the times when PCs
and word processors did not exist. It may be very strange thing for you people who
can perform the tasks like making the characters bold, large or format a paragraph

186

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

with the help of word processors these days. Those scientists had not such a facility
available with them. The task of writing article and turning into publishable material
was mainly done with the help of typewriters. Then these computer experts decided to
develop a program, which could help in the processing of text editing in an easy
manner. The resultant efforts led to the development of a program for editing the text.
The process to edit text was called text processing. The in- line commands were
written as a part of the text and were processed on out put. Later, such programs were
evolved in which a command was inserted for the functions like making the character
bold. The effect of this command could be preview and then modified if needed.

Now coming to the topic of strings again, we will discuss in detail the in-built
functions to handle the strings.

String Manipulation Functions

C language provides many functions to manipulate strings. To understand the
functions, let’s consider building block (or unit) of a string i.e., a character. Characters
are represented inside the computers in terms of numbers. There is a code number for
each character, used by a computer. Mostly the computers use ASCII (American
Standard Code for Information Interchange) code for a character to store it. This is
used in the computer memory for manipulation. It is used as an output in the form of
character. We can write a program to see the ASCII values.

We have a data type char to store a character. A character includes every thing, which
we can type with a keyboard for example white space, comma, full stop and colon etc
all are characters. 0, 1, 2 are also characters. Though, as numbers, they are treated
differently, yet they are typed as characters. Another data type is called as int, which
stores whole numbers. As we know that characters are stored in side computer as
numbers so these can be manipulated in the same form. A character is stored in the
memory in one byte i.e. 8 bits. It means that 2° (256) different combinations for
different values can be stored. We want to ascertain what number it stores, when we
press a key on the board. In other words, we will see what character will be displayed
when we have a number in memory.

The code of the program, which displays the characters and their corresponding
integer, values (ASCII codes) as under.

In the program the statement ¢ = i ; has integer value on right hand side (as i is an int)
while ¢ has its character representation. We display the value of i and c. It shows us
the characters and their integer values.

//This program displays the ASCII code table

include <iostream.h>

main ()

{
int 1, char ¢ ;
for(1=0;1<256;1i+t)
{

c=1;
cout <<] <<\t << ¢ << “\n” ;

187

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

In the output of this program, we will see integer numbers and their character
representation. For example, there is a character, say white space (which we use
between two words). It is a non-printable character and leaves a space. From the
ASCII table, we can see that the values of a-z and A-Z are continuos. We can get the
value of an alphabet letter by adding 1 to the value of its previous letter. So what we
need to remember as a baseline is the value of ‘a’ and ‘A’.

Character Handling Functions

C language provides many functions to perform useful tests and manipulations of
character data. These functions are found in the header file ctype.h. The programs
that have character manipulation or tests on character data must have included this
header file to avoid a compiler error. Each function in ctype.h receives a character (an
int) or EOF (end of file; it is a special character) as an argument. ctype.h has many
functions, which have self-explanatory names.

Of these, int isdigit (int ¢) takes a simple character as its argument and returns true or
false. This function is like a question being asked. The question can be described
whether it is a character digit? The answer may be true or false. If the argument is a
numeric character (digit), then this function will return true otherwise false. This is a
useful function to test the input. To check for an alphabet (i.e. a-z), the function
isalpha can be used. isalpha will return true for alphabet a-z for small and capital
letters. Other than alphabets, it will return false. The function isalnum (is
alphanumeric) returns true if its argument is a digit or letter. It will return false
otherwise. All the functions included in ctype.h are shown in the following table with
their description.

Prototype Description

int isdigit(int ¢)

Returns true if ¢ is a digit and false otherwise.

int isalpha(int c)

Returns true if ¢ is a letter and false otherwise.

int isalnum(int ¢)

Returns true if ¢ is a digit or a letter and false otherwise.

int isxdigit(int c)

Returns true if ¢ is a hexadecimal digit character and false
otherwise.

int islower(int ¢)

Returns true if ¢ is a lowercase letter and false otherwise.

int isupper(int c)

Returns true if ¢ is an uppercase letter; false otherwise.

int tolower(int ¢)

If ¢ is an uppercase letter, tolower returns ¢ as a lowercase letter.
Otherwise, tolower returns the argument unchanged.

int toupper(int c)

If ¢ is a lowercase letter, toupper returns ¢ as an uppercase letter.
Otherwise, toupper returns the argument unchanged.

188

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

int isspace(int ¢) |Returns true if ¢ is a white-space character—newline ("\n'), space
("), form feed ("\f'), carriage return ("\r'), horizontal tab ("\t'), or
vertical tab ("\v')—and false otherwise

int iscntrl(int c) |Returns true if ¢ is a control character and false otherwise.

int ispunct(int ¢) |Returns true if ¢ is a printing character other than a space, a digit,
or a letter and false otherwise.

int isprint(int ¢) [Returns true value if ¢ is a printing character including space (' ")
and false otherwise.

int isgraph(int ¢) |Returns true if ¢ is a printing character other than space (' ') and
false otherwise.

The functions tolower and toupper are conversion functions. The tolower function
converts its uppercase letter argument into a lowercase letter. If its argument is other
than uppercase letter, it returns the argument unchanged. Similarly the toupper
function converts its lowercase letter argument into uppercase letter. If its argument is
other than lowercase letter, it returns the argument without effecting any change.

Sample Program

Let’s consider the following example to further demonstrate the use of the functions
of ctype.h. Suppose, we write a program which prompts the user to enter a string.
Then the string entered is checked to count different types of characters (digit, upper
and lowercase letters, white space etc). We keep a counter for each category of
character entered. When the user ends the input, the number of characters entered in
different types will be displayed. In this example we are using a function getchar(),
instead of cin to get the input. This function is defined in header file as stdio.h.
While carrying out character manipulation, we use the getchar() function. This
function reads a single character from the input buffer or keyboard. This function can
get the new line character “\n’ (the ENTER key) so we run the loop for input until
user presses the ENTER key. As soon as the getchar() gets the ENTER key pressed
(i.e. new line character ‘\n’), the loop is terminated. We know that, every C statement
returns a value. When we use an assignment statement (as used in our program ¢ =
getchar()), the value assigned to the left hand side variable is the value of the
statement too. Thus, the statement (c = getchar()) returns the value that is assigned to
char c. Afterwards, this value is compared with the new line character “\n’. If it is not
equal inside the loop, we apply the tests on ¢ to check whether it is uppercase letter,
lowercase letter or a digit etc. In this program, the whole string entered by the user is
manipulated character.

Following is the code of this program.

// Example: analysis of text using <ctype.h> library

#include <iostream.h>
#include <stdio.h>
#include <ctype.h>

189

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

main()

{

char c;
inti=0,lc=0,uc=0,dig=0,ws=0, pun= 0, oth = 0;

// Analyse text as it is input:

while ((c = getchar()) !="\n")

{
if (islower(c))
le++;
else if (isupper(c))
uctt;
else if (isdigit(c))
dig++;
else if (isspace(c))
wst+;
else if (ispunct(c))
punt+;
else
oth++;
}

// display the counts of different types of characters

cout << "You typed:"<< endl;

cout<< "lower case letters = "<< lc<<endl;

cout << "upper case letters = " << uc <<endl;
cout<< "digits = " << dig << end];
cout<< "white space = "<< ws << end];
cout<< "punctuation = "<< pun<< endl;
cout<< "others = "<< oth;

}

cout << "Please enter a character string and then press ENTER: ";

A sample output of the program is given below.

You typed:

lower case letters = 7
upper case letters = 2
digits = 4

white space = 3
punctuation = 2
others = 0

Please enter a character string and then press ENTER: Sixty Five = 65.00

String Conversion Functions

190

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The header file stdlib.h includes functions, used for different conversions. When we
get input of a different type other than the type of variable in which the value is being
stored, it warrants the need to convert that type into another type. These conversion
functions take an argument of a type and return it after converting into another type.
These functions and their description are given in the table below.

Prototype Description
double atof(const char *nPtr) Converts the string nPtr to double.
Int atoi(const char *nPtr) Converts the string nPtr to int.
long atol(const char *nPtr) Converts the string nPtr to long int.
double strtod(const char *nPtr, char | Converts the string nPtr to double.
**endPtr)

long strtol(const char *nPtr, char Converts the string nPtr to long.
**endPtr, int base)

unsigned long strtoul(const char Converts the string nPtr to unsigned long.
*nPtr, char **endPtr, int base)

Use of these functions:

While writing main () in a program, we can put them inside the parentheses of main.
‘int arg c, char ** arg v are written inside the parentheses. The arg c is the count of
number of arguments passed to the program including the name of the program itself
while arg v is a vector of strings or an array of strings. It is used while giving
command line arguments to the program. The arguments in the command line will
always be character strings. The number in the command line (for example 12.8 or
45) are stored as strings. While using the numbers in the program, we need these
conversion functions.

Following is a simple program which demonstrate the use of atoi function. This
program prompts the user to enter an integer between 10-100, and checks if a valid
integer is entered.

//This program demonstrate the use of atoi function

include <iostream.h>
include <stdlib.h>

main()
{
int anInteger;
char mylInt [20]
cout << "Enter an integer between 10-100 : ";
cin >> mylnt;
if (atoi(mylInt) == 0)
cout << "\nError : Not a valid input"; // could be non numeric
else
{
anInteger = atoi(myInt);
if (anInteger < 10 || anInteger > 100)
cout << "\nError : only integers between 10-100 are allowed!";
else

191

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

}

cout << "\n OK, you have entered " << anInteger;

The output of the program is as follows.

Enter an integer between 10-100 : 45.5
OK, you have entered 45

String Functions

We know a program to guess a number, stored in the computer. To find out a name
(which is a character array) among many names in the memory, we can perform string
comparison on two strings by comparing a character of first string with the
corresponding character of the second string. Before doing this, we check the length
of both the strings to compare. C library provides functions to compare strings, copy a

string and for other string manipulations.

The following table shows the string manipulation functions and their description. All
these functions are defined in the header file string.h, in the C library.

Function prototype

Function description

char *strcpy(char *s1, const char *s2)

Copies string s2 into character array s1.
The value of s1 is returned.

char *strncpy(char *s1, const char *s2,
size tn)

Copies at most n characters of string s2
into array s1. The value of s1 is
returned.

char *strcat(char *s1, const char *s2)

IAppends string s2 to array s1. The first
character of s2 overwrites the
terminating null character of s1. The
value of s1 is returned.

char *strncat(char *s1, const char *s2,
size tn)

Appends at most n characters of string s2
to array s1. The first character of s2
overwrites the terminating null character
of s1. The value of s1 is returned.

int stremp(const char *s1, const char *s2)

Compares string s1 to s2. Returns a
negative number if s1 <s2, zero if s1 ==
s2 or a positive number if s1 >s2

size tn)

int strncmp(const char *s1, const char *s2,

Compares up to n characters of string s1
to s2. Returns a negative number if s1 <
s2, zero if s1 ==s2 or a positive number
if s1>s2.

int strlen (const char *s)

Determines the length of string s. The
number of characters preceding the

terminating null character is returned.

Let’s look at the string copy function which is strepy. The prototype of this function

1S

192

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

char *strcpy(char *s1, const char *s2)
Here the first argument is a pointer to a character array or string s1 whereas the
second argument is a pointer to a string s2. The string s2 is copied to string sl and a
pointer to that resultant string is returned. The string s2 remains the same. We can
describe the string s1 as the destination string and s2 as the source string. As the
source remains the same during the execution of strepy and other string functions, the
const keyword is used before the name of source string. The const keyword prevents
any change in the source string (i.e. s2). If we want to copy a number of characters of
a string instead of the entire string, the function strncpy is employed. The function
strncpy has arguments a pointer to destination strings (s1), a pointer to source string
(s2) . The third argument is int n. Here n is the number of characters which we want
to copy from s2 into s1. Here s1 must be large enough to copy the n number of
characters.
The next function is streat (string concatenation). This function concatenates (joins)
two strings. For example, in a string, we have first name of a student, followed by
another string, the last name of the student is found. We can concatenate these two
strings to get a string, which holds the first and the last name of the student. For this
purpose, we use the streat function. The prototype of this function is char *strcat(
char *s1, const char *s2). This function writes the string s2 (source) at the end of
the string s1(destination). The characters of s1 are not overwritten. We can
concatenate a number of characters of s2 to sl by using the function strncat. Here we
provide the function three arguments, a character pointer to s1, a character pointer to
s2 while third argument is the number of characters to be concatenated. The prototype
of this function is written as

char *strncat(char *s1, const char *s2, size tn)

Examples
Let’s consider some simple examples to demonstrate the use of strcpy, strncpy,
strcat and strncat functions. To begin with, we can fully understand the use of the

function strepy and strncpy.

Example 1

//Program to display the operation of the strcpy() and strncpy()

include<iostream.h>
include<string.h>

void main()
{
char string1[15]="String1";
char string2[15]="String2";

cout<<"Before the copy :"<<endl;
cout<<"String 1:\t"<<string1<<endl;
cout<<"String 2:\t"<<string2<<endl;

//copy the whole string
strepy(string2,stringl); //copy string] into string?2

193

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

cout<<"After the copy :"<<endl;
cout<<"String 1:\t"<<string1<<endl;
cout<<"String 2:\t"<<string2<<endl;

//copy three characters of the string] into string3
strncpy(string3, stringl, 3);
cout << “strncpy (string3, stringl, 3) = “ <<string3 ;

Following is the output of the program.

Before the copy :

String 1: String1

String 2: String?2

After the copy :

String 1: String1

String 2: String1

Strncpy (string3, stringl, 3) = Str

Example 2 (strcat and strncat)

The following example demonstrates the use of function strcat and strncat.

//Program to display the operation of the strcat() and strncat()

#include <iostream.h>
#include <string.h>

int main()

{

char s1[20] ="Welcome to ";

char s2[] = "Virtual University ";

chars3[40]="";

cout<< "sl = " <<l <<endl <<"s2 = " <<§2 << endl << "s3 =" << 53 << endl;
cout<< "strcat(sl,s2)= “<<strcat(sl,s2);

cout << "strncat(s3, s, 6)= “ <<strncat(s3, sl, 6);

}

The output of the program is given below.

sl = Welcome to

s2 = Virtual University

s3 =

strcat(s1, s2)= Welcome to Virtual University
strncat(s3,s1,7)= Welcome

194

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

Y,

Now we come across the function stremp. This function compares two strings, and
returns an integer value depending upon the result of the comparison. The prototype
of this function is int stremp(const char *s1, const char *s2)
This function returns a number less than zero (a negative number), if sl is less than
s2. It returns zero if s1 and s2 are identical and returns a positive number (greater than
zero) if s1 is greater than s2. The space character in a string and lower and upper case
letters are also considered while comparing two strings. So the strings “Hello”,
“hello” and “He llo” are three different strings these are not identical.
Similarly there is a function strnemp, which can be used to compare a number of
characters of two strings. The prototype of this function is

int strncmp(const char *s1, const char *s2, size tn)
Here s1 and s2 are two strings and n is the number upto which the characters of sl
and s2 are compared. Its return type is also int. It returns a negative number if first n
characters of s1 are less than first n characters of s2. It returns zero if n characters of
sl and n characters of s2 are identical. However, it returns a positive number if n
characters of s1 are greater than n characters of s2.
Now we will talk about the function, ‘strlen’ (string length) which is used to
determine the length of a character string. This function returns the length of the
string passed to it. The prototype of this function is given below.

int strlen (const char *s)
This function determines the length of string s. the number of characters preceding the
terminating null character is returned.

Search Functions

C provides another set of functions relating to strings, called search functions. With
the help of these functions, we can do different types of search in a string. For
example, we can find at what position a specific character exists. We can search a
character starting from any position in the string. We can find the preceding or
proceeding string from a specific position. We can find a string inside another string.
These functions are given in the following table.

Function prototype

Function description

char *strchr(const char *s, int ¢);

Locates the first occurrence of character ¢ in string
s. If ¢ is found, a pointer to ¢ in s is returned.
Otherwise, a NULL pointer is returned.

size t strespn(const char *s1,
const char *s2);

Determines and returns the length of the initial
segment of string s1 consisting of characters not
contained in string s2.

size_t strspn(const char *s1, const
char *s2);

Determines and returns the length of the initial
segment of string s1 consisting only of characters
contained in string s2.

char *strpbrk(const char *s1,
const char *s2);

Locates the first occurrence in string s1 of any
character in string s2. If a character from string s2 is
found, a pointer to the character in string s1 is
returned. Otherwise, a NULL pointer is returned.

char *strrchr(const char *s, int ¢

b)

Locates the last occurrence of ¢ in string s. If ¢ is

found, a pointer to ¢ in string s is returned.

195

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

YU

Otherwise, a NULL pointer is returned.

char *strstr(const char *sl1, const
char *s2);

Locates the first occurrence in string s1 of string s2.
[f the string is found, a pointer to the string in s1 is
returned. Otherwise, a NULL pointer is returned.

char *strtok(char *sl1, const char
*s2);

A sequence of calls to strtok breaks string s1 into
“tokens”—Ilogical pieces such as words in a line of
text—separated by characters contained in string s2.
The first call contains s1 as the first argument, and
subsequent calls to continue tokenizing the same
string contain NULL as the first argument. A
pointer to the current token is returned by each call.
[f there are no more tokens when the function is

called, NULL is returned.

Example 3

Here is an example, which shows the use of different string manipulation functions.
The code of the program is given below.

#include <iostream.h>
#include <string.h>
#include <stdlib.h>

main()
{
char s1[] ="Welcome to " ;

char s2[] = "Virtual University" ;

char city[] = "Karachi";
char province[] = "Sind";
char s[80];
char *pc;
int n;

char s3[] = "Welcome to Karachi" ;

//A program which shows string manipulation using <string.h> library

cout << "sl =" <<l <<endl <<"s2 ="<<s2 <<endl;
cout << "s3 =" << g3 <<endl ;

// function for string length

cout << "The length of s1 =" <<strlen(s1) << endl ;
cout << "The length of s2 =" << strlen(s2) << endl ;
cout << "The length of s3 =" << strlen(s3) << endl ;

strepy(s, "Hyderabad"); // string copy
cout<< "The nearest city to "<< city << " is " << s <<endl ;

strcat(s, " and "); // string concatenation
strcat(s,city);

strcat(s, " are in ");

strcat(s, province);

strcat(s, ".\n");

196

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

cout <<s;

if (!(strcmp (s1,s2))) //!1is used as zero is returned if s1 & s2 are equal
cout << "s1 and s2 are identical" << endl ;

else
cout << "s1 and s2 are not identical" << end]l ;
if (!(strncmp (s1,s3,7))) //'! is used as zero is returned for equality
cout << "First 7 characters of s1 and s3 are identical" << end] ;
else

cout << "First 7 characters of s1 and s3 are not identical" << end] ;

Following is the output of the program.

S1 = Welcome to

S2 = Virtual University

S3 = Welcome to Karachi

The length of s1 =11

The length of s2 =18

The length of s3 =18

The nearest city to Karachi is Hyderabad
Hyderabad and Karachi are in Sind.

S1 and s2 are not identical

First 7 characters of s1 and s3 are identical

Exercises

1: Write a program that displays the ASCII code set in tabular form on the screen.
2: Write your own functions for different manipulations of strings.
3: Write a program, which uses different search functions.

197

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 18

Reading Material
Deitel & Deitel - C++ How to Program Chapter 14
14.3,14.4,14.5, 14.6
Summary
Files
Text File Handling
Example 1
Output File Handling
Example 2
Tips
Files

Today’s topic is about files and file handling. We have been talking about bit, bytes,
character, numbers etc. Then we discuss about strings, which are actually character
arrays. When we combine all these things, it becomes a program. We type a letter or a
document in word processor. Similarly, we can have a novel as a combinations of
characters, words, sentences, bigger collection of words and sentences. These are no
longer bits and bytes. We call these sentences, paragraphs as files. There are many
types of files in computer. Primarily, there are two types of files i.e. text files and
executable program files. Text files consist of readable English characters. These
include our simple text files, or word processor file etc. On the other hand, the
executable program files run the program. In the dos (command prompt window),
when we issue the command ‘dir’, a list of files is displayed. Similarly, Windows
explorer is used in the windows, click on some folder to see the list of the files in that
folder in the right panel. These are the names of the files, which we see. The file
properties show the length of the file, date of creation etc. One category of data files is
plain text files. We can create plain text files using the windows note pad, type the
text and save it. It is an ordinary text, meaning that there is no formatting of text
involved and we can view this text using the ‘type’ command of the dos (type
filename). Similarly, our source programs are also plain text files. There is no
formatted text in cpp files. There is another kind of text files, which are not plain
ones. These are the word processor files, containing text that is formatted like, bold,
italic, underline, colored text and tables. This formatting information is also stored in
the file along with the text. Therefore such files are not plain text files. Same thing
applies to spreadsheets having formatting, formulae, cell characteristic etc. Though
these files contain some binary information along with the text, yet these are not
program files. We created these files using some other program like Microsoft Word,
excel etc. Such files also fall in the category of text files. The other type is the
program file that executes on the computer. Normally, executable files contain only
non-printable binary information. There are different ways of handling these files.
Today we will see what is the utility of files in our programs. We know that all the
information in the computer memory is volatile. It means when we turn off the
computer that information will be lost. The data, written in a program, is actually the
part of the program and is saved on the disk. Whenever we execute the program that

198

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

data will be available. Suppose we have to develop a payroll system for a factory. For
this purpose, we will at first need to gather the data like name of the employees, their
salaries etc. Enter all this information before getting their attendance. After collecting
all the information, you can calculate their salary and print a report of the salary. Now
the question arises whether we will have to enter the name and salary of employees
every month. The better way is to store this information once and re-use it every
month. We can save this information in a file and can calculate the salary after getting
the current month’s attendance of employees. We have to do all the calculations
again in case of not saving the report on the disk. It will be nicer if we have saved the
output file on the disk. We can take the print out whenever we need. We are
discussing this just to give you the justification of using files. The data in the memory
is volatile. Similarly, the data, which we key in the program during the execution of a
program, is also volatile. To save the data on permanent basis, we need files so that
we keep these on the disk and can use whenever needed. Now there is need to learn
how to create a file on the disk, read from the file, and write into the file and how to
manipulate the data in it. This is the file handling.

Text file Handling

Let's look what are the basic steps we need for file handling. Suppose we have a file
on the disk and want to open it. Then read from or write into the file before finally
closing it. The basic steps of file handling are:

Open the file
Read and write
Close the file

We have been using cin and cout a lot in our programs. We know that these are the
doors by which data can enter and come out. cin is used to enter the data and cout is
used to display the data on the screen. Technically, these are known as streams in
C++. We will discuss in detail about streams in later lectures. Today we will see some
more streams about file handling. This is how 'C++ language' handles files. For this
purpose, the header file to be used is <fstream.h> (i.c. file stream). Whenever using
files in our program, we will include this header file as #include <fstream.h>. These
streams are used the way we have been employing cin and cout but we can do more
with these streams. While handling files, one can have three options. Firstly, we will
only read the file i.e. read only file. It means the file is used as input for the program.
We need to have a stream for input file i.e. ifstream (input file stream). Similarly, if
we want to write in some file, ofstream (output file stream) can be used. Sometimes
we may need to read and write in the same file. One way is to read from a file,
manipulate it and write it in another file, delete the original file and renaming the new
file with the deleted file name. We can read, write and manipulate the same file using
fstream.h.

Let us take a look how can we use these files in our programs. First, we have to
include the fstream.h in our programs. Then we need to declare file streams. cin and
cout are predefined streams therefore we did not declare these. We can declare file

stream as:
ifstream inFile; // object for reading from a file
ofstream outFile; // object for writing to a file

199

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The variables inFile and outFile are used as handle to refer files. These are like
internal variables which will be used to handle the files that are on the disk. If we
want to read a file, we will use inFile as declared above to read a file. Any meaningful
and self-explanatory name can be used. To deal with a payroll system,
payrollDataFile can be used as a file stream variable i.c. ifstream payrollDataFile;.
Consider the following statement:

ifstream myFile;

Here myFile is an internal variable used to handle the file. So far, we did not attach a
file with this handle. Before going for attachment, we will have to open a file.
Logically, there is function named ‘open’ to open a file. While associating a file with
the variable myFile, the syntax will be as under:

myFile.open(filename);

You have noted that this is a new way of function calling. We are using dot (.)
between the myFile and open function. myFile is an object of ifstream and open() is a
function of ifstream. The argument for the open function filename is the name of the
file on the disk. The data type of argument filename is character string, used to give
the file name in double quotation marks. The file name can be simple file name like
“payroll.txt”. It can be fully qualified path name like “C:\myprogs\payroll.txt”. In the
modern operating systems like Windows, disks are denoted as C: or D: etc. We have
different folders in it like ‘myprogs’ and can have files in this folder. The fully
qualified path means that we have to give the path beginning from C:\.

To under stand it further, suppose that we are working in the folder ‘myprogs’ and our
source and executable files are also in this folder. Here, we don’t need to give a
complete path and can write it as “payroll.txt”. If the file to be opened is in the current
directory (i.e. the program and text file are in the same folder), you can open it by
simply giving the name. If you are not familiar with the windows file system, get
some information from windows help system. It is a hierarchical system. The disk,
which is at the top, contains folder and files. Folders can contain subfolders and files.
It is a multi-level hierarchical system. In UNIX, the top level is “root”, which contains
files and directories. So it’s like a bottom-up tree. Root is at the top while the
branches are spreading downward. Here ‘root’ is considered as root of a tree and files
or subfolders are branches.

To open a file, we use open function while giving it the name of the file as fully
qualified path name or simple name. Then we also tell it what we want to do with that
file i.e. we want to read that file or write into that file or want to modify that file. We
have declared myFile as ifstream (input file stream) variable so whenever we tried to
open a file with ifstream variable it can only be opened for input. Once the file is
open, we can read it. The access mechanism is same, as we have been using with
streams. So to read a word from the file we can write as:

myFile >> c;

So the first word of the file will be read in ¢, where c is a character array. It is similar
as we used with cin. There are certain limitations to this. It can read just one word at
one time. It means, on encountering a space, it will stop reading further. Therefore,

200

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

we have to use it repeatedly to read the complete file. We can also read multiple
words at a time as:

myFile >> ¢l >> ¢2 >> ¢3;

The first word will be read in c1, 2" in ¢2 and 3" in ¢3. Before reading the file, we
should know some information regarding the structure of the file. If we have a file of
an employee, we should know that the first word is employee’s name, 2™ word is
salary etc, so that we can read the first word in a string and 2" word in an int variable.
Once we have read the file, it must be closed. It is the responsibility of the
programmer to close the file. We can close the file as:

myFile.close();

The function close() does not require any argument, as we are going to close the file
associated with myFile. Once we close the file, no file is associated with myfile now.

Lets take a look on error checking mechanism while handling files. Error checking is
very important. Suppose we have to open a text file myfile.txt from the current
directory, we will write as:

ifstream myFile;
myFile.open(“myfile.txt”);

If this file does not exist on the disk, the variable myFile will not be associated with
any file. There may be many reasons due to which the myFile will not be able to get
the handle of the file. Therefore, before going ahead, we have to make sure that the
file opening process is successful. We can write as:

if (!myFile)

{
cout << “There is some error opening file” << endl;
cout << “ File cannot be opened” << end;
exit(1);
}
else
cout << “ File opened successfully “ << end;
Example 1

Let’s write a simple program, which will read from a file ‘myfile.txt” and print it on
the screen. ““myfile.txt” contains employee’s name, salary and department of
employees. Following is the complete program along with “myfile.txt” file.

Sample “myfile.txt”.

Name Salary Department
Aamir 12000 Sales
Amara 15000 HR

Adnan 13000 IT

Afzal 11500 Marketing

201

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
Code of the program.
/%

* This program reads from a txt file “myfile.txt” which contains the

* employee information
*/

#include <iostream.h>
#include <fstream.h>

main()

{
char name[50]; // used to read name of employee from file
char sal[10]; // used to read salary of employee from file
char dept[30]; // used to read dept of employee from file
ifstream inFile; // Handle for the input file

char inputFileName[] = "myfile.txt"; // file name, this file is in the current directory
inFile.open(inputFileName); // Opening the file

// checking that file is successfully opened or not

if (!inFile)

{
cout << "Can't open input file named " << inputFileName << end];
exit(1);

}

// Reading the complete file word by word and printing on screen
while (linFile.eof())

{
inFile >> name >> sal >> dept;
cout << name << "\t" << sal << " \t" << dept << end];

inFile.close();

}

Output of the program.

Name Salary Department
Aamir 12000 Sales
Amara 15000 HR
Adnan 13000 IT

Afzal 11500 Marketing

In the above program, we have declared three variables for reading the data from the
input file (i.e. name, sal, dept). The text file “myfile.txt” and the program file should
be in the same directory as there is no fully qualified path used with the file name in
the open() function. After opening the file, we will check that file is successfully
opened or not. If there is some error while opening the file, we will display the error
on screen and exit from the program. The statement exit(1) is used to exit from the
202

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

program at any time and the control is given back to the operating system. Later, we
will read all the data from the file and put it into the variables. The condition in ‘while
loop’ is “!linFile.eof()”” means until the end of file reached. The function eof() returns
true when we reached at the end of file.

Output File Handling

Let’s talk about the output file handling. You can do several things with output files
like, creation of a new file on the disk and writing data in it. Secondly, we may like to
open an existing file and overwrite it in such a manner that all the old information is
lost from it and new information is stored. Thirdly, we may want to open an existing
file and append it in the end. Fourthly, an existing file can be opened and modified in
a way that it can be written anywhere in the file. Therefore, when we open a file for
output we have several options and we might use any one of these methods. All these
things are related to the file-opening mode. The actual syntax of open function is:

open (filename, mode)

The first argument is the name of the file while the second will be the mode in which
file is to be opened. Mode is basically an integer variable but its values are pre-
defined. When we open a file for input, its mode is input file that is defined and
available through the header files, we have included. So the correct syntax of file
opening for input is:

myFile.open(“myfile.txt” , io0s::in);
The 2™ argument ios::in associates myFile stream object with the “myfile.txt” for

input. Similarly, for output files, there are different modes available. To open a file for
output mode, i0s::0ut is used. Here is the complete list of modes:

Mode Meaning

in Open a file or stream for extraction (input)

out Open a file or stream for insertion (output)

app Append rather than truncate an existing file. Each insertion
(output) will be written to the end of the file

trunc Discards the file’s contents if it exists. (similar to default
behavior)

ate Opens the file without truncating, but allows data to be
written anywhere in the file

binary Treat the file as binary rather than text. A binary file has
data stored in internal formats, rather than readable text
format

If a file is opened with i0s::0ut mode, a new file is created. However, if the file
already exists, its contents will be deleted and get empty unless you write something
into it. If we want to append into the file, the mode will be i0s::app. When we write
into the file, it will be added in the end of the file. If we want to write anywhere in the
file, the mode is i0s::ate. We can position at some particular point and can write there.

203

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

It is like append mode. But in ‘ate mode’ we can write anywhere in the file. With the
trunc mode, the file is truncated, it is similar to out mode.

Exercise:
Write a program, which creates a new file, and write “Welcome to VU” in it.

The code of the program is:

/*

* This program writes into a txt file “myfileOut.txt” which contains the
* “Welcome to VU”

*/

#include <iostream.h>
#include <fstream.h>

main()

{

ofstream outFile; // Handle for the input file
char outputFileName[] = "myFileOut.txt"; // The file is created in the current directory
char ouputText[100] = "Welcome to VU"; // used to write into the file

outFile.open(outputFileName, ios::out); // Opening the file

// checking that file is successfully opened or not
if (!outFile)

{
cout << "Can't open input file named " << outputFileName << endl;
exit(1);

h

// Writing into the file

outFile << ouputText;
outFile.close();

}

The file “myFileOut.txt”:

| Welcome to VU

Exercise:

Write a program, which reads an input file of employee’s i.e. “employeein.txt”, add
the salary of each employee by 2000, and write the result in a new file
“employeeout.txt”.

The sample input file “employeein.txt”

Aamir 12000
Amara 15000
Adnan 13000
Afzal 11500

204

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The output file “employeeout.txt” should be as:

Name Salary
Aamir 14000
Amara 17000
Adnan 15000
Afzal 13500

We have been using “>>’ sign for reading data from the file. There are some other
ways to read from the file. The get() function is used to get a character from the file,
so that we can use get() to read a character and put it in a char variable. The last
character in the file is EOF, defined in header files. When we are reading file using
get() function the loop will be as:

char c;
while ((c = inFile.get()) != EOF)
{
// do all the processing
outFile.put(c);
¥

There is one limitation with the “>>" and that is it does not read the new line character
and in the output file we have to insert the new line character explicitly, whereas get()
function reads each character as it was typed. So if we have to make a copy of a file,
the function get() should be used. Can we have a function to put a character in the
output file? Yes, the function to write a single character in the out put file is put(), so
with the output file stream handle, we can use this function to write a character in the
output file.

Exercise:
Write the above programs using the get() function and verify the difference of “>>’
and ’get()’ using different input files.

Whenever we declare a variable we initialize it like if we declare an integer as int i.
We initialize it as i = 0. Similarly we can declare and initialize an input or output file
stream variable as:

ifstream inFile(“myFileln.txt”);
ofstream outFile(“myfileOut.txt”, ios::out);

This is a short hand for initialization. This is same as we open it with open() function.

Normally we open a file explicitly with the open() function and close it explicitly with
close() function. Another advantage of using explicitly opening a file using the open()
function is, we can use the same variable to associate with other files after closing the
first file.

We can also read a line from the file. The benefit of reading a line is efficiency, but
clarity should not be sacrificed over efficiency. We read from the disk and write to the
disk. The disk is an electro mechanical device and is the slowest component in the
computer. Other parts like processors, memory etc are very fast nowadays i.e. up o
2Ghz. When we talk about hard disk, we say its average access time is 7 mili sec. It

205

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

means when we request hard disk to get data it will take 7 mili sec (7/1000 of a sec) to
get the data where as processor is running on GHz speed which is thousand million
cycles per sec. Processor and memory are much much faster than the hard disk.
Therefore reading a single character from the file is too slow. Although nowadays, the
buffering and other techniques are used to make the disk access faster. It will be quite
efficient if we read the data in bigger chunks i.e. 64k or 256k bytes and also write in
bigger chunks. Today’s operating system applies the buffering and similar techniques.
Instead of reading and writing character-by-character or word-by-word, reading and
writing line by line is efficient. A function is available for this purpose i.e. getLine()
for input file stream and putLine() for output file stream. The syntax of getLine() is as
follows:

char name[100];

int maxChar = 100;

int stopChar = ‘0’;

inFile.getLine(name, maxChar, stopChar);

The first argument is a character array, the array should be large enough to hold the
complete line. The second argument is the maximum number of characters to be read.
The third one is the character if we want to stop somewhere. Suppose we have an
input file containing the line ‘Hello World’, then the statements:

char str[20];
inFile.getLine(str, 20, ‘W’);
cout << “The line read from the input file till W is ” << str;

The getLine() function will read ‘Hello ’. Normally we do not use the third argument.
The default value for the third argument is new line character so getLine() will read
the complete line up to the new line character. The new line character will not be
read. The line read will be stored in the array, used in the first argument. It is our
responsibility that the array should be large enough to hold the entire line and then we
can manipulate this data. Using the getLine() repeatedly to read the file is much more
efficient rather than using the get() function. As the getLine() function does not read
the new line character, we have to put it explicitly. If we have large file to be read
then difference in speed with both the programs i.e. using get() and getLine() can be
noted.

Exercise:
Write a program which reads a file using the getLine() function and display it on the

screen.

Sample input file:

This is a test program
In this program we learn how to use getLine() function
This function is faster than using the get() function

The complete code of the program:

/*
* This program reads from a txt file line by line
*

206

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

*/

#include <iostream.h>
#include <fstream.h>

main()
{
ifstream inFile; // Handle for the input file
char inputFileName[] = "test.txt"; // file name, this file is in the current directory

const int MAX CHAR TO READ =100; // maximum character to read in one line
char completeLineTextfMAX CHAR TO READ]; // to be used in getLine function

inFile.open(inputFileName); // Opening the file

// checking that file is successfuly opened or not

if (!inFile)

{
cout << "Can't open input file named " << inputFileName << endl;
exit(1);

}

// Reading the complete file line by line and printing on screen

while (!inFile.eof())

{
inFile.getline(completeLineText, MAX CHAR TO_READ);

cout << completeLineText << endl;

}

inFile.close();

}

The output of the program is:

This is a test program
In this program we learn how to use getLine() function
This function is faster than using the get() function

Example 2

Problem statement:

A given input file contains Name of the employee and salary of current month. There
is a single space between the name and the salary. Name and salary can not contain
spaces. Calculate the total salaries of the employees. Create an output file and write
the total salary in that file.

Solution:
We can read a line from the input file using the getLine() function. Now we need to
break this line into pieces and get the name and salary in different variables. Here we
can use the string token function i.e. strtok(). The string token function (strtok()) takes
a string and a delimiter i.e. the character that separates tokens from each other. As
there is a space between the name and the salary, we can use the space character as
delimiter. So the first call to the string token function will return the name of the

207

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

employee, the second call will return the salary of the employee. The syntax to get the
next token from the strtok() function is: strtok(NULL, © “), it means return the next
token from the same string. The second token contains the salary of the employee and
is in a char string. We need to add the salaries of all the employees. So we need to
convert the salary from character to integer. For this purpose we can use atoi()
function.

Sample input file:

Aamir 12000
Amara 15000
Adnan 13000
Afzal 11500

Complete code of the program:

/*

*/

* This program reads name and salary from a txt file
* Calculate the salaries and write the total in an output file

#include <iostream.h>
#include <fstream.h>
#include <cstring>
#include <cstdlib>

main()

{
ifstream inFile; // Handle for the input file
char inputFileName[] = "salin.txt"; // file name, this file is in the current directory
ofstream outFile; // Handle for the output file

char outputFileName[] = "salout.txt"; // file name, this file is in the current directory
const int MAX CHAR TO READ =100; // maximum character to read in one line
char completeLineTextftMAX CHAR TO READ]; // used in getLine function

char *tokenPtr; // Used to get the token of a string

int salary, totalSalary;

salary = 0;

totalSalary = 0;

inFile.open(inputFileName); // Opening the input file
outFile.open(outputFileName); // Opening the output file

// Checking that file is successfully opened or not
if (linFile)

{
cout << "Can't open input file named " << inputFileName << endl;
exit(1);

}

if (loutFile)

{

cout << "Can't open output file named " << outputFileName << end];

208

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

exit(1);
b

// Reading the complete file line by line and calculating the total salary
while (linFile.eof())

{
inFile.getline(completeLineText, MAX CHAR TO_ READ);
tokenPtr = strtok(completeLineText, " "); // First token is name
tokenPtr = strtok(NULL, " "); // 2nd token is salary
salary = atoi(tokenPtr);
totalSalary += salary;

}

// Writing the total into the output file
outFile << "The total salary =" << totalSalary;

// closing the files
inFile.close();
outFile.close();

}

The contents of output file:

| The total salary = 51500

Exercise:

Modify the above program such that the input and output files are given as the
command line arguments. Add another information in the input file i.e. the age of the
employee. Calculate the average age of the employees and write it in the out put file.
Write a program, which reads an input file. The structure of the input file is First
Name, Middle Initial, Last Name. Create an output file with the structure First Name,
Login Name, Password. First name is same as in the input file. The login name is
middle initial and last name together. The password is the first four digits of the first
name. First name, middle initial and last name does not contain space.

The sample input file is:

Syed N Ali
Muhammad A Butt
Faisal A Malik
Muhammad A Jamil

If the above file is used as input, the output should be as follows:

Syed Nali Syed
Muhammad Abutt Muha
Faisal Amalik Fais
Muhammad Ajamil Muha

Tips
Always close the file with the close function.

209

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Open a file explicitly with open function
Always apply the error checking mechanism while handling with files.

210

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 19

Reading Material

Deitel & Deitel - C++ How to Program Chapter 6
Summary

o Sequential Access Files (Continued)

o Last Lecture Reviewed

o Random Access Files

- Position in a File

- Setting the Position

- Example of seekg() and tellg() Functions

- Example of Data Insertion in the Middle of a File
- Efficient Way of Reading and Writing Files

- Copying a File in Reverse Order

Sample Program 1

Sample Program 2

Exercises

Tips

Sequential Access Files (Continued)

In the last lecture, we discussed little bit about Sequential Access Files
under the topic of File Handling. Sequential Access Files are simple
character files. What does the concept of sequential access mean? While
working with the sequential access files, we write in a sequence, not in a
random manner. A similar method is adopted while reading such a file.

In today’s lecture, we will discuss both the topics of File Handling and
Random Access Files.

Before going ahead, it is better to recap of File Handling discussed in the
previous lecture. Let’s refresh the functions or properties of File streams in
our minds.

211

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Last Lecture Reviewed

It is so far clear to all of us that we use open () function to open files.
Similarly, to close a file close () function is used. open () has some
parameters in its parenthesis as open (filename, mode) but close () brackets
remain empty as it does not have any parameter.

A file can be opened for reading by using the open () function. It can also
be opened for writing with the help of the same open () function . But
different argument value will be needed for this purpose. If we are opening
for reading with ifstream (Input File Stream), a simple provision of the
filename is sufficient enough, as the default mode is for reading or input.
We can also provide an additional argument like open ('"filename",
ios::in). But this is not mandatory due to the default behavior of ifstream.
However, for ofstream (Output File Stream), we have several alternatives.
If we open a file for writing, there is default mode available to destroy
(delete) the previous contents of the file, therefore, we have to be careful
here. On the other hand, if we don’t want to destroy the contents, we can
open the file in append mode (ios::app). ios:trunc value causes the contents
of the preexisting file by the same name to be destroyed and the file is
truncated to O length.

/* Following program writes an integer, a floating-point value, and
a character to a file called ‘test’ */

#include <iostream.h>
#include <fstream.h>

main(void)
{
ofstream out(“test”); //Open in default output mode
if (lout)
{
cout << “Cannot open file”;
return 1;
}
out << 100 << “ “ <<123.12 << “a”;

out.close();

return 0;

}

If you want to open a file for writing at random positions forward and
backward, the qualifier used is ios:ate. In this case, the file is at first opened
and positioned at the end. After that, anything written to the file is appended

212

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

at the end. We will discuss how to move forward or backward for writing in
the file later in this lecture.

/* Following program reads an integer, a float and a character from
the file created by the preceding program. */

#include <iostream.h>
#include <fstream.h>

main(void)

{
char ch;
int i;
float f;

ifstream in(“test”); /Open in default output mode

if(lin)

{
cout << “Cannot open file”;
return 1;

}

in >> i;

in >> f;

/* Note that white spaces are being ignored, you can turn
this off using unsetf(ios::skipws) */

in >> ch;

cout <<] << “ ¢ << f << ¢ << ¢ch;

in.close();
return O;

Besides open() and close () functions, we have also discussed how to read
and write files. One way was character by character. This means if we read
(get) from a file; one character is read at a time. Similarly, if we write (put),
one character is written to the file. Character can be interpreted as a byte
here. On the other hand, the behavior of stream extraction operator (>>) and
stream insertion operator (<<) is also valid as we just saw in the simple
programs above. We will discuss this a little more with few new properties
in this lecture.

/* Code snippet to copy the file ‘thisFile’ to the file ‘thatFile’ */

ifstream fromFile("thisFile");

213

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

if (!fromFile)
{

}

ofstream toFile ("thatFile");
if (!toFile)

cout << "unable to open ’thisFile’ for input";

{
cout << "unable to open ’thatFile’ for output";
J
char c;
while (toFile && fromFile.get(c))
{
toFile.put(c);
}
This code:

- Creates an ifstream object called fromFile with a default mode of ios::in
and connects it to thisFile. It opens thisFile.

— Checks the error state of the new ifstream object and, if it is in a failed state,
displays the error message on the screen.

- Creates an ofstream object called toFile with a default mode of ios::out and
connects it to thatFile.

- Checks the error state of toFile as above.

- Creates a char variable to hold the data while it is passed.

- Copies the contents of fromFile to toFile one character at a time.

It is, of course, undesirable to copy a file this way, one character at a time.
This code is provided just as an example of using fstreams.

We have also discussed a function getline (), used to read (get) one line at a
time. You have to provide how many characters to read and what is the
delimiter. Because this function treats the lines as character strings. If you
use it to read 10 characters, it will read 9 characters from the line and add
null character (‘\0”) at the end itself.

You are required to experiment with these functions in order to understand
them completely.

214

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Random Access Files

Now we will discuss how to access files randomly, forward and backward.
Before moving forward or backward within a file, one important factor is
the current position inside the file. Therefore, we must understand that there
is a concept of file position (or position inside a file) i.e. a pointer into the
file. While reading from and writing into a file, we should be very clear
from where (which location inside the file) our process of reading or writing
will start. To determine this file pointer position inside a file, we have two
functions tellg() and tellp().

Position in a File

Let’s say we have opened a file stream myfile for reading (getting),
myfile.tellg () gives us the current get position of the file pointer. It returns
a whole number of type long, which is the position of the next character to
be read from that file. Similarly, tellp () function is used to determine the
next position to write a character while writing into a file. It also returns a
long number.

For example, given an fstream object aFile:

Streampos original = aFile.tellp(); //save current position

aFile.seekp(0, i0s::end); //reposition to end of file
aFile << x; //write a value to file
aFile.seekp(original); //return to original position

So tellg () and tellp () are the two very useful functions while reading from
or writing into the files at some certain positions.

Setting the Position

The next thing to learn is how can we position into a file or in other words
how can we move forward and backward within a file. Suppose we want to
open a file and start reading from 100th character. For this, we use seekg ()
and seekp () functions. Here seekg () takes us to a certain position to start
reading from while seekp () leads to a position to write into. These
functions seekg () and seekp () requires an argument of type long to let
them how many bytes to move forward or backward. Whether we want to
move from the beginning of a file, current position or the end of the file,
this move forward or backward operation, is always relative to some
position.. From the end of the file, we can only move in the backward
direction. By using positive value, we tell these functions to move in the
forward direction .Likewise, we intend to move in the backward direction
by providing a negative number.

By writing:

| aFile. seekg (10L, ios::beg) |
We are asking to move 10 bytes forward from the begining of the file.

215

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Similarly, by writing:

| aFile. seekg (20L, ios::cur) |
We are moving 20 bytes in the forward direction starting from the current
position. Remember, the current position can be obtained using the tellg ()
function.

By writing:

| aFile. seekg (-10L, ios:cur) |

The file pointer will move 10 bytes in the backward direction from the
current position. With seekg (-100L, ios::end), we are moving in the
backward direction by 100 bytes starting from the end of the file. We can
only move in the forward direction from the beginning of the file and
backward from the end of the file.

You are required to write a program to read from a file, try to move the file
pointer beyond the end of file and before the beginning of the file and
observe the behavior to understand it properly.

seekg() and tellg() Functions
One of the useful things we can do by employing these functions is to
determine the length of the file. Think about it, how can we do it.

In the previous lectures, we have discussed strlen () function that gives the
number of characters inside a string. This function can also be used to
determine the length of the string placed inside an array. That will give us
the number of characters inside the string instead of the array length. As you
already know that the length of the array can be longer than the length of
the string inside it. For example, if we declare an array of 100 characters but
store "Welcome to VU" string in it, the length of the string is definitely
smaller than the actual size of the array and some of the space of the array is
unused.

Similarly in case of files, the space occupied by a file (file size) can be more
than the actual data length of the file itself.

Why the size of the file can be greater than the actual data contained in that
file? The answer is little bit off the topic yet it will be good to discuss.

As you know, the disks are electromagnetic devices. They are very slow as
compared to the controlling electronic devices like Processors and RAM
(Random Access Memory). If we want to perform read or write operations
to the disk in character by character fashion, it will be very wasteful of
computer time. Take another example. Suppose ,we want to write a file, say
53 bytes long to the disk . After writing it, the next file will start from 54th
byte on the disk. Obviously, this is very wasteful operation of computer
time. Moreover, it is also very complex in terms of handling file storage on
the disk.

To overcome this problem, disks are divided into logical blocks (chunks or
clusters) and size of one block is the minimum size to read and write to the
disk. While saving a file of 53 bytes, we can’t allocate exactly 53 bytes but

216

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

have to utilize at least one block of disk space. The remaining space of the
block except first 53 bytes, goes waste. Therefore, normally the size of the
file (which is in blocks) is greater than the actual data length of the file.
When this file will be read from the disk, the whole chunk (block) is read
instead of the actual data length.

By using seekg () function, we can know the actual data length of the file.
For that purpose, we will open the file and go to the end of the file by
asking the seekg () function to move 0 bytes from the end of the file as:
seekg (0, ios::end). Afterwards, (as we are on end of file position), we will
call tellg () to give the current position in long number. This number is the
actual data bytes inside the file. We used seekg () and tellg () functions
combination to determine the actual data length of a file.

/* This is a sample program to determine the length of a file. The program
accepts the name of the file as a command-line argument. */

#include <fstream.h>
#include <stdlib.h>

ifstream inFile;
ofstream outFile;

main(int argc, char **argv)

{

inFile.open(argv[1]);

if(linFile)
{

cout << "Error opening file in input mode"<< endl;

}

/* Determine file length opening it for input */
inFile.seekg(0, ios::end); //Go to the end of the file
long inSize = inFile.tellg(); //Get the file pointer position
cout << "The length of the file (inFile) is: " << inSize;
inFile.close();

/* Determine file length opening it for output */
outFile.open(argv[1], ios::app);

if(!outFile)

{

cout << "Error opening file in append mode"<< end];

outFile.seekp(0, ios::end);

long outSize = outFile.tellp();

cout << "\nThe length of the file (outFile) is: " << outSize;
outFile.close();

217

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Run this program to see its output that shows different results for both input
and output modes. Discuss it on discussion board.

Data Insertion in the Middle of a File

The question arises why to talk about seekg () and tellg () functions before
proceeding to our original topic of random access to files. This can be well-
understood from the following example. Let’s suppose, we have written a
file containing names, addresses and dates of birth of all students of our
class. There is a record of a student, who is from Sukkur. After sometime,
we come to know that the same student has moved to Rawalpindi. So we
need to update his record. But that record is lying somewhere in the middle
of the file. How can we update it?

We can search Sukkur using seekg () and tellg () functions. After finding
it, can we update the word sukkur with the Rawalpindi. No. It is just due
to the fact that Rawalpindi is longer in length than the word Sukkur and
the subsequent data of Data of Birth of the student will be overwritten. So
the structure of the file is disturbed and as a result your data file will be
corrupted. This is one of the issues to be taken care of while writing in the
middle of a sequential file.

Let’s think again what is the actual problem. The file is lying on the disk.

We started reading that file and reached somewhere in the middle of the file

to replace data at that position. But the data we are going to replace is

shorter in length as compared to the new one. Consider how is this on the

disk. We need some kind of mechanism to cut the disk, slide it further to

make some space to insert the data into. But this is not practically possible.

In the times of COBOL, the Merge Method was employed to insert data into

the middle of the file. The logic of Merge method is to copy all the data into

a new file starting from beginning of the file to the location where we want

to insert data. So its algorithm is:

- Opened the data file and a new empty file.

- Started reading the data file from beginning of it.

- Kept on copying the read data into the new file until the location we
want to insert data into is reached.

- Inserted (appended) new data in the new file.

- Skipped or jumped the data in the data file that is to be overwritten or
replaced.

— Copied (appended) the remaining part of the file at the end of the new
file

This is the only way of inserting the data in the middle of a sequential file.
After this process, you may delete the old file and rename the new file with
the same name as that of the old file. This was done in the past . But now
nowadays, it is used some time when the size of the data is not huge. But
obviously, it is very wasteful as it takes lot of time and space in case of

218

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

large-sized data . The file size can be in hundred of megabytes or even in
gigabytes. Suppose, you have to copy the whole file just to change one
word. This is just a wasteful activity. Therefore, we must have some other
mechanism so that we can randomly read and write data within a file,
without causing any disturbance in the structure of file.

To achieve this objective, we have to have random access file and the
structure of the file should be such that it is not disturbed in case of
updations or insertions in the middle . The language C/C++ does not impose
any structure on the file. The file can be English text or a binary file. Be
sure that a language has nothing to do with it. For a language, a file is
nothing but a stream of bytes. In our previously discussed example of
students of a class, it makes lot of sense that each record of the file (a
student record) occupies the same space. If the record size is different, the
updations will have similar problems as discussed above. So what we need
do is to make sure that size of each student data is identical in the file. And
the space we have decided on is large enough such that, if we wrote Sukkur
into it, the spaces were there at the end of it. If we want to replace Sukkur
with Ralwalpindi or Mirpur Khas, it can fit into the same allotted space. It
means that the file size remains the same and no destruction takes place,. So
the constant record length is the key element in resolving that issue of
insertion in the middle of the file without disturbing the structure of the file.
Normally, we also keep some key (it is a database terminology) inside these
files. The key is used to locate the record. Consider the example of students
again. Suppose we had written student’s name, say Jamil Ahmed, city and
data of birth, what could we do to locate the student to change the student’s
information from Sukkur to Rawalpindi. We could have written a loop to
read the names and to compare it with Jamil Ahmed to locate the particular
record of that student to replace the city to Rawalpindi. But this
comparison of names is expensive in terms of computation. It could be nicer
to store a serial number with each record of the students. That serial number
will be unique for each student. It can also be roll number or ID number of a
student. So we can say that replace the city of the student with id number 43
to Rawalpindi. So in this case, we will also be doing comparison based on
the basis of ID numbers of student. Here we have made a comparison
again. But is a number-related comparison, not a string comparison. It will
be even easier if the file is sorted on the basis of student id numbers which
have no gaps. If the data is of 50 students, the first student’s id number is 1
and last one is 50.

Let’s take this example little further. Suppose the record of one student can

be stored in 100 bytes. The student id field that is also contained within

these 100 bytes is there in the file to uniquely identify each student’s record.

If we want to read the 23™ student’s record (with id 23) in the file. One way

is the brute force technique discussed earlier to start a loop from the

beginning of the file to the required student id 23.

We have added following conditions with this file.

— Each student record takes 100 bytes

- The first ten bytes of a record are student id number. Student’s name
and City are 40 characters long respectively and last 10 bytes are for
Date of Birth.

219

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

- The student ids are in order (sorted) and there are no holes in student
ids. If let’s say there is 50 students data then the file will start with id 1
student’s record and end with id 50 student’s record.

After becoming aware of the above-mentioned conditions, can we find a
quick way of finding the 23""s student data? The answer is obviously yes as
we know that one student’s data is taking 100 bytes then 22 student’s data
will be 22 * 100 = 2200 bytes. The data for 23™s student starts from 2201
byte and goes to 2300™ byte. We will jump first 2200 bytes of the file using
seekg () function and there will be no wastage of resources as there are no
loops, no if-else comparisons. After being aware of structure of a student’s
record, we can go to the desired position and perform update operation
wherever needed. We can update the name of the student, change the name
of the city and correct the data of birth etc. So seekg () allows us to jump to
any position in the file.

seekg() is used for input file or for reading from the file while seekp() is

used for output during the process of writing to the file. Remember, a file

opened with ifstream is used for input and cannot be used for output.

Similarly, a file opened in output mode using ofstream cannot be used for

input mode. But a file opened with the help of fstream; can be used for both

purposes i.e. input and output. The qualifier ios::in || ios::out is passed into
the open () function while opening the file with fstream for both purposes.

Why are we doing the OR ‘||” operation for opening the file in both the

modes. You might remember that when we do OR operation (if either of

the expression is true), the result becomes true. The qualifiers ios::in ||
ios::out are flags and exist in memory in the form of 0’s and 1’s. The input
flag ios::in has one bit on (as 1) and output flag ios::out possesses another
bit on. When we perform OR ‘||’ operation to these two flags, the resultant
of this expression contains the bits as on (as 1) from both of the flags. So
this resultant flag bits depict that the file will be used for both input and
output . We can use this technique of ORing for other qualifiers as well.

Remember that it is not a case of AND. Although, we want input and output

, yet we have to do OR operation ios::in || ios::out to achieve our desired

behavior.

Lets see how can these tricks work

As discussed in the example of data updation within a file, what can happen
if we know the exact things and want to replace a q character in a sentence?
We should think of the logic first as it has always to be with logic and
analysis that what would be algorithm for a problem. Lets say we wrote a
sentence This is an apple in a file and want to change it to This is a
sample. The length of both the sentences is same.

/* This program firstly writes a string into a file and then replaces

its partially. It demonstrates the use of seekp(), tellp() and write()

functions. */

#include <fstream>

int main ()

{

220

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

long pos;

ofstream outfile;

outfile.open ("test.txt"); // Open the file

outfile.write ("This is an apple",16); // Write the string in the file

pos = outfile.tellp(); // Get the File pointer position
outfile.seekp (pos-7); // Move 7 positions backward
outfile.write (" sam",4); // Write 4 chars in the current position
outfile.close(); // Close the file

return O;

Efficient Way of Reading and Writing Files

Let’s consider another example. We know how to read a file character by
character, write into another file or on the screen. If we want to write into a
file after reading another file, there are already enough tools to get (read)
one character from a file and put (write) into the other one. We can use
inputFile.getc () to get a character and outputFile.putc () to write a
character into a file.

As mentioned earlier, there is very inefficient way of doing things . We also
know that for reading and writing to disk, processing in chunks is more
efficient. Can we handle more data than a single byte or a single line? The
answer is yes. We can use read () and write () functions for this purpose.
These functions are binary functions and provided as a part of the stream
functions. The term binary means that they read and write in binary mode ,
not in characters. We tell a location in memory to read () function to write
the read data and with the number of bytes to read or write. Usually,
read(arrayname, number of bytes) e.g. read(a, 10).

Now depending on our computer’s memory, we can have a very large data
in it. It may be 64K.

You are required to write two programs:

One program will be used to get to read from a file and put to write into the
other file. Prepare a simple character file using notepad or any other editor
of your choice. Put some data inside and expand the size of the data in the
file by using the copy-paste functions. A program can also be written to
make this big-sized data file. The file size should be more than 40K
preferably. Read this file using gete () and write it another file using pute ().
Try to note down the time taken by the program. Explore the time ()
function and find out how to use it in your program to note the processing
time.

Write another program to do the same operation of copying using read and
write functions. How to do it?

— First declare a character array:

| char str[10000];

221

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

- Call the read function for input file.

| mylInputFile.read(str, 10000);

- To write this, use the write function for output file.

| myQOutputFile.write(str);

Here, a loop will be used to process the whole file. We will see that it is
much faster due to being capable of reducing the number of calls to reading
and writing functions. Instead of 10000 getc () calls, we are making only
one read () function call. The performance is also made in physical reduced
disk access (read and write). Important part of the program code is given

below:
ifstream fi;
ofstream fo;
fi.open("inFilename", ios::in); // Open the input file
fo.open("outFilename", ios::out); // Open the output file
fi.seekg(0,i0s::end); /I Go the end of input file
j = fi.tellg(); /I Get the position
fi.seekg(0,i0s::beg); /I Go to the start of input file
for(i = 0;1<j/10000; i++)
fi.read(str, 10000); // Read 10000 bytes
fo.write(str, 10000); // Wrote 10000 bytes
}
fi.read(str, j-(i * 10000)); // Read the remaining bytes
fo.write(str, j-(i * 10000)); // Wrote the remaining bytes
fi.close(); // Close the input file
fo.close(); // Close the output file

The fine points in this exercise are left open to discover. Like what happens
if the file length is 25199 bytes. Will our above solution work? Definitely, It
will work but you have to figure out what happened and why does it work.
Has the last read () function call read 10000 bytes? You have to take care
of few things while doing file handling of character and binary files.
Remember that the size of the physical file on the disk may be quite
different from the actual data length contained in the file.

Copying a File in the Reverse Order

We can also try copying a file in reverse. Suppose, we want to open a text
file and write it in reverse order in a new file after reading. That means the
last byte of the input file will be the first byte of the output file, second last
byte of the input file will be the second byte of the output file until the first
byte of the input file becomes the last byte of the output file. How will we
do it?

222

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Open the input file. One of the ways of reading the files is to go to its end
and start reading in the reverse direction byte by byte. We have already
discussed , how to go to the end the file using seekg (0, ios:end). By now,
you will be aware that while reading, the next byte is read in the forward
direction. With the use of seekg (0, ios:end), we are already at end of the
file. Therefore, if want to read a byte here it will not work. To read a byte,

we should position file pointer one byte before the byte we are going to
read. So we don’t want to go to the end but one byte before it by using:

| aFile.seekg (-1, ios::end); |

We also know that whenever we read a byte, the file pointer automatically
moves one byte forward so that it is ready to read the next byte. But in our
case, after positioning, the file pointer 1 byte before the end of file and
reading 1 byte has caused the file pointer to move automatically to the end

of file byte and there is no further data of this file to read. What we need to

do now to read the next byte (second last byte of input file) in reverse order

is to move 2 positions from the end of file:

| aFile.seekg (-2, i0s::end); |

Generically, this can also be said as moving two positions back from the
current position of the file pointer. It will be ready to read the next
character. This is little bit tricky but interesting. So the loop to process the
whole file will run in the same fashion that after initially positioning file
pointer at second last byte, it will keep on moving two positions back to
read the next byte until beginning of the input file is reached. We need to
determine the beginning of the file to end the process properly. You are
required to workout and complete this exercise, snippet of the program is
given below:

aFile.seekg(-1L, ios::end);

while(aFile)

{
cout << aFile.tellg() << endl;
aFile.get(c);
aFile.put(c);

aFile.seekg(-2L,i0s::cur) ;
b

Remember, generally, if statement is very expensive computation-wise. It
takes several clock cycles. Sequential reading is fairly fast but a little bit
tedious. To reach to 100™ location, you have to read in sequence one by
one. But if you use seekg () function to go to 100™ location, it is very fast as
compared to the sequential reading.

As discussed, in terms of speed while doing file handling are read () and
write () functions. The thing needed to be taken care of while using these
functions is that you should have enough space in memory available. We
have discussed very simple example of read () and write () functions earlier
. But it is more complex as you see in your text books. Don’t get confused,
you remember we used array . Array name is a pointer to the beginning of
223

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

the array. Basically, the read () requires the starting address in memory
where to write the read information and then it requires the number of bytes
to read. Generally, we avoid using magic numbers in our program. Let’s say
we want to write an int into a file, the better way is to use the sizeof ()
function that can write an integer itself without specifying number of bytes.
So our statement will be like:

| aFile.write (&i, sizeof (i));

What benefits one can get out of this approach?. We don’t need to know the
internal representation of a type as same code will be independent of any
particular compiler and portable to other systems with different internal
representations. You are required to write little programs and play with this
function by passing different types of variables to this function to see their
sizes. One can actually know that how many bytes take the char type
variable, int type variable or a double or a float type variable.

You are required to write a program to write integers into a file using the
write () function. Open a file and by running a loop from 0 to 99, write
integer counter into the file. After writing it, open the file in notepad. See if
you can find integers inside of it. You will find something totally different.
Try to figure out what has happened. The clue lies in the fact that this was a
binary write. It is more like the internal representation of the integers not
what you see on the screen. You are required to play with it and experiment
it by writing programs.

It is mandatory to try out the above example . Also experiment the use of
read () function to read the above written file of integers and print out the
integers on the screen. Can you see correct output on the screen? Secondly,
change the loop counter to start from 100 to 199, write it using write ()
function and print it on the screen after reading it into an integer variable
using read () function. Does that work now? Think about it and discuss it
on discussion board.

Sample Program 1

/* This is a sample program to demonstrate the use of open(), close(), seekg(), get()
functions and streams. It expects a file named my-File.txt in the current directory having
some data strings inside it. */

#include <fstream.h>
#include <stdlib.h>

/* Declare the stream objects */
ifstream inFile;
ofstream scrn, prnt;

main()

{

224

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

char inChar;

inFile.open("my-File.txt", ios::in); // Open the file for input
if(!inFile)

{

h
scrn.open("CON", ios::out); // Attach the console with the output stream

cout << "Error opening file"<< end];

while(inFile.get(inChar)) // Read the whole file one character at a time

{
scrn << inChar; // Insert read character to the output stream
H
scrn.close(); // Close the output stream

inFile.seekg(0l, ios::beg); // Go to the beginning of the file
prat.open("LPT1", ios::out); // Attach the output stream with the LPT1 port

while(inFile.get(inChar)) // Read the whole file one character at a time

{
prt << inChar; // Insert read character to the output stream
}
prnt.close(); // Close the output stream
inFile.close(); // Close the input stream

225

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Sample Program 2

/* This sample code demostrates the use of fstream and seekg() function. It will create a
file named my-File.txt write alphabets into it, destroys the previous contents */

#include <fstream.h>

fstream rFile; // Declare the stream object
main()
{
char rChar;
/* Opened the file in both input and output modes */
rFile.open("my-File.txt", ios::in || i0s::out);
if(!rFile)
{

}
/* Run the loop for whole alphabets */

for (rChar ='A"; rChar <='Z'"; rChar++)

cout << "error opening file"<< endl;

{
rFile << rChar; // Insert the character in the file
}
rFile.seekg(8l, i0s::beg); // Seek the beginning and move 8 bytes forward
rFile >>rChar; // Take out the character from the file

cout << "the 8th character is " << rChar ;
rFile.seekg(-16l, ios::end); // Seek the end and move 16 positions backword
rFile >>rChar; // Take out the character at the current position

cout << "the 16th character from the end is " <<rChar ;

rFile.close(); // Close the file

Exercises

1. Write a program to concatenate two files. The filenames are provide as
command-line arguments. The argument file on the right (first
argument) will be appended to the file on the left (second argument).

2. Write a program to read from a file, try to move the file pointer beyond
the end of file and before the beginning of the file and observer the
behavior.

3. Write a program reverse to copy a file into reverse order. The program
will accept the arguments like:

226

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

reverse org-file.txt rev-file.txt

Use the algorithm already discussed in this lecture.

4. Write a program to write integers into a file using the write () function.
Open a file and by running a loop from 0 to 99, write integer counter
into the file. After writing it, open the file in notepad. See if you can
find integers inside it.

Tips

Be careful for file mode before opening and performing any operation on a
file.

The concept of File Pointer is essential in order to move to the desired location
in a file.

tellg(), seekg(), tellp() and seekp() functions are used for random movement
(backward and forward) in a file.

There are some restrictions (conditions) on a file to access it randomly. Like
its structure and record size should be fixed.

Ability to move backward and forward at random positions has given
significance performance to the applications.

Binary files (binary data) can not be viewed properly inside a text editor
because text editors are character based.

227

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 20

Reading Material

Deitel & Deitel - C++ How to Program
Chapter 6, 16
6.2, 6.3, 64, 16.2,
16.3, 16.4, 16.5

Summary

1) Structures
- Declaration of a Structure
- Initializing Structures
- Functions and structures
- Arrays of structures
- sizeof operator

2) Sample Program 1

3) Sample Program 2

4) Unions

Structures

Today, we will discuss the concepts of structures and unions which are very
interesting part of C language. These are also in C++. After dilating upon structures,
we will move to the concept of classes, quite similar to ‘structures’.

What a structure is? We can understand ‘structure’ with the example of students of a
class discussed in some of the earlier lectures. Suppose we have data about students of
a class i.e. name, addresses, date of birth, GPA and courses of study. This information
is related to only a single entity i.e. student. To understand the matter further, we can
think of a car with its specifications like model, manufacturer company, number of
seats and so on. But there is always a requirement in most of our data processing
applications that the relevant data should be grouped and handled as a group. This is
what the concept of structure is. In structure, we introduce a new data type. In the
previous lectures, we had been dealing with int, float, double and char in our
programs. You are fully familiar with the term ’strings’ but there is no data type
called strings. We have used ‘array of char’ as strings. While dealing with numbers,
there is no built-in mechanism to handle the complex numbers. This means that there
is no data type like complex. The FORTRAN language (Formula Translation) written
for scientific application, has a complex data type. Therefore, in FORTRAN, we can
say complex X; now X is a variable of type complex and has a real part and an
imaginary part. There is no complex data type in C and C++. While trying to solve the
quadratic equation on the similar grounds, we may have a complex number as answer
i.e. if we have to calculate the square root of -1, an iota (i) will be used. So the

228

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

combination of real and imaginary parts is called complex number. In C, C++ we deal
with such situations with structures. So a structure is not simply a grouping of real
world data like students, car etc, it also has mathematical usage like complex number.
The definition of structure is as under:

“A structure is a collection of variables under a single name. These variables can be of
different types, and each has a name that is used to select it from the structure”

Declaration of a Structure:

Structures are syntactically defined with the word struct. So struct is another keyword
that cannot be used as variable name. Followed by the name of the structure. The data,
contained in the structure, is defined in the curly braces. All the variables that we have
been using can be part of structure. For example:

struct student{
char name[60];
char address[100];
float GPA;

¥

Here we have a declared a structure, ‘student’ containing different elements. The
name of the student is declared as char array. For the address, we have declared an
array of hundred characters. To store the GPA, we defined it as float variable type.
The variables which are part of structure are called data members i.e. name, address
and GPA are data members of student. Now this is a new data type which can be
written as:

student std1, std2;

Here std1 and std2 are variables of type student like int X, y; x and y in this case are
variables of int data type. This shows the power of C and C++ language and their
extensibility. Moreover, it means that we can create new data types depending upon
the requirements. Structures may also be defined at the time of declaration in the
following manner:

struct student{
char name[60];
char address[100];
float GPA;

ystdl, std2;

We can give the variable names after the closing curly brace of structure declaration.
These variables are in a comma-separated list.

Structures can also contain pointers which also fall under the category of data type. So
we can have a pointer to something as a part of a structure. We can’t have the same
structure within itself but can have other structures. Let’s say we have a structure of
an address. It contains streetAddress like 34 muslim town, city like sukhar,
rawalpindi, etc and country like Pakistan. It can be written in C language as:

229

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

struct address {
char streetAddress[100];
char city[50];
char country[50];

}

Now the structure address can be a part of student structure. We can rewrite student
structure as under:

struct student{
char name[60];
address stdAdd;
float GPA;

}s

Here stdAdd is a variable of type Address and a part of student structure. So we can
have pointers and other structures in a structure. We can also have pointers to a
structure in a structure. We know that pointer hold the memory address of the
variable. If we have a pointer to an array, it will contain the memory address of the
first element of the array. Similarly, the pointer to the structure points to the starting
point where the data of the structure is stored.

We have used the card-shuffling example before. What will be the structure of card?
Its one attribute may be the suit i.e. spades, clubs, diamonds or hearts. The second
attribute is the value of the card like ace, deuce, 3 up to king. The structure of card
contains a char pointer to suit and a char pointer to value i.e.

struct card {
char *suit;
char *value;

card cardl, card2;

We have defined cardl and card2 of type card. We can also define more cards. There
are also arrays of structure. The syntax is same as with the normal data type. So a set
of cards or an array of hundred students can be defined as under:

card fullSet[52];
student s[100];

The pointers to structure can be defined in the following manner i.e.
student *sptr;
Here sptr is a pointer to a data type of structure student. Briefly speaking, we have
defined a new data type. Using structures we can declare:
Simple variables of new structure

Pointers to structure
Arrays of structure

230

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

There are also limitation with structures as we can not say cardl + card2; As the
operator plus (+) does not know how to add two structures. We will learn to overcome
these limitations at the advanced stage. On the other hand, assignment of structures
works. Therefore if s1 and S2 are of type student structure, we can say that s1 = s2.
The assignment works because the structure is identical. So the name will be copied
to the name, address to address and so on. If we want to display the structure with
cout, it will also work. The cout is a very intelligent function as it interprets the
structure besides showing the output.

Initializing Structures

We have so far learnt how to define a structure and declare its variables. Let’s see
how can we put the values in its data members. The following example can help us
understand the phenomenon further.

struct student{
char name[64];
char course[128];
int age;
int year;

}s
student s1, s2, s3;

Once the structure is defined, the variables of that structure type can be declared.
Initialization may take place at the time of declaration i.e.

student s1 = {“Ali”, “CS201”, 19, 2002 };

In the above statement, we have declared a variable s1 of data type student structure
and initialize its data member. The values of data members of S1 are comma separated
in curly braces. “Ali” will be assigned to name, “CS201” will be assigned to the
course, 19 to age and 2002 to year. So far we have not touched these data members
directly.

To access the data members of structure, dot operator (.) is used. Therefore while
manipulating name of s1, we will say sl.name. This is a way of referring to a data
member of a structure. This may be written as:

sl.age = 20;
sl.year = 2002;

The above statement will assign the value 20 to the age data member of structure S1.
Can we assign a string to the name of S1? Write programs to see how to do this? You
may need string copy function to do this. Also, initialize the pointers to structure and
see what is the difference.

Similarly, to get the output of data members on the screen, we use dot operator. To
display the name of s1 we can write it as:

cout << “The name of s1 = “ << sl.name;
231

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Other data members can be displayed on the screen in the same fashion.

Here is a simple example showing the initialization and displaying the structure.

/* Simple program showing the initialization of structure.*/
#include <iostream.h>

main()
{
// Declaring student structure
struct student{
char name[64];
char course[128];
int age;
int year;
}5
// Initializing the structure
student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002} ;

cout << "Displaying the structure data members" << endl;
cout << "The name is " << sl.name << endl;

cout << "The course is " << sl.course << end],

cout << "The age is " << sl.age << endl;

cout << "The year is " << sl.year << endl;

}

The output of the above program is:

Displaying the structure data members

The name is Ali

The course is CS201- Introduction to programming
The age is 22

The year is 2002

Here, s1 is a unit. The data members have been grouped together. If we have sl and
S2 as two variables of student type and want to copy the data of s1 to S2, it can be
written as:

s2 =sl;

Functions and structures

We can pass structures to functions. Structures are passed into functions as per the
C/C++ calling conventions by value. In other words, a copy of entire structure is put
on the stack. The function is called which removes it from the stack and uses the
structure. We can also pass the structures by reference to function. This can be
performed in the same way we do with the normal variables i.e. pass the address of
the structure to the function. This is call by reference.

232

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

When we pass an array to a function, the reference of the array is passed to the
function. Any change in the array elements changes the original array. Suppose we
have a structure containing an array. What will happen to the array if the structures
are passed as value? Is the array passed as value or reference? As the array is a part of
structure, it will be passed as value. The advantage of ‘pass by value’ process is that if
the function makes some changes to the array elements, it does not affect the original
array. However, it may be disadvantageous as the complete array is copied on the
stack and we can run out of memory space. So be careful while passing the structures
to functions. We know that functions return value, int, char etc. Similarly functions
can also return structures. In a way, the behavior of structure is same as ordinary data

type.

Suppose we have a pointer to structure as student *sptr; here sptr is a pointer to
student. Now sl is a variable of type student and sptr = &s1 and sptr is pointing to s1.
How can we access the data with sptr? We cannot say *sptr.name. The precedence of
dot operator (.) is higher than * operator. So dot operator is evaluated first and then *
operator. The compiler will give error on the above statement. To get the results, we
have to evaluate * operator first i.e. (*sptr).name will give the desired result. There is
another easy and short way to access the structure’s data member i.e. using the arrow
(->) in place of dot operator. We normally use the arrow (-> i.e. minus sign and then
the greater than sign) to manipulate the structure’s data with pointers. So to access the
name with sptr we will write:

Sptr->name;

Remember the difference between the access mechanism of structure while using the
simple variable and pointer.

While accessing through a simple variable, use dot operator i.e. sl.name
While accessing through the pointer to structure, use arrow operator i.e. sptr-
>name;

Following is the example, depicting the access mechanism of structure’s data member
using the pointer to structure.
The code of the sample example is:

/* This program shows the access of structure data members with pointer to structure */
#include <iostream.h>

main()
{
// Declaration of student structure
struct student{
char name[64];
char course[128];
int age;
int year;
1
// Initializing the s1
student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002};
student *sptr;

233

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

// Assigning a structure to pointer
sptr = &sl;

cout << "Displaying the structure data members using pointers" << endl;
cout << "Using the * operator" << endl,

cout << endl;

cout << "The name is " << (*sptr).name << endl;

cout << "The course is " << (*sptr).course << endl;

cout << "The age is " << (*sptr).age << endl;

cout << "The year is " << (*sptr).year << end];

cout << endl,

cout << "Using the -> operator" << end];

cout << endl,

cout << "The name is " << sptr->name << endl;
cout << "The course is " << sptr->course << endl;
cout << "The age is " << sptr->age << endl;

cout << "The year is " << sptr->year << endl;

The output of the program is:

Displaying the structure data members using pointers
Using the * operator

The name is Ali

The course is CS201- Introduction to programming
The age is 22

The year is 2002

Using the -> operator

The name is Ali

The course is CS201- Introduction to programming
The age is 22

The year is 2002

Arrays of structures
Let’s discuss the arrays of structure. The declaration is similar as used to deal with the
simple variables. The declaration of array of hundred students is as follows:

student s[100];
In the above statement, S is an array of type student structure. The size of the array is
hundred and the index will be from 0 to 99. If we have to access the name of first
student, the first element of the array will be as under:

s[0].name;

234

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Here s is the array so the index belongs to s. Therefore the first student is s[0], the 2™
student is s[1] and so on. To access the data members of the structure, the dot operator
is used. Remember that the array index is used with the array name and not with the
data member of the structure.

Sizeof operator

As discussed earlier, the sizeof operator is used to determine the size of data type. The
sizeof operator can also be used with the structure. Structure contains different data
types. How can we determine its size in the memory? Consider the student structure
that contains two char arrays and two int data types. We can simply use the sizeof
operator to determine its size. It will tell us how many bytes the structure is
occupying.

sizeof(sl);

We don’t need to add the size of all the data members of the structure. This operator is
very useful while using the write() function to write the structure in the file.

Here is a small example which shows the number of bytes a structure occupies in
memory.

/* this program shows the memory size of a structure®/
#include <iostream.h>

main()
{
// Declaring student structure
struct student{
char name[64];
char course[128];
int age;
int year;

}s

student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002};
// using sizeof operator to determine the size
cout << "The structure sl occupies " << sizeof(s1) <<" bytes in the memory";

}

The output of the above program is:

| The structure s1 occupies 200 bytes in the memory

Let’s summarize what we can do with structures:

We can define the structure
We can declare variables of that type of structure
We can declare pointers to structure

235

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

We can declare arrays of structure
We can take the size of structure
We can do simple assignment of two variables of the same structure type

Sample Program 1

Problem:

Suppose we have ten students in a class. The attributes of student are name, course,
age and GPA. Get the data input from the user to populate the array. Calculate the
average age, average GPA of the class. Find out the grade of the class and student
with max GPA.

Solution:

The problem is very simple. We will declare a structure of student with name, course,
age and GPA as data members. In a loop, we will get the data from the user to
populate the array. Then in a loop, we will calculate the totalAge and total GPA of the
class besides determining the max GPA in that loop. Finally calculate the average age
and average GPA by dividing the totalAge and total GPA by the number of students
i.e. 10. The grade of the class can be determined by the average GPA.

The complete code of the program is:

/* This program calculates the average age and average GPA of a class. Also determine
the grade of the class and the student with max GPA. We will use a student structure and
manipulate it to get the desired result. */

#include <iostream.h>

main()
{
// Declaration of student structure
struct student
{
char name[30];
char course[15];

int age;

float GPA;
55
const int noOfStudents = 10; // total no of students
student students[noOfStudents]; // array of student structure

int total Age, index, averageAge;
float total GPA, maxGPA, averageGPA;

// initializing the structure, getting the input from user
for (int i = 0; i <noOfStudents; i++)
{
cout << endl;
cout << "Enter data for Student # : " <<i+ 1 <<end];
cout << "Enter the Student's Name : " ;
cin >> students[i].name ;

236

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

cout << "Enter the Student's Course : " ;
cin >> students[i].course ;
cout << "Enter the Student's Age : " ;
cin >> students|[i].age ;

cout << "Enter the Student's GPA : " ;
cin >> students[i].GPA ;

}

maxGPA =0;
// Calculating the total age, total GPA and max GPA
for (int j = 0; j < noOfStudents; j++)
{
total Age = totalAge + students[j].age ;
total GPA = total GPA + students[j].GPA ;

// Determining the max GPA and storing its index
if (students[j].GPA > maxGPA)

maxGPA = students[j].GPA;
index = j;
}
}

// Calculating the average age
averageAge = totalAge / noOfStudents ;
cout << "\n The average age is : " << averageAge << end];

// Calculating the average GPA
averageGPA = total GPA / noOfStudents ;
cout << "\n The average GPA is : " << averageGPA << endl;

cout << "\n Student with max GPA is : " << students[index].name << endl ;

// Determining the Grade of the class
if (averageGPA > 4)
{

cout << "\n Wrong grades have been enter" << endl ;

else if (averageGPA == 4)

{
cout << "\n The average Grade of the class is : A" << endl;
H
else if (averageGPA >= 3)
{
cout << "\n The average Grade of the class is : B" << end];
}
else if (averageGPA >=2)
{
cout << "\n The average Grade of the class is : C" << end];
h
else
{

237

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

cout << "\n The average Grade of the class is : F" <<endl;

The output of the program with three students i.e. when noOfStudents = 3

Enter data for Student # : 1

Enter the Student's Name : Ali
Enter the Student's Course : CS201
Enter the Student's Age : 24

Enter the Student's GPA : 3.5

Enter data for Student # : 2

Enter the Student's Name : Faisal
Enter the Student's Course : CS201
Enter the Student's Age : 22

Enter the Student's GPA : 3.6

Enter data for Student # : 3

Enter the Student's Name : Jamil
Enter the Student's Course : CS201
Enter the Student's Age : 25

Enter the Student's GPA : 3.3

The average age is : 24

The average GPA is : 3.46667

Student with max GPA is : Faisal

The average Grade of the class is : B

Sample Program 2

Problem:

Read the student data from a file, populate the structure and write the structure in
another file.

Solution:

We have to read from a file. We will write a function which will read from a file and
return a structure to the calling program. The prototype of function is:

returnType functionName (argument list)

As the function is returning a student structure so the return type will be ‘student’. We
can name the function as getData() as it is reading from a file a returning the data (i.e.
student structure). In the arguments, we can give it the handle of the file from which
the data is to be read. For the simplicity, we keep the argument list empty. Therefore,
the prototype of our function is as under:

238

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

student getData();

This function is going to read from a file. The handle of the file has to be global so
that function can access that file handle. We will define the handle of the file before
main function to make it global. We will open the file in the main function before
calling the getData function. The getData function returns a student structure .We
will assign this to some variable of type student like:

s1 = getData();

Where sl is a variable of type student. It means that the structure, returned by the
getData function is assigned to S1. The getData function can read the data from the
file using extraction operators (i.e. >>). As this function is returning a student
structure, we declare tmpStd of type student. Data read from the file will be assigned
to the tmpStd. In the end of the getData function, we will return the tmpStd using the
return keyword (i.e. return tmpStd).

Let’s have a look what is happening in the memory. When we entered into the
getData function from main, it creates locally a tmpStd of type student structure.
tmpStd is created somewhere in the memory. It starts reading data from the file
assigning it at that memory location. On its return, the function copies this tmpStd on
to the stack. Stack is the way the function communicates with the main function or
calling program. When the function returns, it will destroy the tmpStd as it is local
variable of getData function. It does not exist anymore. It just came into being while
you were inside the getData function. It disappears once getData finishes. However,
before it disappears, the getData copies tmpStd in the memory so the main function
pick up those value use it to assign to S1. Similarly we write the writeData function to
write the data into a file. We will pass this function a student type structure to write it
on the file. The prototype of writeData is as:

void writeData(student s1);

The sample input file:

nasir
CS201
23

3
Jamil
CS201
31

4
Faisal
CS201
25

35

Here is the complete code of the program:

/* this program reads from a file, populate the structure, and write the structure in a file */

#include <stdlib.h>

239

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

#include <fstream.h>

// Global variables for input and output files
ifstream inFile;
ofstream outFile;

//student structure

struct student

{
char name[30];
char course[15];

int age;

float GPA;
¥
// function declarations
void openFile(); // open the input and output files
student getData(); // Read the data from the file
void writeData(student); // write the structure into a file

void main()

{
const int noOfStudents = 3; // Total no of students
openFile(); // opening input and output files
student students[noOfStudents]; // array of students

// Reading the data from the file and populating the array
for(int i = 0; 1 < noOfStudents; i++)
{
if (!inFile.cof())
{
students[i] = getData();

}

else

{
break ;

}
}

// Writing the structures to the file
for(int i = 0; i < noOfStudents; i++)

{
b

writeData(students[i]);

// Closing the input and output files
inFile.close () ;
outFile.close () ;

240

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

/* This function opens the input file and output file */

void openFile()

{
inFile.open("SAMPLE.TXT", ios::in);
inFile.seekg(OL, i0s::beg);
outFile.open("SAMPLEOUT.TXT", ios::out | i0s::app);
outFile.seekp(0L, ios::end);

if(!inFile || loutFile)
{
cout << "Error in opening the file" << endl;
exit(1);
}

}

/* This function reads from the file */
student getData()
{
student tempStudent;
// temp variables for reading the data from file
char tempAge[2];
char tempGPA[5];

// Reading a line from the file and assigning to the variables
inFile.getline(tempStudent.name, "\n');
inFile.getline(tempStudent.course, "\n');
inFile.getline(tempAge, '\n');

tempStudent.age = atoi(tempAge);
inFile.getline(tempGPA, "\n');

tempStudent.GPA = atof(tempGPA);

// Returning the tempStudent structure
return tempStudent;

}

/* This function writes into the file the student structure*/
void writeData(student writeStudent)
{

outFile << writeStudent.name << endl;

outFile << writeStudent.course << end];

outFile << writeStudent.age << endl;

outFile << writeStudent. GPA << end],;

}

The contents of output file is:

nasir
CS201
23

3

241

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Jamil
CS201
31

4
Faisal
CS201
25

3.5

Unions

We have another construct named union. The concept of union in C/C++ is: if we
have something in the memory, is there only one way to access that memory location
or there are other ways to access it. We have been using int and char interchangeably
in our programs. We have already developed a program that prints the ACSII codes.
In this program, we have stored a char inside an integer. Is it possible to have a
memory location and use it as int or char interchangeably? For such purposes, the
construct union is used. The syntax of union is:

union intOrChar{
int 1,
char c;

}s

The syntax is similar as that of structure. In structures, we have different data
members and all of these have their own memory space. In union, the memory
location is same while the first data member is one name for that memory location.
However, the 2" data member is another name for the same location and so on.
Consider the above union (i.e. intOrChar) that contains an integer and a character as
data members. What will be the size of this union? The answer is the very simple. The
union will be allocated the memory equal to that of the largest size data member. If
the int occupies four bytes on our system and char occupies one byte, the union
intOrChar will occupy four bytes. Consider another example:

union intOrDouble{
int ival;
double dval;
¥

The above union has two data members i.e. ival of type int and dval of type double.
We know that double occupies more memory space than integer. Therefore, the union
will occupy the memory space equivalent to double. The data members of unions are
accessed in a similar way as we use with structures i.e. using the dot operator. For
example:

intOrDouble uval;
uval.ival = 10;

To get the output of the data members, cout can be used as:

242

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming

It will print “The value in ival = 10”. Now what will be output of the following

cout << ““ The value in ival = “ << uval.ival;

statement?

We don’t know. The reason is that in the eight bytes of double, integer is written

cout << ““ The value in dval = “ << uval.dval;

somewhere. When we use integer, it is printed fine. When we printed the double, the
value of int will not be displayed. Rather something else will be printed. Similarly in
the following statement i.e.

uval.dval = 100.0;
cout << ““ The value in dval = “ << uval.dval,

It will print the right value of dval. The value of this double is written in such a way

that it will not be interpreted by the integer. If we try to print out ival, it will not

display 100. Unions are little bit safer for integer and characters. But we have to think
in terms that where to store the value in memory.

Suppose, we have some integer value 123 and want to append 456 to it so that it
becomes 123456. How can we do that? To obtain this result, we have to shift the

integer three decimal places i.e. we can multiply the integer 123 by 1000 (i.e. 123000)
and then add 456 to it (i.e. 123456). Consider a union containing four characters and
an integer. Now the size of the char is one and integer is four so the size of the union

will be four. We assign the character ‘a’ to the integer, and display the chars and
integer value. If we want to shift the value of first byte into the second byte, the

integer will be multiplied by 256(i.e. A byte contains 8 bits and 2 to power 8 is 256),
then add character ‘b’ to it. We see that the char variables of union contains ‘a’ and
‘b’.

Here is the code of the program,;

main()

// Declaration of union
union intOrChar {

char c[4];

int x;
jul;

ul.x ='a’; // Assigning ‘a’ to x

// Displaying the char array and integer value

cout << "The value of ¢ =" << ul.c[0] <<"," << ul.c[1]
<<""<<ul.c[2] <<"," <<ul.c[3]<<endl;

cout << "The value of x =" <<ul.x << end];

// Shifting the values one byte and adding ‘b’ to the int

/* This program uses a union of int and char and display the memory usage by both */
#include <iostream.h>

243

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

ul.x *=256;
ul.x+="'b";

// Displaying the char array and integer value

cout << "The value of ¢ =" <<ul.c[0] <<"," << ul.c[1]
<<"M"<<ul.c[2] <<"," <<ul.c[3]<<end];

cout << "The value of x =" <<ul.x <<endl;

// Shifting the values one byte and adding ‘b’ to the int
ul.x *=256;
ul.x+="c'

// Displaying the char array and integer value

cout << "The value of ¢ =" << ul.c[0] <<"," << ul.c[1]
<<""<<ul.c[2] <<"," <<ul.c[3]<<end];

cout << "The value of x =" <<ul.x << end];

// Shifting the values one byte and adding ‘b’ to the int
ul.x *=256;
ul.x +="'d';

// Displaying the char array and integer value

cout << "The value of ¢ =" << ul.c[0] <<"," << ul.c[1]
<<""<<ul.c[2] <<"," <<ul.c[3]<< endl;

cout << "The value of x =" <<ul.x << end];

}

The output of the program is;

The value of c=a, , ,

The value of x =97

The value of c =b,a, ,

The value of x = 24930

The value of ¢ = c¢,b,a,

The value of x = 6382179
The value of c =d,c,b,a

The value of x = 1633837924

Unions are very rarely used. They become very important when we want to do some
super efficient programming. Experiment with the unions and structures.

We have learnt how to use structures and unions. These are relatively less used parts
of C/C++ language. But structures at least are very useful. They allow us a convenient
way of grouping data about a single entity. We have used student entity in our
example. You can think of a car or any other object and find out its properties before
grouping them in a structure. We don’t need to manipulate its properties individually
as grouping them into a unit is a better option. Try to write different programs using
structures.

244

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 21

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 16

16.7
Summary
Bit Manipulation
Bit Manipulation Operators
AND Operator
OR Operator
Exclusive OR Operator
NOT Operator
Bit Flags
Masking
Unsigned Integers
Sample Program
Shift Operators

Bit Manipulation

We have so far been dealing with bytes using different data types. In this lecture, we
will see what a bit is? Bit is the basic unit of memory. Eight bits form a byte. As you
know that data is stored in computers in 0’s and 1’s form. An integer uses four bytes
and the integer calculations occur in four bytes. Thus, we are manipulating bytes
while using different data types. Now we will try to understand the process of ‘bit
manipulation’. Now we will deal with each bit in a byte and explore how to do on or
off each bit. A bit, having 1 is said on while the one with 0 is called off. Here we will
discuss different operators to manipulate bits.

The concept of bit manipulation means that we can do work with a bit, the smallest
unit of memory. Bit manipulations utilize very small memory. Thus, we can make an
efficient use of the memory. The bit fields are of great use in operating systems and
files attributes. The bit manipulations are useful while working at operating system
level.

Let’s have a look on different operators, used for bit manipulations.

Bit Manipulation Operators
The following table shows different operators used for bit manipulation.

Operator Operator
Sign
Bitwise AND Operator &
Bitwise OR Operator |
Bitwise Exclusive OR A
Operator
NOT Operator ~
Left Shift Operator <<

245

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

| Right Shift Operator | >> |

Here & is the bit-wise AND operator. Don’t confuse it with the logical AND operator
&&. Similarly | is the bit-wise OR operator. Don’t confuse it with the logical OR
operator ||.

Now let’s talk about these operators in detail.

AND Operator (&)

The AND operator (&) works just like the logical AND operator (&&) but on bits. It
compares two bits and returns 1 if both bits are 1. If any of the two bits being

compared is 0, the result will be 0.

Following table, also called truth table, will further explain the operation of &

operator.

Bitl Bit2 Bitl & Bit2
1 1 1

1 0 0

0 1 0

0 0 0

We know that when a number is stored in memory, it gets stored in bit pattern which
has binary representation (only 1 and 0). So we can use & to AND two numbers bit-
wise. To understand this, consider the following example.

Suppose we have two numbers - 12 and 8 and want to apply & on these ones. Here we
will make use of the binary number system. The binary representation (base 2 system)
of 12 and 8 are as 12 = (1100), and 8 = (1000) ,. Now we apply the & operator on
these numbers and get the result as follows

8= 1 0 0 0

1 0 0 0
Thus 12 & 8 =(1000), = 8. Don’t think 12 & 8 as an arithmetic operation. It is just a
bit manipulation or a pattern matching issue. Each bit of first number is matched
(compared) with corresponding bit of the second number. The result of & is 1 if both
bits are 1. Otherwise, it will be 0. The & operator is different from the && operator.
The && operator operates on two conditions (expressions) and returns true or false
while the & operator works on bits (or bit pattern) and returns a bit (or bit pattern) in 1
or 0.

Example 1

We want to determine whether in a number a specific bit is 1 or 0. Suppose we want
to determine whether the fourth bit (i.e. 2°) of a number is 1 or 0. We will pick the
number whose fourth bit is 1 and the remaining are zero. It is 2% (i.e. 8). Now we will
take AND of the given number with 8 (i.e 1000 in bit pattern.). In bit manipulation,
the number is written in hexadecimal form. In the C language, we put 0x or 0X before

246

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

the number to write a number in hexadecimal. Here we will write 8 as 0x8 in our
code. Now all the bits of 8 are zero except the fourth one which is 1. The result of the
number being ANDed with 8 will be non-zero if the fourth bit of the number is 1. As
the fourth bit of 8 is also 1, & of these two bits will result 1. We call the result non-
zero just due to the fact that we are not concerned with the numbers like 1,2,3 or
whatsoever. We will write this in the form of a statement as under
if (number & 0x8)

instead of if ((number & 0x8) >=1)
The if looks for a true or false. Any non-zero value is considered true and a zero is
considered false. When we do bit-wise AND of two numbers if the result is non-zero
(not 1 only, it may be 1 or any other number), this if statement will be true.
Otherwise, it will be false.
By a non-zero value we simply conclude that the fourth bit of the number is set (i.e.
1). A bit is said to be set in case it is 1 and ‘not set’ if it is 0. This way, we can set any
bit pattern in the power of 2, to determine whether a specific bit of a number is set or
not. For example, to determine bit no. 3 of a number we can AND it with 22 (4).

Following is the code of the example finding out whether the fourth bit of a number is
set (1) or not set (0).

//This program determines whether the fourth bit of a number entered by user is set or not

#include <iostream.h>
main()
{
int number ;
cout << “Please enter a number “;
cin >> number ;
if (number & 0x8) //8 is written in hexadecimal form
cout << "The fourth bit of the number is set" << endl;
else
cout << "The fourth bit of the number is not set" << endl;

}

Sample output of the program.

Please enter a number 12
The fourth bit of the number is set

OR Operator (|)

The OR operator, represented by ‘|” works just like the & operator with the only
difference that it returns 1 if any one of the bits is 1. In other words, it returns 0 only if
both the input bits are 0. The | (bit-wise OR) operator is different from the || (logical
OR) operator. The || operator operates on two conditions (expressions) and returns

true or false while the | operator works on bits (bit pattern) and returns a bit (or bit
pattern) in 1 or 0.

The truth table of OR operator is given below.

247

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
Bitl Bit2 Bitl | Bit2

1 1 1

1 0 1

0 1 1

0 0 0

We can make it sure that a specific bit in a number should be 1 with the help of |
operator. For this purpose, we take OR of this number with another number whose bit
pattern has 1 in that specific bit. Then OR will produce 1 as the bit at that position in
second number is 1 and OR gives 1 if any one bit is one. Thus in the output that
specific bit will have 1.

Let us consider the following example in which we apply OR operator on two
numbers 12 and 8.

1 1 0 0
Hence we get 12| 8= 12.
In case, x =8| 1, the OR operation will be as under.

8= 1 0 0 0
|

1= 0 0 0 1

1 0 0 1
Thusx=8|1=09.
Don’t take the statement in mathematical or arithmetical terms. Rather consider it
from the perspective of pattern matching.
The & operator is used to check whether a specific bit is set or not while the | operator
is used to set a specific bit.

Exclusive OR Operator (")
Exclusive OR operator uses the sign ” . This operator returns 1 when one input is

zero and the second is 1. It returns 0 if both bits are same i.e. both are either 0 or 1.
The truth table of exclusive OR, also called xor (zor) , is given below.

Bitl Bit2 Bitl ~ Bit2
1 1 0
1 0 1
0 1 1
0 0 0

To understand exclusive OR, let’s work out exclusive OR of 8 and 1.
In the following statement, the pattern matching is shown for 8 " 1.

8= 1 0 0 0
248

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

1= 0 0 0 1

1 0 0 1
This shows that 8 * 1 = 9. If we take again exclusive OR of 9 with 1. The result will
be 8 again as shown below.

9 1 0 0 1
AN
1

0 0 0 1

1 0 0 0
While taking * (exclusive OR) of a number with a second number and then * of the
result with the second number, we get the first number again. This is a strength of the
~ operator that is very useful.

NOT Operator (~)
This is a unary operator. It inverts the bits of the input number, meaning that if a bit of

the input number is 1, the operator will change it to 0 and vice versa. The sign ~ is
used for the NOT operator. Following is the truth table of the NOT operator.

Bitl ~ Bitl
1 0
0 1

Let’s take NOT of the number 8. This will be as follows
8= 1 0 0 0
Now ~8 will invert the bits from 1 to 0 and from O to 1. Thus ~8 will be
~8= 0 1 1 1
which is 7.

The bit manipulation operators are very useful. Let’s consider some examples to see
the usefulness of these operators.

Example (Bit Flags)

The first example relates to operating system. In Windows, you can view the
properties of a file. You can get the option properties by right clicking the mouse on
the file name in any folder structure. You will see a window showing the properties of
the file. This will show the name of the file, the date of creation/modification of the
file etc. In the below part of this window, you will see some boxes with check marks.
These include read only and archive etc. While looking at a check mark, you feel of
having a look at a bit. If there is a check mark, it means 1. Otherwise, it will be 0. So
we are looking at bit flags which will depict the status of the file. If the file is marked
read-only, a specific bit is set to 1 in the operating system. This 1 indicates that the
status of the file is read-only.
When we look for directory in UNIX operating system, rwx, rx or rw are seen before
the name of a file. The rwx are actually symbols used for read, write and execute
permissions of the file. These are the attributes of the file.

249

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

In operating systems, the attributes of a file are best get as bit fields. The 1 in a bit
means the attribute is set and 0 means the attribute is not set (or cleared).

Example (Masking)

Let’s see how " operator works. Whenever you log on to a system or server or to a
web site like yahoo or hotmail, you enter your user name and then the password. The
system or server validates your password and allows the access. Your password is
kept in the database of the system/server. When you enter the password, the system
compares it with the one earlier stored in its database. If it matches, the system allows
you to access the system. But there may be a problem at this stage from the security
perspective. If the password is stored in the database as it is, then the administrative
(or any person having access to database) can read the password of any account. He
can make misuse of password. To prevent this and make the password secure, most of
the operating systems keep the password in an encrypted fashion. It codes the
passwords to a different bit pattern before storing it in its database so that no body can
read it. Now when a user enters his password, there are two methods to compare this
password with the password earlier stored in the database. Under the first method, on
entering the password, the password stored will be decoded to the original password
and compare with the password entered. This is not a best way because of two
reasons. If there is a method to decrypt a password, the administrator can decrypt the
password for any sort of misuse. The second method is that when you enter a
password, it travels through wires to go to somewhere for comparison. While it is
traveling on wire, someone can get it. Another reason to compare the password in
encrypted form is that it is very easy to do encryption but the decryption process is
very difficult. Therefore, to make this process secure and easy, the password entered
is encrypted and compared to the password in the database, which is already stored in
encrypted form.

The Exclusive OR operator () can be used to encrypt and decrypt the password.
Suppose there are two numbers a and b. We take ¢ =a * b. Now if we take of the
result ¢ with b (i.e. ¢ * b), the result will be a. Similarly, if we take Exclusive OR of
the result ¢ with a (¢ * a) , the answer will be b. You can do exercise this phenomenon
by taking any values of a and b. This phenomenon of Exclusive OR can be used to
secure a password. You can take Exclusive OR of the password with a secret number
and save it to the database. Now when it is needed to be compared with entered
password, you again take Exclusive OR of the saved password with the same secret
number and get the original password back. If someone else wants to get the
password, it is very difficult for him/her to get that because the original password will
be got by taking Exclusive OR of the saved password with the same secret number.

Here is another example of Exclusive OR. Sometimes, there are bad sectors in a hard
disk, which bring it to a halt. We cannot access our data from it. This is worst
situation. In large systems like servers, there is a requirement that these should work
twenty four hours a day, seven days a week. In such systems, we cannot take the risk.
To avoid this and meet the requirements, we use a technique which is called RAID.
RAID stands for Redundant Array of Inexpensive Devices. In this technique, we use
many disks instead of one. Suppose we have nine disks. Now when we say write a
byte on the disk, The RAID will write a bit on first disk then second bit on the second
disk and so on. Thus 8 bits (one byte) are written on 8 disks. Now what will be written
on the ninth disk? We take exclusive OR of these 8 bits pair by pair and write the
result on the ninth disk. The benefit of this process that in case one disk stops

250

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

working, we may place a new disk in its place. And to write a bit on this disk, we
again take Exclusive OR of eight bits on the other disks and write the result on this
disk. This will be the same bit that was written in the damaged disk.

You can prove it by the doing the following exercise on paper.

Write eight bits, take their Exclusive OR one by one and write it at ninth position.
Now erase any one bit and take Exclusive OR of the remaining eight bits. You will
get the same bit which was erased. Thus it is a useful technique for recovering the lost
data without shutting down the system. We replace the bad disk with a new one while
the system is on. The system using the RAID technique, writes the data to the new
disk. This technique of replacing a disk is known as Hot Plug.

We have read the technique of swapping two numbers. In this method, we use a third
temporary place to swap two numbers. Suppose a and b are to be swapped. We store
a in a temporary place ¢. Then we store b in a and put the value of ¢ (which has the
value of a) in b. Thus a and b are swapped.

We can swap two numbers without using a third place with the help of Exclusive OR.
Suppose we want to swap two unsigned numbers a and b. These can be swapped by
the following three statements.

a=a’b;
b=b"a;
a=a’b;

Do exercises of this swap technique by taking different values of a and b.

Unsigned Integers
The bit manipulations are done with unsigned integers. The most significant bit is
used as a sign bit. If this bit is zero, the number is considered positive. However, if it
is 1, the number will be considered negative. Normally these bit manipulations are
done with unsigned integers. The unsigned integers are declared explicitly by using
the word ‘unsigned’ as follow.

unsigned int 1, j, k ;
By this declaration the integers 1, j and k will be treated as positive numbers only.

Sample Program

The following program demonstrate the encryption and decryption of a password. The
program takes a password from user, encrypts it by using Exclusive OR (*) with a
number. It displays the encrypted password. Then it decrypts the encrypted password
using Exclusive OR (*) with the same number and we get the original password
again.

Following is the code of the program.

//This program demonstrate the encryption by using * operator

include<iostream.h>
main ()
{
char password[10] ;
char *passptr ;
cout << "Please enter a password(less than 10 character): " ;
cin >> password ;

251

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

passptr = password ;
//mow encrypting the password by using * with 3
while (*passptr !="0")
{
*passptr = (*passptr " 3);
++passptr ;
h

cout << "The encrypted password is: " << password << endl;
/mow decrypting the encrypted password by using * with 3

passptr = password ;

while (*passptr 1="0")

{
*passptr = (*passptr " 3);
++passptr ;

}

cout << "The decrypted password is: " << password << endl,

}

The following is a sample output of the program.

Please enter a password(less than 10 character): zafar123
The encrypted password is: ybebq210
The decrypted password is: zafar123

Shift Operators

Shifting the binary numbers is similar to shifting the decimal numbers. Suppose we
have 1 in decimal system and want to shift it left in a way that zero is put at the
ending place. Thus 1 becomes 10. Mathematically, it is a multiplication by 10. Now if
we shift 10 to left and place O at the last place, we get 100. It is again a multiplication
by 10. In pictorial terms, we can show this as under.

(In decimal system) 1000 100 10 1
The value is 1 > [0 o o [1]

Shift Left, The value is 10 (i.e. multiplication by 100 [0 [1 [0]

Shift Left, The value is 100 (i.e. multiplication by 10y 20 |1 [0 [0 |

The same thing applies when we do bit shifts. If we shift a bit to the left in the binary
system, it is multiplied by 2. If we do left shift again we are multiplying by 2 again.
Same applies in the other direction. By shifting to the right, we will be dividing by 2
in the binary system and dividing by 10 in decimal system. In this process, the shifted
digit/bit is discarded. When we do left shift, zeroes are inserted in the right side bits.
The same applies to right shift, as zeros are inserted in the left side bits. But the
situation will be different if we use signed numbers. As we know that in signed
numbers the most significant bit is 1. Now you have to see that what happens while
252

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

right shifting the signed number? If zero is inserted at the left most bit, the negative
number will become a positive number. Normally the operating systems or compilers
treat it differently.

The following figures show the shift operations.

Shift Left:
(In binary system, bits representation) § 4 2 1
The value is 2 > |0 |0 |1 |0 |

Shift Left, The value is 4 (i.e. multiplication by 2—0 [1 [0 [0 |

Shift Left, The value is 8 (i.e. multiplication by 2—1 10 [0 [0]

Shift Right:

(In binary system, bits representation)
The value is 12 > |

J—
= |
o
o

Shift Right , The value is 6 (i.c. division by 2———0 [1 [1 [0 |

Shift Right, The value is 3 (i.e. division by 2———0 [0 [1 [1 |

We have specific operators for left and right shifts. The left shift operator is << and
right shift operator is >>. These are the same signs as used with cout and cin. But
these are shift operators. We can give a number with these operators to carry out shift
operation for that number of times. The following program demonstrates the left and
right shift operators.

//This program demonstrate the left and right shift

include <iostream.h>
main()
{
int number, result ;
cout << "Please enter a number: " ;
cin >> number ;
result = number << 1 ;
cout << "The number after left shiftis " << result <<endl ;
cout << "The number after left shift again is " << (result << 1) <<endl ;
cout << "Now applying right shift" <<endl ;
result = number >> 1 ;
cout << "The number after right shiftis " << result <<endl ;
cout << "The number after right shift againis " <<(result >> 1) <<endl ;

253

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Here is the out put of the program.

Please enter a number: 12

The number after left shiftis 24

The number after left shift again is 48
Now applying right shift

The number after right shiftis 6

The number after right shift againis 3

In the output, we see that the left shift operator (<<) has multiplied the number by 2
and the right shift operator (>>) has divided the number by 2. The shift operator is
more efficient than direct multiplication and division.

Exercises

Write different programs to demonstrate the use of bit manipulation operators.

Write a program which takes two numbers, displays them in binary numbers and then
displays the results of AND, OR and Exclusive OR of these numbers in binary
numbers so that operations can be clearly understood.

Write a program which swaps two numbers without using a temporary third variable.
Write a program, which takes a password from the user, saves it to a file in encrypted
form. Then allow the user to enter the password again and compare it with the stored
password and show is the password valid or not.

254

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

Lecture No. 22

Reading Material

Deitel & Deitel - C++ How to Program Review previous lectures
Summary

o Bitwise Manipulation and Assignment Operator

o Design Recipes

o Variables

o Data Types

. Operators

- Arithmetic operators
- Logical operators
- Bitwise operators

o Programming Constructs
) Decisions
— if statement
- Nested if statement
. Loops
- while loop
- do-while loop
- for loop
° switch, break and continue Statements
. Functions

- Function Calling
- Top-Down Methodology

. Arrays
. Pointers
. File I/O

255

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Bitwise Manipulation and Assignment Operator

Last time we discussed bitwise operators, we will continue with the elaboration of
bitwise manipulation and assignment operator.

C/C++ are well constructed languages, at start we used to write:
a=a+t1;

This is used to increment the variable. Then we came to know of doing it in a
different manner:

at+=1;
This is addition and assignment operation using single operator +=.

The same thing applies to bitwise operators; we have compound assignment operators
for & (bitwise AND), | (bitwise OR) and * (bitwise exclusive OR). It is written in the
same way as for the above mentioned arithmetic operators . Suppose we want to
write:

a=a& b;
It can be written as:
a &= b;
Similarly for | and * operations we can write the statement in the following fashion.

a|=b;
and

Remember, the ~ (NOT) operator is unary as it requires only one operand. Not of a
variable a is written as: ~a. There is no compound assignment operator available for
it.

Now we will recap topics covered in the previous lectures one by one.

Design Recipe

Our problems, typically, are of real world nature, e.g., Payroll of a company. These
problems are expressed in words. As a programmer we use those words to understand
the problem and to come up with its possible solution.

To begin with the comprehension and resolution process, we analyze the problem and
express the problem in words in reduced and brief manner. Once we have reduced it
into its essence, we put some examples to formulate it. For example, if the problem is
to calculate the annual net salary of employees, we can take an example for a

256

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

particular employee X. Later we will refine the problem, write program and test it.
Finally we review it if it has met objectives. We have discussed all these steps in
Design Recipe. There was a main heading in the topic, "Pay attention to the detail".
Never forget this as our computers are very dump machines. They perform exactly
whatever we tell them.

It is important to keep in mind that we are using C/C++ as a vehicle to understand
programming concepts.

Variables

The computer memory can be thought of as pigeon holes each with an address. To
store numbers or characters in computer memory, we need a mechanism to
manipulate it and data types are required for different types of data. Instead of using
hard coded memory addresses with data types, symbolic names are used. These
symbolic names are called variables because they can contain different values at
different times. For example,

int i;
double interest;

i and interest are symbolic names or variables with types of int and double
respectively.

Data Types

int type is used to store whole numbers. There are some varieties of data types to
store whole numbers e.g., short and long. unsigned qualifier is used for non-negative
numbers. To represent real numbers we use float data type. For bigger-sized real
numbers double data type is used. char data type is used to store one character.
Generally, the size of the int type on our machines is 4 bytes and char is 1 byte.
chars are enclosed in single quotation mark. ASCII table contains the numeric values
for chars.

We further discussed a bit later stage about the aggregations or collections of basic
data types (int, float and char etc) called arrays. Arrays are used to aggregate
variables of same data type.

Operators

We discussed three types of operators:
- Arithmetic Operators

- Logical Operators

- Bitwise Operators

257

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Arithmetic Operators

+ operator is used to add two numbers, - is used to subtract one number from the
other, * is used to multiply two numbers, / is used to divide numbers. We also have a
modulus operator % , used to get the remainder. For example, in the following
statement:

c=7% 2;

7 will be divided by 2 and the remainder 1 will be the stored in the variable ¢. We also
used this operator in our programs where we wanted to determine evenness or
oddness of a number. There are also compound arithmetic operators +=, -=, *=, /= and
also %= for our short hand. It is pertinent to note that there is no space between these
compound operators.

Logical Operators

The result for logical operators is always true or false. && (AND operator) and || (OR
operator). Logical Comparison operators are used to compare two numbers. These
operators are: <, <=, ==, > >= Don't confuse the == operator of equality with =
operator of assignment.

It is important for us to remember the difference between these two operators of
equality (==) and assignment (=) . However, C/C++ creates a little problem for us
here. When we write a statement as:

a = b;

The assignment statement itself has a value, which is the same as that of the
expression on the right hand side of the assignment operator. We can recall from our
last lecture that we only wrote a number inside the if statement. We also know that if
the resultant inside the if statement is non-zero then its code block is executed. In
case, the result is zero, the control is transferred to the else part.

If we want to compare two variables a and b inside if statement but wrongly write as:

if(a=">b)
{ / if code block

// do something
else

// do something else

}

In this case, if the value of the variable b is non-zero (and hence value of the
statement a = b is non-zero) then if code block will be executed. But this was not
required, it is a logical fault and compiler was unable to detect it. Our objective was to

258

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

compare two variables. For that purpose, we should have used assignment operator
== for that as:

if(a ==b)

One should be very careful while using comparison operators. You should not miss
any case of it and be sure about what you wanted to do and what will be the output of
a comparison statement.

You should keep in mind straight line of Calculus for the sake of completeness; you
should always divide your domain into two regions. If we take >= as one region then
the other region is <. Similarly if we say < as a region, the other region is >=.
Depending on the problem requirements, these regions should be very clear.

Bitwise Operators

& is bitwise AND operator, | is bitwise OR operator, * is bitwise Exclusive OR
operator and ~ is bitwise inversion or NOT operator. ~ (NOT operator) is unary
operator as it requires one operator and the remaining operators &, | and * are binary
operators because they require two operands.

Programming Constructs

For us, it is not necessary to know who is the one to devise or decide about these
constructs to be part of the program logic. The important thing is the concept of
programming constructs, required to write a program. We have earlier discussed three
constructs.

1. The sequential execution of statements of a program. Execution of statements
begins from very first statement and goes on to the last statement.

2. Secondly we need decisions that if something is true then we need to do
something otherwise we will do something else. We use if statement for this.

3. The third construct is loops. Loops are employed for repetitive structures.

Decisions
Normally, if statement is used where decisions are required.

If statement
The syntax of if statement is fairly simple i.e.

if (condition)

{
// if code block

259

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU
}
else
// else code block
}

The result of the condition can be either true or false. If the condition is true, if code
block is executed. Braces of the if code block are mandatory but if there is only one
statement in the if code block then the braces can be omitted or are optional. Now if
the condition is false, the if code block is skipped and the control is transferred to the
else part and else code block is executed. Else part is optional to associate with the if
part. So without else the statement looks like the following:

if (condition)
{ // if code block
// Do something here

}

Use of braces is again mandatory. Again, however, if there is only statement inside
the else part then brace is optional.

As a programming practice, use of braces all the time is recommended. It makes your
program more readable and logically sound.

What happens when the condition is complex?

Nested if statement
For complex conditions, we use logical connectives like &&, ||. For example:

if(a>b && a <c¢)
If there are nested decisions structure that we want to do something based on some
condition and further we want to do something more based on an additional condition.

Then we use nested if-statements as under:

if(a>b && a < ¢)

{
// Do something
if(a == 100)
{
// Do something more
}
else
{
// Do something else more
}
}
else
{

260

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

// Do something else

}

From stylistic and readability perspective, we properly indent the statements inside if-
statements as shown above.

We discussed pictorial representation of if-statement. By using flowchart of if
statement that was a bit different than normally we see inside books, we introduced
structured flowcharting.

In structured flowcharting, we never go to the left of the straight line that joins
Start and Stop buttons. There is a logical reason for it as while writing code, we can’t
move to the left outside the left margin. Left margin is the boundary of the screen and
indentation is made towards the right side. So we follow the construct that is
equivalent to the program being written. The major advantage of this approach is
achieved when we draw a flowchart of solution of a complex problem. The flowchart
is the logical depiction of the solution to the problem. One can write code easily with
the help of the flowchart. There will be one to one correspondence between the
segments of the flowcharts and the code.

Loops

Going on from the decision structures we discussed about loops. In our program if we
have to do something repeatedly then we can think of applying loop structure there.
There are few variants of loops in C language. However, other languages might have
lesser number of loop variants but a programming language always has loops
constructs.

While Loop

The syntax of the while loop is as follows:

while (condition)
{ // while code block

// Do something

}

The condition is a logical expression like a == b that returns true or false. Braces are
mandatory to for while loop when there are multiple lines of code inside the while
code block. If there is only single line inside the while code block, the braces become
optional. It is good practice to use braces. The statements inside the while code block
are never executed, if the while condition results in false for very first time it is
entered. In other words, statements inside the while code block executes 0 to n times.

261

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

The flowchart for the while loop is as follows:

while

A 4

False
Exit

True

Process

A

Do-While Loop

Next loop variant is Do-while. It syntax is as under

do
{ // do-while code block

// Do something

}

while (condition)
The important difference of this loop from the rest ones is that it is executed once

before the condition is evaluated. That means the statements of do-while code block
execute at least once.

262

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

The flowchart for do-while loop is given below:

A 4

do while A

Process

False
Exit

True

A

For Loop

The for loop becomes bread and butter for us as it gathers three things together. The
syntax for the for loop is as follows:

for (initialization statements; condition; incremental statements)
{ //for code block

// Do something

E.g.,
for (inti=0;1 < 10;1++)

{
h

The for loop is executed until the condition returns true otherwise it is terminated.
The braces are not mandatory if there is single statement in the for code block. But for
sake of good programming practice, the single statement is also enclosed in braces.
Some people write the for loop in the following manner:
for (initialization statements; condition; incremental statements){
//for code block

263

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

// Do something

}

Both the methods for writing of for loop are perfectly correct. You can use anyone of
these. If you indent your code properly, the process will become easier.

The flowchart for for loop is as under:

for
Initialization
Statements
v
for i >
False
Exit
True
Process
y
for
Incre/Decre
Statements
< \ 4
264

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

switch, break and continue Statements

For multi-way decisions, we can use nested if-statements or separate if-statements or
switch statement. There are few limitations of switch statement but it is necessary to
use break statements in every case inside the switch statement. If a case results in
true when there is no break statement inside it, all the statements below this case
statement are executed. break statement causes to jump out of the switch statement.
We use break at the end of every case statement. By using break, the jumping out
from switch statement is in a way bit different from the rules of structured
programming. But break statement is so elegant and useful that you can use it inside
switch statement and inside loops. If we use break inside a loop, it causes that loop to
terminate. Similarly continue statement is very useful inside loops. continue
statement is used, when at a certain stage, you don’t want to execute the remaining
statements inside your loop and want to go to the start of the loop.

Functions

In C/C++, functions are a way of modularizing the code. A bigger problem is broken
down into smaller and more manageable parts. There is no rule of thumb for the
length of each part but normally one function’s length is not more than one screen.

Function Calling

We covered Functions Calling by value and by reference. The default of C language
is call by value. Call by value means that when we call a function and pass some
265

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

parameter to it, the calling function gets the copy of the value and the original value
remains unchanged. On the other hand, sometimes, we want to call a function and
want to see the changed value after the function call then call by reference mechanism
is employed. We achieved call by reference by using Pointers. Remember while
calling functions, call by value and call by reference are different techniques and
default for ordinary variables is call by value.

Top-Down Methodology

We discussed top-down design methodology. How do we see a problem at a high
level and identify major portions of it. Then by looking at each portion we identify
smaller parts inside it to write them as functions.

Arrays
After discussing functions and playing little bit with function calling, we had
elaborated the concept of Arrays. As discussed previously in this lecture, arrays are

a[d] afl] af2] af3] aft] a[5]
| woo | wor | w0z | wee | 1o | 105 |

used to aggregate variables of same data type. We wrote little functions about it and
did some exercises e.g., when we wanted to store age of students of our class. Then
instead of using a separate variable for each student, an array was employed to store
the ages of the students. Then to manipulate or to access individual array elements, a
technique array indexing was used. One important point to remember is that array
indexes start from 0. Let’s say our array name is a of 10 ints, its first element will be
a[0] while the last one will be a[9]. Other languages like Fortran carry out 1-based
indexing. Due to this 0 based indexing for arrays in C language, programmers prefer
to start loops from 0.

Arrays can also be multi-dimensional. In C language, arrays are stored in row major
order that a row is stored at the end of the previous row. Because of this storage
methodology, if we want to access the first element of the second row then we have to
jump as many numbers as the number of columns in the first row. This fact becomes
important when we are passing arrays to functions. In the receiving function
parameters, we have to write all the dimensions of the array except the extreme-left
one. When passing arrays to functions, it is always call by reference by default; it is
not call by value as in the default behavior of ordinary variables. Therefore, if the
called function changes something in the array, that change is actually made in the
original array of the calling function. When we pass ordinary variables to functions,
they are passed by value because of the default behavior. But when an array is passed
to a function, the default behavior changes and array is passed by reference. We also
did some examples of arrays by using Matrices and did some exercises by transposing
and reversing a squared matrix. Arrays are not just used in Mathematics or Linear
Algebra but are employed in a number of other problems like when we store ages,
names, and grades or want to calculate grade point of average. This is very useful

266

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

construct especially when used with loops. Normally it is very rare that you see an
array in a program and loop is not being used to manipulate it.
Like nested if-statements, we have nested loops, used with multi-dimensional arrays.
A while loop can have an inner while loop. Similarly a for loop can have a for loop
inside. It is also not necessary that a while loop should have only a while loop but it
can be a for loop also or any other construct like if-statement.

Pointers

It is very important topic of C/C++ . Pointers are different types of variables that
contain memory address of a variable instead of a value.

Pointer ‘warigble

address B walue

o

Simgle Indirection [=single dersferencs]

Pointer Pointer warable

addrass addrass = wadlue

e

Dbl e indirection[double dereference]

The very first example we discussed for pointers was for implementing function
calling by reference. Suppose we want to interchange (swap) two numbers by making
a function call. If we pass two variables to the function, these will be passed as
ordinary variables by value. Therefore, it will be ineffective as swapping of variables
inside the function will only be on the copies and not on the original variables. So
instead of passing variables we pass their addresses. In the called function, these
addresses are taken into pointer variables and pointers start pointing the original
variables. Therefore, the swapping operation done inside the function is actually
carried out on the original variables.

We also saw that Pointers and Arrays are inter-linked. The array name itself is a
pointer to the first element. It is a constant pointer that cannot be incremented like
normal pointer variables. In case of two-dimensional arrays, it points to the first row
and first column. In three-dimensional array, you can imagine it pointing to the front
corner of the cube.

File 1/10

We discussed about Files and File I/O for sequential and random files. We used a
mixture of C/C++ for file handling and how the sequential and random files are
accessed. We saw several modes of opening files. The important functions were seek
and tell functions. Seek functions (seekg and seekp) used to move into the file and
tell functions (tellg and tellp) provided us the location inside the file.

You are required to go with very clear head, try to understand concepts and assess
how much you have learned so far to prepare for the mid-term examination.
267

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

Lecture No. 23

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 17
Summary

e Pre-processor

e include directive

e define directive

e Other Preprocessor Directives

e Macros

e Example

e Tips
Preprocessor

Being a concise language, C needs something for its enhancement. So a preprocessor
is used to enhance it. It comes with every C compiler. It makes some changes in the
code before the compilation. The compiler gets the modified source code file.
Normally we can’t see what the preprocessor has included. We have so far been using
#include preprocessor directive like #include<iostream.h>. What actually #include
does? When we write #include<somefile>, this somefile is ordinary text file of C
code. The line where we write the #include statement is replaced by the text of that
file. We can’t see that file included in our source code. However, when the compiler
starts its work, it sees all the things in the file. Almost all of the preprocessor
directives start with # sign. There are two ways to use #include. We have so far been
including the file names enclosing the angle brackets i.e. #include <somefile>. This
way of referring a file tells the compiler that this file exists in some particular folder
(directory) and should be included from there. So we have included iostream.h,
stdlib.h, fstream.h, string.h and some other files and used angle brackets for all of
these files. These files are located in a specific directory. While using the Dev-Cpp
compiler, you should have a look at the directory structure. Open the Dev-Cpp folder
in the windows explorer, you will see many subfolders on the right side. One of these
folders is ‘include’. On expansion of the folder ‘include’, you will see a lot of files in
this directory. Usually the extension of these files is ‘h’. Here ‘h’ stands for header
files. Normally we add these files at the start of the program. Therefore these are
known as header files. We can include files anywhere in the code but it needs to be
logical and at the proper position.

268

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

include directive

As you know, we have been using functions in the programs. If we have to refer a
function (call a function) in our program, the prototype of function must be declared
before its usage. The compiler should know the name of the function, the arguments it
is expecting and the return type. The first parse of compilation will be successful. If
we are using some library function, it will be included in our program at the time of
linking. Library functions are available in the compiled form, which the linker links
with our program. After the first parse of the compiler, it converts the source code
into object code. Object code is machine code but is not re-locateable executable. The
object code of our program is combined with the object code of the library functions,
which the program is using. Later, some memory location information is included and
we get the executable file. The linker performs this task while the compiler includes
the name and arguments of the function in the object code. For checking the validity
of the functions, the compiler needs to know the definition of the function or at least
the prototype of the function. We have both the options for our functions. Define the
function in the start of the program and use it in the main program. In this case, the
definition of the function serves as both prototype and definition for the function. The
compiler compiles the function and the main program. Then we can link and execute
it. As the program gets big, it becomes difficult to write the definitions of all the
functions at the beginning of the program. Sometimes, we write the functions in a
different file and make the object file. We can include the prototypes of these
functions in our program in different manners. One way is to write the prototype of all
these functions in the start before writing the program. The better way is to make a
header file (say myheaderfile.h) and write the prototypes of all the functions and save
it as ordinary text file. Now we need to include it in our program using the #include
directive. As this file is located at the place where our source code is located, it is not
included in the angle brackets in #include directive. It is written in quotation marks as
under:

#include “myHeaderFile.h”

The preprocessor will search for the file “myHeaderFile.h” in the current working
directory. Let’s see the difference between the process of the including the file in
brackets and quotation marks. When we include the file in angle brackets, the
compiler looks in a specific directory. But it will look into the current working
directory when the file is included in quotation marks. In the Dev-Cpp IDE, under the
tools menu option, select compiler options. In this dialogue box, we can specify the
directories for libraries and include files. When we use angle brackets with #include,
the compiler will look in the directories specified in include directories option. If we
want to write our own header file and save it in ‘My Document’ folder, the header file
should be included with the quotation marks.

When we compile our source code, the compiler at first looks for the include
directives and processes them one by one. If the first directive is
#include<iostream.h>, the compiler will search this file in the include directory. Then
it will include the complete header file in our source code at the same position where
the ‘include directive’ is written. If the 2" include directive contains another file, this
file will also be included in the source code after the iostream.h and so on. The

269

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming YU

compiler will get this expanded source code file for compilation. As this expanded
source code is not available to us and we will get the executable file in the end.

Can we include the header file at the point other than start of the program? Yes. There
is no restriction. We can include wherever we want. Normally we do this at the start
of the program as these are header files. We do not write a portion of code in a
different file and include this file somewhere in the code. This is legal but not a
practice. We have so far discussed include directive. Now we will discuss another
important directive i.e. define directive.

define directive

We can define macros with the #define directive. Macro is a special name, which is
substituted in the code by its definition, and as a result, we get an expanded code. For
example, we are writing a program, using the constant Pi. Pi is a universal constant
and has a value of 3.1415926. We have to write this value 3.1415926 wherever
needed in the program. It will be better to define Pi somewhere and use Pi instead of
the actual value. We can do the same thing with the variable Pi as double Pi =
3.1415926 while employing Pi as variable in the program. As this is a variable, one
can re-assign it some new value. We want that wherever we write Pi, its natural value
should be replaced. Be sure that the value of Pi can not be changed. With the define

directive, we can define Pi as:
#define PI 3.1415926

We need to write the name of the symbolic constant and its value, separated by space.
Normally, we write these symbolic constants in capitals as it can be easily identifiable
in the code. When we request the compiler to compile this file, the preprocessor looks
for the define directives and replaces all the names in the code, defined with the
define directives by their values. So compiler does not see PI wherever we have used
PI is replaced with 3.1415926 before the compiler compiles the file.

A small program showing the usage of #define.

/* Program to show the usage of define */
#include <iostream.h>
#define P1 3.1415926 // Defining PI

main()

int radius = 5;
cout << "Area of circle with radius " << radius << " =" << PI * radius * radius;

}

What is the benefit of using it? Suppose we have written a program and are using the
value of PI as 3.14 i.e. up to two decimal places. After verifying the accuracy of the
result, we need to have the value of PI as 3.1415926. In case of not using PI as define,
we have to search 3.14 and replace it with 3.1415926 each and every place in the
source code. There may be a problem in performing this ‘search and replace’ task. We

270

© Copyright Virtual University of Pakistan

(c) ketabton.com: The Digital Library

CS201 — Introduction to Programming)

can miss some place or replace something else. Suppose at some place, 3.14 is
representing something else like tax rate. We may change this value too accidentally,
considering it the value for PI. So we can’t conduct a blind search and replace and
expect that it will work fine. It will be nicer to define PI at the start of the program.
We will be using PI instead of its value i.e. 3.1415926. Now if we want to change the
value of PI, it will be changed only at one place. The complete program will get the
new value. When we define something with the #define directive, it is substituted with
the value before the compiler compiles the file. This gives us a very nice control
needed to change the value only at one place. Thus the complete program is updated.

We can also put this definition of PI in the header file. The benefit of doing this is,
every program which is using the value of PI from this header file, will get the
updated value when the value in header file is changed. For example, we have five
functions, using the PI and these functions are defined in five different files. So we
need to define PI (i.e. #define P1 3.1415926) in all the five source files. We can define
it in one header file and