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Foreword
Dr. Qihao Weng has authored another outstanding remote sensing book entitled 
Remote Sensing for Sustainability (CRC Press, 2016). Well known for his expertise in 
remote sensing and GIS analysis of urban and environmental systems, this professor 
from Indiana State University, director of the Center for Urban and Environmental 
Change, series editor for the Taylor & Francis Series in Remote Sensing Applications, 
and co-editor-in-chief of the ISPRS Journal of Photogrammetry and Remote Sensing 
also is involved in the Group on Earth Observations or GEO. Established in 2005, 
GEO is a partnership of governments and organizations with a vision toward a future 
when global decisions benefiting humankind are informed by Earth observations 
and information derived from coordinated and sustained remote sensing (http://
www.earthobservations.org). Professor Weng’s work as the task lead and coordina-
tor for GEO SB-04, Global Urban Observation and Information Task, led him to the 
idea to write a book on the use of remote sensing for multiple and sustainable soci-
etal benefits, including biodiversity, disaster resilience, energy and mineral resources 
management, food security, sustainable agriculture, infrastructure and transporta-
tion management, public health surveillance, sustainable urban development, and 
water resources management. In other words, his book covers remote sensing of 
all the requirements to sustain life on Earth and ensure environments that promote 
human health, productivity, and security.

In this book, Remote Sensing for Sustainability, Weng recognizes that grand 
and global challenges require international collaboration and cooperation in order 
to optimize remote sensing data acquisition, storage, access, and dissemination. He 
understands the value of sharing methods and techniques of image processing and 
data analysis for producing accurate and actionable knowledge from images, point 
clouds, sensor networks, ground measurements, and modeled predictions. Experts 
from around the world were gathered to report on specialties of remote sensing for 
sustainable cities, natural resources, environmental systems, and energy. Chapters 
within these major topic areas cover critical issues of urban planning and growth, 
endangered species conservation, water and air quality, forest damage by diseases 
and insects, energy supplies, and sustainable wind and solar energy potential—all 
using geospatial data, techniques, and analyses. As Barbara Ryan, GEO Secretariat 
Executive Director, notes in the Preface of this book, there is a critical need to under-
stand the character of urban environments where approximately half of the human 
global population live in only about 3% of the Earth surface. Rapidly expanding, 
dense, sprawling, and vulnerable to human and natural impacts, urban systems must 
be understood in order to make timely and informed decisions aimed toward min-
imizing deforestation, air and water pollution, energy consumption, food deserts, 
marginal housing, and limited green spaces. This book makes a giant step forward 
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in advancing global cooperation in remote sensing efforts and sharing knowledge 
desperately needed for Earth sustainability in a changing climate.

Marguerite Madden
Center for Geospatial Research Department of Geography 

The University of Georgia
Athens, GA
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Preface
TOWARD A SUSTAINABLE EARTH THROUGH REMOTE SENSING

SuStainability and Earth ObSErvatiOn

In recent years, we have witnessed an emerging trend worldwide to pursue green 
technologies and low-carbon economies and lifestyles. However, the sustainabil-
ity issue is not new. At the 1992 United Nations Conference on Environment and 
Development (UNCED) in Rio, UNCED Principle Three characterized sustainable 
development as “the right to development must be fulfilled so as to equitably meet 
developmental and environmental needs of present and future generations,” while 
Principle Four stated that “in order to achieve sustainable development, environmen-
tal protection shall constitute an integral part of the development process and cannot 
be isolated from it.” These principles were reaffirmed at the 2002 Johannesburg 
World Summit on Sustainable Development and have since produced a profound 
implication for use and stewardship of natural resources, ecology, and environment 
(Weng and Yang 2003). In practice, sustainable development is a multifaceted con-
cept and has been viewed from many perspectives, depending on one’s personal 
experience, viewpoint, and discipline (Weng and Yang 2003). As we consider sus-
tainable development from an ecological perspective, we must have an appreciation 
of ecosystem integrity, which implies the existence of the system structure and func-
tion, maintenance of system components, interactions among them, and the resul-
tant dynamic of the ecosystem (Campbell and Heck 1997). Shaller (1990) suggested 
that “sustainable agriculture over the long-term enhances environmental quality and 
the resource base upon which agriculture depends, provides for basic human food 
and fiber needs, is economically viable, and enhances the quality of life for farmers 
and society as a whole.” This definition illustrates well three pillars of sustainable 
development: ecological, economic, and social objectives (Weng and Yang 2003). 
The ecological objective seeks to preserve the integrity of the ecosystem, while the 
economic objective attempts to maximize human welfare within the existing capital 
stock and technologies and use economic units (i.e., money or perceived value) as a 
measurement standard (Campbell and Heck 1997). The social objective stresses the 
needs and desires of people and uses standards of well-being and social empower-
ment. The ecological perspective for sustainable development balances the ecologi-
cal, economic, and societal values, and falls at the intersection of the spheres that 
represent the three components (Weng and Yang 2003). Incoordination among the 
three components will likely result in failure to achieve sustainability (Zonneveld 
and Forman 1990).

The spatial and temporal scales are key elements in assessing ecological and envi-
ronmental sustainability, because they module the objectives of what we wish to 
sustain, over what time scale and in which geographical scope (Weng 2014). With 
more than one-half of the world population living in cities, the 21st century has 
become the first urban century. Cities are human-central ecosystems and are the 
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most complex of all human settlements. While the economic and societal values 
are stressed, the ecological value is often ignored, and therefore, the ecological 
perspective of sustainable development asserts the importance of the coordination 
and balance among the three objectives for sustainability of cities (Weng and Yang 
2003). Because of the nature of cities as dynamic, complex settlements and human-
central ecosystems, the development of evaluation methods for sustainable cities 
should reflect these characteristics (Weng and Yang 2003). The US Climate Change 
Science Program (CCSP 2008) defines one of its five goals to be “understanding the 
sensitivity and adaptability of different natural and managed ecosystems and human 
systems to climate and related global changes.” Although vulnerabilities of settle-
ments to impacts of climate change vary regionally, they generally include some or 
many of the following impact concerns: health, water and infrastructures, severe 
weather events, energy requirements, urban metabolism, sea level rise, economic 
competitiveness, opportunities and risks, and social and political structures. CCSP 
(2008) further recommends that research on climate change effects on human settle-
ments in the United States be given a much higher priority in order to provide better 
metropolitan-area scale decision-making.

Earth observation technology, in conjunction with in situ data collection, has been 
used to observe, monitor, measure, and model many of the components that com-
prise natural and human ecosystems cycles (Weng 2012a). Driven by the societal 
needs and improvement in sensor technology and image processing techniques, we 
have witnessed a great increase in research and development, technology transfer, 
and engineering activities worldwide since the turn of the 21st century. Commercial 
satellites acquire imagery at spatial resolutions previously only possible to aerial 
platforms, but these satellites have advantages over aerial imageries including their 
capacity for synoptic coverage, inherently digital format, short revisit time, and capa-
bility to produce stereo image pairs conveniently for high-accuracy 3D mapping 
thanks to their flexible pointing mechanism (Weng 2012b). Hyperspectral imag-
ing affords the potential for detailed identification of materials and better estimates 
of their abundance in the Earth’s surface, enabling the use of remote sensing data 
collection to replace data collection that was formerly limited to laboratory testing 
or expensive field surveys (Weng 2012b). While LiDAR technology provides high-
accuracy height and other geometric information for urban structures and vegeta-
tion, radar technology has been re-invented since the 1990s mainly because of the 
increase of spaceborne radar programs (Weng 2012b). These technologies are not 
isolated at all. In fact, their integrated uses with more established aerial photography 
and multispectral remote sensing techniques have been the main stream of current 
remote sensing research and applications (Weng 2012b).

With these recent advances, techniques of and data sets from remote sensing and 
Earth observation have become an essential tool for understanding the Earth, moni-
toring the world’s natural resources and environments, managing exposures to natu-
ral and man-made risks and disasters, and helping the sustainability and productivity 
of natural and human ecosystems (Weng 2012b). This book aims at introducing to 
the current state of remote sensing knowledge needed for sustainable development 
and management with selected studies. These studies either explore the methods 
and techniques of remote sensing for application to various aspects of sustainable 
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development or provide important insights into sustainability science from the per-
spective of remote sensing technology. Therefore, this book would be of great value 
for students, professors, and researchers in both remote sensing and sustainability 
science. It can help narrow the gap between the two disciplines. This book may 
also serve as a textbook for undergraduate and graduate students or as an impor-
tant supplement for those majoring in sustainability, remote sensing, geography, 
geosciences, planning, environmental science and engineering, civic engineering, 
resources science, land use, energy, and geographic information system (GIS). On 
college campuses, we have recently witnessed an ever-increasing number of classes 
and programs on sustainability or related subjects. Remote sensing is emerging as 
an essential geospatial tool in sustainability; this book would meet the need of those 
classes and programs. In addition, this book may be used as a reference book for 
sustainability officers, practitioners, and professionals alike in the government, com-
mercial, and industrial sectors. Since its contents cover numerous applications of 
remote sensing to sustainability, this book, indeed, provides a useful toolbox.

intErnatiOnal COOpEratiOn and COllabOratiOn 
On Earth ObSErvatiOn fOr a SuStainablE Earth

The 2002 World Summit on Sustainable Development in Johannesburg highlighted 
the urgent need for coordinated observations relating to the state of the Earth. The 
First Earth Observation Summit in Washington, DC, in 2003 adopted a declara-
tion to establish the ad hoc intergovernmental Group on Earth Observations (ad hoc 
GEO) to draft a 10-Year Implementation Plan. Since 2003, GEO has been work-
ing to strengthen the cooperation and coordination among global observing systems 
and research programs for integrated global observations. The GEO process has out-
lined a framework document calling for Global Earth Observation System of Systems 
(GEOSS) and has defined nine areas of societal benefits (Group on Earth Observation 
2008), including the following:

• Reducing loss of life and property from natural and human-induced 
disasters,

• Understanding environmental factors affecting human health and well-being,
• Improving the management of energy resources,
• Understanding, assessing, predicting, mitigating, and adapting to climate 

variability and change,
• Improving water resource management through better understanding of the 

water cycle,
• Improving weather information, forecasting and warning,
• Improving the management and protection of terrestrial, coastal and marine 

ecosystems,
• Supporting sustainable agriculture and combating desertification, and
• Understanding, monitoring and conserving biodiversity.

On September 25, 2015, the United Nations adopted a set of sustainable develop-
ment goals (SDGs), each of which has specific targets to be achieved over the next 
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15 years (United Nations Development Programme 2015). These goals represent 
the United Nation’s responses to numerous societal challenges and the efforts to 
build a sustainable Earth. Through large-scale, repetitive acquisition of the Earth 
surface image data, remote sensing can provide essential information and knowl-
edge to supplement statistical analyses in the assessment of indicators toward the 
attainment of the SDGs. Because Earth observation offers an indispensable tool to 
measure and monitor the progress toward SDGs, in the recently developed “GEO 
Strategic Plan 2016–2025: Implementing GEOSS,” GEO is determined to develop a 
concerted direction with the SDGs (Group on Earth Observations 2015). The GEO 
Global Urban Observation and Information Initiative (GI-17) has set the following 
goals for the period 2012–2015: (1) improving the coordination of urban observa-
tions, monitoring, forecasting, and assessment initiatives worldwide; (2) supporting 
the development of a global urban observation and analysis system; (3) producing 
up-to-date information on the status and development of the urban system—from 
a local to a global scale; (4) filling existing gaps in the integration of global urban 
observation with data that characterize urban ecosystems, environment, air qual-
ity and carbon emission, indicators of population density, environmental quality, 
quality of life, and the patterns of human environmental and infectious diseases; 
and (5) developing innovative techniques in support of effective and sustainable 
urban development. These goals will be implemented by developing and expanding 
selected activities and programs that the GEO Global Urban Observation (SB-04) 
task team has been working (Weng et al. 2014). This book intends to contribute 
to the GEO’s Strategic Plan by addressing and exemplifying a number of societal 
benefit areas of remote sensing data sets, methods, and techniques for sustainable 
development.

SynOpSiS Of thE bOOk

This book consists of four sections. Section I deals with remote sensing for sustain-
able cities; Section II discusses remote sensing techniques and methods for forest 
resources; Section III presents remote sensing studies for sustainable environmental 
systems, with topics ranging from air, water, to land; and Section IV includes various 
contributions in remote sensing of sustainable energy systems.

Section I includes five chapters dealing with theories and methods as well as 
practical applications of sustainable development for cities using remote sensing. 
Chapter 1 provides key concepts and principles for assessing sustainability of cit-
ies. It then discusses the typical parameters derivable from remotely sensing imag-
ery that can be used to define indicators for sustainable cities. Chapter 2 introduces 
a selection of applications and data products that provide support for day-to-day 
decision-making activities in urban and regional planning. Chapters 3 through 5 
present various studies in which remotely sensed data, methods, and techniques 
are used for studying cities or urban clusters. In Chapter 3, Zhang and Weng moni-
tor urban growth process in the Pearl River Delta, Guangdong Province, China, by 
using time series Landsat imagery from 1987 to 2014. This chapter demonstrates 
the effectiveness of time series data mining for assessing urban growth pattern 
over a long period and the usefulness of generated data set and information for 
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exploring the relationship between urban growth and environmental sustainabil-
ity. In Chapter 4, the damage of subsidence on urban structures in the St. Louis 
Metropolitan area, Missouri, is explored by using Synthetic Aperture Radar images 
in the period from 1992 to 2011. Their results show hot spots of ongoing and poten-
tial land collapses in the region, which are valuable not only to individual home-
owners but also to city planners, insurance companies, and regional policymakers 
charged with assessing risks of abandoned coal mines. In the last chapter in the 
section, Chapter 5, Xiao and Weng examine urban growth in the North Carolina 
urban crescent from the Research Triangle Park (Raleigh–Durham–Chapel Hill) 
to Greensboro, and Guiyang City to Anshun City in Guizhou Province, China, 
from the 1980s to the 2010s, when accelerated industrialization and urbanization 
occurred. They compare and contrast the spatial patterns, paths, and driving forces 
of urbanization in the two regions and countries of different socioeconomic devel-
opment stages.

Section II focuses on remote sensing methods and techniques for sustainable nat-
ural resources. In Chapter 6, Tong et al. present a few case studies on the application 
of remote sensing in grassland management for a mixed-grass prairie ecosystem in 
North America; on the basis of the case studies, they further discuss challenges and 
opportunities for remote sensing in grassland management. Chapter 7 assesses the 
relationship between species extinction and biodiversity loss using the example of 
palila (Loxioides bailleui), an endangered bird species on the island of Hawaii. To 
understand its population trend, tree species in its habitat were identified analyzed 
with high spatial resolution satellite imagery at both pixel and object levels. Chapter 
8 takes this direction further along biodiversity and conservation by examining how 
evolved remote sensing techniques can be employed to investigate forest damages 
by diseases and insects. The last chapter in Section II, Chapter 9, focuses on water 
resources. Matsushita and his colleagues first survey major satellite sensors for water 
quality studies, followed by a discussion of representative algorithms for water area 
delineation, atmospheric correction, and water quality parameter estimation. This 
chapter ends with a proposed framework for water quality assessment using remote 
sensing.

What remote sensing methods and techniques can do for the sustainability of 
environmental systems and how they do it are addressed in Section III. In Chapter 
10, Hu explores the use of satellite remote sensing data to expand ground network 
of PM2.5 observation by using aerosol optical depth (AOD). Various AOD prod-
ucts and methods that are widely used in PM2.5 concentration estimation were 
assessed. This discussion was followed by a case study in the Atlanta metropolitan 
area, Georgia, to estimate ground-level PM2.5 concentration from MODIS AOD. 
Chapter 11 continues the discussion on public health but from the perspective of 
heat hazards. Jiang and Weng develop methods to analyze daily and hourly varia-
tions of land surface temperature (LST), which were derived from remotely sensed 
thermal infrared image data, and discuss the impact of evapotranspiration on LST 
over a variety of urban surfaces. Both Chapters 12 and 13 study ecosystems in 
semi-arid and arid regions but with distinct approaches of remote sensing. The for-
mer investigates the tendency of desertification along the Mediterranean to arid 
transition zones in central Israel, and the latter assesses soil moisture condition in 
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the Umer Kot region of Pakistan. In Chapter 12, Shoshany develops three indica-
tors using remote sensing data, that is, Green Vegetation Cover, life-forms’ sub-
pixel compositions, and spatial recovery versus erosion potential, and by assessing 
these indicators, he suggests that no significant shift occurred in the transition zone 
between 1996 and 2011, but that there was high vulnerability to future degrada-
tion. Soil moisture holds the key to drought and agricultural monitoring in semi-
arid and arid regions. Chapter 13 investigates the potential of near-infrared and red 
reflectance space (i.e., the RSSMM method) and temperature vegetation dryness 
index (TVDI) for the assessment of soil moisture. Results of the remote sensing 
methods were compared with in situ soil moisture measurements at different land 
surface depths of 0–15, 15–30, and 30–45 cm. RSSMM was found satisfactory in 
determining soil moisture, but TVDI provided a more reliable estimate of moisture 
condition.

The last section of this book, Section IV, examines the issues of energy use and 
sustainable energy sources using remote sensing technology. The development of 
renewable energies is one of the key challenges in the 21st century. In this context, it 
is of central importance to focus on the review of surface potentials, the determina-
tion of suitable sites, the consideration of user interests, and the detection of trends 
and impacts on the landscape. To meet these requirements and tasks, timely, spatial, 
and thematic high-quality geospatial data are indispensable. In Chapter 14, Esch 
et al. exemplify applications of remote sensing and related technologies and geo-
information products for land management in Germany, which is geared toward the 
development of potentials of renewable energies. Chapter 15 assesses the capability 
of DMSP-OLS nighttime light imagery for analyzing the decadal trends of energy 
consumption (EC) in China, from 2000 to 2012. Here, Xie and Weng demonstrate 
a moderate to rapid growth of EC for coastal and capital cities, but a slow growth 
for the majority of central, northeastern, and western cities. They further find the 
total and urban EC at the prefectural level to be regionally clustered, which may 
have an implication in future Chinese energy policy and the spatial distribution of 
EC. The last two chapters examine renewable energy sources. While Chapter 16 
focuses on wind energy, Chapter 17 evaluates solar energy potential. Wind speed 
and wind flow are strongly influenced by land surface properties. Three different 
remote sensing–based parameters can help characterize wind resources: (1) land 
cover and land use, (2) digital elevation models, and (3) phenological information. 
In Chapter 16, Esch et al. discuss how Earth Observation (EO) data can be used 
to support wind resource modeling, especially the possibilities brought about by 
the Copernicus Sentinel satellites. They conclude that by using EO-based infor-
mation on the surface (e.g., roughness) and in situ wind measurements, realistic 
wind fields for sufficiently large areas can be derived by considering shadowing 
effects and wind shear as well. Chapter 17 provides two case studies to demonstrate 
the applicability of remote sensing techniques on sustainable energy development 
in Indianapolis, Indiana. The first case study demonstrates a method to estimate 
the solar energy potential of building roofs, and the second case study examines 
the correlation between energy use and building morphological attributes such as 
ground area, total floor area, height, surface area, compactness, aspect ratio, and 
orientation.
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1 Extraction of Parameters 
from Remote Sensing 
Data for Environmental 
Indices for Urban 
Sustainability

John C. Trinder

1.1  INTRODUCTION

It has been recognized over the past few decades that actions by humans have modi-
fied and altered the energy and mass exchanges that occur between the atmosphere, 
oceans, and biota, and researchers now understand that the changes being wrought 
on the planet could be beyond the resilience of natural systems to absorb. The con-
sequence of these changes can also be a loss or a severe decline in the ecosystem 
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4 Remote Sensing for Sustainability

services on which we rely, thus affecting our quality of life. McGlade (2007) referred 
to even more serious consequences of a green backlash, where dramatic shifts in the 
structure and behavior of ecosystems can occur without warning.

Sustainable development has been proposed as a means of ensuring that human 
impacts are within the capacity of the Earth’s environment* to cope with changes. 
While there have been many definitions presented, sustainability refers to the adop-
tion of practices in relation to environmental use and management that provide a 
satisfactory standard of living for today’s population and that do not impair the 
capacity of the environment to provide for and support the needs of future genera-
tions. Alternatively, sustainable development is that which meets the needs of society 
today without foreclosing the needs or options of the future (Blanco et al. 2001; 
Mahi 2001). The concept of sustainability in respect of the use of the environment’s 
resources includes the notion that the outputs derived, whether they are from land, 
water, or air, can be produced continuously over time, and that a balance can be 
achieved between the rate of economic growth, the use of resources, and environ-
mental quality, thus minimizing the risk of long-term environmental degradation. 
Sustainable practice is one which is sensitive to ecological constraints and seeks to 
minimize the undesirable effects of exploitation and use, and which might negatively 
affect the longer-term viability of a resource. It is also one in which the full economic 
and environmental replacement costs associated with the use of a resource should 
be met. Turner (1993) described strong versus weak sustainability, which is based on 
“the economic concept of capital, defined as a stock of resources with the capacity 
to give rise to the flow of goods and services.” Strong sustainability requires “the 
stock of natural capital to be maintained above critical levels” (Turner 1993). Weak 
sustainability presumes that the “total capital stock does not decline” and all types of 
capital are substitutable. Karlsson et al. (2007) indicated that where current policies 
and actions are heading in regard to human welfare, on the scale of weak to strong 
sustainability, can be mapped out provided they are formulated in monetary terms.

Brandon and Lombardi (2011) referred to community capital that contributes to 
humans’ well-being, which includes built and financial, human and social, and natu-
ral capital, each being measured in different ways. When they are out of balance, 
chaos or disaster can occur.

Kates (2000) reviewed the relationship between population and consumption in 
terms of the formula I = P × C, where I is environmental degradation or resource 
depletion, P is the number of people or households, and C is the transformation of 
energy, materials, and information. This simple formula shows that as population 
increases, resource depletion also increases. In addition, the value of C must be con-
trolled according to an optimal level of transformation of natural capital. Therefore, 
as populations increase, or a certain section of the population wishes to increase its 
use of resources to the same level as other groups in a society, since natural capital 
available for transformation effectively remains constant, there will be fewer natu-
ral resources available per capita and a redistribution of resources will be required. 

* In the context of this chapter, environment refers to the surroundings or conditions in which a person, 
animal, or plant lives or operates, while ecology is the branch of biology that deals with the relations 
of organisms to one another and to their physical surroundings.
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5Extraction of Parameters from Remote Sensing Data

The  maintenance of sustainability therefore becomes even more difficult and yet 
more critical.

Sustainable development cannot be divorced from issues of equity, welfare, 
lifestyle, and the expectation of improved standards of living in most countries. 
The Principles of the 1992 Rio Declaration, which were reaffirmed at the 2002 
Johannesburg World Summit on Sustainable Development, define the roles of the 
stakeholders in sustainable development, and rights and responsibilities in devel-
opment processes. The Johannesburg Declaration went on to refer to “…the three 
components of sustainable development, economic development, social development 
and environmental protection as interdependent and mutually reinforcing pillars.”

1.2  TOWARD A SUSTAINABLE COMMUNITY

There have been many papers proposing approaches to achieving sustainability in 
nations, in regions, and by individuals. Gallopin and Raskin (2002) compared a 
number of scenarios that have been used or may be used in the future for predict-
ing the characteristics of a sustainable human society. They include market forces, 
policy reform, eco-communalism, through to muddling through. The global com-
munity is currently dominated by market forces in which there is often an absence 
of controls over development and therefore there are tensions between development 
and sustainability goals. The policy reform approach of Gallopin and Raskin (2002) 
was based on the assumption of consensus and strong political will to achieve a 
sustainable future. Radermaker (2004) compared the impact of several approaches 
to economic and political developments and concluded that a balanced philosophy 
must be based on the concept of a global ecosocial market, consensus, and respect 
for civil rights and human equity, where human behavior is agreed globally by social 
contract. It means that there needs to be a consensus on protection of resources and 
respecting the need for all humans to have an adequate quality of life with access 
to essential resources. It is a long-term view of how the global population should 
cooperate to secure environmentally sound developments, but one which he believed 
is essential to achieve a sustainable and equitable use of resources. Azapagic and 
Perdan (2005a,b) have presented a procedure for decision-making that includes all 
stakeholders in a development process defining their preferences and choosing the 
most suitable alternative for the development, implementation of the chosen alterna-
tive, and assessment of the outcomes. The decision-making process was based on the 
concept of Multiple Criteria Decision Analysis, which was described in some detail.

In order to assess the sustainability of a society and its consequent well-being, 
organizations in many countries, regional organizations, nongovernmental organiza-
tions, and private organizations have attempted to develop sustainability indicators 
(SIs). Hundreds of indicators have been produced under the three pillars of eco-
nomic, social, and environmental. A fourth pillar, institutional, has also recently 
been added. In judging the importance of the three original pillars, Jesinghaus 
(2007) showed that economy is the most important pillar, with a weight of 45%, 
while social has a weighting of 35% and environment has a weighting of 20%. If 
these weights of importance lead to a degradation of the environment, then it seems 
a greater weight may be required for the environment.
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6 Remote Sensing for Sustainability

While many of the concepts referred to above may be far removed from the 
practical implementation of remote sensing technologies, it can be argued that remote 
sensing and geographic information system (GIS) technologies have important roles 
to play in assisting in the understanding of the physical impacts of development 
and, therefore, by inference, their impacts on human well-being. Also, by virtue of 
information extracted from the analysis of geospatial data, unsustainable practices 
being undertaken may be identified and their likely consequences may be predicted 
if they are continued. Such analyses must involve experts in remote sensing and GIS, 
as well as those in ecology, biology, sociology, human resources, and politics.

A description of sustainability indicators (SIs) will be given Section 1.3, followed 
by those for urban environments and a demonstration of how remote sensing 
technologies can be incorporated for the practical assessment of sustainability of urban 
areas. This chapter will concentrate on applications of remote sensing technologies 
for assessing urban sustainability as well as land-use practices outside urban areas, 
since urban dwellers depend on land in the vicinity of urban environments for much 
of their well-being.

1.3  SUSTAINABILITY INDICATORS

1.3.1  Defining inDicators

Becker (1997) defined the approaches that can be taken for assessing sustainability 
using “an exact measurement of single factors and their combination into meaningful 
parameters” and indicators “as an expression of complex situations by a variable that 
compresses information into a more readily understandable form” (Harrington et al. 
1993). Tanguay et al. (2010) stated that an observed datum or variable becomes an 
indicator, only when its role in the evaluation of a phenomenon has been established. 
An index (or composite indicator) is a synthesis of indicators. Moldan and Dahl 
(2007) stated that “Indicators of sustainability should measure characteristics of the 
human-environmental system that ensure its continuity and functionality far into 
the future.”

Hák et al. (2007) provided a detailed scientific assessment of SIs, in the treatise 
implemented by SCOPE and UNEP, together with the IHDP and EEA, and sponsored 
by the ICSU.* This is a comprehensive coverage of SI from the perspective of the 
three pillars and includes methodological aspects, system and sectorial approaches, 
and case studies. A great deal can be learned from this volume about SIs. Rao (1998) 
stated that SIs are designed to monitor progress and assess the effectiveness and 
impact of policies on natural resource development. Becker (1998) reported on the 
proliferation of papers and recommendations on developing SIs since the UN Rio 
Earth Summit in 1992. The UN, Organisation for Economic Co-operation and 
Development (OECD), the World Bank, and many other organizations have devel-
oped sets of indicators. OECD countries use 23 so-called indices based on natural 

* SCOPE, Scientific Committee on Problems of the Environment; UNEP, UN Environmental 
Programme; IHDP, International Human Dimensions Programme on Global Environmental Change; 
EEA, European Environmental Agency; ICSU, International Council for Science.
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sciences, policy performance, accounting framework, and synoptic indices. There 
are also aggregate indices that cover countries or regions.

Petrosyan (2014) developed a new composite indicator, composite appraising 
supportive progress (CASP), derived from 12 other indicators, with the weighting 
based on the number of papers published on each indicator. While there are advan-
tages to having a single measure of sustainability, there are considerable questions 
about the weights used to produce composite indices, which show little scientific 
justification.

Moldan and Dahl (2007) referred to the different time scales of indicators for the 
three pillars. Economic indicators will normally have a short-term effect, while the 
effects of environment indicators will be longer term. In addition, they suggested 
that SIs might be more easily understood if they are formed into frameworks, based 
on a hierarchy of subdomains, with the three pillars being the basis for one such 
framework. Brandon and Lombardi (2011) stated that frameworks have been devel-
oped in order to link indicators to policy processes and also for developing messages 
to decision-makers.

Olalla-Tárraga (2006) claimed that a reductionist approach in which the three 
areas, economic, social, and environmental, are separated has failed to provide a sat-
isfactory set of SIs that can be practically implemented. He presented eight concep-
tual frameworks that have been published by various authors, namely, domain-based, 
issue-based, goal-based, sectoral, causal, comparative, ecosystemic, and combina-
tions. His solution was the hierarchical concept shown in Figure 1.1, in which the 
three areas (economic, social, and environmental) are each subdivided into area, 
objective, attribute, and indicators. An attempt will be made to relate environmental 

 

Economy 

Environment 

Social 

Dimension Area                Objective           Attribute
In

di
ca

to
rs

 
 
 

 
 
 
 
 

 

Sustainable
development

FIGURE 1.1 Hierarchical framework of sustainable indicator system. (From Olalla-
Tárraga M. A. 2006. A conceptual framework for assessing urban ecological systems, Int. J. 
Sustainable Dev. World Ecol. 13: 1–15. With permission.)
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indicators for urban areas to such a framework later in this chapter. Links may exist 
between the different criteria. This is a complex approach, but one which may be 
developed further in the future.

Olalla-Tárraga (2006) has also commented that a problem with SIs is the limited 
amount of data available to compile them. Becker (2007) provided a general dis-
course on frameworks for SIs that should lead to a more holistic approach to their 
implementation. She stated that limited tools are currently available for assessing 
the nonlinear multidimensional problem of sustainable development, but frame-
works can assist in understanding the issues. Gutiérrez-Espeleta (2007) has also 
raised the issue that a new approach is necessary in the development of SIs. He 
has proposed a multilevel typology in which the indicators for Environment and 
Society can be classified into five generations. The first and second generations 
would measure a single characteristic of an environmental (or societal) issue, while 
the third, fourth, and fifth generations would be integrated measures. He has cited 
two indices—the Environmental Vulnerability Index (EVI) and Environmental 
Sustainability Index (ESI)—that have been developed as high-order indices and 
show promise. There are perhaps synergies with this approach and frameworks, but 
they have been developed along different lines. A major issue in demonstrating the 
usefulness of indices is the availability of data to test the use of indices (Brandon 
and Lombardi 2011). In summary, while frameworks have not yet resulted in a use-
ful set of SI, the concept is believed by a number of researchers to lead to a better 
approach in the future.

1.3.2  application of sis

Becker (1997) listed the complex criteria as shown in Table 1.1 for developing SIs 
that have been compiled with reference to the work of a number of scientists. These 
are very relevant to developing SIs for the physical aspects of the environment that 
can be determined by remote sensing and that should be suitable for contributions 
to a framework approach to SIs in the future. Becker (1997) has shown examples 
of environmental indicators for agriculture that could include such items as “yield 
trends, coefficients for limited resources, material and energy flows and balances, 
soil health, modeling and bioindicators.” Indicators used in practice are usually 
application specific but are expected to be unbiased, sensitive to changes, and 
convenient to communicate and collect.

Stevenson and Li (2001) referred to the concepts of pressure, state, and response 
developed by other authors in discussing the development of SIs applicable for agri-
culture. Pressure refers to human activity, such as in farming; state refers to “the 
state of the environment and resources,” for example, water quality and soil erosion; 
and response refers to economic and environment agents, such as policy makers. As 
an example, they stated that indicators are a simplification of the impact of agricul-
ture on the environment and that simple measures such as indicators are inadequate, 
without setting targets that represent levels of sustainability of agricultural activities. 
They argued that SIs must provide information on which to base decisions at the 
local or regional scale and must be a guiding framework for practitioners. They then 
derived a methodology for a meaningful set of indicators for agriculture that includes 

(c) ketabton.com: The Digital Library



9Extraction of Parameters from Remote Sensing Data

TA
B

LE
 1

.1
C

ri
te

ri
a 

fo
r 

th
e 

Se
le

ct
io

n 
of

 S
Is

 A
da

pt
ed

 fo
r 

Th
ei

r 
R

el
ev

an
ce

 t
o 

R
em

ot
e 

Se
ns

in
g

1.
 S

ci
en

ti
fi

c 
Q

ua
lit

y
2.

 E
co

sy
st

em
 R

el
ev

an
ce

3.
 D

at
a 

M
an

ag
em

en
t

4.
 S

us
ta

in
ab

ili
ty

 P
ar

ad
ig

m

 1
.1

 I
nd

ic
at

or
 r

ea
lly

 m
ea

su
re

s 
w

ha
t i

t i
s 

su
pp

os
ed

 to
 d

et
ec

t
 1

.2
 I

nd
ic

at
or

 m
ea

su
re

s 
si

gn
ifi

ca
nt

 
as

pe
ct

 1
.3

 P
ro

bl
em

 s
pe

ci
fic

 1
.4

 D
is

tin
gu

is
he

s 
be

tw
ee

n 
ca

us
es

 a
nd

 
ef

fe
ct

s
 1

.5
 C

an
 b

e 
re

pr
od

uc
ed

 a
nd

 r
ep

ea
te

d 
ov

er
 ti

m
e

 1
.6

 U
nc

or
re

la
te

d,
 in

de
pe

nd
en

t
 1

.7
 U

na
m

bi
gu

ou
s

 2.
1 

C
ha

ng
es

 a
s 

th
e 

sy
st

em
 m

ov
es

 a
w

ay
 

fr
om

 e
qu

ili
br

iu
m

 2.
2 

D
is

tin
gu

is
he

s 
ag

ro
-s

ys
te

m
s 

m
ov

in
g 

aw
ay

 f
ro

m
 s

us
ta

in
ab

ili
ty

 2.
3 

Id
en

tifi
es

 k
ey

 f
ac

to
rs

 le
ad

in
g 

to
 

un
su

st
ai

na
bi

lit
y

 2.
4 

W
ar

ni
ng

 o
f 

ir
re

ve
rs

ib
le

 p
ro

ce
ss

es
 2.

5 
Pr

oa
ct

iv
e 

in
 f

or
ec

as
tin

g 
fu

tu
re

 tr
en

ds
 2.

6 
C

ov
er

s 
fu

ll 
cy

cl
es

 th
ro

ug
h 

tim
e

 2.
7 

C
or

re
sp

on
ds

 to
 a

gg
re

ga
tio

n 
le

ve
l

 2.
8 

H
ig

hl
ig

ht
s 

lin
ks

 to
 o

th
er

 s
ys

te
m

 
le

ve
ls

 2.
9 

Pe
rm

its
 tr

ad
e-

of
f 

de
te

ct
io

n 
an

d 
as

se
ss

m
en

t b
et

w
ee

n 
sy

st
em

 
co

m
po

ne
nt

s 
an

d 
le

ve
ls

 2.
10

 C
an

 b
e 

re
la

te
d 

to
 o

th
er

 in
di

ca
to

rs

 3.
1 

C
os

t e
ff

ec
tiv

e
 3.

2 
D

at
a 

av
ai

la
bl

e
 3.

3 
Q

ua
nt

ifi
ab

le
 3.

4 
R

ep
re

se
nt

at
iv

e
 3.

5 
T

ra
ns

pa
re

nt
 3.

6 
G

eo
gr

ap
hi

ca
lly

 r
el

ev
an

t
 3.

7 
R

el
ev

an
t t

o 
us

er
s

 3.
8 

U
se

r 
fr

ie
nd

ly
 3.

9 
W

id
el

y 
ac

ce
pt

ed
 3.

10
 E

as
y 

to
 m

ea
su

re
 3.

11
 E

as
y 

to
 d

oc
um

en
t

 3.
12

 E
as

y 
to

 in
te

rp
re

t
 3.

13
 C

om
pa

ra
bl

e 
ac

ro
ss

 b
or

de
rs

 o
ve

r 
tim

e

 4.
1 

W
ha

t i
s 

to
 b

e 
su

st
ai

na
bl

e?
 4.

2 
Pa

rt
ic

ip
at

or
y 

de
fin

iti
on

 4.
3 

A
de

qu
at

e 
ra

tin
g 

of
 s

in
gl

e 
as

pe
ct

s
 4.

4 
R

es
ou

rc
e 

ef
fic

ie
nt

 4.
5 

C
ar

ry
 c

ap
ac

ity
 4.

6 
H

ea
lth

 p
ro

te
ct

io
n

 4.
7 

Ta
rg

et
 v

al
ue

s
 4.

8 
T

im
e 

ho
ri

zo
n

 4.
9 

So
ci

al
 w

el
fa

re
 4.

10
 E

qu
ity

So
ur

ce
: 

B
ec

ke
r 

B
. 

19
97

. 
Su

st
ai

na
bi

lit
y 

as
se

ss
m

en
t: 

A
 r

ev
ie

w
 o

f 
va

lu
es

, 
co

nc
ep

ts
, 

an
d 

m
et

ho
do

lo
gi

ca
l 

ap
pr

oa
ch

es
, 

Is
su

es
 i

n 
A

gr
ic

ul
tu

re
 1

0,
 C

G
IA

R
, W

as
hi

ng
to

n,
 D

C
, 

T
he

 W
or

ld
 B

an
k.

 W
ith

 p
er

m
is

si
on

.

(c) ketabton.com: The Digital Library



10 Remote Sensing for Sustainability

all stakeholders and goal setting. No actual values of indicators were given, which 
demonstrates that the concept of SI is only progressing slowly, and in many cases, 
no assessment of the sustainability of human activity is yet possible. In the future, 
values will be required for the indicators; otherwise, assessment of sustainability 
will not be achievable.

Hueting and Reijnders (2004) viewed the issue of SIs from an economic perspec-
tive, referring to Sustainable National Income (SNI) as the goal of countries. They 
also argued that physical aspects of the environment must be included in measures 
of sustainability and gave the example of the cod stocks in Canada in which physi-
cal aspects were inadequately considered before the industry collapsed. Hart (1999) 
demonstrated a new approach in SIs that included the interconnections between the 
three pillars of sustainability: social, environmental, and economic. She has stated 
that the indicators should be relevant, understandable, reliable, and timely, and has 
described a large number of indicators that cover many aspects of human activity, 
including production, energy, transport, education, health, recreation, ecosystem, 
land use, resource use, and many more. Most of these indicators are based on such 
measures as percentage of land covered by impervious materials, volumes of water 
used, harvest rates compared with growth rates, and so on. Indicators for sustainabil-
ity of land practices include sustainable land use, sustainable resource use, amount 
of tree cover, sustained returns, impact on soil or water, diversity of products, and 
conservation of native habitats.

Böhringer and Jochem (2007) reviewed 11 indices and commented that they did 
not cover all factors related to sustainability. They remarked on the arbitrariness 
of the weighting systems in compiling the indicators. A comprehensive set of 
Biodiversity Indicators has been presented by Biggs et al. (2007) covering such 
topics as gene-level, species-based, population abundance, ecosystem-level, and 
composite indicators. They also provided a list of single-variable indicators in use 
that are related to a reference value. Many of these indicators should be measurable 
by earth observation technologies.

Van Woerden et al. (2007) described a set of indicators related to the Global 
Environmental Outlook covering indicators related to the atmosphere, land, and 
water. Barrios and Kimoto (2006) used an analytical approach, based on principal 
components and sparse principal component analyses of a number of core indicators 
of sustainable development for the Philippines for deriving relevant indicators.

In Phillis and Andriantiatsaholiniaina (2001) and Andriantiatsaholiniaina 
et al. (2004), fuzzy logic was used to determine a combined measure of sustain-
ability and sensitivity to various indicators. They argued that the fragmentation of 
information about sustainability measures makes it difficult to assess the effects 
of developments on the environment. Hence, they attempted to use a systematic 
rule-based system that combined many measures of sustainability. Since these 
measures are never well defined, they have used fuzzy definitions of the measures, 
expressed verbally in such terms as good, bad, medium, and so on. A sensitivity 
value was determined for the factors that contribute to a lack of sustainability. 
The research concluded that there is no unique sustainable path, and hence poli-
cies need to be chosen to determine the most sustainable strategies. Cornelissen 
et al. (2001) also used fuzzy set theory to link human expectations expressed 
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linguistically to SIs presented numerically. The conclusion from this review is 
that the determination of sustainability is complex and not clearly defined and 
that there is often a time lag between development and its negative impact.

It is well known that remote sensing technologies, because of the regional and 
multitemporal coverage of the images, can enable measurement of many variables 
more economically than other field-based or manual methods. It is necessary to iden-
tify those indicators that can be measured reliably by remote sensing on a regular 
basis and that are reproducible, without bias, and truly reflect the characteristics of 
the environment when it is changing. Appropriate indicators must be determined 
in association with experts in the particular fields in which the indicators are being 
developed. While there are redundancies in Table 1.1, many of the criteria for 
determining SIs are relevant to the capabilities of remote sensing, particularly those 
in columns 1, 2, and 3.

1.4  INDICATORS FOR URBAN SUSTAINABILITY

Sustainability of urban areas should define sustainable urban form, which can also 
be seen from both planning and landscape perspectives. From the planning view-
point, a sustainable urban form is defined by its compactness, mixed use, density, 
sustainable transport, diversity, and greening (Jabareen 2006). Therefore, compact-
ness is one of the design concepts for a sustainable city.

The growth in cities is causing increasing stress on many aspects of the urban 
environment. According to the World Health Organization (WHO), 54% of the 
global population in 2014 lived in cities and that percentage is growing annually at 
a rate of more than 1.5%. Rees and Wackernagel (1996) believed that the end of the 
20th century was a turning point in the history of human civilization and provided 
many examples of how humans are increasingly consuming more of the Earth’s 
resources, to the extent that a full-world assumption of economics should be adopted 
rather than that of an empty world. They then went on to discuss the ecological foot-
print and human load of cities, which is increasing with time for many developed 
countries. They concluded that “no city or urban region can achieve sustainability 
on its own” because cities depend on resources from the hinterland, stretching from 
nearby areas to globally through exports and imports. Therefore, “a prerequisite for 
sustainable cities is sustainable use of the global hinterland.” They listed the advan-
tages of city living, based on economies of scale, possibilities of reduced energy con-
sumption, and recycling, among others. However, they were pessimistic about the 
ability of humans to make positive steps to achieve more sustainable living. Alberti 
(1996) stated that cities alter the local and global environment, because they alter the 
land, import vast amounts of food water and energy, and export waste. She stated 
that assessing sustainability of an urban environment requires assessment of the fol-
lowing aspects:

• Direct transformation of the physical structure and habitat
• Use of natural resources (renewable and nonrenewable)
• Release of emissions and waste
• Human health and well-being
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Alberti (1996) also provided many examples of measures of urban sustainability, 
some of which are measurable by remote sensing technologies, for example, urban 
land cover, open areas, transport networks, and the effects of land use on accessibil-
ity to transport, urban renewal areas, derelict areas, air quality, and accessible green 
space.

Freedberg (2010) stated that there are six specific principles for urban sustainability:

• Greater viability of public transport
• Affordable housing that meets a range of demographic groups
• Greater access to quality education and jobs
• Supporting neighborhoods that are engaging in sustainable practices
• Engagement of governments in providing financial support for sustainable 

activities
• Investment in healthy, safe, and walkable neighborhoods

Several of these principles can be monitored by remote sensing technologies. 
Olalla-Tárraga (2006) stressed the need to take an integrated approach to develop-
ing indicators for urban environments that are a complex mixture of buildings, 
backyard gardens, open space, transport links, impervious surfaces, drainage systems, 
deteriorating atmosphere including heat sinks, and many more.

Shen et al. (2011) explored SIs used in a number of cities around the world, listing 
37 indicators under the following headings: Environmental, Economic, Social, and 
Governance. The Environmental Indicators were as follows:

• En1—Geographically balanced settlement
• En2—Freshwater
• En3—Wastewater
• En4—Quality of ambient air and atmosphere (which would include the 

effect of heat sinks)
• En5—Noise pollution
• En6—Sustainable land use
• En7—Waste generation and management
• En8—Effective and environmentally sound transportation systems
• En9—Mechanisms to prepare and implement environmental plans

Tanguay et al. (2010) compiled 188 urban SIs derived from 17 studies in published 
literature. They noted that of the 188 indicators, only 72% were used in one or two 
studies, while very few were found in more than 5 of the 17 studies. The distribution of 
indicators in the social, environmental, and economic categories revealed the overlap 
between sustainability dimensions and their descriptions. By further aggregating the 
indicators and reviewing their significance, they concluded on a list of 29 indicators, 
only 3 of which were related to the environment: ecological footprint, space allotted 
to nature conservation relative to area of territory, and percentage of waterways with 
excellent water quality. While the authors rated the important economic and social 
aspects of sustainable city living, they did not consider the sustainability of city 
dwellers in terms of the input of environmental capital.
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Brandon and Lombardi (2011) have adopted the framework for assessment of the 
sustainability of developments of the built environment, based on the concept of 
a Cosmonomic Idea of Reality incorporating 15 modalities in a specific order in 
which the latter modalities depend on the earlier ones. They comprise the following: 
numerical, spatial, kinematics, physical, biological, sensitive, analytic, historical, 
communicative, social, economic, aesthetic, juridical, ethical, and creedal. These 
modalities have been aggregated into two levels, where the highest level comprises 
physical environment, human cultural capital, and financial institutional capital. The 
second level of five main groups of urban policy activities comprises three each of 
the modalities listed above.

Goddard et al. (2010) reviewed the importance of neighborhood gardens and 
their effect on biodiversity in cities. They suggested that the scale of the gardens 
is important for different taxa, some being able to survive in small regions, 
whereas others require much larger areas than neighborhood gardens to thrive. 
They demonstrated that gardens are socioecological constructs at different scales 
depending on the location, neighborhood, and individuals responsible.

There is little guidance from the above discussion on which SIs should be adopted 
to assess the sustainability of urban environments based on remote sensing technolo-
gies, but some examples will be considered in the next section.

1.5  APPLICATION OF REMOTE SENSING 
FOR URBAN SUSTAINABILITY

1.5.1  available remotely senseD Data

Foody (2003) stated that remote sensing can provide a wealth of environmental data 
over a range of spatial and temporal scales and therefore can play a major role in the 
provision of indicators of environmental conditions for sustainable development and 
associated decision-making. The reason why remote sensing technologies have not 
been presented as important for assessing the sustainability of urban environments 
may be partially attributed to the lack of data with suitable resolutions. However, 
with recent developments in high-resolution sensors, remote sensing technologies 
should now be able to make significant contributions to the assessment of sustainable 
or unsustainable practices. Also, the repeat coverage that is available with satellite 
remote sensing at the current high spatial resolutions should mean that they will 
be even more valuable for assessing trends in sustainability of urban areas. The 
characteristics of remote sensing systems that acquire data suitable for determining 
the sustainability of urban areas are presented in Table 1.2.

Optical systems that acquire high-resolution images from the air, either by RPAS 
(Remotely Piloted Aerial Systems, UAS, or drones) or by piloted aircraft, and 
 imaging systems on Earth-orbiting satellites record reflected solar radiation from 
the Earth’s surface. Because of the relatively low flying heights of airborne sen-
sors, there is usually greater flexibility in decisions of selection of airborne sensors. 
While they are listed in Table 1.2, the following discussion on resolutions will refer 
to satellite  sensors. Most modern satellites are referred to as agile and hence can 
point forward/backward to obtain stereo images and sideways to acquire images of 
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TABLE 1.2
Examples of Data Acquisition Systems for Urban Remote Sensing

Data Type Characteristics Examples

RPAS image 
data

Small cameras with spatial 
resolutions ranging from 1–2 cm 
to >10 cm

Spectral resolution—RGB or CIR
Temporal resolution—as required in 
daylight

Multipropeller copter or fixed wing RPAS 
under control of a remote operator

Manned 
aircraft image 
data

Digital aerial cameras
Spatial resolution—3–5 cm to 
>50 cm

Spectral resolution—RGB, CIR 
Hyperspectral sensor acquiring 
hundreds of bands

Temporal resolution—as required in 
daylight

A range of commercial digital aerial cameras 
are available with resolutions ranging from 
40 Mpixels to more than 250 Mpixels

HyMap hyperspectral sensor with 128 bands 
with wavelengths from 0.45 to 2.48 μm and 
3–10 m spatial resolution

AVIRIS is an optical sensor with 4- to 20-m 
spatial resolution, 224 spectral bands, with 
wavelengths from 0.4 to 2.5 μm

Satellite 
images

High-resolution images with spatial 
resolutions from approximately 
30 cm to several meters

Spectral resolution—panchromatic 
(pan) with a single band to 
multiple bands (MSS)

Temporal resolution—from many 
days to 1 or 2 days depending on 
location and capabilities of the 
satellite

IKONOS II with 0.80-m panchromatic 
images and 3.2 MSS

WorldView-1 with 0.50-m panchromatic only
CartoSat2B with 0.8-m panchromatic images
GeoEye 1 with 0.41-m panchromatic images 
and 1.65-m MSS

WorldView-2 with 0.4-m pan images and 
1.85-m MSS with 8 bands

Pléiades with 50-cm panchromatic and 2-m 
MSS

WorldView-3 with 31-cm panchromatic and 
8 bands MSS

Multiple microsatellites

Synthetic 
aperture radar 
(SAR)

Microwave sensors installed in 
satellites or aircraft and operate in 
cloudy conditions and day or night

Spatial resolution <1 m for airborne 
and ranging up to >10 m for space 
borne with various levels of 
polarization

Spectral resolution—variable
Temporal resolution—variable 
according to number of satellites 
available and orbits

SAR wavelengths used for satellite remote 
sensing

X-band—3 cm
C-band—8 cm
L-band—25 cm
Most satellite-borne SAR sensors acquire 
either X-band or C-band

RADARSAT-2—C-band
TerraSAR-X—X-band
TanDEM-X—X-band
COSMO-SkyMed—X-band
ALOS-2—L-band
Commercial airborne systems

Lidar Currently airborne only. Elevation 
posts acquired at 2 to >10 posts/m2

Multispectral sensors available

Many commercial systems are available with 
similar characteristics
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the terrain surface from neighboring orbits, thus reducing the time between multiple 
imaging of the same area on the terrain.

The resolution of remote sensing images can be expressed in terms of spatial, 
spectral, and temporal resolution. A brief description of the three levels of resolution 
will be presented for completeness.

• Spatial resolution of data is generally described as the footprint of the 
sensor or the area that the sensor views instantaneously on the terrain 
surface, often referred to as ground sampling distance. This is a function of 
sensor altitude, detector size, sensor optics, and the system configuration. 
The dimensions of the smallest feature visible on the terrain surface are 
a function of the spatial resolution, the contrast and color of the object in 
relation to its background, and its shape (e.g., very narrow linear features 
are often detectable on satellite images when they are not expected to be). 
While sensors on satellite platforms are available with a very broad range of 
spatial resolutions, because of the requirements of urban remote sensing to 
detect buildings, pavements, roads, parking lots, the fragmentation of open 
space, and similar issues, only the so-called high-resolution satellite images 
with spatial resolutions on the order of 2 m and smaller will be discussed 
in this chapter. This is supported by Sliuzas et al. (2010) who stated that the 
identification of small urban objects or objects in complex environments 
requires a minimum spatial resolution of 5 m. They also argued that the 
required spatial resolution of images should be determined by the smallest 
object to be identified in the images. The availability of images with spatial 
resolutions smaller than 2 m over the past decade provides new opportunities 
for satellite remote sensing applications in sustainability studies in urban 
areas.

• Spectral resolution refers to the range and width of wavelengths that can be 
resolved by a sensor.

• Temporal resolution refers to the frequency of coverage of a certain area on 
the terrain surface by a sensor. The repeat cycle of orbiting satellites with 
optical systems viewing vertically only is usually many days, but this can 
be reduced by a constellation of satellites or by including tilt capability on 
the satellites so that they can view the same areas on the ground, weather 
permitting, from successive orbits.

In the design of sensors on satellites, there is necessarily a compromise between 
the demands for spatial, spectral, and temporal resolutions. For example, currently, 
there is the WorldView-3 satellite with a single panchromatic very high spatial reso-
lution of 0.31 m and eight multispectral bands with spatial resolutions of 1.24 m. 
The spectral resolution of this satellite may be relatively coarse for analysis of some 
materials in urban areas. On the other hand, currently available airborne hyperspec-
tral sensors have very high spectral resolutions in hundreds of bands but a relatively 
coarse spatial resolution (e.g., HyMap system referred to in Table 1.2).

Optical image satellite systems that are commonly used for urban applications 
have been described by Rashed and Jürgens (2010) and in the comprehensive review 
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paper by Weng (2012). Gamba et al. (2011) referred to several problems with the 
geometry of high spatial resolution optical images, since a digital elevation model 
(DEM) with an accuracy on the order of 1 m is required to produce orthophotos from 
such data over urban areas. If high buildings exist in the image, they will be subject 
to relief distortions that can only be corrected if the DEM includes the heights of 
buildings. In addition, large distortions will occur in images that are acquired with 
the satellite tilted sideways to image areas at a specific time. Image interpretation 
may also be compromised for the tilted images.

Synthetic Aperture Radar (SAR) systems are active remote sensing systems that 
emit microwave radiation from an antenna and record the time of travel and the 
intensity of the radiation returned to the antenna. SAR systems have the advantage 
that they can be used day or night and in cloudy conditions, and the polarization of 
emitted and received radiation can be varied as well, providing additional potential 
for extracting information from the data. Soergel (2010) has described some applica-
tions of SAR systems for the analysis of urban areas.

Airborne lidar (Light Detection and Ranging—also written as LiDAR) data are 
based on a scanning laser that emits a pulse (with a wavelength in the infrared region 
of the electromagnetic spectrum) toward the terrain surface, and the distance to the 
terrain surface can be determined from the time of travel of the pulse to the terrain 
and back to the sensor.

Together with knowledge of the position and altitude of the aircraft, a dense point 
cloud on the terrain surface can be determined to represent the position and eleva-
tion of discrete posts at a density of two or more posts per square meter. In addition, 
the intensities of the returned laser pulses from the terrain or objects on the terrain 
are recorded, which can represent an infrared image. Airborne lidar can assist in 
the extraction of three-dimensional (3D) information about man-made features and 
therefore details of the built environment.

1.5.2  Urban sUstainability measUres DeriveD by remote sensing

Taking into consideration the above review of the literature on SIs for urban environ-
ments, the aspects of an urban environment that can be assessed for SIs by remote 
sensing technologies are presented in Table 1.3, where an attempt has been made to 
develop three levels of a framework for these environmental indicators. With refer-
ence to Figure 1.1, in Table 1.3, Area is the Urban Sustainability Measure, Objective 
is suggested as corresponding to the measurements made by the remote sensing 
technologies, while Attributes are the parameters derived by remote sensing tech-
nologies. While some Indicators, as shown in Figure 1.1, may be determined for 
the attributes, there is no adequate information available yet to present these details. 
The measures suggested in Table 1.3 would need to be considered in conjunction 
with other environmental, social, and economic SIs, which cannot be measured by 
remote sensing technologies, for the overall framework for assessing sustainability 
of urban areas.

In terms of the framework developed by Brandon and Lombardi (2011), while they 
are less specific to the measurements derived by remote sensing technologies, the first 
five modalities—numerical, spatial, kinematics, physical, and biological—would 
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apply to remote sensing technologies. Numerical refers to the accounting process 
that can be developed from remote sensing, spatial refers to the spatial details 
extracted, kinematics refers to transport and mobility, physical refers to the physi-
cal environment, and biological refers to health and ecological protection as well 
as biodiversity. While both frameworks should be relevant to urban sustainability, 
that shown in Figure 1.1 will be the basis of a demonstration of the contributions of 
remote sensing to urban sustainability in the following.

There is a need for greater attention to the future development of SIs for urban 
areas because more than half of the world’s population lives in cities. Such indi-
cators should also be used for monitoring whether an environment is becoming 
less sustainable as developments occur or populations grow, leading to a need for 
modification of decisions affecting an urban area. Each of the Indicators listed in 
Table 1.3 will be discussed below, except for Item 7, “Release of emissions and 

TABLE 1.3
Assessable Sustainability Aspects in the Urban Environment by Remote 
Sensing Technologies

No.
Area—Urban 

Sustainability Measure

Objective—Measurement 
by Remote Sensing 

Technologies

Attribute—Parameters 
Derived by Remote Sensing 

Technologies

1 Balanced development—
fraction of built versus open 
space

Measurement of impervious 
surfaces in relation to open 
space

Ratio of area of impervious 
surfaces to open spaces

2 Transformation of the 
physical structure and 
habitat from green space to 
impervious surfaces

Growth in fragmentation of 
open space versus 
impervious surfaces

Diversity, dominance, 
fragmentation

3 Effective and 
environmentally sound 
transportation systems

Mapping and analysis of 
transport systems to 
demonstrate effectiveness

Transport Mode Index

4 Consideration of healthy, 
safe, and walkable/cycle 
neighborhoods

Determine compactness of 
cities, mapping of walking 
and cycle paths, and 
township layout

Size
Density
Degree of distribution
Clustering

5 Consumption of natural 
resources (renewable and 
nonrenewable), from 
hinterland and its impact

Measurement of 
deforestation and changes 
in land cover over time

Land use/land cover changes

6 Effects on biodiversity Changes in local vegetation 
and native flora and 
potential habitats for fauna

Land-use conversion and loss 
of habitats

7 Release of emissions and 
waste, especially into 
waterways and the 
atmosphere

Determine surface water 
quality and chemical 
content of atmosphere

Not covered
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waste, especially into waterways and the atmosphere,” which is discussed else-
where in this book.

1.5.2.1  Measurement of Impervious Surfaces in Relation to Open Space
A great deal has been written on the measurement of impervious surfaces, which 
cover the full range of methods available for image classification of such surfaces, for 
example, in the review paper by Weng (2012). There are a number of issues raised in 
Weng’s paper that are relevant to this chapter. Buildings and roads can be detected 
with optical sensors with spatial resolutions of 0.25 to 0.5 m (which is a much smaller 
resolution than referred to in Section 1.5.1), although shadows may cause problems 
with tall buildings. There is also the possibility of confusion of roads and buildings 
with surrounding features, and therefore, fusion of several forms of data of the area 
may prove beneficial. Weng (2012) has suggested that the investigation of the spectral 
diversity of impervious surfaces together with 3D characteristics and temporal 
changes should prove beneficial in urban studies. Salah et al. (2010) investigated 
various machine learning and ensemble learning approaches for the extraction of 
impervious surfaces created by buildings and roads and also extracted the ground 
and vegetation from high-resolution aerial photography and airborne lidar data over 
urban areas and found in excess of 90% accuracy for most methods.

The investigation by Wu and Yuan (2011) using high-resolution satellite images for 
extraction of impervious surfaces was based on pixel and object-oriented methods. 
They have estimated that approximately 40%–50% of pixels are mixed pixels, for 
high-resolution satellite data such as IKONOS and Quickbird multispectral data. 
They used a normalized spectral mixture analysis, regression trees, artificial neural 
networks, and object-oriented approaches for the extraction of impervious surfaces 
with overall accuracies of approximately 90%. Shadows from buildings and trees 
need to be differentiated since they hide different types of surfaces. Canters et al. 
(2011) also discussed the extraction of impervious surfaces from both high-resolution 
and medium-resolution images and suggested that the use of lower-cost medium-
resolution images together with subpixel classification methods could be a better 
approach. However, this claim is not in agreement with other statements made above. 
Satellite SAR images have been used for extraction of buildings and roads in urban 
areas, sometimes with mixed success (Soergel 2010), but high-resolution airborne 
SAR images should provide better extraction capabilities than satellite SAR images.

While it was expressed earlier that spatial resolutions of 2 m or better are desirable 
for urban studies, the application of lower-resolution hyperspectral images has been 
extensively explored by Roessner et al. (2011) in studying impervious materials in 
urban areas. Images were derived from the HyMap sensor with pixel sizes ranging 
from 3 to 6 m, details of which are given in Table 1.2. The study extracted end 
members describing distinct spectral signatures of different surface materials in 
several German cities. The study revealed the increased information derived from 
the hyperspectral images compared with lower spectral resolution images used in 
previous studies, which assumed that the surfaces are completely impervious. The 
higher spectral resolution hyperspectral images, though lower in spatial resolution, 
allowed more detailed mapping of the surface materials in urban areas and the 
separation of semipermeable surfaces, which might include cobblestones or gravel, 
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from completely impervious surfaces. This would affect the level of runoff and, thus, 
the hydrological cycle of urban areas. Also, there may be significant influences on 
the assessments of microclimates in urban areas. The availability of hyperspectral 
images should allow better definition of ground cover in urban areas and associated 
ecological factors and also allow for studies on the effects of developments on 
biodiversity. Time series would also allow for studies on changes in these factors. 
The definition of an attribute for impervious surfaces is complex, but the ratio of 
areas of fully impervious surfaces to open spaces is suggested as the attribute for 
this SI in Table 1.3. Further work would be required to determine the influence of 
partially impervious surfaces on urban sustainability.

1.5.2.2  Growth in Fragmentation of Open Space 
versus Impervious Surfaces

The growth in fragmentation in urban and suburban areas is suggested as a further SI 
for urban areas, since the transformation of fragments of open space into impervious 
surfaces is an important indicator of urban development. Greenhill et al. (2003) 
derived two parameters to act as ecological indicators for suburban areas:

• The weighted mean patch size (WMPS), which provides information about 
the size distribution of vegetation patches. The mean patch size is the aver-
age area of vegetative patches within a window. The weighted mean patch 
size includes information on both patch size and number.

• Lacunarity, which provides an indicator of the spatial clustering of such 
patches and is dependent on the number of interpatch nonvegetated pixels 
within a square box that are summarized in a histogram. The mean and 
variance of the counts are used to calculate the lacunarity.

These parameters could be used to assess the impact of fragmentation of open 
space caused by urban developments that change the distribution of vegetated versus 
nonvegetated areas. Certain values of WMPS and lacunarity could correspond to 
maintaining a relatively low density of housing and a good clustering of local green 
areas, which would be suitable for diversification of flora and fauna. On the other 
hand, high values of these parameters would demonstrate the primarily impervious 
environment, which provides little opportunity for diversification of flora and fauna, 
and the need for the provision of such environments elsewhere in the urban area for 
an adequate lifestyle for the inhabitants.

Lein (2014) argued that limiting sustainability studies to regional scales enables 
the linking of the economic, social, and environmental factors of sustainability 
to the landscape unit. In addition, the revelation of unsustainable trends in aspects of 
the environment should lead to a change in behavior or development programs. He 
then presented advantages of remote sensing methods for assessing sustainability: 
the capacity of obtaining unique measurements of reflectances from the Earth’s 
surface, the repeatability of the observations, and the archival capacity of the 
data. He espoused the possibility of developing indices for sustainability, which 
should have the following attributes: relevance, concept integrity, reliability, scale 
appropriateness, scale sensitivity, and robustness, many of which are similar to those 
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recommended by Becker (1997), as shown in Table 1.1. Lein thus provided indices that 
can be based on metrics derived from remote sensing, namely, impervious surfaces, 
fragmentation, diversity, and dominance. The estimates of impervious surfaces are 
based on NDVI. Fragmentation of the landscape is dependent on the following 
formula: F = (n − 1)/(c − 1), where n is the number of patches in a kernel and c is the 
number of cells considered. Diversity = (Σp × ln(p)), where Σ is the summation of all 
land types in the study area, p is the proportion of each land type in the spatial unit 
of measure (pixel), and ln is the natural logarithm. Dominance is defined by the most 
abundant land type by lnS + Σpk × lnpk, where S is the number of habitat types and 
pk is the proportion of area in habitat k. As these metrics were assessed using Earth 
observation data, monitoring could lead to a dynamic management process. Lein 
demonstrated an ecological integrity component that is dependent of the diversity, 
dominance, fragmentation, and impervious surfaces. These components could be 
monitored to assess trends in sustainability. The use of high-resolution satellite data 
could provide greater granularity to the information extracted in this research, thus 
enabling more detailed analysis of fragmentation, diversity, and dominance.

Sapena and Ruiz (2015) have defined several metrics to determine the rate of growth 
patterns on the European Urban Atlas databases in 2006 and 2012. The measures 
used to describe fragmentation are as follows: urban density, which estimates the 
proportion of developed areas, comprising housing, commercial, industrial and 
landmark buildings, roads, barren land, and leisure areas, as a ratio of the classified 
urban areas in the region; weighted standard distance, which measures concentration 
or scattering around the centroid of the objects of a given class, weighted by the 
size of each object; Euclidean nearest neighbor (ENN) mean distance, which is 
also a measure of scattering, being the mean of the distances between the edges of 
the objects of the same class; Shannon diversity, which represents the abundance 
and evenness of the classes; and edge contrast ratio, which quantifies the degree of 
contrast between objects from different land uses, excluding the road network.

On the basis of the above discussion, the primary attribute for this indicator is 
fragmentation together with diversity and dominance, which have been added to 
Table 1.3. The measures proposed by Lein (2014) and Sapena and Ruiz (2015) are 
demonstrations of how such attributes could be measured using remote sensing data.

1.5.2.3  Mapping and Analysis of Sustainable Transport Systems
The task of determining the overall effectiveness of transport routes is beyond the 
capacity of remote sensing. However, an essential task is to provide data for the 
spatial analysis, together with GIS tools that enable transport experts to deter-
mine the effectiveness of the transport infrastructure. Zhang and Guindon (2006) 
and Guindon and Zhang (2007) have described the process for developing a set of 
Sustainable Transportation Performance Indicators, in which the basis for land-
use mapping were combined with socioeconomic data derived from the national 
census, for the determination of such parameters as urban population density and 
compactness of cities. The Transport Mode Index, which was adopted as the attri-
bute in Table 1.3, measures the impact of the land-use mix and urban form on the 
feasibility of various modes of transportation. The authors stated that while indi-
cators are important for demonstrating the sustainability of transport systems in 
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Canadian cities, simple measures such as density and compactness are poor indica-
tors of energy consumption, whereas land-use mix is a better indicator. This would 
be the cue for the application of remote sensing technologies since land-use analysis 
can be undertaken economically over urban areas using medium-resolution images. 
However, they argued that more research is required to develop better indicators that 
incorporate median travel distance.

1.5.2.4  Compactness of Cities and Mapping of Township Layout
Compactness is one of the “design concepts of sustainable urban form” (Jabareen 
2006). The logic behind it is that a more compact city results in less travel and there-
fore lower energy consumption, leading to environmentally sustainable transport 
systems, less fragmentation of neighboring lands, walkable environments, and elim-
ination or significant reduction in urban sprawl. The scale of analysis of compact-
ness of urban areas may determine the methods and resolutions of images used for 
measurement by remote sensing technologies. Large metropolitan areas may require 
regional-scale measurements while walkable cities may require larger-scale images 
and manual mapping operations.

A number of parameters have been used by Tsai (2005) to define compactness 
versus urban sprawl. These include size of the metropolitan area, which varies 
according to the extent of sprawl; density, expressed in terms of land occupation per 
capita; degree of distribution of development in a metropolitan area; and clustering 
or centralization of the metropolis.

Tsai (2005) then discussed the Moran, Geary, and Gini coefficients, including 
simulation of various forms of urban areas based on population or employment that 
can be assessed as to their suitability for describing compactness. He found that the 
Moran coefficient was useful as a metric for distinguishing between compact urban 
areas and urban sprawl, but it was not able to differentiate between a circular and a 
linear shape of cities. There was no index that completely described compactness 
versus sprawl, but the Moran and Gini coefficients were suitable for some examples 
of urban form. Population or employment cannot be determined by remote sensing 
technologies. However, the 3D form determined by airborne lidar may be a surrogate 
for population required by the Moran coefficient, although it is unlikely to be able to 
distinguish between actual population and employment locations. The 2D geometry 
of urban areas required for the Gini coefficient may be determined from medium- to 
high-resolution images, although it would require manual interpretation of the images.

Herold et al. (2003) analyzed four urban spatial metrics using high-resolution 
satellite data to determine their characteristics for several types of land covers rang-
ing from forests to high-density single-unit residential areas. They supported the use 
of spatial metrics as descriptors of built-up structures and open areas. Huang et al. 
(2007) suggested additional measures of compactness that included an area weighted 
average shape index, a patch fractal dimension, centrality, several compactness indi-
ces, ratio of open space, density, and several measures related to social indices for 
comparisons of the form of many cities around the world using medium-resolution 
remotely sensed data. They found significant differences between developed world 
cities in America, Australia, and parts of Europe, which tend to be subject to sprawl, 
and those generally more compact cities in Asia.
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Sim and Mesev (2011) extracted similar parameters as Tsai (2005) (size, density, 
continuity of development, and scattering of developments) but also added shape 
and loss of green space as indicators of urban sprawl. They used different statisti-
cal methods for indicators, including entropy and ENN. Therefore, from the above 
discussion as shown in Table 1.3, the attributes for urban compactness are assumed 
to be those defined by Tsai above, namely, size of the metropolitan area, density, 
degree of distribution, and clustering.

Locating and mapping the lengths of walking paths and mapping township lay-
outs are primarily a manual mapping task that can be undertaken with medium- to 
high-resolution optical images for the production of digital orthophotos.

1.5.2.5  Deforestation and Changes in Land Cover
Since urban areas depend on imports of products derived from outside the urban 
areas, and further in some cases, a considerable amount of land clearing and defor-
estation occurs to service urban areas. In order to define the effects of these land-use 
changes, a detailed analysis of particular cities and the resulting changes in surround-
ing areas would have to be undertaken. Medium-resolution remote sensing technolo-
gies should be applicable for these purposes. For example, NASA (2010) revealed, 
based on the application of the QuickScat satellite radar system, that Beijing has 
quadrupled its size in 9 years. Foody (2003) discussed aspects of maps of forest 
and forest change, estimation of forest biomass, biodiversity, and drought, showing 
how remote sensing can satisfy some of the broadly based indicators of changes in 
open space areas, and that satellite remote sensing would be the most economical 
approach. As an example, Brazil’s National Institute for Space Research (INPE) has 
used satellite data for monitoring deforestation for more than 15 years based on a 
range of medium-resolution satellite images, demonstrating the conversion of forests 
to farming in the Amazon region. INPE has developed an almost real-time moni-
toring system to detect illegal land clearing. High-resolution images are required 
to determine the exact area of clearing and for extracting small areas of clearing. 
Therefore, the study of land-use changes over the period due to urbanization could 
be undertaken economically by processing time series remote sensing images.

The information derived from remote sensing can also be directly related to mea-
suring important socioeconomic impacts. Rates of land cover change and drought 
will strongly influence vegetation yield, which could substantially affect human 
health and well-being of neighboring cities. These factors will, for example, influ-
ence the demand for and rate of fertilizer application, which may be associated with 
downstream pollution. Issues such as soil erosion are a major concern for land users 
and are also strongly associated with consequential impacts, including the silting of 
lakes and damage to hydroelectric power stations.

Bacchus et al. (2000, 2003) investigated the detrimental effects on the health of 
the vegetation, in the case of pond cypress, caused by the withdrawal of groundwater 
from aquifers in Florida. Their investigations were based on laboratory spectrometry 
studies (in the visible, near-infared [NIR], and mid-infrared regions of the spectrum) 
of dried milled branch tips collected from natural stands of pond cypress stands, 
both in summer and in winter before bud-break. They found that the NIR spec-
tral response was more affected by stress than by site-related factors. Visual effects 
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of stress that were found to be well correlated with the spectrometry studies were 
also evident. They believed that the chemical changes in the vegetation that were 
revealed in the spectrometry studies could be used as an indicator of unsustainable 
withdrawal of water from the aquifers. This research is an important development 
in the use of indicators for detecting unsustainable practices leading to stress on 
vegetation caused by inadequate water. In a similar manner, Chisholm et al. (2003) 
studied moisture stress on Eucalyptus camaldulensis (River Red Gum) in Australia, 
using high-resolution spectral data at the leaf level. Their results indicate that even 
low levels of stress can be detected from such data before they become visible, and 
therefore spectral reflectance regions that would be indicators of moisture stress in 
vegetation and hence act as appropriate SIs may be developed. Withdrawal of water 
from aquifers is often used as a source of water for urban areas and could be a further 
manifestation of the impacts of urbanization on surrounding areas. These impacts 
need to be assessed by appropriate remote sensing technologies. A general term for 
the attributes that could be adopted is land use/land cover changes but there are 
many impacts related to the effects of urbanization on the hinterland that should be 
included in a detailed set of indicators.

1.5.2.6  Biodiversity
Land cover change threatening biodiversity, and a major variable in the loss of nutri-
ents from productive lands, can be mapped and monitored by a range of remote sens-
ing data sources. This may require high-resolution images or spectrally unmixing 
approaches to determine the class composition of mixed pixels to capture land cover 
modifications systematically and on a repetitive basis. Vegetation indices and change 
detection techniques derived from images from high-resolution optical sensors per-
mit the mapping, monitoring, and measurement of the areal extent of the change.

Hepinstall-Cymerman (2011) demonstrated that analyzing biodiversity requires 
knowledge of the existing fauna and vegetation, which also involves field surveys and 
documentation. He described a land cover change avian biodiversity model based on 
remote sensing, which, together with adequate knowledge of the avian fauna, pro-
vided details of the impacts on the species. Land-use conversion and loss of habitats 
are shown as attributes for the effects on biodiversity.

1.6  CONCLUSIONS

This chapter aims to present some principles for assessing sustainability of develop-
ment in urban areas and to describe the ways in which remote sensing can be used 
in this process. Definitions of sustainable development have been given, and the 
approach to its assessment based on SIs is described. While a number of different 
indicators are currently available for the three pillars (social, economic, and envi-
ronmental), there appears to be no consensus on the most appropriate indicators for 
sustainability of the environment, and especially for urban areas. The list suggested 
in Table 1.3 could represent some components of a framework for SIs in urban areas, 
but considerable work would still be required to further develop and test the set of SIs.

Since more than 50% of the global population now lives in urban areas and this 
percentage is increasing, there is urgency in determining and assessing SIs for urban 
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areas. Unless the sustainability of urban areas is addressed, there may be little chance 
of real sustainability of the environment being achieved. Decision-making, which 
affects urban environments, in many cases, is dominated by market forces often with 
inadequate consideration of effects on the environment. Interdisciplinary collabora-
tions between the remote sensing community and experts in a range of scientific 
fields such as ecology, biology, sociology, human resources, and politics, who can 
take responsibility for assessing the sustainability of urban communities, should be 
developed so that their combined expertise can determine the impacts of unsustainable 
practices in urban areas and the hinterland, and decision-makers can be notified of 
the need to change current practices. While remote sensing technologies will not be 
the only tools for assessing sustainability, they should make an important contribu-
tion to this multidisciplinary process, provided they satisfy scientific criteria, such as 
being subject to strict calibration and validation. A great deal has yet to be learned 
about these processes and how the full potential of remote sensing can be achieved in 
this very important issue of environmental sustainability of urban areas.
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2 Earth Observation 
for Urban and 
Spatial Planning

Mattia Marconcini, Annekatrin Metz, 
Thomas Esch, and Julian Zeidler

2.1  EARTH OBSERVATION APPLICATIONS 
IN URBAN AND SPATIAL PLANNING

At present, the two most critical phenomena affecting cities worldwide are urbaniza-
tion and climate change. Indeed, on the one hand, the United Nations (UN 2014) esti-
mate that nowadays 54% of the human population is living in urban areas (up from 
34% in the 1960s); on the other hand, global climate changes are directly affecting 
the economy of cities as well as the quality of urban environments.

In such context, cities play a dual role: they are part of the problem and a key 
part of the solution (Kamal-Chaoui and Alexis 2009). In particular, despite covering 
~2%–3% of the emerged land, cities are responsible for 30%–40% of greenhouse 
gas emissions (or 70% if all the human activities are taken into account) (UN 2011), 
which directly affect population health and result in flooding, storms, heat, drought, 
sea-level rise, and damages to infrastructures and buildings. Nevertheless, by means 
of proper managing strategies, they can also lessen the adverse impacts of climate 
change through a wide range of system-specific actions and become sustainable and 
livable environments. However, this is a challenging task for urban planners as they 
must take into consideration all the complex and interconnected features of urban 
systems for properly balancing their socioeconomic and environmental dynamics.

In this framework, it is of paramount importance to provide the decision mak-
ers with proper and reliable information and to directly engage the citizenry in 
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implementing suitable adaptation and mitigation actions. To this aim, in addition to 
in situ measurements as well as socioeconomic and environmental variables, Earth 
Observation (EO)–based products are also increasingly used at present as part of the 
planning intelligence; indeed, they proved to be of great support to environmental 
and climate managers in a variety of applications. Nevertheless, there still exist sev-
eral methodological and technological gaps between the pressing requirement from 
the users and the current state-of-the-art methodologies. As an example, there is a 
growing need for assimilating EO-based products into urban models or for facilitat-
ing the use of geo-spatial products by nonexperts as well.

This contribution introduces selected geo-information products and their related 
application in support of local and regional urban planning, such as the assessment 
of impervious urban surface, the mapping of urban growth, and the characteriza-
tion of settlement patterns. The corresponding studies were conducted for five regions 
of interest, including Antwerp (Belgium), Helsinki (Finland), London (United 
Kingdom), Madrid (Spain), and Milan (Italy).

2.2 SELECTED APPLICATIONS

2.2.1 Aseessment of ImpervIous urbAn surfAce

Urban growth is associated not only with the construction of new buildings but 
also (and in more general terms) with a consistent increase of all the impervious 
surfaces (hence including roads, parking lots, squares, pavements, and railroads as 
well), which do not allow water to penetrate, forcing it to run off. Effectively map-
ping the impervious surface area is then of high importance because it is related 
to the risk of urban floods, the urban heat island phenomenon, and the reduction 
of ecological productivity. However, to date, this task has been mostly carried out 
by photointerpretation of very high resolution (VHR) airborne optical imagery or 
in situ surveys, which are generally costly and time-consuming and hence forbid 
a systematic regional-scale mapping as well as regular updates. To this purpose, 
EO data have started being used since they proved capable of improved detection 
capabilities, larger-scale analysis, and lower costs. In this context, one of the cur-
rent state-of-the-art methodologies has been presented by Esch et al. (2009), which 
allows one to automatically estimate the percentage of impervious surface (PIS) 
by analyzing the Normalized Difference Vegetation Index (NDVI) calculated 
from single-date Landsat Thematic Mapper scenes. Nonetheless, the performances 
might strongly vary depending on (i) the quality of the Landsat image used for the 
analysis and (ii) the availability of local railway and road network vector layers, as 
well as VHR optical imagery needed to train the employed empirical regression 
model based on support vector regression (SVR). To overcome such drawbacks, 
we improved the above-described technique by (i) considering the mean temporal 
NDVI calculated from a series of Landsat-8 (LS8) scenes acquired over the area 
of interest in a 1-year time frame (which allows a drastic reduction in the effect of 
vegetation phenology and prevents problems related to cloud coverage and shadow 
in specific scenes) and (ii) deriving the training points for the SVR model starting 
from OpenStreetMap data (OSM 2015). In particular, samples are extracted in 
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selected areas from OpenStreetMap layers corresponding to impervious surfaces. 
Next, they are first rasterized and then aggregated at the 30-m spatial resolution 
of Landsat imagery. An SVR model is finally used to correlate the resulting train-
ing information with the mean temporal NDVI and hence estimate the PIS for the 
whole study area. Specifically, only pixels denoted as urban in the Global Urban 
Footprint (GUF) mask described by Esch et al. (2012) are preserved. An example 
of the estimated PIS for Helsinki (Finland) based on a series of 25 LS8 scenes 
collected for two path-row combinations covering the city in the entire 2014 is 
illustrated in Figure 2.1.

A quantitative assessment of the effectiveness of the obtained results has been 
carried out by means of WorldView-2 (WV2) multispectral scenes acquired at 2-m 
spatial resolution and available for the five considered study cases (see Table 2.1). In 
particular, given the spatial detail offered by the WV2 images, we could mark with a 
very high degree of confidence all the impervious structures included in the different 
study regions. To this aim, we first computed for each scene the NDVI and manually 
identified the most suitable threshold that allows the exclusion of all the green areas 
(i.e., nonimpervious); then, we refined the resulting mask by extensive photointerpre-
tation and aggregated it to 30-m spatial resolution. Finally, we compared the result-
ing WV2-based reference PIS to the corresponding portion of the 2014 PIS products 
obtained with the proposed method.

To this aim, three different measures have been considered:

• The Pearson’s correlation coefficien, which measures the strength of the 
linear relationship between two variables, and it is defined as the covariance 
of the two variables divided by the product of their standard deviations; in 
particular, it is largely used in the literature for validating the output of 
regression models (as in our case).

• The Mean Error (ME), which is calculated as the difference between the 
estimated value (i.e., the 2014 LS8-based PIS) and the reference value (i.e., 
the WV2-based reference PIS) averaged over all the pixels of the image.

• The Mean Absolute Error (MAE), which is calculated as the absolute dif-
ference between the estimated value (i.e., the 2014 LS8-based PIS) and the 
reference value (i.e., the WV2-based reference reference) averaged over all 
the pixels of the image.

The results of this comparison are reported in Table 2.2 and are extremely prom-
ising. Indeed, we obtained a mean correlation of 0.8271 and average ME and MAE 
equal to −0.09 and 13.33, respectively, which confirms the great effectiveness of the 
LS8-based PIS products. However, it is also worth pointing out that because of the 
different acquisition geometries, the WV2 and LS8 images generally exhibit a very 
small shift. Nevertheless, despite being limited, such displacement often results in a 
one-pixel shift between the LS8-based PIS and the WV2-based reference PIS aggre-
gated at a 30-m resolution. This somehow affects the computation of the MAE and 
of the correlation coefficient (which, however, resulted in highly satisfactory values). 
Instead, the bias does not alter the ME, which always exhibited values close to 0, thus 
confirming the capabilities of the implemented technique.
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2.2.2  mAppIng of urbAn growth

Reliably delineating the urban growth that occurred in the last decades is of great 
importance to properly model the temporal evolution of urbanization and, hence, 
to better estimate future trends and implement suitable planning strategies. In 
Europe, all major cities have access nowadays to digital databases with highly 
detailed information about the urban extent often down to the single-building level 
(mostly derived from VHR optical airborne imagery taken every 2 to 5 years). 
Nonetheless, the information available for the past 20 years is often of poor quality 
because urban extent maps were mostly generated manually by in situ surveys at 
that time.

For this purpose, we developed a novel approach for delineating the urban area 
extent from ESA radar imagery, namely, ERS-1/2 SAR Precision Image and Envisat 
ASAR Image Mode Precision products acquired between 1992 and 2012 at 30 × 
30 m spatial resolution with 12.5 m pixel distance (Marconcini et al. 2014). The cor-
responding block scheme is reported in Figure 2.2.

There are two main assumptions of the implemented method. On the one hand, 
we suppose that for the investigated region of interest, a binary mask M is avail-
able, which delineates the current extent of urban areas, for example, from local 
cadastral data or, alternatively, from GUF (Esch et al. 2012) or OpenStreetMap 

TABLE 2.1
Acquisition Dates and Size of the WV2 Images Available for the Five Study 
Sites

Acquisition Date (DD.MM.YYYY) Size (Pixel)

Antwerp 31.07.2014 5404 × 7844

Helsinki 21.04.2014 12,468 × 9323

London 28.08.2013 7992 × 8832

Madrid 20.12.2013 10,094 × 13,105

Milan 14.05.2014 8418 × 7957

TABLE 2.2
Pearson’s Correlation Coefficient, Mean Error (ME), and Mean Absolute 
Error (MAE) Obtained from the Comparison of the 2014 PIS Obtained 
with the Proposed LS8-Based Method and the WV2-Based Reference PIS

Pearson’s Correlation Coefficient ME MAE

Antwerp 0.8713 −2.69 12.07

Helsinki 0.7847 0.44 15.60

London 0.8094 −1.32 13.79

Madrid 0.8079 2.45 12.43

Milan 0.8623 0.67 12.76

Mean 0.8271 −0.09 13.33
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data (OSM 2015). Specifically, we solely consider built-up structures without lin-
ear elements as streets, roads, or railways because it is not feasible to properly 
identify them by means of radar data. On the other hand, we assume that human 
settlements in the study area experienced urban expansion rather than shrinkage 
in the last decades, which is generally reasonable given the current global trend of 
urbanization.

Given a multitemporal sequence of backscattering ERS/ASAR images available 
for the investigated region in the periods of interests, we sort them by acquisition 
date from the newest to the oldest; then, we apply calibration and terrain correction 
to each scene and finally co-register the entire series. Next, we consider the first 
item of the series A and, in line with the strategy adopted for deriving the GUF, we 
extract its speckle divergence texture feature S, which represents an estimate of the 
local true image texture and exhibits high values solely in correspondence of hetero-
geneous and highly structured built-up areas.

Under the considered working hypothesis, one pixel cannot be categorized as 
belonging to the built-up class earlier in the time series, if this does not occur at a 
later time. Accordingly, we mask A and S by using M and only keep those pixels 
labeled as urban in M, which are then provided as input to the unsupervised clas-
sification scheme presented in Esch et al. (2013), which allows one to automatically 
derive the corresponding built-up extent. This process is then iteratively applied to 
the next images of the multitemporal sequence and, for each scene, the correspond-
ing A and S are masked by means of the built-up mask obtained for the previous item 
of the series.

It might occur that, for specific periods of interest (e.g., 1 or 2 years), several 
ERS/ASAR scenes have been acquired over the study area. In this case, to prop-
erly account for the generally stable behavior of the urban areas (mostly associated 
with high backscattering values) compared to the other information classes (which 
might show high values only under specific conditions), it might be beneficial to first 
calculate the mean temporal backscattering and then derive its speckle divergence. 
This allows an improvement in the performances and a reduction of the effect of the 
speckle noise.

The outcome of the spatiotemporal urbanization mapping for Madrid (Spain) 
is presented in Figure 2.3, showing the urban area extent derived from ERS-1, 
ERS-2, and ASAR imagery acquired in 1992 (light brown), 2000 (red), 2006 
(blue), and 2010 (dark blue). Moreover, the change polygons provided by the 
European CORINE Land Cover data set (Figure 2.3a) are compared to the 
changes identified based on the SAR time series (Figure 2.3b). Considering 
the  building block–related change indication, a block was only assigned as 
change area if a sufficient proportion of change pixels were identified within the 
corresponding area.

To assess the effectiveness of the proposed methodology, we considered the city 
of Madrid as the representative validation case. Indeed, the municipality has a sur-
face of ~600 km2 and includes both high- and low-density residential areas, as well 
as large portions of rural and forest areas. Accordingly, we evaluated the accuracies 
of the corresponding built-up extent products generated for the years 2000, 2006, 
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and 2010, by means of VHR optical imagery from Google Earth. In particular, VHR 
data are available for the following dates:

• September 15, 2000—suitable for the assessment of the year 2000 built-up 
extent product

• July 5, August 5, and September 10, 2006—suitable for the assessment of 
the year 2006 built-up extent product

• October 2, 2009—suitable for the assessment of the year 2010 built-up 
extent product

In our analysis, we used a blind interpretation approach, where randomly selected 
points have been labeled as urban/nonurban via photointerpretation before generat-
ing the built-up extent maps with the presented technique. For each of the three 
considered years, we labeled 1000 built-up and 1000 non–built-up points randomly 
distributed within the boundaries of the Madrid municipality. Specifically, these 
validation points were chosen not to be falling within a buffer of 10 m between built-
up and non–built-up areas. Then, we compared the labels manually associated to 
the resulting set of 2000 points against the corresponding ones of the built-up extent 
products. Finally, different statistics were computed, namely, percentage overall 
accuracy (OA%), percentage producer’s accuracy (PA%), percentage user’s accuracy 
(UA%), and kappa coefficient (which also takes into consideration errors and their 
type). Results reported in Table 2.3 assess the capabilities of the proposed technique, 
which always exhibited very high accuracies.

2.2.3  chArActerIzAtIon of settlement pAttern

In order to define and implement effective adaptation and mitigation strategies for 
a certain study area (from the local to the regional scale), it is important to properly 
characterize its settlement pattern. This involves not only gathering a comprehensive 
knowledge about form, size, and distribution of the corresponding types of settle-
ments but also quantitatively assessing their significance with respect to each other. 
As an example, the local impact of a big but isolated city might be lower than that 
of a smaller city connected to many others in its surrounding. In this framework, we 

TABLE 2.3
OA%, PA%, UA%, and Kappa Coefficient Computed for the 2000, 2006, 
and 2010 Built-Up Extent Products Generated for the City of Madrid (Spain)

Year OA%

PA% UA%

Kappa
Non–

Built-Up Built-Up
Non–

Built-Up Built-Up

2010 89.40 89.30 89.51 89.57 89.24 0.7880

2006 85.98 85.70 86.28 86.30 85.67 0.7197

2000 87.29 86.60 87.99 87.92 86.68 0.7459
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implemented a novel technique that, by means of graph theory and spatial network 
analysis, allows one to properly model the relationships between different settle-
ments and to quantitatively describe their mutual relevance (Esch et al. 2014). In par-
ticular, given a binary mask delineating urban and nonurban areas within the region 
of interest, we first identify all settlement objects (defined as clusters composed of 
pixels labeled as urban and connected via at least one edge or corner). Then, a spatial 
network is created where the nodes are associated with the centroids of the differ-
ent objects, while the edges connect neighboring settlements within a predefined 
Euclidean distance from each other. Next, several attributes are computed for each 
node describing the geometrical properties of the corresponding settlement, for 
example, area, perimeter, solidity, equivalent diameter, shape index, and eccentric-
ity. Likewise, weights are calculated for each edge characterizing the link between 
the two connected objects, for example, minimum Euclidean distance, number of 
crossed edges, and cohesion index (see Esch et al. 2014).

To characterize the impact of each node (and hence of the corresponding settle-
ment object), we finally compute different relevance indices that jointly take into 
account its attributes as well as the weights associated with all its edges. For instance, 
we considered the degree centrality (defined as the total number of edges connected 
to a given node), the betweenness centrality (defined as the number of times that one 
node is included in the shortest path between any two other nodes in the network), 
or the local dominance (defined as the ratio between the degree centrality and the 
number of edges for which the given node has a size greater than that of the neighbor 
to which it is connected).

Many experimental trials have been carried out at different scales for assess-
ing the performances of the presented method, which proved to be an effective and 
promising tool for supporting both quantitative and qualitative settlement pattern 
analyses.

In Figure 2.4, we report the spatial network obtained for the greater London area 
starting from the corresponding portion of the GUF data set (Esch et al. 2012) fur-
ther split up and subdivided by the administrative district boundaries (for this reason, 
the city of London consists of different polygons associated with its 33 boroughs). 
A minimum Euclidean distance of 1 km has been considered when computing the 
edges. The size of different nodes is proportional to the area of the corresponding 
settlement, whereas their color varies based on the resulting degree centrality. Here, 
it is worth noting that nodes appearing in darker tones are those involved in the high-
est number of interactions and that most of them are located at the western side of 
London (i.e., where then the city receives more pressure from the outside).

2.3  CONCLUSIONS AND OUTLOOK

The constantly increasing availability and accessibility of modern remote sensing 
technologies provides new opportunities for a wide range of urban applications such 
as mapping and monitoring of the urban environment (land cover, land use, mor-
phology, urban structural types), socioeconomic estimations (population density), 
characterization of urban climate (microclimate, human health conditions), analy-
sis of regional and global impacts (groundwater and climate modeling, urban heat 
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islands), or urban security and emergency preparedness (sustainability, vulnerabil-
ity). In this contribution, we have introduced a selection of applications and example 
products that have been developed for providing additional and innovative data that 
can support day-to-day decision-making in urban and regional planning.

For most of the applications dealing with urban environments, the basic challenge 
is related to the spectral heterogeneity and morphological complexity of built-up 
areas. The spectral heterogeneity originates from the enormous diversity of differ-
ent materials forming the urban landscape. Thereby, some land cover types such as 
vegetation, bare soil, or water are also found in nonurban environments. Moreover, 
certain surfaces (e.g., bare soil and specific construction materials of buildings or 
pavements) can hardly be differentiated from each other through their spectral sig-
nature. Regarding the morphological complexity, urban areas are characterized by 
structural elements featuring diverse scales and shapes. In order to accurately cap-
ture the morphological properties of urban objects, a very high spatial resolution 
of the sensor system is required. However, although an increased spatial resolution 
certainly expands the spectrum of urban applications, this development comes along 
with new challenges in terms of an automated image analysis. On the one hand, 
the observable heterogeneity within the specific object types increases significantly 
since many local but often nonrelevant characteristics appear (e.g., roof lights and 
chimneys on top of buildings or cars, street furniture, and sign postings on streets). 
On the other hand, urban features are hence formed by groups of pixels with similar 
spectral signatures.

To address these challenges arising from an improved spatial resolution, recent 
studies have increasingly used object-oriented analysis approaches. Compared to the 
established pixel-based approaches, these techniques facilitate an improved consid-
eration of spectral, geometric, textural, contextual, and hierarchical characteristics.

The previous remarks regarding urban remote sensing stress that the suit-
able approach, technology, and data are highly dependent on the thematic focus 
and the spatial scale of the analysis. Medium-resolution multispectral data (e.g., 
Landsat, Spot, and IRS-P6) are best suited for regional analyses since they cover 
areas of up to 32,000 km² with one image ensuring cost-effective analyses. At the 
same time, the spatial resolution is still sufficient to discriminate built-up areas 
from nonurban regions based on spectral and textural characteristics. Because 
of their direct link to morphological properties, high- and medium-resolution 
SAR images provide particularly robust features for the detection of settlements. 
However, the applicability of SAR data for local analysis of the urban structures 
is still limited since the complex geometrical and physical characteristics of met-
ropolitan areas and the varying appearance and visibility of objects subject to 
the line of sight lead to significant distortions of and ambiguities in the resulting 
radar images.

To cope with the heterogeneity and complexity of urban areas, VHR multi-
spectral systems such as IKONOS or QuickBird are required. Indeed, their sen-
sors provide images in four spectral bands featuring a ground resolution of 4 m 
(IKONOS) and 2.44 m (QuickBird) supplemented by a panchromatic channel with 
a geometric resolution of 1 m (IKONOS) and 61 cm (QuickBird). Some drawbacks 
of these data are the limitation of the spectral resolution to four bands—facilitating 
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only a very rough reconstruction of the spectral signature—and the limited spa-
tial coverage of a few hundred square kilometers by one image. Hence, analyses 
of complete metropolitan areas and major or mega cities demand a data volume 
that significantly increases the complexity and expense for image processing and 
classification.

The immense spectral resolution of hyperspectral sensor systems enables the-
matically comprehensive and spatially detailed characterizations of the urban envi-
ronment. However, current hyperspectral sensor systems showing a spatial resolution 
that is useful for urban applications are limited to airborne platforms. The first high-
resolution hyperspectral satellite sensor EnMAP is supposed to be launched by 2017. 
This system will feature a spatial resolution of 30 m and cover the spectral range 
of 420–2450 nm with approximately 200 bands. Heldens et al. (2011) reviewed 146 
publications to give an outlook on the capabilities of the EnMAP mission for urban 
applications.

The synchronism and coexistence of economic activities, environmental threats, 
infrastructural deficits, poverty, and population growth mark a significant challenge 
to urban planning. Therefore, future research has to focus on integrated interdisci-
plinary studies to understand the multidimensional and complex interactions of urban 
systems and to analyze and assess the effects of plans, actions, and concepts. An 
important step toward the improvement of the generated information products and 
their acceptance by decision makers consists in the adaptation to holistic approaches 
on complex urban systems. Hence, the appropriate concepts have to integrate and 
correlate multiple analysis tools (image analysis software, geographic information 
system), data types (satellite images, vector data and statistics), and data sources 
(EO, in situ survey, census). The synergetic use of various data sources and their 
combined analysis increases the quality and information content of the resulting 
products, opens new levels of information, and enhances the possibilities of integrat-
ing the resulting data and information into existing systems and concepts. However, 
in view of regional, national, or even global monitoring tasks, there is still some 
effort needed with respect to the availability and accessibility of remote sensing data 
and the operationalization of image processing in order to allow for cost- and time-
efficient analyses and a rapid provision of the required information. Thereby, new 
sensor systems such as RapidEye and GeoEye will improve the capabilities of urban 
remote sensing application, particularly in terms of providing detailed time series of 
multispectral imagery.
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3 Assessment of Urban 
Growth in the Pearl River 
Delta, China, Using Time 
Series Landsat Imagery

Lei Zhang and Qihao Weng

3.1  INTRODUCTION

Urban growth has a significant influence on urban environments, including climate 
change (Liao et al. 2015; Pathirana et al. 2014), biochemical cycles (Hutyra et al. 2014), 
and environment quality (Panagopoulos et al. 2015; Zhao et al. 2015). Assessment 
of urban growth is needed for sustainable development and studies on ecological con-
sequences. Since remote sensing technology provides spatially consistent data with 
high spatial resolution and high temporal frequency, remote sensing imagery makes 
it possible to analyze and model urban growth over long periods at various scales in a 
timely and cost-effective manner. Multitemporal coarse or medium spatial resolution 
imagery has been commonly applied for analysis of urban growth, such as DMSP/
OLS (Defense Meteorological Satellite Program/Operational Linescan System) 
nighttime light data (Liu et al. 2012; Ma et al. 2012; Zhang and Seto 2011), Landsat 
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archive (Bagan and Yamagata 2012; Michishita et al. 2012; Sun et al. 2013; Xian and 
Crane 2005), China–Brazil Earth Resources Satellites images, and HJ-1 images (Du 
et al. 2015). The main drawback to using coarse or moderate spatial resolution imag-
ery is the mixed pixel problem, which leads to a salt-and-pepper effect caused by 
spectral heterogeneity. Multitemporal high spatial resolution imagery has also been 
used to extract urban areas, such as Spot 5 imagery (Durieux et al. 2008; Jacquin et 
al. 2008) and RapidEye and IRS data (Dupuy et al. 2012). Although these methods 
have been applied to analyze urban growth successfully, the successive imagery with 
high temporal resolution was difficult to obtain. Additionally, the intraclass spectral 
variability problem is inevitable in high spatial resolution imagery.

Multitemporal analysis for urban growth usually requires single classification or 
segmentation of all the stacked images and is limited to provide detailed change 
information because of low temporal resolution. Therefore, time series imagery 
applied in differentiating land cover has attracted increased attention from research-
ers in recent years, because temporal domain has showed its advantages in resolving 
class confusion between classes with similar spectral characteristics (Bhandari et 
al. 2012; Schneider 2012). Specifically, Landsat time series have been successfully 
applied to map dynamics of urban areas because of their long record of continuous 
measurement at effective spatial resolution and temporal frequency (Gao et al. 2012; 
Li et al. 2015; Sexton et al. 2013a,b). However, these methods focused on spectral 
differences or temporal consistency after classification. Little attention was paid to 
temporal data mining method to differentiate urban areas from other land cover 
using dense time series Landsat images.

Since time series clustering has been shown to be effective in time series data min-
ing (Fu 2011; Liao 2005), in this study, we aimed at extracting urban areas using a semi-
supervised fuzzy time series clustering method through the Biophysical Composition 
Index (BCI) (Deng and Wu 2012) and Land Surface Temperature (LST) time series 
and applied the method to the Pearl River Delta, China, from 1987 to 2014. Kernel 
fuzzy C-means (KFCM), proposed by Zhang and Chen (2003), was introduced in this 
study, because it could provide a more robust signal-to-noise ratio and is less sensi-
tive to cluster shapes in comparison to other clustering algorithms (Du et al. 2005). 
BCI and LST time series images were derived because of their strong correlation with 
urban areas. BCI aimed to identify different urban biophysical compositions and has 
been demonstrated to be effective in identifying the characteristics of impervious sur-
faces and vegetation and in distinguishing bare soil from impervious surfaces. LST, 
as a significant parameter in urban environmental analysis, tends to be positively cor-
related with urban expansion (Weng and Hu 2008; Yuan and Bauer 2007).

3.2  CASE STUDY

3.2.1  Study AreA

The Pearl River Delta, as the third most important economic district of China, is 
located in the developmental core region of Guangdong Province, between 21°N–23°N 
and  111°E–115°E. It has experienced rapid urbanization since the reform process 
started in the late 1970s in China. The Pearl River Delta has a subtropical climate 
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with an average annual temperature of 21°C–23°C, including a dry season from 
October to April and a wet season from May to September.

Quantifying and analyzing the urban growth in the Pearl River Delta are important 
to characterize the effects of anthropogenic activities on urban environments during 
the past years. In our study, 239 Landsat images, covering the period from 1987 to 
2014, were used to monitor urban area dynamics. Landsat imagery, including TM, 
ETM+ (including SLC-off data), and OLI data with cloud cover less than 50%, was 
ordered and downloaded from the USGS Earth Explorer (Reference system: WRS-2, 
Path: 122, Row: 44). A clipped region from Landsat imagery with an area of 16,824 
km2, covering five cities, Guangzhou, Foshan, Zhongshan, Dongguan, and Shenzhen, 
was used to monitor urban growth. These five cities were the most developed cities in 
the Pearl River Delta. The geographic location of the study area is shown in Figure 3.1.
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FIGURE 3.1 Geographical location of the case study area, Pearl River Delta.
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3.2.2  Methodology

This study intended to quantify the spatiotemporal patterns of urban areas in the 
Pearl River Delta using dense time series Landsat images from 1987 to 2014. In 
this study, the proposed method included five steps (Figure 3.2): First, time series 
Landsat subsets were registered in the same projection and converted to sur-
face reflectance using the Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS) (Masek et al. 2006). Then, cloud, cloud shadow, and snow 
were masked and their values were set to null. Next, the BCI and LST time 
series were computed from preprocessed data. Gap filling (Garcia 2010; Wang 
et al. 2012) and smoothing were adopted to fill missing values in the time series. 
After that, stable time series were selected based on time series decomposition 
(Verbesselt et al. 2010). Finally, the semi-supervised KFCM algorithm was per-
formed to clustering time series to map annual urban areas during the study 
period.

3.2.2.1  Data Preprocessing
All the Landsat data were registered to the 1984 World Geodetic System Universal 
Transverse Mercator (WGS-84 UTM) Zone 49 North projection system and resam-
pled at 30-m spatial resolution. Each Landsat subset was standardized to surface 
reflectance using the LEDAPS method (Masek et al. 2006), which applied MODIS 
(moderate-resolution imaging spectroradiometer) atmospheric correction routines to 
Landsat L1 data products. Cloud, cloud shadow, and snow mask were calculated 
using the Fmask algorithm for all scenes (Zhu and Woodcock 2012). The locations 
of SLC-off data were identified using band-specific gap mask files in each SLC-off 
data product.

Time series Landsat images

Time series BCI images

Gap filling and smoothing
Stable time series

Labeled time series Semi-supervised kernel-based fuzzy C-means

Annual urban growth patterns

Accuracy assessment

Time series LST images

FIGURE 3.2 Procedures for mapping annual urban areas in the Pearl River Delta using 
time series Landsat images.
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3.2.2.2  Calculation of BCI and LST
BCI (Deng and Wu 2012), involving Tasseled Cap (TC) transformation and the 
V–I–S triangle model, was given as

 

BCI

TC TC
TC

TC TC
TC
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+ +

1 3
2

1 3
2

2

2

, (3.1)

where TCi (i = 1, 2, and 3) were three normalized TC components: TC1 was high 
albedo, TC3 was low albedo, and TC2 was vegetation. Each derived TC component 
was then linearly normalized to the range from 0 to 1.

The LST was calculated using the radiative transfer equation method (Sobrino et 
al. 2004):
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where BT was the atmospherically corrected pixel value as brightness temperature. 
L↑, L↓, and τ, derived from an atmospheric correction tool (Barsi et al. 2005), were 
upwelling radiance, downwelling radiance, and transmittance, respectively. ε was 
emissivity, derived from NDVI. Lλ was the pixel values as radiance derived from 
digital numbers DN:

 Lλ = gain × DN + bias, (3.3)

where gain and bias were gain value and bias value for the specific band, respectively.
Then, the radiance was converted to surface temperature (Chander and Markham 

2003):
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where T was the temperature in Kelvin (K) and K1 and K2 were prelaunch calibra-
tion constants. For Landsat 5 TM, K1 = 607.76 W/(m2 sr μm) and K2 = 1260.56 K; for 
Landsat 7 ETM+, K1 = 666.09 W/(m2 sr μm) and K2 = 1282.71 K; for Landsat TIRS 
10, K1 = 774.89 W/(m2 sr μm) and K2 = 1321.08 K.

3.2.2.3  Gap Filling and Smoothing
Discontinuities existed in the time series Landsat data due to missing values caused 
by cloud cover and SLC-off data, which made uncertainties under incomplete time 
series in a subsequent analysis. Gap filling and smoothing were needed to improve the 
continuity and consistency in the time series. The gap filling method (Garcia 2010; 
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Wang et al. 2012), as a penalized least square regression based on three-dimensional 
discrete cosine transform (DCT-PLS), was adopted to predict missing values. It used 
information from both spatial and temporal variability to provide robust gap filling 
and it required no ancillary data sets such as alternative geospatial data sets or digital 
elevation models to model missing values. A smoothing gap filled time series was 
essential to improve the accuracy of the phenology derived from the reconstructed 
time series (Atkinson et al. 2012). Fourier fitting, as a most common and useful 
method, was adopted for smoothing gap filled time series BCI and LST data. Fourier 
analysis has showed promise in monitoring interannual vegetation changes (Geerken 
2009). For the BCI and LST time series, Fourier fitting reduced the amount of noise, 
which mitigated the effects of outliers, anomalies, and spurious values in the time 
series.

3.2.2.4  Selection of Stable Time Series
Stable time series were derived from BCI time series. Stable time series means 
time series of labeled land covers, which have not experienced land cover transition 
during the study period. Since there was no exponential growth in the time series, 
an additive decomposition model was applied to separate BCI time series into three 
distinct components:

 T = Tt + St + It, (3.5)

where T was the observed data at time t, Tt was a nonseasonal secular trend com-
ponent, St was a seasonal component, and It was an irregular component. Tt was 
estimated using the regression model as

 Tt = β0 + β1t + β2t. (3.6)

β0, β1, and β2 were regression coefficients. The seasonal component St was derived 
from the detrend time series using a parametric regression model. Detrend time series 
were computed by subtracting the trend component Tt from the original time series. 
Given the trend component Tt and the seasonal component St, the irregular compo-
nent was estimated as

 It = T − Tt − St. (3.7)

The time series with the trend component as constant and without obvious phe-
nology circle in seasonal variables were selected as stable time series.

3.2.2.5  Semi-Supervised KFCM Algorithm
Time series BCI and LST images were processed using a semi-supervised KFCM 
to obtain clustering results. Given time series data X = {x1, x2,…, xn}, xk ∈ Rd(k = 
1, 2,…,n), where d was temporal dimension and n was the number of samples. 
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KFCM partitions X into c fuzzy subsets by minimizing the following objective 
function:
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where c was the number of clusters, vi was the ith cluster centroid, uik was the mem-
bership of xk in class i, and Σi iku = 1; m ∈[1, +∞] was the weighting exponent deter-
mining the fuzziness of the clusters. K(xk, vi) was the kernel function, aiming to map 
xk from the input space X to a new space with higher dimensions. In this study, radial 
basis function kernel was adopted:
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In order to search for new clusters, the objective function was minimized:
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The Lagrange function converted the constrained objective as an unconstrained 
optimization model. By optimizing the objective function, the membership uik and 
centroid vi could be updated:
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Labeled time series samples were derived from stable time series, and unlabeled 
samples were derived from the remaining time series. Given time series data X con-
sisted of Xl and Xu, Xl was labeled samples and Xu was unlabeled samples. “l” and “u” 
indicate labeled or unlabeled data, respectively.

The whole process of semi-supervised KFCM algorithm was shown as follows:

 1. Initialize the values of σ and uik using Xl and Xu. For Xl, the value of compo-
nent uik was set to 1 if the data xk were labeled with class i, and 0 otherwise. 
For Xu, positive random values within [0,1] were set to unlabeled data. The 

initial set of centroid vi was calculated as v
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, where n′ was 

the number of labeled data.

 2. Update the membership uik in Xu and centroid vi until the objective function 
was minimized.

Finally, inconsistent labeled pixels were mapped comparing the LST L and BCI 
B clustering results. For those pixels, if the maximum membership max(uik)L of the 
pixel k in L was higher than max(uik)B in B, the pixel was labeled as the class with 
max(uik)L in L, and vice versa. However, if the values were equal, the pixel was 
labeled as the class with max(uik)L.

3.3  RESULTS

3.3.1  QuAntitAtive ChArACteriStiCS of urbAn growth

The urban area distributions for the Pearl River Delta from 1987 to 2014 are shown 
in Figure 3.3. The dark gray represents urban area, the medium gray shows water 
bodies, and the light gray shows nonurban area. Because image numbers in 1989, 
1992, 1997, and 1998 were fewer than 3 and cloud cover was more than 50% for all 
images, urban areas in these 4 years were not analyzed.

The annual urban area maps in the Pearl River Delta in Figure 3.3 show a dra-
matic urban expansion from 1987 to 2014. Urban areas increased from 598 km2 in 
1987 to 5768 km2 in 2014. To evaluate urban growth in the study area, urban areas by 
year were calculated from annual clustering maps in Figure 3.4. The spatial distribu-
tions of annual urban areas could be divided into four periods.

 1. For the period 1987–1991, the Pearl River Delta experienced no significant 
change in urban areas. The Pearl River Delta was in the early phases of 
development during this period. Urban areas increased from 3.56% of the 
study area in 1987 to 5.97% in 1993, with an annual average rate of 13.57%. 
The average increased urban area per year was 101.53 km2/year.
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 2. For the period 1993–2000, large urban areas formed within and around 
existing urban areas. The Pearl River Delta experienced its first rapid 
growth period as a result of the deep development of China’s reform and 
opening up. Urban areas increased from 6.81% in 1993 to 19.07% in 2000 
with an annual average rate of 22.52%. The average increased urban area 
per year was 412.62 km2/year.

1987 1988 1990 1991

1993 1994 1995 1996

1999 2000 2001 2002

2003 2004 2005 2006

2007 2008 2009 2010

2011 2012 2013 2014

FIGURE 3.3 Urban areas from 1987 to 2014 in the Pearl River Delta.
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 3. For the period 2001–2006, the Pearl River Delta was still experiencing a 
rapid growth, but the urban expansion was slower than that in the previous 
period. In this period, the Southeast Asian economic crisis affected urban 
development to some degree. The driving forces of continuous urban expan-
sion were mainly because China had a fast-growing economy since it joined 
the World Trade Organization in 2001. Urban areas increased from 20.19% 
in 2000 to 28.34% in 2006, yielding an annual average rate of 6.73%. The 
average increased urban area per year was 228.65 km2/year.

 4. For the period 2007–2014, Pearl River Delta entered a period of stable devel-
opment and urban development was slowed down. Urban areas increased 
from 28.48% in 2007 to 34.28% in 2014 with an annual average rate of 
2.55%. The average increased urban area per year was 122.02 km2/year.

3.3.2  ASSeSSMent of urbAn growth

Since the 1980s, rapid urbanization in the Pearl River Delta was strongly linked to 
economic growth and population attributed to reform policies. From 1980 to 2000, 
the average annual gross domestic product (GDP) growth of the Pearl River Delta 
grew up to 16.9%. In this period, the driving force of urban growth in the study area 
was the establishment of Special Economic Zones of Shenzhen, followed by foreign 
investment from overseas investors. Since the new century, the Pearl River Delta 
has been continuing to experience strong economic growth with an average annual 
GDP growth of up to 15% between 2000 and 2007. However, the GDP growth has 
slowed down since 2008 because of the global financial crisis and industrial struc-
ture adjustment. The GDP growth particularly slowed down to below 10% since 
2011. According to the Hong Kong Trade Development Council, the Pearl River 
Delta enjoyed a per-capita GDP of RMB 93,114 in 2013 (approximately $15,000), 
with real GDP growing by an average of 9.4%.

The urban growth types differed during four periods: 1987–1991, 1993–2000, 
2001–2006, and 2007–2014. In the 1987–1991 period, urban growth was domi-
nated by scattered development. In the 1993–2000 period, scattered development 
was decreased and strip development was increased. Urban areas mainly expanded 
along transportation networks. According to the fifth national population census, 
the population of the Pearl River Delta was 4 million in 2000, rising by 1.94 million 
when compared to the population in 1990. From 2001 to 2014, strip development and 
compact development became dominant. City clusters and metropolitan stretches 
came into being in the Pearl River Delta. Accompanying the urbanization process 
was population growing to 47.72 million in 2008. Since 2011, the population growth 
affected by economic growth and industrial structure adjustment began to stabilize 
(Pearl River Delta Region Planning and Guangdong Statistical Yearbook 2014).

3.3.3  CluStering ACCurACy ASSeSSMent

In this study, historical imagery acquired from Google Earth was used as reference 
data for each year. Since available historical imagery cannot cover the whole study 
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area and historical imagery from Google Earth for some period was few, reference 
samples were also selected from time series BCI images using visual judgments. 
Stable time series derived from stacked cloud free BCI images were used as refer-
ence data. Then, the stratified random sampling method was employed for selecting 
reference data for each year. Five hundred samples were randomly selected to each 
class and divided into two subsets. One subset was used for classifier training and the 
second was used for accuracy assessment. It would help eliminate the bias resulting 
from using the same samples for both training and testing. The annual clustering 
accuracy is shown in Figure 3.5.

The annual clustering accuracy yielded 78.23% to 91.32%, which shows the 
effectiveness and feasibility of the time series clustering method. However, the 
average clustering accuracy in the 1987–1999 period was 81.05%, and the average 
clustering accuracy in the 2000–2014 period was 89.75%. The reason was that dif-
ferent temporal dimensions in each year led to different clustering accuracy. The 
available annual average image number before 2000 was smaller than 3, but the 
available annual average image number after 2000 was larger than 14. The main 
reason for this phenomenon was that the low temporal resolution in each year could 
obscure land cover changes and reduce the separability of temporal characteristics 
for urban areas and nonurban areas. The vegetation phenology characteristic would 
particularly be weakened. Time series clustering also showed values of imagery 
with cloud contamination or SLC-off data in identifying urban areas. Although 
cloud contamination and SLC-off data caused significant temporal noise and 
resulted in incomplete time series, gap filling and smoothing were helpful for solv-
ing missing data problems through enhancing temporal resolution of time series 
Landsat imagery.

3.4  CONCLUSIONS

This chapter explores urban growth in the Pearl River Delta using time series Landsat 
imagery from 1987 to 2014 based on the time series clustering method. The annual 
spatiotemporal patterns of urban areas in the Delta were quantified. The results indi-
cated that urban areas in study areas increased rapidly from 3.56% to 34.28% during 
the 1987–2014 period. The method proposed in this chapter verifies the feasibility 
and effectiveness of the time series clustering method in assessing urban growth 
patterns using time series Landsat imagery. Results from this study can be used by 
policymakers for urban planning and management and for hydrological modeling to 
determine the effect of increasing urban areas on urban environments of the study 
area. This study can also be valuable for exploring the mechanisms of urban areas 
and environmental relationship for sustainable urban planning and management. 
However, how to evaluate the differences between two time series and how time 
series components affect time series clustering remain unanswered in this study. 
Future studies may include similarity metrics before using the clustering method to 
solve the above issues.
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4 InSAR Monitoring 
of Land Subsidence 
for Sustainable 
Urban Planning
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Maitiniyazi Maimaitijiang, and Mamat Sawut

4.1  INTRODUCTION

Underground mining can cause a number of environmental problems such as build-
ing collapse and road damage (Al-Rawahy 1995; Donnelly et al. 2001; Guéguen et 
al. 2009; Yerro et al. 2014), as well as disruptions in groundwater aquifers, under-
ground gas, water, electricity, and sewage systems (Dong et al. 2013). With the larg-
est reported bituminous coal reserves in the United States, Illinois has been one of 
the nation’s major coal producers for nearly 150 years, and coal has been mined in 
73 of the state’s 102 counties (http://www.eia.doe.gov). Many of the modern and 
historic coal mining areas are located under towns or important infrastructure such 
as major roadways and railways. The Illinois State Geological Survey estimates that 
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approximately 201,000 acres of urban and built-up lands may be close to under-
ground mines with 333,000 housing units being exposed to possible mine subsidence.

Coal production–related ground deformation generally occurs in three stages: the 
initial phase, which usually corresponds to less than 15% of the total subsidence 
for an individual coal seam; the fast main phase, corresponding to approximately 
75% of the maximum subsidence; and the residual phase, which presents a decreas-
ing subsidence rate (Guéguen et al. 2009) that can occur over decades. Generally, 
subsidence occurs during active mining, and its occurrence can be directly related 
to the location of active mining. The amount of residual subsidence after active min-
ing is often small (less than 10% relative to the total subsidence) and can easily 
be overlooked after the mine is exhausted. However, residual subsidence associated 
with abandoned mines can continue for years—or decades. Monitoring the long-
term residual land subsidence is of great interest not only to individual homeowners, 
insurance companies, and regional policymakers charged with assessing risk and 
the development of hazard mitigation plans, but also to city planners and developers.

Conventional ground-based deformation monitoring techniques (e.g., Global 
Positioning Systems [GPSs] and leveling) are limited to discrete and sparse sites 
and are not able to provide detailed and comprehensive ground deformation over 
large areas. The Differential Interferometric Synthetic Aperture Radar (DInSAR) 
technique developed in the late 1980s has demonstrated its potential for high-density 
spatial mapping of ground displacement and has become an important tool for moni-
toring temporal and spatial ground movements (Chaussard et al. 2013; Gabriel et al. 
1989; Massonnet and Feigl 1998). DInSAR can achieve an accuracy comparable to 
field measurements, but at a much higher spatial density, larger coverage, and with 
low cost (Raucoules et al. 2009; Zhang et al. 2011). However, the standard DInSAR 
technique is subject to uncertainties caused by temporal and spatial decorrelations as 
well as atmosphere artifacts (Sousa et al. 2011; Zebker and Villasenor 1992; Zebker 
et al. 1997). To overcome these limitations, advanced time-series InSAR techniques 
(timeSAR) have been proposed, utilizing multiple interferograms derived from a 
large set of SAR images. There are two schools of timeSAR techniques: Persistent 
Scatterer Interferometry (PSI) (Ferretti et al. 2000, 2001; Hooper et al. 2004; 
Kampes 2006) and Small Baseline Subset (SBAS) (Berardino et al. 2002; Lanari 
et al. 2004, 2007; Usai 2003). Millimetric precision of velocity estimation is possible 
with timeSAR approach.

Each of these methods has its advantages and limitations. For example, PSI is 
based on analysis of persistent point targets and works better in urban areas than 
in suburban or vegetated areas (Bell et al. 2008; Colesanti et al. 2003; Raucoules 
et al. 2013), providing high-resolution measurement of surface motions (Prati et al. 
2010). Limitations associated with PSI processing include the following: (1) a large 
number of SAR images (at least 20 images) is required to obtain reliable results 
(Guéguen et al. 2009); (2) it assumes the temporal deformation to be linear; and 
(3) it is known to underestimate high deformation rates because of temporal unwrap-
ping issues (Raucoules et al. 2009). In contrast, SBAS exploits distributed scatterers 
using small baseline interferogram subsets and performs better for both urban and 
nonurban vegetated areas, and also in areas with high deformation rates (Chaussard 
et al. 2014; Gourmelen et al. 2010; Hooper 2006). SBAS is able to estimate nonlinear 
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deformation rates but may not be optimal for localized displacements that may 
affect, for example, small areas or single buildings.

In multitemporal InSAR processing, both PSI and SBAS approaches are opti-
mized to obtain ground displacement rates with a nominal accuracy of milli-
meters per year (Yan et al. 2012). These methods have been successfully applied to 
detect ground movements caused by not only natural phenomena such as tectonic 
or volcanic activities (Chaussard et al. 2014; Yan et al. 2012), salt movement (Abir 
et al. 2015), glacial rebound and landslides (Lauknes et al. 2010; Liu et al. 2013), 
ground dissolution (Gutiérrez et al. 2011; Paine et al. 2012), and freeze–thaw of per-
mafrost (Chen et al. 2013; Short et al. 2014), but also anthropogenic activities includ-
ing underground mining (coal, oil and gas, etc.) (Abdikan et al. 2014; Grzovic and 
Ghulam 2015; Guéguen et al. 2009; Herrera et al. 2007; Raucoules et al. 2003; Yerro 
et al. 2014), groundwater extraction (Chaussard et al. 2013; Zhu et al. 2013), tunnel 
construction (Knospe and Busch 2009; Strozzi et al. 2011), and load increase of con-
structions (Abidin et al. 2011; Mazzotti et al. 2009).

The objectives of this chapter are to map risk areas of structural damage and 
infrastructure failure attributed to mining extraction using both PSI and SBAS tech-
niques and to demonstrate the potential of InSAR for sustainable urban planning that 
avoids developing over subsiding areas.

4.2  STUDY AREA AND DATA

4.2.1  Study AreA

The St. Louis Metropolitan area is located just south of the confluence of the 
Missouri and Mississippi rivers, straddling the Missouri–Illinois border (Figure 
4.1). The study area encompasses all of St. Louis City and St. Louis County as 
well as portions of Jefferson and St. Charles Counties in Missouri, and Madison, 
Monroe, and St. Clair Counties in Illinois. The region is susceptible to many geo-
logic hazards (e.g., surface subsidence, sinkholes) because of the presence of numer-
ous sinkholes and abandoned underground mines (Louchios et al. 2013; MoDNR 
2014a,b). The area presents significant problems because of the density of urban 
infrastructure and population. It is situated between the relatively higher topogra-
phy of the Ozark Plateau in the southwest and the lower topography of the Illinois 
Basin. The elevation ranges from 68 to 530 m (Jordan et al. 2014b). It has diverse 
land cover classes in the area such as forest, agriculture, pasture, and urban (Jordan 
et al. 2012). The climate of this region is continental type with distinct seasons 
characterized by wide ranges in temperature and irregular annual and seasonal 
precipitation (Jordan et al. 2014b).

The surface cover in the St. Louis metropolitan area varies from glacial deposits 
to stream alluvium (Schultz 1993). Much of the surface of the study area is covered 
by loess consisting of sandy silts, silts, and clays that are 3–25 m thick (Schultz 
1993). The floodplains of Mississippi and Missouri and their tributaries are covered 
with alluvium consisting of fluvial clays, silts, sands, and gravels and are up to 25 m 
thick (Schultz 1993). Underneath this surface cover are gently dipping (<1° northeast) 
Paleozoic limestones, dolostones, shales, and sandstones of marine origin (Harrison 

(c) ketabton.com: The Digital Library



64 Remote Sensing for Sustainability

St
ud

y 
ar

ea

G
PS

 b
as

e 
st

at
io

ns
Su

rv
ey

 b
en

ch
m

ar
ks

PA
LS

A
R 

fo
ot

pr
in

t
ER

S 
1/

2 
fo

ot
pr

in
t

C
ity

/c
ou

nt
y b

ou
nd

ar
y

91
°0

´W
90

°3
0´

W0
20

M
O

N
RO

E

ST
. C

LA
IR

JE
FF

ER
SO

N

ST
 L

O
U

IS
 C

IT
Y

M
A

D
IS

O
N

ST
 L

O
U

IS

ST
 C

H
A

RL
ES

Il
lin

oi
s

PA
LS

A
R

 T
ra

ck
 1

62
 (a

sc
)

ER
S1

/2
 T

ra
ck

 1
26

 (d
sc

)
M

is
so

ur
i

FR
A

N
K

LI
N

40
km

90
°0

´W

38°0´N38°30´N39°0´N

38°0´N38°30´N39°0´N

89
°3

0´
W

91
°0

´W
90

°3
0´

W
90

°0
´W

89
°3

0´
W

N

FI
G

U
R

E 
4.

1 
L

oc
at

io
n 

of
 th

e 
st

ud
y 

ar
ea

. T
he

 b
ac

kg
ro

un
d 

is
 a

 s
ha

de
d 

re
li

ef
 m

ap
 f

ro
m

 A
rc

G
IS

 o
nl

in
e 

m
ap

 s
er

vi
ce

s.
 S

ol
id

 a
nd

 d
as

he
d 

re
ct

an
gl

es
 r

ef
er

 
to

 P
A

L
SA

R
 a

nd
 E

R
S1

/2
 im

ag
e 

fo
ot

pr
in

t. 
B

la
ck

 c
ir

cl
es

 a
re

 th
e 

lo
ca

ti
on

s 
of

 G
P

S 
ba

se
 s

ta
ti

on
s 

th
at

 a
re

 r
ef

er
en

ce
d 

du
ri

ng
 I

nS
A

R
 p

ro
ce

ss
in

g.
 L

on
g-

te
rm

 
le

ve
li

ng
 m

ea
su

re
m

en
ts

 a
re

 a
va

il
ab

le
, a

nd
 s

ur
ve

y 
be

nc
hm

ar
ks

 a
re

 lo
ca

te
d 

at
 th

e 
so

li
d 

tr
ia

ng
le

.

(c) ketabton.com: The Digital Library



65InSAR Monitoring of Land Subsidence for Sustainable Urban Planning

1997). The oldest bedrock units are in the Ozark Plateau exposed in the southwest 
third of the study area and consist of Cambrian, Ordovician, and Devonian dolos-
tones, sandstones, and shales. To the northeast are younger Pennsylvania rocks in 
the Illinois Basin that consist of limestones, shales, and sandstones. In between the 
Ozark Plateau and the Illinois Basin are Mississippian limestones and sandstones 
topped by Pennsylvanian shales. The St. Louis Fault Zone is the only structure that 
significantly influences surface features. The fault zone trends north-northeast and 
appears to control the course of the Mississippi River, causing it to flow across the 
northeastern flank of the Ozark Plateau. Schultz (1993) presented evidence for right-
lateral strike-slip motion on the fault, but it is inconclusive as most of the fault zone 
lies beneath the Mississippi River.

4.2.2  dAtA

Thirty-seven C-band SAR images were obtained from the European Space Agency’s 
ERS-1 and ERS-2 SAR satellites. The ERS-1/2 data were acquired on descending 
orbits for the period between 1992 and 2000. We also selected 16 of the Phased 
Array type L-band Synthetic Aperture Radar (PALSAR) images acquired from 
2007 to 2011. The PALSAR sensor onboard the Advanced Land Observing Satellite 
(ALOS) from the Japan Aerospace Exploration Agency (JAXA) collects data with a 
46-day repeat orbit cycle. The PALSAR images were acquired from ascending orbit 
direction in Fine Beam Single Polarization (FBS) and Fine Beam Dual Polarization 
(FBD) observation mode with the off-nadir angle of 34.3°. Note that both satellite 
radar systems only detect displacement in the line-of-sight (LOS) direction.

For validation, we used leveling data collected from 1988 to 2008. The level-
ing data were measured monthly as relative movement to permanent benchmarks 
deployed in the study area. National Elevation Dataset (NED) with a spatial resolu-
tion of 10 m was used to remove topographic effect, flattening, coregistration, and 
geocoding of InSAR data.

4.3  METHODS

An integrated PSI and SBAS approach can maximize the spatial density of coherent 
pixels, allowing the identification of persistent scatterers that dominate the scattering 
from the resolution cell and slowly varying filtered phase pixels representing distrib-
uted targets whose phases decorrelate little over short time intervals (Hooper 2008). 
We utilized both SBAS and PSI processing of ERS-1/2 data. However, only SBAS 
was performed on PALSAR images owing to the small number of samples. Another 
challenge for InSAR processing was the fact that a large portion of the area was cov-
ered by vegetation and water, which significantly decreases the coherence of InSAR 
pairs. To overcome this limitation, we processed the ERS-1/2 data by two smaller 
sections divided by the Mississippi River, St. Louis part on the west of the river and 
the Belleville part on the east of the river. Compared to C-band SAR images, better 
coherence and coregistration can be achieved with L-band data especially over veg-
etated terrains because of the better alignment of the reference and repeat images in 
the range direction (Rosen et al. 1996). We were able to process entire PALSAR data 
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without splitting the image coverage into smaller portions. While the details of PSI 
and SBAS approaches can be found in other literature, for completeness, we provide 
a brief description of the methods with pertinent parameter settings.

4.3.1  SBAS ProceSSing

Interferograms were generated using SARscape modules of ENVI software from 
Exelis VIS Information Solutions. Normal baseline was set to 50% of the critical 
baseline and 900 days threshold was used for the temporal baseline. After coreg-
istration and interferogram generation, NED 10 m Digital Elevation Model (DEM) 
resampled to 25 m was used to remove the flat earth phase component. Goldstein 
filtering (Goldstein and Werner 1998) with optimized parameters (Ghulam et al. 
2010) were used to remove interferogram noise. A complex multilook operation was 
performed to produce ground resolution of approximately 25 m. Baseline-dependent 
phase residuals attributed to DEM inaccuracies (Berardino et al. 2002) were removed 
using a predefined linear displacement model that jointly estimates the DEM error 
and the low-pass displacement parameters. The efficacy of using a priori known dis-
placement models in removing the DEM error has also been reported by a number of 
studies (Lauknes et al. 2010; Berardino et al. 2002).

Both minimum cost flow (MCF) network (Costantini 1998) and Delaunay 3D 
(D3D) methods (Hooper and Zebker 2007) was used to unwrap the phase values 
only known within [−π, π]. D3D unwrapping is more reliable than the standard two-
dimensional approaches because it exploits the temporal information and unwraps 
the phase difference between neighboring pixels in the time domain to reduce atmo-
spheric and orbital effects. However, it requires higher redundancy of SAR observa-
tions. For a given SBAS epoch, the MCF or D3D method was used depending on the 
redundancy of DInSAR pairs determined by a plot of time versus relative position 
with respect to the super master image. A spatial coherence thresholding of 0.35 
was used to exclude decorrelated areas from the phase unwrapping so that a reliable 
phase unwrapping was feasible only with highly coherent pixels. By screening all of 
the wrapped and unwrapped interferograms, problems related to inaccurate orbits 
and uncoherent pairs were identified and further corrected or excluded.

Temporal variations in the refractive index attributed to water vapor can lead 
to a significant phase delay that is associated with elevation (Cavalie et al. 2007; 
Delacourt et al. 1998). This error component along with the phase error caused by 
the atmospheric signal is correlated in space and needs to be removed. To that end, 
we employed a two-step inversion process. First, we estimated a phase delay eleva-
tion profile for each interferogram and displacement velocity using a linear inver-
sion model. A wavelet number of levels, which refers to the power of base 2, was 
used to determine the residual topography. This value was set as a function of of 
the reference DEM, which was used for the interferogram flattening. We processed 
SAR data with 25 m resolution with NED 10 m DEM resampled to 25 m; therefore, 
a wavelet number of level 1 was used. This means that information coarser than 
50 m was removed. The higher the levels, the lower in terms of spatial frequency 
will be removed. Then, the first estimated residual topography and velocity phase 
components were subtracted from input wrapped interferograms. The difference, 
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the remaining error component attributed to the phase delays owing to atmospheric 
signals, which is spatially correlated, was unwrapped and added to the first estimated 
displacement velocity phase. Second, the sum of the first estimated velocity and the 
remaining error phase was unwrapped again and reflattened, and an SBAS second 
inversion was conducted to jointly estimate the error source and refined velocity. 
Atmospheric phase screening was conducted to estimate atmospheric effects, which 
were removed using a low-pass spatial filter with a 1.2 km × 1.2 km window on each 
single acquisition followed by a high-pass filter on the time series images.

Sixty-three interferogram pairs were generated from 16 PALSAR images over the 
entire study area. The number of pairs generated from 37 ERS-1/2 images for the 
west and east of the Mississippi River was 86 and 94, respectively.

4.3.2  PSi ProceSSing

PSI is intended for the analysis of point targets characterized by high coherence 
behavior. A total of 37 ERS-1/2 images were processed with the PSI algorithm 
(Ferretti et al. 2001). The topographic reference was determined from the same 
DEM as for the SBAS, which was used to remove the topographic and ellipsoidal 
height components of the phase. Persistent scatterers were selected based on the 
coherence value over 0.65. Then, atmospheric phases were removed from each dif-
ferential interferogram by filtering the spatial and temporal domains according to 
their spatial and temporal correlations using the same method utilized for SBAS. To 
unwrap the complex phase, the MCF method was integrated with a region growing 
procedure to improve the performances in areas with low signal-to-noise ratio due 
to predominant vegetation cover (Costantini 1998). Then, mean annual LOS velocity 
and displacement time series were calculated.

4.4  RESULTS AND DISCUSSION

4.4.1  SPAtiAl And temPorAl PAttern of lAnd SuBSidence 
from 1992 to 2000

Figure 4.2a through d show estimated mean LOS velocity in millimeters per year 
from the 37 ERS-1/2 images using both SBAS (Figure 4.2a and b) and PSI (Figure 
4.2c and d) methods. The mean LOS velocity image was draped on the mean inten-
sity image. Positive LOS velocities (blue colors) represent movement toward the sat-
ellite, and negative LOS velocities (red colors) represent movement away from the 
satellite. Spatial patterns of ground deformation observed by both SBAS and PSI 
methods over St. Louis, Missouri (Figure 4.2a and c) and Belleville, Illinois (Figure 
4.2b and d) are almost identical. In other words, deformation signals detected by 
InSAR were confirmed by both methods, demonstrating distinct subsidence or uplift 
patterns on several locations in the study site.

From 1992 to 2000, relative uplift, as demonstrated by the blue cool colors in 
Figure 4.2a and c, was observed over parks and cemeteries in south-east central 
areas of St. Louis city. The uplift might be attributed to an increase in precipita-
tion in the 1990s (Jordan et al. 2014a,b) and tree growth. In Belleville, Illinois, the 

(c) ketabton.com: The Digital Library



68 Remote Sensing for Sustainability

LOS Velocity (mm/year)

< –9.0

–8.9 to –1.5

–1.4 to –0.5

–0.4 to 0.5

0.6–8.0

0

(d)(b)

B1

B2

B4

B5
B7

B8B3

B6

A2

A1

A3

A5

A4

A6

(c)(a)

2.5 5 10 km

>8.0

FIGURE 4.2 Mean LOS velocity (in millimeters per year) estimated by SBAS (a and b) 
and PSI (c and d) methods using 37 ERS-1/2 images. Background image is mean intensity. 
Positive LOS velocities (blue colors) represent movement toward the satellite; negative LOS 
velocities (red colors) represent movement away from the satellite. Dashed rectangles are 
typical areas with distinct subsidence or uplift patterns that will be analyzed further in suc-
ceeding sections.
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deformation patterns from 1992 to 2000 were mostly subsidence, which correspond 
to the locations of underground mining and abandoned mine workings (Figure 4.2b 
and d).

Both the SBAS and PSI data sets show average annual rates of movement rang-
ing from −9 to +8 mm/year. It is worth noting that the SBAS estimated deformation 
represents a pixel dimension of approximately 20 × 20 m, and the PSI estimates were 
retrieved at a full pixel resolution of 4 × 20 m in the azimuth and range directions, 
respectively. In order to compare time series, all pixels within a selected region of 
interest (ROI) were averaged. Figure 4.3 shows the estimated total LOS displacement 
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FIGURE 4.3 Time series deformation history of selected regions of interest shown in 
Figure 4.2. Labels A and B correspond to the St. Louis, Missouri, site and the Belleville, 
Illinois, site. (Continued)
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FIGURE 4.3 (CONTINUED) Time series deformation history of selected regions of inter-
est shown in Figure 4.2. Labels A and B correspond to the St. Louis, Missouri, site and the 
Belleville, Illinois, site.
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time series averaged for selected ROIs using both SBAS and PSI methods. Labels 
A1–A6 and B1–B8 correspond to the St. Louis, Missouri, and Belleville, Illinois, 
sites. Main observations include the following: (1) ground deformation history from 
SBAS and PSI was highly consistent, demonstrating a match between highs and 
lows of the deformation trend line; (2) the amplitude of total deformation varied 
from +30 to −30 mm for most of the ROIs except for location B4, which experienced 
significant (up to −50 mm) subsidence from 1992 to 2000; (3) overall, SBAS-derived 
deformation trends were smoother than PSI results, which was possibly due to the 
fact that a better estimation of nonlinear deformation (note: PSI assumes a linear 
deformation trend) as well as residual topography was achieved with SBAS using a 
wavelet number approach; and (4) SBAS results seem to have a greater spatial cover-
age compared to PSI, especially over vegetated areas.

4.4.2  SPAtiAl And temPorAl PAttern of lAnd SuBSidence 
from 2007 to 2011

Figure 4.4 shows the effects of subsidence in the St. Louis metropolitan region. The 
mean velocity deformation map results (Figure 4.4a) for the period from January 2, 
2007 to January 13, 2011 are from the ALOS PALSAR data set using the SBAS 
method. Note that not all subsidence takes place over underground mines. In Figure 
4.4b, an area affected by karst processes (purple outline) is shown. The karst plain 
covers most of Monroe county and a small portion of St. Claire County, but much of 
this area is agriculture or undeveloped.

Mining on the Missouri side of the Mississippi River was active up into the 
1940s, but today mining activity is confined to the open pit mining of limestone 
(Seeger 2014). On the Illinois side, however, mining continues and consists primar-
ily of underground coal mining. Active underground mines are required by law to 
have a surface subsidence mitigation plan as well as the requirement to monitor and 
repair mine subsidence damages that occur (Bauer 2008). Mine subsidence from 
these active mines causes little damage to surface infrastructure after initial collapse 
of the surface because the method used for mining leaves little to no open space 
underground (Bauer 2008). There are, however, many abandoned underground coal 
mines in the region (Chenoweth et al. 2004a,b, 2005). For these mines, the potential 
for collapse still exists after many years because the mining techniques used leave 
open spaces underground after mining has stopped (Bauer 2006, 2008).

Figure 4.4c shows the time series of ground subsidence, indicated by the red line, 
for the large southern subsiding area in Figure 4.4d, which is an area in Illinois 
affected by mine subsidence during the period. Groundwater depth (blue line) and the 
total yearly precipitation (light gray shading) for the area are also plotted. The loca-
tion of the well where groundwater measurements were taken is indicated by the star 
on Figure 4.4a. We can see that a drastic subsidence occurred when the groundwater 
level drops during the drought year (2007), possibly caused by the excessive ground-
water withdrawals. It suggests that the deformation pattern observed in the area is 
likely to be related to the drop in the groundwater level. Then, subsidence slows 
or reverses to uplift when groundwater levels rise. Note, however, that the surface 
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FIGURE 4.4 (a) Mean LOS velocity (in millimeters per year) using the small baseline 
subset (SBAS) method for the ALOS PALSAR data set, a period from January 2, 2007 to 
January 13, 2011. Bright colors indicate movement away from the satellite and dark colors 
indicate movement toward the satellite. Light gray outlines indicate underground coal mine 
locations. Purple outlines indicate sinkhole-prone areas. The star indicates the location of the 
well where groundwater depths were taken. (b) A Google Earth image from 2014 showing a 
typical sinkhole-prone area. (c) Time series plot of ground deformation for the southern subsid-
ing area shown in (d). The red line indicates ground deformation, the blue line denotes ground-
water depth from the well indicated in (a), and the light gray shaded area indicates yearly total 
precipitation. (d) Close-up of indicated area showing mean LOS velocity of an area undergoing 
development during the period ALOS PALSAR images were acquired. (e through g) Google 
Earth images showing recent urban development of the area shown in the figure.
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subsidence, unlike groundwater, never returns to the level it started at. One may 
expect that subsidence closely follows the groundwater recharge cycle, for example, 
ground uplifts or subsidence corresponding to increase or decrease of groundwater 
tables. This is particularly true for areas where there are no underground mine pil-
lar failures. The fact that ground subsidence did not reverse, corresponding to water 
level changes after a drought year, hints a high likelihood of pillar failure.

Several significant subsidence zones can be found in Figure 4.4d (see the red 
spots). Aided by aerial photos and Google images, we determined that these red 
spots have experienced recent urban developments for both residential and school 
building (Figure 4.4e, f, and g). It is apparent that development on the areas located 
on the upper-left corner of Figure 4.4d continued despite reported land sub sidence 
incidents in a nearby school (red spot on the lower-right portion of Figure 4.4d).
InSAR data measured subsidence of up to −25.6 mm/year at the two subsiding areas.

4.4.3  VAlidAtion of inSAr deformAtion uSing leVeling dAtA

In order to validate InSAR-derived measurements, we selected two bench mark (BM) 
points (BM3 and BM29) where two decades of leveling measurements were avail-
able. Figure 4.5 shows the deformation history of BM3 and BM29 obtained from 
SBAS and leveling measurements, which confirms the accuracy of InSAR measure-
ments. It is evident from Figure 4.5 that BM3 experienced a linear deformation from 
1990 to 2011 while BM29 had an abrupt change in deformation trend in 1997. The 
overall trend observed in BM29 indicates that there was a possible land collapse 
or failure in underground mine pillars occurring in 1997, which was followed by a 
no deformation period.

The room-and-pillar mining technique, which leaves vacant space underground 
after abandonment of the mine, is a common type of mining technique used in the 
majority of the abandoned mines in our study area (Grzovic and Ghulam 2015). 
In this type of mining extraction, a series of pillars are left to support the roof of 
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FIGURE 4.5 Comparison of InSAR-derived deformation against field measured data at 
BMs located in Belleville, Illinois. (a) Deformation trend at BM3. (b) Deformation trend at 
BM29. It indicates an abrupt change in deformation trend at BM29 in 1998. This type of land 
collapse might be attributed to an increase of crustal overburden due to a new development 
over abandoned mining areas or changes in soil properties from lawn watering or rainfall.
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the mine while rooms are formed by extracting coal (Bauer 2008). Arguably, the 
deformation trend observed from BM29 may indicate a possible pillar failure, which 
might have been caused by residual land subsidence accelerated by extreme changes 
in precipitation, groundwater level, or a new development followed by excessive lawn 
watering or water use.

As shown in Figure 4.5, the SBAS time series exhibit a larger spread around 
the fitted linear curve than the BM survey measurements. This is due to the fact 
that ground-truth data from leveling represent measurements of a single point while 
InSAR-derived deformation represents a 20-m pixel average subsidence. One may 
expect discrepancies between absolute deformation values of leveling and SBAS, but 
consistency of overall deformation trends between the two measurements should be 
regarded as compelling.

4.4.4  imPlicAtionS for SuStAinABle urBAn PlAnning

Commercial coal mining in Illinois started around 1810 in Jackson County, and 
mining for coal, fluorspar, lead, limestone, and zinc has occurred in 72 counties 
(Bauer 2008). The Illinois Department of Natural Resources estimates that there 
are approximately 5000 closed or abandoned coal mines in 53 counties across the 
state, about half of which have not been mapped or documented. Approximately 
201,000 acres of urban and built-up lands may be close to underground mines with 
333,000 housing units being exposed to possible mine subsidence. In recent decades, 
subsidence damage to structures has become increasingly common in Illinois as 
new developments expanded over abandoned, long-forgotten mines. Developing 
low-cost, effective tools to monitor potential risk from long-term residual land sub-
sidence and predicting impending collapse before it actually causes economic loss 
is of great importance not only to individual property owners but also to insurance 
companies and regional policymakers charged with assessing risk related to aban-
doned coal mines.

Our preliminary studies indicated that sudden collapses of buildings, roads, and 
other infrastructure have occurred in the region. Although the thickness of the min-
ing roof (depth to mine working) is far greater than the increasing overburden from 
urban developments, ground subsidence can be accelerated after a new development 
built on abandoned mining areas. Arguably, this might be explained by a combined 
effect of increasing overburden, lawn watering, abrupt changes in precipitation pat-
terns, and groundwater table.

For example, the largest subsidence was observed at the B4 location, reaching 
approximately −50 mm/year over the 1992–2000 observation period. The promi-
nent red spot on the upper-right corner of the B4 rectangle (Figure 4.2b) was right 
over Wolf Branch Middle School, Swansea, Illinois. The school was built around 
2003 and quickly started to develop cracks and severe building damage by 2006. 
Significant mining subsidence at Bridle Lane, Swansea, Illinois, and surrounding 
areas (including the Wolf Branch Middle School) was also detected from InSAR 
maps of 2007–2011 (Figure 4.4d through g). These findings serve as compelling 
evidences that InSAR can reveal risk areas to avoid for new construction and guiding 
suggestions for prioritizing resources for targeted surveying, which, when combined 
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with soil properties, groundwater withdrawal, and modern fault activities and dis-
tribution of abandoned mining areas, provides valuable information regarding 
impending land collapses. Doing so will (1) benefit policymakers and city planners 
in making informed decisions about future developments and (2) save potential loss 
of investments in such hazardous areas.

4.5  CONCLUSION

Coal mining can cause a number of environmental and social problems, such as 
building collapse, road damage, and disruptions in groundwater aquifers that are 
the result of mining-induced persistent land subsidence. In recent decades, subsidence 
damage to structures has become increasingly common as towns and cities expanded 
over abandoned, long-forgotten mines. Therefore, developing cost-effective methods 
to monitor long-term residual land subsidence is of great interest not only to individ-
ual homeowners but also to city planners, insurance companies, and regional policy-
makers charged with assessing risk related to abandoned coal mines. The objective 
of this chapter was to develop new techniques for using space-based data to detect 
irregular patterns of land subsidence and to design efficient strategies for identify-
ing and mapping areas with elevated risk of structural and infrastructural damage. 
Thirty-seven C-band (ERS1/2) and 16 L-band (PALSAR) Synthetic Aperture Radar 
(SAR) images acquired from 1992 to 2000 and from 2007 to 2011 were processed 
with SBAS and PSI techniques to investigate land deformation. The correlation 
between land deformation and mining activities, regional geological background, 
groundwater, and precipitation were discussed. The results showed hot spots of 
ongoing and potential land collapses in the region with an average subsidence of 
−9 mm/year. Validated by conventional surveying, GPS measurements, and related 
geological survey, this study presented a comparative study between SBAS and PSI 
methods for displacement mapping, in an area made challenging by a humid climate, 
extensive surface waters, and dense vegetation cover.

Our results confirmed that subsidence took place mostly above the mining areas 
where deformation was well known and had experienced land collapses and sig-
nificant infrastructure damage. Observed ground deformation, precipitation, and the 
variations of groundwater table show unquestionable similarities. Mechanisms that 
cause uplift over parks and cemeteries, however, are not clear and may be of various 
sources: unloading attributed to water level rise, pore pressure variations, swelling 
of soil or tree growth, and so on.

In most of the validation and comparison, we used vertical subsidence rates con-
verted from the observed LOS rates. The limitation of this work is that only descend-
ing ERS-1/2 or ascending ALOS acquisitions were utilized for deformation mapping. 
Therefore, InSAR-derived LOS deformation represents the movement away from or 
toward the satellite. However, both GPS and leveling measurements conducted in 
the study area showed that ground displacement was occurring mainly vertically. 
We have projected the LOS displacement onto the vertical direction using satellite 
look angle and LOS displacement vector assuming that the horizontal ground dis-
placement is negligible. However, this assumption may need comprehensive valida-
tion with additional information, for example, pairing ascending and descending 
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InSAR measurements or extensive GPS network. It should be noted that our work 
mainly focused on detecting ground deformation and identifying potential collapse 
hot spots. Detailed investigation on the mechanisms and structural, anthropogenic, 
and geological causes of mining related land collapses will be our future research.
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5 A Tale of Two Cities
 Urbanization in Greensboro, 
North Carolina, and 
Guiyang, Guizhou, China

Honglin Xiao and Qihao Weng

5.1  INTRODUCTION

Industrialization and urbanization are the primary revolutionary forces that remake 
and reshape the world (Carpenter 1966). Urbanization is the process when other types 
of land cover, such as agriculture and vegetation, are largely replaced by paved con-
crete surfaces. In the past several decades, significant population increases, migra-
tion, and accelerated socioeconomic development have intensified the urbanization 
process in both China and the United States. Not surprisingly, this rapid urbanization 
process, along with the ongoing social and economic transitions, has been creating 
many environmental problems. However, there are important differences in devel-
opment stages, cultures and societies, urban structures, construction materials, and 
physical settings that result in differences of magnitudes, patterns, spatial extents, 
and natures of urban growth between the two countries. These differences have then 
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further resulted in variations in the urban heat budget, surface runoff, water quality, 
local climate, vegetation change, and other environmental processes between the 
two (Boggs and Sun 2011; Cervero 2000; Gibbard et al. 2005; Jones et al. 1990). In 
China, land use and land cover patterns have undergone a fundamental change since 
the inception of the economic reform and open-door policies in 1978. Urban growth 
has been sped up, and extreme stress on the environment has occurred. Massive 
amounts of agricultural and forest land are disappearing each year, converted to 
urban or related uses. In recent years, urbanization in China has taken place at an 
unprecedented pace and will continue over the next decades. The level of urban-
ization in China has risen from 18% in 1978 to 30% in 1995, and to 42% in 2004. 
According to the latest sixth national census data, as of November 1, 2010, China’s 
urban population stood at 665.57 million, with an urbanization level of 49.68%. At 
the rate of 35 million people per year moving to the cities, China will have nearly 
1 billion in the cities and towns by 2030 or a 70% urban population (The Economist 
2014). Although the United States is a far more developed country than China, it 
also loses a large amount of agricultural and forest land each year to urbanization as 
a result of the increasing population, desires for larger and better living spaces, and 
economic development. North Carolina in particular has changed significantly since 
1990. In 1990, the state was home to 6.6 million people; by 2000, its population sur-
passed the 8 million mark, an increase of 21.4% from 1990. From 2000 to 2010, the 
state grew 18.5% compared with the 9.7% overall growth in the United States. This 
has resulted in a population of 9.5 million people and led North Carolina to become 
the 10th most populous state in the United States (Bauerlein 2011). By 2030, North 
Carolina is predicted to have a population of more than 13 million—an increase of 
more than 30% from 2010—making it the seventh most populated state in the coun-
try (US Bureau of the Census).

Understanding urbanization characteristics, patterns, and processes is an effec-
tive way to reduce the risk level that the rapid urbanization has brought about to 
the environment. Measuring the degrees of the impact from urbanizations in coun-
tries with different cultures, societies, technology backgrounds, and historical tradi-
tions has long been an interest of scientific inquiry (Carpenter 1966; Wirth 1938). 
Although no two places experienced identical urban transformation, it is obvious 
that there would be similarities in the processes. It is particularly important to com-
pare the urbanization processes in the United States and China. These two countries 
account for approximately a quarter of the world population and have the two largest 
economies globally. Urbanization from the two countries has had and will have an 
even bigger impact on the surface of the Earth.

In satisfying the need, this study compared the urbanization processes in the 
North Carolina urban crescent from Raleigh–Durham–Chapel Hill (Research 
Triangle Park, RTP) to Greensboro (TRIAD) and Guiyang–Anshun in southwestern 
Guizhou Province, China, from the 1980s to the 2010s. Specifically, this study will 
first use Landsat TM images from 1991, 2001, and 2007 for Guizhou and TM images 
from 1989, 2001, and 2010 for North Carolina to extract land use/land cover (LULC) 
information. It will then examine how the urban areas had developed and what the 
similarities and differences in the urbanization processes were.
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5.2  STUDY AREAS

In order to make the study results comparable, two study sites were carefully selected. 
Guizhou Province in the southwestern China (Figure 5.1a) and North Carolina in the 
southeastern United States (Figure 5.1b) were ideal for this study for the following 
reasons: First, both provinces/states are relatively rural and rely mostly on agricul-
tural products despite having experienced tremendous urban growth in the past 
several decades. Second, North Carolina is located in the Piedmont area of the 
Appalachian Mountain leaning toward the Ocean, while Guizhou Province is on 
the slope of the Himalaya Mountains. Third, their statuses and degrees of develop-
ment in comparison to their respective countries are similar. Combined together, 
Raleigh–Durham–Chapel Hill is ranked the 25th largest urban cluster in the United 
States. Guiyang, the capital of Guizhou Province, is ranked the 27th largest city in 
China. Additionally, Greensboro, the third largest city in North Carolina and part of 
the Piedmont Triad that consists of the area within and surrounding the three major 
cities of Greensboro, Winston-Salem, and High Point, has approximately 225,000 
residents, while Anshun (the third largest city in Guizhou Province) has a popula-
tion size of 220,000 in its metro area. Furthermore, the TRIAD–RTP area is one of 
the most developed areas in North Carolina, while the area that includes Guiyang, 
Anshun, Qingzheng, and Pingba County is among the most developed and flattest 
areas in Guizhou.

The physical settings are very comparable as well. Guiyang–Anshun in Guizhou 
Province is located in the east side of the Yunnan–Guizhou Plateau. It covers 
6497 km2 and has a population of 10 million. It has a subtropical wet monsoon 
climate. The mean annual temperature is 20°C, with the hottest month being July 
and the coldest being January. Annual average precipitation is 1140 mm, with a 
distinct summer wet season and a winter dry season. Average monthly humidity 
ranges from 74% to 78%. LULC varies from agricultural fields (with crops such as 
rice, corn, soybeans, wheat, rapeseed, oats, barley, and sweet potatoes) to natural 

(a)

N

Qingzheng

Anshun
Dingba

Guiyang

G u i z h o u P r o v i n c e
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FIGURE 5.1 The study areas. (a) Guiyang–Anshun, Guizhou, China. (b) RTP–Greensboro, 
North Carolina.
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forests in remote areas and local Feng-Shui (literally wind and water) preserves. 
In addition, there are barren land, water, and urban/built-up areas. Vegetation is 
subtropical with largely evergreen trees, although deciduous trees can also be found 
in some areas.

RTP-Greensboro in North Carolina is characterized by hilly, rolling land. It cov-
ers an area of 10,756 km2. According to the recent census data, this area has become 
one of the most populous areas in the United States with a population size of approx-
imately 1.4 million (US Census Bureau 2010). It has a humid, subtropical climate. 
Winters are short and mild, while summers are usually very hot and humid. Its 
average January temperatures range from −1°C to 10°C and July temperatures range 
from 20°C to 27°C. The average annual precipitation in the Piedmont is approxi-
mately 1200 mm. This region, located at the slope area of the Smoky Mountains, 
contains many of the state’s largest cities. Elevations in the area vary from 100 to 
400 m above the mean sea level. The major agricultural products include tobacco, 
corn, cotton, hay, peanuts, and vegetable crops. Forests are mainly mixed deciduous 
and evergreen trees. The area houses the nation’s largest furniture, tobacco, brick, 
and textile producers. Metalworking, chemicals, mining, and paper are also impor-
tant industries.

Since the beginning of China’s economic reforms in 1978, China has experienced 
dramatic changes in its environment. Because it is dominated by Karst topography, 
Guiyang–Anshun has experienced more significant environmental problems than 
most other parts of the nation (Xiao et al. 2003). In recent years, especially since 
1990, many of the high-quality agricultural lands are no longer used to produce 
crops. Accelerated economic growth has led to the encroachment of urban areas 
into nearby agricultural lands. New industrial districts have occupied much of the 
available flat land near major cities, while in the countryside, farmers use flat land to 
build new houses. In comparison, North Carolina has experienced dramatic change 
in the past three decades, with impressive growth and remarkable economic and edu-
cational development. This once rural state has been rapidly urbanized, and in 1992, 
North Carolina officially became an urban state when the percentage of the urban 
population passed 51%. North Carolina has undergone a 10% population increase 
since 2000. Most of the increased population occurred in the Research Triangle, 
an area composed of the cities of Raleigh, Durham, and Chapel Hill. With RTP at 
its core, the region is one of the country’s fastest-growing metropolitan areas. In 
recent years, although the RTP area has been hit hard by the economic recession in 
the textile and furniture industries, the information technology and biotechnology 
industries are booming.

5.3  DATA AND METHODOLOGY

5.3.1  Data ColleCtion anD PreProCessing

In order to make the comparison more meaningful and, at the same time, cover a 
sufficiently long period, Landsat TM scenes were carefully chosen for each study 
area. Although obtaining images of exactly matching times in the same years over 
the same period proved impossible because of the limitation in data availability, we 
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had managed to obtain three cloud-free images for each area that were acquired 
in approximately the same seasons and covered a similar time frame. The images 
for Guizhou were acquired in November or December 1991, 2000, and 2007 and 
the images for North Carolina were obtained in July or August 1989, 2001, and 
2010. Because these images in each area were taken at a similar time of year, the 
phonological effect was minimized. Other ancillary data, such as county bound-
ary files, topographic maps, vegetation maps of Guizhou, DEMs, historical aerial 
photographs, and LULC records from the two study areas, were also collected for 
the study.

The satellite images were corrected to remove atmospheric effects by using Erdas 
Imagine’s Atmospheric Correct Extension (ATCOR 3), which used an algorithm 
based on the methods of Richter (1996) and Zhang et al. (2002). The images were 
then georectified using ground control points collected by GPS. The images were 
resampled to 30 m pixel size for all bands using the nearest-neighbor method. All 
the data were projected to a common UTM coordinate system for the purpose of 
analysis.

5.3.2  image ClassifiCation

On the basis of the spatial resolution of the satellite images used and the study objec-
tive, LULC types for Guizhou were classified in accordance with the classification 
system developed by the Resource and Environment Information Center of Chinese 
Academy of Sciences (CAS) (Peng et al. 2011) (Table 5.1). For North Carolina, LULC 
was classified with a modified Anderson’s system (Anderson et al. 1976) in refer-
ence to the US Geological Survey NLCD system (Homer et al. 2007) (Table 5.2). A 
hybrid image classification of unsupervised and supervised classifiers was applied. 
Studies have found that hybrid classifiers are particularly valuable in the analysis 
of LULC change, particularly in the area where there is complex variability in the 
spectral patterns or individual cover types (Lillesand et al. 2008; Mas 1999). Hybrid 
unsupervised/supervised classifications have been conducted in many LULC stud-
ies, and in most cases, the results are better than those from supervised or unsuper-
vised classifications alone (García and Álvarez 1994; Rutchey and Vilcheck 1994). 
The unsupervised classification was carried out using the Iterative Self-Organizing 
Data Analysis algorithm to identify spectral clusters in the images. On the basis 
of the results of the unsupervised classifications, training sites were chosen from 
the images. For each image, spectral signatures for the training sites were carefully 
chosen and examined. A maximum likelihood classifier was then employed for the 
image classification. Land cover types for Guizhou were first classified into 11 types, 
including water, urban construction land, rural settlement, transportation and min-
ing land, dense forest land, shrub land, fruit land, tea gardens, grass land, rice paddy 
land, arid agricultural land, vegetable land, and rocky desertification land. Land 
covers for North Carolina were first classified into 12 types of second-order land 
covers, including water, open space, low intensity, medium intensity, high intensity, 
deciduous forest, evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, 
pasture/hay, and cultivated crops. They were then combined to form into the first-
order lands (Table 5.2).
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TABLE 5.1
Land Cover Classification Scheme for Guizhou, China

Level I Types Level II Types

DescriptionOrder Type Order Type

1 Water area 40 Water Mainly rivers and lakes and looking nearly 
black and homogeneous with clear boundary.

2 Urban or 
built-up

21 Urban 
construction 

land

Built-up areas in cities and towns. Looking 
bright green on RS image.

22 Rural 
settlements

Mainly big villages, and usually scattered into 
arable lands. Look like urban built-up areas 
but much smaller on RS image.

23 Transportation 
and mining 

land

Mainly mining areas and transportation 
facilities, such as motorways. Looking bright 
green and discernable by its line shape.

3 Wood 
land

31 Dense forest 
land

Patches of secondary coniferous forest, mainly 
dense redpines. Looking dark red and being 
discernable on RS image with clear boundary.

32 Shrub land Mainly growing dense broad-leaf shrubbery 
usually less than 3 m tall, usually distributing 
on mountainous areas with bright red and 
veined patches on RS image.

33 Fruit tree land Mainly different types of fruit trees.

34 Tea garden land Mainly tea gardens. Looking shiny red but 
homogeneous with clear boundary on RS 
image.

4 Grass land 40 Grass land Covered by grasses, usually containing lots of 
thorns and scattered shrubbery with crown 
density<10%. Looking light pink with veins.

5 Arable 
land

51 Paddy land Mainly used for growing rice. Usually 
distributing in bottom of valleys and basins 
and lying near rivers and lakes. Being 
homogeneous patches with clear boundary.

52 Arid land Mainly used for growing corn and wheat with 
poor irrigation facility. Usually lying in hilly 
areas and looking bright gray on false-colored 
RS image.

53 Vegetable land Mainly used for growing different kinds of 
vegetables. Usually distributed around cities 
and towns as patches with clear boundaries. 
Normally looking pinkish on RS image.

6 Barren 
land

60 Rocky 
desertification 

land

Rocky karst hills with lot of rocks exposed and 
bare, and usually covered by limited grasses 
and unused. Looking dark gray on RS image.
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TABLE 5.2
Land Cover Classification Scheme for North Carolina

Level I Types Level II Types

DescriptionOrder Type Order Type

1 Water area 40 Water All areas of open water, generally with less than 
25% cover of vegetation or soil, looking 
nearly black and homogeneous with clear 
boundary.

2 Urban or 
built-up

21 Open space Includes areas with a mixture of some 
constructed materials, but mostly vegetation in 
the form of lawn grasses. Impervious surfaces 
account for less than 20% of total cover. These 
areas most commonly include large-lot 
single-family housing units, parks, golf 
courses, and vegetation planted in developed 
settings for recreation, erosion control, or 
aesthetic purposes. Looking bright green on 
RS image.

22 Low 
intensity

Includes areas with a mixture of constructed 
materials and vegetation. Impervious surfaces 
account for 20%–49% of total cover. These 
areas most commonly include single-family 
housing units. Looking like urban built-up 
areas but much smaller on RS image.

23 Medium 
intensity

Includes areas with a mixture of constructed 
materials and vegetation. Impervious surfaces 
account for 50%–79% of the total cover. 
These areas most commonly include 
single-family housing units. Looking bright 
green and discernable by its line shape.

24 High 
intensity

Includes highly developed areas where people 
reside or work in high numbers. Examples 
include apartment complexes, row houses, and 
commercial/industrial. Impervious surfaces 
account for 80%–100% of the total cover.

3 Wood land 31 Deciduous 
forest

Areas dominated by trees generally greater than 
5 m tall, and greater than 20% of total 
vegetation cover. More than 75% of the tree 
species shed foliage simultaneously in 
response to seasonal change. Looking dark red 
and being discernable on RS image with clear 
boundary.

(Continued)
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TABLE 5.2 (CONTINUED)
Land Cover Classification Scheme for North Carolina

Level I Types Level II Types

DescriptionOrder Type Order Type

32 Evergreen 
forest

Areas dominated by trees generally greater than 
5 m tall, and greater than 20% of total 
vegetation cover. More than 75% of the tree 
species maintain their leaves all year. Canopy 
is never without green foliage.

33 Mixed forest Areas dominated by trees generally greater than 
5 m tall, and greater than 20% of total 
vegetation cover. Neither deciduous nor 
evergreen species are greater than 75% of total 
tree cover.

34 Shrub/scrub Areas dominated by shrubs; less than 5 m tall 
with shrub canopy typically greater than 20% of 
total vegetation. This class includes true shrubs, 
young trees in an early successional stage, or 
trees stunted from environmental conditions 
with bright red and veined patches on RS image.

4 Grassland 
herbaceous

40 Grassland 
herbaceous

Areas dominated by grammanoid or herbaceous 
vegetation, generally greater than 80% of total 
vegetation. These areas are not subject to 
intensive management such as tilling, but can 
be utilized for grazing. Looking light pink 
with veins.

5 Agricultural 
land

51 Pasture/hay Areas of grasses, legumes, or grass-legume 
mixtures planted for livestock grazing or the 
production of seed or hay crops, typically on a 
perennial cycle. Pasture/hay vegetation 
accounts for greater than 20% of total 
vegetation. Being homogeneous patches with 
clear boundary.

52 Cultivated 
crops

Areas used for the production of annual crops, 
such as corn, soybeans, vegetables, tobacco, 
and cotton, and also perennial woody crops 
such as orchards and vineyards. Crop 
vegetation accounts for greater than 20% of 
total vegetation. This class also includes all 
land being actively tilled and looking bright 
gray on false-colored RS image.

53 Vegetable 
land

Mainly used for growing different kinds of 
vegetables. Usually distributed around cities 
and towns as patches with clear boundaries. 
Normally looking pinkish on RS image.

(Continued)
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It is difficult to classify land cover types by remote sensing interpretation alone, 
especially in the mountainous karst areas in Guizhou, because of the influence of 
rugged terrain and fragmented land covers. The authors’ knowledge of and famil-
iarity to this study areas played an important role in the LULC classification pro-
cess. Postclassification sorting was performed to enhance the classification results. 
Occasionally, Google Earth was used to help correct the misclassifications. The over-
all accuracy for the three images in Guizhou was 89.3%, 90.5%, and 91.5%, respec-
tively, while the overall accuracy for the three maps in North Carolina was 91.3%, 
93.4%, and 90.6%, respectively. To identify the spatial–temporal patterns of LULC 
changes, and to examine the conversion from one class to another, a thematic change 
detection analysis was conducted using the Image Analyst Extension from ArcGIS 
software. LULC maps were superimposed to create change maps between different 
periods. To emphasize changes in urban and built-up, other types of changes were 
dropped from the analysis of change detection.

5.4  URBAN LAND CHANGES

Both study areas have experienced significant changes on urban land during the 
past two decades (Figures 5.2 and 5.3). In Guizhou, urban land use only accounted 
for 2.5% of the study area in 1989. It increased to 4.75% in 2000, and then further 
jumped to 16.79% in 2007. In less than 20 years, the urban land increased sixfold, 
from 40,322 to 269,530 acres. Of the lands changed to urban, rice paddy land contrib-
uted the most at 88,310 acres (Figure 5.4a). Substantial amounts of dry agricultural 
and forest lands had also been converted into urban use. The loss of dry agricultural 
land was slightly less than rice paddy at 77,330 acres, which was followed by forest at 
53,160 acres and then grassland at 17,460 acres. The amounts of shrub land, non-rice 
crop land, and barren land that were converted into urban were 13,010, 12,552, and 
14,790 acres, respectively.

TABLE 5.2 (CONTINUED)
Land Cover Classification Scheme for North Carolina

Level I Types Level II Types

DescriptionOrder Type Order Type

6 Woody 
wetlands

69 Woody 
wetlands

Areas where forest or shrub land vegetation 
accounts for greater than 20% of vegetative 
cover and the soil or substrate is periodically 
saturated with or covered with water.

7 Barren land 70 Rock/sand/
clay

Barren areas of bedrock, desert pavement, 
scarps, talus, slides, volcanic material, glacial 
debris, sand dunes, strip mines, gravel pits, 
and other accumulations of earthen material. 
Generally, vegetation accounts for less than 
15% of total cover. Looking dark gray on 
RS image.
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FIGURE 5.2 Urban expansion map in Guiyang–Anshun, Guizhou, China, from 1991 to 2007.
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In the RTP–TRIAD area, urban and built-up land accounted for 5.18% of the 
total study area in 1989 (Figure 5.3). It more than tripled to 18.01% in 2001, and then 
almost doubled to 31.37% in 2010. In the past two decades, 397,790 acres of forest 
lands had been converted into urban or built-up land (Figure 5.4b). Almost equal 
amounts of pasture/hay land and cultivated lands were transformed into houses, 
offices, impervious surfaces, golf courses, and so on. Their loss stood at 159,109 and 
162,385 acres, respectively. In addition, approximately 30,000 acres of grassland 
was converted into urban and built-up from 1989 to 2010.

5.5  URBANIZATION PROCESS ANALYSIS

5.5.1  Urbanization in gUizhoU, China

Guizhou has experienced tremendous change in the urban area since the induction of 
China’s open-door policy in the late 1970s. It has gone through two stages of urban 
development during the study period. During the first phase from 1989 to 2001, 
urban development was focused on the renewal of the urban space as a result of 
gentrification. Much of the effort was put on improving the quality of life and human 
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FIGURE 5.4 The amount of land converted into urban area. (a) Guiyang–Anshun from 
1989 to 2007. (b) RTP–TRIAD in North Carolina from 1989 to 2010.
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welfare in the urban areas. As a result, services and infrastructure such as water and 
sewerage systems, sanitation, transport, gas pipeline, and solid waste collection and 
disposal in the cities such as Guiyang and Anshun were greatly improved. During 
that time, urban land development was mainly accomplished through government-
affiliated companies. However, organizations and individuals could acquire non-
transferable land-use rights from the governments to build houses for their workers 
through a special land allocation policy (Du et al. 2011).

Close to the end of the first study period from 1989 to 2000, China had made 
tremendous progress in its economic growth that paved the way for China’s future 
modernization. On the basis of the achievement since the open-door policy, the cen-
tral government decided to speed up the urbanization process in order to stimulate 
the economy growth by promoting urbanization at a rate of 1.5% to 2% annually 
(Song and Ding 2007). This urbanization policy was facilitated in several combined 
factors including the government, the marketplace, and foreign and domestic invest-
ment in real estate and manufacturing. In order to stimulate the demand for urban 
land and urban labor, the government issued policies to make it easy for companies 
and state-owned enterprises to obtain land for urban construction. For example, the 
Constitution Amendment Act to Article 10 in 1988 made transferring of the land use 
right to others possible. On the basis of this Amendment, companies, organizations, 
and individuals could negotiate and purchase land-use rights with governments or in 
the secondary land market from existing rights-holders (Du et al. 2011). During this 
period, the state-owned or collective-owned land developers could often work with 
the government to purchase land at prices that were far below the market prices for 
the sake of urban development.

During the second study period from 2001 to 2007, the main strategies were to 
expand the established cities by creating new urban districts to absorb the hundreds 
of thousands of migrants from the countryside and reduce the amount of peasants 
by merging rural townships and villages (Che xiang bing cun). A large percentage of 
the urban sprawl was a result of the establishment of several suburban Economic and 
Technological Development Zones (EDZs), such as “Jingyang New Development 
District” in Guiyang City, where the local government attracted companies to estab-
lish business or to build factories and real estate companies to build thousands of 
residential building complexes by providing low-priced land, incentives, and free 
infrastructure. To boost this new urban development, the city moved all of its govern-
ment developments from the old core to this newly established city. Approximately 
half of the urban land expansion in Guiyang was caused by government-led develop-
ment of EDZs (Ding 2003; Song and Ding 2007).

5.5.2  Urbanization in north Carolina

During the two study periods, the urban growth in the RTP–TRIAD area had 
unique expansion patterns as well. In the first phase, urban expansion permeated 
almost everywhere throughout the study area (Figure 5.3). However, the expansions 
were not distributed evenly among the various types of areas because location was 
a critical determinant on the types of growth each area might have. For example, 
the growth in the RTP and Greensboro area were mostly in highly developed areas 

(c) ketabton.com: The Digital Library



93A Tale of Two Cities

for commercial/industrial buildings and apartment complexes; in the rest of the 
area, the growth was mainly sporadic single-family housing units. In the early 
years of the first study period, because of easy access, relatively cheap land, and 
convenience of doing business, the new development expanded around the previ-
ously established urban/business core. The urban growth patterns depended heav-
ily on the prior density: growth went where there was room for it, filling in the 
urban tracts and lower-density edge of the city tracts. However, as the open lands 
were filled up toward their practical maximum density, their growth slowed down 
(Hartgen 2003).

As the land parcels became harder to assemble, prices rose, and the remaining 
lots were too expensive. Many companies or real estate realtors started to build their 
new businesses or homes in the areas that were not too far away from the urban core, 
much cheaper with low density and still close enough for daily commuters. This 
urban development phenomenon has been called counter-urbanization, a process 
of population de-concentration characterized by urban areas or communities with 
smaller sizes, lower densities, and more local homogeneity (Brian 1977, 1980). Most 
of the growth has become housing and entertainment communities for the burgeon-
ing RTP and Greensboro areas. It is estimated that approximately half of the work-
ing population were living in places at least 15 min away from their workplaces. 
As more and more land went toward low-density housing subdivisions, streets, golf 
courses, strip malls, and other related developments, this came at the cost of mas-
sive tracts of forest land and farmland, sometimes wasted because of the low land 
use efficiency. The sprawling growth of suburban areas was largely responsible for 
the loss of almost half a million acres of farmland between 1997 and 2002 in North 
Carolina (Stuart 2010). During the time, land consumption was increasing four times 
faster than the rate of population growth. When government policies were issued to 
make it more difficult for new development to get approval, it pushed the additional 
growth to the region’s remote areas.

The urbanization process accelerated in the beginning of the second study period 
at around 2001 when more land was converted into residential houses to fulfill hous-
ing demand. The financial institutions artificially created an easier environment for 
people to access home mortgages, which boosted a housing bubble in this area. On 
top of a primary residence home, many households also purchased additional houses 
for investment/speculative purposes. This development pattern, however, took a 
sharp turn in the second study phase. Since approximately 2006, the area was hit 
hard by the economic meltdown and when the housing bubble burst. The decreased 
house values and the sluggish economy had caused a serious budget crisis for local 
governments in maintaining normal operations. In order to find ways to fill the bud-
get deficit, some cities in the study area had launched projects targeted at urban 
renewal or development, although much different from the earlier versions in the 
1950s to the 1960s. For example, the town of Burlington in Alamance County was 
once a hub for the textile industry. In recent years, because of the challenges from 
foreign countries, most of the factories were closed down. This had led to mass 
unemployment and residential houses foreclosed or abandoned. To deal with the 
budget crisis and find a new economic engine, the city initiated a massive project 
by relocating its downtown shopping center to a location right off the nearby major 
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highway, interstate highway I-85/40, aimed at drawing business from the travelers or 
nearby towns in order to revitalize its troubled economy. This new trend of renewal 
has resulted in urban sprawl into the less congested areas while creating easier access 
to the freeways and expressways.

5.6  COMPARISON OF THE URBANIZATION PROCESS

Although both of the two study areas experienced tremendous increases in urban 
area and shared many similarities in the urbanization process, the two study areas 
had profoundly different cultures and economic and political systems. Consequently, 
they followed differing ways of development.

5.6.1  VertiCal VersUs horizontal DeVeloPment

The urbanization in China can be characterized as vertically expanded, in con-
trast to horizontally expanded in the United States. Guiyang–Anshun had 269,530 
acres of urban land with a population of 8 million, while RTP–TRIAD only had 
a population of approximately 2 million but with 833,897 acres of urban area. In 
order to use the limited land efficiently and effectively, the Chinese cities gravi-
tated toward building concentrated housing in tall complexes. To maximize land 
use efficiency, city governments issued regulations ensuring that newly built com-
mercial and residential buildings reached a minimum number of floors. In 1991, the 
average number of floors for the residential buildings was approximately six, which 
increased to approximately 15 in 2008. The tallest building in Guiyang was 28 sto-
ries in 1990. In 2008, buildings of 30 to 40 stories became a norm in Guiyang and 
Anshun. As a result, the cities were congested with clusters of so-called building 
forests (Figure 5.5a) with not much open space between the buildings. On the other 
hand, the urban area in the United States was more spread out with low density 
(Figure 5.5b). Residential buildings in the United States were mostly one to two 
stories with front yards and backyards. Houses had ample space between with lawns 
and fences/shrubs separating them. This difference in the dimension of the urban 
development has resulted in the observed difference in transformations of the urban 
layout between the two study areas. The Chinese cities were much more congested, 
with more homogeneous construction materials and roof and surface types. The 
US cities, on the other hand, were diverse with large portions of land allocated to 
nonurban use.

The vertical development pattern faced a change over the past few years in 
Guiyang. As the Chinese economy continued to boom, the relatively affluent citi-
zens wanted to have a US standard of living. Consequently, many luxurious single-
house villas were built to meet this demand. The scale of horizontal development in 
Guiyang was small, but had a great impact on its environment. The majority of the 
development was at the expense of the limited arable land in this karst region. The 
US cities, in contrast, had changed to add more vertical development. As the land 
became scarcer and more expensive, large backyards and the unused lands between 
communities were consequently more expensive owing to opportunity cost. For 
example, in the city of Chapel Hill, the lot size of the houses built in the years of 
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the study period had been shrinking and there were more high-rise complexes being 
built than before. In addition, these new construction projects were inserted into the 
forest or open space between the established communities as in-fill developments 
instead of leap-frog clusters into new open areas.

5.6.2  Centralization VersUs DeCentralization

During the study periods, most urban growth in Guizhou Province had been cen-
tered on the old established cores, before gradually radiating to the surrounding 
areas. Cities expanded outward in the form of rings through different development 
stages. The first phase started in the early 1990s from the renewal or redevelop-
ment of the old city cores, where aging buildings were demolished and replaced 
by modern skyscrapers and residential high-rise complexes. After 1995, the city 
started its second phase of development by encroaching from different directions 
into the closest available lands. Once the new expansion could not keep up with 
the ever-increasing demand, it would then continue its new phase of expansion. 
In China, there was a big difference between the quality of life in the city and 
the surrounding rural area in terms of public facilities, services, job opportuni-
ties, and so on, and thus it had become a universal goal to own an apartment in 
the urban area for people both living inside the cities and in the rural villages. 
When possible, they would spend their life savings to purchase a house in the 
city. Because of the massive influx of the rural people into the cities, the city 
boundaries had been pushed further away into the neighboring agricultural or 
other nonurban lands.

(a) (b)

FIGURE 5.5 Vertical versus horizontal development in Guizhou and North Carolina. Both 
photos were captured from Google Earth. (a) A small part of Jingyang New Development 
Zone in Guiyang City. (b) A typical residential area in the RTP–Greensboro area.
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The urbanization process in North Carolina was more marked in contrast with 
that of Guiyang, especially during the first study period. Instead of agglomerat-
ing around the old city cores, urban sprawl was evident throughout the study area. 
Most urban areas experienced a population shift from the central city to suburban 
regions. Directly opposite to the situation in China, the quality of life in the suburban 
areas was much better than the condensed urban area. This decentralized urban-
ization phenomenon was commonly visible around the US cities, where the urban 
expansions were scattered and far away from the central urban cores (Schneider 
and Woodcock 2008). Many new shopping malls, public facilities, parking lots, and 
highway extended into those once rural areas to accompany the newly built residen-
tial communities. Furthermore, the materials used for urban construction were very 
different between the urban core and the local communities. In order to sustain the 
weight of the high-rises in the downtown area, brick, cement, and steel were the 
main materials for the construction. For the suburban cities, most buildings (espe-
cially residential ones) had wooden frames. This construction design in the suburbs 
had a more natural environment than the city core.

5.6.3  Centrally PlanneD VersUs market DriVen

The urbanization process in China was closely associated with the government’s 
policies and plans. In China, all the land belonged either to the state or collectives. 
Individuals by law are unable to own land, but could obtain land use rights for 
specific purposes. The rights could not be transferred or sold in the market. When 
necessary, the government could take away the land from individuals for use in 
other government planned purposes. As a result, the degree, extent, and pattern of 
urban development were largely controlled by the government. In the early 1990s, 
the urban development was limited within the established old urban cores because 
of the government’s policy to protect the farmland (Xiao and Weng 2007). In the 
1990s, because of worries about food shortages as a result of farmland loss and 
population increases, the central government issued a series of strict regulations 
preventing land conversion. Starting around 2001, the urbanization process accel-
erated because of the government’s policy shift to stimulate economy growth by 
promoting urbanization (Song and Ding 2007). For the first time, private real estate 
developers were allowed to share the market with the government, and the urbaniza-
tion process accelerated at an unprecedented speed as the result. During this period, 
most of the urban expansion was a result of the establishment of New Development 
Zones (NDZs) by the government. For example, the site of Jingyang New District in 
Guiyang was a prisoner training camp surrounded by farmland before 2000. After 
the government decided to turn this area into another new city center by providing 
low-priced land and free infrastructure to factories and real estate developers, this 
once remote area had grown into a metro area as large as the old urban area. New 
urban districts expanded from the existing cities into the adjacent rural areas by tak-
ing over large areas of rice paddies or other lands (Ding 2003).

The urbanization process in the United States was mainly driven by market 
forces, since it was the developers and individuals and not government policies that 
drove most of the urban development. The housing markets as a whole functioned 
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systematically and orderly from many seemingly random decisions between the con-
sumer preferences and the products and services from the entrepreneurs and pro-
ducers (Blair 1995). Decisions about what land to develop, and whether to build 
single houses or condominiums, were based on the developers’ judgments about the 
conditions of the market. The land developers would completely take on the risks 
and rewards associated with their own decisions. When developers saw opportuni-
ties to make profits from developing certain areas, they would first buy the lands 
from the owners, and then improve the properties by turning them into homes, office 
buildings, or shopping malls, and later sell or lease them to businesses and fami-
lies willing to pay their prices (McDonald 1997; Staley 1999). In the land market, 
the developers and consumers made decisions on the land and building prices from 
different sources including the home supply, office availability, and factory invento-
ries (Henderson 1988). In summation, the urban area expanded in accordance with 
the developers and the consumers’ interests. Over the past two decades, because 
there was a strong demand for homes and office buildings, large areas of farmland 
and forest land had been turned into urban and built-up areas in the RTP area. In 
Burlington, while one side of the city was being abandoned, the area closest to inter-
state I-40/85 boomed because of the new modern shopping malls and cheap but 
high-quality residential homes.

5.6.4  UrbanizeD VersUs Urbanizing

North Carolina was much more urbanized than Guizhou before the study period. It 
had undergone several decades of speedy urbanization after World War II. Its infra-
structure, transportation system, and public facilities were very well developed at 
the beginning of the study period. The creation of the RTP in the 1950s had helped 
greatly in elevating this area into one of the most urbanized areas in the United 
States. Guizhou Province, however, was at the early stage of its development with 
only 2.5% urban land use. Back then, China’s urbanization rate was generally among 
some of the lowest in the world, and Guizhou was one of the least developed areas 
in the nation. Because of the difference in development stages, the characteristics of 
urbanization were quite different between the two places. The type of development 
in North Carolina was much more patched, in-filling, and sporadic. Most of the con-
struction was to improve the already established ones and was fairly spread through-
out the study area. A large portion of the urban expansion was building golf courses, 
baseball fields, or parks to improve the quality of life. In Guizhou, on the other hand, 
the development was geared more toward fundamental infrastructure. Most of the 
urban increase was to build basic infrastructures such as airports, New Development 
Districts, new residential centers and neighborhoods, or modern highways to loop 
around the cities and connect them to other cities.

5.7  CONCLUSION

Our study result indicates that the United States and China share a lot of similari-
ties and differences in the processes of urbanization. In the past two decades, urban 
areas have grown significantly at an alarming speed of approximately 500% in the 
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two study sites. In Guiyang–Anshun, Guizhou Province, China, the urban area grew 
from 2.75% in 1991 to 16.78% in 2007, while in RTP–TRIAD, North Carolina, the 
increase was from 5.18% in 1989 to 31.37% in 2010. As a result of the urban growth, a 
great deal of nonurban land was lost. In Guizhou, the urban land was converted from 
vegetable land, shrub land, grass land, dry agriculture, and rice paddies. In North 
Carolina, the losses were mostly from areas of forest, grassland/shrub,  pasture/hay, 
and cultivated lands.

Because of the differences in political systems, economic development stages, 
cultures, and physical settings, the two study areas followed different paths of urban-
ization. In Guizhou, because of the shortage of land resources, the cities were more 
congested and built with skyscrapers. Cities in North Carolina, on the other hand, 
were developed with low density. Because of the common pursuit of better living 
environments and amenities, the urban areas were more spread out horizontally. 
In Guizhou, urban areas grew out from the old established cores and radiated into 
the surrounding areas. These areas were developed according to the central govern-
ment’s plans. In North Carolina, the developers and the landowners chose where and 
what type of growth urban expansion should be. In addition, because the two study 
sites were in different development stages, the nature of the urban expansion was 
quite different. Guizhou’s urban growth focused more on infrastructure and basic 
facilities, while the growth in North Carolina was to build parks, golf courses, and 
athletic fields and other amenities to improve the quality of life.
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6.1  INTRODUCTION

Grasslands are critically important ecosystems that serve as habitats for a variety of 
species of perennial grasses and other herbaceous vegetation, birds, animals, and 
insects. However, a majority of grassland biomes have been transformed, converted, 
or altered by human intervention on a global scale, with very few natural intact areas 
remaining. In North America, the grassland biome was once the most extensive, but 
has become one of the most threatened ecosystems (Samson and Knopf 1994). Since 
the remaining grassland ecosystems are inherently fragile, effective management strat-
egies are important to address impacts driven by anthropogenic activities such as over-
grazing, urban expansion, agricultural intensification, invasive species, and wildfire 
suppression under a changing climate. In fact, grassland management strategies have 
been moving toward integrated ecosystem and landscape-based approaches to address 
the impacts by focusing on areas such as biodiversity conservation, habitat restoration, 
and sustainable resource management (Bizikova 2009; Estrada-Carmona et al. 2014; 
Jun 2006). Such broad-scale plans bring partners and stakeholders together to realize 
common and shared objectives that consider both local and landscape-wide needs.

Monitoring grassland changes across space and time is the first step leading to 
effective management plans. Since grasslands are central to the livelihoods of more 
than a billion low-income people, managing grasslands has been a balance between 
competing demands, especially between economic returns and ecosystem services. 
Traditional ways of grassland monitoring that rely on field surveys are typically 
expensive and labor-intensive. In addition, field-based methods only provide localized 
information that presents a challenge when extrapolating it over large areas, and the 
information is thus often insufficient for land managers. Alternatively, remote sensing 
has become increasingly important for grassland ecosystem monitoring and guid-
ing sustainable management practices (Boval and Dixon 2012). Once remote sensing 
technologies and techniques are validated at a local level, they can be easily general-
ized and used for long-term monitoring at a range of spatial and temporal scales.

Remote sensing imagery with a variety of spatial and temporal resolutions can be 
utilized for different management purposes with modest budgets. For practical and eco-
nomic reasons, multispectral image data including Système Probatoire d’Observation 
de la Terre (SPOT), Landsat, Moderate Resolution Imaging Spectroradiometer 
(MODIS), and Advanced Very High Resolution Radiometer (AVHRR) images 
acquired from spaceborne sensors are commonly used for studying large geographi-
cal areas. Whereas SPOT and Landsat images offer high and medium spatial reso-
lution data, respectively, they also have correspondingly lower temporal resolutions 
in comparison to the coarse spatial, but high temporal resolutions of MODIS and 
AVHRR data. Still, the most extensively used satellite imagery for research and appli-
cation has been Landsat, as it offers a long historic archive that can be used to map 
long-term spatiotemporal vegetation changes. More capable sensors that could resolve 
ground features more accurately are spaceborne sensors offering very high spatial 
resolutions such as GeoEye-1, WorldView-2/3, or Pleiades-1A with spatial resolutions 
of 0.41, 0.46, and 0.5 m, respectively. Less commonly used for study because of the 
high cost of acquisition is airborne hyperspectral imagery such as AVIRIS or CASI, 
which provides very high spectral and spatial resolution data, but is consequently not 
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practical for long-term studies/monitoring application. Recently, lightweight digital 
cameras and hyperspectral sensors that can be mounted on unmanned aerial vehicles 
(UAVs) have been utilized for grassland surveys (Laliberte and Rango 2011; Laliberte 
et al. 2011; Rango et al. 2006; Von Bueren et al. 2015). UAVs as an emerging remote 
sensing platform can provide imagery with spatial resolution higher than 0.1 m, which 
is an unprecedented data source for species-level research. Such platforms are capable 
of providing very high spatial resolution images at required temporal resolutions that 
can be used for finer-scale grassland investigation. However, the current acquisition 
cost and processing time for such high spatial resolution imagery may be only appro-
priate for hot spot monitoring, but untenable for long-term large-area monitoring.

Over the past decade, studies using remote sensing for grassland management have 
been conducted all over the world, including North America (Listopad et al. 2015; 
Mirik and Ansley 2012), South America (Bradley and Millington 2006; Di Bella 
et al. 2011), Europe (Psomas et al. 2011; Redhead et al. 2012), Asia (Cui et al. 2012; 
Leisher et al. 2012; Zhang et al. 2008), Africa (Olsen et al. 2015), and Australia 
(Guerschman et al. 2009; Lawes and Wallace 2008). Remote sensing of spatiotem-
poral changes in vegetation attributes such as biochemical (e.g., chlorophyll pigment) 
and biophysical (e.g., leaf area index [LAI]) properties, plant biomass, canopy cover, 
and vegetation height can inform ecosystem status. Additionally, these attributes can 
be applied to monitor the effects of wildfire disturbances, habitat loss, or climate 
change on grasslands. In these studies, the most commonly used remote sensing 
technique for ecosystem monitoring applications has been the use of empirical– 
statistical models. These models involve establishing a relationship between in 
situ biochemical or biophysical measurements with spectral vegetation indices 
calculated using ground-level spectral reflectance measurements or optical remote 
sensing imagery.

Intensive research using remote sensing within the past decade has been con-
ducted in an endangered mixed-grass prairie ecosystem to evaluate vegetation con-
ditions across space and time in relation to local environmental factors, climate 
conditions, and disturbance events. The implications of the research for validating 
remote sensing technologies and techniques for the mixed-grass prairies are provid-
ing valuable information and insight to land managers for guiding future manage-
ment practices; several bodies of this research are presented in the following section.

6.2  CASE STUDIES

Of the three North American prairie types—tallgrass, mixed-grass, and shortgrass, 
the mixed-grass prairies have seen some of the worst decline, with remnants still 
found in parts of southern Alberta and Saskatchewan, Canada. The Government of 
Canada recognized the ecological importance of preserving an intact area of the 
endangered mixed-grass prairie ecosystem in 1981 and the Grasslands National Park 
(GNP, N 49°12′, W 107°24′) was soon established in 1988 (Figure 6.1). However, 
portions of the GNP are fragmented into small parcels as a consequence of land 
within and neighboring the park boundaries being privately held and used for agricul-
tural or grazing purposes. Nevertheless, Parks Canada, an agency of the Government of 
Canada, has been tasked with operating and protecting the GNP in efforts to conserve 
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and restore the rich diversity of species and highly specialized communities of plants 
and animals in their native state that have evolved in response to a variety of stresses, 
such as drought, grazing, and fire (Anderson 2006; Shorthouse and Larson 2010).

Here, we introduce a select number of studies demonstrating the application of 
remote sensing technologies and techniques for the management of the mixed-grass 
prairies at the GNP. From a remote sensing perspective, the GNP has offered a unique 
challenge of assessing heterogeneous canopies composed of several dominant spe-
cies, often with dead material or exposed soil. We focus on the role of remote sensing 
for addressing several key challenges currently affecting the ecological integrity of 
the GNP and indicate the utility of these studies for sustainable management needs. 
The importance of deriving vegetation attributes (e.g., LAI and chlorophyll content) 
for evaluating grassland health is first discussed, followed by the introduction of 
how remote sensing can be used for assessing the effect of wildfire disturbances and 
climate conditions, and finally we outline how remote sensing–derived information 
can aid in habitat mapping of an endangered grassland species.

6.2.1  Assessing grAsslAnd HeAltH Using remote 
sensing–derived BiopHysicAl properties

Biophysical properties derived from remote sensing are direct indicators of grass-
land ecological status and can help land managers to assess the health of the eco-
system across space and aid in sustainable management. Many studies for the GNP 
(e.g., Banerjee et al. 2011; He et al. 2006a,b, 2007a,b, 2009; Tong and He 2013) have 
focused on using remote sensing–derived LAI to study vegetation spatial patterns of 
the ecosystem. He et al. (2009) linked LAI to other vegetation biophysical properties 
such as dead biomass, which solved the difficulty of mapping biophysical information 
owing to insufficient sampling coverage for the GNP, and many of these biophysical 
measures have been further incorporated in aid of spatial fire fuel modeling, habitat 
modeling for species at risk, and biomass monitoring for a reintroduced herd of plains 
bison (Figure 6.2). Fire and habitat modeling and biomass monitoring are all impor-
tant remote sensing applications to address some of the current ecological challenges 
facing Parks Canada. For instance, fire modeling can assist in the implementation of 
appropriate areas for prescribed burning, habitat modeling can aid in species reintro-
duction and protection of critical habitats for species at risk, while biomass monitor-
ing is essential for determining the effects of grazing regimes in the GNP.

6.2.2  mApping cHloropHyll content 
As An indicAtor of grAsslAnd HeAltH

Leaf chlorophylls are inherently related to the photosynthetic capacity of plants and 
thus provide a measure of productivity to guide sustainable management practices. A 
study conducted by Tong (2014) used empirical–statistical models to estimate chlo-
rophylls at a range of spatial scales. In specific, the leaf-level relationships between 
chlorophylls and corresponding spectral reflectance were scaled up to generate can-
opy and landscape-level chlorophyll maps through a scaling-up procedure proposed 
by Wong and He (2013) using SPOT-5 and CASI-550 images (Figure 6.3). Such 
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FIGURE 6.3 Chlorophyll maps derived from (a) SPOT-5 image acquired June 8, 2012, with 
a map accuracy of 63.52%; (b) CASI-550 image acquired June 23, 2012, with a map accuracy 
of 72.88%. (Adapted from Tong, A. 2014. Estimating Grassland Chlorophyll Content for a 
Mixed Grassland: Exploring the Performance of the Empirical–Statistical and the Physical 
Modelling Approach. MSc dissertation, University of Toronto.)
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chlorophyll maps can provide land managers and owners the ability to accurately 
assess the vigor of vegetation in areas affected by agricultural or grazing practices 
and facilitate the implementation of strategies for sustainable resource management. 
These maps may also be useful to detect areas that are water stressed and help assess 
areas vulnerable to fire.

6.2.3  investigAting grAsslAnd distUrBAnce Using remote sensing

Disturbances on the grasslands (e.g., wildfire, grazing) are important factors driving 
the evolution of grasslands. Parks Canada (2010) understood this early on and, as part 
of the current GNP management framework, has reintroduced disturbance regimes 
(e.g., prescribed burning and light to moderate grazing by plains bison) that were 
considered natural processes before human interference and essential to ecological 
restoration efforts. Remote sensing can be applied to investigate the occurrence of 
these disturbances, evaluate their influence, and provide feedback and support for 
present and future sustainable grassland management practices. Given that the GNP 
is a protected area, the potential for uncontrolled disturbances is still a possibility as 
demonstrated by an unexpected wildfire that occurred in April 2013. Lu et al. (2015) 
investigated this wildfire disturbance by identifying different levels of burn severity 
(Figure 6.4) and investigated the postfire grassland recovery process (Figure 6.5) 
using Landsat images. The degree of burn severity was determined to be a function 
of the amount of prefire dead biomass and the elevation of the landscape. The grass-
lands showed a high resilience and recovered quickly after the fire disturbance. This 
study highlighted the importance of dead biomass estimation for fire risk manage-
ment and invasive species control for local ecosystem balance.

High severity

Low severity

Very low severity

Moderate severity

0 1 2 4 6
km

N

FIGURE 6.4 Burned area in GNP and burn severity estimated using Landsat imagery. 
(Adapted from Lu, B., Y. He, and A. Tong. 2015. Evaluation of spectral indices for estimat-
ing burn severity in semi-arid grasslands. International Journal of Wildland Fire 25 (2): 
147–157.)
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6.2.4  determining tHe effects of climAtic fActors 
on grAsslAnd HeAltH Using remote sensing

Environmental changes driven by climatic factors, primarily temperature and pre-
cipitation regimes, are important for determining ecosystem health. At the same 
time, understanding the spatial and temporal variability of evapotranspiration (ET) 
is also important for identifying soil and plant water stress that affects the health 
of vegetation (Girolimetto and Venturini 2013; Ritchie 1998; Yang et al. 2012). 
Remote sensing can provide important information on water availability and guide 
human activities such as irrigation or other management practices to help alleviate 
plant drought stress. For semiarid grasslands such as the GNP, vegetation greenness 
varies dramatically across space over years, as indicated by AVHRR Normalized 
Difference Vegetation Index (NDVI) values shown in Figure 6.6. For example, in 
a typical dry year, 2001, AVHRR NDVI values were generally low with an NDVI 
value less than 0.2 across the GNP, while in a wet year, 2002, AVHRR NDVI values 
are higher than 0.35. He (2014) thus investigated the effect of precipitation on veg-
etation cover for the GNP using climate data and SPOT-4 and AVHRR images. The 
amount and timing of precipitation were found to effectively control the ecosystem 
dynamics (Figure 6.7). Years with decreased vegetation coverage were associated 
with increased ET as a result of higher temperature, which stressed vegetation and 
was exacerbated by water deficiency in the soil. Although He (2014) did not directly 
estimate ET using remote sensing, studies have established its utility for a grass-
lands environment (e.g., Nosetto et al. 2005; Yang et al. 2012). Precipitation affected 
upland grass communities the highest, followed by valley grass communities, while 
the effect on riverside shrubs was not significant. The highest relationships occurred 
between percent vegetation cover and precipitation from the previous 80-day period, 

(a) (b)

(c)
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FIGURE 6.5 Normalized Difference Vegetation Index (NDVI) map derived from Landsat 
images showing the postfire vegetation recovery. (a) Six weeks after fire; (b) 10 weeks after 
fire; (c) 3 months after fire. (Adapted from Lu, B., Y. He, and A. Tong. 2015. Evaluation of 
spectral indices for estimating burn severity in semi-arid grasslands. International Journal 
of Wildland Fire 25 (2): 147–157.)
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suggesting that the lag effect of precipitation and the precipitation accumulated from 
the previous 80 days contributed the most to vegetation growth. This result could be 
used to aid land managers in predicting plant stress and implement water manage-
ment strategies.

6.2.5  mApping HABitAt for endAngered species Using remote sensing

In recent decades, wildlife populations have been on a drastic decline owing to 
human activities involving land conversion, pesticide use, or overhunting. In order 
to effectively guide land management practices to conserve, protect, and prevent 
further declines in wildlife populations, it has been necessary to investigate met-
rics that can quantify the biological activity of threatened and endangered species 
(e.g., foraging or reproduction behaviour), the biophysical and biochemical fea-
tures of habitats, and the spatiotemporal changes of habitats as a result of human 
intervention. Such data need to be acquired at a broad spatial scale, which cannot 
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FIGURE 6.6 Vegetation greenness (i.e., NDVI derived from July AVHRR imagery) varies 
from 1988 to 2007. (Adapted from He, Y. 2014. The effect of precipitation on vegetation cover 
over three landscape units in a protected semi-arid grassland: Temporal dynamics and suitable 
climatic index. Journal of Arid Environments 109: 74–82. doi:10.1016/j .jaridenv.2014.05.022.)
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be easily achieved using traditional field survey methods. Remote sensing provides 
the capability to investigate the aforementioned metrics by quantifying the spa-
tiotemporal changes in land use, vegetation type and cover, ecological processes 
and conditions, and wildlife corridors (Flaherty et al. 2014; Neumann et al. 2015; 
Olsen et al. 2007).

The habitats for various species in the North American prairie have experienced 
some of the worst decline in the past few decades (Klimek et al. 2007), and protected 
areas such as the GNP have established themselves as a haven for endemic species 
that have seen their habitats destroyed elsewhere, including the loggerhead shrike, 
an open country bird that was once widely distributed throughout North America. 
Remote sensing has also been applied in this area to support endangered species 
protection. Using remote sensing imagery, Shen et al. (2013) applied SPOT-4 imag-
ery to map loggerhead shrike nesting sites in the GNP, which offers the opportunity 
to monitor the spatial distribution of the species for future conservation strategies 
(Figure 6.8). Findings indicated that nests in highly elevated open areas away from 
roads with scattered shrubs, particularly thorny species, were important for active 
shrike nesting sites. The study indicated that future park management goals should 
focus on preserving native grass and thorny shrub species within the shrike’s breed-
ing range.
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FIGURE 6.7 The correlation coefficients calculated between NDVI during the peak grow-
ing season (July 10) and accumulated precipitation from previous 10–100 days with a 10-day 
interval over three vegetation communities—upland/sloped grass, valley grass, and riparian 
shrub from 1988 to 2007. The dashed line is the significant value at the 0.05 level. (Adapted 
from He, Y. 2014. The effect of precipitation on vegetation cover over three landscape units 
in a protected semi-arid grassland: Temporal dynamics and suitable climatic index. Journal 
of Arid Environments 109: 74–82. doi:10.1016/j.jaridenv.2014.05.022.)

(c) ketabton.com: The Digital Library



114 Remote Sensing for Sustainability

6.3  CONCLUSIONS, CHALLENGES, AND OPPORTUNITIES

6.3.1  conclUsion

In the research capacity, remote sensing techniques supporting grassland manage-
ment have been validated for many grassland biomes, such as the mixed-grass prai-
ries at the GNP. By quantifying vegetation biophysical and biochemical properties 
and establishing empirical relationships at the local scale, upscaling procedures can 
extrapolate these relationships to produce vegetation maps for the entire study area. 
Traditional field-based methods have only been able to measure conditions at the 
local scale, whereas remote sensing has provided the ability to generate cost-effective 
vegetation maps that are a time-saving solution to accurately assess the entire extent 
of an area; subsequently, the application of remote sensing has not only provided 
vegetation health information but also detected and assessed grassland disturbances 
such as impacts of grazing or wildfires, grassland response to climatic changes, and 
mapped endangered animal habitats, to name a few. Results and information from 
the presented case studies have helped understand the impacts of current manage-
ment decisions and can further facilitate future sustainable management policies and 
plans.
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FIGURE 6.8 The suitable shrike habitat mapping based on a logistic model for loggerhead 
shrike in the West Block of GNP in 2006. (Adapted from Shen, L., Y. He, and X. Guo. 2013. 
Exploration of loggerhead shrike habitats in Grassland National Park of Canada based on 
in situ measurements and satellite-derived Adjusted Transformed Soil-Adjusted Vegetation 
Index (ATSAVI). Remote Sensing 5 (1): 432–453. doi:10.3390/rs5010432.)
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6.3.2  cHAllenges And opportUnities

6.3.2.1  Image Acquisition and Processing
Remote sensing provides an economical and capable means for detecting, moni-
toring, and assessing ground features, but challenges still remain. For spaceborne 
sensors that operate on a predefined orbit and trajectory, the revisit time is fixed. If 
inclement weather (e.g., heavy cloud cover) is present over the area when the satel-
lite sensor acquires an image, the image data may be unusable. Additionally, it is 
challenging to obtain spaceborne imagery with both high spatial and temporal reso-
lution. For airborne mounted sensors, the time of image acquisition has to be con-
sidered, as well as the high costs of long-term data acquisition. UAV systems have 
increasingly become an alternative platform for image acquisition owing to their 
low cost of operation, high flexibility, ability to be deployed quickly and repeatedly, 
and capability to acquire imagery at very high spatial resolutions (sub-decimeter) 
(Laliberte and Rango 2011). Since UAV systems are normally operated at a range of 
low altitudes (50–300 m), it is possible to acquire images of different spatial resolu-
tions, and weather conditions have minimal interference on image acquisition. With 
the quick response time of grasslands, particularly the mixed-grass prairie ecosys-
tems at the GNP, UAVs offer a high temporal capacity to monitor and quantify the 
change in ecosystem response to disturbances that otherwise could not be detected 
with traditional spaceborne and airborne platforms.

Techniques used to analyze image data require specialized training and human 
error may be introduced. Imagery requires calibration and validated by field data, 
which are often limited to a few sites around accessible areas, and is time-consuming 
and therefore expensive to collect. This is not a weakness per se, as local level mea-
surements can be extrapolated and scaled across the image. We point this out here to 
emphasize the need for collaboration and sharing of resources between agencies, land 
managers, and other stakeholders to reduce costs (Marsett et al. 2006). In all, careful 
planning and training in applying remote sensing can help alleviate these limitations.

6.3.2.2  Species-Level Monitoring
Understanding changes in species composition is crucial for conserving biodiversity, 
managing invasive species, and conducting sustainable grazing practices. For most 
applications, at least for homogeneous canopies, medium spatial resolution Landsat 
imagery has the capability to map vegetation at a range of scales (Xie et al. 2008). 
Conversely, heterogeneous grassland canopies, such as those in the GNP, feature sev-
eral dominant species in addition to fractional dead material or soil components that 
compound the ability to accurately map and assess vegetation from the species level. 
Yet, even with the advent of very high spatial resolution imagery, the mixed pixel 
problem (i.e., a pixel that contains more than one spectral signature belonging to 
several ground features) remains a challenge for retrieving ground information from 
heterogeneous canopies. Radiative transfer modeling may be an avenue to accurately 
estimate vegetation parameters, but its inherent complexity makes them impractical 
for land managers.
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6.3.2.3  Vegetation Structure Mapping
Optical remote sensing has been applied extensively for investigating grassland bio-
physical and biochemical properties. However, extracting canopy structure infor-
mation (vegetation density profiles) from optical remote sensing images remains a 
challenge since incoming radiation is primarily intercepted and reflected at the top 
of the canopy surface. On the other hand, airborne Light Detection and Ranging 
(LiDAR) systems are active sensors that emit and receive light pulses that can pen-
etrate and reach beneath a canopy and therefore estimate canopy height, LAI, or 
aboveground biomass effectively. LiDAR systems provide an all-day capability 
and may be operated in slightly inclement weather conditions for vegetation stud-
ies. LiDAR has been widely applied for investigating vegetation structure in forest 
and agricultural areas (Drake et al. 2002; Hawbaker et al. 2009; Houldcroft et al. 
2005) yet has rarely been deployed to study grasslands, especially for investigating 
vegetation structure. Given the relatively low to sparse vegetation density and can-
opy heights in grassland environments, the challenge of capturing the subtle struc-
ture of grassland canopies remains to be addressed (Bork and Su 2007; Hellesen 
and Matikainen 2013; Su 2004). To this end, with decreasing acquisition costs, the 
opportunity to explore the potential of LiDAR for grassland management is fast 
becoming an attractive option to researchers and land managers. Nevertheless, UAV 
multispectral images of the same area but from different directions may also be 
used to produce vegetation structure information in grasslands, using Structure from 
Motion techniques (Smith and Vericat 2015). Specifically, the optical point clouds 
of vegetation can be produced from multiple fly-overs of the same sites from many 
different directions.

6.3.2.4  Snow, Topography, and Soil Moisture Mapping
Spaceborne Interferometric Synthetic Aperture Radar (InSAR) sensors are increas-
ingly being explored to resolve ground features. They are active sensors that emit 
and receive long wavelengths in the microwave portion of the spectrum that are not 
susceptible to atmospheric scattering, thereby allowing an all-day and all-weather 
imaging capability. Canada has been a pioneer in the field of InSAR, with the deploy-
ment of RADARSAT-1 and RADARSAT-2. For grassland research, RADARSAT-2 
shows potential for snow mapping, ground surface topography mapping, and soil 
moisture detection. To date, RADARSAT-2 has been validated in grassland studies 
for soil moisture retrieval (e.g., Bertoldi et al. 2014; Xing et al. 2014) and image clas-
sification (e.g., Buckley and Smith 2011) with success. However, its application and 
implementation at an operational level for land managers have yet to be explored.

6.3.2.5  Logistics
Remote sensing may not be well understood by stakeholders involved with manage-
ment policies and plans, and is thus imperative that researchers are able to engage 
and demonstrate the utility and application of remote sensing. The extent and focus 
of research for grassland management using remote sensing has been meager rela-
tive to studies that have been conducted for areas with greater perceived economic 
value (e.g., precision agriculture and forests). To fully appreciate the current trend 
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of remote sensing research, we used Scopus, a comprehensive bibliographic data-
base, and our survey revealed only 488 results inclusive from 1979 to 2015 that 
were relevant to grassland remote sensing and management. In comparison, forest 
remote sensing and management returned 3399 results and, similarly, agriculture 
remote sensing and management returned 3126 results inclusive from 1976 to 2015. 
Only by actively promoting awareness of the importance of grasslands for research 
can we better understand the ecological status of the grassland environment. Given 
the lesser focus of grasslands research within the remote sensing community, it is 
likely that less emphasis has been placed on educational initiatives and opportuni-
ties for stakeholders involved with grassland management policies and plans and 
is thus imperative that researchers are able to actively engage and demonstrate the 
utility and application of remote sensing. Through collaborative efforts between both 
parties, sharing of knowledge, needs, and resources along the way of the research 
process should be able to lead to the production of spatial products for use at an 
operational level. Future work may consider integrating remote sensing data with 
information from other disciplines such as ecology, geography, sociology, or eco-
nomics to better understand the complexities of human–environmental interactions.
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7.1  INTRODUCTION

Habitat loss and species extinction are two main challenges of conserving biodiver-
sity in the 21st century (Gottschalk et al. 2005) and serious threats to sustainabil-
ity (Vucetich et al. 2015). Hawaii is the “Endangered Species Capital of the United 
States,” with just 0.2% of the US land area but approximately 25% of the US endan-
gered species (Eldredge and Evenhuis 2003). Because of the introduction of thousands 
of new species and increased human activities, approximately 90% of the dry land 
ecosystem in the state is now completely gone and at least 120 Hawaiian plant species 
under conservation have less than 50 individual plants left. As a result, the avifauna has 
been decimated and approximately 100 bird species has become extinct (USGS 2006).

Palila (Loxioides bailleui) is probably the most-known endangered bird species in 
Hawaii—a status derived primarily from its ties to a 1979 landmark case redefining the 
scope and intent of the federal Endangered Species Act (Riddle 2010). Palila feeds on 
immature seeds of mamane trees (Sophora chrysophylla), an endemic dry-forest tree 
species that occurs widely throughout the main Hawaiian Islands and ranges from near 
shoreline to tree line (>3000 m elevation) (Banko 2002). Nevertheless, palila and its hab-
itat have experienced a multitude of threats including feral sheep and goats that browse 
mamane trees (Scowcroft and Giffin 1983), feral cats that depredate nests and adult 
birds (Hess et al. 2004), fungus such as Armillaria that kills mamane trees (Gardner and 
Trujillo 2001), and alien parasitoid wasps competing with palila for caterpillars that are 
fed to nestlings (Leonard et al. 2008; Oboyski et al. 2004). Although palila used to be 
widely distributed in lowlands of the island of Hawaii, these threats reduce its current 
habitat to an extent that is less than 5% of its historical range. Currently, palila’s habitat 
is limited to a relatively small area (less than 30 km2) on the western slope of Mauna 
Kea, a high and dormant volcano (Hess et al. 1999; Johnson et al. 2006) (see Figure 7.1).

In recent years, significant efforts have been made to restore palila’s habitat and 
population, for example, by reducing the number of ungulates and trapping rats 
(Banko 2002; Banko and Farmer 2006). Despite these efforts, a steady decline in 
palila population has happened, especially during the last 5 years (Leonard et al. 
2008). The latest survey showed that there are only approximately 1200 birds left, 
down from approximately 4400 in 2003 (DLNR 2010). What is particularly perplex-
ing is that no clear causes can be identified for the population decline, making it diffi-
cult to take effective measures for palila conservation. Mamane and naio (Myoporum 
sandwicense) are the two tree species in this habitat. However, mamane is more criti-
cal for palila’s survival since palila almost exclusively eats immature mamane seeds. 
Therefore, it is important to separate mamane and naio trees so that the abundance 
of mamane trees and their spatial distribution can be derived to understand the palila 
population dynamics. Since the crowns of mamane and naio are relatively small 
(with an average crown diameter of 4–5 m) and they can grow next to each other in 
the habitat, it is very difficult, if not impossible, to classify these two species using 
conventional medium spatial resolution satellite imagery such as Landsat.

During the last decade, commercial fine spatial resolution satellite imagery has 
emerged as a powerful and cost-effective tool for detailed vegetation mapping (e.g., 
Adelabu and Dube 2015; Boggs 2010; Ji and Wang 2015; Lin et al. 2015; Morales 
et al. 2012; Murray et al. 2010; Pouteau et al. 2011; Puissant et al. 2014; van Lier et 
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al. 2009). In October 2009, a new satellite called Worldview-2 from DigitalGlobe 
Inc. was launched, which has up to 1.84 m spatial resolution in multispectral (MS) 
bands and 0.46 m for the panchromatic band. One of the main differences between 
Worldview-2 and other fine spatial resolution satellites such as IKONOS, QuickBird, 
and Geoeye-1 is that it carries four new MS bands (called coastal, yellow, red-edge, and 
near-infrared [NIR]2) in addition to the conventional four bands (blue, green, red, 
and NIR) (Table 7.1). Worldview imagery has recently been used for mapping 

Focal study area boundary
Naio trees
Mamane trees

N
0 0.5 1 2

km

(a) (c)

(b)

Kauai

Oahu
Maui

Hawaii

Study area

FIGURE 7.1 The study site and sampled trees. (a and b) From Worldview-2 and (c) from 
IKONOS. (b and c) Correspond to an area outlined by the yellow box in (a).
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detailed vegetation information such as species (e.g., Cho et al. 2015; Heumann 2011; 
Li et al. 2015; Robinson et al. 2016). However, relatively few studies have compared 
it with the first-generation commercial satellites such as IKONOS and investigate 
the potential of its fine spatial resolution and additional spectral bands for mapping 
vegetation at the species level (Pu and Landry 2012).

The main objective of this study is to compare the capability of Worldview-2 
and IKONOS for classifying mamane and naio tree species in the palila habitat 
of Hawaii. To make the comparison less limited to a particular algorithm, three 
types of representative classification algorithms are tested: discriminant analysis 
(DA), support vector machine (SVM), and random forest (RF). The article is 
organized as follows: the study area and data will be introduced first, followed 
by an explanation of the classification algorithms and analytical strategy, and 
then results will be reported and discussed. The major research findings will be 
summarized in the end.

7.2  STUDY AREA AND DATA

7.2.1  Study AreA

The study site is on the western slope of Mauna Kea (elevation, approximately 1900 
to 2700 m), which lies above the trade-wind inversion with relatively light cloud cover 
and rainfall (Juvik and Juvik 1998) (Figure 7.1). Rainfall averaged 35–75 cm and 
temperature averaged 11.1°C ± 1.5°C annually (Giambelluca et al. 1986). Mamane 
and naio are the two dominant tree species in the habitat. The majority of mamane 
occurs at the upper elevation (above 2300 m). At lower elevations, mixed stands of 
mamane and naio can be found, dominated by the latter (Hess et al. 1999; Scott et al. 
1986). The trees are relatively short with a mean height of 4.7 ± 2.0 m. The average 

TABLE 7.1
Characteristics of Worldview-2 and IKONOS MS Bands

IKONOS Worldview-2

Spectral ranges at half-maximum

Blue 445–516 nm 450–510 nm

Green 506–595 nm 510–580 nm

Red 632–698 nm 630–690 nm

NIR 757–853 nm 770–895 nm

Coastal N/A 400–450 nm

Yellow N/A 585–625 nm

Red-edge N/A 705–745 nm

NIR-2 N/A 860–1040 nm

Spatial resolutiona

At-nadir 3.2 m 1.8 m

Note: N/A, not available.
a Images were provided with a spatial resolution of 4 m for IKONOS and 2 m for Worldview-2.
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canopy cover is around 30%, resembling open-canopy woodland with an understory 
grass layer. The focal study area is a strip of 2-km swath where airborne lidar data 
were also acquired to characterize vegetation structure (Figure 7.1).

7.2.2  remotely SenSed ImAgeS And FIeld dAtA

Worldview-2 and IKONOS images were acquired at a local time of 10:54 a.m. on 
December 26, 2009, and 11:03 a.m. on January 8, 2008, respectively. The MS images 
of Worldview-2 and IKONOS were resampled to 2 and 4 m, respectively, and both 
types of images were orthorectified and georeferenced with the UTM Zone 5N 
(WGS84) coordinate system by the data providers.

To collect ground truth for classification, individual mamane and naio trees 
were located in the field between March 14 and March 21, 2010. A Garmin 
Venture HC GPS and a 4 ft–by–3 ft hard copy IKONOS false-color map over-
lain with grid lines of 500-m intervals were used to locate trees (Figure 7.2). A 
Trimble GeoXT GPS with higher positioning accuracy was carried in the field 
as well, but it was found that using the Garmin Venture HC GPS gave sufficient 
information to accurately locate trees in the map owing to the open canopy of the 
landscape (Riddle 2010). GIS polygon files of individual tree crowns were manu-
ally created later in the computer laboratory with the Worldview-2 image as the 
base layer. As a result, a total of 44 mamane polygons and 40 naio polygons were 
created within the focal study area, which correspond to 438 mamane pixels and 
743 naio pixels in the Worldview-2 image and 112 mamane pixels and 183 naio 
pixels in the IKONOS image.

7.3  METHODS

A wide range of classification algorithms exist in the literature, which are either 
parametric or nonparametric. The parametric algorithms typically assume that each 
class follows a Gaussian distribution while the nonparametric algorithms do not 
necessarily make such assumption and thus are more flexible to handle classes of 
different distributions. Among the algorithms tested in this study, DA is parametric 
and SVM and RF are nonparametric. For completeness, the main ideas of these algo-
rithms are briefly summarized next while RF is introduced in slightly more details 
since it is relatively new.

7.3.1  dIScrImInAnt AnAlySIS

DA is a classical classification algorithm that derives its discriminant function from 
Bayes’ theorem and assumes that each class’s conditional probability is Gaussian 
and their prior probabilities are equal. The discriminant function has many different 
variations depending on how to estimate the variance–covariance matrix ∑ of each 
class. The most generic discriminant function is to estimate ∑ for individual classes, 
which is called quadratic discriminant analysis (QDA). When the number of features 
is large and the sample size is small, estimating ∑ could be unstable. One way to 
handle this problem is to assume that all classes have the same Gaussian distribution 
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so that sample data can be pooled to estimate just one Gaussian distribution, which 
is linear discriminant analysis (LDA). For DA, the decision boundary of classifica-
tion is constructed implicitly by comparing the discriminant functions of different 
classes. For QDA, the decision boundary is usually curvilinear, while for LDA, the 
decision boundary is linear.

(c)

(b)

(a)

FIGURE 7.2 Examples of mamane and naio trees in the field. (a) An isolated mamane tree, 
(b) an isolated naio tree, and (c) naio (left) and mamane (right) trees are growing next to each 
other. (Courtesy of Ryan Riddle.)
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7.3.2  SVm

Different from DA, SVM explicitly constructs a linear decision boundary (called 
hyperplane when the number of features is greater than three) to separate two classes 
(Cortes and Vapnik 1995). It is possible that there exist multiple hyperplanes to sepa-
rate two classes for the training sample (Duda et al. 2000). SVM finds one unique 
optimal hyperplane by maximizing the distance from a hyperplane to the nearest 
point of either class (Hastie et al. 2009). Although SVM is a linear classifier, features 
can be expanded to a higher feature space to fit a hyperplane, which could corre-
spond to a nonlinear decision boundary in the original lower feature space through 
a technique called kernel trick (Abe 2005). The kernels tested in this study are qua-
dratic (or second-order polynomial) and Gaussian radial basis function.

7.3.3  rAndom ForeSt

RF is a recent addition to the nonparametric classifiers (Breiman 2001). It was devel-
oped from several techniques including classification and regression tree (CART) 
and bootstrap aggregation (or bagging). The main idea of RF is to build a large 
number of de-correlated trees and let them vote for the most popular class (Hastie et 
al. 2009). When an individual tree is built, RF differs from regular CART in that 
(1) the tree is based on the bootstrap (random sampling with replacement) instead of the 
original sample (Breiman 1996) and (2) the splitting of a node is based on a random 
subset instead of all features (Ho 1998). Such randomization leads to de-correlated 
trees, which are particularly useful for reducing the variance of prediction. If large 
individual trees are grown, they can also have low bias. The low bias and variance of 
estimates make RF popular in many fields (Hastie et al. 2009).

Many benefits are associated with the bootstrapping used in RF. A bootstrap sample 
usually has repetitive values for some observations and leaves approximately one-third 
of the observations not included. These observations, called out-of-bag, are thus not used 
for building the tree from the bootstrap sample. Approximately, an observation is out-
of-bag for one-third of the trees. By comparing each observation’s true class label with 
the majority vote of class predictions from these out-of-bag trees, an overall out-of-bag 
prediction error can be calculated, without further using skills such as cross-validation. 
The out-of-bag prediction error is useful for tuning parameters such as the number of 
trees, the number of features randomly selected for node splitting, and the leaf node size.

Out-of-bag observations can also be used to rank the importance of individual 
features. After an individual tree is grown, it can be used to predict the classes of 
out-of-bag observations and calculate the prediction accuracy. If the values for a 
particular feature are randomly permuted among the out-of-bag observations, the 
prediction accuracy will decrease. The amount of accuracy decrease averaged over 
all trees can be used as a measure of the importance of that feature.

7.3.4  clASSIFIcAtIon And AccurAcy ASSeSSment StrAtegy

A total of five specific algorithms, including two DA algorithms (QDA and LDA), 
SVMs with two different kernels (quadratic and Gaussian radial basis function), 
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and RF, were tested. It is hypothesized that compared to IKONOS, Worldview-2 
will produce higher classification accuracy with its (1) finer spatial solution and 
(2)  more spectral bands. To test this hypothesis, three types of classification 
were conducted: the first was to use all four IKONOS bands (blue, green, red, and 
NIR), the second was to use the four Worldview-2 conventional bands (blue, green, 
red, and NIR), and the third was to use all eight Worldview-2 bands including the 
four new bands (coastal, yellow, red-edge, and NIR2). The comparison between 
IKONOS and Worldview-2 using the same four conventional MS bands focuses 
the evaluation on the benefits of Wordlview-2’s finer spatial resolution. The com-
parison of using Worldview-2 four versus eight bands evaluates the usefulness of 
the new MS bands.

Although both images were orthorectified by the data providers, their geoloca-
tion accuracies were further verified by overlaying the images with a digital sur-
face model derived from airborne lidar data and visually checking distinct features 
such as roads and isolated trees. It was found that the Worldview-2 image matches 
well with airborne lidar data while IKONOS has some shifts (up to ~5 m in some 
places). To handle this issue, image-to-image registration was conducted by col-
lecting a total of 158 ground control points well distributed over the study area 
and warping the IKONOS image to match Worldview-2 using a second-order poly-
nomial transformation in ENVI 4.7 (ITT VIS Corp.). The root mean square error 
of image registration is 0.4 m. The classification was conducted using the digital 
numbers without being further calibrated to reflectance because each image was 
classified separately and radiometric correction usually has minimal effects on 
classification of a single-date image (Song et al. 2001). Mamane and naio trees are 
the only two tree species in the study area, with other vegetation types being short 
scrubs and grass. A canopy height model derived from lidar was used to mask out 
all pixels that are less than 1 m so that the classification was focused on mamane 
and naio trees only.

Tenfold cross-validation was used to evaluate the overall classification accuracy. 
This means that the field data were broken into 10 folds, based on which model devel-
opment and test were performed for 10 iterations. Each time, one fold was used for 
testing and the rest were used for model development. For RF, a stepwise approach 
instead of an exhaustive search of all possible combinations of parameters was used 
to determine the model parameters based on the out-of-bag prediction errors. The 
stepwise approach was to calibrate one parameter each time while keeping others 
fixed. To reduce the computation demand, the minimal leaf node was first deter-
mined, followed by the number of subset features for node splitting, and finally the 
number of trees.

The focus of this study is to perform classification at the pixel level. Nevertheless, 
the airborne discrete-return lidar data acquired in this site provide the possibility 
of mapping individual tree crown objects (Chen et al. 2006). To evaluate such 
potential, I first considered individual pixels within each manually delineated ref-
erence tree crown polygon as individual groups (i.e., objects) and then produced 
the average spectral values of each tree pixel group, which was further used for 
classification. After the object-level classification was done, all pixels within each 
reference polygon were labeled as the same tree species and the classification 
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accuracy was summarized at the pixel level to compare with results from the pixel-
level classification.

7.4  RESULTS AND DISCUSSION

7.4.1  clASSIFIcAtIon wIth the Four conVentIonAl worldVIew-2 BAndS

Table 7.2 lists the accuracy of individual classifiers and their means when the 
four conventional MS bands (blue, green, red, and NIR) of either IKONOS or 
Worldivew-2 are used. It was found that Worldview-2 has consistently higher accu-
racy than IKONOS. For example, at the pixel level, when the IKONOS image was 
classified, the mean classification accuracy of different classifiers was 68.6%; when 
the Worldview-2 image was classified, the mean accuracy increased up to 71.9% 
(Figure 7.3). For individual classifiers, the accuracy increase varied from 1.3% for 
QDA to 6.1% for RF.

At the object level, the accuracy increase using Worldview-2 over IKONOS was 
even larger. When the IKONOS image was classified, the average classification 
accuracy of different classifiers was 77.1%; however, when the Worldview-2 image 
was classified, the average accuracy increased by 7.9% (reaching 85.0%) (Figure 
7.3). For individual classifiers, the accuracy increase varied from 5.2% for LDA to 
12.8% for SVM-GRB. The higher overall classification accuracy of Wordview-2 
compared to IKONOS is supported by the spectral scatterplots shown in Figure 7.4b 
and c: it is evident that the two tree species are more separable in the scatterplots of 
Worldview-2 than IKONOS.

There are a couple of factors that might contribute to the accuracy difference 
between Worldview-2 and IKONOS images. For example, there are slight differ-
ences between the spectral sensitivity curves of corresponding individual bands 
of the two sensors. The sun–target–sensor geometry is a little different because 
these two images were taken from two different dates. The atmospheric conditions 
could have negligible effects since both images were taken in clear days. Fire is the 
major natural hazard risk at this study site, but no fires have occurred over this area 
for years. Therefore, little changes of vegetation are expected between the differ-
ent image acquisition dates to make a significant contribution to the difference in 
the classification accuracy. Although it is difficult to quantify the contribution of 
each factor to the accuracy difference, it is expected that the higher classification 
accuracy of Worldview-2 is mainly attributed to its finer spatial resolution, which 
can capture more details of vegetation especially along the edges of the individual 
tree crowns.

7.4.2  clASSIFIcAtIon wIth the IncluSIon oF Four new worldVIew-2 BAndS

Table 7.2 also summarizes the classification accuracy when all eight bands of 
Worldview-2 were used. It was found that the inclusion of the four new bands 
increased the classification accuracy for most classifiers. At the pixel level, the 
additional four new bands increased the mean classification accuracy from 71.9% 
to 75.0%. For individual classifiers, the accuracy increase varied from 1.3% of 
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SVM-GRB to 5.1% of LDA. At the object level, the mean classification accuracy 
increases by a small margin from 85.0% to 85.3%. However, when the individual 
classifiers were examined, only three of them (QDA, LDA, and SVM-Quad) had 
an increase in classification accuracy, and the other two (SVM-GRB and RF) had a 
minor decrease in classification accuracy. It is not exactly clear why SVM-GRB and 
RF had slightly worse accuracy. However, these two methods are more complex than 
the others and thus they may run into the problem of overfitting.

Usually, a classifier with more parameters can model more flexible decision 
boundaries, but they also need more training data to constrain the classifier. The 
needed training data also increase with the number of input features (Richard and 
Jia 2006). SVM-GRB and RF can model more flexible decision boundaries than 
the other three classifiers (see Figure 7.5c and d), which implies that they essen-
tially need more training data to constrain the construction of decision boundary. 
However, when the classification is conducted at the object level, the sample size is 
relatively small and the inclusion of the four additional bands makes the situation 
even worse, which can explain, to some extent, why SVM-GRB and RF had slightly 
lower accuracy when the four new bands were added. In other words, the lower 

IKONOS-2 (4 bands)
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FIGURE 7.3 Comparison of mean classification accuracy (averaged over classifiers) when 
(1) different sensors and bands are used (four IKONOS bands, four Worldview-2 conventional 
MS bands, or all eight Worldview-2 bands) and (2) the classification is performed at the pixel 
level or at the object level.
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accuracy of these two classifiers is more related to the algorithm itself instead of the 
new bands.

The out-of-bag observations in RF were also used to rank the importance of indi-
vidual bands of Worldview-2 for classification. It is interesting to see that the top four 
bands for tree species classification at the pixel level were coastal, yellow, red-edge, 
and NIR-2, which are exactly the four new bands (Figure 7.6a). At the object level, 
the importance of individual bands for RF classification was different. However, the 
coastal band was still among the top four bands of the highest importance (Figure 
7.6b). The analysis above indicates that the four new bands are valuable in improving 
the classification of tree species at the study site.
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7.4.3  compArISon oF dIFFerent clASSIFIerS

When the two DA methods were compared, it was found that QDA has slightly higher 
accuracy than LDA at the pixel level (Table 7.2). The accuracy increase varied from 
0.1% for four Worldview-2 conventional bands to 1.0% for all eight Worldview-2 
bands. However, LDA was clearly better than QDA at the object level. The accuracy 
increase varied from 2.1% for eight Worldview-2 bands to 2.6% for four IKONOS 
bands. This again is likely related to the fewer observations for training at the object-
level classification. LDA pools the two classes to estimate the variance–covariance 
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FIGURE 7.6 Feature importance ranked by random forest for (a) pixel-level classification 
and (b) object-level classification.
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matrix while QDA estimates the variance–covariance matrix for each class sepa-
rately. Therefore, LDA has a higher ratio of training sample size to the number of 
model parameters, which is advantageous in model estimation when the number of 
observations for model training is small.

Another interesting result in this study is that, on average, LDA (the simplest clas-
sifier) has the same highest (77.6%) classification accuracy as RF (the most flexible 
classifier) (Table 7.2). The good performance of LDA is not surprising if we inspect 
the scatterplots of the two tree species (Figure 7.4). Although there is considerable 
amount of overlay between two classes for some bands, each class seems to have one 
unique mean and Gaussian-like distribution. Despite the fact that the more complex 
algorithms (such as SVM and RF) can more easily model classes of multiple-mode 
or non-Gaussian distributions, LDA and QDA could achieve high classification accu-
racy as long as the assumption of Gaussian distribution for each class is satisfied 
(Hastie et al. 2009). Although it seems that mamane trees are more spread out than 
naio trees for some bands, the degree of spread is not dramatically different from 
each other, which justifies the relatively high classification accuracy of LDA com-
pared to QDA, especially at the object level.

It is worthwhile to note that even though the mean classification accuracy is 
very similar among different classifiers (Table 7.2), each classifier could generate 
dramatically different decision boundaries (Figure 7.5). The decision boundary 
for LDA is linear owing to the common variance–covariance matrix between two 
classes. QDA usually has a curvilinear decision boundary because each class has 
different variance–covariance matrices. Both SVM-Quad and SVM-GRB gener-
ate smooth nonlinear boundaries, but it seems that SVM-GRB has more flexibility 
in generating different shapes of decision boundaries. Among these classifiers, 
RF is most versatile in terms of generating decision boundaries varying from a 
straight line (e.g., Figure 7.5b) to very complex and localized curves (see Figure 
7.5c and d). If we assume that each class follows a Gaussian-like distribution, it 
seems that, at the pixel level, RF has overfitting problems caused by the significant 
overlay between two classes in the spectral space (Figure 7.5c and d). According 
to Occam’s razor (which states that the simplest model explaining the data is pre-
ferred) (Duda et al. 2000), LDA is a good choice for the tree species classification 
at this study site.

There are divergent results in the literature regarding the relative performance of 
parametric and nonparametric classifiers. For example, Camps-Valls and Bruzzone 
(2005) compared LDA with several kernel-based nonparametric classifiers including 
SVM, regularized radial basis function neural networks, kernel Fisher discriminant 
analysis, and regularized AdaBoost for classifying the nine classes in the AVIRIS 
NW Indiana’s Indian Pines 1992 data set. It was found that LDA had significantly 
lower accuracy than the nonparametric classifiers. However, a recent study by 
Szuster et al. (2011) showed that Maximum Likelihood Classifier (equivalent to QDA 
in this study) had similar performance with neural network and SVM when ASTER 
images were used for classifying seven land cover and land use types in the coastal 
zone of Koh Tao island, Thailand. These contrasting results agree with the No Free 
Lunch Theorem: there is no context- or problem-independent reason to favor one 
classifier over another (Duda et al. 2000). The apparent superiority of one algorithm 
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over another in a particular study usually depends on the distribution of data and the 
match between an algorithm and the problem it addresses.

7.4.4  pIxel-BASed VerSuS oBject-BASed clASSIFIcAtIon

It was found that the object-based classification can significantly increase the classi-
fication accuracy compared to pixel-based classification. On average, the increase in 
the overall classification accuracy was 8.5%, 13.1%, and 10.3% when the four IKONOS 
bands, four conventional Worldview-2 bands, and all eight Worldview-2 bands were 
used, respectively. Note that the accuracy increase is larger for Worldview-2 than for 
IKONOS, probably because the finer spatial resolution of Worldview-2 has a better 
characterization of pixels at the crown edge.

Although object-based image analysis (OBIA) has become popular over the past 
decade owing to the increasing use of fine spatial resolution remotely sensed data 
(Blaschke 2010), only a few studies have compared the classification accuracy of 
object-based classification with pixel-based classification (e.g., Cleve et al. 2008; 
Gao 2008). For example, Cleve et al. (2008) found that the object-based classification 
approach provided a 17.97% higher overall accuracy than the pixel-based approach 
for mapping the wildland–urban interface with aerial photos. It is encouraging that 
the object-level classification at this study also produces positive results. One of the 
main reasons why the object-based approach outperforms the pixel-based approach 
is the reduction of spectral heterogeneity (e.g., caused by shade) of tree canopy using 
the object-based approach. More research is needed in the future to conduct object-
level classification with individual tree objects automatically delineated using fine 
spatial resolution imagery (e.g., Chopping 2011) or airborne lidar data (e.g., Chen et 
al. 2006).

7.5  CONCLUSIONS

This study compared Worldview-2 and IKONOS for identifying mamane and naio 
trees in the palila habitat of the island of Hawaii using both parametric and nonpara-
metric classifiers. Classification was conducted at the pixel and object levels. The 
major findings are as follows:

• On average, the four conventional Worldview-2 bands (blue, green, red, and 
NIR) can achieve 3.3% and 7.9% higher overall accuracy than the same four 
IKONOS bands at the pixel level and object level, respectively. If individual 
classifiers are considered, the highest accuracy improvement is 6.1% at the 
pixel level and 12.8% at the object level.

• The inclusion of four new Worldview-2 bands (coastal, yellow, red-edge, 
and NIR2) enhanced the average overall accuracy by 3.1% and 0.3% at the 
pixel level and object level, respectively. The analysis of feature importance 
using RF indicated that the four new bands were among the top four bands 
(out of the eight Worldview-2 bands) for classifying tree species at the pixel 
level. Coastal band was among the top four bands for classification at the 
object level.
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• The five classifiers (QDA, LDA, SVM-Quad, SVM-GRB, and RF) had 
similar average overall accuracies varying from 76.7% (QDA and SVM-
Quad) to 77.6% (LDA and RF). However, each classifier could generate 
dramatically different decision boundaries. Among these classifiers, LDA 
has the simplest linear decision boundary while achieving the highest clas-
sification accuracy. This indicates that LDA is a good choice for tree species 
at this study site.

• Classification at the object level, compared to that at the pixel level, can 
significantly increase the overall accuracy by 8.5%, 13.1%, and 10.3% when 
the four IKONOS bands, four conventional Worldview-2 bands, and all 
eight Worldview-2 bands were used, respectively. In a nutshell, it was found 
that both the finer spatial resolution and the additional spectral bands of 
Worldview-2 can improve the classification of tree species at such a critical 
habitat.

Conserving endangered species and maintaining nature’s intrinsic values for 
future generations are an important obligation of human beings and a key aspect 
of sustainability. However, in recent years, species conservation has experienced 
a rapid decline in the dialogue of global sustainability, which has shifted its 
focus to issues such as climate change. One driver of this concerning trend is 
the insufficient funding and high cost of monitoring species and their habitat 
in the field. The technology innovation of high-resolution yet low-cost satellite 
imagery can greatly increase the efficiency in habitat characterization and thus 
can help avert this alarming trend, especially in remote areas and developing 
countries where the accessibility of high-quality remotely sensed data is very 
limited. The encouraging findings of this research will further motivate the use 
of state-of-the-art remote sensing technology to address pressing sustainability 
issues in our society.
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8 Remote Sensing of 
Forest Damage by 
Diseases and Insects

Gang Chen and Ross K. Meentemeyer

8.1  INTRODUCTION

Forests are an integral part of natural ecosystems, providing numerous ecological, 
economic, social, and cultural services (Boyd et al. 2013; Chen et al. 2015a). For 
example, they store approximately 45% of terrestrial carbon (C) and remain as a 
large net C sink by capturing one-quarter of the anthropogenic carbon dioxide (CO2) 
each year (Bonan 2008; Pan et al. 2011). However, environmental change (e.g., severe 
drought) and global trade have increased forest vulnerability to a range of natural 
disturbances, including diseases and insects (Asner 2013; Boyd et al. 2013; Wang 
et al. 2008; Wingfield et al. 2015). Forest diseases are caused by pathogens that are 
infectious and transmissible, such as bacteria, fungi, viruses, and helminths. Insects 
attack different parts of the tree, with defoliators feeding on leaves or needles, and 
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bark/wood borers boring into the bark/wood. While some pathogen and insect spe-
cies are native to local ecosystems, many of the recent disturbances arise from the 
nonindigenous species that may pose more pernicious and unpredictable threats to 
forest health (Boyd et al. 2013). Over the past few decades, the frequency and inten-
sity of disease- and insect-caused forest disturbances have dramatically increased, 
leading to extensive tree mortality in key forest biomes worldwide. Examples include 
the sudden oak death epidemic in western United States, outbreaks of mountain 
pine beetle in Canada’s boreal forest, bronze bug damage in plantation forests in 
South Africa, and the spread of bark beetles in central Europe and Scandinavia 
(Fassnacht et al. 2014; Meentemeyer et al. 2015; Oumar and Mutanga 2014; Wulder 
et al. 2009). Figure 8.1 illustrates two typical symptoms of forest damage attributed 
to the outbreaks of mountain pine beetles and the infectious disease sudden oak 
death, respectively.

Sustainable forest management is essential to mitigating the destructive impacts 
of diseases or insects on forest ecosystems. This is especially true when major dis-
turbance events have the potential to reduce the dominant native species, causing a 
permanent change in forest structure. One prerequisite for effective management is to 
understand the spatial distribution and severity of forest damage. Consequently, miti-
gation efforts can be performed to limit the population and the spread of pathogens or 
insects on infected or susceptible host trees. Although conventional field mensuration 
remains the most accurate way to quantify stages of infestation, it becomes time-con-
suming and costly when pathogen or insect populations reach epidemic levels. Remote 
sensing provides a timely and accurate approach to scale up field measurements and 
characterize spatially explicit information about the Earth’s surface at landscape to 
regional scales. Recent developments in spaceborne and airborne sensors have further 

Mountain pine beetle 
Dendroctonus ponderosae 

Plant pathogen
P. ramorum

(b)(a)

FIGURE 8.1 Landscape-scale forest mortality caused by (a) mountain pine beetle and 
(b) sudden oak death. The infected trees show distinct symptoms of (a) red needles and (b) brown-
to-gray leaf lesions, respectively. (Courtesy of (a) Ministry of Forests, Lands and Natural Resource 
Operations, http://www2.gov.bc.ca/gov/content/governments/organizational -structure /ministries 
-organizations/ministries/forest-and-natural-resource-operations, and (b) California Oak 
Mortality Task Force.) 
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advanced our ability to collect Earth observation data across multiple spatial, tempo-
ral, and spectral scales, making remote sensing feasible to monitor forest disturbances 
(e.g., variations in forest biophysical and biochemical parameters) in response to the 
disease and insect outbreaks of varying stages of invasion. Such rapid and accurate 
delineation of large-area forest damage allows decision makers to take prompt and 
informed actions, supporting the sustainable management of forests.

The main objective of this chapter is to provide a brief survey of remote sens-
ing assessment of forest damage by diseases and insects. Emphasis is directly laid 
on mapping forest disturbances with satellite and airborne Earth observation data. 
The following sections are organized to (i) summarize the recent trends of applying 
remote sensing to detect forest disease and insect outbreaks, (ii) investigate remote 
sensing characteristics and its qualifications for studying the topic, (iii) provide a 
brief review of remote sensing algorithms, and (iv) discuss several remaining chal-
lenges that face researchers and decision makers in sustainable forest management.

8.2  TRENDS OF REMOTELY DETECTING FOREST 
DISEASE AND INSECT OUTBREAKS

While the idea of applying remote sensing to detect disease- and insect-induced for-
est damage was considered as early as the 1970s and 1980s (e.g., Heller and Bega 
1973; Nelson 1983; Rock et al. 1986), only recently (since the late 1990s) did the 
topic receive considerable attention for managing emerging outbreak (Table 8.1). 
Two reasons possibly explain slow adoption. First, a growing number of studies 
showed that the frequency and intensity of forest disease and insect attacks signifi-
cantly increased over the past two decades as a result of climate change and glo-
balization (see a brief review by Boyd et al. [2013]). There was a growing need to 
understand the mechanisms (e.g., spatial patterns) of the landscape-scale disease and 
insect progression informing effective mitigation strategies. Second, the collected 
Earth observation data have increased immensely during the same time period. The 
large volumes of data sets with relatively cheap acquisition costs, for example, the 
opening of more than four decades of Landsat archive (Woodcock et al. 2008), made 
it easier to systematically analyze the impact of certain diseases or insects in specific 
areas of interest. Ironically, one of the recent challenges facing many researchers is 
how to better handle such big data.

Geographically, research hotspots were primarily located in North America (e.g., 
Canada and the United States) and Europe (e.g., Germany, Norway, Spain, Sweden, 
and the United Kingdom), with several other studies conducted in Australia, China, 
and South Africa. Please note that the case studies cited in Table 8.1 were collected 
by searching Elsevier’s ScienceDirect database with the following formula: remote 
sensing AND forest AND (disease OR insect). We also respectively substituted 
pathogen for disease, and pest for insect in the search. The results were further 
refined by removing the studies that did not contain a significant remote sensing 
component or did not target specific disease or insect types.

Compared to forest diseases, insects appeared to be more intensively studied 
using remote sensing (Table 8.1). This reflects the fact of high tree mortality induced 
by insects as well as their globally widespread occurrence. For example, among the 
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TABLE 8.1
Types of Diseases and Insects, and the Corresponding Regions, Countries, 
and Case Studies

Region Type of Disease or Insect Country Case Study

Europe Autumnal moth (Epirrita 
autumnata)

Sweden Babst et al. 2010

Bark beetle Ips grandicollis Germany Fassnacht et al. 2014

Bark beetle Ips typographus L. Germany Kautz 2014

Beech leaf-miner weevil 
(Rhynchaenus fagi)

Spain Rullán-Silva et al. 2015

Fungal spore Ganoderma sp. United 
Kingdom

Sadyś et al. 2014

Insect Physokermes inopinatus Sweden Olsson et al. 2012

Pine processionary moth 
(Thaumetopoea pityocampa)

Spain Sangüesa-Barreda et al. 2014

Pine sawfly (Neodiprion sertifer 
(Geoffrey))

Norway Solberg et al. 2006

North 
America

Black-headed budworm (Acleris 
gloverana (Walsingham))

Canada Luther et al. 1997

Blister rust fungus (Cronartium 
ribicola)

United States Hatala et al. 2010

Eastern hemlock looper 
(Lambdina fiscellaria)

Canada Fraser and Latifovic 2005

Eastern spruce budworm 
(Choristoneura fumiferana)

United States Wolter et al. 2009

Emerald ash borer (Agrilus 
planipennis Fairmaire)

United States Pontius et al. 2008

Gypsy moth (Lymantria dispar L.) United States de Beurs and Townsend 2008; 
Townsend et al. 2012; 
Thayn 2013

Hemlock woolly adelgid (Adelges 
tsugae Annand)

United States Siderhurst et al. 2010

Jack pine budworm 
(Choristoneura pinus pinus 
(Free.))

Canada, 
United States

Leckie et al. 2005; Radeloff et al. 
1999

Mountain pine beetle 
(Dendroctonus ponderosae 
Hopkins)

Canada, 
United States

Assal et al. 2014; Bright et al. 
2012; Cheng et al. 2010; Coops 
et al. 2009; Goodwin et al. 2008; 
Hatala et al. 2010; Meddens 
et al. 2011; Meigs et al. 2011, 
2015; Raffa et al. 2013; Skakun 
et al. 2002; Walter and Platt 
2013; Wulder et al. 2008, 2009

Spruce budworm (Choristoneura 
fumiferana)

Canada, 
United States

Wolter et al. 2008

(Continued)
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United States’ 20 major diseases and insects that caused 6.4 million acres of 
tree mortality in 2011, 60% were insects; mountain pine beetle (Dendroctonus 
 ponderosae Hopkins) alone killed 3.8 million acres of trees (USDA Forest Service 
2012). Several other insects, such as bark beetle Ips grandicollis, gypsy moth 
(Lymantria dispar L.), and jack pine budworm (Choristoneura pinus pinus [Free.]), 
have also been well studied across forest biomes (Table 8.1). In contrast, remote 
detection of the disease impacts on forest ecosystems was less studied. One excep-
tion is sudden oak death caused by the invasive plant pathogen Phytophthora ramo-
rum (Rizzo et al. 2005), which received considerable attention as a result of rapid 
transmission and widespread mortality of oak and tanoak trees in coastal forests of 
California and Oregon (Table 8.1).

8.3  REMOTE SENSING CHARACTERISTICS AND QUALIFICATIONS

The premise of utilizing remote sensing to detect disease- or insect-infested forests is 
that the damaged trees show distinct symptoms capable of being observed remotely. 
Depending on the type or stage of damage, the symptoms may indicate the decline in 
chlorophyll/water quantity in foliage, leaf discoloration, defoliation, or treefall gaps. 
For effective monitoring, Earth observation data acquired from satellite or airborne 
sensors are expected to capture the differences in the reflected radiation from dam-
aged versus healthy trees. In this section, we base our discussion on the previous 

TABLE 8.1 (CONTINUED)
Types of Diseases and Insects, and the Corresponding Regions, Countries, 
and Case Studies

Region Type of Disease or Insect Country Case Study

Sudden oak death (Phytophthora 
ramorum)

United States Kelly and Meentemeyer 2002; 
Lamsal et al. 2011; Liu et al. 
2006, 2007; Meentemeyer et al. 
2008; Pu et al. 2008

Western spruce budworm 
(Choristoneura freemani)

United States Meigs et al. 2011, 2015

Others Aphid (Essigella californica) Australia Goodwin et al. 2005

Bark beetle (Ips grandicollis) Australia Verbesselt et al. 2009

Fungal pathogen (Sphaeropsis 
sapinea)

Australia Goodwin et al. 2005

Insect (Thaumastocoris 
peregrinus)

South Africa Oumar and Mutanga 2014; 
Oumar et al. 2013

Mopane worm (Gonimbrasia 
belina)

South Africa Adelabu et al. 2014

Pine caterpillar (Dendrolimus 
superans Butler, Dendrolimus: 
Lasiocampidae, Lepidoptera)

China Huang et al. 2010
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research efforts to demonstrate the qualifications of remote sensing for monitoring 
forest disturbances attributed to diseases and insects.

8.3.1  Spectral characteriSticS

The spectral values in a forest image scene are often biased to representing the upper 
layer traits of tree canopies. While the top-down manner of photographing vegeta-
tion lacks the ability to characterize the entire tree, it is possible to link the status of 
canopy to forest health because diseases or insects substantially affect a tree’s ability 
to photosynthesize and store moisture in foliage. One consequence is the noticeable 
change in foliage color (i.e., discoloration). For example, needles on pine trees turn 
red in the red-attack stage by mountain pine beetle (Wulder et al. 2006). Oak trees 
visually appear brown and freeze-dried as a result of sudden oak death (Kelly and 
Meentemeyer 2002). Remote sensors with the capacity to record the visible portion 
of the electromagnetic spectrum (wavelengths from approximately 400 to 700 nm) 
are able to detect these symptoms, which appear similarly in the human visual sys-
tem. However, disease- and insect-mediated forest mortality is a gradual process. 
Some early-stage symptoms cannot be easily observed; for instance, unhealthy trees 
with reduced chlorophylls may only appear to be slightly brighter than the healthy 
trees in the visible spectral range owing to reduced absorbance of the blue and red 
wavelengths by foliage (Knipling 1970). Sensors with the capacity to further detect 
the near-infrared spectrum (wavelengths from approximately 700 to 1300 nm) are 
probably more sensitive to such physiological stress. Similarly, the amount of energy 
reflected in the short-wave infrared range (wavelengths from approximately 1300 to 
2500 nm) is correlated with vegetation moisture (Laurent et al. 2005). Today’s remote 
sensing technologies are already capable of recording the radiation reflected in those 
spectral ranges. To further advance the performance of remote detection, research-
ers utilized a variety of spectral indices (i.e., combinations of spectral bands) and 
have repetitively confirmed their effectiveness in monitoring forest damage subject 
to disease and insect attacks (see case studies in Table 8.1). Examples of the indi-
ces include normalized difference vegetation index (NDVI; Tucker 1979), enhanced 
vegetation index (Liu and Huete 1995), disturbance index (DI; Healey et al. 2005), 
normalized difference moisture index (NDMI; Jin and Sader 2005), normalized dif-
ference infrared index (Jackson et al. 2004), and enhanced wetness difference index 
(EWDI; Skakun et al. 2003).

While multispectral imagery has proven its potential to assess the status of 
damaging diseases and insects, previous studies discovered that the subtle spectral 
discrepancies between healthy and damaged trees (e.g., during the previsual green 
mortality stage) can be better detected by fine-spectral resolution data, that is, dozens 
to hundreds of narrow and contiguous spectral bands acquired through hyperspec-
tral imaging (Coops et al. 2003; Hatala et al. 2010). On the basis of this technology, 
researchers have further developed narrowband vegetation indices, some of which 
were freshly designed (e.g., transformed chlorophyll absorption reflectance index; 
Haboudane et al. 2002), while the others were simple modifications of the traditional 
vegetation indices by means of substituting narrowband for broadband reflectance 
(e.g., red edge NDVI; Gitelson and Merzlyak 1994). Although not as common as the 
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broadband indices yet, narrowband indices have shown the potential to explain the 
physiological changes in the forests suffering damage from insects (Fassnacht et al. 
2014; Oumar et al. 2013).

8.3.2  Spatial characteriSticS

Recent development in remote sensing allows us to perceive spatial details on the 
Earth’s surface at varying scales, for example, 1 km/500 m/250 m MODIS, 30 m/15 m 
Landsat, 10 m/5 m SPOT-5, 4 m/1 m IKONOS, 1.2 m/0.3 m Worldview-3, and 
centimeter-level aerial photos. This offers forest practitioners a range of choices for 
balancing the accuracy of detecting disease or insect occurrence and data acquisition 
cost. Typically, coarse to moderate-resolution imagery has been traditionally applied 
to measure forest structural change at the landscape scale. For example, de Beurs 
and Townsend (2008) applied MODIS data with a 250-m spatial resolution to moni-
tor more than 16,000 km2 of insect defoliation of hardwood forests by gypsy moth. 
Fraser and Latifovic (2005) showed that 1-km-resolution SPOT VEGETATION data 
were sufficient for mapping a 350,000-km2 area of coniferous forest mortality in 
Quebec, Canada, caused by the eastern hemlock looper. A higher-severity distur-
bance event may lead to a more satisfactory detection result, because the infected 
tree patches tend to be larger on average.

However, challenges arise if the majority of the damaged trees are within small, 
discrete patches. High–spatial resolution satellite and airborne imagery are more 
suitable for fine-scale detection and have proven to be feasible in previous studies 
(e.g., Adelabu et al. 2014; Cheng et al. 2010; Kautz 2014; Meddens et al. 2011; Wulder 
et al. 2008). It should be noted that a unique consideration of processing such type of 
data sets is the recent paradigm shift from pixel-based to object-based image analy-
sis, that is, geographic object-based image analysis (GEOBIA; Blaschke et al. 2014). 
Because a high-resolution pixel often covers a portion of a tree or a small tree cluster, 
the corresponding pixel value may contain a high spectral variation as a result of 
the complex forest 3D structure and sun–tree–sensor geometry (Chen et al. 2011). 
Compared to the traditional pixel-based modeling, GEOBIA extracts image objects 
(groups of pixels) to represent meaningful geographic objects, for the purpose of 
reducing spectral noises and increasing mapping accuracies.

8.3.3  temporal characteriSticS

The size of Earth observation data archives is growing at an unprecedented pace. 
With rich time series data, it becomes feasible to extract the trajectories of dis-
ease and insect progression over a long term (e.g., Meigs et al. 2011; Vogelmann 
et al. 2009; Walter and Platt 2013). Because most of the infected trees do not die 
instantly, many forest disease or insect studies tend to apply annual or biannual 
imagery to characterize the spatiotemporal patterns of forest change. To mitigate 
the impact of seasonal variation, multidate images are preferably collected in the 
same months or the same seasons. Of the variety of date archives, Landsat time 
series have been the most widely used (see case studies in Table 8.1). This is pos-
sibly attributed to the features of four decades of data storage with minimized 
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temporal gaps, free data access, and global coverage (Woodcock et al. 2008). 
However, as we are entering the remote sensing big data era, we expect to see an 
increasing application of diverse data archives for long-term forest health monitor-
ing in the near future.

8.4  A REVIEW OF REMOTE SENSING ALGORITHMS

To date, a variety of remote sensing algorithms have been developed to measure for-
est damage caused by diseases and insects. The main principle is to extract the dif-
ferences in spectral reflectance between healthy and infected trees, as well as among 
the infected trees during varying stages of decline. Here, we provide a brief review 
of those algorithms and categorize them into five groups: thresholding, classification, 
change detection, statistical regression, and the others, with details described below.

8.4.1  threSholding

Compared to healthy trees, damaged trees have distinct symptoms, such as reduced 
moisture, discolored foliage, and defoliated canopy. A thresholding method defines 
one or multiple thresholds to extract the pixels representing damaged trees from the 
entire forest image scene. While the operation appears simple, the success of apply-
ing thresholding largely depends on the effective description of forest symptoms and 
the accurate definition of threshold(s).

Describing the symptoms of forest damage has been primarily relying on image 
spectral indices. Some of those indices were specifically designed to assess forest 
disturbances. For example, Coops et al. (2006) created a red–green index, the ratio 
of QuickBird red to green wavelengths, to extract the red-attack damage (i.e., foliage 
color turning red from green) in the mountain pine beetle–infested coniferous forests. 
Their results confirmed the potential of using a simple threshold to red–green index 
values for separating the infected from the healthy trees. For many other studies, 
however, thresholding methods often directly employed or modified the existing indi-
ces that had not been intentionally developed for monitoring infestation. For example, 
multiple thresholds were applied to Landsat NDMI for extracting beetle-infested trees 
and forest regrowth after disturbance events (Coops et al. 2010; Goodwin et al. 2008). 
Similarly, Coops et al. (2009) calculated DI using 1-km- resolution MODIS images 
covering a part of the terrestrial land base of Canada. They found that those DI pixel 
values larger than ±1 standard deviation of the long-term mean were consistent with 
the areas flagged as infested using aerial survey. To further improve the thresholding 
performance, Skakun et al. (2003) created an EWDI through combing three differ-
ent dates of wetness bands (derived from the Landsat TM tasseled cap transforma-
tion). Likewise, Olsson et al. (2012) modified the classic NDVI index by substituting 
the green band for the red band in the equation. The new index GNDVI was found 
to outperform NDVI, and negative GNDVI values indicated damage. Overall, the 
thresholding methods are simple to implement, with thresholds typically defined with 
assistance of field survey and manual photo interpretation. One major limitation for 
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thresholding is that it is only suitable to identify major stages of forest disturbances, 
for example, extracting heavily damaged trees from healthy ones.

8.4.2  claSSification

Land-cover classification using imagery to differentiate between land-cover types 
was developed almost immediately after the advent of remote sensing. The suitabil-
ity of using image classification to measure forest damage is based on the fact that 
the distinct symptoms of infected forests make them appear as new land-cover types. 
It also seems to be consistent and convenient to apply one classification framework 
to extract not only the damaged/healthy forests but also the other land-cover types 
coexisting with forests, for example, grasses, shrubs, built-ups, and water.

Of the variety of classification algorithms, the classic supervised maximum like-
lihood classifier (MLC) demonstrated continued success in forest disease and insect 
monitoring. For example, MLC was effectively applied to Landsat imagery for dif-
ferentiating mountain pine beetle–induced red attacks from non-red attacks (Walter 
and Platt 2013). MLC and Landsat imagery were also used to extract gypsy moth–
caused defoliation from the nondefoliated trees (Thayn 2013). In addition, previous 
studies suggested that the application of MLC to classify high–spatial resolution 
imagery has the potential to detect forest damage of multiple stages. For example, 
Leckie et al. (2005) was able to estimate jack pine budworm–induced four classes of 
discoloration (nil–trace, light, moderate, and severe) through the application of MLC 
and 2.5-m-resolution aerial imagery acquired from the multispectral electro-optical 
imaging sensor. Meddens et al. (2011) and Bright et al. (2012) independently used 
aerial photography and MLC to classify beetle-caused tree mortality into green, red 
(dead trees with red needles), and gray (dead trees without needles) tree classes with 
the same overall accuracy of 87%. When integrated with hyperspectral imagery, 
MLC was found to be a viable solution to estimate forest stress during the early pre-
visual stage of a sudden oak death outbreak (Pu et al. 2008).

Novel machine learning methods, as a complement to classic classifiers, have been 
introduced to the domain of remote sensing classification since the 1990s. Support 
vector machines (SVMs) are a successful example, which have proven to be feasible 
to detect three levels of insect defoliation ranging from nonimpacted undefoliated 
plants to partly defoliated plants and finally refoliating plants after severe defoliation 
in an African savanna (Adelabu et al. 2014). When applied to classify hyperspectral 
imagery acquired from HyMap, SVMs were found to have notable high overall accu-
racies mapping bark beetle–caused tree mortality, with the best result reaching as 
high as 97% accuracy (Fassnacht et al. 2014). Random forests (RFs) act as another 
popular machine learning method in classification. In a case study of mapping insect 
defoliation levels with RapidEye 5-m-resolution imagery, Adelabu et al. (2014) com-
pared RFs and SVMs, and found comparable results. It should be noted that one 
outstanding feature of RF is that it can rank all the input variables based on their 
importance (Breiman 2001), which facilitates result analysis by identifying the most 
crucial spectral bands or indices in disease and insect mapping.
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A subpixel classification scheme is needed if the spatial resolution of image pixels 
is too coarse to detect small, fragmented disturbances in a patchy distribution. To 
do so, spectral mixture analysis (SMA) provides a viable means, which is typically 
based on the assumption that the spectral value of each pixel is a linear combination 
of the reflectance from surface materials (endmembers) weighted by their factions. 
For example, Radeloff et al. (1999) performed SMA on Landsat TM imagery to clas-
sify jack pine budworm defoliation levels in a mixed forest stand and found a strong 
negative correlation between SMA-derived green needle fraction and field-measured 
budworm population (r = −0.94). With SMA and 0.5-m-resolution multispectral imag-
ery, Goodwin et al. (2005) quantified the fractional abundance of three endmembers: 
sunlit canopy, shadow, and soil. Their results suggested a possibility of using the sunlit 
canopy image fraction to describe crown/leader color in the forests affected by dam-
aging agents. When it comes to classifying hyperspectral imagery, the high spectral 
noises in data often challenge the performance of classifiers. To address the issue when 
using HyMap imagery, Hatala et al. (2010) employed the mixture-tuned matched-filter 
algorithm, an improved SMA through maximizing the target response and minimiz-
ing background spectral signatures, to classify whitebark pine stress and mortality.

8.4.3  StatiStical regreSSion

Statistical regression analysis allows practitioners to estimate not only the discrete 
stages of forest disturbances (e.g., damaged vs. healthy) but also continuous defolia-
tion or tree mortality levels from none to 100%. Compared to most classification 
methods, regression has the capacity to demonstrate the significance of the selected 
explanatory variables derived from remote sensing imagery. Such information can 
inform sustainable forest management, for example, predicting forest vulnerability 
in response to disease or insect attacks.

Logistic regression has been shown as a simple solution for identifying forest sta-
tus of being damaged or not. For example, this model was applied to estimate an out-
break of black-headed budworm in Western Newfoundland, Canada, with a proven 
success to distinguish susceptible trees from those that were not (Luther et al. 1997). 
However, such analysis may not be sufficient for developing effective mitigation 
strategies. Researchers have expressed higher interests in understanding the detailed 
(i.e., continuous) tree damage levels. To do so, classic multiple linear regression was 
widely used to link remote sensing–derived metrics (e.g., spectral bands, spectral 
indices, and topographic variables) with field-measured damage indicators, such as 
defoliation intensity (de Beurs and Townsend 2008; Pontius et al. 2008), basal area 
(Siderhurst et al. 2010), leaf area index (Solberg et al. 2006), foliar nitrogen and plant 
growth vigor (McNeil et al. 2007), concentration of total chlorophyll (Cheng et al. 
2010), and leaf water content (Cheng et al. 2010). Their studies also indicated the 
suitability of applying multiple regression to analyze a wide range of remote sensing 
data types (e.g., MODIS, Landsat, lidar, and the hyperspectral).

Recent sensor development has increased image spectral resolution and extended 
the coverage of data spectral range. However, this poses a challenge to regression 
modeling, that is, high dimensionality and collinearity of remotely sensed explan-
atory variables. To address this issue, Verbesselt et al. (2009) applied the least 
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absolute shrinkage and selection operator (LASSO) to model bark beetle–induced 
tree mortality in Pinus radiata plantations. Compared to the standard data fitting 
method of least squares, LASSO is an alternative regularized version to minimizing 
the residual sum of squares “under a constraint on the sum of the absolute values of 
regression coefficient estimates” (Verbesselt et al. 2009). Another solution is partial 
least squares regression (also known as projection to latent structures), which finds 
new hyperplanes for minimizing the variance between impendent and dependent 
variables (Geladi and Kowalski 1986). Researchers have confirmed its effectiveness 
of mitigating the variable multicollinearity effects in studying insect-caused forest 
damage (Oumar and Mutanga 2014; Oumar et al. 2013; Wolter et al. 2008).

The aforementioned regression models are considered as fixed effects, that is, 
treating all the variables as nonrandom. However, Rullán-Silva et al. (2015) argued 
that a mixed-effects model, containing both fixed and random effects, is more appro-
priate for estimating the percentage of defoliation caused by beech leaf-miner weevil. 
The addition of random effects to a fixed-effects model was found to better account 
for the variability possibly introduced by environmental uncertainties (Rullán-Silva 
et al. 2015). While the mixed-effects models are relatively new to the field of remote 
sensing, we note that their merits have been increasingly recognized in forest ecol-
ogy (Bolker et al. 2009).

8.4.4  change detection

Change detection employs multitemporal imagery (i.e., time series data) to measure 
the spatial patterns of forest disturbances through time. In contrast with using single-
date imagery to identify damaged trees, this approach analyzes shifts in spectral 
reflectance across multiple dates. Accordingly, extra considerations are required to 
deal with spectral variation through time that arises from both forest disturbances 
and differences in atmospheric conditions and the sun–view–tree geometries (Chen 
et al. 2011; Song et al. 2001).

Previous efforts showed two ways of conducting change detection. First, the spectral 
discrepancies between multidate images are calculated through differencing the same 
spectral bands or indices from the base year (before disturbance) and the disturbance 
year(s). This is followed by applying thresholding, statistical regression, or classifica-
tion to extract the pixels containing higher spectral variation (indicating damaged trees) 
than the others (e.g., de Beurs and Townsend 2008; Townsend et al. 2012; Wulder et al. 
2008). Second, change detection focuses on measuring forest damage directly through 
all the spectral bands or indices. For example, Babst et al. (2010) applied principal com-
ponent analysis to transfer multidate NDVI images (derived from Landsat time series) 
into new principal components. They discovered that the second principal component 
contained crucial information representing the change of NDVI, which was corre-
lated with the level of defoliation caused by autumnal moth. Additionally, because the 
spectral discrepancies among the Landsat time series include both real and noisy false 
changes, Kennedy et al. (2010) developed a LandTrendr temporal segmentation algo-
rithm to capture only the salient features of the trajectory (representing real changes) 
using a multilevel model fitting strategy. This algorithm was employed by Meigs et al. 
(2011) to successfully characterize the impacts of bark beetle on tree mortality.
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8.4.5  additional approacheS

In addition to the aforementioned mainstream methods, several other algorithms 
have been developed for unique considerations in disease and insect monitoring. 
For example, the occurrence of tree dieback is associated with specific forest envi-
ronmental factors (e.g., distance from hosts to target trees; Kelly and Meentemeyer 
2002). Liu et al. (2006) modeled such ecological compatibility with Markov random 
field, which was used to refine the results from a noncontextual SVM classification.

To deal with nontraditional data types, such as lidar for characterizing forest 3D 
structure (Chen and Hay 2011; Lim et al. 2003), Zhang (2008) applied mathematical 
morphology to process lidar point clouds for identifying small gaps in mangrove 
forests owing to natural disturbances, including the outbreaks of insects. Bright et al. 
(2012) employed lidar to estimate forest aboveground carbon. When integrated with 
the beetle-caused tree mortality map from an MLC classification, the carbon storage 
map was able to clearly reveal the impact of insect severity on forest carbon loss.

8.5  CHALLENGES AND OPPORTUNITIES

Advancements in remote sensing data acquisition and analysis have remarkably 
improved the feasibility of assessing landscape-scale forest disturbances induced by 
diseases or insects. However, challenges remain. In this section, we identify some of 
those challenges and suggest potential solutions.

8.5.1  early Warning of foreSt damage

Forests that are infected by diseases or insects do not die instantly. The detection 
of early stage forest damage offers forest managers an opportunity to perform effi-
cient disease and insect control. During this stage, the infected trees may only show 
a slight decline in chlorophyll levels and leaf water content. Previous efforts have 
confirmed the potential of applying hyperspectral remote sensing to assist with early 
detection of tree stress (e.g., Fassnacht et al. 2014; Pu et al. 2008). However, most of 
the sensors were mounted on airborne platforms (e.g., CASI, HyMap, and AVIRIS), 
making data acquisition an expensive process. To date, only a few satellite sensors 
(e.g., EO-1 Hyperion) are operational, although their application has been restrained 
because of limited spatial coverage and high spectral noises. To address the chal-
lenge, developing Landsat-like hyperspectral sensors is a promising solution. For 
example, NASA’s hyperspectral infrared imager (HyspIRI) mission will mount two 
instruments on a satellite in low Earth orbit. Once launched, HyspIRI will deliver 
global coverage hyperspectral imagery at the 10-nm spectral resolution from the vis-
ible, short-wave infrared range to the thermal infrared range (NASA 2015). Another 
potential solution is to assemble a small, inexpensive hyperspectral unmanned air-
craft system (UAS; see a recent review by Pajares [2015]). While such a system still 
has small spatial coverage, its highly operational flexibility combined with a proper 
sampling strategy makes early warning feasible. One limitation, however, is the obli-
gation to meet UAS regulations and policies that may vary considerably from region 
to region.
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8.5.2  conSiStent monitoring of long-term, hiStorical foreSt damage

While several remote sensing programs (e.g., AVHRR, Landsat, or SPOT) have been 
operational for three to four decades, many new types of sensors appeared only 
recently, such as those featuring high spatial resolution, hyperspectral resolution, 
and the ability to characterize forest 3D structure. These new sensors do have a 
higher capacity to detect forest stress and mortality; however, their data archives 
often have limited temporal and spatial coverage. This poses a challenge for consis-
tently monitoring the long-term, historical impacts of diseases and insects on for-
ests. One dilemma facing many researchers is that the study area was only partially 
covered by the data acquired from high-performance sensors for limited periods. 
Choosing the data that have full coverage (e.g., Landsat) can be one solution, while 
combining data from multiple sensors can be another solution (e.g., using Landsat 
data to fill in the gaps that lack hyperspectral imagery). In the latter case, the devel-
oped algorithms should have the capacity to accommodate varying types of remote 
sensing data across spatial, spectral, and temporal scales, so that all the results can 
be compared using consistent criteria.

8.5.3  differentiating among compound diSturbanceS

Forests are a natural ecosystem. The disturbances affecting the same forested regions 
may come from a range of sources. Besides insect and disease, other natural disasters 
(e.g., wildfire and wind) or anthropogenic activities (e.g., logging) can lead to com-
pound disturbances. It is also possible that one disturbance regime (e.g., wildfire) may 
influence forest responses to another disturbance (e.g., disease), resulting in interact-
ing disturbances (Turner 2010). Recent remote sensing studies have been limited on 
the topic of differentiating between disease-/insect-caused forest damage and other 
types of damage. One major challenge is that single sensors are typically not suitable 
to complete this task. For example, in a study of estimating burn severity in a for-
est that had experienced pre-fire disease outbreaks, Chen et al. (2015b) found similar 
spectral reflectance in burned and diseased trees using Landsat imagery. Therefore, a 
likely solution is the development of a multisensor approach, taking advantage of the 
strengths from individual sensors, for example, Landsat time series for temporal analy-
sis of disease and insect progression, hyperspectral imaging for tracking the early signs 
of forest damage, and lidar for assessing the change in forest vertical profiles. Data 
integration maximizes practitioners’ ability to estimate changes in forest biophysical 
and biochemical parameters, augmenting accurate assessments of forest damage.

8.6  CONCLUSION

Global forest ecosystems face high frequencies of landscape-level disturbances 
resulting from disease and insect epidemics. Over the past decades, remote sensing 
tools have improved detection of forest disturbances in a timely and cost- effective 
manner. As sensor technologies advance, richer Earth observation data with higher 
spatial, spectral, and temporal resolutions are expected to offer better choices 
to assess varying stages of disease/insect invasion in a range of forest biomes. 
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Accordingly, algorithms for modeling spectra–disturbance relationships will need 
to be continually refined or redeveloped to take advantage of new data and novel 
landscape changes caused by nonnative, invasive pathogens and insects.
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9 Monitoring Water 
Quality with Remote 
Sensing Image Data
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and Takehiko Fukushima

9.1  INTRODUCTION

Water covers approximately 74% of the Earth’s surface, and it plays many important 
roles in the lives of all human being. Inland and coastal waters in particular have a 
direct interface with human society by providing value for food supplies, industrial 
uses, transportation, commerce, and human health (UNEP 2006). However, many 
water bodies have encountered severe environmental problems (e.g., eutrophication) 
in recent decades as a result of human interventions and climate change (Ayres et al. 
1996; Haddeland et al. 2014). It is thus crucial to monitor and understand the amount 
and quality of these water bodies as well as their biogeochemical processes in order 
to achieve the effective management and sustainable use of the water resources 
(United Nations Open Working Group 2014).

Since conventional water-monitoring methods (e.g., water sampling from a boat) 
are very time-, labor-, and cost-consuming, the maintenance of steady monitor-
ing is difficult for local and national governments with meager financial resources, 
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especially in developing countries. For example, even when a lake is monitored by 
an in situ sampling method, the number of sampling locations and the frequency 
of water sampling may not accurately represent the actual status of the entire lake, 
because the water quality can dramatically change both spatially and temporally 
(Kiefer et al. 2015). However, with the progress of satellite sensors and water qual-
ity estimation algorithms, remote sensing is regarded as a quite useful technique for 
studying bodies of water, as it can provide synoptic observations at very frequent 
intervals for water bodies, at relatively low cost (Dekker and Hestir 2012).

In this chapter, we focus on how to obtain water quality data from remote sensing 
techniques that can be used toward achieving the Sustainable Development Goal 6.3 
(Monitoring Ambient Water Quality; United Nations Open Working Group 2014). 
As noted above, we will describe major satellite sensors and the advances needed 
to enable further progress in optical water-quality retrieval, several representative 
algorithms for water area delineation, atmospheric correction, and water quality esti-
mations, plus a hybrid approach for the universal application of these algorithms.

9.2  MAJOR SATELLITE SENSORS 
FOR MONITORING WATER QUALITY

Since the late 1970s, many attempts have been made to observe water quality from 
space. The first ocean-color sensor, Coastal Zone Color Scanner (CZCS), was 
launched in October 1978 aboard the Nimbus-7 satellite (Hovis et al. 1980). With four 
spectral bands in visible range (443, 520, 550, and 670 nm), and one spectral band in 
the thermal infrared spectrum (10.5–12.5 μm), the CZCS was the only spaceborne 
sensor that observed global ocean colors during the period 1978–1986 (Table 9.1 and 
Figure 9.1). However, since the CZCS was just a proof-of-concept sensor for the first 
generation of ocean-color observation at that time, there were many limitations in 
its instrument design such as a lack of a sufficient number of spectral bands in the 
visible and near-infrared (NIR) range as well as relatively low radiometric sensitivity 
(Gordon and Wang 1994; Hu et al. 2012a). In light of these limitations, the data pro-
vided by the CZCS should be used with caution. For example, Tassan (1988) reported 
that when CZCS data were used, high concentrations of gelbstoff and suspended 
minerals reduced the accuracy of both chlorophyll-a estimations and atmospheric 
corrections.

The second generation of ocean-color sensor, Sea-viewing Wide Field-of-View 
Sensor (SeaWiFS), was launched in 1997 and ended its mission in 2010 (Table 9.1 
and Figure 9.1). The SeaWiFS has four additional bands for ocean observations: two 
in the visible range (412 and 490 nm) and two in the NIR region (765 and 865 nm). 
The band around 412 nm is useful for separating the detrital and viable phytoplank-
ton signals (Ciotti and Bricaud 2006), and the band centered on 490 nm can assist in 
the detection of accessory pigments (Pan et al. 2010). The two NIR bands centered 
on 765 and 865 nm contribute to atmospheric correction (Gordon and Wang 1994). 
Compared to the CZCS, the radiometric sensitivity of the SeaWiFS was also largely 
improved (the mean signal-to-noise ratio [SNR] is between 424 and 790 for six vis-
ible bands; Hu et al. 2012a). However, the spatial and temporal resolutions of the 
SeaWiFS are still similar to those of the CZCS.
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The Moderate Resolution Imaging Spectroradiometer (MODIS), launched in 
December 1999 (aboard the Terra satellite MODIST) and May 2002 (aboard the 
Aqua satellite MODISA), is a sensor for both land and water observations. However, 
the water-leaving radiance obtained from MODIST is almost unusable for ocean-
color applications owing to the uncertainties and instabilities of the sensor observed 
since the start of the mission (Franz et al. 2008). The MODISA has 36 spectral 
bands in total, of which 9 bands are used for ocean-color remote sensing (Table 9.1 
and Figure 9.1). Generally, the MODISA ocean-color bands are similar to those of 
the SeaWiFS, with three bands in blue and two bands in green, but two bands in 
red wavelengths are different from those of the SeaWiFS (which has only one red 
band). The additional red band of the MODISA (around 678 nm) contributes to the 
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FIGURE 9.1 Location of the spectral bands of several satellite sensors that have been used for 
studying waters. 1: GOCI, 3: OLI, 4: ETM+, 5: TM, 6: MERIS, 7: MODIS, 8: SeaWiFS, 9: CZCS.
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detection of chlorophyll fluorescence. The radiometric sensitivity of the MODISA 
ocean-color bands were further improved with the mean SNR values of 1366–2401 
in the visible range and 806–995 in the NIR region (Hu et al. 2012a). The seven 
MODISA land bands are often applied to high-turbidity inland and coastal waters 
because of their higher spatial resolutions (250–500 m) and longer-wavelength bands 
in the short-wave infrared region (SWIR; Hu 2009; Hu et al. 2010; Wang and Shi 
2007).

During a similar active period of the MODIS, the European Space Agency launched 
another ocean-color sensor (the Medium Resolution Imaging Spectroradiometer 
[MERIS]) in March 2002. This mission was ended in 2012. Compared to the three 
ocean-color sensors described above, the MERIS provided higher spectral and spa-
tial resolutions, but slightly lower temporal resolution and radiometric sensitivity 
(Table 9.1 and Figure 9.1). The new visible band around 620 nm made the MERIS 
a unique sensor that is able to distinguish cyanobacterial blooms from other algal 
blooms (Kutser et al. 2006). Another unique band of the MERIS is around 709 nm. 
This  band has been demonstrated to be very useful for estimating chlorophyll-
a concentrations and detecting algal blooms in turbid inland and coastal waters 
(Dall’Olmo et al. 2003; Gilerson et al. 2010; Gitelson et al. 2008; Gower et al. 2005).

Although the spectral characteristics, temporal resolutions, and radiometric sen-
sitivities of the current ocean-color sensors are adequate to monitor water quality, 
the relatively coarse spatial resolutions of these data sets (300–1000 m) often limit 
many applications in inland waters with small size. Therefore, several land sensors 
with relatively fine spatial resolution (30 m) such as the TM (Thematic Mapper), the 
ETM+ (Enhanced Thematic Mapper Plus), and the OLI (Operational Land Imager) 
aboard Landsat satellites (Table 9.1 and Figure 9.1) have also been used for assess-
ing water quality parameters (e.g., Dekker et al. 2002; Oyama et al. 2009; Tyler et 
al. 2006; Wu et al. 2015). In addition to the relatively fine spatial resolution of the 
sensors aboard Landsat, another advantage of the use of Landsat data is the longev-
ity of its successive missions (1972 to present; Lobo et al. 2015). However, the wide 
bandwidth, infrequent revisit time, and lower radiometric sensitivity of Landsat are 
substantial limitations for applying Landsat data to water quality monitoring.

Unlike all of the abovementioned sensors, the Geostationary Ocean Color Imager 
(GOCI), launched in June 2010 by the Korea Aerospace Research Institute (KARI), 
is the first and so far the only sensor in geostationary orbit for monitoring ocean 
color from space (Ryu et al. 2012). As a benefit owing to its geostationary orbit, 
GOCI can provide eight images during daylight with 500 m spatial resolution and 
higher radiometric sensitivity (>579, Table 9.1). The bands of GOCI are similar to 
those of MODIS ocean bands, but it uses less one green band than MODIS, centered 
at 531 nm (Figure 9.1). However, its lack of bands around SWIR wavelengths is a 
significant limitation for atmospheric correction in turbid inland and coastal waters 
(Wang et al. 2012). In addition, the lack of bands around 620 nm makes the GOCI 
unable to distinguish cyanobacterial blooms from other algal blooms (Kutser et al. 
2006), and its lack of bands around 709 nm makes it difficult to accurately retrieve 
the chlorophyll-a concentrations in waters with higher concentrations of colored dis-
solved organic matter (CDOM) and tripton (Gitelson et al. 2008). Another limita-
tion of GOCI is its spatial coverage. GOCI covers only the regions covering Korea, 
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China, and Japan, and it cannot provide a global data set because it is designed to 
monitor the ocean color around the Korean Peninsula (130°E, 36°N at the center) on 
a geostationary orbit (Ryu et al. 2012).

Thus, all past and present ocean-color or land sensors have limitations for 
monitoring water quality. The following four aspects of future satellite sensors for 
remotely retrieving water quality parameters should be improved: temporal resolu-
tion, spatial resolution, spectral resolution, and radiometric sensitivity (Mouw et 
al. 2015). First, higher temporal resolution such as acquiring one or more satel-
lite image per hour during daylight would allow not only observations of fast pro-
cesses of water bodies (e.g., the tidal and diurnal variability of water quality) but 
also the accumulation of more available satellite data without cloud contaminations 
(Ruddick et al. 2014). This high temporal resolution could be achieved by a geosta-
tionary platform.

Second, finer spatial resolution is required for monitoring water quality in inland 
and coastal waters and for detecting algal blooms in open oceans. Bissett et al. 
(2004) showed that the optimal spatial resolution for monitoring near-shore waters 
(within 200 m of shore) is 100 m. This spatial resolution may also meet the require-
ment of some inland waters larger than 0.09 km2—corresponding to 9 pixels (i.e., 
100 m × 100 m × 9 pixels)—as Verpoorter et al. (2012) reported that it is diffi-
cult to verify water bodies smaller than 9 pixels relative to image noise. However, 
there are numerous water bodies smaller than 0.09 km2 (Verpoorter et al. 2014) 
and water bodies with spatially heterogeneous water quality parameters (Kutser 
2004). Further improvements in spatial resolution are thus necessary for these water 
bodies.

Third, good spectral resolution is highly desirable for many water-quality remote 
sensing studies such as those concerning the retrieval of water quality parame-
ters, the detection of cyanobacterial blooms or Trichodesmium distribution, and 
the removal of bottom-reflectance effects (Mouw et al. 2015). However, satellite-
based measurements with too small spectral intervals often face the problems of 
how to accurately remove gas absorption effects, how to select appropriate band 
for efficient data processing, and how to store a large volume of data (Lee et al. 
2014). Lee et al. (2014) found that the remote sensing reflectance of the neighbor-
ing bands is highly correlated when the spectral distance between two neighbor-
ing spectral bands is less than 10 nm, and even when this distance is increased to 
20 nm, the spectral information loss is still very limited. Accordingly, they sug-
gested that future ocean-color satellite sensors should have 15 bands space almost 
evenly between 400 and 700 nm at 10-nm bandwidth intervals. For the wavelength 
beyond 700 nm, at least two NIR bands and two SWIR bands are necessary for 
atmospheric correction in clear and turbid waters, respectively (Gordon and Wang 
1994; Wang and Shi 2007). In addition, a band around 709 nm is also necessary for 
estimating chlorophyll-a concentrations and detecting algal blooms in turbid inland 
and coastal waters (Dall’Olmo et al. 2003; Gilerson et al. 2010; Gitelson et al. 2008; 
Gower et al. 2005).

Finally, previous studies have stated that the radiometric sensitivity of future 
ocean-color sensors should have SNRs larger than 1000 for wavelengths between 
350 and 720 nm, larger than 600 for wavelengths between 720 and 900 nm, and 
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between 100 and 200 nm for SWIR bands (Hu et al. 2012a; Wang 2007). Since the 
SNR is in proportion to the pixel size, the bandwidth for a specific band, and the inte-
gration time, a longer integration time is necessary if we want to ensure high SNRs 
as well as fine spatial and spectral resolutions. A sensor on a geostationary satellite 
would probably achieve this goal because “the sensor can stare at the desired pixels” 
(Lee et al. 2014). A detailed review of the opportunities and challenges presented 
by geostationary sensors was provided by Ruddick et al. (2014). Summaries of past, 
present, and planned ocean-color sensors such as the Pre-Aerosol, Clouds, and ocean 
Ecosystem (PACE) and the Ocean and Land Color Imager (OLCI) can be found in 
an appendix of a report published by the International Ocean Colour Coordinating 
Group (IOCCG 2012).

9.3  WATER DELINEATION FROM SATELLITE IMAGERY

To monitor water quality from satellite data, the first step is the extraction of the 
water body from the data. This step can also serve to detect cloud-contaminated 
pixels in water bodies. Many algorithms and techniques have been developed for 
delineating water bodies from optical remote sensing data. These methods can be 
summarized as belonging to three categories: (1) digitizing water bodies via a visual 
assessment of satellite images; (2) using image classification techniques such as 
supervised or unsupervised classification procedures, spectral transformation, and 
texture analysis; and (3) using a single or multiple algebraically operated bands such 
as the band ratio and spectral water index, combined with appropriate threshold 
values (Verpoorter et al. 2012). Methods based on the spectral water index have 
been widely used to delineate water bodies from satellite imagery, because not 
only can this approach efficiently enhance water features while suppressing or even 
eliminating non-water features, it is also easy to use and less computationally time-
consuming than other methods.

The first spectral water index devised for delineating water from land is the nor-
malized difference water index (NDWI), which was proposed by McFeeters (1996) 
and can be expressed as follows:

 NDWI = (dgreen − dNIR)/(dgreen + dNIR), (9.1)

where dgreen and dNIR are the digital number (DN) at green and NIR bands, 
respectively. The NDWI values can range from −1 to 1. The selection of the green 
band is done to maximize the typical reflectance of water features. The use of NIR 
band in the NDWI can not only minimize the water reflectance (strong absorption by 
water), but also take advantage of the high reflectance at the NIR band by terrestrial 
vegetation and soil features (even higher than the reflectance of the green band). 
Accordingly, water features will have positive NDWI values, and land features will 
have zero or negative values (McFeeters 1996). Zero was thus set as the threshold to 
distinguish water bodies from land by McFeeters (1996) (i.e., if NDWI > 0, then = 
water; otherwise, non-water).

Xu (2006) found that the NDWI cannot efficiently suppress the signal from 
built-up land, and thus extracted water bodies were still mixed with built-up land 
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noise. For example, Figure 9.2a through c show a Landsat5/TM sub-scene for a 
part of Wuhan City (China), an NDWI image of the same place, and extracted 
water bodies from the NDWI image, respectively, showing that many built-up 
lands near Lake Dong (surrounded by a circle in Figure 9.2a) show positive NDWI 
values in Figure 9.2b and thus were misclassified as water bodies (white color in 
Figure 9.2c).

Lake Dong

Lake Sha�e Yangtze

(a) (b)–1.0

0.0 1.0

–1.0

0.0 1.0

(e)

(c) (d)

FIGURE 9.2 NDWI and MNDWI images for part of Wuhan City, China. (a) Landsat5/TM 
image of part of Wuhan City (RGB: 541), acquired on October 24, 2003. (b) NDWI image of 
the same area. (c) Extracted water bodies from the NDWI image. (d) MNDWI image of the 
same area. (e) Extracted water bodies from the MNDWI image.
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To further suppress these built-up land noises, Xu (2006) proposed a modified 
NDWI (MNDWI), which uses a SWIR band instead of the NIR band in the NDWI. 
The MNDWI can be expressed as follows:

 MNDWI = (dgreen − dSWIR)/(dgreen + dSWIR), (9.2)

where dSWIR is the DN value at a SWIR band such as Landsat5/TM band 5. Figure 9.2d 
and e show the MNDWI image for the same Landsat5/TM sub-scene and extracted 
water bodies from the MNDWI image, respectively. Compared to the NDWI image 
(Figure 9.2b), most of the MNDWI values of the built-up lands became zero or 
negative values and thus were removed from the water bodies (Figure 9.2e). This is 
because both built-up land and water reflect green light more than they reflect NIR 
light, but built-up land also reflects much greater light at the SWIR band than that at 
the green band, which is different from water features (Xu 2006). In addition, since 
the soil and vegetation still reflect more SWIR light than green light, the MNDWI 
can keep negative values for them like the NDWI does.

Although the MNDWI has taken the normalization form, which can reduce shadow 
noise (Xu 2006), the MNDWI still suffers from mountain and cloud shadows when a 
satellite image includes these types of surfaces. Figure 9.3a through c show a Landsat5/
TM sub-scene of Lake Maninjau (Indonesia), an MNDWI image of the lake and its sur-
rounding area, and the extracted water bodies from the MNDWI image, respectively, 
showing that many cloud and mountain shadows are misclassified as water bodies. This 
is because spectral features of cloud and mountain shadows at green and SWIR bands 
are similar to those of water bodies and thus show positive MNDWI values (Figure 9.4).

Verpoorter et al. (2012) suggested the use of digital elevation model data with the 
hillshade algorithm and ArcGIS hydrology tools in ArcMap program to reduce the 
noise attributed to cloud and mountain shadows. It was also found that these cloud 
and mountain shadowed pixels still show negative NDWI values, indicating that the 
NDWI also has the potential to suppress these shadow noises (Figure 9.3d and e). 
This is because the background of these shadowed pixels is vegetation (Figure 9.3a), 
which reflects more NIR light than SWIR light (Figure 9.4). Table 9.2 shows value 
ranges of NDWI and MNDWI for several different land cover types; only water fea-
tures have positive values for both NDWI and MNDWI.

These findings suggest that the combined use of the MNDWI and NDWI can effi-
ciently suppress not only built-up noise but also vegetation shadow noise attributed to 
clouds and mountains. Figure 9.3f shows the extracted water bodies by combining the 
MNDWI image with the NDWI image (i.e., if the MNDWI > 0 and the NDWI > 0, 
then = waters; otherwise, non-waters). The results demonstrate that most of the cloud 
and mountain noises were markedly suppressed. However, a misclassification owing to 
a different type of cloud remained (white pixels surrounded by a circle in Figure 9.3f).

An example spectrum of this type of cloud is also shown in Figure 9.4 (i.e., cloud 
2 in the figure). Similar to the water features, this cloud type showed NDWI and 
MNDWI values that were both larger than zero. However, the spectral brightness of 
both cloud types is greater than those of other land cover types, and thus it is easy to 
differentiate the cloud from other land cover types using a brightness index such as 
the Modified Brightness Index proposed by Verpoorter et al. (2012).
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Setting an appropriate threshold for the spectral water index is a challenge for 
accurately delineating water bodies from other land cover features. McFeeters (1996) 
and Xu (2006) set zero as the default threshold value for water delineation. However, 
Xu (2006) also found that a more accurate water body extraction could be achieved 
if the zero threshold value was adjusted slightly. The variation of threshold value is 
mainly attributed to the mixed pixel problem, in which a pixel is considered to con-
tain both water and land features.

(a) –1.0

0.0 1.0

–1.0

0.0 1.0

(c)(b)

(f)(e)(d)

FIGURE 9.3 MNDWI and NDWI images for Lake Maninjau, Indonesia. (a) Landsat5/TM 
image of Lake Maninjau (RGB 541), acquired on September 11, 1989. (b) MNDWI image of 
the area. (c) Extracted water bodies from the MNDWI image. (d) NDWI image of the same 
area. (e) Extracted water bodies from the NDWI image. (f) Extracted water bodies from the 
combination of MNDWI and NDWI images.
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Using simulation data, Ji et al. (2009) extensively investigated how the threshold val-
ues of several spectral water indices (including McFeeters’ NDWI and Xu’s MNDWI) 
were influenced by the fractions of soil and vegetation at a given water fraction. They 
found that the MNDWI shows the most stable threshold at a given water fraction, and 
a zero threshold value was suitable only for extracting pixels with a water fraction 
close to 100% for both the NDWI and MNDWI. It can thus be considered that the zero 
threshold value of the MNDWI or NDWI probably provides an underestimated water 
area compared to the true water body, because the shoreline of a water body is probably 
a mix of water and land features owing to the image’s spatial resolution, especially for 
the coarse spatial resolution satellite images (e.g., those provided by SeaWiFS, MODIS, 
and MERIS). It should also be noted that optical shallow water areas, water areas cov-
ered by aquatic vegetation, and water areas with high turbidity caused by strong algal 
blooms and mineral particles can also provide negative values of spectral water indices 
and thus influence accurate water body delineations (Verpoorter et al. 2012).
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FIGURE 9.4 Spectral reflectance patterns of cloud shadow, mountain shadow, lake water, 
and clouds (the right y axis) obtained from Landsat5/TM image of Lake Maninjau, Indonesia, 
acquired on September 11, 1989.

TABLE 9.2
NDWI and MNDWI Value Ranges for Different Land Cover Types

Water Vegetation Soil Built-Up
Cloud 

Shadow
Mountain 
Shadow

NDWI + 0 or − 0 or − + 0 or − 0 or −

MNDWI + 0 or − 0 or − 0 or − + +
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9.4  ATMOSPHERIC CORRECTION FOR USING SATELLITE DATA

For a water pixel, the optical signal received by a satellite sensor (i.e., the top of 
atmosphere [TOA] reflectance, ρtoa) at wavelength λ can generally be obtained by the 
following equation (Gordon and Wang 1994):

 ρtoa(λ) = ρr(λ) + [ρa(λ) + ρra(λ)] + t(λ)ρw(λ), (9.3)

where ρr(λ) is the reflectance from Rayleigh scattering, [ρa(λ) + ρra(λ)] is the reflec-
tance from the sum of aerosol scattering and the interaction between Rayleigh and 
aerosol scattering (i.e., the aerosol multiple-scattering reflectance), t(λ) is the diffuse 
transmittances of the atmospheric column, and ρw(λ) is the water-leaving reflectance.

Figure 9.5 shows two examples of in situ–measured water-leaving reflectance and 
the corresponding TOA reflectance measured by MERIS in Deadman Bay, Florida  
(clear water) and Lake Kasumigaura, Japan (turbid water), respectively. It is clear 
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FIGURE 9.5 Examples of in situ–measured water-leaving reflectance and corresponding 
TOA reflectance measured by MERIS in Deadman Bay, Florida (a) and Lake Kasumigaura, 
Japan (b).
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in these examples that the atmosphere contributes much more signal than the water 
body itself. According to the IOCCG (2000, 2010), in most water areas, only 10% of 
the signals recorded by the satellite sensors originate from water bodies in the visible 
wavelengths (e.g., Figure 9.5a). It is therefore essential to carry out atmospheric cor-
rection before applying the satellite data to quantitative estimations of water quality 
parameters.

The key point for atmospheric correction is to estimate the aerosol type and 
amount for a given pixel because the Rayleigh-scattering component (ρr) can be pre-
dicted a priori. The most general approach for estimating the aerosol contribution is 
to use two specific bands (or reference bands) for which the water-leaving reflectance 
(ρw) can be assumed to be zero. The aerosol contribution at these two specific bands 
can be estimated as follows:

 [ρa(λ1) + ρra(λ1)] = ρtoa(λ1) − ρr(λ1) (9.4)

 [ρa(λ2) + ρra(λ2)] = ρtoa(λ2) − ρr(λ2). (9.5)

Two specific bands are required because we need to estimate not only the magni-
tude of the aerosol’s contribution but also its dependence on wavelength for extrapo-
lating (or interpolating) the aerosol contribution to the other shorter bands. For this, 
the estimated aerosol multiple scatterings must first be converted to aerosol single 
scatterings (ρas) at the same bands through a look-up table (LUT) as follows (Gordon 
and Wang 1994):

 [ρa(λ1) + ρra(λ1)] → ρas(λ1) (9.6)

 [ρa(λ2) + ρra(λ2)] → ρas(λ2). (9.7)

The atmospheric correction parameter epsilon (i.e., ε(λ1, λ2)) is then calculated 
as follows:

 ε(λ1, λ2) = ρas(λ1)/ρas(λ2). (9.8)

The values of ε(λ1, λ2) correspond to different aerosol models. For a given aero-
sol model, epsilon values for other bands can be extrapolated using the following 
equation:

 ε(λ, λ2) = exp[ln(ε(λ1, λ2))/(λ2 − λ1)*(λ2 − λ)]. (9.9)

Aerosol single scatterings for all wavelengths (ρas(λ)) can then be estimated using 
the following equation:

 ρas(λ) = ρas(λ2)*ε(λ, λ2). (9.10)

(c) ketabton.com: The Digital Library



176 Remote Sensing for Sustainability

The obtained aerosol single scatterings can be reconverted to the correspond-
ing aerosol multiple scatterings for all wavelengths through the LUT prepared in 
advance:

 ρas(λ) → [ρa(λ) + ρra(λ)]. (9.11)

Finally, the water-leaving reflectance (ρw(λ)) at all wavelengths can be derived as 
follows:

 ρw(λ) = (ρtoa(λ) − {ρr(λ) + [ρa(λ) + ρra(λ)]})/t(λ). (9.12)

For clear waters (e.g., open oceans, or Figure 9.5a), the water-leaving reflec-
tance at NIR bands can be assumed to be zero owing to the very high absorp-
tion of pure water and little or no contribution from suspended particles in these 
bands. Generally, SeaWiFS bands 7 and 8, MODIS bands 15 and 16, MERIS 
bands 12 and 13, and GOCI bands 7 and 8 can be used as two specific bands 
(i.e., λ1 and λ2) for the purpose of atmospheric correction. However, for turbid 
waters (e.g., some inland and coastal water, or Figure 9.5b), these two specific 
NIR bands should be shifted to longer wavelengths such as SWIR bands because 
high concentrations of particulate matters make the water-leaving reflectance in 
the NIR bands nonnegligible (Wang and Shi 2005). At the SWIR bands, even for 
turbid water, water-leaving reflectance can still be assumed to be zero because 
the absorption of pure water at these wavelengths is much higher than that at NIR 
bands (Shi and Wang 2009).

Unfortunately, there is no existing satellite sensor with SWIR bands for ocean-
color remote sensing. Although the MODIS land bands at SWIR wavelengths (e.g., 
bands 5 and 7) have shown potential for atmospheric correction over highly tur-
bid water (Wang and Shi 2007), SNR values of the two SWIR bands that are too 
low make atmospherically corrected water-leaving reflectance at visible bands quite 
noisy (Hu et al. 2012a; Wang and Shi 2012).

Another approach for solving the atmospheric correction problem over turbid 
waters is to estimate the water-leaving reflectance at two NIR reference bands by a 
bio-optical model instead of assuming them to be zero (e.g., Bailey et al. 2010; Hu 
et al. 2000; Jaelani et al. 2015; Stumpf et al. 2003; Wang et al. 2012). The estimated 
water-leaving reflectance values at the two NIR reference bands are then removed 
from the corresponding TOA reflectance to meet Equations 9.4 and 9.5. This 
approach is available for the satellite sensors without SWIR bands (e.g., SeaWiFS, 
MERIS, and GOCI).

A summary of existing atmospheric correction algorithms for turbid waters can 
be found in papers by the IOCCG (2010) and Jaelani et al. (2013). Most of these algo-
rithms have been integrated into widely used software packages such as SeaDAS 
(SeaWiFS Data Analysis System; http://seadas.gsfc.nasa.gov/) and BEAM (Basic 
ERS & ENVISAT AATSR and MERIS; http://www.brockmann-consult.de/cms 
/web/beam), which are easily available and well-supported platforms.
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9.5  ESTIMATION OF WATER QUALITY PARAMETERS 
FROM REMOTE SENSING DATA

9.5.1  Bio-optical Model

The fundamental relationship for retrieving water quality parameters is the bio-optical 
model, which can be expressed by the following equations (Gordon et al. 1988):

 rrs(λ) = g0μ(λ) + g1μ(λ)2 (9.13)

 μ(λ) = bb(λ)/[a(λ) + bb(λ)], (9.14)

where g0 = 0.089, g1 = 0.125, and a(λ) and bb(λ) are the total absorption and 
backscattering coefficients, respectively. rrs(λ) is the subsurface remote sensing 
reflectance, which can be calculated from the above-surface remote sensing 
reflectance (Rrs(λ)) as follows (Lee et al. 2002):

 rrs(λ) = Rrs(λ)/[0.52 + 1.7 Rrs(λ)]. (9.15)

a(λ) and bb(λ) can be further expressed as the sum of the water constituents’ absorp-
tion and the backscattering coefficients, respectively, as follows (Mobley 1994):

 a(λ) = aw(λ) + aph(λ) + adg(λ) (9.16)

 bb(λ) = bbw(λ) + bbp(λ), (9.17)

where aw(λ), aph(λ), and adg(λ) are the absorption coefficients of pure water, 
phytoplankton, and the combination of detritus (often referred to as aNAP) and 
gelbstoff (often referred to as aCDOM), respectively, and bbw(λ) and bbp(λ) are the 
backscattering coefficients of pure water and particulate matter, respectively. The 
parameter bbp(λ) is often further expressed as the sum of backscattering coefficients 
of phytoplankton (bbph(λ)) and nonalgal particles (bbNAP(λ)).

9.5.2  estiMations of the BiogeocheMical paraMeters of Water Bodies

Mouw et al. (2015) recommended a minimum list for desired biogeochemical 
parameters from remote sensing: the concentrations of chlorophyll-a (Chl-a), total 
suspended matter, particulate organic matter, particulate inorganic matter, dissolved 
organic matter, and dissolved inorganic matter. Algorithms for estimating Chl-a 
have been well developed (Matthews 2011; Odermatt et al. 2012).

Two types of algorithms have been widely used for estimating Chl-a from remote 
sensing data: band ratio–based and baseline-based algorithms (Table 9.3). The band 
ratio–based algorithm can be generally expressed as

 Chl-a = f(band ratio), (9.18)
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where f represents a function that can be linear or nonlinear. For clear or optically 
simple waters (e.g., open oceans), the band ratio of Rrs at blue and green bands is 
widely used for estimating Chl-a (e.g., OCx form-based algorithms; O’Reilly et al. 
1998). This is because the Rrs at the blue band is strongly related to chlorophyll 
absorption, whereas at the green band, it is relatively insensitive to changes in Chl-a 
values owing to the weak absorption of chlorophyll at this band, and it can thus be 
used as a reference.

However, for optically complex waters with moderate turbidities, the Rrs values in 
the red and NIR bands are preferred for the retrieval of Chl-a (Dekker 1993; Gitelson 
and Kondratyev 1991; Han and Rundquist 1997). This is because the Rrs values at 
the blue and green bands are affected not only by phytoplankton but also by other 
constituents (i.e., NAP and CDOM) (Gitelson et al. 2009). The use of the band ratio 
of Rrs(NIR)/Rrs(red) can minimize the effects from NAP and CDOM based on four 
assumptions: (i) at the red band, aph + aw >> aNAP + aCDOM; (ii) at the NIR band, aw >> 
aph + aNAP + aCDOM; (iii) at both the red and NIR bands, a >> bb; and (iv) for backscat-
tering coefficients, bb(red) ≈ bb(NIR) (Gitelson et al. 2008). According to the above 
assumptions, the Rrs(NIR)/Rrs(red) can be approximated as

 Rrs(NIR)/Rrs(red) ≈ [aph(red) + aw(red)]/aw(NIR). (9.19)

Since aw(λ) can be considered constant, the Rrs(NIR)/Rrs(red) value varies only 
with aph(red), which is strongly related to Chl-a. For example, Gilerson et al. (2010) 
proposed a two-band model, which uses the band ratio of Rrs at 709 and 665 nm (i.e., 
Rrs(709)/Rrs(665)) to estimate Chl-a in moderately turbid waters.

For optically complex waters with higher turbidities, the above assumptions 
from (i) to (iii) will become invalid (Dall’Olmo et al. 2005; Gitelson et al. 2008). 
Therefore, a three-band index that uses one Rrs at the red band (around 665 nm) 
and two Rrs at NIR bands (around 709 and 754 nm) was designed to address the 
effects of NAP and CDOM in these waters (Dall’Olmo et al. 2003; Gitelson et al. 
2008). First, the Rrs around the wavelengths 665 and 709 nm were inverted, and their 
difference was calculated to minimize the absorption effects of NAP and CDOM 
(i.e., R Rrs rs

− −−1 1665 709( ) ( )). This step is based on two assumptions: (i) aNAP(665) ≈ 
aNAP(709) and aCDOM(665) ≈ aCDOM(709), and (ii) bb(665) ≈ bb(709). Therefore, 
R Rrs rs

− −−1 1665 709( ) ( ) can be approximated as [aph(665) + aw(665) − aph(709) − aw(709)]/ bb. 
Then, the Rrs at the third wavelength around 754 nm is used to further minimize 
the effects by bb. This step is based on another two assumptions: (i) bb(665) ≈ bb(709) ≈ 
bb(754), and (ii) aw(754) >> aph(754) + aNAP(754) + aCDOM(754) + bb(754). The three-band 
index is thus designed as R R Rrs rs rs

− −−  ×1 1665 709 754( ) ( ) ( ), and can be approximated 
according to the above assumptions as

 

R R R a ars rs rs ph w
− −−  × ≈ +1 1665 709 754 665( ) ( ) ( ) [ ( ) (( )

( ) ( )] ( )

665

709 709 754− −a a aph w w/ .
 (9.20)
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Similar to the two-band index (Equation 9.19), the three-band index varies only 
with aph and thus can provide accurate Chl-a estimations in more turbid waters.

However, the assumption of aw(754) >> aph(754) + aNAP(754) + aCDOM(754) + 
bb(754) will be invalid in extremely turbid waters (Le et al. 2009; Yang et al. 2010). 
A four-band index (Le et al. 2009), an enhanced three-band index (Yang et al. 2010), 
and the Semi-Analytical Model Optimizing and Look-Up Tables (SAMO-LUT) 
algorithm (Yang et al. 2011) were then proposed for this type of waters. Since the 
independent variable in the SAMO-LUT algorithm is still a three-band index, the 
SAMO-LUT algorithm is considered a type of band ratio–based algorithm.

The second type of Chl-a estimation algorithm, that is, the baseline-based algo-
rithms, can be generally expressed as

 Chl-a = f(RH), (9.21)

where RH is the relative height of a reflectance peak (or trough, Rrs(λ2)) from a 
baseline formed linearly between Rrs values at two adjacent bands (i.e., Rrs(λ1) and 
Rrs(λ3) with λ1 < λ2 < λ3):

 RH = Rrs(λ2) − [Rrs(λ1) + (λ2 − λ1)/(λ3 − λ1)*(Rrs(λ3) − Rrs(λ1))]. (9.22)

A number of baseline-based algorithms have been proposed for estimating Chl-a 
in waters with various trophic states (Table 9.3). For example, Hu et al. (2012b) pro-
posed a color index–based algorithm (CIA) for ultra-oligotrophic oceans; Gower 
(1980) developed a fluorescence line height algorithm for mesotrophic and eutrophic 
waters; Gower et al. (2005) and Hu (2009) suggested a maximum chlorophyll index 
(MCI) and a floating algae index, respectively, for hypertrophic waters.

Generally, the tolerance to spectrally related errors of Rrs (e.g., instrument noise 
and imperfect atmospheric correction) is a great advantage of these baseline-based 
algorithms (Hu 2009; Hu et al. 2012b). However, the baseline-based algorithms often 
suffer from effects of non-phytoplankton matter (e.g., NAP and CDOM). In contrast, 
some band ratio–based algorithms can reduce the effects from NAP and CDOM, 
but they are intolerant to spectrally related errors of Rrs. This is probably because of 
their form designs (Equations 9.19, 9.20, and 9.22; Hu et al. 2012b). Table 9.3 gives a 
summary of several representative algorithms for Chl-a estimation in various waters.

Other algorithms for estimating water quality parameters are described in two 
comprehensive reviews (Matthews 2011; Odermatt et al. 2012).

9.5.3  estiMations of the inherent optical properties of Water Bodies

The recommended standard products of inherent optical properties (IOPs) from 
remote sensing are the total absorption coefficient (a(λ)), the absorption coefficient 
of each constituent (i.e., aph(λ), aNAP(λ), and aCDOM(λ)), and the backscattering 
coefficient of particulate matters (bbp(λ)) (Mouw et al. 2015). The bbp(λ) is usually 
expressed as follows (Lee et al. 2002):

 bbp(λ) = bbp(λ0)(λ0/λ)Y, (9.23)
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where λ0 is the reference wavelength and Y is the spectral slope. For clear waters, 
λ0 = 555 nm was used (Lee et al. 2002). However, for turbid waters, λ0 = 750 nm 
was suggested (Yang et al. 2013). From Equations 9.14 and 9.17, bbp(λ0) can be 
expressed as

 bbp(λ0) = μ(λ0)a(λ0)/(1 − μ(λ0)) − bbw(λ0). (9.24)

For clear waters, a(λ0) can be obtained from an empirical relationship, which is 
the function of rrs at 443, 490, 555, and 667 nm (Lee et al. 2002). For turbid waters, 
since λ0 = 750 nm, a(λ0) ≈ aw(λ0) can be assumed because the water absorption at 
this wavelength is much larger than that from other constituents (Yang et al. 2013).

The spectral slope Y can be estimated by an empirical equation for clear waters 
(Equation 9.25; Lee et al. 2002) and a semi-analytical equation for turbid waters 
(Equation 9.26; Yang et al. 2013):

 Y = 2.2(1 − 1.2exp(−0.9rrs(443)/rrs(555))) (9.25)

 Y = −372.99(log[μ(750)/μ(780)])2 + 37.286(log[μ(750)/μ(780)]) + 0.84. (9.26)

Then, the total absorption coefficient can be obtained as

 a(λ) = (1 − μ(λ))*(bbw(λ) + bbp(λ))/μ(λ). (9.27)

It is still much more challenging to separate the absorption coefficient of each 
constituent from the total absorption coefficient because more assumptions are 
required. A detailed review of IOP retrievals was provided by the IOCCG (2006).

9.5.4  estiMations of the apparent optical properties of Water Bodies

Except for Rrs(λ), the recommended standard products of apparent optical properties 
from remote sensing are the diffuse attenuation coefficient (Kd(λ)) and the euphotic 
zone depth (Zeu) (Mouw et al. 2015). Both of these parameters are of great importance 
in studying and modeling the physical, chemical, and biological processes in water 
bodies (Kirk 1994; Mobley 1994). Semi-analytical algorithms have been proposed 
to remotely estimate Kd(λ) and Zeu based on the retrievals of the total absorption and 
backscattering coefficients (i.e., a and bb; Lee et al. 2005a, 2007).

Kd(λ) is commonly defined as the vertically averaged value of the spectral diffuse 
attenuation coefficient at depth z (i.e., Kd(λ, z)) over the water layer (Lee et al. 2005a). 
Kd(λ, z) is defined as follows (Gordon et al. 1980):

 Kd(λ, z) = −(1/Ed(λ, z))*(dEd(λ, z)/dz), (9.28)

where Ed(λ, z) is the downwelling irradiance at depth z. The maximum depth for 
vertically averaging Kd(λ, z) values is generally defined as the depth where the 
downwelling irradiance is reduced to 10% of the surface irradiance (Lee et al. 2005a). 
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A general model of Kd(λ) was suggested by Lee et al. (2005a) through numerical 
simulations of radiative transfer in water bodies:

 Kd(λ) = (1 + 0.005θa) a(λ) + 4.18(1 − 0.52e−10.8 a(λ)) bb(λ), (9.29)

where θa is the solar zenith angle in air, which can be derived from the location and 
measuring time.

Zeu is practically defined as the depth at which photosynthetic available radiation 
(PAR) is 1% of its surface value (Kirk 1994). In other words, if the vertical transmit-
tance of the PAR at a depth z (i.e., TPAR(z)) reaches 1%, this depth is the Zeu. TPAR(z) 
can be derived as follows (Lee et al. 2007):

 TPAR(z) = exp[−Kd(PAR, z)*z], (9.30)

where Kd(PAR, z) is the attenuation coefficient of PAR between the water surface 
and the depth z, which can be estimated from a semi-analytical model (Lee et al. 
2005b):

 Kd(PAR, z) = K1 + K2/(1 + z)0.5, (9.31)

where K1 and K2 are functions of the total absorption and backscattering coefficients 
at 490 nm (i.e., a(490) and bb(490)) as well as the solar zenith angle (θa):

 K a b1 0 057 0 482 490 4 221 490 1 0 09= − + + +[ . . ( ) . ( )][ . sin(b θθa)]  (9.32)

 K a b2 0 183 0 702 490 2 567 490 1 465 0 667= + − −[ . . ( ) . ( )][ . .b ccos( )]θa . (9.33)

Since a(λ) and bb(λ) can be derived from Rrs (Lee et al. 2002; Yang et al. 2013), 
the Kd(λ) and Zeu values can also be remotely derived. The above models (Equations 
9.29 through 9.33) have been successfully applied to both clear oceanic waters (Lee 
et al. 2005b, 2007) and turbid inland waters (Yang et al. 2014, 2015).

9.6  A HYBRID APPROACH FOR DEVELOPING 
A UNIVERSAL ALGORITHM

A universal algorithm should have the ability to address various water types ranging 
from clear ultra-oligotrophic to turbid hypertrophic systems. However, previous 
studies have shown that each algorithm has its strengths and limitations for different 
water types. For example, Wang and Shi (2007) reported that the standard NIR 
atmospheric correction algorithm can provide good-quality ocean-color products for 
the global open oceans and offshore waters, but the SWIR atmospheric correction 
algorithm should be used for turbid coastal waters to produce similar quality. Hu 
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et al. (2012b) reported that the CIA can only be applied to estimate Chl-a for ultra-
oligotrophic oceans with Chl-a concentrations lower than 0.25 mg m−3, whereas for 
oceanic waters with Chl-a concentrations higher than 0.3 mg m−3, the OC4 algorithm 
should be used. Matsushita et al. (2015) also reported that a blue-green algorithm 
such as OC4 can be used in optically simple lakes, but a red-NIR algorithm such as 
the two-band model or a three-band model must be used for optically complex turbid 
lakes to minimize effects from non-phytoplankton matter. These findings indicate 
that a hybrid approach is desirable to address waters with various optical properties.

Figure 9.6 illustrates a conceptual diagram for a hybrid approach. In addition 
to candidate estimation algorithms for atmospheric correction and water quality 
parameters (e.g., Chl-a), another type of algorithm is required for selecting the most 
appropriate algorithm for different water types. Several studies have attempted to 
address this issue. For example, Wang and Shi (2007) proposed the use of a turbid 
water index to identify productive or turbid waters for which the SWIR atmospheric 
correction should be used instead of the standard NIR atmospheric correction algo-
rithm. Gomez et al. (2011) developed two normalized difference indices, that is, 
[Rrs(560) − Rrs(443)]/[Rrs(560) + Rrs(443)] < 0 and [Rrs(709) − Rrs(665)]/[Rrs(709) + 
Rrs(665)] > 0 for first separating Mediterranean lakes of the European Union into 
two water types, and then different Chl-a retrieval algorithms are selected for each 
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WT 1 WT nWT 2
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Chl-a estimation
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FIGURE 9.6 Conceptual diagram for a hybrid approach. AC, atmospheric correction; Chl-a, 
chlorophyll-a concentration; WT, water type.
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water type to obtain the most accurate Chl-a concentrations for the whole study area. 
Moore et al. (2014) proposed an optical water type (OWT) framework for selecting 
and blending two Chl-a retrieval algorithms. Matsushita et al. (2015) suggested a 
hybrid algorithm that uses an MCI to switch three different types of Chl-a estimation 
algorithms for clear, moderate-turbid, and high-turbid waters, respectively. These 
attempts indicate that the hybrid approach has significant potential toward the devel-
opment of a universal algorithm for monitoring water quality with remote sensing 
image data.

9.7  CONCLUSIONS

The remote sensing technique has been widely used for detecting, mapping, and 
quantifying water bodies. In this chapter, we introduced algorithms that can be used 
to obtain water quality data from remote sensing, and we described major suitable 
satellite sensors, water body delineation, atmospheric correction, and water quality 
estimation. These remotely obtained water quality data may be useful for meeting 
Sustainable Development Goal 6.3 proposed by the United Nations Open Working 
Group. Although the usefulness of remote sensing data is widely recognized, a few 
cases remain in which these data have been operationally used in water resource 
management. Difficulties still exist regarding both the hardware and software of 
remote sensing systems used to obtain additional scientific data for studies of the 
sustainable use of water resources. For the hardware, a more powerful satellite 
sensor with sufficient spatial resolution, temporal resolution, spectral resolution, 
and radiometric sensitivity is necessary for collecting more useful information. For 
the software, a hybrid algorithm that combines the advantages of each individual 
algorithm is needed for a universal application. Nevertheless, the remote sensing 
technique will remain a powerful tool in sustainability studies by providing images 
of Earth on a daily basis.
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10 Urban Air Quality 
Studies Using EO Data

Xuefei Hu

10.1  PM2.5 AND ITS HEALTH EFFECTS

PM2.5 refers to particles with an aerodynamic diameter of less than 2.5 μm and is 
also known as fine particulate matter, including dust, dirt, soot, smoke, and liquid 
droplets. PM2.5 originates from both natural and anthropogenic sources (Alves et al. 
2000). Some particulates are emitted naturally from volcano eruptions, dust storms, 
and forest and grassland fires. However, natural sources only make a small contribu-
tion to the total concentration, and anthropogenic sources are more important. For 
instance, human activities, including the burning of fossil fuels in road vehicles, 
power plants, and certain industrial processes, contribute a significant amount of 
fine particles. In addition, secondary aerosols derived from precursors emitted from 
various sources such as cars, trucks, power plants, and industrial facilities are also 
a major contributor. Secondary aerosol formation occurs because of chemical reac-
tion in the atmosphere generally downwind a distance from the original emission 
sources (Hodan and Barnard 2004). Besides outdoor sources, PM2.5 is also produced 
by indoor activities such as cooking (e.g., frying). The composition of particles varies 
and depends on their sources. For example, mineral dust is generally made of min-
eral oxides. Primary aerosols that are directly emitted from emission sources into 
the atmosphere may include sulfur dioxide (SO2), nitrogen oxides (NOx), volatile 
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organic compounds (VOCs), ammonia (NH3), elemental carbon (EC), and crustal 
materials such as soil and ash. Secondary aerosols may include ammonium sulfate 
and ammonium nitrate, which are typically formed through chemical reaction of 
precursors such as ammonia, SO2, and NOx (Squizzato et al. 2013). Organic carbon 
(OC) is one of a large group of compounds (VOCs) and can be either primary or 
secondary. It is formed by a variety of processes, including combustion and second-
ary organic aerosol formation. In general, coarse particles are mainly made up of 
primary aerosols, and fine particles are heavily contributed by secondary aerosols 
(Deng et al. 2013).

Numerous epidemiological and experimental studies have shown that PM2.5, one 
of the criterion air pollutants regulated by the US National Ambient Air Quality 
Standard, is associated with various adverse health outcomes including cardiovascu-
lar and respiratory mobility and mortality (Dominici et al. 2006). Peters et al. (2001) 
suggested that the elevated concentrations of fine particles may increase the risk of 
myocardial infarction after a few hours or 1 day of exposure to those air pollutants. 
Riediker et al. (2004) found that in-vehicle exposure to PM2.5 is associated with 
cardiovascular effects and may cause pathophysiologic changes including inflam-
mation, coagulation, and cardiac rhythm. Miller et al. (2007) revealed that long-
term exposure to PM2.5 is associated with increased risk of cardiovascular disease 
and death for postmenopausal women. Puett et al. (2009) further demonstrated that 
chronic exposure to PM2.5 tends to increase the risk of all-cause and cardiovascu-
lar mortality. Madrigano et al. (2013) found that long-term exposure to area PM2.5 
was associated with the occurrence of acute myocardial infarction. Neophytou et 
al. (2014) revealed that occupational PM2.5 exposure increases the risk of incident 
ischemic heart disease in both aluminum smelting and fabrication facilities. Sunyer 
and Basagaña (2001) reported that fine particles are associated with the risk of death 
in patients with chronic obstructive pulmonary disease (COPD), and their findings 
pointed out the adverse impact of fine particles on the trigger of death in COPD 
patients. Bose et al. (2015) demonstrated that even low indoor PM2.5 levels may cause 
a systematic inflammatory response in COPD. Norris et al. (1999) found a significant 
association between emergency department visit for asthma in children and fine par-
ticulate matter. Lin et al. (2002) reported that exposure to fine particles emitted from 
heavy traffic contributes to childhood asthma hospitalization. Brauer et al. (2002) 
also revealed a positive association between respiratory diseases (e.g., respiratory 
infection and asthma) and fine particles in children. Spira-Cohen et al. (2011) sug-
gested that pollution-related asthma exacerbations in children living near roadways 
are mainly attributed to the diesel soot fraction of PM2.5. Habre et al. (2014) reported 
that exposure to indoor and outdoor PM2.5 may exacerbate cough and wheeze symp-
toms in asthmatic children. Laden et al. (2006) found an increase in overall mortal-
ity associated with each 10 μg/m3 increase in PM2.5, indicating that cardiovascular 
mortality and lung cancer mortality were positively associated with ambient PM2.5 
concentrations. Kioumourtzoglou et al. (2016) found strong evidence showing poten-
tially harmful effects of long-term exposure to PM2.5 on neurodegeneration. Chung 
et al. (2015) pointed out that long-term exposure to PM2.5 was associated with mor-
tality in the elderly population of the eastern United States.
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10.2  REMOTE SENSING APPLICATIONS FOR PM2.5 
CONCENTRATION PREDICTION

Most studies of the associations between PM2.5 and health effects have relied on 
ground measurements typically from regulatory monitoring systems, such as United 
States Environmental Protection Agency (USEPA) Air Quality System to estimate 
PM2.5 exposure. Although the EPA measurements are considered ground truth and 
the most accurate, the spatial distribution of those monitoring stations is sparse 
and uneven. For example, the United States has an extensive monitoring network and 
has approximately 1200 stations. However, those stations only cover ~30% of ~3000 
counties in the conterminous United States. In addition, many of those stations are 
located in or near urban areas, which leaves ~30% of the US population living in 
suburban and rural areas without any PM2.5 monitors. Thus, the limited coverage of 
ground monitoring stations limited the epidemiological studies to areas near moni-
toring sites. In addition, collecting PM2.5 measurements from ground monitoring 
station is also expensive and time-consuming.

Satellite remote sensing data, given its comprehensive spatiotemporal coverage, 
have the potential to expand ground network by estimating PM2.5 concentrations 
using aerosol optical depth (AOD) in areas where monitoring stations are not avail-
able or too sparse. AOD measures light extinction by aerosol scattering and absorp-
tion in an atmospheric column, and AOD retrieved from visible channels is most 
sensitive to particles with size from 0.1 to 2 μm (Kahn et al. 1998). Thus, it can be 
considered a representation of the loadings of fine particles in an atmospheric col-
umn. In addition, Wang and Christopher (2003) reported a good correlation between 
the satellite-derived AOD and PM2.5. Using satellite-derived AOD to estimate PM2.5 
exposure is not only time and cost efficient, but could substantially improve esti-
mates of population exposure to PM2.5 (van Donkelaar et al. 2010). In contrast, using 
ground measurements inevitably introduces measurement errors to estimation of 
population exposure (Zeger et al. 2000).

10.2.1  Data

10.2.1.1  AOD Data
To date, AOD derived from a number of satellite sensors, including MODerate 
resolution Imaging Spectroradiometer (MODIS) (Hu et al. 2013; Liu et al. 
2007a; Zhang et al. 2009), Multiangle Imaging SpectroRadiometer (MISR) 
(Liu et al. 2007a), Geostationary Operational Environmental Satellite Aerosol/
Smoke Product (GASP) (Liu et al. 2009; Paciorek et al. 2008), and Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) (Hu et al. 2014a,b,c), has 
been used in previous studies to estimate PM2.5 concentrations. In addition, the 
new Visible Infrared Imaging Radiometer Suite (VIIRS) AOD product will poten-
tially have wide applications for PM2.5 concentration prediction when the data 
quality becomes acceptable. Table 10.1 lists all available AOD products, their 
characteristics, and the studies in which these AOD products were used for PM2.5 
concentration estimation.
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10.2.1.1.1  Geostationary Operational Environmental 
Satellite Aerosol/Smoke Product

GASP retrieves AOD over the contiguous United States from the GOES-East and 
GOES-West visible imagery with a temporal resolution of 30 min (up to 15 min) and 
a spatial resolution of 4 km. Unlike instruments onboard polar-orbiting satellites 
that provide only one daily AOD retrieval, the GOES satellite’s geostationary orbit 
allows AOD retrievals with higher frequency. As a result, the GASP AOD product 
with high temporal resolution has the ability to capture rapidly changing aerosol 
conditions attributed to dust storms and fire events.

The GASP AOD has been used as an important proxy for PM2.5. Paciorek et al. 
(2008) examined the association between GASP AOD and ground-level PM2.5 con-
centrations and found that GASP AOD has the potential to improve exposure esti-
mates for epidemiological studies, considering its higher temporal coverage than 
MODIS and MISR. Green et al. (2009) evaluated the quality of GASP AOD and its 
potential to predict surface PM2.5. The results point out that using satellite AOD to 
predict surface PM2.5 needs to take several factors into account, including seasonal 
and diurnal variations in particle size distribution, relative humidity, and seasonal 
change in boundary layer height. Liu et al. (2009) developed a two-stage general-
ized addictive model (GAM) with GASP AOD, meteorological fields, and land use 
variables as predictors to estimate ground-level PM2.5 concentrations in a domain 
centered in Massachusetts. The results show that the model with GASP AOD out-
performs the non-AOD model and has a greater predicting power. Chudnovsky et al. 
(2012b) used a mixed-effects model with the control for the day-to-day variability 
in the PM2.5–AOD relationship to predict PM2.5 concentrations in the New England 
region from GASP AOD. The predicted PM2.5 concentrations have a good agreement 
with observations, which indicates that accounting for daily variability in the PM2.5–
AOD relationship is essential to obtain spatiotemporally resolved PM2.5 exposure.

10.2.1.1.2  Moderate Resolution Imaging Spectroradiometer
The MODIS aerosol product monitors AOD over both ocean and land and provides 
daily near-global observations at a spatial resolution of 10 km. Two types of MODIS 

TABLE 10.1
Available AOD Products, Their Characteristics, and Related Studies

AOD Products Spatial Resolutions Studies

GASP 4 km Chudnovsky et al. 2012b; Green et al. 2009; Liu et al. 
2009; Paciorek et al. 2008 etc.

MODIS 10 km Hu et al. 2013; Lee et al. 2011; Lin et al. 2015; Ma et al. 
2015; Wang and Christopher 2003 etc.

MISR 17.6 km Liu et al. 2004, 2007b; Ma et al. 2014; van Donkelaar et al. 
2006 etc.

MAIAC 1 km Chudnovsky et al. 2012a, 2013; Hu et al. 2014a,b; 
Just et al. 2015; Lee et al. 2015 etc.

VIIRS 6 km Schliep et al. 2015 etc.
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AOD products are available, including MOD04 and MYD04. MOD04 contains 
data collected from the TERRA satellite since 2000, while MYD04 includes data 
acquired from the AQUA platform from 2002 onward. Compared to previous efforts 
such as GOES and AVHRR, MODIS expands spectral channels for aerosol measure-
ment, and as a result, MODIS not only can retrieve AOD over dark vegetated/soiled 
land by the Dark-Target aerosol retrieval approach but also derive AOD over some 
brighter surfaces such as deserts using the Deep-Blue algorithm through the blue 
band. In addition, MODIS is also the first to provide a real solution for AOD retriev-
als over land on a global scale.

MODIS AOD has been widely used in PM2.5 concentration predictions. For 
instance, Wang and Christopher (2003) examined the relationship between MODIS 
AOD and hourly surface PM2.5 at seven locations in Jefferson county, Alabama. 
Zhang et al. (2009) examined the relation between MODIS AOD and PM2.5 over 
the 10 USEPA-defined geographic regions in the United States, and the results show 
good correlations over the eastern United States in summer and fall. Hu (2009) used 
geographically weighted regression (GWR) to derive a spatially complete PM2.5 
surface covering the conterminous United States from MODIS AOD. Lee et al. 
(2011) developed a mixed-effects model that allows day-to-day variability in daily 
PM2.5–AOD relationships to predict PM2.5 concentrations in the New England region 
from MODIS AOD. Kloog et al. (2012) developed an advanced three-stage model 
to predict spatiotemporally resolved PM2.5 concentrations using MODIS AOD in 
the Mid-Atlantic States. The model has the capability to predict PM2.5 exposure in 
areas where AOD is missing. Hu et al. (2013) developed a GWR model with MODIS 
AOD, meteorological fields, and land use variables as predictors to predict PM2.5 
concentrations in the southeastern United States by incorporating spatially varying 
relationships between PM2.5 and AOD. Lin et al. (2015) retrieved ground-level PM2.5 
concentrations from MODIS AOD by conducting both vertical and humidity correc-
tions. Xie et al. (2015) developed a mixed-effects model to derive daily estimations 
of surface PM2.5 in Beijing from 3-km-resolution MODIS AOD. Ma et al. (2015) 
developed a two-stage statistical model to estimate ambient PM2.5 concentrations 
from 2004 to 2013 in China using MODIS collection 6 AOD data.

10.2.1.1.3  Multiangle Imaging Spectroradiometer
MISR is an instrument onboard the Terra satellite in a sun-synchronous orbit, and 
its five viewing angles (0°, 26.1°, 45.6°, 60.0°, and 70.5°) allow changes in reflec-
tion that provides the means to distinguish different types of aerosols. The swath of 
the MISR instrument is ~400 km, which allows it to view the entire Earth surface 
every 9 days. The MISR aerosol product is at a spatial resolution of 17.6 km derived 
by the MISR Standard Aerosol Retrieval Algorithm from MISR top-of-atmosphere 
radiances. Kahn et al. (2005) compared MISR AOD and Aerosol Robotic Network 
(AERONET) data on a global scale and obtained high correlation coefficients 
between them for various sites.

Many studies have examined the relationship between MISR AOD and surface 
PM2.5 concentrations. Liu et al. (2004) used the global chemical transport models 
output and obtained the local PM2.5–AOD conversion factors over the contigu-
ous United States to predict surface PM2.5 concentrations from MISR AOD. van 
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Donkelaar et al. (2006) used the factors affecting the relationship between PM2.5 
and AOD simulated from GEOS-CHEM to estimate ground-level PM2.5 concentra-
tions from both MISR and MODIS AOD, and they found significant spatial variation 
of the relationship between the annual mean ground-level measurements and PM2.5 
estimated from MODIS and MISR. Liu et al. (2007b) used the MISR fractional AOD 
and aerosol transport model constraints to predict ground-level PM2.5 concentrations 
and its major constituents in the continental United States. The results show that 
using fractional AOD can significantly improve the estimating power of the model, 
compared with similar models with total-column AOD as the single predictor. Liu 
et al. (2007a) compared the ability of MISR and MODIS AOD to predict ground-
level PM2.5 concentrations in St. Louis, MO, and found that MISR achieves higher 
prediction accuracy, while MODIS provides better spatial coverage. Ma et al. (2014) 
developed a national-scale GWR model to estimate daily PM2.5 concentrations in 
China with AOD data fused from MISR and MODIS data.

10.2.1.1.4  Multi-Angle Implementation of Atmospheric Correction
The MAIAC AOD product is derived from MODIS radiances using a newly devel-
oped MAIAC algorithm. The algorithm has a global scope and can retrieve AOD 
over both dark and bright surfaces at a spatial resolution of 1 km. Validation over the 
continental United States shows that MAIAC and operational Collection 5 MODIS 
Dark Target AOD have a similar accuracy over dark and vegetated surfaces, while 
MAIAC achieved higher accuracy over brighter surfaces (Lyapustin et al. 2011). In 
addition, MAIAC provides greater spatial coverage and more AOD retrievals than 
MODIS (Hu et al. 2014a).

Chudnovsky et al. (2012a) investigated the relationship between MAIAC AOD 
and PM2.5 concentrations measured by EPA ground monitors at a variety of spatial 
scales and found that the correlation between PM2.5 and AOD decreased significantly 
with the decrease of AOD resolution. Chudnovsky et al. (2013) further compared 
the relationship between MAIAC AOD and PM2.5 measured from 84 EPA ground 
monitors with the PM2.5–AOD relationship using MODIS AOD, and the results show 
that the correlation coefficient for MAIAC is slightly higher, and MAIAC AOD is 
more capable of capturing spatial patterns of PM2.5. In addition, MAIAC AOD can 
also help increase the number of days for PM2.5 prediction. Hu et al. (2014a) devel-
oped an advanced two-stage model with MAIAC AOD as the primary predictor 
and meteorological fields and land use variables as secondary predictors to estimate 
spatiotemporally resolved PM2.5 concentrations in the southeastern United States at 
1 km resolution. The model includes a linear mixed-effects model to account for the 
day-to-day variability in the PM2.5–AOD relationship and a geographical weighted 
regression model to explain the spatial variability. Hu et al. (2014b) further inves-
tigated the 10-year spatiotemporal trend of PM2.5 concentrations in the southeast-
ern United States using PM2.5 at 1 km resolution estimated from MAIAC AOD. 
Kloog et al. (2014) predicted daily PM2.5 at 1 km resolution across the northeastern 
United States, including New England, New York, and New Jersey, from 2003 to 
2011 using MAIAC AOD. Lee et al. (2015) applied a separate mixed-effects model 
to predict daily PM2.5 concentrations at 1 km resolution in the southeastern United 
States for the years 2003–2011 using MAIAC AOD. Just et al. (2015) calibrated the 
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relationship between PM2.5 and MAIAC AOD using ground monitors, land use, and 
meteorological features and predicted daily PM2.5 concentrations at 1 km resolution 
across the great Mexico City area for 2004–2014.

10.2.1.1.5  Visible Infrared Imaging Radiometer Suite
The VIIRS instrument is onboard the Suomi National Polar Partnership, which was 
launched in late 2011 and is a polar-orbiting satellite with afternoon overpass (similar 
to Aqua, ~1:30 p.m. local time). VIIRS provides two high-resolution AOD products, 
including Intermediate Product at a spatial resolution of 750 m and Environmental 
Data Record with a resolution of 6 km. Two types of AOD products make it possible 
for air quality applications to examine spatial detail on an urban scale and also moni-
tor large-scale events like wildfires.

Because of the recent launch, applications of VIIRS AOD products for PM2.5 
prediction have been limited but are promising. Schliep et al. (2015) developed a 
hierarchical autoregressive model with daily spatially varying coefficients to esti-
mate daily average PM2.5 across the conterminous United States from VIIRS AOD. 
Because of the quality assurance protocol of VIIRS AOD, many missing AOD data 
contribute to the ineffectiveness of AOD in their model.

10.2.1.2  Fire Data
Another remote sensing product that can be used for PM2.5 concentration esti-
mation is fire data. Fires, including prescribed burning and wildfires, are impor-
tant sources of fine particulate matter. Zeng et al. (2008) estimated a maximum 
increase of 25 μg/m3 in PM2.5 concentrations within a day owing to prescribed 
burning emissions. Zhang et al. (2008) conducted a research in Beijing with the 
time span from July 2002 to July 2003 and found that biomass burning contributes 
18%–38% of PM2.5 organic carbon. Jaffe et al. (2008) reported that the increase in 
PM2.5 attributed to fires reaches a high fraction of the annual National Ambient Air 
Quality Standards in summer and has a significant contribution to regional haze 
in the western United States. Zhang et al. (2010) revealed that 13% of PM2.5 con-
centrations are attributed to biomass burning annually in the southeastern United 
States. Tian et al. (2009) reported that prescribed burning contributes 55% and 
80% of PM2.5 mass concentrations in January and March of 2002, respectively. 
Christopher et al. (2009) found a threefold increase of PM2.5 concentrations col-
lected from ground monitors in Birmingham, Illinois, during fire events, com-
pared to background values, although those monitors are hundreds of miles away 
from the fire sources.

10.2.1.2.1  MODIS Fire Product
The MODIS fire products are produced for the MODIS sensors onboard two Earth 
Observing System (EOS) satellites: Terra and Aqua. The two satellites are in sun-
synchronous orbits with different local overpass times (~1:30 p.m. for Aqua and 
~10:30 a.m. for Terra). As a result, MODIS can provide two overpasses over a location 
in a single day, which is important because the differences in fires between morning 
and afternoon can be detected. Two products exist. One is the MODIS Active Fire 
Product, which provides actively burning fire locations at satellite overpass times, 
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and the other is the MODIS Burned Area Product, which provides the burned area. 
The active fire products are generated daily at 1 km spatial resolution.

The use of MODIS fire in PM2.5 concentration prediction has been limited. Hu 
et al. (2014c) incorporated MODIS fire counts in an advanced two-stage model to 
examine if remotely sensed fire data can help improve the prediction accuracy of 
PM2.5 concentrations in the southeastern United States and conducted a sensitivity 
analysis to determine the optimum buffer radius centered around each PM2.5 moni-
toring site, which is crucial to count the fire incidents that may have impact on the 
corresponding monitors. The results show that when the radius reaches 75 km, fire 
count data achieve the greatest predictive power of PM2.5 concentrations. A compari-
son between the fire model and the nonfire model shows that the prediction accuracy 
increases more substantially at the sites with higher fire occurrence when MODIS 
fire count data are incorporated in the model, indicating that remotely sensed fire 
count data can provide a measurable improvement in PM2.5 concentration prediction, 
particularly in areas where fires occur frequently.

10.2.1.3  LIDAR Data
Light Detection and Ranging (LIDAR) data have also been used for estimating sur-
face PM2.5 concentrations. A LIDAR system can use a laser to measure aerosol scat-
tering as a function of height in the atmosphere, and the advantage of the LIDAR 
method over satellite instruments is that it can calculate optical depth for selected 
ranges in the atmosphere. Engel-Cox et al. (2006) pointed out that LIDAR appor-
tionment of the fraction of AOD within the planetary boundary layer (PBL) can 
achieve better agreement with surface PM2.5 than does the total column amount. 
He et al. (2008) used LIDAR measurements to obtain significant improvements in 
correlation between AOD with surface extinction and PM2.5 by considering aerosol 
vertical distribution. Chu et al. (2013) demonstrated that surface PM2.5 can be better 
estimated using AOD normalized by haze layer height derived from LIDAR aerosol 
extinction profiles than that using AOD only.

10.2.2  MethoDs

10.2.2.1  Physically Based Methods
Liu et al. (2004) developed a simple approach using outputs from a global chemis-
try and transport model (CTM) to examine the physical basis for the relationship 
between PM2.5 and AOD. The local PM2.5–AOD conversion factors were obtained 
using simulated PM2.5 concentrations and AOD. Simulated PM2.5 concentrations 
include sea salt and dust mass concentrations from the Global Ozone Chemistry 
Aerosol Radiation and Transport (GOCART) model and mass concentrations for 
SO4

2−, NO3
−, NH4

+, EC, and OC derived from GEOS-CHEM, while simulated AOD 
is composed of AOD values for sea salt and dust from GOCART and those for other 
particulate species from GEOS-CHEM. The results show that the predicted PM2.5 
concentrations from MISR AOD are strongly correlated with EPA PM2.5 measure-
ments, and the proposed method has the capability to reduce the uncertainty in esti-
mated PM2.5 concentrations owing to the discrepancy of correlations between lower 
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and upper tropospheric aerosols. van Donkelaar et al. (2006) extended this method 
to estimate PM2.5 concentrations from both MISR and MODIS and examined the 
factors affecting the PM2.5–AOD relationship using the GEOS-CHEM simulation. 
The GEOS-CHEM aerosol simulation was conducted for each day from January 
2001 to October 2002 at the MODIS and MISR overpass times to obtain local values 
for each parameter required in the PM2.5 prediction model. The results show that the 
relative vertical profile is the most influential factor affecting the spatial relationship 
between predicted and measured PM2.5 concentrations, while the temporal variation 
in AOD is the most important factor that affects the temporal relationship between 
predicted and measured concentrations. Lin et al. (2015) also used a physically based 
method to retrieve ground-level PM2.5 concentrations from MODIS AOD by taking 
account of the effect of the main aerosol characteristics. The effects on hygroscopic 
growth, particle mass extinction efficiency, and size distribution are estimated and 
incorporated in the PM2.5–AOD relationship.

10.2.2.2  Statistical Methods
Statistical models have also been used to predict PM2.5 concentrations from remotely 
sensed AOD, and the prediction models have been evolving from using AOD as 
the only predictor to the incorporation of multiple predictors including meteorologi-
cal and land use variables and from one-stage models to advanced multiple-stage 
models. Wang and Christopher (2003) explored the relationship between MODIS 
AOD and hourly PM2.5 mass concentrations at seven locations in Jefferson County, 
Alabama, and used an empirical linear regression model to derive PM2.5 concentra-
tions from MODIS AOD. The results indicate that MODIS AOD has great poten-
tial for air quality applications. However, this model assumes that the relationships 
between PM2.5 and AOD are constant over space and time, and a single linear PM2.5–
AOD relationship was established for all sampling sites and days, which may lead 
to bias for PM2.5 prediction. Hu (2009) found that the PM2.5–AOD relationships are 
spatially inconsistent across the conterminous United States and fitted a GWR model 
with MODIS AOD as the independent variable to investigate the PM2.5–AOD rela-
tionship using the 2-year average PM2.5 and AOD data. GWR is a linear regression 
model that can model spatial varying relationship and reveal how the PM2.5–AOD 
relationship changes over space by generating a continuous surface of estimates for 
each predictor at each local location instead of a universal value. The results show 
that it is appropriate to estimate PM2.5 surface from AOD using GWR, and the esti-
mated PM2.5 reaches an accuracy of 84%. Ma et al. (2014) developed a national-scale 
GWR model to estimate daily PM2.5 concentrations in China from fused satellite 
AOD, and their results confirm the satisfactory performance of the GWR model. Lee 
et al. (2011) developed a mixed-effects model with MODIS AOD as the predictor to 
predict daily PM2.5 concentrations in the New England region. The mixed-effects 
model with random intercept and slopes allows day-to-day variability in the PM2.5–
AOD relationship and, as a result, can calculate a PM2.5–AOD slope separately for 
each day. The results suggest that the proposed method makes it possible to deter-
mine spatial and temporal patterns of PM2.5 concentrations in a relatively large study 
domain from remotely sensed AOD. Xie et al. (2015) also developed a mixed-effects 
model to derive daily estimations of surface PM2.5 in Beijing from 3-km-resolution 
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MODIS AOD. The model can account for daily variations of the PM2.5–AOD rela-
tionship and shows good performance in model predictions. In addition to AOD 
values, many other parameters have been demonstrated as influential factors that 
can affect the relationship between PM2.5 and AOD and, as a result, have the poten-
tial to be used as predictors for PM2.5 concentration estimation. Liu et al. (2005) 
incorporated meteorological fields, including PBL height and relative humidity, as 
covariates in linear regression models to predict PM2.5 concentrations and found that 
they are highly significant predictors of PM2.5. Furthermore, Liu et al. (2007a) intro-
duced other meteorological parameters such as air temperature and wind speed to be 
included in a general linear regression model for PM2.5 concentration prediction, and 
the results show that both wind speed and air temperature are significant predictors 
of PM2.5. Moving one step further, Liu et al. (2009) used generalized additive mod-
els incorporated with land use information, including road length and population 
density, to predict daily PM2.5 concentrations on a regional scale and demonstrate 
that land use variables are effective predictors of PM2.5 concentrations. Kloog et al. 
(2011) extended previous work by introducing numerous land use variables that can 
be potentially used in statistical models for PM2.5 concentration prediction, includ-
ing percent of open spaces, elevation, major roads, PM2.5 point emissions, and area-
source point emissions. The results indicate that by including land use variables, the 
proposed model outperforms previous AOD-PM2.5 models. Hu et al. (2013) incor-
porated forest cover in the GWR model for PM2.5 concentration estimation in the 
southeastern United States and found that forest cover is a statistically significant 
predictor of PM2.5. Hu et al. (2014c) further tested the inclusion of MODIS fire counts 
in the linear mixed-effects model to examine if fire count data are an effective pre-
dictor of PM2.5. The results show that the prediction accuracy improved more from 
the nonfire model to the fire model at sites with higher fire occurrence, and the inclu-
sion of fire count data can provide a measurable improvement in PM2.5 concentration 
estimation, particularly in areas and seasons prone to fire events. In addition, to 
account for both spatial and temporal variability in the PM2.5–AOD relationship and 
predict PM2.5 concentrations in areas and days where and when AOD is not available, 
multistage statistical models are becoming more and more popular. Liu et al. (2009) 
proposed a two-stage GAM model to examine the spatial and temporal variability 
in PM2.5 concentrations separately. The first stage aims to account for the temporal 
variability. The dependent variable is the daily PM2.5 concentrations, and all the 
covariates are averaged spatially and therefore only vary temporally. The second 
stage is to explain the spatial variability. All the covariates in this stage are averaged 
over the entire period and therefore only vary spatially. The results show that the first 
stage model contributes more to the overall model performance because temporal 
variability dominates the overall PM2.5 variability. Hu et al. (2014a) developed a two-
stage model incorporated with meteorological fields and land use variables to predict 
1-km PM2.5 surface from MAIAC AOD in the southeastern United States. The model 
includes a first-stage linear mixed-effects model to account for the day-to-day vari-
ability in the relationship between PM2.5 and AOD and a second-stage GWR model 
to explain the spatial variability in the PM2.5–AOD relationship. Hence, the model 
has the capability to predict spatiotemporally resolved PM2.5 concentrations with 
high accuracy. Ma et al. (2015) also developed a two-stage spatial statistical model 
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to estimate ambient PM2.5 concentrations from 2004 to 2013 in China. The model 
includes a linear mixed-effects model as the first stage and a GAM model as the 
second stage to calibrate the spatiotemporal relationship between PM2.5 and AOD. 
Kloog et al. (2011) and Kloog et al. (2012) introduced a third-stage GAM model to 
estimate daily PM2.5 concentrations in the study domain for days when AOD data 
were unavailable. The model includes a smooth function for the coordinates of each 
grid cell centroid and a random intercept for each grid cell, uses predicted PM2.5 
concentrations from previous stages as the dependent variable and the mean of PM2.5 
measurements collected from monitors on that day as the predictor, and is similar to 
universal kriging. In addition, to account for temporal variation, the model was fit 
for each 2-month period of each year to generate separate spatial surfaces for those 
periods.

10.3  CASE STUDY

A case study was conducted to estimate ground-level PM2.5 concentrations from 
MODIS AOD in Atlanta, Georgia, in 2011using statistical methods. The study area 
was approximately 130 km × 130 km, covering the Atlanta Metro area. The domain 
included a large urban center and surrounding suburban areas.

10.3.1  Data

The 24-h averaged PM2.5 concentrations in 2011 were collected from 13 EPA Federal 
Reference Monitors and downloaded from the EPA’s Air Quality System Technology 
Transfer Network (http://www.epa.gov/ttn/airs/airsaqs/). The 2011 MODIS AOD 
data at a spatial resolution of 10 km were downloaded from the Earth Observing 
System Data Gateway at the Goddard Space Flight Center (https://ladsweb.nascom 
.nasa.gov/data/search.html). Hourly meteorological parameters were obtained from 
the North American Land Data Assimilation System Phase 2 (http://ldas.gsfc .nasa 
.gov/nldas/) at a spatial resolution of ~13 km. Elevation data were obtained from 
the National Elevation Dataset (http://ned.usgs.gov) at a spatial resolution of 1 arc-
sec (~30 m). Road data were extracted from ESRI StreetMap USA (Environmental 
Systems Research Institute, Inc., Redland, California). Forest cover data were gener-
ated using 2011 land cover maps downloaded from the National Land Cover Database 
(http://www.mrlc.gov). Primary PM2.5 emissions were obtained from the 2011 EPA 
National Emission Inventory facility emissions reports. All data were integrated for 
model fitting and PM2.5 prediction, a 1 km × 1 km square buffer was generated for 
each PM2.5 monitoring site and MODIS pixel centroid, and meteorological fields and 
AOD values were assigned using the nearest-neighbor approach. Forest cover and 
elevation were averaged, while road length and point emissions were summed over 
the 1 km × 1 km square buffer. A fitting data set with 1320 records was obtained.

10.3.2  MethoDology

A linear mixed-effects model (Kloog et al. 2011) with 24-h averaged PM2.5 mea-
surements as the dependent variable, MODIS AOD as the primary predictor, and 
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meteorological and land use variables as secondary predictors is developed to esti-
mate ground-level PM2.5 concentrations. The model explains the temporal variabil-
ity in the PM2.5–AOD relationship by including day-specific random intercepts and 
slopes for AOD and meteorological variables. The model structure can be expressed 
as

 

PM AOD Rela2 5 0 0 1 1 2 2. , , , ,( ) ( ) ( )st t t st tb b b b b b= + + + + + ttive Humidity

WindSpeed Elevatio

st

t stb b b+ + +( ),3 3 4 nn

Major Roads Forest Cover Point Emi

s

s sb b b+ + +5 6 72011 sssions2011

0 0 0 00 1 2 3

s

st t t t tb b b b N+ ε ( ) ~ [( , , , ),, , , , ΨΨ],

where PM2.5,st is the measured ground-level PM2.5 concentration (μg/m3) at site s 
on day t; b0 and b0,t (day-specific) are the fixed and random intercept, respectively; 
AODst is the MODIS AOD value (unitless) at site s on day t; b1 and b1,t (day-specific) 
are the fixed and random slopes for AOD, respectively; Relative Humidityst is the 
relative humidity at site s on day t; b2 and b2,t (day-specific) are the fixed and random 
slopes for relative humidity, respectively; Wind Speedst is the 2-m wind speed (m/s) 
at site s on day t; b3 and b3,t (day-specific) are the fixed and random slopes for wind 
speed, respectively; Elevations is elevation values (m) at site s; Major Roadss is road 
length values (m) at site s; Forest Cover 2011s is forest cover values (unitless) at site s; 
Point Emissions 2011s is point emissions (tons per year) at site s; and Ψ is an unstruc-
tured variance–covariance matrix for the random effects.

A 10-fold cross-validation (CV) is conducted to assess the model performance, 
and statistical indicators, including the coefficient of determination (R2) and the 
square root of the mean squared prediction errors (RMSPE), are calculated.

10.3.3  Results

The 2011 annual mean PM2.5 surface for the Atlanta region is illustrated in Figure 10.1. 
The mean PM2.5 concentration for the entire study domain in 2011 is 10.06 μg/m3. 
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FIGURE 10.1 The 2011 annual mean PM2.5 surface in the Atlanta region.
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The results show that high PM2.5 concentrations appear in urban areas, while low 
concentrations occur in rural and suburban areas. In addition, the results also show 
that model fitting generates an R2 of 0.7 and an RMSPE of 3.15 μg/m3, while CV gen-
erates an R2 of 0.6 and an RMSPE of 3.45 μg/m3, indicating a good fit of the model.

REFERENCES

Alves, C.A., Pio, C.A., & Duarte, A.C. (2000). Particulate size distributed organic: Compounds 
in a forest atmosphere. Environmental Science & Technology, 34, 4287–4293.

Bose, S., Hansel, N., Tonorezos, E., Williams, D., Bilderback, A., Breysse, P., Diette, G., & 
McCormack, M.C. (2015). Indoor particulate matter associated with systemic inflam-
mation in COPD. Journal of Environmental Protection, 6, 566–572.

Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fischer, P.H., Wijga, A., Koopman, L.P., 
Neijens, H.J., Gerritsen, J., Kerkhof, M., Heinrich, J., Bellander, T., & Brunekreef, B. 
(2002). Air pollution from traffic and the development of respiratory infections and asth-
matic and allergic symptoms in children. American Journal of Respiratory and Critical 
Care Medicine, 166, 1092–1098.

Christopher, S.A., Gupta, P., Nair, U., Jones, T.A., Kondragunta, S., Yu-Ling, W., Hand, J., 
& Xiaoyang, Z. (2009). Satellite remote sensing and mesoscale modeling of the 2007 
Georgia/Florida Fires. IEEE Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing, 2, 163–175.

Chu, D.A., Tsai, T.-C., Chen, J.-P., Chang, S.-C., Jeng, Y.-J., Chiang, W.-L., & Lin, N.-H. 
(2013). Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar 
AOD measurements. Atmospheric Environment, 79, 172–187.

Chudnovsky, A.A., Kostinski, A., Lyapustin, A., & Koutrakis, P. (2012a). Spatial scales of 
pollution from variable resolution satellite imaging. Environmental Pollution, 172, 
131–138.

Chudnovsky, A.A., Lee, H.J., Kostinski, A., Kotlov, T., & Koutrakis, P. (2012b). Prediction of 
daily fine particulate matter concentrations using aerosol optical depth retrievals from 
the Geostationary Operational Environmental Satellite (GOES). Journal of the Air & 
Waste Management Association, 62, 1022–1031.

Chudnovsky, A.A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., & Koutrakis, P. (2013). 
A critical assessment of high resolution aerosol optical depth (AOD) retrievals for fine 
particulate matter (PM) predictions. Atmospheric Chemistry and Physics Discussions, 
13, 14581–14611.

Chung, Y., Dominici, F., Wang, Y., Coull, B.A., & Bell, M.L. (2015). Associations between 
long-term exposure to chemical constituents of fine particulate matter (PM(2.5)) and 
mortality in Medicare enrollees in the eastern United States. Environmental Health 
Perspectives, 123, 467–474.

Deng, X.J., Wu, D., Yu, J.Z., Lau, A.K.H., Li, F., Tan, H.B., Yuan, Z.B., Ng, W.M., Deng, T., 
Wu, C., & Zhou, X.J. (2013). Characterization of secondary aerosol and its extinction 
effects on visibility over the Pearl River Delta Region, China. Journal of the Air & Waste 
Management Association, 63, 1012–1021.

Dominici, F., Peng, R.D., Bell, M.L., Pham, L., McDermott, A., Zeger, S.L., & Samet, 
J.M. (2006). Fine particulate air pollution and hospital admission for cardiovascular 
and respiratory diseases. Jama—Journal of the American Medical Association, 295, 
1127–1134.

Engel-Cox, J.A., Hoff, R.M., Rogers, R., Dimmick, F., Rush, A.C., Szykman, J.J., Al-Saadi, J., 
Chu, D.A., & Zell, E.R. (2006). Integrating lidar and satellite optical depth with ambient 
monitoring for 3-dimensional particulate characterization. Atmospheric Environment, 
40, 8056–8067.

(c) ketabton.com: The Digital Library



206 Remote Sensing for Sustainability

Green, M., Kondragunta, S., Ciren, P., & Xu, C. (2009). Comparison of GOES and MODIS 
Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and 
IMPROVE PM2.5 Mass at Bondville, Illinois. Journal of the Air & Waste Management 
Association, 59, 1082–1091.

Habre, R., Moshier, E., Castro, W., Nath, A., Grunin, A., Rohr, A., Godbold, J., Schachter, N., 
Kattan, M., & Coull, B. (2014). The effects of PM2.5 and its components from indoor 
and outdoor sources on cough and wheeze symptoms in asthmatic children. Journal of 
Exposure Science and Environmental Epidemiology, 24, 380–387.

He, Q.S., Li, C.C., Mao, J.T., Lau, A.K.H., & Chu, D.A. (2008). Analysis of aerosol ver-
tical distribution and variability in Hong Kong. Journal of Geophysical Research-
Atmospheres, 113.

Hodan, W.M., & Barnard, W.R. (2004). Evaluating the Contribution of PM2.5 Precursor Gases 
and Re-entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions. 
MACTEC Under Contract to the Federal Highway Administration. MACTEC Federal 
Programs, Research Triangle Park, NC.

Hu, X., Waller, L.A., Al-Hamdan, M.Z., Crosson, W.L., Estes Jr, M.G., Estes, S.M., Quattrochi, 
D.A., Sarnat, J.A., & Liu, Y. (2013). Estimating ground-level PM2.5 concentrations 
in the southeastern U.S. using geographically weighted regression. Environmental 
Research, 121, 1–10.

Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., Al-Hamdan, M.Z., Crosson, W.L., Estes Jr, 
M.G., Estes, S.M., Quattrochi, D.A., Puttaswamy, S.J., & Liu, Y. (2014a). Estimating 
ground-level PM2.5 concentrations in the Southeastern United States using MAIAC 
AOD retrievals and a two-stage model. Remote Sensing of Environment, 140, 220–232.

Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., & Liu, Y. (2014b). 10-year spatial and temporal 
trends of PM2.5 concentrations in the southeastern US estimated using high-resolution 
satellite data. Atmospheric Chemistry and Physics, 14, 6301–6314.

Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., & Liu, Y. (2014c). Improving satellite-driven 
PM2.5 models with Moderate Resolution Imaging Spectroradiometer fire counts in the 
southeastern U.S. Journal of Geophysical Research: Atmospheres, 119, 2014JD021920.

Hu, Z.Y. (2009). Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coro-
nary heart disease. International Journal of Health Geographics, 8.

Jaffe, D., Hafner, W., Chand, D., Westerling, A., & Spracklen, D. (2008). Interannual varia-
tions in PM2.5 due to wildfires in the western United States. Environmental Science & 
Technology, 42, 2812–2818.

Just, A.C., Wright, R.O., Schwartz, J., Coull, B.A., Baccarelli, A.A., Tellez-Rojo, M.M., 
Moody, E., Wang, Y., Lyapustin, A., & Kloog, I. (2015). Using high-resolution satellite 
aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. 
Environmental Science & Technology, 49, 8576–8584.

Kahn, R., Banerjee, P., McDonald, D., & Diner, D.J. (1998). Sensitivity of multiangle imag-
ing to aerosol optical depth and to pure-particle size distribution and composition over 
ocean. Journal of Geophysical Research—Atmospheres, 103, 32195–32213.

Kahn, R.A., Gaitley, B.J., Martonchik, J.V., Diner, D.J., Crean, K.A., & Holben, B. (2005). 
Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation 
based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. 
Journal of Geophysical Research—Atmospheres, 110.

Kioumourtzoglou, M.-A., Schwartz, J.D., Weisskopf, M.G., Melly, S.J., Wang, Y., Dominici, F., 
& Zanobetti, A. (2016). Long-term PM(2.5) exposure and neurological hospital admis-
sions in the northeastern United States. Environmental Health Perspectives, 124, 23–29.

Kloog, I., Chudnovsky, A.A., Just, A.C., Nordio, F., Koutrakis, P., Coull, B.A., Lyapustin, A., 
Wang, Y., & Schwartz, J. (2014). A new hybrid spatio-temporal model for estimating 
daily multi-year PM2.5 concentrations across northeastern USA using high resolution 
aerosol optical depth data. Atmospheric Environment, 95, 581–590.

(c) ketabton.com: The Digital Library



207Urban Air Quality Studies Using EO Data

Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J., & Schwartz, J. (2011). Assessing temporally 
and spatially resolved PM2.5 exposures for epidemiological studies using satellite aero-
sol optical depth measurements. Atmospheric Environment, 45, 6267–6275.

Kloog, I., Nordio, F., Coull, B.A., & Schwartz, J. (2012). Incorporating local land use regres-
sion and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 expo-
sures in the mid-Atlantic States. Environmental Science & Technology, 46, 11913–11921.

Laden, F., Schwartz, J., Speizer, F.E., & Dockery, D.W. (2006). Reduction in fine particu-
late air pollution and mortality—Extended follow-up of the Harvard six cities study. 
American Journal of Respiratory and Critical Care Medicine, 173, 667–672.

Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., & Koutrakis, P. (2011). A novel calibration 
approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry 
and Physics, 11, 7991–8002.

Lee, M., Kloog, I., Chudnovsky, A., Lyapustin, A., Wang, Y., Melly, S., Coull, B., Koutrakis, 
P., & Schwartz, J. (2015). Spatiotemporal prediction of fine particulate matter using 
high-resolution satellite images in the Southeastern US 2003–2011. Journal of Exposure 
Science and Environmental Epidemiology, 26, 377–384.

Lin, C., Li, Y., Yuan, Z., Lau, A.K.H., Li, C., & Fung, J.C.H. (2015). Using satellite remote 
sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote 
Sensing of Environment, 156, 117–128.

Lin, S., Munsie, J.P., Hwang, S.A., Fitzgerald, E., & Cayo, M.R. (2002). Childhood asthma hospi-
talization and residential exposure to state route traffic. Environmental Research, 88, 73–81.

Liu, Y., Franklin, M., Kahn, R., & Koutrakis, P. (2007a). Using aerosol optical thickness to 
predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between 
MISR and MODIS. Remote Sensing of Environment, 107, 33–44.

Liu, Y., Koutrakis, P., Kahn, R., Turquety, S., & Yantosca, R.M. (2007b). Estimating fine par-
ticulate matter component concentrations and size distributions using satellite-retrieved 
fractional aerosol optical depth: Part 2—A case study. Journal of the Air & Waste 
Management Association, 57, 1360–1369.

Liu, Y., Paciorek, C.J., & Koutrakis, P. (2009). Estimating regional spatial and temporal vari-
ability of PM2.5 concentrations using satellite data, meteorology, and land use informa-
tion. Environmental Health Perspectives, 117, 886–892.

Liu, Y., Park, R.J., Jacob, D.J., Li, Q.B., Kilaru, V., & Sarnat, J.A. (2004). Mapping annual 
mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer 
aerosol optical thickness over the contiguous United States. Journal of Geophysical 
Research—Atmospheres, 109.

Liu, Y., Sarnat, J.A., Kilaru, A., Jacob, D.J., & Koutrakis, P. (2005). Estimating ground-
level PM2.5 in the eastern United States using satellite remote sensing. Environmental 
Science & Technology, 39, 3269–3278.

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., & Reid, J.S. 
(2011). Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol 
algorithm. Journal of Geophysical Research—Atmospheres, 116.

Ma, Z., Hu, X., Huang, L., Bi, J., & Liu, Y. (2014). Estimating ground-level PM2. 5 in China 
using satellite remote sensing. Environmental Science & Technology, 48, 7436–7444.

Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., & 
Liu, Y. (2015). Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 
2004–2013. Environmental Health Perspectives, 124, 184–192.

Madrigano, J., Kloog, I., Goldberg, R., Coull, B.A., Mittleman, M.A., & Schwartz, J. 
(2013). Long-term exposure to PM2.5 and incidence of acute myocardial infarction. 
Environmental Health Perspectives, 121, 192–196.

Miller, K.A., Siscovick, D.S., Sheppard, L., Shepherd, K., Sullivan, J.H., Anderson, G.L., & 
Kaufman, J.D. (2007). Long-term exposure to air pollution and incidence of cardiovas-
cular events in women. New England Journal of Medicine, 356, 447–458.

(c) ketabton.com: The Digital Library



208 Remote Sensing for Sustainability

Neophytou, A.M., Costello, S., Brown, D.M., Picciotto, S., Noth, E.M., Hammond, S.K., 
Cullen, M.R., & Eisen, E.A. (2014). Marginal structural models in occupational epide-
miology: Application in a study of ischemic heart disease incidence and PM2.5 in the 
US aluminum industry. American Journal of Epidemiology.

Norris, G., YoungPong, S.N., Koenig, J.Q., Larson, T.V., Sheppard, L., & Stout, J.W. (1999). 
An association between fine particles and asthma emergency department visits for chil-
dren in Seattle. Environmental Health Perspectives, 107, 489–493.

Paciorek, C.J., Liu, Y., Moreno-Macias, H., & Kondragunta, S. (2008). Spatiotemporal 
associations between GOES aerosol optical depth retrievals and ground-level PM2.5. 
Environmental Science & Technology, 42, 5800–5806.

Peters, A., Dockery, D.W., Muller, J.E., & Mittleman, M.A. (2001). Increased particulate air 
pollution and the triggering of myocardial infarction. Circulation, 103, 2810–2815.

Puett, R.C., Hart, J.E., Yanosky, J.D., Paciorek, C., Schwartz, J., Suh, H., Speizer, F.E., & 
Laden, F. (2009). Chronic fine and coarse particulate exposure, mortality, and coro-
nary heart disease in the Nurses’ Health Study. Environmental Health Perspectives, 117, 
1697–1701.

Riediker, M., Cascio, W.E., Griggs, T.R., Herbst, M.C., Bromberg, P.A., Neas, L., Williams, 
R.W., & Devlin, R.B. (2004). Particulate matter exposure in cars is associated with car-
diovascular effects in healthy young men. American Journal of Respiratory and Critical 
Care Medicine, 169, 934–940.

Schliep, E., Gelfand, A., & Holland, D. (2015). Autoregressive spatially varying coefficients 
model for predicting daily PM 2.5 using VIIRS satellite AOT. Advances in Statistical 
Climatology, Meteorology and Oceanography, 1, 59–74.

Spira-Cohen, A., Chen, L.C., Kendall, M., Lall, R., & Thurston, G.D. (2011). Personal expo-
sures to traffic-related air pollution and acute respiratory health among Bronx school-
children with asthma. Environmental Health Perspectives, 119, 559–565.

Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., & Pavoni, 
B. (2013). Factors determining the formation of secondary inorganic aerosol: A case 
study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927–1939.

Sunyer, J., & Basagaña, X. (2001). Particles, and not gases, are associated with the risk of 
death in patients with chronic obstructive pulmonary disease. International Journal of 
Epidemiology, 30, 1138–1140.

Tian, D., Hu, Y., Wang, Y., Boylan, J.W., Zheng, M., & Russell, A.G. (2009). Assessment of 
biomass burning emissions and their impacts on urban and regional PM2.5: A Georgia 
case study. Environmental Science & Technology, 43, 299–305.

van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, 
P.J. (2010). Global estimates of ambient fine particulate matter concentrations from 
 satellite-based aerosol optical depth: Development and application. Environmental 
Health Perspectives, 118, 847–855.

van Donkelaar, A., Martin, R.V., & Park, R.J. (2006). Estimating ground-level PM2.5 using 
aerosol optical depth determined from satellite remote sensing. Journal of Geophysical 
Research-Atmospheres, 111.

Wang, J., & Christopher, S.A. (2003). Intercomparison between satellite-derived aerosol 
optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical 
Research Letters, 30, 2095.

Xie, Y., Wang, Y., Zhang, K., Dong, W., Lv, B., & Bai, Y. (2015). Daily estimation of 
ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD. 
Environmental Science & Technology, 49, 12280–12288.

Zeger, S.L., Thomas, D., Dominici, F., Samet, J.M., Schwartz, J., Dockery, D., & Cohen, A. 
(2000). Exposure measurement error in time-series studies of air pollution: Concepts 
and consequences. Environmental Health Perspectives, 108, 419–426.

(c) ketabton.com: The Digital Library



209Urban Air Quality Studies Using EO Data

Zeng, T., Wang, Y., Yoshida, Y., Tian, D., Russell, A.G., & Barnard, W.R. (2008). Impacts of 
prescribed fires on air quality over the southeastern United States in spring based on 
modeling and ground/satellite measurements. Environmental Science & Technology, 42, 
8401–8406.

Zhang, H., Hoff, R.M., & Engel-Cox, J.A. (2009). The relation between Moderate Resolution 
Imaging Spectroradiometer (MODIS) Aerosol Optical Depth and PM2.5 over the United 
States: A geographical comparison by US Environmental Protection Agency regions. 
Journal of the Air & Waste Management Association, 59, 1358–1369.

Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., & Liu, X. (2008). 
Identification and estimation of the biomass burning contribution to Beijing aerosol 
using levoglucosan as a molecular marker. Atmospheric Environment, 42, 7013–7021.

Zhang, X., Hecobian, A., Zheng, M., Frank, N.H., & Weber, R.J. (2010). Biomass burning 
impact on PM2.5 over the southeastern US during 2007: Integrating chemically spe-
ciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmospheric 
Chemistry and Physics, 10, 6839–6853.

(c) ketabton.com: The Digital Library



(c) ketabton.com: The Digital Library



211

11 Heat Hazard Monitoring 
with Satellite‑Derived 
Land Surface Temperature

Yitong Jiang and Qihao Weng

11.1  INTRODUCTION

Land surface temperature (LST) is a key parameter in heat hazard monitoring. The 
trade-off between spatial and temporal resolutions of currently available thermal 
infrared (TIR) images and the need for obtaining TIR have been discussed (Agam et 
al. 2007; Kustas et al. 2003; Schmugge et al. 1998; Weng 2009). The sensors on polar 
orbiting satellites, such as Landsat sensors and the Advanced Spaceborne Thermal 
Emission and Reflectance Radiometer (ASTER), can provide TIR data with rela-
tively high spatial resolution. However, their low temporal resolutions are not suf-
ficient for monitoring the diurnal change of LST. Although the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution 
Radiometer (AVHRR) produce one to two images per day for the same area, cloud 
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coverage reduces the usage of the image data and thus increases the time between 
two image acquisitions. The Geostationary Operational Environmental Satellite 
(GOES) imager on the geostationary satellite has a much higher frequency of obser-
vation, which is every 15 min, but with a much coarser spatial resolution of 4 km. 
Therefore, a common solution for characterizing heat waves is to downscale GOES 
images from 4 to 1 km while keeping its temporal resolution.

Thermal sharpening, also called downscaling, is the way to increase the spatial 
and temporal resolution of TIR images (Weng et al. 2014). The spatial sharpening 
techniques focus on downscaling the surface temperature of a sensor to higher reso-
lution with its visible and near-infrared bands (Weng and Fu 2014). The downscaling 
of Landsat LST based on its normalized difference vegetation index (NDVI) is an 
example of spatial sharpening. Downscaling temporal sharpening techniques are to 
downscale surface temperature from a coarser spatial resolution but higher temporal 
resolution sensor to generate high temporal resolution images (Weng and Fu 2014). 
To downscale GOES or SEVIRI LST to generate hourly or every 15 min LST are 
examples of temporal downscaling. There are two major ways to increase the spatial 
resolution of TIR images: the emissivity-based method (Nichol 2009) and the veg-
etation cover–based method (Agam et al. 2007; Jiang and Weng 2013; Kustas et al. 
2003). The vegetation cover–based method was developed upon the assumption that 
vegetation cover is the primary driver of LST variation. Besides vegetation cover, 
researchers also discovered other factors that affect LST. Such auxiliary data include 
solar irradiation, albedo, topography, thermal inertia, and surface moisture (Zakšek 
and Oštir 2012).

The knowledge of surface moisture in urban areas is significant because it links 
LST to air temperature. A combination of air temperature, wind speed, humidity, 
and short- and long-wave radiation exposure determines a person’s thermal comfort 
during urban heat island effects and heat hazard. An accurate estimation of sur-
face moisture would aid the public health reaction during extreme weather events. 
Evapotranspiration (ET), the sum of evaporation and plant transpiration, is one of 
the important measures of the surface moisture, and it has profound impact on a 
person’s thermal comfort. Therefore, the interactions between ET and LST are worth 
studying. Transpiration is the process in which water is absorbed by plants’ roots 
and is moved to pores on the underside of leaves, where it changes to vapor and is 
released to the atmosphere. It is controlled by several atmospheric factors: tempera-
ture, relative humidity, topographic condition, wind and air movement, and soil and 
moisture availability (Christensen et al. 2008; Strelcova et al. 2013). In agricultural 
and forest areas, the studies on transpiration were usually conducted on individual 
or several species (Strelcova et al. 2013). However, in urban areas, urban forests and 
urban street trees contain a diverse mix of species from many regions worldwide. 
Therefore, the studies of transpiration in urban areas specifically considered the 
diversity of the species and hypothesized that species played a more important role 
than meteorological variables (Pataki et al. 2011). Urban built environments increase 
urban runoff and slow down the infiltration rate, which reduces the transpiration rate 
and limits the rooting depth of urban trees (Barthens et al. 2009). Plant density var-
ies in urban areas as well. Hagishima et al. (2007) suggested that small-size plants 
and low spatial density vegetation may result in an increase in ET and latent heat 
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flux in urban areas. The land cover of urban surfaces affects urban tree transpira-
tion because energy fluxes and ambient humidity may influence the leaf-to-air vapor 
pressure, consequently prolonging or shortening the stomatal closure (Kjelgren and 
Montague 1998).

Evaporation over impervious surfaces is one of the least studied topics in the 
fields of urban hydrology and microclimatology (Ramamurthy and Bou-Zeid 2014). 
The urban area plays an important role in global climate change because of the urban 
heat island effects, heat wave hazards, and urban runoff. To measure the impact 
of urban climate in regional- or global-scale models, one of the areas that has not 
been studied thoroughly is urban surface moisture. Impervious surfaces contribute 
to urban evaporation (Ramamurthy and Bou-Zeid 2014). With the LST derived from 
satellite images in various combinations of temporal and spatial resolutions, and the 
maturity of the techniques of surface temperature derivation, the LST is becom-
ing more and more popular for heat-related hazard monitoring. However, no single 
currently available TIR satellite system is capable of capturing all features of ET 
dynamics of agricultural fields, such as weekly or monthly trends, day-to-day fluc-
tuations, and peaks (Cammalleri et al. 2014). Therefore, thermal downscaling and 
fusion seem promising to combine the advantages of multiple data sets, although the 
wide range of spectral, spatial, and temporal resolutions may affect the consistency 
of ET estimation (Cammalleri et al. 2014).

In urban areas, the land surface can be depicted by three major components: 
vegetation cover, impervious surfaces, and soil (Ridd 1995; Weng and Lu 2009). 
In remote sensing, the land cover surface in each pixel can be described by the per-
centage of vegetation cover, impervious surfaces, and soil. The surface moisture on 
pure vegetation cover, impervious surfaces, and soil can be measured by vegetation 
transpiration and evaporation over impervious surfaces and soil. The objectives of 
this study are (1) to produce the instantaneous LST with hourly and daily temporal 
resolution by downscaling the GOES LST from 4 to 1 km and MODIS LST from 
960 to 30 m; and (2) to estimate the instantaneous latent flux by the downscaled 
LST, and compare the variation of LST and latent flux over vegetation, impervious 
surfaces, and soil before and after precipitation.

11.2  METHODOLOGY

11.2.1  Study AreA

The study area, Marion County, Indiana, is located in the Midwestern United States 
(Figure 11.1). It is the county seat of Indianapolis, the capital and largest city in 
the State of Indiana. Marion County is part of the Indianapolis–Carmel–Anderson 
Metropolitan Statistical Area. It covers both the urban and suburban areas of the 
city of Indianapolis. The county is located on a flat plain, which makes it possible 
for the city to expand in all directions. Indianapolis was the 14th largest city in the 
United States by population in 2014. The area lies between latitudes 39°55′37.75″ to 
39°37′54.28″ and longitudes −86°19′33.65″ to −85°56′10.11″. According to the 2010 
Census, the total area of Marion County is 403.01 square miles. 98.34% is land, and 
1.66% is water. According to Census 2000, Indianapolis is the most populous city in 
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the State of Indiana and the 12th largest city in the United States. From 2000 to 2010, 
the population continued to increase from 781,926 to 820,445. The rate of increase is 
4.9%. The estimated population in 2015 is 853,173.

Indianapolis has undergone land use/land cover (LULC) change because of the 
urbanization process. According to the National Land Cover Database (NLCD) 
2006, the conversion to developed land from 2001 to 2006 mainly took place in 
the suburban areas, specifically between the circle of Interstate Highway 465 and 
the county boundary, with the largest changes in the Southern and Eastern fringes. 
Sparse land cover change in terms of density took place in the urban areas within 
the circle of Highway 465. According to the NLCD 2001–2006 land cover change 
data, 3.65% of the total land cover was changed from 2001 to 2006 in Indianapolis, 
Indiana, among which, 51% were changed from cultivated land to developed land, 
31% were changed from a lower level to a higher level of developed land (e.g., open 
space to low density developed, medium density developed to high density devel-
oped), and 3.6% were changed from forest to developed.

From 2006 to 2011, more changes from lower intensity to higher intensity of devel-
oped land than from cultivated crop to developed land were found in Indianapolis. 
Among the total changed land covers, the first three biggest amounts of land cover 
change were from a lower level of developed land cover to a higher level of devel-
oped land cover: 21.7% were changed from Developed Open Space, to Developed, 
Medium Intensity. 12.1% were changed from Developed, Lower Intensity to Medium 
Intensity, and 11.2% were changed from Developed Open Space to High Intensity. 
Changes from cultivated crops to open space and low-intensity developed land were 
the next two categories; they were 9.6% and 8.1%, respectively. Changes from decid-
uous forest to developed open space, low intensity, and medium intensity were rela-
tively less; they were 2.9% in total. Changes from pasture/hay to developed open 
space and low intensity were 3.0%.

11.2.2  dAtA SetS

11.2.2.1  Data for Linear Spectral Mixture Analysis
Landsat TM images that overpass path 21 row 32 on June 17, 2001, and July 1, 2006, 
were used for applying Linear Spectral Mixture Analysis (LSMA) and producing 
images of the percentage of vegetation in each pixel. The percentage of impervious 
surfaces is from NLCD 2001 and 2006.

11.2.2.2  Data for Downscaling TIR Images
GOES-8 band 4 and band 5 images from June 15 to 17, 2001, were selected for down-
scaling. These images were chosen because they were acquired within 48 h after a 
precipitation, because according to Ramamurthy and Bou-Zeid (2014), the highest 
evaporation from impervious surface were found 48 h after precipitations. The aux-
iliary data included MODIS NDVI and enhanced vegetation index products; albedo 
in visible, NIR, and short-wave bands; emissivity in MODIS band 31 and band 32; 
Shuttle Radar Topography Mission (SRTM) digital elevation data; and percentage of 
imperviousness from NLCD 2001.
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MODIS LST products acquired from DOY 179 to 200 in 2006 were used to down-
scale to Landsat resolution. The auxiliary data included NDVI, fractional vegetation 
cover, emissivity, broadband albedo from the Landsat image collected on July 1, 
2006, as well as the SRTM elevation data.

11.2.2.3  Data for ET Estimation
Hourly solar radiation data were acquired from the National Solar Radiation 
Database (n.d.). Daily solar radiation was configured by averaging hourly data. 
Hourly wind speed, atmospheric temperature, air pressure, and relative humidity 
were acquired from the Indiana State Climate office (iClimate.org). The data were 
collected in the International Airport of Indianapolis. Percent of Imperviousness 
was downloaded from NLCD 2011. Downscaled LSTs were produced by GOES 
and MODIS from Section 11.2.2.2, and fractional vegetation cover data were 
configured by LSMA in Section 11.2.2.1.

11.2.3  dAtA ProceSSing

The flowchart of methodology is shown in Figure 11.2. It is a combination of LST 
downscaling, LSMA, and the Two-Source Energy Balance (TSEB) model. In the 
LST downscaling, the hourly LST was produced by downscaling GOES LST from 
4 to 1 km; the daily LST was produced by downscaling MODIS LST from 960 to 
30 m. In the LSMA, the percentage of soil, vegetation, and impervious surfaces in 
each pixel was calculated. The TSEB model generated the instantaneous latent flux, 
and latent flux over pure soil, vegetation, and impervious surfaces was compared on 
an hourly and daily bases.

GOES, MODIS, Landsat 

Finer scale instantaneous LST each hour  
and each day at satellite passing time 

Downscaling

Landsat, NLCD 

LSMA 

%Soil %Veg %Impervious 

TSEB 

Net, ground, sensible fluxes 

Latent flux 

Latent flux over three types of surfaces 

FIGURE 11.2 Flowchart of methodology.
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11.2.3.1  Data Preparation and Preprocessing
The atmospheric effect of Landsat TM images was corrected using the simplified 
dark object subtraction method (Song et al. 2001), and the reference values rescaling 
gain factor and bias factor values were from Chander et al. (2009). Landsat LSTs 
were computed according to Coll et al. (2010). GOES LSTs were computed by split-
window algorithm according to Jiménez-Muñoz and Sobrino (2008).

11.2.3.2  Vegetation–Impervious Surface–Soil Model
LSMAs were applied to derive fractional vegetation cover. First, principal compo-
nent analysis (PCA) was applied to all the spectral bands of Landsat images, and 
the highest ranked components were selected and plotted. Second, the endmembers 
were selected. According to Johnson et al. (1992), the potential endmembers lay at 
the vertices of these PCA bands’ scatterplots. The three selected endmembers were 
vegetation, soil, and impervious surfaces. Details about the selection of endmembers 
and the estimation of the fraction were discussed in Weng et al. (2008). To estimate 
the fraction of impervious surface, different combinations of three or four endmem-
bers were compared. The endmembers included high albedo, low albedo, vegetation, 
and soil. Since this study was conducted in an urban area, the criteria for selecting 
the best-suited fraction images included high-quality fraction images for urban land-
scape, low error, and the distinction among typical LULC types. The fractional soil 
cover was produced based on the percentage of impervious surface and vegetation 
cover—besides the vegetation and impervious surfaces, the rest of each pixel was 
assumed to be soil. Water bodies were masked out.

11.2.3.3  Downscaling LST
The GOES-8 Imager possesses one visible band and four infrared bands. The data 
were downloaded from the National Oceanic and Atmospheric Administration 
(NOAA) comprehensive large array-data stewardship system (http://www.nsof 
.class .noaa.gov/saa/products/search?datatype_family=GVAR_IMG). The NOAA 
Weather and Climate Toolkit was used to export the AREA files to TIFF for-
mat. AREA files are count data with calibration coefficients. The toolkit uses the 
calibration information contained in the calibration block of the AREA file and 
converts the raw counts (10 bit precision) to brightness temperatures for the IR 
channels. Then, GOES LSTs were retrieved using the split-window algorithm and 
coefficients from Jiménez-Muñoz and Sobrino (2008). Since LST is strongly influ-
enced by parameters such as solar irradiation, albedo, topography, thermal inertia, 
and vegetation cover (Weng et al. 2004), the corresponding auxiliary data were 
obtained for downscaling. The downscaling method followed Zakšek and Oštir 
(2012). First, PCA was applied on auxiliary data in finer spatial resolution; second, 
the highest ranked principal components were upscaled to coarser resolution; third, 
regressions between LST and upscaled components were formed; last, the LSTs 
at finer spatial resolution were estimated by finer resolution components and the 
regressions (Figure 11.3). The GOES LSTs were downscaled from 4 to 1 km every 
hour; the MODIS LSTs are downscaled from 960 to 240 m, and then from 240 to 
30 m each day at the satellite passing time.
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11.2.3.4  The Land Surface Moisture Model
The method of estimating LE followed Weng et al. (2013). Net radiation (Rn) was 
calculated as

 R R T Tn short a a s= − + −( )    1 4 4α εε σ εσ , (11.1)

where Rn is the net radiation, σ is the Stefan–Boltzmann constant (5.67 × 10−8W/
m2K4), εa is atmospheric emissivity, α is broadband albedo, Rshort is short-wave 
radiation, ε is surface broadband emissivity, Ta is atmospheric temperature, and 
Ts is surface temperature. Broadband albedo was calculated according to Liang 
(2000), and broadband emissivity was calculated according to Ogawa et al. 
(2003).

Atmospheric emissivity was calculated as

 
εa

a

a

=






1 24
1 7

.
/

e
T

, (11.2)

where ea is atmospheric water vapor pressure, which was estimated based on satura-
tion water vapor pressure and relative humidity (Weng et al. 2013).

Ground heat flux was calculated based on net radiation and a coefficient (cg) that 
describes the influence of surface cover material, seasonality, and diurnal change. 

High- 
resolution
auxiliary 
data 

Low-  
resolution
thermal 
bands 

Upscaling  

Low-
resolution 
auxiliary 
data 

PCA 

High-
resolution 
components 

Low-
resolution 
components 

Regression 

Split window 

Low- 
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LST 

High-
resolution 
LST Validation  

High-
resolution
LST 

FIGURE 11.3 The flowchart for LST downscaling.
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The land cover was classified into water, bare soils, grass, forest, urban, and agricul-
ture, and cg values vary among different land cover types:

 G = cg × Rn. (11.3)

Since the study area is the same, the cg values were adopted from Weng et al. 
(2013) in Table 11.1.

Sensible heat flux (H) was calculated separately for non-vegetated areas and veg-
etated areas. The non-vegetated areas and vegetated areas are differentiated by the 
amount of vegetation cover, and the value of 0.5 was used as the threshold:

 H = fnon-vegHnon-veg + fvegHveg (11.4)

 
H c

T T
R Rnon-veg a p

s a

AH s

= −
+

 
 
 

ρ  (11.5)

 
H c
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c a

AH

= −ρ  
, (11.6)

where ρa is the air density in kg/m³, cp is the specific heat of air at constant pressure 
in J/(kg·K), Ts and Tc are surface temperature for non-vegetated and vegetated areas, 
and Ta is air temperature. RAH is the aerodynamic resistance in s/m, and Rs is the 
resistance to heat flow in the boundary layer immediately above soil surface. RAH 
was calculated as
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k u2 . (11.7)

TABLE 11.1
cg Values According to LULC Types 
for Ground Heat Flux

LULC Types cg

Water 0.35

Bare soils 0.30

Grass 0.30

Forest 0.15

Urban 0.40

Agriculture 0.30
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According to Weng et al. (2013), zu and zt are the heights at which the wind speed 
u and atmospheric temperature are measured, which are 10 and 2 m, respectively. d0 
is the displacement height, and z0M and z0H are the roughness lengths for momentum 
and heat transport, respectively. ΨM and ΨH are stability correction functions for 
momentum and heat, respectively, and k is von Karman’s constant, which is equal 
to 0.4 (Weng et al. 2013). This equation may be simplified by removing ΨM and ΨH.

Rs can be calculated as

 
R

a bus
s

=
+
1

, (11.8)

where a is the free convective velocity, which is equal to 0.04 m/s, b is a coefficient 
to represent the typical soil surface roughness, and us is the wind speed over soil 
surface at the height of 0.05–0.2 m.

LE was also calculated for vegetated and non-vegetated areas separately:

 LE = fnon-vegLEnon-veg + fvegLEveg (11.9)

 LEnon-veg = Rn,non-veg − G − Hnon-veg (11.10)

 
LEveg PT G n,=

+
α

γ
f R

∆
∆ veg, (11.11)

where αPT is the Priestley–Taylor parameter, which is equal to 1.26, γ is the psychro-
metric constant, Δ is the slope of saturation vapor pressure–temperature curve. fG is 
the fraction of the leaf area index that is green, and it is equal to unity when it is not 
available. If LEnon-veg is negative, it was set to zero, Hnon-veg was recomputed as the 
residual of Equation 11.10.

11.3  RESULTS

11.3.1  Pure imPerviouS SurfAceS, Soil, And vegetAtion cover PixelS

The spatial distribution of vegetation, soil, and impervious surface fractions, as well 
as the pure pixels of the three land cover types (red dots), are shown in Figure 11.4. 
Figure 11.4a through c are in 30 m resolution, and Figure 11.4d through f are in 
1 km resolution. A resolution of 30 m shows the distribution of the three land types 
much clearer than the 1-km resolution. The high-percentage impervious surfaces 
were distributed in the central urban areas, along the major roads and highways, and 
in the commercial sites along the highway. The vegetation cover is mainly located 
in the urban forest along the White River, beside Eagle Creek Reservoir and Geist 
Reservoir, in low-density residential land in the north and in agricultural fields in the 
south. The distribution of pure soil pixels was mainly in the agriculture fields, open 
space, and airport in the south.
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In the 1-km-resolution images, there are no 100% pure impervious surface and 
vegetation cover pixels. Therefore, the highest concentration pixels with 99% of 
impervious surface and 89% of vegetation cover were used as the pure pixels. The 
pure pixels of the three land cover types were selected to monitor the characteristics 
of the daily and hourly LST and Latent flux changes over the tree land cover types.

11.3.2  the chAngeS of SPAtiAl diStribution of dAily And hourly lSt

The spatial and temporal variability of LST at 1 km resolution is shown in Figure 
11.5. It was produced using GOES 4 km LST and the downscaling technique. Taking 
June 16, 2001, for example, from 9:00 to 15:00, the downscaled LST was able to 
record the changes in spatial distribution over time. At 9:00, the built-up areas were 
300–305 K, and the vegetated areas were 295–300 K; at 10:00, the LST for the 
whole area increased 5–10 K; at 11:00, the LST of central urban area, airport, and 
commercial land along the Interstate Highway reached 315 K; at noon, the built-
up area remained above 310 K; the high LST shrank at 14:00, and the LST of the 
whole area decreased below 310 K at 15:00. The highest LST was found at the center 
of Indianapolis, Indiana, and it lasted longer than surrounding areas. Compared to 
4-km-resolution images, the heat hazard can be located more accurately and effi-
ciently with the increased spatial and temporal resolution. With exposure and vul-
nerability information, the heat hazard risk areas can be decided (Jiang et al. 2015).

11.3.3  inStAntAneouS lSt And lAtent flux over Pure imPerviouS SurfAceS, 
Soil, And vegetAtion cover with An hour or dAy intervAl

The instantaneous LST and latent flux over vegetation, soil, and impervious sur-
face show various responses to rainfall during multiple precipitations in July 2006 
(Figure 11.6). The three land cover types had a similar pattern of LST change. In 
particular, the LSTs of soil and impervious surfaces were parallel to each other. 
This is because the impervious surface usually has the highest sensible heat. Soil 
moisture and evaporation from soil may lower down the surface temperature. The 
pattern of LST of vegetation cover is a little different: it tended to have smoother 
change of LST during rainfalls. It may attributed to evaporation and transpiration, 
which adjusted the direct impact from solar radiation and reflectance from nearby 
objects. The impervious surfaces had the highest LST before and after the precipi-
tations, it was 1–2 K higher than soil, and 8–10 K higher than vegetation cover. 
Precipitation tended to make the LST difference between the three land surfaces 
smaller. After the 6.32-cm precipitation on 193 days of the year, the LST of imper-
vious surfaces dropped 2 K, and the LST of soil surfaces dropped less than 2 K in 
2 days. Precipitation has much smaller impact on LST over vegetation cover. There 
is no apparent temperature drop after precipitation over vegetation cover.

Figure 11.6b explains the LE changes over three land cover types over time. 
Vegetation cover and soil surface share the similar pattern of latent flux change dur-
ing multiple precipitations. The latent flux of vegetation cover and soil was high 
not long after the 0.64-cm precipitation on DOY 179, and it gradually dropped 
until it received the next rainfall. After the 6.32-cm precipitation, the latent flux of 
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vegetation cover and soil increased and then dropped within a week. The pattern of 
latent flux over impervious surfaces is markedly different from the natural land cov-
ers such as vegetation and soils. The LE over impervious surfaces generated sharp 
increase and decrease within a week after the rainfall, and it was higher than soil 
surfaces and close to the amount from vegetation. Lacking the ability to store water, 
the impervious surfaces contribute considerable evaporation in the urban area and 
thus alter the natural energy and water cycle.

Figure 11.7a shows the changes of LST before and after a 2.54-cm precipitation. 
During and shortly after the precipitation, there is a drop of LST from three types of 
land cover types, among which the LST over soil decreased more rapidly, and LST 
of impervious surfaces remained higher compared to vegetation and soil. There was 
a sudden drop of LST around midnight. The LST of the three land cover types in the 
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FIGURE 11.6 The instantaneous LST (a) and latent flux (b) in July 2006.
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second day was relatively smooth. The highest LST from impervious surface and the 
LST of soil and impervious surface were almost the same. The figure only shows 
48 h after the precipitation.

Figure 11.7b shows the change of latent flux over the three land cover types after 
the 2.54-cm precipitation. During the rainfall, the latent flux from soil is much higher 
than that from vegetation and impervious surfaces. However, after the precipitation, the 
latent flux over impervious surface is more than 100 W/m2 higher than soil and more 
than 250 W/m2 higher than vegetation cover at noon. This result indicates that the evap-
oration over impervious surfaces may remain high for more than 48 h in the Midwest.
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11.4  CONCLUSIONS

This chapter introduced a case study of using the satellite-derived LST to moni-
tor the heat hazard. It focuses on two aspects: first, using the thermal downscal-
ing technique to increase the spatial and temporal resolution; second, applying the 
TSEB model in urban areas, categorizing the urban land cover into impervious sur-
faces, soil, and vegetation, and discussing the characteristics of LST, evaporation, 
and transpiration over three land cover types. This research is meaningful because 
the surface moisture in urban areas is one of the least studied field. To monitor the 
heat hazard accurately, the impacts from surface moisture cannot be ignored, and 
an efficient way to estimate air temperature based on the satellite-derived LST is 
desirable.

The overall methodology was a combination of LST downscaling, LSMA, and 
the TSEB model. In the LST downscaling, the hourly LST was produced by down-
scaling GOES LST from 4 to 1 km; the daily LST was produced by downscaling 
MODIS LST from 960 to 30 m. In the LSMA, the percentage of soil, vegetation, 
and impervious surfaces in each pixel was calculated. The TSEB model generated 
the instantaneous latent flux, and latent flux over pure soil, vegetation, and imper-
vious surfaces was compared on an hourly and daily basis. The approach of using 
the TSEB model to estimate the urban surface energy balance maximized the use 
of multispectral remote sensing data and minimized the amount of meteorologi-
cal data from weather stations. In addition, to increase the spatial and temporal 
resolution of LST, the downscaling process also made use of the satellite data, 
including the thermal bands from GOES and MODIS and the auxiliary data at 
finer resolutions.

The findings for the study site are the temporal variability of surface mois-
ture, namely, the latent flux from vegetation, soil, and impervious surfaces in 
Indianapolis, Indiana. Using soil and vegetation as control, the impervious sur-
faces contribute to urban evaporation after precipitation. This finding agrees with 
Ramamurthy and Bou-Zeid (2014) in a small scale with the Princeton urban can-
opy model. This indicates that the approached method is applicable in urban areas 
with large scales.

The study succeeds in accounting for urban moisture in the following aspects: the 
LSMA picked the pure pixels, LST downscaling successfully generated finer spatial 
and temporal scale LST, and TSEB successfully estimated the similar pattern of ET 
over vegetation and soil surfaces and the prompt response from impervious surfaces 
after precipitation. Therefore, the proposed method is promising in the estimation of 
ET over vegetation, soil, and impervious surfaces in urban areas.

In the original model, the parameters describing the roughness condition of land 
surface, namely, d0, z0M, and z0H, were fixed according to the LULC types. Although 
each land cover type may yield similar morphological parameters, each city has its 
own unique morphological characteristics, which relate to history, culture, tradition, 
planning, and topography; it varies over regions, countries, and continents. Contexts 
that affect the urban setting include hydraulic factors, transportation hubs, trade cen-
ters, defensive sites, and religious factors. Therefore, in future research, the estima-
tion of morphological parameters from LiDAR data is highly desirable.
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12 Remote Sensing 
Identification of 
Threshold Zones along 
a Mediterranean to 
Arid Climatic Gradient

Maxim Shoshany

12.1  INTRODUCTION

Debates regarding desertification have been heated especially since Thomas and 
Middleton (1994) challenged the marching desert myth in response to earlier sug-
gestions by Lamprey (1975) that the Sahara desert boundary in Sudan is advancing 
by 5.5 km every year. Controversies in interpreting spatial and temporal informa-
tion regarding shifts in desert threshold zones are not limited to the Sahel region 
(e.g., Nicholson 2011) but also characterize other semiarid regions (Veron et al. 
2006) and the semiarid margins of the Mediterranean in particular (Safriel 2009; 
Thornes 2000). Although there is a consensus regarding the important role of remote 
sensing in monitoring desertification, there are disagreements regarding the  inter-
pretation  of  satellite imagery for this purpose. This is well exemplified by  the 
 disagreement of Hein and De Ridder (2006) with claims regarding greening of the 
Sahel made by Herrmann et al. (2005). According to Veron et al. (2006), contro-
versies regarding desertification emerge mainly from methodological and termino-
logical differences. They suggest that improvements in exploring desertification over 
large regions may be obtained by strengthening the synergy between ecology and 
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remote sensing. Within such an approach, this remote sensing study implements veg-
etation phenomenologies in investigating ecosystems’ transition between semiarid 
Mediterranean to arid region. Three modes of vegetation change are analyzed: green 
vegetation cover (GVC) change between years of extreme high and low rainfall lev-
els, life-forms’ composition change, and variations in spatial erosion versus recovery 
potentials. Landsat images of the climatic gradient between the Judean Mountains 
in central Israel and the Judean Desert in the east and the Negev Desert in the south 
(Figure 12.1) facilitate this eco-exploration.

12.2  ECOSYSTEM TRANSITIONS ALONG A CLIMATIC GRADIENT

Mediterranean to arid climatic gradients characterize wide regions at the western 
sides of South and North America, South Africa, and Australia, and in the southern 
and eastern margins of the Mediterranean Basin. Ecosystems along these gradients 
vary between woodlands, dense shrublands, open shrublands, dwarf-shrublands 
(batha), and arid vegetation (herbaceous species with scattered patches of dwarf-
shrubs). These life-form transitions are governed by rainfall, lithology, and soil, 
together with strong anthropogenic influences attributed to fire, grazing, and wood-
cutting. Desertification representing long-term (possibly irreversible) soil erosion 
and loss of vegetation productivity was reported in several well-known studies 

Judean
Mountains 

Ju
de

an
 

Negev
Desert
 

D
es

er
t

Dense shrublands
of Avisur Highland  

Beit Guvrin

Open shrublands
of Amazia 

Desert fringe batha
north of Dvira Forest 

Arid ecosystems
south of Lehavim

West to east transect 

North to south transect 
300

200

100

FIGURE 12.1 Map of the climatic gradient of the Judean Mountains with photographs of 
the four main ecosystems along the gradient and location of transects.

(c) ketabton.com: The Digital Library



231Remote Sensing Identification of Threshold Zones

(e.g., Cerda and Lavee 1999; Geeson et al. 2002; Hill et al. 2008; Lavee et al. 1998) 
for the margins of the Mediterranean regions. The interplay between land use change 
and climate parameters was hypothesized by Milan et al. (2005) and Puigdefabregas 
and Mendizabal (1998) and is thought to be responsible for the desert-like conditions 
found in the vast Mediterranean regions of eastern Tunisia, Libya, Egypt, and in 
Almeria in Spain. Spatiotemporal changes in shrubs, dwarf-shrubs, and grass cover 
characterize this land degradation (e.g., Maestre et al. 2009; Papanastasis et al. 2003; 
Peinado et al. 1995). Identification of threshold zones between these vegetation cover 
typologies is instrumental for studying desertification in semiarid Mediterranean 
landscapes. According to Fagre and Charles (2009), thresholds can be identified 
“where small changes in an environmental driver produce large, persistent responses 
in an ecosystem.” In the Mediterranean to arid transition context, this refers to dis-
continuity among vegetation and soil conditions along gradual climate change as 
a result of ecosystems’ hysteresis (Meron et al. 2004), or from the loss of recovery 
potential.

The climatic gradients between the Judean Mountains in central Israel and their 
eastern and southern desert margins represent a wide range of differences in natural 
settings (e.g., rainfall and lithology) and anthropogenic influences. Implementation 
of remote sensing on west to east versus north to south gradients is expected to allow 
one to explore the formation of sharp transition zones between ecosystems in general 
and of desert thresholds in particular.

12.3  REMOTE SENSING TECHNIQUES 
AND THEIR IMPLEMENTATION

In this chapter, we will integrate three techniques, developed and implemented in 
earlier studies for assessing modes of vegetation change along the climatic gradi-
ents of the Judean Mountains. The first method is based on a multitemporal tech-
nique developed by Shoshany et al. (1994, 1995, 1996), the second method presents 
an algorithm for life-form decomposition as implemented by Shoshany and Svoray 
(2002), and the third method concerning estimation of spatial potentials for erosion 
versus recovery adopts the work reported by Shoshany (2012).

12.3.1  Green VeGetation CoVer

Vegetation cover is a primary indicator for the location of desert threshold zones. 
A study of vegetation cover changes between years of extreme rainfall levels was 
found to be most informative regarding the type of response of different ecosys-
tems along a climatic gradient to rainfall changes. This was conducted for the years 
1991 and 1992, which had a unique combination of rainfall regimes in the Eastern 
Mediterranean; specifically, 1991 was the 60-year record for low precipitation and 
1992 was the year with the highest rainfall during this time frame (Kutiel et al. 
1995; Shoshany et al. 1996). Here, we conducted a similar study while extending 
the investigation from 2 to 16 years, between 1996 and 2011. For this purpose, we 
used the same empirical multiple regression vegetation reflectance (VR) model, 
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which was developed by Shoshany et al. (1994) specifically for estimating GVC in 
our study area:

 GVC (%) = 1.48 + 2.5R[1] − 25.5R[2] − 266.97R[3] + 275.5R[4]. (12.1)

For constructing this model, the reflectance data for small plot areas at Landsat 
TM channels (R[1]…R[4]) were acquired using the NASA Radiometer, while veg-
etation cover was calculated by classifying close-range photographs of these plot 
areas into green vegetation and non-vegetation areas. The VR model was tested for 
26 plot areas at four sites along the climatic gradient between the Judean Mountains 
and the Judean Desert; it was found to be highly significant with an R2 value of 0.88 
and a P value of 0.001.

This model was reapplied here to five radiometrically corrected and geometri-
cally co-registered images of the end of the summer, for 3 years of extreme high and 
low rainfall (Table 12.1) in between 2 years with close to average rainfall (1996 and 
2011).

Two transects were selected along the climatic gradients representing the less-
disturbed landscape sequences from the Judean Mountains to the Judean Desert in 
the east and the Negev Desert in the south. The high spatial and temporal variability 
of GVC values represents both the high GVC characteristic of protected shrublands 
and forest plantations versus the low green values in areas undergoing high grazing 
pressures and frequent fires.

A step-like form of change can be used for generalizing GVC changes in both 
directions (Table 12.1 and Figure 12.2):

• North to south transect (Figure 12.2b): Two steps of a sharp GVC decrease 
characterize the transition from dense shrublands to the desert fringe batha 
(dwarf-shrubs). The first step occurs where dense shrublands, which recov-
ered (Shoshany 2002) in areas with rainfall above 400 mm/year (section 
I with GVC values between 22 and 37%), are rapidly transformed into 
composites of highly disturbed shrublands dissected by stripes of fields 
and other land uses. Further south, the landscape is characterized by open 
shrublands of moderate density (section II with GVC values between 17% 
and 23%) in areas of approximately 350 mm/year average rainfall. The 
transition of this area into desert fringe Batha (section III with GVC values 
between 8% and 12%) of Sarcopoterium spinosum spread over large extents 
occurs within less than 2 km. Such a sharp transition is the result of historic 
high grazing pressures followed by frequent fires ignited by army training 
in this area. The two sharp transition zones of this transect are thus primar-
ily anthropogenic, where heavy soil erosion in the northern parts of section 
III would severely slow down any future recovery trends. The transition 
between the desert fringe batha and the arid unit (section IV with GVC 
between 6% and 13%) does not form a sharp threshold, as can be inferred 
from their overlap in GVC values.

• West to east transect (Figure 12.2a): The GVC change along this transect can 
be well described by both a step-like form and a convex transition from the 
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crests of the Judean Mountains in the west to the desert margins in the east. 
Two sharp transition zones can be detected. The western one has GVC values 
between 17% and 25% of the open shrubland declining toward the highly 
disturbed zone with GVC levels between 11% and 17%, representing built-up, 
rural, and agricultural land uses with scattered islands of natural vegetation 
(Sharakas et al. 2003; Shoshany et al. 1995, 1996). The eastern one represents 
a drop-down within a distance of 5 km from an average GVC of 15% as 
obtained for the seminatural desert fringe batha mixed with tree plantations 
to an average GVC of 6% characterizing the arid ecosystem. The sharp tran-
sition between the desert fringe batha and the arid ecosystem corresponds to 
the boundary between the desert and brown lithosols and the Rendzina soil 
(Dan and Raz 1970). The rate of GVC that increases west from this boundary 
is jointly governed by rainfall and both positive and negative human impacts: 
tree planting, on the one hand, and grazing and fires, on the other.

Generally, profiles from all years fit well and describe similar spatial forms of 
change beyond significant temporal differences owing to changes in precipitation 

TABLE 12.1
GVC and Life-Form Composition in Sections along the Climatic Gradient 
between the Judean Mountains and the Judean Desert in the East 
and the Negev Desert in the South (Figure 12.1)

Year 1996 1999 2003 2008 2011 Life-Form Composition

Percentage of the 
MAP

102% 66% 143% 70% 94%

West–east section I 21.08 
(5.38)

17.46 
(4.12)

25.07 
(5.63)

23.74 
(4.35)

22.72 
(5.18)

West–east section II 15.06 
(3.65)

11.05 
(3.12)

16.71 
(5.51)

16.04 
(5.18)

14.15 
(4.70)

West–east 
section III

5.29 
(2.55)

5.37 
(2.67)

10.19 
(2.71)

6.04 
(2.06)

6.04 
(2.62)

Shrubs Dwarf-
shrubs

Soil and 
rocks

North–south 
section I

34.41 
(2.06)

22.61 
(2.49)

36.70 
(2.75)

30.50 
(2.67)

25.80 
(2.79)

0.73 0.04 0.23

North–south 
section II

21.78 
(3.09)

17.39 
(1.86)

24.94 
(2.89)

22.76 
(2.72)

17.50 
(2.46)

0.32 0.23 0.45

North–south 
section III

10.95 
(3.10)

8.94 
(1.85)

11.95 
(2.83)

11.47 
(2.68)

8.45 
(2.40)

0.065 0.585 0.35

North–south 
section IV

7.67 
(2.08)

6.16 
(2.50)

12.56 
(2.90)

8.64 
(2.64)

6.71 
(2.78)

0.05 0.31 0.64

Source: Summary of rainy season for 2011/2012 and the main hydrological characteristics. Reported by 
the Israel Water Authority.

Note: Rainfall data represent the percentage of the mean annual precipitation (MAP).
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between years. This result is most meaningful, considering the fact that the rainfall 
fluctuated between 66% and 143% of the mean annual precipitation (MAP) between 
1996 and 2011. Within the framework of temporal changes in threshold zones, it is 
most important to examine the GVC variations in locations of highest transitions in 
both transects.
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FIGURE 12.2 GVC along transects. (a) GVC change along the west to east transect. 
(b) GVC change along the north to south transect.
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The boundary between the desert fringe batha section and the arid section in the 
west to east transect, which is attributed to soil transition, seems to be maintained 
even during years of extremely high rainfall (such as 2003). However, when the pro-
files are examined in detail, there seems to be short extents in the desert fringe batha 
section in which their GVC values are only slightly higher (~2%) than those of the 
arid section. During the years with extremely low rainfall, the GVC of these desert 
fringe batha section drops to its level in the arid section. Permanent desertification 
may take place in this section with repeated fires, wood-cutting, and gazing, fol-
lowed by soil erosion.

The boundary between the open shrublands (section II) and the desert fringe 
batha (section III) in the north to south transect shows a catastrophic shift owing 
to overgrazing and fire. The GVC changed by only 3% in section III between 1999 
and 2003, suggesting that it lost some of its recovery potential. Section II shows an 
increase in GVC that is twice as high between these years (from 17% to 25%). The 
open shrublands thus maintain some level of resilience to dry periods. However, 
since the lithology and rainfall are similar on both sides of this partition line, fre-
quent fires may transform it relatively quickly into a degraded ecosystem similar to 
Unit III.

12.3.2  Life-form Compositions

The spatial heterogeneity of life-form compositions at the subpixel level results in the 
non-uniqueness of spectral and phenological information at moderate and low spatial 
resolutions. Although the mapping of trees, shrubs, and herbaceous growth in large 
homogenous areas was reported in a number of studies, an estimation of life-form 
compositions in general, and of dwarf-shrubs in particular, in Mediterranean and 
semiarid environments having high spatial heterogeneity have received very limited 
attention (e.g., Hamada et al. 2013; Shoshany and Svoray 2002). An adaptive phe-
nological (seasonal) and zonal unmixing technique was developed by Shoshany and 
Svoray (2002) in order to estimate the area fraction of these life-forms for each pixel. 
The fundamental principles underlying this technique are as follows (Figure 12.3):

 a. Selecting vegetation, soil, and rock endmembers and performing the 
unmixing separately for the semiarid and arid regions for each season (end 
of winter, beginning of summer, and end of summer).

 b. Estimating the fraction of each life-form based on subtracting the corre-
sponding seasonal vegetation fractions. For example, fractional cover of 
herbaceous growth is estimated according to the difference between the 
end of the winter (end of March) vegetation fraction and that of the begin-
ning of the summer (beginning of June).

A north to south transect (following the same line as in Section 12.3.1) represent-
ing changes in life-form compositions allowed us to assess the types of life-form 
transitions along the climatic gradient (Figure 12.4) for 1995, a year having 113% of 
the MAP. The spatial structure of life-form compositions along the transects fits well 
the structure inferred based on the GVC. However, life-form compositions provide 
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much more explicit information regarding the nature of the transitions within and 
between threshold zones:

• The sharp southern boundary of the Dense Shrublands of the Avisur 
Highland (shrub fraction = 0.76) at Beit Guvrin was caused by the dissec-
tion of the natural vegetation by fields, grazing areas, archeological sites, 
and army training areas.

• The Open Shrublands’ recovery boundary: approximately 3 km south of 
Beit Guvrin; a sharp boundary marks the northern edge of the Amazia 
open shrublands (shrub fraction = 0.32; dwarf-shrub fraction = 0.23; soil 
and rock fraction = 0.45) where the landscape is recovering under con-
trolled grazing intensities, with fields extending only in the lower parts of 
the Wadis.
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FIGURE 12.4 Life-forms’ composition along the north to south transect.

End of the winter: all life-forms are
photosyntetically active

End of summer:
only shrubs are

photosyntetically active

Beginning of summer:
only shrubs and dwarf-shrubs

are photosyntetically active

Adaptive
spectral unmixing;

Selecting different endmembers
for each season for shrubs (semi-arid)

and dwarf-shrubs (arid) dominated environments

Rλ = Rvegλ × Fveg winter + R soil X fraction of soil

Rλ = Rvegλ × Fveg summerBegin + R soil X fraction of soilRλ = Rvegλ × Fveg summerEnd + R soil X fraction of soil

FHerbaceous = Fveg winter – Fveg summerBeginFShrubs = Fveg summerEnd

Fdwarf-Shrubs =
Fveg summerBegin – Fveg summerEnd

FIGURE 12.3 Schematic description of the algorithm for life-forms’ unmixing.
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• The southern boundary of the Open Shrublands of Amazia that emerged 
through frequent fires and historically high grazing intensities. The area 
south of this boundary consists the desert fringe batha that is dominated by 
large extents of dwarf-shrubs and bare soil patches (shrub fraction = 0.065; 
dwarf-shrub fraction = 0.585; soil and rock fraction = 0.35).

• Transition from dwarf-shrub–dominated areas to an arid ecosystem (shrub 
fraction = 0.05; dwarf-shrub fraction = 0.31; soil and rock fraction = 0.64) 
of scattered patches of dwarf-shrubs with large extents of bare ground and 
rocks, typical of the Northern Negev (Desert).

In these two latter desert fringe zones, grazing and fires are balanced by the rela-
tively quick colonization (and recolonization) of the S. spinosum, forming a hetero-
geneous patchy pattern of bare soil and dwarf-shrubs. In the arid zone, dwarf-shrub 
patches are smaller than those found in the desert fringe batha. The separation line 
between these two units corresponds to a rainfall level of approximately 270 mm/
year. In our study area, it passes at the vicinity of the Dvira Forest.

12.3.3  inVerse erosion and reCoVery potentiaLs

Thresholds in the approach presented by Shoshany (2012) are boundaries of geodi-
versity rather than lines separating homogenous units. Geodiversity in this context 
concerns the spatial heterogeneity of vegetation and soil patch patterns. Degradation 
and recovery cycles in desert fringe ecosystems are characterized by dynamic 
changes in the spatial heterogeneity with mutual processes taking place between the 
vegetation and soil patterns (Forman 1995; Shoshany and Kelman 2006). During 
degradation, vegetation continuum is perforated by soil patches, dissected, frag-
mented, isolated, contracted, and dissolved. In parallel, soil patches grow, aggre-
gate, connect, and expand. Inverse processes are taking place during recovery. As 
described in Section 12.3.2, along the north to south transect, the shift between the 
desert fringe batha and the arid ecosystem is characterized by a change from 2/3 
dwarf-shrubs’ cover and 1/3 bare soil to 2/3 bare soil and 1/3 dwarf-shrubs. Along 
the west to east transect, the shift is from approximately 15% to 6% GVC (note that 
S. spinosum has low greenness at the end of the summer). Spatial variations between 
these cover distributions are of significant impact on the degradation and recovery 
of these ecosystems. Large dwarf-shrub patches may shrink and still sustain during 
long and hot summers and during drought periods, while maintaining their recovery 
potential when habitat conditions improve. Isolated scattered plants under such con-
ditions may dry out and die. Soil protection by vegetation in this latter case is low 
and thus increases potential erosion by runoff and wind (e.g., Ludwig et al. 2005; 
Okin et al. 2009; Puigdefabregas 2008). At the Landsat TM resolution, spatial het-
erogeneity of plant patterns is expressed by variations in vegetation versus soil/rock 
fractional cover. For analyzing potential erosion and potential recovery, Shoshany 
(2012) suggested to employ the following mathematical morphology technique of 
dilation on F as fractional cover of vegetation or soil:

 F ⊕ K = Max {f(xi + q, j + p) + Kq , p | −n < q < n; −n < p < n}, (12.2)
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where Kq,p is the structuring element (kernel) of the dimensions 2n + 1 × 2n + 1 
(n = 2 in this study).

Dilation of fractional cover maps would extend areas of maximal cover. The over-
all areal change between the original and dilated maps highly depends on the spatial 
distribution of the maximal values. In a scattered pattern, the change will occur 
around any core of maximal vegetation cover or inversely of high soil cover, thus 
producing wide areal changes. In clumped areas of high cover, the change will take 
place only in the margins of these clumps and thus will cover limited area. Clumped 
patches of high vegetation fractional cover associated with scattered pattern of low 
soil fractional cover would represent areas of potential recovery. Clumped patterns 
of high soil fractional cover associated with scattered pattern of low vegetation cover 
fraction would represent erosion potential. Within this description, the determina-
tion of threshold zone is expected to be configured according to two phenomenolo-
gies: first, by sharp increase in soil fractional cover reaching almost complete cover 
(Threshold Type I), and second, by the shift from higher fractional vegetation cover 
to higher fractional soil cover (Threshold Type II).

Figure 12.5 presents the methodological outline. In the first stage, spectral unmix-
ing facilitates estimating the subpixel fractions of vegetation, soil, and rocks. In the 
second stage, the cover proportion map of vegetation and soil surface types was 
dilated separately using Equation 12.2, indicating the vegetation recovery and soil 
erosion potentials. In the third stage, recovery versus erosion potentials are deter-
mined by subtracting their dilated levels.

The Landsat image of October 1987 was used for detecting erosion and recov-
ery potentials as a reference point before the high rainfall fluctuations that took 
place in 1991, 1992, 1999, 2003, and 2008. The position of the two threshold zones, 
as inferred by the new technique (Figure 12.6a and b), corresponds well with the 

Landsat TM
spectral unmixing  

Vegetation fraction Fraction of
soil and bare rocks 

Erosion potential:
dilated soil fraction  

Recovery potential:
dilated veg. fraction 

�reshold Type II:
where

Erosion potential = Recovery potential 

�reshold Type I:
where one of the dilated cover

is reaching domination 

FIGURE 12.5 Schematic description of the erosion and recovery potentials’ algorithm.
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boundaries detected in the west to east profile of GVC (Figure 12.2a). However, the 
new technique presents both a more explicit and distinctive expression of the desert 
transitions. In the GVC map, the transition from desert to the desert fringe ecosystem 
is characterized by a gradual increase from a level of 6% to 10%, whereas the erosion 
potential at the same area decreases from 0.85 to 0.15. Within the arid area, the dif-
ference between the recovery and erosion potentials is negative, indicating an excess 
of erosion potential. The upper boundary of the transition zone is clearly detected 
where the difference approaches zero (Threshold Type II).

12.4  SUMMARY AND CONCLUSIONS

GVC, life-form compositions, erosion, and recovery potentials highly vary along the 
climatic gradients between the Judean Mountains and their arid margins. In addition 
to high local fluctuations attributed to abrupt changes in the natural and anthropo-
genic habitat conditions, step-like transitions were detected. While most of these 
transitions result from differences in the type and intensity of human disturbance, 
the boundary between the desert fringe ecosystem and the arid ecosystem of the 
Judean Desert (west to east transect) follows a soil boundary between lithosols and 
Rendzina. The boundary between the desert fringe and the arid ecosystems in the 
north to south gradient is weak, showing only a slight shift in GCV and with some 
overlap in values. The study of multitemporal changes showed that GVC levels fol-
low rainfall fluctuations to a certain extent. Only the highly disturbed unit (section 
III) in the north to south section showed a minor recovery in GVC values after the 
1999 to 2003 rainfall fluctuations.

Changes in life-form compositions fit well with the structure of change inferred 
through the study of GVC variations. In addition, it adds a significant insight into 
the type of change occurring. Thus, for example, whereas the shift from the arid to 
the desert fringe ecosystems in the north to south sections is low in terms of GVC 
values representative of the end of the summer, the life-form composition inferred 
through seasonal changes in vegetation fraction indicates that there is a switch from 
the dominance of bare soil and rock to the dominance of dwarf-shrubs. However, 
potential erosion versus potential recovery seems to provide the most sensitive tool 
for detecting the formation of boundaries and threshold zones in areas of low and 
moderate shrub (including dwarf-shrub) cover. It implies the role of spatial distribu-
tion of surface conditions in determining ecosystems responses to changes in habitat 
conditions.

By combining all the information extracted in these studies, it is reasonable to 
suggest that no significant shift in the threshold zones occurred between the Judean 
Mountains and their arid margins between 1996 and 2011. However, information 
from the GVC indicates a high sensitivity and the possibility of a shift in the bound-
ary between the desert fringe Batha and the arid zone in both transects. Recent evi-
dence regarding the accumulation of water deficits and the drying of planted forests 
(Dorman et al. 2012) and of shrublands (Shoshany and Karnibad 2015) in this region 
may enhance the effect of human disturbance, reduce recovery potential, and result 
in a significant desertification of the Mediterranean to arid transition zones.
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13 Soil Moisture Using 
Optical Remote 
Sensing and Ground 
Measurements
A Case Study from Pakistan

Mudassar Umar, Siraj Munir, Iftikhar Ali, 
Salman Qureshi, Claudia Notarnicola, 
Said Rahman, and Qihao Weng

13.1  INTRODUCTION

Soil moisture is an important component of the terrestrial environment that sig-
nificantly regulates water circulation and surface energy exchanges between land 
surface and the atmosphere (Jackson 1993; Vereecken et al. 2014). It is an important 
factor affecting the budget of the hydrological cycle, specifically by separating rain-
fall into runoff, surface infiltration, and evapotranspiration (Jawson and Niemann 
2007). Many scientific applications require soil moisture data to represent the initial 

CONTENTS

13.1 Introduction .................................................................................................. 243
13.2 Data and Methodology .................................................................................246

13.2.1 Study Area ........................................................................................246
13.2.2 Remote Sensing Data ........................................................................246
13.2.3 Gravimetric Measurements ..............................................................248
13.2.4 The NIR–Red Spectral Reflectance Space .......................................249
13.2.5 Development of a RSSM Model .......................................................249
13.2.6 Development of a TVDI ................................................................... 252

13.3 Results and Discussion ................................................................................. 255
13.3.1 Ts–NDVI Space (Combination of LST and NDVI) .......................... 255
13.3.2 Spatial Variation of TVDI ................................................................ 257
13.3.3 Comparison of TVDI with Gravimetric Measurements ................... 259

13.4 Conclusion .................................................................................................... 262
Acknowledgments .................................................................................................. 262
References .............................................................................................................. 263

(c) ketabton.com: The Digital Library



244 Remote Sensing for Sustainability

state of soil moisture such as numerical weather prediction and climate projections 
because they play a key role in hydro-meteorological processes (Gao et al. 2014). A 
precise estimation of soil moisture can help in improving the forecasting of precipi-
tation, temperature, droughts, and floods (Albergel et al. 2013). There are generally 
four methods to retrieve soil moisture: (i) ground-based soil sampling or sensors, 
(ii) land surface model using meteorological data, (iii) remote sensing from airborne 
or satellite data, and (iv) data assimilation techniques that integrate remote sensing 
signals into land surface models (Qin et al. 2013).

The spatial variability of soil moisture is high owing to the significant het-
erogeneity of soil, topography, vegetation, and precipitation (Crow et al. 2012), 
making field campaigns challenging and time-intensive. Furthermore, the gravi-
metric measurements (i.e., ground measurements) are simply representative over 
a small spatial scale. In data assimilation and land surface models, the model 
grid-box size is greater than the gravimetric measurements (Qin et al. 2013). 
Remote sensing provides effective methods for collecting information from a 
range of samples over a large area in relatively shorter and repeated intervals of 
time (Nichols et al. 2011).

Microwave remote sensing offers a great potential to measure soil moisture across 
varying spatial and temporal scales (Singh et al. 2005). The poor spatial resolution 
of passive microwave and the strong sensitivity of active microwave over vegetation 
cover and in surface roughness limit the capability of microwave remote sensing 
to infer soil moisture (Srivastava et al. 2003). The weakness of microwave sens-
ing soil moisture is the impact of ground vegetation cover. Only longer-wavelength 
microwave could penetrate thick vegetation cover and can appropriately sense soil 
moisture. To overcome this problem, a number of approaches using visible, near-
infrared (NIR), and thermal infrared wavelengths were evaluated for soil moisture 
assessment.

Remote sensing data have been effectively used for the estimation of soil mois-
ture near surface, but this information is limited to a few centimeters below the 
surface (Santos et al. 2014). Remote sensing does not allow access to the whole 
root zone where water can be absorbed by the roots (Liu et al. 2012). Soil mois-
ture has varying spectral patterns across different wavelengths as remote sensing 
data from visible to microwave lengths can effectively be used for monitoring the 
variations in soil moisture (Wang and Qu 2009). Vegetation indices can be used to 
relate soil moisture in the root zone and soil moisture influences vegetation growth 
and thus changes the spectral characteristics of vegetation (Wang et al. 2010). The 
spectral reflectance decreases with increasing soil moisture in the visible and NIR 
range. Some studies have shown soil moisture modeling with visible and NIR data 
such as the vegetation anomaly index combining NIR–red data with land surface 
temperature (LST) for studying land surface parameters (vegetation anomaly, soil 
moisture), and vegetation indices serve as indicators of drought as well (Huete et 
al. 1992). The soil moisture reflectance method is dependent on the relationship 
between soil moisture and vegetation (Zhan et al. 2007). Zhan et al. (2007) vali-
dated the NIR–red observed soil moisture with gravimetric measurements, and the 
effective soil depth for moisture estimation was 5 cm and was found to be signifi-
cant. Nevertheless, the major limitations in case of optical remote sensing of soil 
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moisture relate to surface roughness, soil structure, and the presence of organic 
matters (Wang and Qu 2009).

The use of remote sensing for the estimation of surface energy fluxes and sur-
face soil water dates back to 1970. For instance, it was used by meteorologists to 
estimate the surface energy fluxes and soil water (Carlson et al. 1984; Price 1980, 
1982). Several other studies have approached them with similar methods (Kustas 
and Norman 1996; Sandholt et al. 2002). Information about surface energy and 
water status has been determined by many researchers by developing the relation-
ship between remotely sensed LST and normalized difference vegetation index 
(NDVI) (Amiri et al. 2009; Carlson et al. 1994; Rajasekar and Weng 2009). The 
correlation between thermal and visible/NIR wavelengths has proven to be useful 
for appropriate monitoring of vegetation and water stress. A method was devel-
oped for mapping the surface moisture and land surface energy fluxes in the 1990s 
(Price 1990), which was referred to as the triangle method. This method lies on the 
interpretation of the pixel distribution in Ts–NDVI space. If an image contains a 
wide range of soil water content and vegetation cover, the space presents a triangle. 
This triangle is formed because surface temperature decreases as vegetation cover 
increases. The concept of the triangle was first given by Price (1990) and later fur-
ther elaborated by several researchers (Gillies et al. 1997) while Sandholt et al. 
(2002) and others adopted and applied the triangle method (Chauhan et al. 2003; 
Stisen et al. 2008; Wang et al. 2006). Wang et al. (2007) stated that MODIS land 
parameters (LST, NDVI) are significantly correlated with ground soil moisture. 
Chauhan et al. (2003) applied this approach to obtain nearly accurate, high soil 
moisture by linking microwave-derived soil moisture with optical parameters.

Li and Dong (1996) stated that a relationship can be developed using satellite-
derived NDVI, surface temperature, and soil moisture to estimate moisture con-
tents in deep soil. Guo et al. (1997) estimated soil moisture at 20 cm depth using 
vegetation and surface temperature information and reported that satellite data 
have a significant relationship to the mentioned depth. Li et al. (2008) analyzed 
the spatiotemporal variability of land surface moisture based on vegetation and 
temperature using the triangle method. Wang et al. (2010) examined a relation-
ship between TVDI and soil moisture to estimate soil moisture from 10- to 20-cm 
depths. They stated that satellite data have a significant relationship only to the 
upper layers (10 and 20  cm). The relationship was not significant for deep soil 
layers (20–50 cm). The developed estimation model provides reliable estimates of 
soil moisture at depths of 20 cm but cannot estimate moisture levels in deeper soil 
layers (Wang et al. 2010). It was suggested that the combination of LST and NDVI 
could provide better estimates of vegetation and soil moisture on the land surface. 
Ts–NDVI space is related to surface evapotranspiration rate and has been used for 
the assessment of temperature and soil moisture condition (Goetz 1997; Prihodko 
and Goward 1997).

Sandholt et al. (2002) proposed a moisture index called temperature vegeta-
tion dryness index (TVDI) based on the simplified interpretation of Ts–NDVI 
space. Xin et al. (2006) evaluated the potential of TVDI by using Pathfinder data 
(8 km) to assess the soil moisture status by using routine level measurements of 
soil moisture at the station level. The potential of the moderate resolution imaging 
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spectroradiometer (MODIS) is investigated to capture spatial variability in soil 
moisture with intensive measurements (Patel et al. 2009). Less focus has been 
given in investigating the potential of TVDI from Landsat TM data for soil mois-
ture assessment.

The main aim of this study was to evaluate soil moisture through remotely sensed 
data and its comparison using field measurements in the Umer Kot, Sindh province 
of Pakistan. To achieve this goal, our objectives were to develop a remote sens-
ing soil moisture model (RSSMM) using NIR–red spectral reflectance space and to 
develop TVDI by combining LST and NDVI for estimating soil moisture. However, 
despite numerous work on soil moisture estimation through TVDI, a comparison 
between RSSMM and TVDI has not been carried out.

13.2  DATA AND METHODOLOGY

13.2.1  Study AreA

The Umer Kot district located in the Sindh province of Pakistan was selected as 
the study area. This region is geographically situated between 24°10′ to 25°45′ north 
 latitude and 69°04′ to 71°06′ east longitude. The total area of the district is 5608 km2. 
The study area comprises two distinct land covers, the irrigated portion in the north-
west and barony/desert in the north-southeast. The agricultural land of the study 
area is very fertile. The main crops grown in the irrigated belt of the study area are 
wheat and chili. The other crops such as sugarcane, mustard, sunflower, ispaghol, 
and saunf are also successfully grown in the area. Bajra, guwar, and till are grown in 
the rainfed belt (desert) of the area. The general classification of the land cover of this 
study area is shown in Figure 13.1. The study area bears distinct climatic conditions; 
the irrigated land within the study area has temperate conditions, that is, neither 
extremely hot nor very cold in winter as compared to the eastern portion of the study 
area. The summer heat is reduced by constant blowing of the southwest breeze from 
the sea. The climatic pattern of the eastern (desert) portion is tropical, hot, and dry. 
In this area, air temperature can rise above 40°C during May to August and drops 
down to 6°C in December and January. The average annual rainfall is approximately 
222 mm, which mostly occurs during the monsoon.

The Sindh province was severely affected by drought in past years (FAO 2001), 
and the study area is part of the drought-affected region. It is a well-established fact 
that soil moisture is an essential parameter for early drought prediction. The main 
reason behind the selection of this region was that it is a mixture of semiarid and 
desert land. The total population of the district is 2,065,590 in 2010 and is heav-
ily dependent on agricultural production. Hence, the assessment of moisture condi-
tions using advanced remote sensing techniques will help in the effective handling 
of drought and other hydrological conditions.

13.2.2  remote SenSing dAtA

Optical and thermal infrared band data of the Landsat 5 Thematic Mapper (TM) 
were used in this study. The scene was acquired on May 3, 2011. The data acquisition 
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date has clear atmospheric condition and images were acquired through the USGS 
Earth Resource Observation Systems Data Center, which has corrected radiometric 
and geometrical distortions of the images to a quality level of 1G before delivery. 
The image covering the Umer Kot district was a subset from the geometrically cor-
rected image (Path 152, Row 41). The image was atmospherically corrected by using 
the approach of Markham and Barker (1986). They gave Equation 13.1 without con-
sidering the impact of topography (Ekstrand 1996) and the atmosphere (Liang et al. 
1997). Hence, combined surface and atmospheric reflectance of earth is given by

 
ρ π= Ld 2

ESUNcos(SZ)
, (13.1)

where
ρ = unitless planetary reflectance at the satellite
π = 3.1415
L = spectral radiance at sensor aperture in mW cm−2 ster−1 μm−1

d2 = earth–sun distance in astronomical units
ESUN = mean solar exoatmospheric irradiance in mW cm−2 μm−1

SZ = sun zenith angle when scene is recorded

13.2.3  grAvimetric meASurementS

The field measurements were carried out by using the gravimetric method (Evett et 
al. 2008). The soil moisture content can be determined by weight as the ratio of the 
mass of water present to the dry weight of the soil sample. The water mass is deter-
mined by drying the soil to constant weight and measuring the soil sample mass after 
and before drying. The gravimetric measurements of soil moisture were carried out 
at 24 selected sites in the study area. The representative random sampling was used 
to collect all the soil samples. Soil moisture was measured at three different depths: 
0–15, 15–30, and 30–45 cm. All measurements were carried out between 8:00 and 
16:00 h local mean time (GMT+05), while the equatorial crossing time of Landsat 
was between 9:30 and 10:30 h (local). A local apparatus soil auger (Figure 13.2a 

(a) (b) (c)

FIGURE 13.2 (a and b) Field sample collection using soil auger. (c) Samples in the labora-
tory oven.
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and b) was used for the measurement. The collected samples were analyzed in the 
laboratory (Figure 13.2c); the weight of each sample was 50 g. The samples were 
heated in an oven for 18 h at 105°C. The dry weight of each sample was noted and 
moisture was calculated by the following formula:

 
Moisture( )

Wt.Soil (g) Dry soil (g)
Dry Soil (g)

% *= −
1000.  (13.2)

13.2.4  the nir–red SpectrAl reflectAnce SpAce

Vegetation strongly absorbs blue and red light and reflects green in the NIR spec-
trum. The reflectance of bare soil is high in the red to NIR spectral region. Densely 
vegetated area shows smaller reflectance in red and higher reflectance in NIR. This 
concept lays the theory of NDVI, which helps assess the changes in vegetation frac-
tion, leaf area index, and chlorophyll content. Richardson and Weigand (1977) devel-
oped a NIR–red spectral space with MSS and a perpendicular vegetation index for 
distribution of vegetation in space. The NIR–red spectral reflectance space was con-
structed by using atmospherically corrected TM band 3 and band 4. The NIR–red 
spectral scatterplot constructs a triangular shape (Figure 13.3). The NIR–red space 
developed by TM band 3 and band 4 validates the distribution of vegetation in space 
(Richardson and Weigand 1977).

In Figure 13.3, the change in surface vegetation cover is represented by line AD 
from the densely vegetated area (A) and sparse vegetation (E) to bare soil (D). Line 
BC refers to soil moisture status, extending from the wet area (B) to semiarid to 
dry soil (C). Line BC, which shows the direction of dryness, helps in inferring the 
drought severity. The scatterplot of the NIR–red reflectance space demonstrates the 
triangular shape. Surface coverage and surface condition can be described signifi-
cantly in this space. Relationships exist among surface spectrum, land cover types, 
and dryness condition. This prompts us to build a NIR–red spectral space model for 
soil moisture monitoring.

13.2.5  development of A rSSm model

Figure 13.3 shows that dryness gradually rises from B to C and climaxes at 
C. Line BC is the soil line and is mathematically expressed by the following 
equation:

 RNIR = MRred + I, (13.3)

where RNIR is the reflectance of the NIR band, Rred is the reflectance of the red band, 
M is the slope of the soil line, and I is the intercept.

According to the perpendicular vegetation index (PVI) developed by Richardson 
and Weigand (1977), any point in the NIR–red reflectance space to the line vertical 
to the soil line represents surface soil moisture. Line L dissects the coordinate origin 
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and is vertical to the soil line (Figure 13.4). Hence, the normal function of line L can 
be formulated from the soil line expression

 
R

M
RNIR red= −





 

1
. (13.4)

The distance from any points in the NIR–red reflectance space to line L represents 
surface soil moisture conditions. The farther the distance, the stronger the drought 
and the less soil moisture and vice versa. Let there be a random point K (Rred, RNIR); 
then, the vertical distance from K (Rred, RNIR) to line L can calculated as follows:

 
KM

M
R MR=

+
+1

12
( )NIR red . (13.5)

The objects with some reflectance near the wet area of Figure 13.3 have a moisture 
content close to 1, while the objects with high reflectance are in the direction of C 
showing dryness and have a moisture content close to 0. The following model has 
been established by subtracting the normalized values of Equation 13.5 from 1:

 
RSSMM NIR red= −

+
+1

1

12
  ( )

M
R MR . (13.6)

The soil line extracted from NIR and red band reflectance of the observed area in 
Figure 13.5 is expressed as follows:

 RNIR = 0.8745Rred + 0.0745. (13.7)
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FIGURE 13.3 Conceptual diagram of NIR–red reflectance space.
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It can be seen from Equation 13.7 that the slope (M) = 0.8745 and the intercept 
(I) = 0.0745; introducing into Equation 13.5, soil moisture can be obtained over 
the study area:

 
RSSMM NIR red= −

+
+1

1

0 8745 1
0 8745

2.
( . )R R . (13.8)
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13.2.6  development of A tvdi

Soil moisture is dependent on LST and vegetation. Chauhan et al. (2003) showed that 
there can be a strong correlation between soil moisture, NDVI, and LST for a region. 
NDVI is calculated with adjusted apparent reflectance of NIR and red:

 
NDVI

band band
band band

= −
+

ρ ρ
ρ ρ

( ) ( )
( ) ( )

4 3
4 3

. (13.9)

Emissivity of natural land surfaces can be measured by using the method pro-
posed by Sobrino et al. (2004). On the basis of brightness temperature, NDVI, and 
emissivity, LST is calculated as follows:

 
LST

*T*ln
=

+
ρ

ρ λ ε
T , (13.10)

where
 λ = wavelength of emitted radiance for which the average of limiting wave-

lengths (λ = 11.5 μm) is used (Markham et al. 1985)

 ρ
σ

= h c*
, where ρ = Boltzmann constant (1.38* 10−23 J/K), h = Planck’s constant 

(6.626 × 10−34 Js), and c = velocity of light (3 × 108 m/s)
 T = effective at-satellite temperature in Kelvin (K)
 ε = emissivity of land surface (obtained from thermal band of Landsat TM)

The relationship between LST and NDVI was negative. This proves that as 
vegetation increases, the surface temperature tends to decrease, and vice versa. 
This result allows the development of a triangle method. The method of mapping 
soil moisture using LST and NDVI is known as the triangle method (Carlson 2007; 
Price 1990).

In the LST–NDVI triangle (Figure 13.6), the highest LST (Tsmax) along the dry 
edge establishes dry surface when the soil wetness is approaching 0. The wet soil 
conditions are represented through the minimum LST (Tsmin) along the wet border 
when the soil wetness is high and approaching 1. A TVDI can be established by hav-
ing TVDI = 1 at the dry edge and TVDI = 0 at the wet edge. The dry edge has limited 
water availability, while the wet edge has unlimited water access.

The mathematical relation is as follows:

 
TVDI s smin

smax smin

= −
−

T T
T T

, (13.11)

where Ts is the LST, Tsmin is the minimum LST in the triangle and represents the wet 
edge, and Tsmax is the maximum LST observed for a given NDVI and signifies the 
dry edge in the triangle.
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Tsmin = a1 + b1NDVI, where a1 and b1 are coefficients of the regression equation for 
the wet edge of the moisture condition and Tsmax = a2 + b2NDVI, where a2 and b2 are 
coefficients of the regression equation for the dry edge. The TVDI broadly considers 
the changes between vegetation and surface temperature.

Four important parameters, dryness, wetness, NDVI, and LST, can be perceived 
from the triangle. A dry edge will develop when the LST tends to increase against 
minimum NDVI. Similarly, wet edge develops when the LST tends to decrease against 
maximum NDVI (Figure 13.6). As the LST decreases, the vegetation increases, the 
higher the NDVI value becomes, and the lower the LST will be with the exception 
of small variations. The small changes in the LST with higher NDVI values point to 
the wetness of the soil in vegetation. According to Carlson (2007), variations in LST 
only reveal the dryness and wetness. The drier conditions can easily be indicated by 
steeper Ts–NDVI slopes (Goetz 1997). The scatterplot of Ts–NDVI has a negative 
relation for most of the pixels found in the triangle. The dry edge and the wet edge 
were estimated on the basis of pixel information from the area that is large enough 
to represent the range of surface moisture condition and from sandy soil to a fully 
vegetated surface. A plot of an NDVI pixel against a corresponding Ts is shown in 
Figure 13.7 for wet and dry edges. Tsmax (dry edge) and Tsmin (wet edge) were observed 
for intervals of NDVI extracted from Ts–NDVI space as shown in Figure 13.7.

The performance of satellite-based soil moisture retrieved through both RSSMM 
and TVDI was assessed using root mean square error (RSME) and index of agree-
ment (Willmott 1981) d:
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FIGURE 13.6 TVDI representation.
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where N is the number of observations and Oi and Ei are the observed and estimated 
values, respectively. The d index values vary between 0 and 1, indicating the low 
and high relationship between observed and estimated values, respectively. Willmott 
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(1981) developed a d index, known as Willmott’s index of agreement, which is used 
for validation in regression and prediction models. The model is perfect when d = 1 
and RSME = 0.

13.3  RESULTS AND DISCUSSION

The RSSMM was used to analyze the soil moisture at the pixel level. The RSSMM-
derived results were then correlated with soil moisture level calculated by gravi-
metric measurements. It is clear that results derived from RSSMM and ground 
measurement have a significant correlation (Figure 13.8). The relationship between 
RSSMM and gravimetric (ground) measurements is statistically significant (P < 
0.05) and correlation coefficients Rland surface depth (RSSMM)

2( )  were R0 15
2 0 51− =cm (RSSMM) . , 

R15 30
2 0 60− =cm (RSSMM) . , and R30 45

2 0 57− =cm (RSSMM) . .
The effective soil depth for soil moisture measurement has been the subject of 

debate in scientific literature. For example, Ghulam et al. (2004) proves that at a 
10-cm depth, the visible and NIR spectral space have a close relationship, whereas 
Guo et al. (1997) reported that satellite data have a correlation with soil moisture at a 
depth of 20 cm. Liu et al. (1997) stated that the effective depth for estimation of soil 
moisture through visible NIR is 10 cm. Carlson et al. (1995) calculated soil water 
content at two depths: 0–15 and 15–30 cm. On the basis of these contradictory argu-
ments, field measurements were conducted at depths of 0–15, 15–30, and 30–45 cm to 
aid our methods based on NIR–red reflectance data and TVDI.

It is evident from the results that the satellite estimates (i.e., RSSMM) and 
field-measured (i.e., gravimetric soil moisture) data are in agreement (Figure 13.8 
and Table 13.1). The impact of vegetation on soil moisture was not considered 
in RSSMM; hence, the results present mixed information on soil and vegetation. 
This poses a limitation on the precision of estimated results together with the 
uncertainty of field measurements attributed to sample transportation as wind and 
other metrological factors have a strong effect on soil moisture conditions. The 
results are acceptable and the developed method can be applied to soil moisture 
monitoring.

13.3.1  tS–ndvi SpAce (combinAtion of lSt And ndvi)

A plot of NDVI pixels against the corresponding surface temperature (Ts) presents a 
triangular shape. A linear regression was applied to obtain the dry edge (Tsmax) and 
wet edge (Tsmin) (Figure 13.7). A strong negative and positive relationship was found 
in Tsmax and Tsmin observations, respectively. The dry edge has a negative relationship, 
indicating the decrease in LST(max) when the NDVI increases. The wet edge has a 
positive relationship, signifying the decrease in LST(min) with NDVI. The AT was 
developed using Ts–NDVI space. These wet and dry edges were used to calculate 
TVDI.

The analysis of the scatterplot (Figure 13.7) shows a stronger correlation with R2 
between 0.61 and 0.95, indicating that dry and wet edges are adequately represented 
by a linear equation (Figure 13.7). The results are in agreement with previous work 
of Holzman et al. (2014), Patel et al. (2009), and Sandholt et al. (2002).
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Figure 13.7 illustrates that the slope (−21.82) of the dry edge tends toward the neg-
ative side as compared to the slope (4.33) of the wet edge. This difference is attrib-
uted to the fraction of vegetation cover and LST as the dry edge was determined by 
observing maximum LST against an interval on NDVI values from Ts–NDVI space. 
The negative slope associated with the dry edge may be the result of evapotranspira-
tion and bare soil surface with confining water condition.

Hence, the dry and wet edges have a high correlation (R2 = 0.95 and R2 = 0.61, 
respectively). The relationship showed that the LST was higher in the area with low 
NDVI. The relationship with the dry edge shows a decrease in maximum LST with 
increasing NDVI. The relationship with the wet edge is positive, showing an increase 
in NDVI with an increase in minimum LST. The variation shows the rise and decline 
in both the LST and NDVI. This shows that when soil moisture is high, the absorp-
tion of solar energy is used for evaporation. When soil moisture is low, the bare soil 
becomes drier rapidly and there is less evaporation, and as a result, absorption is 
consumed in LST. Hence, when surface temperature is high, the moisture in the root 
layer is consumed to maintain a high transpiration rate.

13.3.2  SpAtiAl vAriAtion of tvdi

With dry and wet edges, the TVDI image was obtained to infer the pattern of wet-
ness and dryness. By applying Tsmin and Tsmax (extracted from Ts–NDVI) in Equation 
13.11, the TVDI was obtained. Dry and very dry (TVDI > 0.6) conditions are located 
in bare areas with more soil mainly in the eastern region (Figure 13.9). Moist areas 
having low and very low (TVDI < 0.5) values are noticeable in the western region 
(Figure 13.9). The influence of moisture was clearly visible in the study area. Moist 
areas had low TVDI values where the vegetation cover is robust (Figure 13.1).

Dry condition was present in the eastward region of the study area owing to the 
high TVDI values. These high TVDI values in the eastern region show a drier con-
dition as compared to the western region of the study area with predominantly irri-
gated cultivation. On the whole, the western region of the study area has low TVDI 
values (0.1–0.5), which allow surface wetness as a result of the high vegetation cover 

TABLE 13.1
Error Statistic of RSSMM and TVDI in Comparison with Gravimetric Soil 
Moisture Measurements

RSSMM Relation with Gravimetric Measurements R2 RSME Willmott’s Index (d)

0–15 cm 0.51 3.5% 0.93

15–30 cm 0.60 3.6% 0.95

30–45 cm 0.57 4.0% 0.94

TVDI Relation with Gravimetric Measurements R2 RSME Willmott’s Index (d)
0–15 cm 0.75 2.4% 0.97

15–30 cm 0.70 3.0% 0.96

30–45 cm 0.63 3.8% 0.95
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and moisture retention capacity of soil. The extremely low TVDI values (<0.2) were 
observed along the water bodies/channels. TVDI was found very effective for deter-
mining the surface wetness (moisture) and dryness.

13.3.3  compAriSon of tvdi with grAvimetric meASurementS

To prove the effectiveness of the methodology, TVDI and gravimetric measurements 
were analyzed in the study area. The efficiency of TVDI as an index for assess-
ing soil  moisture was compared with gravimetric measurements (Figure  13.10). 
This  illustrates the relationship between TVDI and gravimetric measurements 
at various depths (0–15, 15–30, and 30–45 cm) for a field campaign (May 2011). 
The result shows a significantly negative correlation between TVDI and gravi-
metric measurements across the respective depths during the field campaign. 
The correlation Rland surface depth (TVDI)

2( )  was significant (P < 0.05) at all three depths  

(R0 15
2 0 75− =cm (TVDI) . , R15 30

2 0 70− =cm (TVDI) . , and R30 45
2 0 63− =cm (TVDI) . ). A significant 

relationship was observed at 0–15 cm. This relationship was better than those for 
other depths.

Previous studies have compared the TVDI and direct estimation of soil moisture 
content. According to Sandholt et al. (2002), the relationship between TVDI and soil 
moisture yields a coefficient of determination ranging from 0.23 to 0.81. Wang et al. 
(2004) have found a significant negative correlation (R2 = 0.35 − 0.68) between TVDI 
from NOAA-AVHRR and surface soil moisture. Patel et al. (2009) have shown that 
TVDI has a significant correlation with gravimetric soil moisture at a depths of 15, 
30, and 45 cm. Chen et al. (2011) also describe that a significantly negative rela-
tionship exists between the TVDI and gravimetric soil moisture measurement at 
different soil depths. However, the relationship at 10–20 cm depth (R2 = 0.43) was 
closest. Holzman et al. (2014) reported that the TVDI showed a strong negative cor-
relation with soil moisture measurement with R2 values ranging from 0.61 to 0.83. In 
this study, the relationship is significant for depths of 0–15 and 15–30 cm, which is 
also evident for some other studies (Chen et al. 2011; Holzman et al. 2014). Hence, 
these results reveal the ability of the TVDI to reflect spatial variation of soil mois-
ture (Figure 13.9). It is observed that the TVDI better explains the variance in soil 
moisture in upper soil layers as compared to the deeper layers. Moreover, the TVDI 
results were found satisfactory for estimation of soil moisture.

The results show that the soil moisture (%) can be estimated by using linear 
regression models. The linear regression models developed for the soil moisture (%) 
are as follows:

 0 to 15 cm: Moisture (%) = −31.04TVDI + 24.21 (13.14)

 15 to 30 cm: Moisture (%) = −36.58TVDI + 29.09 (13.15)

 30 to 45 cm: Moisture (%) = −38.94TVDI + 30.98. (13.16)

The spatial variation of soil moisture (%) at three different depths is shown in 
Figure 13.11.
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RSSMM and TVDI were found to be appropriate methods for estimating soil 
moisture. Willmott’s Index (Willmott 1981) and RMSE were used to determine the 
performance of both methods.

It can be observed from Table 13.1 that the statistical relationship between 
TVDI and gravimetric measurements is significant, with less RSME than RSSMM. 
Moreover, it is clear from Willmott’s Index that validation of TVDI with gravi-
metric measurements is more satisfactory than that of RSSMM. RSSMM shows 
potential for estimating surface soil moisture. However, TVDI is a combination of 
LST and NDVI (Ts–NDVI space), and it has been noted that LST and NDVI pres-
ent considerable change in land surface characteristics between wet edge (Tsmin) 
and dry edge (Tsmax). Hence, TVDI has an advantage over RSSMM in that it con-
siders both vegetation (NDVI) and LST. Comparing RSSMM and TVDI, it is 
found that the latter is an effective and a more appropriate method in determining 
soil moisture.

13.4  CONCLUSION

In this study, both RSSMM and TVDI have been used for estimation of soil 
moisture. It was observed that the TVDI method, which considers LST and veg-
etation index relationship, can be used effectively and appropriately for the esti-
mation of soil moisture. The main objective of this study was to investigate soil 
moisture estimation using RSSM and TVDI, which were developed using NIR 
and red reflectance and a combination of Landsat TM–driven LST and NDVI, 
respectively. The soil moisture derived from both methods was compared with 
gravimetric measurements. The relationship of TVDI and RSSMM with gravi-
metric measurements was significant at depths of 0–15, 15–30, and 30–45 cm. 
The two models developed in this study delivered relatively reliable estimates 
of soil moisture at different soil depths. RSSMM presents diverse information 
of soil and vegetation; therefore, disintegration of the diverse pixel information 
may produce more accurate results. It is also concluded that TVDI extracts soil 
moisture and is useful for frequently studying soil moisture over a large area. 
The TVDI has a good correlation with field-collected soil moisture (R2 > 0.70). 
The results of the study demonstrate that the TVDI is a more effective and com-
prehensive method for soil moisture estimation. Moreover, rigorous examina-
tion with concurring field data to the TVDI with temporal and spatial variation 
may improve the present approach. The inferring of surface moisture status on a 
regular basis can help in the monitoring of early drought, agriculture, and water 
management.
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14 Earth Observation 
and Its Potential to 
Implement a Sustainable 
Energy Supply
A German Perspective

Thomas Esch, Markus Tum, and Annekatrin Metz

14.1  REMOTE SENSING IN SUPPORT OF ENERGY POLICY

Today, satellite sensors provide digital recordings of the earth’s surface in a spa-
tial resolution of approximately 1 km (e.g., SPOT-VEGETATION, MODIS, MERIS, 
Proba-V) to less than 1 m (z. B. WorldView, QuickBird, IKONOS). The temporal 
repetition cycle varies from daily to monthly surveys. The Earth observation technol-
ogy has steadily evolved in recent years from a beginning characterized by a rather 
experimentally imprinted alignment toward operational services, which ensures a 
long-term, regular, and quality-assured provision of spatial data and higher-value 
information products. On the one hand, these data and products can be recorded 
while targeted on request for specific applications, periods, or regions as needed, or 
on the other hand, these can be implemented in a systematic and comprehensive mon-
itoring of the Earth’s surface. Thus, satellite-based Earth observation provides prom-
ising applications to implement a sustainable energy supply. Remote sensing–aided 
applications such as wind field analysis and the levying of irradiation data or the 
determination of solar surface potentials are commercially exploited and have been 
available for several years and are firmly established in existing planning processes.
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Nevertheless, the need for the provision of missing or supplementation of existing 
geodata and geoinformation products to support the energy turnaround in Germany 
has been formulated repeatedly by representatives from policy, management, plan-
ning, the private sector, and academia.

14.2  GEODATA FOR THE ENERGY SECTOR—
EXAMPLES OF SATELLITE-BASED ANALYSIS

Looking over the formulated demand for spatially and thematically enhanced spatial 
data in support of sustainable energy supply, the collection of geospatial data from 
satellite image analysis especially with regard to the potential assessment, site selec-
tion, conflict prevention of interest, and monitoring of impacts and trends must be 
regarded as particularly beneficial. This applies to the comprehensive determina-
tion of the biomass volume in the context of site assessment or the parcel-related 
acquisition of agricultural crops for the estimation of regional straw potentials. 
Furthermore, the use of remote sensing techniques can also be used for the detec-
tion, visualization, and documentation of developments and trends of, for example, 
the transformation of landscapes in the context of energy policy decisions or the 
growing energy consumption and increasing use conflicts in the wake of steadily 
progressing land use by settlements and transport infrastructure. The following three 
exemplary recent research and development works of the department’s land surface 
of the Earth Observation Center at the German Aerospace Center (DLR) will be 
presented: the modeling of sustainable bioenergy potentials, the acquisition of agri-
cultural growing patterns, and the accounting of settlement structures with regard 
to their suitability for the construction of heating networks. All these applications 
are aimed at supporting land management, which is geared toward the promotion of 
sustainable energy supply.

14.2.1  Potential analysis: Bioenergy

The Biosphere Energy Transfer Hydrology (BETHY/DLR) model of the DLR is 
driven by high spatial and temporal resolution remote sensing data and derived 
parameters such as leaf area index (LAI) and is used for the quantification of biomass 
and bioenergy potentials. As an input data set for the evaluation described below, 
global LAI data, which are available in the form of 10-day composite time series as 
well as information on land cover and land use, derived from the Global Land Cover 
2000 (GLC2000) were used. In addition to these remote sensing data, BETHY/DLR 
also requires diverse meteorological information on air temperature, precipitation, 
wind speed, and cloud cover. These data are provided by the European Center for 
Medium-Range Weather Forecast in an appropriate format. Furthermore, BETHY/
DLR uses information on the dominant soil type from the Harmonized World Soil 
Database and a digital elevation model of the Shuttle Radar Topography Mission.

In vegetation models such as BETHY/DLR, plant growth is parameterized in a 
way that, in a first step, the biochemical processes of photosynthesis are modeled at 
the leaf level. This is followed by an extrapolation of both the structure of the plant 
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and the interaction (e.g., energy flows, water circulation) included in the calculations 
between soil, vegetation, and atmosphere from the leaf level to the inventory level. 
As a result, the model initially provides the carbon amount absorbed by the vegeta-
tion per unit area and time out of the atmosphere—the gross primary production. 
Since each plant emits carbon back to the atmosphere through autotrophic respira-
tion in the form of CO2, in the balance sheet, less carbon in the form of biomass is 
bound in the plant than was originally recorded. This output of the model is called 
Net Primary Productivity (NPP). With the use of conversion factors, NPP can be 
converted into biomass and energy potentials. For this purpose, conversion factors 
such as the relationship of grain to straw or root to shoot and the ratio of  above ground 
to underground biomass are also needed, as well as information on the specific water 
content of the dry biomass and its energy yield per kilogram (lower heating value). 
Additionally, estimates of competing uses are likewise required (e.g., soil fertiliza-
tion by straw, entry into stables, etc.).

In Figure 14.1, agricultural and forestry bioenergy potentials for Germany in 
2012 are illustrated. Energy potentials of straw are locally a factor of 10 lower 
than the potential growth of wood; as for the agricultural potential, because of 
competing uses, only a small proportion of the straw (20%) is considered to be 
usable for energy production. In contrast, 80% of forest growth is considered to 
be theoretically available. For 2012, the overall energy potential was calculated 
to be 572 petajoules (PJ) for agriculture and 1938 PJ for forestry. A detailed 
description of all input data and the methodology for modeling of the NPP and 
conversion of NPP in agricultural and forest energy potentials can be found in 
Wißkirchen et al. (2013) and Tum et al. (2013).

20
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Wood energy
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Straw energy
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FIGURE 14.1 Energy potential of wood growth (forestry) and straw (agriculture) in 
TJ/km2/a for 2012.
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14.2.2  MaPPing of agricultural cultivation Patterns

In connection with the policy on climate change, the efforts to reduce CO2 consump-
tion and the implementation to a sustainable energy supply have been added as a new 
component in addition to aspects such as food security, food quality, and sustainable 
management in view of the agricultural production in Germany and the increased 
use of bioenergy raw materials. This contributed input to the funding policy with 
regard to biogas plants and the Renewable Energies Act (EEG). The opportunity to 
obtain co-financing of biogas power plants through the EEG has greatly affected the 
cultivation of crops in the past decade, for example, in the form of an increase in the 
acreage of silage maize (DMK 2013). The new support measures for the cultivation 
of energy raw materials also drive increased reallocation of grassland in areas used 
for farming. In addition to the loss of arable land for food production, the environ-
mental impact of large-scale cultivation of maize and other energy crops should be 
evaluated critically.

The sometimes rapid processes of change in the cultural landscape bear in mind 
that a continuous and timely monitoring of intensity of use and acreage develop-
ment is needed to promptly identify trends and unfavorable regional developments 
in terms of sustainable management to be able to effectively counteract such adverse 
developments based on this information. Satellite remote sensing provides an ideal 
base, because it enables spatially and temporally precise analysis, which can also be 
easily integrated into spatial information systems and with other data, such as sta-
tistical information or geometries of cadastral surveying. Moreover, meaningful use 
potentials can be determined in order to determine, for example, areas with exploit-
able straw shares by the cultivation of grain or spatial potential through enhanced 
incurred hedge trimming at national care measures. In addition, relevant information 
for optimized positioning can be used for planning biogas plants.

Facing agriculture-related evaluations, the value of satellite remote sensing 
becomes more apparent particularly with the combined analysis of spectral informa-
tion and phenological development curves (e.g., from vegetation indices). Esch et al. 
(2014) used high-resolution multi-seasonal recordings of Sensors LISS-3 (23.5  m 
spatial resolution) and AWiFS (56 m spatial resolution) of the satellite IRS-P6 to 
parcel-based classification of grassland and main crops of arable crops. The aim of 
this approach is to provide a methodology that allows for quick and flexible acquisi-
tion of cultivation patterns on predetermined areas of interest. The result of such 
analysis is shown in Figure 14.2.

14.2.3  DeterMination of PoPulation structures anD site conDitions 
for construction of Heating networks

The increased use of efficient energy technologies is indispensable in order to achieve 
climate change goals as well as the establishment of a sustainable energy supply. 
The expansion of local and district heating networks, especially in combination with 
plants for combined heat and power as well as the increased use of renewable district 
heating, is of central importance here. In order to evaluate the potential for estab-
lishing a wired heat supply, an analysis of settlement structural conditions and the 
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resulting potential for development is needed. An important element is the provision 
of current, nationwide heat power (energy) potential, which can be used to address 
the physical–structural location conditions for district heating. The heat power 
potential is calculated by the ratio of annual heat energy demand of the building and 
investment costs to provide the heat needed. The corresponding characteristic value 
represents the annual exploitable potential by the supply quantities of heat (kWh/a) 
per invested monetary unit (euros). The specific heat energy consumption value 
depends on the type and use of the building, the age of the building, and the climatic 
conditions. The estimation of costs for heat infrastructure is based on an analysis of 
the lengths and associated costs for main supply and service lines, which in turn can 
be modeled on an evaluation of the road network and the location of buildings. The 
heat demand is made up of the building volume and the specific heat demand value, 
while the investment costs include all expenses for distribution, connecting cables, 
house transfer stations, and savings for boilers.

Figure 14.3 shows the result of a Germany-wide analysis of heat power potential 
that has been identified through a combination of top-down and bottom-up approach 
as methods of digital image analysis and geographic information systems (DLR 
2011). The top-down approach is used during the estimation of the heat demand 
on the basis of data on the housing stock and the climatic situation. The building 
stock is determined by Infas-geodata (INFAS 2015) of the building type (one/two- 
family houses, small and large apartment buildings) and building age (nine peri-
ods of construction) as well as information from the Federal Statistical Office for 
building use (residential buildings, nonresidential buildings). Climatic conditions 

Classification

211 (Crops)
216 (Maize)
220 (Beet)
232 (Rapeseed)
400 (Pasture)
No agriculture

0 2km

(a)

(b)

FIGURE 14.2 Use of multiseasonal satellite imagery (a) to determine the agricultural cul-
tivation pattern (b).
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can be displayed using the degree days provided by the German Weather Service 
(http://www .dwd.de). The calculation of the wireline investment costs is bottom-
up involving data of the Authoritative Topographic–Cartographic Information 
System (accessible at http://www.atkis.de) on the situation of human settlements 
and the course of the road network (determining main supply and service lines) 
and makes use of information about the existing buildings (location, area) extracted 
from Digital Topographic Maps (DTK 25), which can be obtained at http://www 
.adv-online.de. Although data on the situation, floor space, and even the volume of 
buildings are available nationwide in the form of spatial data (e.g., house outlines 
or 3D building model LoD1), the high cost of ~100,000 to 350,000 euros currently 
prevents users to access them. The evaluation results show that the thermal power 
potential in addition to the local heat demand is highly dependent on the length of 
heat distribution. This is closely linked to the settlement structure. Therefore, core 
cities and their surrounding particularly exhibit high values, while rural areas have 
relatively low potential. For example, in the southern parts of Germany, relatively 
favorable structures are available, whereas the northeast has relatively unfavorable 
structures.
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FIGURE 14.3 Heat power potential of communities in Germany in 2011, without consider-
ing the cost of a conventional heat supply.
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14.3  CONCLUSIONS

Satellite-based remote sensing offers versatile opportunities for the provision of geo-
information for energy-related issues. Recent results and experience show that Earth 
observation can make important contributions in particular with regard to potential 
calculation, monitoring of current availability, and the monitoring of changes and 
trends.

Advantages over established approaches and data sets in this connection arise 
in particular with regard to timeliness, coverage, comparability, spatial detail, 
and update costs. Nevertheless, an operational provision of the necessary remote 
 sensing–based geoinformation products in the form of reliable services is central 
for commercial production and ultimately for success in the planning and man-
agement sector. Cornerstones in this context ensure a high spatial, temporal, and 
qualitative continuity; transparent and reliable procurement costs and modalities; 
and the exploitation of synergies (e.g., with existing spatial data held by the cadas-
tral survey). However, unclear responsibilities, requirements, and user requirements 
currently complicate targeted developments. Against this background, there is a par-
ticular need for the coordination and pooling of research and development activities 
between the different actors of planning/management, industry, and science. A net-
worked and concerted approach enables the effective development and utilization of 
existing expertise and synergies. At the same time, a close connection to the GMES/
Copernicus environment should be ensured in order to meet the requirements for 
data continuity and service delivery.
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15 Use of Nighttime 
Imaging Data to Assess 
Decadal Trends in 
Energy Use in China

Yanhua Xie and Qihao Weng

15.1  INTRODUCTION

In general, energy refers to the ability to do work and can be in the form of elec-
tricity, thermal, chemical, mechanical, gravitational, nuclear, radiant, sound, and 
motion. The sources of energy can be fossil (e.g., petroleum, coal, natural gas, wood, 
etc.), renewable (wind, solar, geothermal, hydrogen, etc.), and fissile (e.g., uranium, 
thorium, etc.) (Bilgen 2014). Being one of the three crucial themes (i.e., energy con-
sumption, urbanization, and carbon dioxide emission) in the 21st century, energy 
has caught much attention as it is essential for socioeconomic development for all 
countries (Al-mulali et al. 2012; Weng 2013). For the past decades, attention exerted 
on energy issues in developing countries (e.g., China and India) has been especially 
intense as these countries are currently experiencing fast urbanization. The leap of 
their economies has caused rapid growth of energy consumption, and this trend is 
expected to continue in the near future (Bilgen 2014). However, if the unsustain-
able energy consumption (e.g., overexploitation of nonrenewable resources and air 
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pollution caused by fossil fuels) continues, environmental problems will definitely 
deteriorate (Adams and Shachmurove 2008; Ahmad et al. 2015; Bloch et al. 2015; 
Cherni and Kentish 2007). A better knowledge of the spatiotemporal patterns of 
energy consumption at multiple scales is thus a critical step for the sustainable devel-
opment of energy as it provides policy makers with the guidelines for energy produc-
tion, distribution, and management.

15.2  SOME BACKGROUND ON NTL-BASED 
ESTIMATION OF ENERGY CONSUMPTION

A major challenge for analyzing multiscale spatiotemporal patterns of energy con-
sumption is the lack of detailed data in a temporally and spatially consistent man-
ner, and this situation is more severe in developing countries (Parshall et al. 2009). 
Traditionally, the primary source of energy consumption data is census data with 
the interval of years and spatial resolution of administrative units (e.g., country, 
province), hardly satisfying the requirements of spatiotemporal analyses at multiple 
scales (especially for local scales such as urban level).

Remotely sensed nighttime light (NTL) imagery from the Operational Linescan 
System (OLS) of the Defense Meteorological Satellite Program (DMSP) has been 
proven effective in the estimation of electricity consumption (EC) in a spatially explicit 
and consistent manner, because it provides frequently repeated records of EC for out-
door lighting (Amaral et al. 2005; Cao et al. 2014; Chand et al. 2009; Elvidge et al. 
2001; He et al. 2012, 2014; Letu et al. 2010; Lo 2002; Welch 1980). Meanwhile, the new 
generation of NTL image from the Visible Infrared Imaging Radiometer Suite onboard 
the Suomi National Polar-Orbiting Partnership satellite has shown an enhanced rela-
tionship between EC and NTL at the sub-country scale (Shi et al. 2014). NTL data from 
DMSP-OLS are especially attractive given its long time archive (1992 to the present).

The potential use of DMSP NTL images for characterizing EC pattern was first 
noted in the 1980s by Welch (1980). Since then, a number of studies have demon-
strated the relationship between DMSP-OLS NTL imagery and EC at national, state/
provincial, and county scales. For instance, Elvidge et al. (1997, 2001) reported the 
country-scale relationships between lit area and EC with 21 and 200 countries, respec-
tively; Letu et al. (2010) also demonstrated a country-scale relationship between EC 
and saturation-corrected DMSP NTL intensity for 10 Asian countries; Amaral et al. 
(2005) modeled EC in the Brazilian Amazon from a lighted area at the municipal 
level; Lo (2002) established a logarithmic relationship between EC and lit area for 35 
Chinese capital cities. In recent years, the examination of spatiotemporal dynamics of 
EC at different scales has been conducted since the availability of time-series DMSP-
OLS NTL images. For instance, by using DMSP-OLS NTL data from 1993 to 2002, 
Chand et al. (2009) characterized spatiotemporal changes in EC patterns in the major 
cities and states of India; He et al. (2012, 2014) examined EC pattern at the county 
level in Mainland China using DMSP-OLS NTL data during 1995–2008 and 2000–
2008, respectively; to detect the spatiotemporal pattern of EC at the sub-county level, 
Cao et al. (2014) proposed a top-down method to model pixel-based EC from 1994 to 
2009 in China, using NTL, population density, and GDP as the independent variables.
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Despite a number of research showing the capacity of NTL as an indicator of EC 
with varying degrees of success, most of them focused on global-, continental-, or 
national-level estimations. However, increasing municipal authorities and planners 
are addressing energy issues within the context of local climate and sustainabil-
ity initiatives, requiring adequate supply of small-scale energy data (Parshall et al. 
2009). Additionally, each study focused on the analyses at a single scale, ignoring 
the importance of multiscale analyses, which may offer potentials for better under-
standing the process over the interaction between socioeconomic developments and 
EC. Meanwhile, although studies have been undertaken to examine the relation-
ship between NTL and EC, there is limited assessment from the current literature 
about whether NTL can be a good indicator of overall energy consumption (Wu et 
al. 2014; Xie and Weng 2016). According to our initial assessment, a significantly 
positive relationship exists between national NTL and overall energy consumption 
even though it includes both EC and energy consumed in other forms such as coal 
and natural gas, which cannot be directly detected by the DMSP-OLS sensor. In this 
chapter, we characterized the decadal trend (2000 to 2012) of EC at sub-country 
scales (i.e., provincial, prefectural, and urban scale) in Mainland China by using 
time-series DMSP-OLS NTL images. The same procedure could be followed for the 
spatiotemporal analyses of overall energy consumption. The results further provided 
a spatially explicit way to evaluate the relationship between China’s urbanization and 
its EC in the first decade of the 21st century.

15.3  STUDY AREA AND DATA SETS

Mainland China was selected as the study area, where a rapid urbanization occurred 
since the economic reform in 1978, especially after the mid-1990s (Wang 2014). 
Specifically, urbanization in China accelerated for the first decade of the 21st cen-
tury (Huang et al. 2015). Population size reached 1.34 billion at the end of 2010, 
and the urbanization rate of population increased from 36.22% to 51.27% between 
2000 and 2011 (Wang 2014), with an annual increase of 3.21%. The rapid economic 
growth associated with urbanization steadily promoted the demand of energy, 
with the  national consumption of electricity increased by 3.6 times, from 1361.78 
billion  kWh in 2000 to 4953.50 billion kWh in 2012.

To capture regional differences, the study area was divided into four regions 
( eastern: Beijing, Fujian, Guangdong, Hebei, Jiangsu, Shandong, Shanghai, Tianjin, 
and Zhejiang; northeastern: Heilongjiang, Jilin, and Liaoning; central: Anhui, Henan, 
Hubei, Hunan, Jiangxi, and Shanxi; and western: Chongqing, Gansu, Guangxi, 
Guizhou, Inner Mongolia, Ningxia, Qinghai, Shaanxi, Sichuan, Xinjiang, Xizang, 
and Yunnan). Table 15.1 shows that, within the overall EC across Mainland China, 
the amount consumed in eastern China increased steadily from 47.24% to 50.79% 
from 2000 to 2006, but this value reduced to 48.08% in 2012. For western China, the 
proportion remained stable until 2005 and started to increase from 21.85% in 2005 
to 25.75% in 2012. The ratio of EC in northeastern China dropped dramatically, from 
10.89% in 2000 to 6.79% in 2012. However, the ratio was around 19.50% for central 
China at all times.
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The data sets used included DMSP-OLS NTL imageries, MODIS 16-day enhanced 
vegetation index (EVI) composites (MOD13A2), Gridded Population Density data 
(GPWv3), statistical EC data, and administrative boundary (Table 15.2). All image-
based data sets were from 2000 to 2012 except for population density data for 2000, 
2005, and 2010 because of their availability. The National Geophysical Data Center 
(NGDC) provided publicly available DMSP-OLS NTL imageries (last access in 
January 2015) with cloud-free composite, which contained persistent lights from 

TABLE 15.1
National EC and the Percentage Consumed in Each Region

EC (Billion kWh) Eastern (%) Central (%) Northeastern (%) Western (%)

2000 1361.78 47.24 19.66 10.89 22.21

2001 1468.90 47.91 19.84 10.33 21.92

2002 1638.61 48.87 19.66 9.67 21.80

2003 1888.02 49.62 19.53 9.22 21.63

2004 2174.88 49.94 19.28 8.81 21.97

2005 2474.71 50.74 19.14 8.26 21.86

2006 2833.88 50.79 18.97 7.90 22.34

2007 3253.25 50.35 19.42 7.53 22.70

2008 3431.62 50.08 19.39 7.51 23.02

2009 3655.48 49.95 19.30 7.36 23.39

2010 4192.83 49.61 19.31 7.25 23.83

2011 4694.78 48.54 19.40 7.02 25.04

2012 4952.50 48.08 19.37 6.79 25.76

Source: China Statistical Yearbook 2001–2013 (http://www.stats.gov.cn/tjsj/ndsj/). The original EC data 
were reported by each province. Thus, they were reorganized by the authors into national and 
regional statistics.

TABLE 15.2
Data Sets Used and Descriptions

Data Sets Period Data Source

DMSP-OLS NTL data 2000–2012 NOAA-NGDC (http://ngdc.noaa.gov/eog/dmsp.html)

MODIS 16-day EVI 
composites (MOD13A2)

2000–2012 USGS (https://lpdaac.usgs.gov/)

Gridded population 
density map (GPWv3)

2000, 
2005, 2010

SEDAC (http://sedac.ciesin.columbia.edu)

Electricity consumption 
data (provincial level)

2000–2012 China Statistical Yearbook (http://www.stats.gov.cn/)

Electricity consumption 
data (district level)

2001, 
2005, 2010

Urban Statistical Yearbook of China (http://www.stats.gov.cn/)

Administrative 
boundary

2015, SHP 
format

Global Administrative Areas (http://www.gadm.org/)
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human activities. The digital number (DN) of pixels ranged from 0 to 63, with a 
spatial resolution of nearly 1 km (at the equator). MODIS vegetation index data 
(MOD13A2) were acquired from the United States Geological Survey (USGS), with 
the temporal resolution of 16 days and the spatial resolution of 1 km. EVI images 
were selected instead of normalized difference vegetation index images as they tend 
to saturate at suburban areas where dense vegetation and high NTL values may exist 
(Zhang et al. 2013). A Gridded Population Density map (GPWv3) was created by 
SEDAC (NASA Socioeconomic Data and Application Center), providing globally 
consistent and spatially explicit human population information and data. The grid 
cell resolution was ~5 km at the equator. Additionally, the statistical data of province-
level EC and EC of urban districts (i.e., Shixiaqu in Chinese) at the prefecture-level 
were collected from China Statistical Yearbook and the Urban Statistical Yearbook 
of China, respectively. Furthermore, the administrative boundary file was acquired 
from Global Administrative Areas.

15.4  METHODOLOGY

The method included four major steps: preprocessing, estimating gridded EC and 
assessing the accuracy of estimations, mapping urban dynamics, and analyzing spa-
tiotemporal pattern of EC at multiple scales (Figure 15.1).

DMSP/OLS
NTL 

MOD13A2
EVI

GPWv3 pop 
density

EC of urban
district 

Reprojecting and yearly
maximize 

Reprojecting, resampling
and intercalibration

Reprojecting and
resampling 

�resholding mapping

Urban extent

Calibrating province-level
models

Combining three data sets
to obtain corrected NTL 

Estimating gridded EC

Pixel-based EC
from 2000–2012

Analyzing spatiotemporal
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FIGURE 15.1 The flowchart of this study, with (a) preprocessing, (b) estimating pixel-based 
EC and accuracy evaluation, (c) mapping urban dynamics, and (d) analyzing spatiotemporal 
pattern of EC at multiple scales.
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15.4.1  Data PreProcessing

Image-based data sets were processed to the same projection (i.e., Lambert Azimuthal 
Equal Area) and spatial resolution (i.e., 1 km). Meanwhile, yearly maximum com-
posite was computed for EVI:

 EVImax = max (EV1, EV2,…EVI23), (15.1)

where EVImax is the yearly maximum EVI of a total of 23 16-day composites for 
each year.

15.4.2  estimation of Pixel-BaseD ec

In this chapter, a pixel-based EC was estimated instead of using administrative bound-
ary as the unit so that EC at multiple scales could be estimated through aggregation. 
To obtain better gridded EC, DMSP-OLS NTL should be enhanced to eliminate the 
two notorious drawbacks (i.e., lacking onboard calibration system, and having a satu-
ration effect and a blooming effect in urban cores and peri-urban areas, respectively). 
Thus, intercalibration was first applied to eliminate inconsistent DNs between NTL 
imageries. The method proposed by Elvidge et al. (2009) was adopted by assum-
ing Mauritius, Puerto Rico, and Okinawa (in Japan) as the invariant regions (Wu 
et al. 2013). To eliminate the saturation effect of NTL in urban cores and to account 
for human activities in the unlit pixels, population density data were used (popula-
tion density data of 2000, 2005, and 2010 were used to adjust NTL for 2000–2002, 
2003–2007, and 2008–2012, respectively) followed by EVI adjustment (Meng et al. 
2014; Zhang et al. 2013):

 NTL NTL PDcal int= +w* * ln( )1  (15.2)

 NTLadj = (1 − EVImax) * NTLcal, (15.3)

where NTLint, NTLcal, and NTLadj are intercalibrated, population density–calibrated, 
and population- and EVI-adjusted NTL DN value, respectively; PD refers to popu-
lation density; and w is the weight for lighted and unlit pixel. w equaled to 1.0 for 
lighted pixels and 0.34 for unlit areas based on previous research on the gap between 
the detected electricity access in unlit and lighted area (Doll and Pachauri 2010; 
Meng et al. 2014). The adjustment using EVI was based on the assumption that veg-
etation cover and human activities were inversely correlated (Zhang et al. 2013). For 
the pixels with EVI < 0.1 or EVI > 0.9, NTLadj was set to 0, based on the assumption 
that those regions were usually deserts, glaciers, water bodies, or dense forests with 
few human activities.

The province-level statistical EC data were used to calibrate the relationship 
between EC and NTLadj owing to the difficulty of obtaining statistical data at sub-
province levels. Additionally, to absorb the errors that might be introduced by 
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intercalibration and to capture the yearly difference of the relationship between EC 
and NTLadj, the model was calibrated for each year:

 ECpro = a * NTLpro + b, (15.4)

where ECpro and NTLpro refer to the EC and the sum of NTLadj at the province level, 
respectively, and a and b are the coefficients. We then constructed pixel-based time-
series EC from 2000 to 2012 based on the assumption that the calibrated provincial 
models were applicable to pixels:

 
EC NTLyi y yia= * , (15.5)

where y refers to year index and i is the index of pixel. Further, normalization was 
conducted to regulate the total EC at the provincial level:

 
kyp yp yi

p
= ∑EC EC , (15.6)

where ECyp is the statistical EC for province p in year y, ECyi
p∑  is the total esti-

mated EC for each province, and kyp refers to the normalization factor. Finally, grid-
ded EC was estimated by

 EC ECypi yp yik= * .  (15.7)

A per-pixel evaluation was not possible because of the lack of high-resolution 
reference EC. Because of this, previous research on the estimation of gridded EC 
did not include the process of accuracy evaluation (Cao et al. 2014; Zhao et al. 2012). 
To validate the results of pixel-based EC in this chapter, we used the prefecture–
city level statistical EC data as the reference. Specifically, EC by urban district (i.e., 
Shixiaqu in Chinese) at the prefectural level was used.

15.4.3  analysis of sPatiotemPoral Pattern of ec

To detect the spatiotemporal pattern of EC at different scales, pixel-based EC was 
aggregated to the provincial and prefectural scale. Additionally, to study the rela-
tionship between EC and urbanization, estimated gridded EC was aggregated to 
urban areas. Instead of using administrative units such as Prefectural City and 
County to define urban environment, we referred to built-up area as urban areas 
because (1) administrative units cover not only urban extent but also peri-urban 
and rural areas, and (2) the use of administrative boundaries to define urban areas 
is problematic as they are designed for political purposes, failing to capture urban-
ization dynamics and its impact on EC (Meng et al. 2014). Among the methods 
proposed to map regionally and globally consistent urban extents from DMSP-OLS 
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NTL data, including iterative unsupervised classification (Zhang and Seto 2011), 
SVM-based classification (Cao et al. 2009; Pandey et al. 2013), and threshold tech-
niques (Liu et al. 2012; Zhou et al. 2014), we adopted the technique of threshold 
proposed by Liu et al. (2012) with the consideration of its simplicity and reasonable 
accuracy (Zhou et al. 2015) and the study area.

Global and local Moran’s I indices were utilized to characterize the spatial pat-
tern of EC at different scales. The global Moran’s I index shows the nationwide 
spatial correlation of EC, while the local one mainly reflects the heterogeneity of EC 
between neighbor areas (Anselin 1995, 1996). The equation of global Moran’s I is

 

I
N w x x x x

w x x

ij i j
ji

ij
ji

i
i

=
− −

( ) −

∑∑
∑∑ ∑

( )( )

( )2
, (15.8)

where N is the sample size, wij is the matrix of spatial weight, xi and xj are EC for the 
ith and jth unit at the scale under consideration, and x refers to the average value of x. 
The value of global Moran’s I index ranges from −1 to 1. Negative values indicate 
negative spatial autocorrelation and the inverse for positive values. Further, local 
Moran’s I was applied to explore where high or low EC concentrations occurred. The 
equation of local Moran’s I is
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Local Moran’s I describes four types of local spatial autocorrelation. The positive 
value of Ii indicates a high EC surrounded by similarly high values of EC or a low EC 
surrounded by low values of EC, while the negative value of Ii implies a low value 
surrounded by high values or a high value surrounded by low values.

Further, the index proposed by He et al. (2012) was used to examine the temporal 
pattern of EC. The formula of the index is
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where n is equal to 13, representing the number of years between 2000 and 2012, xi 
refers to numbers 1 to 13 with increments of 1, and ECi is the EC in the ith province, 
prefectural city, or urban area in year i. The negative value of SLOPE indicates a 
decreasing trend of EC and the inverse trend for positive SLOPE.

15.5  RESULTS

15.5.1  Pixel-BaseD ec for mainlanD china

Table 15.3 shows the calibrated yearly model with R2 all above 0.84. The value 
of coefficient a for province-level models increased remarkably and steadily from 
0.0215 in 2000 to 0.0536 in 2012, indicating the increasing trend of EC intensity 
per unit of NTL. Using the calibrated models in Table 15.3, we estimated pixel-
based EC for Mainland China from 2000 to 2012. Figure 15.2 presents the estimated 
result from 2000 to 2012 with a temporal step of 4 years. It needs to note that the 
introduction of EVI greatly enhanced variation and reduced the blooming effect in 
the estimated EC maps. Visually, the overall pattern of EC in Figure 15.2a through 
d was almost identical, with some regions having remarkably high EC, such as the 
Beijing–Tianjin–Tangshan metropolitan region, the Yangtze River Delta, the Pearl 
River Delta, the Sichuan Basin, and most of the capital cities. It is also shown in 
Figure 15.2 that the urban cores tended to have a higher intensity of EC than their 
suburban and peri-urban regions owing to more intensive economic activities (e.g., 
service industry) in Chinese urban cores. The highest per-pixel EC in urban cores 
could be as high as 38.5, 39.8, 50.8, and 58.4 million kWh for 2000 to 2012, respec-
tively. Nevertheless, much less electricity was consumed in rural regions and non-
EC regions could be forests, deserts, and water bodies. Regionally, urban areas in 
eastern China used more electricity than other regions, while the majority of western 
China had less access to electricity during the past decade. Additionally, it is shown 
in Figure 15.2 that Shanghai has the most intense urban EC. The overall pattern of 
EC showed that urban areas had experienced the most increase in EC across China 
(e.g., rural regions).

TABLE 15.3
Yearly Regression Result for Provincial-Level Models (with P = 0.0000 for All 
Regressions)

Year a R2 Year a R2

2000 0.0215 0.8519 2007 0.0491 0.9092

2001 0.0236 0.8413 2008 0.0478 0.9168

2002 0.0264 0.8836 2009 0.0463 0.8492

2003 0.0301 0.9095 2010 0.0524 0.8744

2004 0.0335 0.9046 2011 0.0514 0.9081

2005 0.0387 0.8791 2012 0.0536 0.8933

2006 0.0434 0.9040

(c) ketabton.com: The Digital Library



286 Remote Sensing for Sustainability

Figure 15.3 presents the comparison between the estimated and reference EC 
for 2001, 2005, and 2010. Although relatively strong correlations (R2 = 0.80) were 
obtained by using all samples (Figure 15.3a), the slopes of the regressions dem-
onstrated larger urban EC against EC of urban districts. Meanwhile, there were 
obvious outliers. These could be partly attributed to the different definition of 
urban district and urban area. For example, urban district does not include small 
urban areas within counties in China. Nevertheless, the gap between the estimated 
and statistical EC and the degree of overestimation were smaller for the capital 
cities, with R2 of 0.94 (Figure 15.3b). The result in Figure 15.3 indicated that it was 
feasible to allocate China’s grid-level EC using its province-level statistical data 
and DMSP-OLS NTL data, or at least for prefecture-level estimation of highly 
urbanized regions.
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FIGURE 15.2 Estimated pixel-based EC in 2000 (a), 2004 (b), 2008 (c), and 2012 (d).
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15.5.2  sPatiotemPoral Pattern of ec at multiPle scales

Figure 15.4 shows significantly positive spatial autocorrelations of EC at multiple 
scales. However, the spatial autocorrelation showed different trends for different 
scales. Specifically, the global Moran’s I of provincial EC remained stable from 2000 
to 2012 around 0.18, while the value of urban EC increased steadily from 0.12 in 
2000 to 0.27 in 2012 by an annual rate of increase of 0.0141 with an R2 of 0.92, which 
means urban EC became more clustered during the past decade. For prefectural-
level EC, the global Moran’s I increased from 0.25 in 2000 to 0.41 in 2007 and 
remained around 0.40 until 2012.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

�
e 

st
at

ist
ic

al
 E

C
 o

f u
rb

an
 d

ist
ric

t (
m

ill
io

n 
kW

h)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

2001 (244 samples)
2005 (257 samples)
2010 (255 samples)

2001 (25 samples)
2005 (27 samples)
2010 (26 samples)

y = 0.8018x 
R2 = 0.7711

y = 0.9379x
R2 = 0.9472

(a) (b)

FIGURE 15.3 Scatterplot of estimated EC of urban area versus reference EC of urban dis-
trict at the prefecture level, using samples across China (a), and samples of capital city of each 
province (b) in 2001, 2005, and 2010.

0.6

0.5

0.4

0.3

0.2

0.1

0
1999 2001 2003 2005 2007 2009 2011 2013

y = 0.0002x – 0.1215
R2 = 0.0038

y = 0.0141x – 28.1
R2 = 0.9243

y = –0.002x2 + 8.2106x – 8245.7
R2 = 0.9952

G
lo

ba
l M

or
an

’s 
I

Provincial level
Prefectural level
Urban EC at prefectural level

FIGURE 15.4 Global Moran’s I of EC at multiple scales.

(c) ketabton.com: The Digital Library



288 Remote Sensing for Sustainability

Local Moran’s I indices in 2000 and 2012 were calculated and categorized into 
four groups: high–high cluster, low–low cluster, low–high cluster, and high–low clus-
ter (Figure 15.5). For the provincial level in 2000, only Shandong showed a significant 
high–high cluster; Xinjiang, Gansu, and Yunnan belonged to the low–low cluster, 
all of which were located in western China; Fujian and Anhui were surrounded by 
provinces with high EC, while only one province was detected as a high–low cluster 
(i.e., Sichuan). However, change obviously occurred in western China as Gansu and 
Yunnan no longer belonged to the low–low cluster in 2012 (Figure 15.5b). At the pre-
fectural level in 2000 (Figure 15.5c), three high–high clusters were found, all of which 
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FIGURE 15.5 Spatial clustering of EC at multiple scales: provincial level in 2000 (a) and 
2012 (b), prefectural level in 2000 (c) and 2012 (d), and urban EC at prefectural level in 
2000 (e) and 2012 (f).
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appeared in eastern China, specifically in the Beijing–Tianjin–Tangshan region, the 
Yangtze River Delta, and the Pearl River Delta; low–low clusters were identified in 
western China and in Anhui and Jiangxi provinces, especially the prefectural cities 
in Xinjiang, Xizang, and Qinghai; cities such as Chongqing and Nanning were sur-
rounded by cities with low EC; six cities were surrounded by neighbors with high EC, 
including four prefectural cities around Chongqing (i.e., Tongren in Guizhou prov-
ince, Shennongjia in Hubei province, and Guangan and Suining in Sichuan province), 
Chengde in Hebei province, and Xiamen in Fujian province. Two more high–high 
clusters were identified comparing Figure 15.5d and c, including Yantai, Linyi, and 
Zaozhuang in Shandong province and Lianyungang in Jiangsu province. Meanwhile, 
the size of low–low clusters shrank in western China but increased in central China, 
including some prefectural cities in Hubei and Hunan. Additionally, some high–low 
clusters appeared in northeastern, western, and central China, including Hulunbeier 
in Inner Mongolia, Harbin in Heilongjiang province, Ili Kazakh and Changji in 
Xinjiang, and Wuhan in Hubei province. Another significant change was that cit-
ies that belonged to the low–high cluster were all located in eastern China in 2012. 
For prefectural-level urban EC, the high–high cluster almost appeared in the same 
region but with smaller clusters as that in Figure 15.5c (Figure 15.5e). However, the 
high–high cluster in the Beijing–Tianjin–Tangshan region was larger than the other 
two clusters, which increased from 2000 to 2012, especially for Yangtze River Delta 
(Figure 15.5e and f). High–low clusters can be identified in western China, such as 
Chongqing, Chengdu, Lanzhou, Guiyang, and Nanning, all of which are the capital 
cities of each province. This indicated that urban EC in capital cities was significantly 
higher than that in cities around them in western China. This further implied the 
unbalanced development in western China. The low–low spatial clusters were mainly 
located in western China, yet the size of the cluster shrank; the low–high clusters were 
mainly located in eastern China, around high–high clusters. However, urban EC in 
central and northeastern China did not show statistically significant clusters.

Figure 15.6 shows the temporal variations of China’s EC at different scales from 
2000 to 2012. The calculated SLOPE index was categorized into five groups by 
using Natural Breaks (Jenks) in ArcMap 10.1: slow, relatively slow, moderate, rela-
tively rapid, and rapid. It is revealed in Figure 15.6a and b that provinces that expe-
rienced rapid growth of EC were Shandong, Jiangsu, and Guangdong, all of which 
are located in eastern China; Inner Mongolia, Hebei, Henan, and Zhejiang demon-
strated a relatively rapid growth of EC; most of the central provinces showed a mod-
erate growth of EC except for Jiangxi. Particularly, a slow growth of EC was found 
at the provincial level for four municipal cities—Beijing, Shanghai, Tianjin, and 
Chongqing, mainly because of their smaller amount of EC than some provinces such 
as Zhejiang, Jiangsu, and Guangdong and their relatively highly urbanized status at 
the beginning of the 21st century (Figure 15.6b). Prefectural cities that experienced 
moderate to rapid growth of EC were either located in coastal regions or belonged 
to capital cities; the majority of western and northeastern cities and more than half 
of central cities detected a slow or relatively slow growth of EC (Figure 15.6c). The 
growth of prefectural-level urban EC demonstrated a similar pattern as prefectural-
level EC (Figure 15.6d), highlighting capital cities and three metropolitan regions 
(i.e., the Beijing–Tianjin–Tangshan region, the Yangtze River Delta, and the Pearl 
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River Delta). This further demonstrated the unbalanced development between four 
regions and capital cities and other prefectural cities.

15.5.3  national anD regional contriButions of urBan areas to ec

Figure 15.7 shows a steady increase of urban extent during the past decade. The area 
increased from approximately 3.85 × 104 km2 in 2000 to 8.83 × 104 km2 in 2012, 
which occupied approximately 0.4% and 0.9% of the total area in Mainland China, 
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respectively. Regionally, urban extent in eastern China increased from 1.77 × 104 km2 
in 2000 to 3.70 × 104 km2 in 2012, occupying approximately 2.0% and 4.2% of the total 
area in this region, respectively; in central China, urban area increased from 8.7 × 
103 km2 to 2.04 × 104 km2 during the period, with an urbanization rate of 0.9% and 
2.0%, respectively; the urbanization rate of northeastern China grew from approxi-
mately 0.6% to 1.4% (from 4.65 × 103 km2 to 1.07 × 104 km2, out of 7.92 × 105 km2); 
urban extent nearly tripled in the western part from 7.41 × 103 km2 to 2.02 × 104 km2 
out of 6.65 × 106 km2, occupying 0.1% and 0.3% of the total western region.
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FIGURE 15.6 (CONTINUED) Temporal growth of EC at different scales: (c) prefectural 
level, and (d) urban EC at prefectural level for China from 2000 to 2012.
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Nationally, the share of electricity consumed in urban areas had increased con-
tinuously from 324 to 1310 billion kWh from 2010 to 2012 (Figure 15.8a), at an 
annual growth rate of 12.35%. The ratio of urban EC to the total EC grew from 
23.80% to 26.45%, given its coverage of less than 1% of the total area. For total 
EC in urban areas across Mainland China, eastern China annually consumed more 
than 55%, but with a slightly decreasing trend of 0.11% per year (Figure 15.8a). The 
decreasing trend was also observed for northeastern China, but with a faster decreas-
ing rate of 0.33% per year. The central and western regions experienced a growth of 
EC in urban areas during the period. However, EC in urban areas of western China 
increased with a faster rate than in the central region (0.32% vs. 0.12%). The results 
imply the accelerated urbanization in central and western China during the past 
decade and, hence, higher EC of these two regions.

The ratio of electricity consumed in urban areas showed an increasing trend for the 
four regions (Figure 15.8b), reflecting the growing urbanization rate across Mainland 
China. For electricity consumed in each region, eastern and northeastern China exhibited 
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the highest ratio of EC in urban areas, followed by central and western China. The ratio 
remained essentially constant for eastern China, but the increasing rate of urban EC for 
central, northeastern, and western China was 0.28%, 0.27%, and 0.19%, respectively.

15.6  DISCUSSION AND CONCLUSIONS

This chapter analyzed the decadal spatiotemporal pattern of EC across Mainland 
China at the provincial, prefectural, and urban scales by using time-series DMSP-
OLS NTL images and auxiliary data sets. The results showed different spatio-
temporal patterns of EC, both nationally and regionally. Specifically, the results 
demonstrated a moderate to rapid growth of EC for coastal regions at all scales, 
while a slow growth for the majority of western and northeastern cities and part of 
central China (except for the capital cities). The results of global Moran’s I showed 
significantly positive spatial autocorrelations of EC with an increasing trend during 
the past decade, especially for EC at the prefectural level and urban EC. Moreover, 
the results of local Moran’s I showed the phenomenon of high–high clusters in 
coastal regions, but high–low and low–low clusters in western China.

The disparity of economic development was a main factor for regional differences 
in EC, especially for the huge gap between western and eastern China. However, the 
results implied that the gaps between the western, central, and eastern regions were 
narrowing during the past decade. These changes may be attributed to the develop-
ment policies applied to central and western China. For instance, in 2004, the Rise 
of the Central China Plan started to coordinate regional growth in central China (Tan 
2015). To create regional economic development centers in western China, the Western 
Development Strategy was launched in 2000, calling for aid in infrastructure construc-
tion, natural resource exploitation, and the establishment of market liberalization poli-
cies from the central government (Tan 2015). Urbanization, including the intensification 
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of urban cores and urban expansion, was one of the major factors responsible for the 
increase of EC in China. In western and northeastern China, the growth of energy-
related industries and heavy industries was the main reason for urbanization, while 
the expansion of light and technology- and labor-intensive industries was the major 
contributing factor for urbanization in eastern and central China (Su et al. 2014). For 
the sustainable development of energy, main efforts in Chinese cities should be focused 
on the optimization of industrial structures and the improvement of efficiency in using 
electricity, due to the fact that electricity production is coal dominated but with inef-
ficient generating units in China (Cherni and Kentish 2007). Meanwhile, it is also 
essential to establish a strong legal system and effective institutions to protect electric-
ity market competition and promote appropriate incentives for electricity efficiency 
(Ngan 2010). Moreover, to cope with the fast-growing demand of electricity in China, 
renewable energy such as solar and wind resources should be exploited, especially for 
western and northeastern China with abundant supply of such energy sources.

This chapter offers several potential topics for further research. For example, to 
improve the accuracy of pixel-based EC estimation, exploring alternative methods to 
better eliminate the saturation and blooming effects in time-series DMSP/OLS NTL 
data is preferable. Although the application of EVI increased the variation of EC in 
urban regions in this study, the assumption that vegetation cover and urban surface were 
inversely correlated may weaken the contribution of urban areas to total EC given the 
higher DNs in urban areas than other regions. Except for developing methods to improve 
the quality of DMSP-OLS NTL data, incorporating other factors (e.g., GDP and topo-
graphic variables) into the model for NTL-based EC estimation may help better predict 
EC at multiple scales (Xie and Weng 2016). Additionally, a better method to extract 
urban dynamics, which reduces the overestimation of large urban areas and the under-
estimation of small ones, is required to better study the contribution of urban areas to 
total EC. To this extent, a cluster-based method proposed by Zhou et al. (2014), which 
estimated the optimal  threshold for each cluster according to its size and the mean mag-
nitude of NTL, can be more promising (Zhou et al. 2015). However, the incomparability 
of DMSP-OLS NTL DNs from different years and satellites may limit the usage of a cal-
ibrated model to other years and regions. Further studies on extending the cluster-based 
thresholding method to the temporal domain may provide some inspiring discoveries.
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16.1  BACKGROUND

The fact that the power production of wind turbines is sensitive to the mean wind 
speed approaching the turbine means that small errors in wind speed modeling will 
translate to much larger uncertainties in the power output of wind energy installations.

The mean wind speed is in turn highly variable and sensitive to properties of the 
underlying land surface. Wind resource modeling is performed by using dedicated 
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aerodynamic microscale models for limited areas as well as numerical weather pre-
diction (NWP) for the meso- to continental scale. In general, two types of land sur-
face description inputs are needed for this:

 1. A digital elevation model (DEM) that describes the variation in terrain 
elevation

 2. A set of surface parameters affecting the wind flow

For (1), the Shuttle Radar Topography Mission (SRTM) DEM is one of the most com-
monly used descriptions in both microscale and mesoscale models. However, the 
accuracy of SRTM data is too limited for built-up areas and areas with tall vegeta-
tion, where the building or forest height, rather than the terrain, is captured (e.g., Sun 
et al. 2008).

Regarding (2), the traditionally most central parameter for wind resource model-
ing is the land surface roughness (z0), which determines the effect of the friction of 
the surface on the wind profile. Under ideal conditions, z0 can be determined from 
wind measurements (e.g., Dellwik and Jensen 2005; Mölder and Lindroth 1999). 
Choudbury and Monteith (1988) as well as Raupach (1994, 1995) related z0 and the 
displacement height parameter, which takes the height of vegetation into account, 
to physical properties such as height and density of the underlying vegetation. On 
the basis of such relationships, Tian et al. (2011) demonstrated that remote sensing 
techniques can be used to calculate z0 for large areas. Some studies have also dem-
onstrated the potential of Synthetic Aperture Radar (SAR) for mapping of z0 (Bidaut 
et al. 2006). SAR sensors deliver a backscattering coefficient that is strongly affected 
by the composition of the ground cell and by its structure. However, these remote 
sensing–based approaches are rarely used in the wind resource community.

In current operational models, surface roughness and other surface parameters 
are often assigned for a certain land cover class via best-practice, well-established 
tabular values (Troen and Petersen 1989). Such classification is commonly based on 
either the Global Land Cover 2000 (GLC2000) database of the Joint Research Centre 
(JRC) (http://forobs.jrc.ec.europa.eu/products/glc2000/products), the fine-resolution 
European CORINE Land Cover (CLC) map (Hasager et al. 2003), the MODIS land 
cover product (Friedl et al. 2002), or the ESA GlobCover (Arino et al. 2008).

A simplified microscale approach is used, for example, in the commercial WAsP 
(Wind Atlas Analysis and Application Program) model, which is the wind energy 
industry standard PC software for bankable wind resource assessment and siting of 
wind turbines and wind farms. There are currently more than 4600 users in over 
110 countries that use WAsP for all steps from analysis of wind and terrain effects to 
estimation of wind farm production. In WAsP, the roughness layer is usually not suf-
ficiently accurate from CLC and look-up table alone and needs to be complemented 
by costly and time-consuming site visits.

Recent developments in microscale Reynolds’ Averaged Navier Stokes (RANS) 
equation models as well as Large Eddy Simulation (LES) models allow for a direct 
simulation of the effects of vegetation as well as solid objects on the flow (Lopes 
et al. 2013; Sogachev and Panferov 2006), thereby short-cutting the need for land 
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surface classification and uncertainties regarding the assignment of parameter val-
ues. For this advanced type of model, the dimensions of solid obstacles, as well 
as the height and density of tall vegetation, are necessary input parameters since 
they determine the development of the wind flow over smaller scale variations in 
the landscape at around 5 m resolution (Dellwik et al. 2013). The applicability of 
these models is severely limited by the lack of reliable land surface input data, and 
published studies are often limited to highly idealized cases (Dupont and Brunet 
2008).

In NWP models used in wind resource applications, an accurate description of 
the elevation and surface roughness is important (Jiménez and Dudhia 2012; Santos-
Alamillos et al. 2013) but not as critical as in aerodynamic models. To a certain 
extent, errors in the output from NWP models that are attributed to errors in sur-
face properties can be corrected at the local scale by coupling them to aerodynamic 
models (Badger et al. 2014). However, an accurate depiction of the state of the land 
surface (i.e., its temperature and soil moisture content) is critical for an accurate 
simulation of the state of the planetary boundary layer (PBL) (Findel and Eltahir 
2003; Hong et al. 2009; Refslund et al. 2013). It has also been established that an 
accurate PBL is critical for an accurate depiction of mesoscale circulations (Taylor 
et al. 2007) and the wind profile (Kelly and Gryning 2010), and ultimately these are 
important for an accurate wind resource assessment. On the other hand, the truthful 
modeling of the state of the land surface is highly dependent on the characteristic of 
the land surface itself and their variations in time, as well as the atmospheric forcing 
(Case et al. 2008, 2014; Chen et al. 2007; Hong et al. 2009).

16.2  EXTRACTION OF LAND SURFACE PARAMETERS 
IN SUPPORT OF WIND RESOURCE MODELING

Atmospheric models are employed for a wide range of operational services, includ-
ing wind resource assessment. Despite the heterogeneity of such applications, all 
share very similar parameterization requirements. Standard inputs are information 
about surface roughness, land cover type, leaf area index (LAI), vegetation fraction, 
and phenological state. From a remote sensing point of view, these basic information 
requirements are split into the following methodological focuses:

 1. Land cover– and land use–related geoinformation (2D)
 2. Topography, surface morphology, and surface roughness (3D)
 3. Multitemporal aspects describing process dynamics (4D)

16.2.1  Land Cover and Land Use-reLated Geoinformation

Land has considerable heterogeneity because of the existence of different land cover 
types such as bare soil, water, urban land, trees, and snow, which vary over small 
areas. This surface variability not only determines the microclimate but also affects 
mesoscale atmospheric circulation (Weaver and Avissar 2001; Yang 2004). Accurate 
representation of the land surface is therefore important to precisely model the effect 
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of the land surface. Remotely sensed derived global land cover products, such as 
Global Land Cover Characteristics (GLCC; Loveland et al. 2000), University of 
Maryland land cover classification (UMD; Hansen and Reed 2000), and GLC2000 
(Bartholomé and Belward 2005), were implemented into various land surface 
schemes and climate models. In the new Global Wind Atlas released in 2015 (http://
www.irena.org and http://globalwindatlas.com/), the GlobCover and MODIS land 
cover data are merged for improved characterization of the land surface roughness 
as shown in Figure 16.1.

Another example of using two different land cover maps is based on USGS and 
CLC land use data for a region in Denmark (see Figure 16.2a and b). The WRF 
model has been used to calculate the wind speed at different heights (10, 40, 60, 80, 
100, and 160 m) for the period January 10, 2014 until September 12, 2014. The out-
put frequency is every 10 min. The WRF model is run as in Floors et al. (2015) but 
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FIGURE 16.1 The Global Wind Atlas land cover classes in GlobCover and MODIS with 
corresponding color coding (a) and derived roughness map for the Mediterranean area (b). 
(From the Global Wind Atlas, supported by EUDP with explanation from Dr. Neil Davis. 
http://globalwindatlas.com/. With permission.)
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with ERA interim boundary conditions used and the horizontal resolution at 12, 4, 
and 1.333 km for domains 1, 2, and 3, respectively. The land use categories from the 
CLC data were reassigned to USGS categories using the method described in Pineda 
et al. (2004). The results on root mean square error (RMSE) between the measured 
and modeled wind speed at the tall meteorological tower at Høvsøre located in a flat 
coastal landscape near the North Sea (Peña et al. 2015) are shown in Figure 16.2c. 
At around 90 m above ground and upward, the results are comparable, while at lower 
levels, the higher-resolution CLC map yields the best results.

More detailed atmospheric/wind resource models could benefit from more 
detailed land cover information. A list of established land cover maps and products 
that would be available for Europe, for instance, is provided in Table 16.1.

Within Europe (EEA, 39 member countries), the CLC project is producing land 
use cartography in the form of detailed descriptions of land occupation and fea-
tures, at an original scale of 1:100,000. It used 44 classes of the three-level CORINE 
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FIGURE 16.2 USGS (a) and CLC (b) land use data for a region in Denmark. The RMSE 
between the measured and modeled wind speed at the Høvsøre meteorological mast and WRF 
model using USGS and CLC land cover as input. The results are for the period January 10, 
2014 until September 12, 2014 (c). (Courtesy of RUNE Project, supported by ForskEL with 
explanation from Dr. Rogier Floors.)
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nomenclature, for all European countries, with a definition of 25 ha. However, for 
the use of surface occupation cartography like the CLC in wind flow models, it is 
necessary to assign an equivalent characteristic roughness length to each different 
classification or land cover class. The CLC cartography has been adapted for its 
use in typical wind resource assessment studies, namely, for use with the WAsP 
model software. According to the particular terrain characteristics, the 44 different 
CLC classes were grouped into 14 roughness classes. The grouping was not always 
obvious. One has to take into account that the main goal of the CLC project is to 
classify the landscape and land cover to facilitate policymaking and environmental 

TABLE 16.1
List of Land Surface Parameter Maps Available for Europe

Name Product Type
Resolution or 

MMU/ Coverage Provider

Corine CLC Land cover with more than 30 
types covering most of 
Europe 

Minimum Mapping Unit 
(MMU) 25 ha (vector), 
EEA’s 39 countries

EEA

GIO Forest Tree cover density (0%–100%)
Forest type (Coniferous/
deciduous/mixed)

20 m, EEA’s 39 countries EEA

GIO Imperviousness Degree of impervious-ness 
(0%–100%)

20 m, EEA’s 39 countries EEA

GIO Grassland Presence of permanent 
grassland (binary layer)

20 m, EEA’s 39 countries EEA

GIO Wetland Wetland presence 
(binary layer)

20 m, EEA’s 39 countries EEA

GIO Water Water presence (binary layer) 20 m, EEA’s 39 countries EEA

JRC Forest/Non-forest 
map

Classes: Forest, non-forest, 
clouds, no data

25 m, EU27 plus AL, BA, 
CH, HR, MN, MK, MR, 
LI, RS

JRC

GlobCover 22 land cover classes 300 m, global ESA

GlobCover (bimonthly 
surface reflectance)

Average surface reflectance 
values over a 2-month period

300 m, global ESA

Urban Atlas for Europe Land use map MMU 0.25 ha for urban 
classes, 1 ha for rural 
classes (vector), 305 
cities throughout Europe

EEA

Geoland2 BioPar 
(Biophysical)

LAI, FCover, FAPAR Variable Geoland 
project

GLCC Land cover 24 classes ~1 km, global USGS

GLC2000 Land cover 22 classes ~1 km, global JRC

EU-Hydro Water bodies MMU: 1 ha (vector), EU EC

MODIS MCD12Q1 17 land cover classes 500 m, global USGS

MODIS MCD15A2 LAI and FPAR every 8 days 1 km, global USGS
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management at a European scale, and not the particular roughness of the surface 
with respect to its effect on atmospheric flow.

The application of CLC for dynamic roughness length simulation shows some 
important shortcomings. For example, CLC lacks some very important parameters: 
(a) the CLC class forest misses a reliable roughness parameter and an accurate forest 
borderline location and type description (hard cut or smooth transition); (b) the CLC 
class agriculture, specifically the permanent agricultural systems such as vineyards, 
olive groves, and fruit plantations, are very diverse and need a subdivision plus infor-
mation on the direction of the planting rows; (c) the CLC class semi-urban is a very 
heterogeneous class in terms of surface roughness and lacks details such as build-
ing density and building height. These examples illustrate that the CLC data sets or 
low-resolution raster data sets have limited suitability for atmospheric/wind resource 
model parameterization. Inaccuracies and errors that exist at this level will invari-
ably flow into the atmospheric/wind resource models and limit their performance.

16.2.2  topoGraphy, sUrfaCe morphoLoGy, and sUrfaCe roUGhness

Relief information is freely available on a global scale but with relatively low resolu-
tion (3 to 1 arc sec, ~90 to 30 m). Table 16.2 provides the established products, their 
coverage, and sources. Most of these products, in particular the ones derived from 
spaceborne missions, refer to the height of the surface plus the coverage (top of the 
canopy). One can distinguish between a digital surface model (DSM), providing the 
top of a surface including the canopy, and the DEM, which refers to the land surface, 
typically with a height above sea level.

Surface morphology includes the detection of linear strips of woody vegetation 
such as hedgerows. It has been in the focus of several studies as they are impor-
tant elements for landscape ecology as well as biodiversity. Besides their ecological 
functions as habitat, shelter, or corridor for specific species, these linear landscape 
elements serve as protection against soil erosion and as a biogeochemical barrier 
(Ducrot et al. 2012). Thus far, methods based on high-resolution and very high– 
resolution optical imagery have been developed to detect linear landscape fea-
tures such as hedgerows (Aksoy et al. 2008, 2010; Ducrot et al. 2012; Vannier and 

TABLE 16.2
List of Available Digital Elevation Data Available for Europe

Product Type Spatial Resolution Provider

GTOPO30 Elevation 30 arc sec
~1 km

USGS

SRTM C-band Elevation Near-global (60°N to 56° S) ~1 arc sec, with 
the exception of Central Asia ~3 arc sec

NASA/NGA

SRTM X-Band Elevation Near-global (60°N to 56° S) ~1 arc sec, 
coverage not continuous: gaps in image strips

DLR

ASTER GDEM Elevation ~30 m NASA and METI

EU-DEM Elevation 30 m EC
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Hubert-Moy 2008). To date, only Ducrot et al. (2012) have compared the results based 
on multitemporal optical data with multitemporal TSX data, achieving more than 
80% overall accuracies for the optical analysis but only 75% for the SAR-based analy-
sis. A detailed review on techniques for extracting linear features from Earth obser-
vation (EO) imagery is given by Quackenbush (2004). The landscape roughness is 
closely related to morphology.

16.2.3  mULtitemporaL aspeCts desCribinG proCess dynamiCs

Remotely sensed data collected by instruments such as AVHRR, Medium Resolution 
Imaging Spectrometer (MERIS), SPOT-Vegetation, and MODIS provide near-daily 
global observations of vegetation dynamics at 300 m to 8 km spatial resolution. 
Exploiting these dense time series, several remote sensing algorithms have been 
developed over the past decades. Most algorithms use as input time series of veg-
etation indices such as the normalized difference vegetation index (NDVI) or the 
enhanced vegetation index (EVI) that are derived from multispectral satellite data 
(e.g., Huete et al. 2002).

Multitemporal data can be used not only to investigate, for example, the pheno-
logical stage and changes of the land cover and surface but also for the improvement 
of existing land cover maps. On the basis of the filtered/noise-reduced time series, 
different algorithms have been applied to identify key phenological phases of veg-
etation. Algorithms based on user-defined thresholds depending on land cover types 
were analyzed, for example, by Schwartz et al. (2002) and by White and Nemani 
(2006). Algorithms based on significant and rapid increases in remotely sensed sig-
nals were developed, for example, by Moulin et al. (1997). Further algorithms deter-
mine phenological phases of vegetation by fitting of functions to the remotely sensed 
time series data (Beck et al. 2006; Zhang et al. 2003). The operationally generated 
MODIS Land Cover Dynamics product belongs to this group of algorithm, which 
identifies phenophase transition dates based on logistic functions fit to time series 
of the EVI (Huete et al. 2002). Taking into account dynamic processes can clearly 
improve the quality of the input data for wind modeling and thus also influence the 
final results.

16.3  PERSPECTIVES FOR IMPROVED EO-DERIVED 
PARAMETERS FOR WIND RESOURCE MODELING

The EO data sets currently in operational use by the wind resource modeling com-
munity in Europe do not reflect recent advances in EO. New and near-future mis-
sions and data sets offer enormous potential for improved data quality, resolution, 
and frequencies. Most notably, these are the ESA/Copernicus Sentinel missions and 
the TerraSAR-X and TanDEM-X missions for the German Aerospace Center (DLR). 
In this section, we will outline beyond state-of-the-art improvements and break-
throughs that can be expected from these missions in the context of atmospheric/
wind resource modeling parameters. The new sensors and missions provide comple-
mentary capabilities for beyond state-of-the-art improvement on the derivation of 
land surface parameters for atmospheric/wind resource modeling.
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16.3.1  2d Land Cover mappinG

The land cover detail as represented in CLC or in low-resolution raster-based land 
cover maps is a generalization of the actual land cover, aggregating multiple land 
cover types into one object or pixels. Within these objects or pixels, a large hetero-
geneity in roughness length that is not reflected in the aggregated object is present. 
Significant improvements are already achievable by integrating existing data sets 
that have been developed very recently.

This includes the high-resolution land cover layers (HRL) data that provide 
additional details within the CLC objects. In this way, large agricultural areas 
(as represented in CLC) now include pixels representing small villages (HRL 
Imperviousness), small forest patches (HRL Forest), water and wetland areas (HRL 
Water and HRL Wetlands), and grassland areas (HRL Grasslands), all at a 20-m 
resolution (Figure 16.3). The heterogeneity within forests (species and density) can 
also be analyzed based on the HRL forest layer. The EEA Urban Atlas data can be 
integrated to create a more detailed view of the most densely populated areas. The 
Urban Atlas represents the land use/land cover within the functional urban areas 
of Europe with a mapping detail of 0.25 ha for the artificial areas and 1 ha for non-
artificial areas. Compared to the low detail of the CLC data, especially in urban 
areas (which are very heterogeneous areas), the UA data offer an enormous upgrade 
in mapping detail (Figure 16.4).

The development of the European Sentinel satellite program offers substantial 
opportunities for further innovation. The objective of the Sentinel program is to 
meet the data requirements of the joint ESA/European Commission (EC) initiative 
Copernicus (previously known as Global Monitoring for Environment and Security) 
on an operational level. However, because of its advanced concepts and mission 
design, Sentinel has also significant potential to fulfill the data needs of the wind 
resource modeling community. The Sentinel-1, Sentinel-2, and Sentinel-3 missions 

Continuous urban fabric
Industrial or commerical units
Broadleafed forest

Broadleafed forest
Imperviousness

Discontinuous urban fabric

Coniferous forest

Coniferous forest
WaterWater

Mixed forest

(b)(a)

FIGURE 16.3 Comparison of CLC product (a) and combined HRL layers: HRL 
Imperviousness, HRL Forest, and HRL Water (b).
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are of particular interest in the context of wind modeling parameterization, and we 
will briefly review each of the missions.

The concept of the Sentinel-1 mission is a constellation of two satellites orbiting 
180° apart that carry a C-band SAR. The first of these satellites (Sentinel-1A) has 
been launched in April 2014, and the launch for Sentinel-1B is scheduled for 2016. 
While the current repeat cycle of Sentinel-1A is 12 days, the revisit time will increase 
to 6 days with both satellites in orbit. Sentinel-1 can be operated in several modes.

The Sentinel-2 mission is again a constellation of two identical satellites that 
have the key objective of collecting multispectral high-resolution data in the optical 
domain of the electromagnetic spectrum. The definition of the requirements of the 
Sentinel-2 program builds on the experience of previous multispectral campaigns 
such as the Landsat program and, in particular, the SPOT family (Satellite Pour 
l’Observation de la Terre) (Drusch et al. 2012; ESA 2014). Sentinel-2A was launched 
in June 2015 and Sentinel-2B is scheduled to be put in orbit in the second half of 
2016. Their advantages compared to operational multispectral missions will be 
(a) higher spectral resolution with 13 bands in the visible, near-infrared, and short-
wave infrared region; (b) high spatial resolution ranging from 10 to 60 m; (c) an 
unprecedented temporal resolution with a revisit time of <5 days; and (d) a dedicated 
ground segment that aims to rapidly process the acquired data and provide products 
to the user community in near-real time.

Sentinel-3 represents Europe’s global land- and ocean-monitoring mission that 
will provide 2-day global coverage EO data. Sentinel-3A and 3-B are scheduled for 
launch early 2016 and 2017, respectively. One of Sentinel-3 mission’s main objectives 
is to measure land surface color with high-end accuracy and reliability in support 
of ocean forecasting systems and for environmental and climate monitoring. The 
Sentinel-3 Ocean and Land Colour Instrument (OLCI) is based on heritage from 
Envisat’s MERIS. With 21 bands, compared to the 15 on MERIS, it has a design 
optimized to minimize sun glint and a resolution of 300 m over all surfaces.

Wind resource modeling could benefit from the improved capabilities via better 
information on land use change, forest cover, photosynthetic activity, and phenol-
ogy. Of all Sentinel missions, however, Sentinel-2 promises to be particularly use-
ful for wind resource modeling activities, as its data allow the development of land 
cover map production systems that should be able to update the information monthly 
at a global scale. The temporal dimension will allow distinguishing classes whose 
spectral signatures are very similar during long periods of the year. The increased 
spatial resolution will enable one to work with smaller minimum mapping units. 
Additionally, the spectral bands are increased in number and decreased in width. 
With new image bands in the red-edge and specific bands for vegetation analysis and 
atmospheric analysis, Sentinel-2 images will show an increase in the separability of 
land cover classes, combined with an easier atmospheric correction.

It should therefore become feasible to update the land cover information with new 
data from a consistent source to move from mapping to monitoring. This monitor-
ing will focus primarily on the vegetation evolution during a year/season by pro-
viding bio-geophysical parameters such as LAI, NDVI, green vegetation fraction, 
leaf chlorophyll content, and leaf cover. These parameters are a direct input for a 
more detailed land cover classification, allowing for diversification within otherwise 
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aggregated areas such as agricultural fields and forested areas, thereby facilitating 
improved roughness estimation, taking into account the time of year. Besides being 
an input for land cover mapping, these parameters show a direct interrelation with 
atmospheric/wind resource models; for example, the green vegetation fraction is 
important for land surface heat flux calculation in coupled land–atmospheric mod-
els. Combining these parameter values with land cover data will provide a better 
estimation/understanding on the Earth’s influences on the atmosphere.

16.3.2  3d topoGraphy CharaCterization

One of the challenges to applying DEMs to modeling approaches—in particular on 
the microscale level—has been the absence of the availability of a standard DEM at 
a sufficient level of spatial detail. Low-resolution DEMs such as the STRM C-Band 
(30 m with the exception for Central Asia where the resolution is limited to 90 m) 
version or the one derived from stereo-processing of the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) data at 30 m spacing are 
widely available free of charge, but offer limited use for detailed modeling. The 
reason is not only the relatively coarse spatial resolution but also the incomplete 
global coverage in case of SRTM or the varying local quality owing to the number 
of images per point in case of ASTER (Jacobsen 2013).

With the advent of scientifically and commercially available DEMs at higher 
resolutions such as the TerraSAR-X (TSX) and TanDEM-X (TDX) DEM at 12 m 
resolution, significant progress can be made in applying this data set to wind-related 
modeling. The outstanding characteristics of TDX are the provision of a real global 
and homogenous data set and the improved spatial and vertical resolution. The 
global coverage not only comes along with high-precision elevation information in 
areas above 60° latitude that were not covered by SRTM before. It also eases the 
transferability to other sites.

Figure 16.5 demonstrates the relevance of an increased spatial resolution. A 
coarse resolution levels out details and smoothens terrain features such as slopes and 
ridges. Smaller-sized obstacles can only be detected from high-resolution DEMs.

The corresponding elevation expresses the top of trees and other land surface ele-
ments rather than the ground level. Figure 16.6 shows the increased level of detail 
that can be achieved with the TDX DEM. A farmhouse, surrounded by hedges and 
a line of trees, is clearly visible, and the corresponding height values can directly 
be measured in the DEM. The arrow indicates the location of the farm in the DEM.

For the assessment of land cover and forestry parameters, DSMs generated by 
stereo imagery, SAR interferometry, or airborne laser scanning (ALS) can support 
atmospheric flow modeling both at the mesoscale and the microscale. EO-based 
DSMs provide information on important surface parameters such as edge morphol-
ogy, forest borderline location and type, local obstacle properties, terrain slope, 
height of canopy, and canopy density.

At the mesoscale level, the land cover classifications (CLC, HRL layers) can be 
improved through the integration of height-derived parameters. This leads to sub-
stantial improvements in non-flat areas such as vineyards, orchards, and shrubby 
areas for which the calculation of the wind shear effect is inaccurate when solely 
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based on the roughness length. Mesoscale models such as the widely used Weather 
Research and Forecasting (WRF) model can include the option of a canopy layer 
separated from the ground, such that the displacement height can be directly used as 
input to the model, but suitable values for the model parameters for the most com-
mon forest types need to be provided.

At the microscale level, the modeling community moves toward using flow 
models (RANS and LES models) in which the forest canopy is resolved. This cre-
ates a need for supplying the necessary surface parameters to the wind modelers. 
Boudreault et al. (2015) developed a method by which raw data from aerial Lidar 
scans of forested areas are transformed into gridded forest heights for a CFD model 
at a forested site. Furthermore, 3D approaches can be used to assess the attributes of 
the forest borders (e.g., hard cut vs. smooth transition from tall trees to non-forest) 
and 3D canopy structure/canopy density distribution.

(a) (b)

FIGURE 16.5 Digital elevation data of Mt. Etna in SRTM (90 m) (a) and new TanDEM-X 
(12 m) DEM (b).

(a) (b)

FIGURE 16.6 Color-shaded TanDEM-X DEM (a) for Winnipeg area, Canada, and zoom to 
farm house surrounded by hedges and trees via Google Earth (b).
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The development of 3D approaches can be based on different sources according 
to availability, for example, optical (multi-)stereo data such as Pleiades, GeoEye and 
PRISM, radar from Sentinel-1, TSX/TDX, and airborne Lidar data.

Since the early years of SAR remote sensing, stereo-radargrammetric tech-
niques have been applied to SAR image pairs (Toutin and Gray 2000). It has been 
demonstrated in previous studies that X-band radar data from COSMO-SkyMed 
and TerraSAR-X missions can provide useful information on forest cover and for-
est parameters (Deutscher et al. 2013). These sensors are able to collect images 
with a ground sampling distance down to 0.75 m in Spotlight mode at various look 
angles. In addition, they deliver imagery with very precise pointing accuracy so 
that remote regions where no reference data, that is, ground control points, are 
available can also be mapped and processed. One option to develop a DSM for for-
est assessment is based on the approaches by Raggam et al. (2010) and Perko et al. 
(2010) where 3D surface reconstruction was performed by stereo-radargrammetry 
in Europe. Perko et al. (2011) transferred the multi-image matching concept for 
digital surface modeling based on optical satellite images (Raggam 2006) to radar 
data and incorporated the SAR-specific image geometry for forest parameters in 
European test sites.

16.3.3  4d sUrfaCe dynamiCs mappinG

The developing Copernicus Sentinel program also offers unprecedented data in 
terms of spectral, spatial, and, most significantly, temporal resolution. Revisit times 
of a few days will, for the first time, allow it to resolve highly dynamic phenologi-
cal processes. This in turn will make it possible to parameterize atmospheric/wind 
resource models with near-real time and spatially explicit data of phenological stage 
and LAI at high spatial resolution.

One of Sentinel-3 mission’s main objectives is to measure land surface color with 
high-end accuracy and reliability. Data from the Sentinel-3 OLCI could be utilized 
and coupled with the sea and land surface temperature (SST/LST) data with daily 
revisit times allowing for synergy products (e.g., phenological stage mapping).

Based on time series from future Sentinel-3 imagery and optionally other satel-
lites (MODIS, Proba-V, MERIS), fully automatic, spatially explicit,  wall-to-wall 
 phenological models covering the whole EU could be developed by such an 
approach. The result of such phenological models would be maps that include 
entry dates of selected key phenological parameters. Separately for each vegetation 
type and biogeographic region, the temporal trajectories of vegetation index time 
series could then be analyzed on the basis of phenological field observation data. 
In addition to different algorithms/models, different features that are derived from 
the satellite data could also be analyzed, such as the cumulative vegetation index 
values. Following cross-validation, this would identify the best-suited algorithm /
model and derive quality parameters. The best suited algorithms/models and fea-
ture combinations could then be applied over the whole monitoring period at a 
wall-to-wall basis.

The high revisit time of the fully operational Sentinel-1 and Sentinel-2 missions, 
combined with their large swath, will provide a high probability for a cloud-free 
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coverage at key dates throughout the vegetation phase. This is of paramount impor-
tance since (i) it is mandatory for an accurate analysis of different vegetation types, 
and (ii) it enables the assessment of the intra-annual variability of the various land 
cover classes as well as the surface roughness parameters.

Sentinel-1 and Sentinel-2 time series data will enable new approaches for a detailed 
land cover classification that will further improve the currently available CLC clas-
sification scheme and can in particular be tailored to the data needs of increasingly 
sophisticated wind resource models. This will provide high thematic and spatial 
detail compared to the currently available CLC2006 database or the HRL layers. 
In particular, it will effectively discriminate between different vegetation types and 
enable the estimation of surface roughness and vegetation stand height. Moreover, 
the temporal variability of land cover classes and surface roughness can be analyzed 
and provided for wind resource modeling.

Exploitation of high-resolution DSMs such as TDX and stereo data from high-
resolution satellites (Pléiades, Cartosat, TerraSAR, COSMO-SkyMed) will offer the 
opportunity to quantify the temporal dynamics of 3D surface parameters. This will 
allow the assessment of parameters such as forest growth, forest change detection 
(loggings, wind fall), changes in forest stock, and forest density. Quantification of, 
for example, forest growth can be used for computing the future aerodynamic flow 
at a potential wind turbine site.

16.4  CONCLUSION

The previous sections gave an overview on the potential of remote sensing data to 
support wind resource modeling especially through improved input parameteriza-
tion regarding the state and characterization of the land surface. Three different 
topics in this relation have been discussed: land cover information (2D) from vari-
ous remote sensing sources, DEM information (3D) at high spatial resolution, and 
the opportunities of monitoring changes in the state of the surface, which affects its 
roughness (4D). For all three topics, the currently used data sets and methods were 
briefly described and the related shortcomings were analyzed. Finally, the possibili-
ties provided by new sensors (e.g., Sentinels, TerraSAR-X/TanDEM-X) and initia-
tives, such as Copernicus, are outlined. In conclusion, there is a wide amount of 
promising possibilities waiting to be tested for the specific needs in wind resource 
modeling. For 2D land cover information, existing high-resolution layers will need to 
be merged and integrated, possibly supported by specific classification of Sentinel-2 
data. In terms of 3D data, now existing satellite-based DEMs at a resolution of 12 m 
can be used showing features such as hedges, forest borders, buildings, and so on in 
order to improve the modeling of surface roughness. Finally, the Sentinel-2 data are 
expected to bring additional benefit to the 4D component, as frequent update will 
allow monitoring the roughness situation over time, giving a more realistic scenario 
than just a snapshot assessment.

There is currently a substantial underexploitation of remote sensing data in the 
context of wind energy modeling. This chapter demonstrated that significant prog-
ress has been made in the past decade in terms of spaceborne data collection, rep-
resented by a range of new missions that collect global land cover and elevation 
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information in unprecedented spatial, spectral, and temporal resolution. This is 
complemented by the increased availability of high-resolution ALS data. Yet, most 
operational wind resource models that are used in the wind energy sector still have 
to rely on data products that represent derivatives of data sets from sensors that have 
been put into orbit one or two decades ago.

There is hence an urgent need for a coherent effort that brings together both the 
remote sensing and wind modeling communities to develop bespoke downstream 
services for the wind energy sector, for example, within the framework of the 
European Copernicus program. Such an endeavor would not only constitute a major 
step forward in adding value to remote sensing data. It can also be expected that the 
new downstream data product will substantially improve wind energy planning and 
the subsequent commercial viability of wind energy projects.
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17 Assessing Solar 
Energy Potential and 
Building Energy Use 
in Indianapolis Using 
Geospatial Techniques

Yuanfan Zheng and Qihao Weng

17.1  INTRODUCTION

By 2030, urbanized areas will expand to provide homes for 81% of the world’s population, 
with the majority of the population increase coming from developing countries (Weng 
2015). Continued urbanization will bring impacts to the environment, and there is a 
rapidly growing need for consideration of sustainable cities. Buildings are the major 
component in the urban environment, so accurate and timely spatial information about 
buildings (and associated attributes) in urban areas is needed as the basis to assist 
decision making in understanding, managing, and planning the continuously changing 
environment (Weng 2010). Regarding obtaining the information from buildings, the 
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traditional field survey approach is costly in time and labor; on the other hand, the 
remote sensing technique can monitor the earth surface in a very high temporal and 
spatial resolution, which has a great potential to extract building information automati-
cally from the urban area. Geographic Information Systems (GISs) have the strong 
ability to gather and analyze the information of urban buildings by using geospatial 
analysis technique. This chapter provides two case studies to present the most recent 
researches on buildings under the topic of sustainable city development, which includes 
the building solar potential assessment and correlation analysis of building annual 
energy use and building attributes, using the city of Indianapolis as an example.

17.2  BUILDING SOLAR ENERGY POTENTIAL ESTIMATION

Renewable energy systems (RESs), which include but are not limited to wind 
power, hydropower, solar energy, and geothermal energy, have become vital parts 
of future energy use resources because fossil fuels are declining but demands for 
energy keep growing. Solar energy has become a fast-growing energy source in 
the last few years. Compared to other renewable sources of energy, solar energy 
has the following advantages: it is inexhaustible, it can drastically reduce energy-
related greenhouse gases to help limit climate change, it is relatively well spread 
over the globe (Philibert 2011), and it is not subject to geological, climatologic, 
and morphologic conditions. The largest demands of solar energy are coming from 
urban areas because more than half of the world’s population lives in the urban 
environment (Weng 2015). Solar energy absorption equipment can be ground-
mounted arrays close to where the energy is used or directly mounted on rooftops 
(SEIA 2014). There are three primary technologies by which solar energy is 
commonly harnessed: photovoltaic (PV), concentrating solar power, and heating 
and cooling systems (SEIA 2014). In the dense urban areas, the PV equipment are 
encouraged to be mounted on the rooftops. First, it is not realistic to allocate a large 
land to ground-mount them. Moreover, buildings are the largest energy consumers 
in the urban area today (Philibert 2011), and the PV modules mounted on the roofs 
can directly transfer the solar energy absorbed from sunlight into electricity and 
sold to the electric companies.

Not all buildings are suitable for installing PV modules on their roofs, such as 
historical buildings or buildings shaded by surrounding objects for most of the time. 
Therefore, there is a need to evaluate the solar potential for each building. A completed 
database including information on geographic location, height, volume, and owner-
ship for each building is essentially important to estimate its solar potential. Building 
detection and reconstruction by using the remote sensed data and GIS technique has 
become a quite popular research topic for the last decade, especially after the LiDAR 
data became available because such data can reflect the absolute height of the ground 
feature and are not affected by solar shadows. Numerous approaches have been done 
for building boundaries detection and building reconstruction using LiDAR and other 
data sources (Haala et al. 1998; Henn et al. 2012; Huang et al. 2013; Lafarge et al. 
2007; Miliaresis and Kokkas 2007; Sohn and Dowman 2007) in the last two decades.
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The building detection studies separated buildings from other features based 
on a series of hypotheses, which are based on the spatial, spectral, and textural 
characteristics of buildings. Sohn and Dowman (2007) presented an approach 
for automatic extraction of building footprints in a combination of the LiDAR 
data with IKONOS imagery pan-sharpened multispectral bands. They achieved 
a detection accuracy of 90.1% and an overall accuracy of 80.5%. Miliaresis and 
Kokkas (2007) used a region-growing algorithm to extract building class from 
the LiDAR digital elevation models (DEMs) using the geomorphometric segmen-
tation principles. The interpretation of the spatial distribution of clusters that is 
revealed by K-means classification method allows for identification of building 
class (Miliaresis and Kokkas 2007).

The three-dimensional (3D) building reconstruction studies became more and 
more popular since the 1990s. Haala et al. (1998) combined ground plans of build-
ings and LiDAR data to build the 3D building models for the application of virtual 
reality. Lafarge et al. (2007) reconstructed buildings from DEMs and associ-
ated rectangular building footprints based on a Bayesian approach. The Bayesian 
approach can automatically find the best-fit roof primitives in the predefined library 
to represent given blocks of LiDAR point clouds within the building footprints. 
Huang et al. (2013) presents a statistical approach to automatic 3D building roof 
reconstruction from LiDAR point clouds. The selection of roof primitives was 
driven by a variant of Markov Chain Monte Carlo technique with specific jump 
mechanism. Three-dimensional models were built for 21 buildings and 1 city block 
in Hannover, Germany. Henn et al. (2012) approached model selection among five 
roof prototypes using supervised machine learning methods, which achieved a clas-
sification accuracy of 95% for 6696 roofs.

Once a completed GIS-based building polygon database showing the clear 
boundaries is available, a geospatial technique can be used to calculate the 
annual solar energy yield for each building footprint. Many previous studies 
were focusing on the solar energy yield estimation based on application of GIS-
based radiation models, LiDAR data, and extracted building footprints. Schuffert 
(2013) presented an automatic approach to extract suitable single roof planes from 
LiDAR data and assigned regional irradiation data to each extracted roof sur-
face. A shadow analysis was also combined to obtain the realistic solar energy 
values since the shadowing effect might significantly affect the incoming solar 
radiation. Lukač et al. (2013) rated the solar potential of building roofs using 
the method that combines extracted urban topography from LiDAR data with 
the pyranometer measurement of global and diffuse solar irradiances. They also 
created multiresolution shadowing to complete the proposed method. Tooke et 
al. (2011) quantified the diurnal and seasonal impact of trees on solar radiation 
yield. Their results indicated that trees on average reduce 38% of the total solar 
radiation received by residential building rooftops. A point obstruction stacking 
approach was designed by Tooke et al. (2013) to model irradiance on the walls of 
multiple buildings by integrating contiguous data sets of surrounding urban form 
and topography with building footprints.
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17.3  BUILDING ENERGY USE SIMULATION

Globally, buildings are responsible for more than 40% of energy demand and 
contribute more than 30% of CO2 emissions (Tooke 2014). Building energy use is 
a major component of anthropogenic heat discharge. Zhou et al. (2011) estimated 
the relationship between remotely sensed anthropogenic heat discharge and building 
energy use, and the result suggests that there is an obvious consistency in terms 
of spatial distribution. The high anthropogenic heat discharge occurs in the dense 
residential and commercial areas, where the highest building energy use can be 
found.

In order to get a better understanding of the current urban energy balance and 
propose suggestions for sustainable city development, monitoring and analysis of 
the building energy consumption are vital. There are two major building energy 
use estimation approaches: top-down and bottom-up approaches (Heiple and Sailor 
2008). The top-down approaches rely on extensive historical annual energy con-
sumption data and are typically applied to a larger area with a relatively coarse scale 
(Heiple and Sailor 2008; Sailor and Lu 2004). The bottom-up approaches, on the 
other hand, simulate hourly consumption of different types of energies for each sin-
gle building (Ward and Choudhary 2014). In order to examine the building energy 
use for the purpose of energy-efficient building design in future sustainable cities, 
the bottom-up approach should be chosen, since it can provided energy use informa-
tion for each building. The building energy simulation basically requires the input of 
many attributes of buildings, such as geographic location, climate conditions, floor 
space, floor numbers, building prototypes, electricity systems, and occupancy status. 
Ward and Choudhary (2014) developed a methodology for the analysis of building 
energy retrofits for a diverse set of buildings. The methodology requires selection 
of appropriate building simulation tools based on the nature of the principal energy 
demand (Ward and Choudhary 2014). Wang et al. (2015) used a bottom-up approach 
to model residential heating energy consumption for China’s hot summer–cold win-
ter climatic region. They considered the occupant behaviors besides other building 
characteristics.

Remote sensing technique provides the data for large spatial and temporal scale 
monitoring. The GIS technique, on the other hand, can model individual building 
energy consumption and analyze the correlation between energy use and factors 
that might affect it. Results from various studies that combined remote sensing and 
GIS techniques and showed the climate, geographic location, building attributes, 
and occupant behavior can all contribute to the building energy consumption. 
Hemsath and Bandhosseini (2015) indicate that both the vertical and horizontal 
geometric proportion are equally sensitive to the material aspects related to build-
ing energy use, and the impact of the building geometry’s effect on energy use 
depends on geographic locations. Premrov et al. (2015) pointed out that the total 
annual energy demand for heating and cooling has a stronger correlation with 
building shape factor if buildings are located in a cold climate with a lower solar 
potential. A statistical method applied by Aksoezen et al. (2015) showed that there 
is a strong interdependence between energy consumption, compactness, and build-
ing age.
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17.4  CASE STUDIES

In this section, two case studies are presented. The first case study assesses the solar 
energy potential for commercial and residential buildings in an urban area using 
geospatial techniques. The second case study examines the relationship between 
building energy use and some building attributes.

17.4.1  Study AreA And dAtA

The city of Indianapolis, which is the capital of Indiana, was chosen for both case 
studies. The study area was 3.78 km2, which covered the Central Business District of 
Indianapolis and some nearby residential areas. It is characterized by tall and complex 
commercial buildings and low apartment houses with different roof shapes.

Three data sources were used in this study: LiDAR data, building footprint 
polygons, and Marion County Assessor’s parcel data. In the United States, LiDAR 
data are available nationwide. One of the most famous public data inventories is 
the United States Interagency Elevation Inventory (USIEI), which is a collaborative 
effort of the National Oceanic and Atmospheric Administration (NOAA) and the 
US Geological survey, and it is updated annually. Building footprints are available 
in almost all major cities in the United States, which are stored as GIS Shapefiles. 
The Marion County Assessor’s parcel data are building Shapefile polygons with 
information on prototypes and ages that can be linked to the building footprint for 
building energy use simulation. The high-resolution orthophoto with 0.1 m spatial 
resolution was used as supplemental data.

LiDAR data digital surface model (DSM) and DEM were both rasterized from 
last return LiDAR point clouds, which were acquired from the Indiana Spatial Data 
Portal for 2009. They have the same spatial resolution of 0.91 m. The LiDAR normal 
height model (NHM), which represents absolute height information of objects above 
the ground surface, was calculated as follows:

 NHM = DSM − DEM. (17.1)

Building footprints data, which were provided by the city government of 
Indianapolis, were acquired in the year 2013. They were used to mask out the 
non-building features, such as tall trees in the LiDAR NHM. There are totally 411 
building footprints in the study area. The building footprints less than 10 m2 were 
removed from this study. Buildings having zero or negative height values were also 
removed since building footprints were created after the LiDAR data were obtained.

17.4.2  CASe Study I: ASSeSSIng SolAr energy PotentIAl In IndIAnAPolIS

Simulation of annual solar energy yield was first performed for building roofs that 
were reconstructed as a 3D city model from LiDAR DEM and building footprint. 
The shadowing effect from the surrounding objects was considered in the simulation 
since it will affect the total solar energy yield. Finally, the suitability of PV module 
installation was rated for all reconstructed roof segments based on their annual solar 
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energy yield. The objectives of this case study were (1) to demonstrate a method to 
estimate the solar potential of building roofs in the densely urban area and (2)  to 
create a complete 3D GIS-based city model that contains information of each 
building in the study area such as height, volume, total floor area, compactness, 
solar energy yield, and ownership for future use.

17.4.2.1  Building Reconstruction: 3D City Model
We reconstructed the commercial and residential buildings to a 3D city model. The 
3D city model, which represents the geometry of urban environment, was used as 
input for the annual solar energy yield simulation in the following stage. Compared 
to the 2D building footprints, 3D city models with prototypical roofs are rarely avail-
able, but they are more valuable in applications of urban planning, environmental 
modeling, and particularly of solar radiation calculations or noise emission simula-
tion (Henn et al. 2012) and urban structure analysis. LiDAR NHM data were used 
to calculate the height of each building, and the GIS-based building footprints were 
used to define the ground boundary of each building.

There are three steps in building reconstruction in this case study: step-edge 
detection, boundary refinement, and 3D building modeling. Not all buildings have 
a flat roof; many commercial buildings have substructures on their roofs. Direct use 
of those box-shaped models to represent buildings with complex and irregular roof 
shapes may cause loss of roof information and may lead to inaccurate reconstruction. 
Therefore, the step edge detection on building roofs has to be performed first. Those 
step edges may either be the boundaries of roof substructures or the transition with 
large variation in height between two parts in the rooftop (Figure 17.1). Ignoring step 
edges would lead to inaccurate reconstruction of building roofs.

Sobel’s edge detection method (Sobel and Feldman 1968) was first used to find out 
the possible step edges on roofs. Figure 17.2 presents the result of applying the Sobel 

FIGURE 17.1 Building with step edges on its roof.
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edge detector to the LiDAR NHM of a selected building. The step edge detection can 
split some building footprints into many small polygons, which causes an overseg-
mentation problem. Therefore, refinement was carried out after the step edge–based 
segmentation. The purpose of refinement is to merge the small polygons into their 
adjacent larger polygons and simplify the boundaries of building footprints. An area 
threshold (30 m2) was used to merge the cells with their adjacent larger cells. If there 
were multiple adjacent cells, the one sharing the longest boundary would be chosen. 
The Bend Simplify algorithm developed by Wang (1996) was used to simplify the 
boundaries into straight lines since it often produces results that are more faithful 
to the original and more aesthetically pleasing (Wang 1996). A classification for 
building footprints by their areas was performed before the simplification since foot-
prints in different sizes require different simplification tolerance values. The same 
simplification tolerance may cause the small footprints to lose their essential shapes, 
while large footprints still keep the extraneous bends. A total of six groups of build-
ing footprints were classified: (1) less than 400 m2, (2) 400 to 1000 m2, (3) 1000 to 
2000 m2, (4) 2000 to 4000 m2, (5) 4000 to 10,000 m2, and (6) greater than 10,000 m2.

Mean height of pixels within the boundaries of each building segment was calcu-
lated using LiDAR data. This research used box-shaped buildings, which extruded from 
the 2D building segments based on the mean height value to create the 3D city model.

17.4.2.2  Annual Solar Energy Yield Estimation
The annual solar energy yield for individual building roof segments is the most 
important indicator for their solar suitability rating in this study. Since the regional 
irradiation data used in Schuffert’s (2013) study are not always available in every 
city, it would be good to propose a solar energy simulation method, which calculates 
the instant solar energy yield based on the angular motion of the sun.

The incoming solar radiation emitted by the sun has three major components 
when it reaches the earth’s surface: direct radiation, diffuse radiation, and reflect 
radiation. Direct radiation is the largest component of total radiation, which travels 
on a straight line from the sun down to the surface of the Earth. Diffuse radiation 
is solar radiation that reaches the Earth’s surface after being scattered from direct 

FIGURE 17.2 Step edge detection on a building roof.
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radiation. Reflected radiation is reflected from surface features, which constitutes 
only a small proportion of total radiation.

In this case study, a solar radiation map was generated by the Area Solar Radiation 
tool in the ArcGIS Spatial Analyst toolbox, using the LiDAR NHM and latitude of 
the study area as inputs. The simulation was based on the hemispherical viewshed 
algorithm developed by Rich et al. (1994) and further developed by Fu and Rich 
(2002). The total annual solar energy amount was calculated as the global radiation 
for each pixel in the solar radiation map. The global radiation was calculated as the 
sum of direct and diffuse radiation using the following equation:

 Iglo = Idir + Idif, (17.2)

where Iglo is the global radiation, Idir is the direct radiation, and Idif is the diffuse 
radiation. The reflect radiation was not considered in this study, because according 
to Lukač et al. (2013), the reflected radiation only contributed a little to the total 
amount of global radiation. The solar radiation tool in ArcGIS involves four steps for 
solar energy calculation:

 1. Calculate an upward-looking hemispherical viewshed, such as a fisheye 
view, at each observation point location.

 2. Calculate the direct radiation based on the overlay of the viewshed and 
direct sun map.

 3. Calculate the diffuse radiation based on the overlay of the viewshed and 
diffuse sun map.

 4. Repeat the same calculation process for every location in each simulation time.

The input latitude for this case study was defined as 39.77 for Indianapolis. The 
simulation time was set for every 14 days in the year 2010. Since the course of sun 
changes continuously over time in a few days, it is not necessary to calculate each 
single day (Schuffert 2013). The hourly interval within a day was set to 2 h. The 
sky size was set to 200, which is the highest resolution for the viewshed, sky map, 
and sun map grids. The slope and aspect input type was set to “from_DEM”. Slope 
means steepness, aspect means the slope, and aspect grids are calculated from the 
input raster. The calculation direction was set to 32, which means the highest degree 
of complexity. Zenith division was set to 8, which means relative to zenith. Azimuth 
division was set to 8, which means relative to north. For a diffuse model type, uni-
form sky was the setting representing the incoming diffuse radiation, which is the 
same from all sky directions. Both the diffuse proportion and transmittivity propor-
tion were set according to the clear sky condition for all times, which is the most 
probable weather condition in Indianapolis.

The instant direct irradiance (Idir) for a given pixel can be calculated using the 
following equation:

 I S m
dir Const SunDur SunGap Anθ α

θ
θ α θ αβ,

( )
, , cos(= ∗ ∗ ∗ ∗ ggInθ α, ), (17.3)
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where θ is the zenith angle, α is the azimuth angle, SConst is the solar constant 
(1367 w/m2), β is the atmospheric transmissivity, m(θ) is the relative optical path 
length, SunDurθ,α is the time duration represented by the sky sector, SunGapθ,α is the 
gap fraction, and AngInθ,α is the angle of incidence between the centroid of the sky 
sector and the axis normal to the surface.

The instant diffuse irradiance (Idif) for a given pixel can be calculated using the 
following equation:

 I R Pdif dif ,Dur Skygap Weight Aθ α θ α θ α, glb ,* cos(= ∗ ∗ ∗ ∗ nngInθ α, ), (17.4)

where Rglb is the global normal irradiance, Pdif is the proportion of the global normal 
radiation flux that is diffused, Dur is the time interval used for analysis, SkyGapθ,α is the 
proportion of visible sky for the sky sector, Weightθ,α is the proportion of diffuse irra-
diance originating in a given sky sector relative to all sectors, and cos(AngInθ,α) is the 
angle of incidence between the centroid of the sky sector and the intercepting surface.

The instant solar energy yield in all time nods was calculated and summed up 
to obtain the daily solar energy yield map. All daily solar energy yield maps were 
summed up to obtain the annual solar energy yield map.

Roof can be shadowed by its surrounding objects such as other buildings and 
trees that are taller. In order to obtain the realistic estimation of annual solar energy 
yield, a shadowing effect should be considered because it can affect the absorption of 
direct radiation. The shadow balance for a pixel at a given time was calculated using 
the following equation:

 S = 255.0 * ((cos(Zenith_rad) * cos(Slope_rad)) + (sin(Zenith_rad)   
 * sin(Slope_rad) * cos(Azimuth_rad − Aspect_rad))), (17.5)

where Zenith_rad and Azimuth_rad are the zenith and azimuth angles of the 
illumination source at a given location and given time, which can be obtained in 
the NOAA solar calculator website (http://www.noaa.gov/). The zenith angle can 
be obtained by subtracting the altitude angle from 90°. Slope_rad is the slope value 
at the given pixel, and Aspect_rad is that of the aspect value. In order to match the 
simulation time matched in the annual solar energy yield simulation, a subset of days 
in each 14 days was chosen. In each chosen day, the sun position was calculated for 
six representative time nods: 8 a.m., 10 a.m., 12 p.m., 2 p.m., 4 p.m., and 6 p.m. The 
instant shadow balance maps in six time nods were summed up to obtain the daily 
shadow balanced map, and all daily shadow balanced maps were summed up to 
obtain the annual shadow balance map pixels within the study area were classified 
into three categories based on their annual shadow balance values: always-shaded 
zone, half-shaded zone, and unshaded zone. This classification result was applied 
to annual direct irradiance value in each pixel to obtain the realistic annual solar 
energy yield simulation result using the following equation:

 
I I Iglo dir difSC= ∗ + ,

 
(17.6)
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where SC is the shadowing coefficient. SC was set to 0.1 for the always-shaded 
zone, because pixels in this zone can hardly receive direct irradiance owing to the 
shadowing effect. SC was set to 0.5 for the half-shaded zone, which means that 
pixels in this zone receive partial amount of direct solar irradiance. SC was set to 
1 for the unshaded zone, which means pixels in this zone receive full amount of 
direct solar irradiance. The annual solar energy yield for a specific reconstructed 
roof segment was assigned using the mean value of annual global solar irradiance 
values of all pixels within it.

17.4.2.3  Results
Figure 17.3 shows the annual solar energy yield in downtown Indianapolis; the 
warmer colors represent larger values of annual global solar radiation absorption, 
while cooler colors represent smaller values of annual global solar radiation 
absorption. The solar potential index for each roof segment can be calculated using 
the following equation:

 SPi = (SEi)/(SEmax), (17.7)

where SPi is the solar potential index, SEi is the annual solar energy yield for the 
given roof segment, and SEmax is the roof segment with the highest annual solar 
energy yield in the study area. All the roof segments were assigned to five categories 
according to their solar potential index, as presented in Figure 17.4.

Figure 17.4 shows the result of a building roof’s PV suitability with a view of the 
3D city model after assigning the solar potential index into the roof segments’ attri-
bute table. Purple and blue represent the roof segments that are unsuitable or with 
low suitability for PV module installation, green represents the roof segments with 
medium level of suitability, and yellow and red represent the roof segments with high 

Annual global
solar irradiance
(Unit: watts hours
per square meter)

High: 2707375

Low: 847

FIGURE 17.3 Annual global solar irradiance in Indianapolis.
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or very high suitability. With the 3D city model, it can be determined that the com-
mon characteristics of roof segments with lower PV suitability (represented by blue 
and purple colors) are located in the downtown area, surrounded by higher objects, 
and have a smaller floor space area. Shading by the higher surrounding objects for 
most of the time is probably the reason. Since they have a small floor space area, a 
large portion of them are shaded. Roof segments with higher PV suitability (repre-
sented by red and yellow colors) usually have greater heights than the surrounding 
objects or are located at a distance from the surrounding objects, making sure that 
they are not shaded for most of the time.

17.4.3  CASe Study II: CorrelAtIon AnAlySIS between buIldIng 
energy uSe And buIldIng AttrIbuteS In IndIAnAPolIS

Buildings are a major component in urban areas, and building energy use accounts for 
a large proportion of anthropogenic heat. Understanding the characteristic of energy 
use for different types of buildings is vital for current sustainable city research. The 
objectives of this case study were to analyze the correlation between building energy 
use and their attributes in different levels, to find out the most significant contributor 
among these attributes, and to propose an energy-saving suggestion based on the 
results.

<0.20

<0.70

0.20–0.35
0.35–0.50
0.50–0.70

SPi
Unsuitable

Low suitability
Medium suitability

High suitability
Very high suitability

FIGURE 17.4 Assessment of building PV suitability in downtown Indianapolis with a 3D 
city model.
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17.4.3.1  Building Energy Consumption Simulation in Indianapolis
Energy consumption from commercial and residential buildings in downtown 
Indianapolis was simulated using the eQUEST software, which is an energy 
simulation tool designed to model the annual energy cost for a single building. 
The methodology was illustrated in Figure 17.5. The simulation requires several 
inputs related to the buildings such as building shape, floor area, floor numbers, 
and prototype. LiDAR NHM and building footprint were used to determine the 
floor numbers through dividing the height of the building by the floor-to-floor 
height. In order to obtain a more accurate estimation, eave height should be used 
for buildings with non-flat roofs, rather than using the top height, mean height, or 
height for major parts of the roofs. A classification of flat and non-flat roof was 
performed, based on a slope threshold. The percentage of pixels with a slope value 
lower than 5° in each cell was calculated, and the cells with at least 40% of pixels 
having a slope value lower than 5° would be recognized as flat roofs. The reason 
for setting the threshold to 5° rather than 0° is that many flat roofs contain a few 
substructures on their top. For building roofs classified as non-flat roofs, inner 

LIDAR NHM Building footprint Parcel data

Roof classification

Non-flat
roof

Flat

Parcel sub-footprint
roof

Eave height Mean height

Floor number Area Shape Prototype

Energy simulation in EQUEST

Annual electricity consumption Annual fuel consumption

FIGURE 17.5 Methodology of annual building energy use simulation.
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buffer zones were created around the boundary of building footprints to extract the 
eave area and calculate the eave height.

For individual flat roofs, the mean height of the LiDAR NHM pixels within it was 
used to estimate the floor numbers. The same height value was assigned to parcel 
sub-footprints within the same building footprint. The floor-to-floor height was set 
differently for buildings with different prototypes, according to a standard defined 
by the US Department of Energy.

Building footprint polygon and parcel polygon were overlaid to create a new poly-
gon layer. Polygons in the new layer maintain the original boundary of building foot-
prints as their outside boundary as well as contain the parcel boundaries within the 
building footprint. One building footprint may have multiple parcel sub-footprints, 
which can be explained by the fact that some commercial buildings are shared by 
different owners for different purposes of use.

A total of 10 building prototypes, which include 8 for commercial and 2 for 
residential buildings, were determined according to the parcel data for each par-
cel building sub-footprint. Each single parcel sub-footprint obtained a unique 
setting of parameters for simulation according to their own characteristics. 
Assigning building prototype in the first step of simulation would automati-
cally affect the default setting of several major parameters such as weekday and 
weekend schedule, internal load (e.g., light and equipment use), activity area 
allocation, and cooling and heating equipment characteristics. Specific meteoro-
logical information will be retrieved and will contribute to the simulation based 
on the input of location setting and year for simulation. With the combination of 
proto types, related parameters, area, shape, number of floors, age, location, and 
retrieved meteorological data, the annual electricity and annual fuel consump-
tion were simulated for each parcel sub-footprint. Indianapolis and the year 2014 
were chosen for the location setting and year of simulation, respectively. The 
energy consumption for each building was calculated by summing up energy 
consumption for all parcels within it. Figure 17.6 shows the amount of annual 
fuel and electricity consumption for each commercial and residential building in 
downtown Indianapolis.

17.4.3.2  Correlation Analysis
This section provides a correlation analysis to examine the relationship of energy 
use and building attributes including ground area, total floor area, height, surface 
area, compactness, aspect ratio, and orientation. The ground area represents the 
area of individual GIS building footprint. The total floor area represents the total 
floor space of all stories in the building, which was calculated by multiplying 
the ground floor area by floor numbers. The floor numbers were calculated by 
dividing the building height by the floor-to-floor height of the building, which 
is generally 7.5 ft in the case of residential buildings and 10 ft for commercial 
buildings (Chun 2010). Surface area (SA) represents the outer exposed building 
surface, including the roof surface and walls, can be calculated by the following 
equation:

 SA = A + P * h, (17.8)
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where A denotes ground area, P is the perimeter of building footprint, and h is 
the height of the building. Compactness is the ratio of building surface to volume, 
and is a proxy for thermal energy emission from a building’s exposed surface 
(Chun 2010). The aspect ratio is the proportional relationship between building 
width and height. Orientation, which is the main angle of building, ranges from 
−90° to 90°. The values −90°, 0°, and 90° denote that the longer side of the 
building points to the west, north, and east, respectively. Figure 17.7 presents the 
average amount of annual electricity and fuel consumption for all commercial 
and residential buildings in the study area. Since a large contrast between the 
amounts of annual energy consumption in commercial and residential buildings 
can be observed, correlation analysis will be performed to these two major types 
of buildings separately.

The relationships between building energy consumption and their area are pre-
sented in Figures 17.8 and 17.9 as scatterplots. It can be found out that building 
energy use has a positive correlation with building ground area and total floor area. 
In order to avoid the impact from building area, the relationship of the other attri-
butes and energy use per square foot is examined. Figures 17.10 and 17.11 present 
the relationship between annual energy consumption per square foot and build-
ing height, surface area, compactness, aspect ratio, and orientation in scatterplots. 

Less than 70,000
70,000–200,000
200,000–1,000,000
1,000,000–2,000,000
2,000,000–5,000,000
Greater than 5,000,000

(a)

 

Less than 70,000
70,000–200,000
200,000–1,000,000
1,000,000–2,000,000
2,000,000–5,000,000
Greater than 5,000,000

(b)

FIGURE 17.6 Amount of annual fuel consumption (a) and electricity (b) consumption (kilo-
watt hour) for each commercial and residential building in downtown Indianapolis.
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Table 17.1 defines the correlation between energy use and all attributes using Pearson 
product–moment correlation coefficients.

A very strong correlation can be observed between building energy use and total 
floor area for both commercial and residential buildings with a correlation from 0.889 
to 0.977. Relatively lower correlations are observed for the relationship between energy 
use and ground area, which indicates that energy use might have a positive correlation 
with building height. As Table 17.1 suggests, for commercial buildings, height has 
stronger positive correlations of 0.647 and 0.638 with fuel and electricity consumption 
per square foot, respectively, compared to residential buildings. Although it appears 
that height has a weak correlation with residential building energy use, a higher posi-
tive correlation between height and ground area explains the fact that residential build-
ing energy use has a higher correlation with total floor area than with ground area. It 
can also be found out that area has a stronger impact on energy use than height. It is 
also worth noting that energy use per square foot has a negative correlation with com-
pactness for commercial buildings, indicating that commercial buildings with com-
plicated shapes consume less energy than others with simple shapes and similar sizes 
in Indianapolis. No significant correlations can be observed between the energy use 
of buildings and their attributes, including surface area, aspect ratio, and orientation.
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FIGURE 17.7 Average amount (kilowatt hour) of annual consumption of fuel (a) and 
electricity (b) for commercial and residential buildings in downtown Indianapolis.
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FIGURE 17.8 Relationship between annual fuel consumption and ground area (a and b) for 
commercial and residential buildings. (Continued)
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FIGURE 17.8 (CONTINUED) Relationship between annual fuel consumption and building 
total area (c and d) for commercial and residential buildings.
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FIGURE 17.9 Relationship between annual electricity consumption and ground area (a and 
b) for commercial and residential buildings. (Continued)
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FIGURE 17.9 (CONTINUED) Relationship between annual electricity consumption and 
building total area (c and d) for commercial and residential buildings.
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FIGURE 17.10 Relationship between annual fuel consumption per square foot and building 
height (a and b) for commercial and residential buildings. (Continued)

(c) ketabton.com: The Digital Library



337Assessing Solar Energy Potential and Building Energy Use in Indianapolis

0 250,000 500,000 750,000 1,000,000 1,250,000

0

250

200

150

100

50

Building surface area (ft2)

A
nn

ua
l f

ue
l c

on
su

m
pt

io
n 

(k
W

h)
 p

er
sq

ua
re

 fo
ot

 fo
r c

om
m

er
ci

al
 b

ui
ld

in
gs

(c)

0

0

20

40

60

80

100

120

20,000 40,000 60,000

Building surface area (ft2)

A
nn

ua
l f

ue
l c

on
su

m
pt

io
n 

(k
W

h)
 p

er
sq

ua
re

 fo
ot

 fo
r r

es
id

en
ti

al
 b

ui
ld

in
gs

(d)

FIGURE 17.10 (CONTINUED) Relationship between annual fuel consumption per 
square foot and building surface area (c and d) for commercial and residential buildings.
 (Continued)
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FIGURE 17.10 (CONTINUED) Relationship between annual fuel consumption per square 
foot and compactness (e and f) for commercial and residential buildings. (Continued)
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FIGURE 17.10 (CONTINUED) Relationship between annual fuel consumption per square 
foot and aspect ratio (g and h) for commercial and residential buildings. (Continued)
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FIGURE 17.10 (CONTINUED) Relationship between annual fuel consumption per square 
foot and orientation (i and j) for commercial and residential buildings.
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FIGURE 17.11 Relationship between annual electricity consumption per square foot and 
building height (a and b) for commercial and residential buildings. (Continued)
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FIGURE 17.11 (CONTINUED) Relationship between annual electricity consumption per 
square foot and building surface area (c and d) for commercial and residential buildings.
 (Continued)
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FIGURE 17.11 (CONTINUED) Relationship between annual electricity consumption per 
square foot and compactness (e and f) for commercial and residential buildings. (Continued)
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FIGURE 17.11 (CONTINUED) Relationship between annual electricity consumption per 
square foot and aspect ratio (g and h) for commercial and residential buildings. (Continued)
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FIGURE 17.11 (CONTINUED) Relationship between annual electricity consumption per 
square foot and orientation (i and j) for commercial and residential buildings.
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Correlations between energy use and supplementary attributes, including build-
ing age and prototypes, are also examined. The values of energy consumption per 
square foot were divided by the floor number to get rid of the influence of build-
ing height. Figure 17.12 indicates that there is a positive correlation (0.558) between 
annual fuel consumption per square foot in a single floor and residential building 
age, indicating that older residential buildings tend to have higher annual fuel con-
sumption. This might be due to the fact that space heating equipment in newer resi-
dential buildings are more efficient. Moreover, the newer residential buildings have 
a better design of building shells for the purpose of energy saving. Table 17.2 pres-
ents the average annual energy use (fuel and electricity) per square foot in a single 
floor for eight types of commercial buildings. It is worth noting that compared to 
other subtypes, office buildings have significantly higher annual fuel and electricity 
consumption per unit floor area. The possible reason is that office buildings have a 
higher density of people and more equipment than other buildings such as comput-
ers, printers, and space cooling and heating facilities. The other reason is that in US 
cities, office buildings in the downtown area tend to keep most of the internal lights 
on for the whole night.

TABLE 17.1
Analysis of the Relationship between Energy Use and Building Attributes 
Using a Correlation (Pearson Product–Moment Correlation Coefficients) 
Technique

Commercial Buildings Residential Buildings

F vs. ground area 0.893 0.722

E vs. ground area 0.860 0.589

F vs. total area 0.903 0.977

E vs. total area 0.889 0.937

Ground area vs. height 0.076 0.659

FU vs. height 0.647 0.495

FU vs. surface area 0.3 0.411

FU vs. compactness −0.412 −0.251

FU vs. aspect ratio −0.077 −0.18

FU vs. orientation 0.15 −0.094

EU vs. height 0.638 0.226

EU vs. surface area 0.28 0.12

EU vs. compactness −0.388 −0.024

EU vs. aspect ratio −0.107 −0.002

EU vs. orientation 0.093 −0.196

Note: E, annual electricity consumption; F, annual fuel consumption; FE, annual electricity 
consumption per square foot; FU, annual fuel consumption per square foot.
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FIGURE 17.12 Relationship between annual fuel consumption per square foot in single 
floor and building age (Pearson’s r = 0.558) (a) and between annual electricity consumption 
per square foot in single floor and building age (Pearson’s r = 0.331) (b).
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17.5  SUMMARY AND DISCUSSION

This chapter provided two case studies focusing on sustainable city development, 
using Indianapolis as an example. The first case study overall demonstrated a 
method to estimate the solar potential of building roofs in densely populated urban 
areas. The second case study examined the correlation between building energy use 
and their attributes.

In the first case study, the accuracy of solar energy yield simulation can be 
improved if meteorological data are available since several input parameters, such 
as diffuse proportion, transmittivity proportion, and shadowing effect, are related 
to instant sky conditions. Seasonal-based analysis can also be performed since 
Indianapolis usually experiences heavy snow in the winter. One limitation of this 
case study is that it applied the same shadowing analysis algorithm for buildings 
and vegetation without considering the transmittivity of the vegetation. Moreover, 
regarding building wall material data, reflected radiation should be considered in the 
simulation if there are walls made of materials with high reflectivity. A completed 
3D building model with physical attributes such as height, volume, total floor area, 
annual solar energy yield, shadow balance, PV suitability, and ownership has poten-
tial applications that can be used by urban planners and local solar energy companies 
since it will provide a multistage decision-making scheme regarding PV suitabil-
ity. With the ownership parcel data, historical preserved buildings and government 
buildings can be removed from the list in the first stage, which can also save a lot 
of calculation time. Buildings with low annual solar energy yield can be removed 
in the next stage. In the final stage, urban planners can make predictions for each 
chosen roof surface (e.g., how many kilowatt hours of solar energy can be absorbed 
theoretically per square meter annually). Local solar energy companies and local 
governments will be able to determine the profits incurred for each particular build-
ing, each neighborhood and district, and the entire city if the cost of PV installation 
is considered.

TABLE 17.2
Average Annual Energy Use per Square Foot in Single Floor 
for Eight Subtypes of Commercial Buildings

Types Fuel (kWh) Electricity (kWh)

Community center 19.56 15.52

Conference/convention center 26.70 18.84

Hotel 17.92 9.31

Office 51.51 48.29

Religious 9.23 4.75

Retail 9.76 5.61

School 11.34 5.25

Theater 6.49 3.97
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In the second case study, the significant contributors to building energy use were 
determined to be area and age for residential buildings and area, height, compact-
ness, and prototype for commercial buildings. For the purpose of saving energy, 
attention should be given to the management of office buildings since such struc-
tures consume more energy than others. Many office buildings can immediately 
save energy using some short-term solutions, such as turning off some of the lights, 
computers, office equipment, and space heaters during the night. Long-term solu-
tions should also be provided, such as replacing the current lights with energy-saving 
lights to reduce internal loads. In order to save energy in residential buildings, the 
refurbishment of older buildings should be advocated. For example, the traditional 
space heating facilities in such houses can be replaced by energy-saving ones. Future 
studies on building energy use should consider more potential factors such as the 
income level and the number of residents.
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ground heat flux, 218–220, 219t, 308
heat hazards and, 211–226
hourly LST, 216, 222–225, 223f, 225f, 226
impervious surfaces and, 217, 220–226, 221f
instantaneous LST, 222, 224f
latent flux of, 222–225, 224f, 225f
linear spectral mixture analysis, 215
mapping procedures, 46
methodology flowchart, 216, 216f
moisture model for, 218–220
monitoring, 211–226
results on, 220–226
soil moisture and, 222, 244–246, 252–257, 

262
soil surface and, 220–226, 221f
spatial variability of, 222, 223f
study area of, 213–216, 214f, 222, 226
temporal variability of, 222, 223f
thermal infrared images, 211–213, 215–216
vegetation cover and, 220–226, 221f

Leaf area index (LAI), 105, 107, 108f, 116, 
270–271

LiDAR systems, 16, 18, 21, 116, 200, 318–324, 
328–329

Life-form compositions, 235–237, 236f, 240
Linear spectral mixture analysis (LSMA), 

215–216

Line-of-sight (LOS) displacement, 65–69, 75
Line-of-sight (LOS) velocity, 65–69, 68f, 72f

M

Mediterranean regions, 229–240
Microwave remote sensing, 244–245
Moderate Resolution Imaging Spectroradiometer 

(MODIS)
aerosol optical depth and, 195–197, 196t, 

201–204
of cloud coverage, 211
fire product and, 199–200
thermal infrared images, 215–216
of water quality, 166–167, 173–176

Modified NDWI (MNDWI), 170f, 171–173, 172f, 
173t

Multiangle Imaging SpectroRadiometer (MISR), 
195, 196t, 200–201

Multi-Angle Implementation of Atmospheric 
Correction (MAIAC), 195, 196t, 
197–199, 202

N

Nighttime light (NTL) imagery
background on, 278–279
data sets for, 279–280
energy use and, 277–294
methodology for, 281–285
results of, 285–292
study area, 279–280

NIR–red spectral reflectance space, 244–246, 
249–250, 250f, 255

Normalized difference vegetation index (NDVI)
climatic gradients and, 111–113, 111f, 112f, 113f
for forest damage, 150–155
for heat hazards, 212–216
for impervious surfaces, 30–31
nighttime light imagery and, 281
for soil moisture, 245–249, 252–262, 253f, 

254f
for wind resource modeling, 304–307

Normalized difference water index (NDWI), 
169–173, 170f, 172f, 173t

O

Object-based image analysis (OBIA), 139–140
Open spaces

fragmentation of, 15, 19–20
impervious surfaces, 18–20
in urban sustainability, 18–20

Optical remote sensing
description of, 13–16
ground measurements, 243–262
of soil moisture, 243–262
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P

Pakistan
case study in, 243–262
ground measurements in, 243–262
optical remote sensing in, 243–262
study area of, 246, 247f

Particular matter
aerosol optical depth data, 195–204, 196t
annual mean surface data, 204–205, 204f
applications for, 195–200
case study, 203–205
concentration prediction of, 195–199
fire data, 199–200
health effects from, 193–194
LIDAR data, 200
methods for, 200–203
remote sensing for, 195–200

Pearl River Delta, China
case study, 46–57, 47f
mapping procedures, 48–52, 48f
urban growth in, 45–57, 53f, 54f

Persistent scatterer interferometry (PSI) 
processing, 62, 65–69

Photovoltaic (PV) modules, 318, 321–322, 
326–327, 327f, 348

Pixel-based classification, 139–140
PM2.5

aerosol optical depth data, 195–204, 196t
annual mean surface data, 204–205, 204f
applications for, 195–200
case study, 203–205
concentration prediction of, 195–199
fire data, 199–200
health effects from, 193–194
LIDAR data, 200
methods for, 200–203
remote sensing for, 195–200

Prairie ecosystem
biophysical properties, 107
grassland management, 103–117
mixed-grass prairies, 103–115, 106f
remote sensing in, 103–117
spatial patterns of, 107

R

Remote sensing algorithms
change detection algorithm, 155–156
classification algorithm, 153–154
statistical regression algorithm, 154–155
thresholding algorithm, 152–153

Remote sensing data
application of, 13–23
availability of, 13–16
for detecting forest damage, 145–158
optical remote sensing, 13–16, 243–262

parameters for, 3–24
satellite sensors, 13–16, 14t
spatial resolution, 13, 15–18
spectral resolution, 15, 18
systems for, 13–16, 14t
temporal resolution, 15
for urban sustainability, 3–24
for water quality monitoring, 163–184, 165t

Remote sensing soil moisture model (RSSMM), 
246, 249–255, 256f, 256t, 257t, 262

Remote sensing technology
accessibility of, 39–42
applications of, 6, 16–17, 17t, 21–24, 39–40, 

104–107, 140, 150
availability of, 39–42
case studies, 103–117
climatic gradients and, 231–240
future of, 42
in grassland management, 103–117
implementation of, 6
measurements by, 16–17

S

Satellite-based remote sensing, 269–275
Satellite-derived land surface temperature, 

211–226; see also Land surface 
temperature

Satellite sensors; see also Remote sensing data
aerosol scatterings, 174–176
atmospheric correction for, 174–176, 174f, 

182–183, 183f
for monitoring water quality, 163–184, 165t
ocean-color sensors, 164–169
spectral bands of, 166–167, 166f
spectral reflectance patterns, 171, 173f
systems for, 13–16, 14t
TOA reflectance, 174–176, 174f
water-leaving reflectance, 174–176, 174f
water quality parameters, 177–182

Semiarid regions, 229–235, 230f, 246; see also 
Climatic gradients

Small baseline subset (SBAS) processing, 62, 
65–69

Smoothing method, 49–50
Soil moisture

evaporation of, 222
extraction of, 250, 251f
field sample collections, 248–249, 248f
gravimetric measurements, 244, 248–249, 

256f, 259–260, 260f
heat hazards and, 222
land surface temperature and, 222, 244–246, 

252–257, 262
modeling sketch of, 251f
NIR–red spectral reflectance space, 244–246, 

249–250, 250f, 255
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normalized difference vegetation index, 
245–249, 252–262, 253f, 254f

optical remote sensing of, 243–262
Pakistan case study, 243–262
remote sensing data, 246–248
remote sensing soil moisture model, 246, 

249–255, 256f, 257t, 262
spatial variability of, 244–246, 257–262, 261f
study area, 246, 247f
temperature vegetation dryness index and, 

245–246, 252–262, 253f, 257t, 258f, 
260f, 261f

temporal variability of, 244–245, 262
Soil moisture index, 245–249, 252–262, 253f, 

254f
Soil moisture model, 218–220, 244–246, 251f
Soil surface

heat hazards and, 220–226, 221f
land surface temperature and, 220–226, 221f
latent flux over, 222–225, 224f, 225f

Solar energy potential
assessment of, 317–349
estimation of, 318–319, 321–327
in Indianapolis, 317–349, 326f
photovoltaic modules, 318, 321–322, 326–327, 

327f, 348
Solar irradiance, 212, 217, 319, 326–327, 326f
Spatial network, 39, 40f
Spatial patterns

of disease, 147
of forest disturbances, 155
of land subsidence, 67–72
of prairie ecosystem, 107

Spatial planning, 29–42, 34f
Spatial resolution, 13, 15–18, 31–33, 41–42
Spectral resolution, 15, 18, 41–42
Stable time series, 50, 52
St. Louis, Missouri

land subsidence monitoring, 63–71, 64f, 72f
line-of-sight displacement, 65–69, 75
line-of-sight velocity, 65–69, 68f, 72f
time series deformation, 67–68, 69f–70f, 72f

Surface moisture model, 218–220
Surfaces, impervious, 18–20; see also 

Impervious surfaces
Sustainability

community capital, 4–5
community sustainability, 4–6
definition of, 4–5
indicators for, 6–13, 7f, 9t, 16–24, 17t

Sustainability indicators (SIs)
application of, 8–9
criteria for, 8–10, 9t
definition of, 6–8
explanation of, 6–13
hierarchical framework of, 7–8, 7f
for urban sustainability, 11–13, 16–24, 17t

Sustainable energy supply
agricultural cultivation patterns, 272, 273f
bioenergy, 270–272, 271f
Earth observation of, 269–275
energy policy, 269–270
energy potential, 271–272, 271f
energy sector, 270–272
geodata for, 270–272
heating networks, 272–275, 274f
implementation of, 269–275
satellite sensors and, 269–275

Synthetic aperture radar (SAR), 16, 18, 35, 37f, 
41, 62–66

T

Temperature vegetation dryness index (TVDI), 
245–246, 252–262, 253f, 257t, 258f, 
260f, 261f

Temporal patterns, 67–72, 89
Temporal resolution, 15, 46, 57, 104–105
Thermal infrared (TIR) images, 211–213, 

215–216, 244–247
Time series clustering, 46, 56f, 57
Time series Landsat imagery, 45–57
Top of atmosphere (TOA) reflectance, 174–176, 

174f
Tree species

classification accuracy, 127–129, 131f, 138–140
classification comparisons, 137–140
classification methods, 124–129, 130t
classification of, 121–141
discriminant analysis of, 124–128, 137–138, 140
endangered bird species and, 121–141
examples of, 125, 126f
field data on, 125
fine spatial resolution imagery, 121–141
object-based classification, 132f, 137f, 139–140
pixel-based classification, 132f–136f, 137f, 

139–140
random forest algorithm, 124, 127–128, 

132–138, 137f, 140
remote sensing data for, 125
study areas, 124–125
support vector machine algorithm, 124, 

127–128, 137–138, 140

U

Underground mines, 61–76; see also 
Land subsidence

Urban air quality studies, 193–205
Urban compactness, 21–22
Urban expansion, 292f, 293–294
Urban growth

assessment of, 45–57, 56f
characteristics of, 52–53
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clustering accuracy, 46, 56f, 57
impact of, 45–46, 317–318
Landsat imagery of, 45–57
mapping, 33–38, 34f, 36f, 37f, 38t
mapping procedures, 48–52, 48f
in Pearl River Delta, 46–57, 47f, 48f, 53f, 

54f
settlement pattern, 38–39

Urbanization
centralization and, 95–97
characteristics of, 81–82
comparisons, 81–98
data collection on, 84–89
decentralization and, 95–96
development and, 94–97
in Greensboro, 81–98, 83f, 87t–89t, 90f, 91f
in Guiyang, 81–98, 83f, 86t, 90f, 91f
horizontal development, 94–95, 95f
impact of, 45–46, 317–318
industrialization and, 81–84
land changes and, 89–91, 90f
land cover classification for, 85–89, 86t–89t
mapping, 33–38, 34f
market driven planning and, 96–97
process analysis of, 91–94
satellite images of, 85–89
settlement pattern, 38–39
study areas, 83–84, 83f
study methods, 84–89
vertical development, 94–95, 95f

Urban planning
Earth observation in, 29–42
impervious surfaces in, 30–33
implications for, 74–75
land subsidence for, 61–76
mapping urban growth, 33–38
urban sustainability and, 61–76

Urban sustainability
assessment of, 16–24, 17t
biodiversity and, 23
coal mines and, 61–76
compactness in, 21–22
deforestation and, 22–23
environmental indices for, 3–24
explanation of, 3–5
impervious surfaces in, 18–20
implications for, 74–75
indicators for, 11–13
InSAR monitoring of, 61–76
land cover and, 22–23
land subsidence for, 61–76
measurements of, 16–24, 17t
open spaces in, 18–20
remove sensing data for, 3–24
sustainability indicators for, 11–13, 16–24, 17t
township layouts, 21–22
transport systems in, 20–21

underground mines and, 61–76
urban planning and, 61–76

V

Vegetation cover
climatic gradients and, 231–235, 233t, 234f
green vegetation cover, 230–237, 233t, 234f, 240
heat hazards and, 220–226, 221f
land surface temperature and, 220–226, 221f
latent flux over, 222–225, 224f, 225f

Vegetation mapping, 114–116, 122–124, 123f
Vertical expansion, 94–95, 95f
Visible Infrared Imaging Radiometer Suite 

(VIIRS), 195, 196t, 199

W

Water quality
algorithm for, 182–184, 183f
atmospheric corrections, 174–176, 174f, 

182–183, 183f
chlorophyll estimation, 177, 178t, 183–184, 183f
delineation of, 169–172, 172f
monitoring, 163–184
optical properties, 181–182
satellite sensors for, 163–184, 165t
TOA reflectance, 174–176, 174f
water delineation, 169–172, 172f
water-leaving reflectance, 174–176, 174f

Water quality parameters
biogeochemical parameters, 177–180, 178t
bio-optical model, 177
optical properties, 181–182
from remote sensing data, 177–182, 178t

Weighted mean patch size (WMPS), 19–20
Wind farms, 298, 308, 309f
Wind resource modeling

background on, 297–298
Earth observation and, 297–312
future options, 297–312
land cover and, 299–303, 300f, 301f, 302t, 

305–308, 305f, 306f
land surface parameters, 299–311
multitemporal aspects of, 304
surface morphology, 303–304, 303t
surface roughness, 303–304, 303t
topography mapping, 303–304, 303t

Wind turbines, 297–298, 311
WorldView-2 (WV2)

characteristics of, 123–124, 124t
classification accuracy, 130t, 131f, 133f–136f, 

138–140
for classifying tree species, 121–140, 123f
comparisons of, 131f, 133f–136f, 139–140
for measuring impervious surfaces, 31, 33t
scatterplots, 129, 132f
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