
Linux Fundamentals
Paul Cobbaut

Ketabton.com

Linux Fundamentals
Paul Cobbaut

lt-2.0

Published Sat 15 Dec 2012 01:00:41 CET

Abstract

This book is meant to be used in an instructor-led training. For self-study, the intent is to read this book next to a
working Linux computer so you can immediately do every subject, practicing each command.

This book is aimed at novice Linux system administrators (and might be interesting and useful for home users that
want to know a bit more about their Linux system). However, this book is not meant as an introduction to Linux
desktop applications like text editors, browsers, mail clients, multimedia or office applications.

More information and free .pdf available at http://linux-training.be .

Feel free to contact the author:

• Paul Cobbaut: paul.cobbaut@gmail.com, http://www.linkedin.com/in/cobbaut

Contributors to the Linux Training project are:

• Serge van Ginderachter: serge@ginsys.eu, build scripts and infrastructure setup

• Ywein Van den Brande: ywein@crealaw.eu, license and legal sections

• Hendrik De Vloed: hendrik.devloed@ugent.be, buildheader.pl script

We'd also like to thank our reviewers:

• Wouter Verhelst: wo@uter.be, http://grep.be

• Geert Goossens: mail.goossens.geert@gmail.com, http://www.linkedin.com/in/geertgoossens

• Elie De Brauwer: elie@de-brauwer.be, http://www.de-brauwer.be

• Christophe Vandeplas: christophe@vandeplas.com, http://christophe.vandeplas.com

• Bert Desmet: bert@devnox.be, http://blog.bdesmet.be

• Rich Yonts: richyonts@gmail.com,

Copyright 2007-2012 Netsec BVBA, Paul Cobbaut

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled 'GNU Free Documentation License'.

(c) ketabton.com: The Digital Library

iii

Table of Contents
I. introduction to Linux .. 1

1. Linux history ... 2
2. distributions ... 4
3. licensing .. 6
4. getting Linux at home ... 10

II. first steps on the command line .. 21
5. man pages ... 22
6. working with directories ... 26
7. working with files ... 35
8. working with file contents .. 44
9. the Linux file tree ... 51

III. shell expansion .. 72
10. commands and arguments ... 73
11. control operators ... 83
12. variables .. 89
13. shell history ... 100
14. file globbing .. 106

IV. pipes and commands .. 113
15. redirection and pipes ... 114
16. filters ... 123
17. basic Unix tools .. 136

V. vi ... 145
18. Introduction to vi .. 146

VI. scripting ... 156
19. scripting introduction .. 157
20. scripting loops ... 163
21. scripting parameters .. 170
22. more scripting ... 178

VII. local user management ... 186
23. users .. 187
24. groups .. 207

VIII. file security ... 213
25. standard file permissions .. 214
26. advanced file permissions ... 225
27. access control lists .. 231
28. file links .. 235

IX. Appendices ... 242
A. certifications ... 243
B. keyboard settings .. 245
C. hardware ... 247

Index .. 251

(c) ketabton.com: The Digital Library

iv

List of Tables
18.1. getting to command mode ... 147
18.2. switch to insert mode ... 147
18.3. replace and delete .. 148
18.4. undo and repeat .. 148
18.5. cut, copy and paste a line .. 148
18.6. cut, copy and paste lines .. 149
18.7. start and end of line ... 149
18.8. join two lines ... 149
18.9. words .. 150
18.10. save and exit vi .. 150
18.11. searching .. 151
18.12. replace .. 151
18.13. read files and input .. 151
18.14. text buffers ... 152
18.15. multiple files .. 152
18.16. abbreviations .. 152
23.1. Debian User Environment .. 206
23.2. Red Hat User Environment .. 206
25.1. Unix special files ... 216
25.2. standard Unix file permissions .. 217
25.3. Unix file permissions position ... 217
25.4. Octal permissions ... 220

(c) ketabton.com: The Digital Library

Part I. introduction to Linux

(c) ketabton.com: The Digital Library

2

Chapter 1. Linux history

Table of Contents
1.1. Linux history .. 3

This chapter briefly tells the history of Unix and where Linux fits in.

If you are eager to start working with Linux without this blah, blah, blah over history,
distributions, and licensing then jump straight to Part II - Chapter 6. Working with
Directories page 26.

(c) ketabton.com: The Digital Library

Linux history

3

1.1. Linux history
All modern operating systems have their roots in 1969 when Dennis Ritchie and
Ken Thompson developed the C language and the Unix operating system at AT&T
Bell Labs. They shared their source code (yes, there was open source back in the
Seventies) with the rest of the world, including the hippies in Berkeley California. By
1975, when AT&T started selling Unix commercially, about half of the source code
was written by others. The hippies were not happy that a commercial company sold
software that they had written; the resulting (legal) battle ended in there being two
versions of Unix in the Seventies : the official AT&T Unix, and the free BSD Unix.

In the Eighties many companies started developing their own Unix: IBM created
AIX, Sun SunOS (later Solaris), HP HP-UX and about a dozen other companies did
the same. The result was a mess of Unix dialects and a dozen different ways to do the
same thing. And here is the first real root of Linux, when Richard Stallman aimed
to end this era of Unix separation and everybody re-inventing the wheel by starting
the GNU project (GNU is Not Unix). His goal was to make an operating system that
was freely available to everyone, and where everyone could work together (like in the
Seventies). Many of the command line tools that you use today on Linux or Solaris
are GNU tools.

The Nineties started with Linus Torvalds, a Swedish speaking Finnish student,
buying a 386 computer and writing a brand new POSIX compliant kernel. He put
the source code online, thinking it would never support anything but 386 hardware.
Many people embraced the combination of this kernel with the GNU tools, and the
rest, as they say, is history.

Today more than 90 percent of supercomputers (including the complete top 10), more
than half of all smartphones, many millions of desktop computers, around 70 percent
of all web servers, a large chunk of tablet computers, and several appliances (dvd-
players, washing machines, dsl modems, routers, ...) run Linux. It is by far the most
commonly used operating system in the world.

Linux kernel version 3.2 was released in January 2012. Its source code grew by almost
two hundred thousand lines (compared to version 3.1) thanks to contributions of over
4000 developers paid by about 200 commercial companies including Red Hat, Intel,
Broadcom, Texas Instruments, IBM, Novell, Qualcomm, Samsung, Nokia, Oracle,
Google and even Microsoft.

http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Linus_Torvalds
http://kernel.org
http://lwn.net/Articles/472852/
http://www.linuxfoundation.org/
http://en.wikipedia.org/wiki/Linux
http://www.levenez.com/unix/ (a huge Unix history poster)

(c) ketabton.com: The Digital Library

4

Chapter 2. distributions

Table of Contents
2.1. Red Hat .. 5
2.2. Ubuntu .. 5
2.3. Debian .. 5
2.4. Other .. 5
2.5. Which to choose ? ... 5

This chapter gives a short overview of current Linux distributions.

A Linux distribution is a collection of (usually open source) software on top of a
Linux kernel. A distribution (or short, distro) can bundle server software, system
management tools, documentation and many desktop applications in a central secure
software repository. A distro aims to provide a common look and feel, secure and
easy software management and often a specific operational purpose.

Let's take a look at some popular distributions.

(c) ketabton.com: The Digital Library

distributions

5

2.1. Red Hat
Red Hat is a billion dollar commercial Linux company that puts a lot of effort in
developing Linux. They have hundreds of Linux specialists and are known for their
excellent support. They give their products (Red Hat Enterprise Linux and Fedora)
away for free. While Red Hat Enterprise Linux (RHEL) is well tested before release
and supported for up to seven years after release, Fedora is a distro with faster updates
but without support.

2.2. Ubuntu
Canonical started sending out free compact discs with Ubuntu Linux in 2004 and
quickly became popular for home users (many switching from Microsoft Windows).
Canonical wants Ubuntu to be an easy to use graphical Linux desktop without need
to ever see a command line. Of course they also want to make a profit by selling
support for Ubuntu.

2.3. Debian
There is no company behind Debian. Instead there are thousands of well organised
developers that elect a Debian Project Leader every two years. Debian is seen as one
of the most stable Linux distributions. It is also the basis of every release of Ubuntu.
Debian comes in three versions: stable, testing and unstable. Every Debian release is
named after a character in the movie Toy Story.

2.4. Other
Distributions like CentOS, Oracle Enterprise Linux and Scientific Linux are based
on Red Hat Enterprise Linux and share many of the same principles, directories and
system administration techniques. Linux Mint, Edubuntu and many other *buntu
named distributions are based on Ubuntu and thus share a lot with Debian. There are
hundreds of other Linux distributions.

2.5. Which to choose ?
When you are new to Linux in 2012, go for the latest Ubuntu or Fedora. If you only
want to practice the Linux command line then install one Ubuntu server and/or one
CentOS server (without graphical interface).

redhat.com
ubuntu.com
debian.org
centos.org
distrowatch.com

(c) ketabton.com: The Digital Library

6

Chapter 3. licensing

Table of Contents
3.1. about software licenses .. 7
3.2. public domain software and freeware .. 7
3.3. Free Software or Open Source Software ... 8
3.4. GNU General Public License .. 8
3.5. using GPLv3 software ... 8
3.6. BSD license ... 9
3.7. other licenses ... 9
3.8. combination of software licenses ... 9

This chapter briefly explains the different licenses used for distributing operating
systems software.

Many thanks go to Ywein Van den Brande for writing most of this chapter.

Ywein is an attorney at law, co-author of The International FOSS Law Book and
author of Praktijkboek Informaticarecht (in Dutch).

http://ifosslawbook.org
http://www.crealaw.eu

(c) ketabton.com: The Digital Library

licensing

7

3.1. about software licenses

There are two predominant software paradigms: Free and Open Source Software
(FOSS) and proprietary software. The criteria for differentiation between these two
approaches is based on control over the software. With proprietary software, control
tends to lie more with the vendor, while with Free and Open Source Software it
tends to be more weighted towards the end user. But even though the paradigms
differ, they use the same copyright laws to reach and enforce their goals. From a
legal perspective, Free and Open Source Software can be considered as software to
which users generally receive more rights via their license agreement than they would
have with a proprietary software license, yet the underlying license mechanisms
are the same.

Legal theory states that the author of FOSS, contrary to the author of public domain
software, has in no way whatsoever given up his rights on his work. FOSS supports on
the rights of the author (the copyright) to impose FOSS license conditions. The FOSS
license conditions need to be respected by the user in the same way as proprietary
license conditions. Always check your license carefully before you use third party
software.

Examples of proprietary software are AIX from IBM, HP-UX from HP and Oracle
Database 11g. You are not authorised to install or use this software without paying a
licensing fee. You are not authorised to distribute copies and you are not authorised
to modify the closed source code.

3.2. public domain software and freeware

Software that is original in the sense that it is an intellectual creation of the
author benefits copyright protection. Non-original software does not come into
consideration for copyright protection and can, in principle, be used freely.

Public domain software is considered as software to which the author has given up all
rights and on which nobody is able to enforce any rights. This software can be used,
reproduced or executed freely, without permission or the payment of a fee. Public
domain software can in certain cases even be presented by third parties as own work,
and by modifying the original work, third parties can take certain versions of the
public domain software out of the public domain again.

Freeware is not public domain software or FOSS. It is proprietary software that you
can use without paying a license cost. However, the often strict license terms need
to be respected.

Examples of freeware are Adobe Reader, Skype and Command and Conquer:
Tiberian Sun (this game was sold as proprietary in 1999 and is since 2011 available
as freeware).

(c) ketabton.com: The Digital Library

licensing

8

3.3. Free Software or Open Source Software
Both the Free Software (translates to vrije software in Dutch and to Logiciel
Libre in French) and the Open Source Software movement largely pursue similar
goals and endorse similar software licenses. But historically, there has been some
perception of differentiation due to different emphases. Where the Free Software
movement focuses on the rights (the four freedoms) which Free Software provides to
its users, the Open Source Software movement points to its Open Source Definition
and the advantages of peer-to-peer software development.

Recently, the term free and open source software or FOSS has arisen as a neutral
alternative. A lesser-used variant is free/libre/open source software (FLOSS), which
uses libre to clarify the meaning of free as in freedom rather than as in at no charge.

Examples of free software are gcc, MySQL and gimp.

Detailed information about the four freedoms can be found here:

http://www.gnu.org/philosophy/free-sw.html

The open source definition can be found at:

http://www.opensource.org/docs/osd

The above definition is based on the Debian Free Software Guidelines available
here:

http://www.debian.org/social_contract#guidelines

3.4. GNU General Public License
More and more software is being released under the GNU GPL (in 2006 Java was
released under the GPL). This license (v2 and v3) is the main license endorsed by
the Free Software Foundation. It’s main characteristic is the copyleft principle. This
means that everyone in the chain of consecutive users, in return for the right of use
that is assigned, needs to distribute the improvements he makes to the software and his
derivative works under the same conditions to other users, if he chooses to distribute
such improvements or derivative works. In other words, software which incorporates
GNU GPL software, needs to be distributed in turn as GNU GPL software (or
compatible, see below). It is not possible to incorporate copyright protected parts of
GNU GPL software in a proprietary licensed work. The GPL has been upheld in court.

3.5. using GPLv3 software
You can use GPLv3 software almost without any conditions. If you solely run the
software you even don’t have to accept the terms of the GPLv3. However, any other
use - such as modifying or distributing the software - implies acceptance.

(c) ketabton.com: The Digital Library

licensing

9

In case you use the software internally (including over a network), you may modify
the software without being obliged to distribute your modification. You may hire
third parties to work on the software exclusively for you and under your direction and
control. But if you modify the software and use it otherwise than merely internally,
this will be considered as distribution. You must distribute your modifications under
GPLv3 (the copyleft principle). Several more obligations apply if you distribute
GPLv3 software. Check the GPLv3 license carefully.

You create output with GPLv3 software: The GPLv3 does not automatically apply
to the output.

3.6. BSD license
There are several versions of the original Berkeley Distribution License. The most
common one is the 3-clause license ("New BSD License" or "Modified BSD
License").

This is a permissive free software license. The license places minimal restrictions on
how the software can be redistributed. This is in contrast to copyleft licenses such as
the GPLv. 3 discussed above, which have a copyleft mechanism.

This difference is of less importance when you merely use the software, but kicks in
when you start redistributing verbatim copies of the software or your own modified
versions.

3.7. other licenses
FOSS or not, there are many kind of licenses on software. You should read and
understand them before using any software.

3.8. combination of software licenses
When you use several sources or wishes to redistribute your software under a different
license, you need to verify whether all licenses are compatible. Some FOSS licenses
(such as BSD) are compatible with proprietary licenses, but most are not. If you detect
a license incompatibility, you must contact the author to negotiate different license
conditions or refrain from using the incompatible software.

(c) ketabton.com: The Digital Library

10

Chapter 4. getting Linux at home

Table of Contents
4.1. download a Linux CD image ... 11
4.2. download Virtualbox ... 11
4.3. create a virtual machine ... 12
4.4. attach the CD image .. 17
4.5. install Linux ... 20

This book assumes you have access to a working Linux computer. Most companies
have one or more Linux servers, if you have already logged on to it, then you 're all
set (skip this chapter and go to the next).

Another option is to insert a Ubuntu Linux CD in a computer with (or without)
Microsoft Windows and follow the installation. Ubuntu will resize (or create)
partitions and setup a menu at boot time to choose Windows or Linux.

If you do not have access to a Linux computer at the moment, and if you are unable
or unsure about installing Linux on your computer, then this chapter proposes a third
option: installing Linux in a virtual machine.

Installation in a virtual machine (provided by Virtualbox) is easy and safe. Even
when you make mistakes and crash everything on the virtual Linux machine, then
nothing on the real computer is touched.

This chapter gives easy steps and screenshots to get a working Ubuntu server in a
Virtualbox virtual machine. The steps are very similar to installing Fedora or CentOS
or even Debian, and if you like you can also use VMWare instead of Virtualbox.

(c) ketabton.com: The Digital Library

getting Linux at home

11

4.1. download a Linux CD image
Start by downloading a Linux CD image (an .ISO file) from the distribution of your
choice from the Internet. Take care selecting the correct cpu architecture of your
computer; choose i386 if unsure. Choosing the wrong cpu type (like x86_64 when
you have an old Pentium) will almost immediately fail to boot the CD.

4.2. download Virtualbox
Step two (when the .ISO file has finished downloading) is to download Virtualbox. If
you are currently running Microsoft Windows, then download and install Virtualbox
for Windows!

(c) ketabton.com: The Digital Library

getting Linux at home

12

4.3. create a virtual machine
Now start Virtualbox. Contrary to the screenshot below, your left pane should be
empty.

Click New to create a new virtual machine. We will walk together through the wizard.
The screenshots below are taken on Mac OSX; they will be slightly different if you
are running Microsoft Windows.

(c) ketabton.com: The Digital Library

getting Linux at home

13

Name your virtual machine (and maybe select 32-bit or 64-bit).

Give the virtual machine some memory (512MB if you have 2GB or more, otherwise
select 256MB).

(c) ketabton.com: The Digital Library

getting Linux at home

14

Select to create a new disk (remember, this will be a virtual disk).

If you get the question below, choose vdi.

(c) ketabton.com: The Digital Library

getting Linux at home

15

Choose dynamically allocated (fixed size is only useful in production or on really
old, slow hardware).

Choose between 10GB and 16GB as the disk size.

(c) ketabton.com: The Digital Library

getting Linux at home

16

Click create to create the virtual disk.

Click create to create the virtual machine.

(c) ketabton.com: The Digital Library

getting Linux at home

17

4.4. attach the CD image
Before we start the virtual computer, let us take a look at some settings (click
Settings).

Do not worry if your screen looks different, just find the button named storage.

(c) ketabton.com: The Digital Library

getting Linux at home

18

Remember the .ISO file you downloaded? Connect this .ISO file to this virtual
machine by clicking on the CD icon next to Empty.

Now click on the other CD icon and attach your ISO file to this virtual CD drive.

(c) ketabton.com: The Digital Library

getting Linux at home

19

Verify that your download is accepted. If Virtualbox complains at this point, then
you probably did not finish the download of the CD (try downloading it again).

It could be useful to set the network adapter to bridge instead of NAT. Bridged usually
will connect your virtual computer to the Internet.

(c) ketabton.com: The Digital Library

getting Linux at home

20

4.5. install Linux
The virtual machine is now ready to start. When given a choice at boot, select install
and follow the instructions on the screen. When the installation is finished, you can
log on to the machine and start practising Linux!

(c) ketabton.com: The Digital Library

Part II. first steps on
the command line

(c) ketabton.com: The Digital Library

22

Chapter 5. man pages

Table of Contents
5.1. man $command .. 23
5.2. man $configfile .. 23
5.3. man $daemon ... 23
5.4. man -k (apropos) .. 23
5.5. whatis ... 23
5.6. whereis ... 24
5.7. man sections ... 24
5.8. man $section $file .. 24
5.9. man man .. 24
5.10. mandb ... 25

This chapter will explain the use of man pages (also called manual pages) on your
Unix or Linux computer.

You will learn the man command together with related commands like whereis,
whatis and mandb.

Most Unix files and commands have pretty good man pages to explain their use. Man
pages also come in handy when you are using multiple flavours of Unix or several
Linux distributions since options and parameters sometimes vary.

(c) ketabton.com: The Digital Library

man pages

23

5.1. man $command
Type man followed by a command (for which you want help) and start reading. Press
q to quit the manpage. Some man pages contain examples (near the end).

paul@laika:~$ man whois
Reformatting whois(1), please wait...

5.2. man $configfile
Most configuration files have their own manual.

paul@laika:~$ man syslog.conf
Reformatting syslog.conf(5), please wait...

5.3. man $daemon
This is also true for most daemons (background programs) on your system..

paul@laika:~$ man syslogd
Reformatting syslogd(8), please wait...

5.4. man -k (apropos)
man -k (or apropos) shows a list of man pages containing a string.

paul@laika:~$ man -k syslog
lm-syslog-setup (8) - configure laptop mode to switch syslog.conf ...
logger (1) - a shell command interface to the syslog(3) ...
syslog-facility (8) - Setup and remove LOCALx facility for sysklogd
syslog.conf (5) - syslogd(8) configuration file
syslogd (8) - Linux system logging utilities.
syslogd-listfiles (8) - list system logfiles

5.5. whatis
To see just the description of a manual page, use whatis followed by a string.

paul@u810:~$ whatis route
route (8) - show / manipulate the IP routing table

(c) ketabton.com: The Digital Library

man pages

24

5.6. whereis
The location of a manpage can be revealed with whereis.

paul@laika:~$ whereis -m whois
whois: /usr/share/man/man1/whois.1.gz

This file is directly readable by man.

paul@laika:~$ man /usr/share/man/man1/whois.1.gz

5.7. man sections
By now you will have noticed the numbers between the round brackets. man man
will explain to you that these are section numbers. Executable programs and shell
commands reside in section one.

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conventions), e.g. man(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

5.8. man $section $file
Therefor, when referring to the man page of the passwd command, you will see it
written as passwd(1); when referring to the passwd file, you will see it written as
passwd(5). The screenshot explains how to open the man page in the correct section.

[paul@RHEL52 ~]$ man passwd # opens the first manual found
[paul@RHEL52 ~]$ man 5 passwd # opens a page from section 5

5.9. man man
If you want to know more about man, then Read The Fantastic Manual (RTFM).

Unfortunately, manual pages do not have the answer to everything...

paul@laika:~$ man woman
No manual entry for woman

(c) ketabton.com: The Digital Library

man pages

25

5.10. mandb
Should you be convinced that a man page exists, but you can't access it, then try
running mandb.

root@laika:~# mandb
0 man subdirectories contained newer manual pages.
0 manual pages were added.
0 stray cats were added.
0 old database entries were purged.

(c) ketabton.com: The Digital Library

26

Chapter 6. working with directories

Table of Contents
6.1. pwd ... 27
6.2. cd .. 27
6.3. absolute and relative paths ... 28
6.4. path completion .. 29
6.5. ls ... 29
6.6. mkdir .. 31
6.7. rmdir ... 31
6.8. practice: working with directories ... 32
6.9. solution: working with directories ... 33

To explore the Linux file tree, you will need some basic tools.

This chapter is small overview of the most common commands to work with
directories : pwd, cd, ls, mkdir, rmdir. These commands are available on any Linux
(or Unix) system.

This chapter also discusses absolute and relative paths and path completion in the
bash shell.

(c) ketabton.com: The Digital Library

working with directories

27

6.1. pwd

The you are here sign can be displayed with the pwd command (Print Working
Directory). Go ahead, try it: Open a command line interface (like gnome-terminal,
konsole, xterm, or a tty) and type pwd. The tool displays your current directory.

paul@laika:~$ pwd
/home/paul

6.2. cd

You can change your current directory with the cd command (Change Directory).

paul@laika$ cd /etc
paul@laika$ pwd
/etc
paul@laika$ cd /bin
paul@laika$ pwd
/bin
paul@laika$ cd /home/paul/
paul@laika$ pwd
/home/paul

cd ~

You can pull off a trick with cd. Just typing cd without a target directory, will put
you in your home directory. Typing cd ~ has the same effect.

paul@laika$ cd /etc
paul@laika$ pwd
/etc
paul@laika$ cd
paul@laika$ pwd
/home/paul
paul@laika$ cd ~
paul@laika$ pwd
/home/paul

cd ..

To go to the parent directory (the one just above your current directory in the
directory tree), type cd .. .

paul@laika$ pwd
/usr/share/games
paul@laika$ cd ..
paul@laika$ pwd
/usr/share

To stay in the current directory, type cd . ;-) We will see useful use of the . character
representing the current directory later.

(c) ketabton.com: The Digital Library

working with directories

28

cd -

Another useful shortcut with cd is to just type cd - to go to the previous directory.

paul@laika$ pwd
/home/paul
paul@laika$ cd /etc
paul@laika$ pwd
/etc
paul@laika$ cd -
/home/paul
paul@laika$ cd -
/etc

6.3. absolute and relative paths
You should be aware of absolute and relative paths in the file tree. When you type
a path starting with a slash (/), then the root of the file tree is assumed. If you don't
start your path with a slash, then the current directory is the assumed starting point.

The screenshot below first shows the current directory /home/paul. From within this
directory, you have to type cd /home instead of cd home to go to the /home directory.

paul@laika$ pwd
/home/paul
paul@laika$ cd home
bash: cd: home: No such file or directory
paul@laika$ cd /home
paul@laika$ pwd
/home

When inside /home, you have to type cd paul instead of cd /paul to enter the
subdirectory paul of the current directory /home.

paul@laika$ pwd
/home
paul@laika$ cd /paul
bash: cd: /paul: No such file or directory
paul@laika$ cd paul
paul@laika$ pwd
/home/paul

In case your current directory is the root directory /, then both cd /home and cd
home will get you in the /home directory.

paul@laika$ pwd
/
paul@laika$ cd home
paul@laika$ pwd
/home
paul@laika$ cd /
paul@laika$ cd /home
paul@laika$ pwd
/home

This was the last screenshot with pwd statements. From now on, the current directory
will often be displayed in the prompt. Later in this book we will explain how the shell
variable $PS1 can be configured to show this.

(c) ketabton.com: The Digital Library

working with directories

29

6.4. path completion
The tab key can help you in typing a path without errors. Typing cd /et followed by
the tab key will expand the command line to cd /etc/. When typing cd /Et followed by
the tab key, nothing will happen because you typed the wrong path (upper case E).

You will need fewer key strokes when using the tab key, and you will be sure your
typed path is correct!

6.5. ls
You can list the contents of a directory with ls.

paul@pasha:~$ ls
allfiles.txt dmesg.txt httpd.conf stuff summer.txt
paul@pasha:~$

ls -a

A frequently used option with ls is -a to show all files. Showing all files means
including the hidden files. When a file name on a Unix file system starts with a dot,
it is considered a hidden file and it doesn't show up in regular file listings.

paul@pasha:~$ ls
allfiles.txt dmesg.txt httpd.conf stuff summer.txt
paul@pasha:~$ ls -a
. allfiles.txt .bash_profile dmesg.txt .lesshst stuff
.. .bash_history .bashrc httpd.conf .ssh summer.txt
paul@pasha:~$

ls -l

Many times you will be using options with ls to display the contents of the directory
in different formats or to display different parts of the directory. Typing just ls gives
you a list of files in the directory. Typing ls -l (that is a letter L, not the number 1)
gives you a long listing.

paul@pasha:~$ ls -l
total 23992
-rw-r--r-- 1 paul paul 24506857 2006-03-30 22:53 allfiles.txt
-rw-r--r-- 1 paul paul 14744 2006-09-27 11:45 dmesg.txt
-rw-r--r-- 1 paul paul 8189 2006-03-31 14:01 httpd.conf
drwxr-xr-x 2 paul paul 4096 2007-01-08 12:22 stuff
-rw-r--r-- 1 paul paul 0 2006-03-30 22:45 summer.txt

(c) ketabton.com: The Digital Library

working with directories

30

ls -lh

Another frequently used ls option is -h. It shows the numbers (file sizes) in a more
human readable format. Also shown below is some variation in the way you can give
the options to ls. We will explain the details of the output later in this book.

paul@pasha:~$ ls -l -h
total 24M
-rw-r--r-- 1 paul paul 24M 2006-03-30 22:53 allfiles.txt
-rw-r--r-- 1 paul paul 15K 2006-09-27 11:45 dmesg.txt
-rw-r--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd.conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff
-rw-r--r-- 1 paul paul 0 2006-03-30 22:45 summer.txt
paul@pasha:~$ ls -lh
total 24M
-rw-r--r-- 1 paul paul 24M 2006-03-30 22:53 allfiles.txt
-rw-r--r-- 1 paul paul 15K 2006-09-27 11:45 dmesg.txt
-rw-r--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd.conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff
-rw-r--r-- 1 paul paul 0 2006-03-30 22:45 summer.txt
paul@pasha:~$ ls -hl
total 24M
-rw-r--r-- 1 paul paul 24M 2006-03-30 22:53 allfiles.txt
-rw-r--r-- 1 paul paul 15K 2006-09-27 11:45 dmesg.txt
-rw-r--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd.conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff
-rw-r--r-- 1 paul paul 0 2006-03-30 22:45 summer.txt
paul@pasha:~$ ls -h -l
total 24M
-rw-r--r-- 1 paul paul 24M 2006-03-30 22:53 allfiles.txt
-rw-r--r-- 1 paul paul 15K 2006-09-27 11:45 dmesg.txt
-rw-r--r-- 1 paul paul 8.0K 2006-03-31 14:01 httpd.conf
drwxr-xr-x 2 paul paul 4.0K 2007-01-08 12:22 stuff
-rw-r--r-- 1 paul paul 0 2006-03-30 22:45 summer.txt

(c) ketabton.com: The Digital Library

working with directories

31

6.6. mkdir
Walking around the Unix file tree is fun, but it is even more fun to create your own
directories with mkdir. You have to give at least one parameter to mkdir, the name
of the new directory to be created. Think before you type a leading / .

paul@laika:~$ mkdir MyDir
paul@laika:~$ cd MyDir
paul@laika:~/MyDir$ ls -al
total 8
drwxr-xr-x 2 paul paul 4096 2007-01-10 21:13 .
drwxr-xr-x 39 paul paul 4096 2007-01-10 21:13 ..
paul@laika:~/MyDir$ mkdir stuff
paul@laika:~/MyDir$ mkdir otherstuff
paul@laika:~/MyDir$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 2007-01-10 21:14 otherstuff
drwxr-xr-x 2 paul paul 4096 2007-01-10 21:14 stuff
paul@laika:~/MyDir$

mkdir -p

When given the option -p, then mkdir will create parent directories as needed.

paul@laika:~$ mkdir -p MyDir2/MySubdir2/ThreeDeep
paul@laika:~$ ls MyDir2
MySubdir2
paul@laika:~$ ls MyDir2/MySubdir2
ThreeDeep
paul@laika:~$ ls MyDir2/MySubdir2/ThreeDeep/

6.7. rmdir
When a directory is empty, you can use rmdir to remove the directory.

paul@laika:~/MyDir$ rmdir otherstuff
paul@laika:~/MyDir$ ls
stuff
paul@laika:~/MyDir$ cd ..
paul@laika:~$ rmdir MyDir
rmdir: MyDir/: Directory not empty
paul@laika:~$ rmdir MyDir/stuff
paul@laika:~$ rmdir MyDir

rmdir -p

And similar to the mkdir -p option, you can also use rmdir to recursively remove
directories.

paul@laika:~$ mkdir -p dir/subdir/subdir2
paul@laika:~$ rmdir -p dir/subdir/subdir2
paul@laika:~$

(c) ketabton.com: The Digital Library

working with directories

32

6.8. practice: working with directories
1. Display your current directory.

2. Change to the /etc directory.

3. Now change to your home directory using only three key presses.

4. Change to the /boot/grub directory using only eleven key presses.

5. Go to the parent directory of the current directory.

6. Go to the root directory.

7. List the contents of the root directory.

8. List a long listing of the root directory.

9. Stay where you are, and list the contents of /etc.

10. Stay where you are, and list the contents of /bin and /sbin.

11. Stay where you are, and list the contents of ~.

12. List all the files (including hidden files) in your home directory.

13. List the files in /boot in a human readable format.

14. Create a directory testdir in your home directory.

15. Change to the /etc directory, stay here and create a directory newdir in your home
directory.

16. Create in one command the directories ~/dir1/dir2/dir3 (dir3 is a subdirectory
from dir2, and dir2 is a subdirectory from dir1).

17. Remove the directory testdir.

18. If time permits (or if you are waiting for other students to finish this practice),
use and understand pushd and popd. Use the man page of bash to find information
about these commands.

(c) ketabton.com: The Digital Library

working with directories

33

6.9. solution: working with directories
1. Display your current directory.

pwd

2. Change to the /etc directory.

cd /etc

3. Now change to your home directory using only three key presses.

cd (and the enter key)

4. Change to the /boot/grub directory using only eleven key presses.

cd /boot/grub (use the tab key)

5. Go to the parent directory of the current directory.

cd .. (with space between cd and ..)

6. Go to the root directory.

cd /

7. List the contents of the root directory.

ls

8. List a long listing of the root directory.

ls -l

9. Stay where you are, and list the contents of /etc.

ls /etc

10. Stay where you are, and list the contents of /bin and /sbin.

ls /bin /sbin

11. Stay where you are, and list the contents of ~.

ls ~

12. List all the files (including hidden files) in your home directory.

ls -al ~

13. List the files in /boot in a human readable format.

ls -lh /boot

14. Create a directory testdir in your home directory.

mkdir ~/testdir

15. Change to the /etc directory, stay here and create a directory newdir in your home
directory.

(c) ketabton.com: The Digital Library

working with directories

34

cd /etc ; mkdir ~/newdir

16. Create in one command the directories ~/dir1/dir2/dir3 (dir3 is a subdirectory
from dir2, and dir2 is a subdirectory from dir1).

mkdir -p ~/dir1/dir2/dir3

17. Remove the directory testdir.

rmdir testdir

18. If time permits (or if you are waiting for other students to finish this practice),
use and understand pushd and popd. Use the man page of bash to find information
about these commands.

man bash

The Bash shell has two built-in commands called pushd and popd. Both commands
work with a common stack of previous directories. Pushd adds a directory to the stack
and changes to a new current directory, popd removes a directory from the stack and
sets the current directory.

paul@laika:/etc$ cd /bin
paul@laika:/bin$ pushd /lib
/lib /bin
paul@laika:/lib$ pushd /proc
/proc /lib /bin
paul@laika:/proc$
paul@laika:/proc$ popd
/lib /bin
paul@laika:/lib$
paul@laika:/lib$
paul@laika:/lib$ popd
/bin
paul@laika:/bin$

(c) ketabton.com: The Digital Library

35

Chapter 7. working with files

Table of Contents
7.1. all files are case sensitive .. 36
7.2. everything is a file ... 36
7.3. file .. 36
7.4. touch ... 37
7.5. rm ... 37
7.6. cp .. 38
7.7. mv .. 39
7.8. rename .. 40
7.9. practice: working with files ... 41
7.10. solution: working with files ... 42

In this chapter we learn how to recognise, create, remove, copy and move files using
commands like file, touch, rm, cp, mv and rename.

(c) ketabton.com: The Digital Library

working with files

36

7.1. all files are case sensitive

Linux is case sensitive, this means that FILE1 is different from file1, and /etc/hosts
is different from /etc/Hosts (the latter one does not exist on a typical Linux computer).

This screenshot shows the difference between two files, one with upper case W, the
other with lower case w.

paul@laika:~/Linux$ ls
winter.txt Winter.txt
paul@laika:~/Linux$ cat winter.txt
It is cold.
paul@laika:~/Linux$ cat Winter.txt
It is very cold!

7.2. everything is a file

A directory is a special kind of file, but it is still a (case sensitive!) file. Even a
terminal window (/dev/pts/4) or a hard disk (/dev/sdb) is represented somewhere in
the file system as a file. It will become clear throughout this course that everything
on Linux is a file.

7.3. file

The file utility determines the file type. Linux does not use extensions to determine
the file type. Your editor does not care whether a file ends in .TXT or .DOC. As a
system administrator, you should use the file command to determine the file type.
Here are some examples on a typical Linux system.

paul@laika:~$ file pic33.png
pic33.png: PNG image data, 3840 x 1200, 8-bit/color RGBA, non-interlaced
paul@laika:~$ file /etc/passwd
/etc/passwd: ASCII text
paul@laika:~$ file HelloWorld.c
HelloWorld.c: ASCII C program text

The file command uses a magic file that contains patterns to recognise file types.
The magic file is located in /usr/share/file/magic. Type man 5 magic for more
information.

It is interesting to point out file -s for special files like those in /dev and /proc.

root@debian6~# file /dev/sda
/dev/sda: block special
root@debian6~# file -s /dev/sda
/dev/sda: x86 boot sector; partition 1: ID=0x83, active, starthead...
root@debian6~# file /proc/cpuinfo
/proc/cpuinfo: empty
root@debian6~# file -s /proc/cpuinfo
/proc/cpuinfo: ASCII C++ program text

(c) ketabton.com: The Digital Library

working with files

37

7.4. touch
One easy way to create a file is with touch. (We will see many other ways for creating
files later in this book.)

paul@laika:~/test$ touch file1
paul@laika:~/test$ touch file2
paul@laika:~/test$ touch file555
paul@laika:~/test$ ls -l
total 0
-rw-r--r-- 1 paul paul 0 2007-01-10 21:40 file1
-rw-r--r-- 1 paul paul 0 2007-01-10 21:40 file2
-rw-r--r-- 1 paul paul 0 2007-01-10 21:40 file555

touch -t

Of course, touch can do more than just create files. Can you determine what by
looking at the next screenshot? If not, check the manual for touch.

paul@laika:~/test$ touch -t 200505050000 SinkoDeMayo
paul@laika:~/test$ touch -t 130207111630 BigBattle
paul@laika:~/test$ ls -l
total 0
-rw-r--r-- 1 paul paul 0 1302-07-11 16:30 BigBattle
-rw-r--r-- 1 paul paul 0 2005-05-05 00:00 SinkoDeMayo

7.5. rm
When you no longer need a file, use rm to remove it. Unlike some graphical user
interfaces, the command line in general does not have a waste bin or trash can to
recover files. When you use rm to remove a file, the file is gone. Therefore, be careful
when removing files!

paul@laika:~/test$ ls
BigBattle SinkoDeMayo
paul@laika:~/test$ rm BigBattle
paul@laika:~/test$ ls
SinkoDeMayo

rm -i

To prevent yourself from accidentally removing a file, you can type rm -i.

paul@laika:~/Linux$ touch brel.txt
paul@laika:~/Linux$ rm -i brel.txt
rm: remove regular empty file `brel.txt'? y
paul@laika:~/Linux$

(c) ketabton.com: The Digital Library

working with files

38

rm -rf

By default, rm -r will not remove non-empty directories. However rm accepts several
options that will allow you to remove any directory. The rm -rf statement is famous
because it will erase anything (providing that you have the permissions to do so).
When you are logged on as root, be very careful with rm -rf (the f means force and
the r means recursive) since being root implies that permissions don't apply to you.
You can literally erase your entire file system by accident.

paul@laika:~$ ls test
SinkoDeMayo
paul@laika:~$ rm test
rm: cannot remove `test': Is a directory
paul@laika:~$ rm -rf test
paul@laika:~$ ls test
ls: test: No such file or directory

7.6. cp

To copy a file, use cp with a source and a target argument. If the target is a directory,
then the source files are copied to that target directory.

paul@laika:~/test$ touch FileA
paul@laika:~/test$ ls
FileA
paul@laika:~/test$ cp FileA FileB
paul@laika:~/test$ ls
FileA FileB
paul@laika:~/test$ mkdir MyDir
paul@laika:~/test$ ls
FileA FileB MyDir
paul@laika:~/test$ cp FileA MyDir/
paul@laika:~/test$ ls MyDir/
FileA

cp -r

To copy complete directories, use cp -r (the -r option forces recursive copying of
all files in all subdirectories).

paul@laika:~/test$ ls
FileA FileB MyDir
paul@laika:~/test$ ls MyDir/
FileA
paul@laika:~/test$ cp -r MyDir MyDirB
paul@laika:~/test$ ls
FileA FileB MyDir MyDirB
paul@laika:~/test$ ls MyDirB
FileA

(c) ketabton.com: The Digital Library

working with files

39

cp multiple files to directory

You can also use cp to copy multiple files into a directory. In this case, the last
argument (a.k.a. the target) must be a directory.

cp file1 file2 dir1/file3 dir1/file55 dir2

cp -i

To prevent cp from overwriting existing files, use the -i (for interactive) option.

paul@laika:~/test$ cp fire water
paul@laika:~/test$ cp -i fire water
cp: overwrite `water'? no
paul@laika:~/test$

cp -p

To preserve permissions and time stamps from source files, use cp -p.

paul@laika:~/perms$ cp file* cp
paul@laika:~/perms$ cp -p file* cpp
paul@laika:~/perms$ ll *
-rwx------ 1 paul paul 0 2008-08-25 13:26 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:26 file42

cp:
total 0
-rwx------ 1 paul paul 0 2008-08-25 13:34 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:34 file42

cpp:
total 0
-rwx------ 1 paul paul 0 2008-08-25 13:26 file33
-rwxr-x--- 1 paul paul 0 2008-08-25 13:26 file42

7.7. mv
Use mv to rename a file or to move the file to another directory.

paul@laika:~/test$ touch file100
paul@laika:~/test$ ls
file100
paul@laika:~/test$ mv file100 ABC.txt
paul@laika:~/test$ ls
ABC.txt
paul@laika:~/test$

When you need to rename only one file then mv is the preferred command to use.

(c) ketabton.com: The Digital Library

working with files

40

7.8. rename
The rename command can also be used but it has a more complex syntax to enable
renaming of many files at once. Below are two examples, the first switches all
occurrences of txt to png for all file names ending in .txt. The second example
switches all occurrences of upper case ABC in lower case abc for all file names ending
in .png . The following syntax will work on debian and ubuntu (prior to Ubuntu 7.10).

paul@laika:~/test$ ls
123.txt ABC.txt
paul@laika:~/test$ rename 's/txt/png/' *.txt
paul@laika:~/test$ ls
123.png ABC.png
paul@laika:~/test$ rename 's/ABC/abc/' *.png
paul@laika:~/test$ ls
123.png abc.png
paul@laika:~/test$

On Red Hat Enterprise Linux (and many other Linux distributions like Ubuntu 8.04),
the syntax of rename is a bit different. The first example below renames all *.conf
files replacing any occurrence of conf with bak. The second example renames all (*)
files replacing one with ONE.

[paul@RHEL4a test]$ ls
one.conf two.conf
[paul@RHEL4a test]$ rename conf bak *.conf
[paul@RHEL4a test]$ ls
one.bak two.bak
[paul@RHEL4a test]$ rename one ONE *
[paul@RHEL4a test]$ ls
ONE.bak two.bak
[paul@RHEL4a test]$

(c) ketabton.com: The Digital Library

working with files

41

7.9. practice: working with files
1. List the files in the /bin directory

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://
linux-training.be/files/studentfiles/wolf.jpg and wget http://linux-training.be/files/
books/LinuxFun.pdf)

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

3c. Rename wolf.jpg to wolf.pdf (use mv).

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

4. Create a directory ~/touched and enter it.

5. Create the files today.txt and yesterday.txt in touched.

6. Change the date on yesterday.txt to match yesterday's date.

7. Copy yesterday.txt to copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.

10. Use one command to remove the directory ~/testbackup and all files into it.

11. Create a directory ~/etcbackup and copy all *.conf files from /etc into it. Did you
include all subdirectories of /etc ?

12. Use rename to rename all *.conf files to *.backup . (if you have more than one
distro available, try it on all!)

(c) ketabton.com: The Digital Library

working with files

42

7.10. solution: working with files
1. List the files in the /bin directory

ls /bin

2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.

file /bin/cat /etc/passwd /usr/bin/passwd

3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://
linux-training.be/files/studentfiles/wolf.jpg and wget http://linux-training.be/files/
books/LinuxFun.pdf)

wget http://linux-training.be/files/studentfiles/wolf.jpg
wget http://linux-training.be/files/studentfiles/wolf.png
wget http://linux-training.be/files/books/LinuxFun.pdf

3b. Display the type of file of wolf.jpg and LinuxFun.pdf

file wolf.jpg LinuxFun.pdf

3c. Rename wolf.jpg to wolf.pdf (use mv).

mv wolf.jpg wolf.pdf

3d. Display the type of file of wolf.pdf and LinuxFun.pdf.

file wolf.pdf LinuxFun.pdf

4. Create a directory ~/touched and enter it.

mkdir ~/touched ; cd ~/touched

5. Create the files today.txt and yesterday.txt in touched.

touch today.txt yesterday.txt

6. Change the date on yesterday.txt to match yesterday's date.

touch -t 200810251405 yesterday.txt (substitute 20081025 with yesterday)

7. Copy yesterday.txt to copy.yesterday.txt

cp yesterday.txt copy.yesterday.txt

8. Rename copy.yesterday.txt to kim

mv copy.yesterday.txt kim

9. Create a directory called ~/testbackup and copy all files from ~/touched into it.

mkdir ~/testbackup ; cp -r ~/touched ~/testbackup/

10. Use one command to remove the directory ~/testbackup and all files into it.

rm -rf ~/testbackup

11. Create a directory ~/etcbackup and copy all *.conf files from /etc into it. Did you
include all subdirectories of /etc ?

(c) ketabton.com: The Digital Library

working with files

43

cp -r /etc/*.conf ~/etcbackup

Only *.conf files that are directly in /etc/ are copied.

12. Use rename to rename all *.conf files to *.backup . (if you have more than one
distro available, try it on all!)

On RHEL: touch 1.conf 2.conf ; rename conf backup *.conf

On Debian: touch 1.conf 2.conf ; rename 's/conf/backup/' *.conf

(c) ketabton.com: The Digital Library

44

Chapter 8. working with file contents

Table of Contents
8.1. head .. 45
8.2. tail .. 45
8.3. cat ... 46
8.4. tac ... 47
8.5. more and less ... 48
8.6. strings ... 48
8.7. practice: file contents ... 49
8.8. solution: file contents ... 50

In this chapter we will look at the contents of text files with head, tail, cat, tac, more,
less and strings.

We will also get a glimpse of the possibilities of tools like cat on the command line.

(c) ketabton.com: The Digital Library

working with file contents

45

8.1. head

You can use head to display the first ten lines of a file.

paul@laika:~$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
paul@laika:~$

The head command can also display the first n lines of a file.

paul@laika:~$ head -4 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh

Head can also display the first n bytes.

paul@laika:~$ head -c4 /etc/passwd
rootpaul@laika:~$

8.2. tail

Similar to head, the tail command will display the last ten lines of a file.

paul@laika:~$ tail /etc/services
vboxd 20012/udp
binkp 24554/tcp # binkp fidonet protocol
asp 27374/tcp # Address Search Protocol
asp 27374/udp
csync2 30865/tcp # cluster synchronization tool
dircproxy 57000/tcp # Detachable IRC Proxy
tfido 60177/tcp # fidonet EMSI over telnet
fido 60179/tcp # fidonet EMSI over TCP

Local services
paul@laika:~$

You can give tail the number of lines you want to see.

$ tail -3 count.txt
six
seven
eight

The tail command has other useful options, some of which we will use during this
course.

(c) ketabton.com: The Digital Library

working with file contents

46

8.3. cat
The cat command is one of the most universal tools. All it does is copy standard
input to standard output. In combination with the shell this can be very powerful and
diverse. Some examples will give a glimpse into the possibilities. The first example
is simple, you can use cat to display a file on the screen. If the file is longer than the
screen, it will scroll to the end.

paul@laika:~$ cat /etc/resolv.conf
nameserver 194.7.1.4
paul@laika:~$

concatenate

cat is short for concatenate. One of the basic uses of cat is to concatenate files into
a bigger (or complete) file.

paul@laika:~$ echo one > part1
paul@laika:~$ echo two > part2
paul@laika:~$ echo three > part3
paul@laika:~$ cat part1 part2 part3
one
two
three
paul@laika:~$

create files

You can use cat to create flat text files. Type the cat > winter.txt command as shown
in the screenshot below. Then type one or more lines, finishing each line with the
enter key. After the last line, type and hold the Control (Ctrl) key and press d.

paul@laika:~/test$ cat > winter.txt
It is very cold today!
paul@laika:~/test$ cat winter.txt
It is very cold today!
paul@laika:~/test$

The Ctrl d key combination will send an EOF (End of File) to the running process
ending the cat command.

(c) ketabton.com: The Digital Library

working with file contents

47

custom end marker

You can choose an end marker for cat with << as is shown in this screenshot. This
construction is called a here directive and will end the cat command.

paul@laika:~/test$ cat > hot.txt <<stop
> It is hot today!
> Yes it is summer.
> stop
paul@laika:~/test$ cat hot.txt
It is hot today!
Yes it is summer.
paul@laika:~/test$

copy files

In the third example you will see that cat can be used to copy files. We will explain
in detail what happens here in the bash shell chapter.

paul@laika:~/test$ cat winter.txt
It is very cold today!
paul@laika:~/test$ cat winter.txt > cold.txt
paul@laika:~/test$ cat cold.txt
It is very cold today!
paul@laika:~/test$

8.4. tac
Just one example will show you the purpose of tac (as the opposite of cat).

paul@laika:~/test$ cat count
one
two
three
four
paul@laika:~/test$ tac count
four
three
two
one
paul@laika:~/test$

(c) ketabton.com: The Digital Library

working with file contents

48

8.5. more and less
The more command is useful for displaying files that take up more than one screen.
More will allow you to see the contents of the file page by page. Use the space bar to
see the next page, or q to quit. Some people prefer the less command to more.

8.6. strings
With the strings command you can display readable ascii strings found in (binary)
files. This example locates the ls binary then displays readable strings in the binary
file (output is truncated).

paul@laika:~$ which ls
/bin/ls
paul@laika:~$ strings /bin/ls
/lib/ld-linux.so.2
librt.so.1
__gmon_start__
_Jv_RegisterClasses
clock_gettime
libacl.so.1
...

(c) ketabton.com: The Digital Library

working with file contents

49

8.7. practice: file contents
1. Display the first 12 lines of /etc/services.

2. Display the last line of /etc/passwd.

3. Use cat to create a file named count.txt that looks like this:

One
Two
Three
Four
Five

4. Use cp to make a backup of this file to cnt.txt.

5. Use cat to make a backup of this file to catcnt.txt.

6. Display catcnt.txt, but with all lines in reverse order (the last line first).

7. Use more to display /var/log/messages.

8. Display the readable character strings from the /usr/bin/passwd command.

9. Use ls to find the biggest file in /etc.

10. Open two terminal windows (or tabs) and make sure you are in the same directory
in both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line >> tailing.txt (note the double >>), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctrl-C.

11. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

12. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

(c) ketabton.com: The Digital Library

working with file contents

50

8.8. solution: file contents
1. Display the first 12 lines of /etc/services.

head -12 /etc/services

2. Display the last line of /etc/passwd.

tail -1 /etc/passwd

3. Use cat to create a file named count.txt that looks like this:

cat > count.txt
One
Two
Three
Four
Five (followed by Ctrl-d)

4. Use cp to make a backup of this file to cnt.txt.

cp count.txt cnt.txt

5. Use cat to make a backup of this file to catcnt.txt.

cat count.txt > catcnt.txt

6. Display catcnt.txt, but with all lines in reverse order (the last line first).

tac catcnt.txt

7. Use more to display /var/log/messages.

more /var/log/messages

8. Display the readable character strings from the /usr/bin/passwd command.

strings /usr/bin/passwd

9. Use ls to find the biggest file in /etc.

ls -lrS /etc

10. Open two terminal windows (or tabs) and make sure you are in the same directory
in both. Type echo this is the first line > tailing.txt in the first terminal, then issue
tail -f tailing.txt in the second terminal. Now go back to the first terminal and type
echo This is another line >> tailing.txt (note the double >>), verify that the tail -f
in the second terminal shows both lines. Stop the tail -f with Ctrl-C.

11. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
followed by the contents of /etc/passwd.

cat /etc/passwd >> tailing.txt

12. Use cat to create a file named tailing.txt that contains the contents of tailing.txt
preceded by the contents of /etc/passwd.

mv tailing.txt tmp.txt ; cat /etc/passwd tmp.txt > tailing.txt

(c) ketabton.com: The Digital Library

51

Chapter 9. the Linux file tree

Table of Contents
9.1. filesystem hierarchy standard .. 52
9.2. man hier ... 52
9.3. the root directory / ... 52
9.4. binary directories ... 53
9.5. configuration directories .. 55
9.6. data directories ... 57
9.7. in memory directories .. 59
9.8. /usr Unix System Resources .. 64
9.9. /var variable data .. 66
9.10. practice: file system tree .. 68
9.11. solution: file system tree .. 70

This chapter takes a look at the most common directories in the Linux file tree. It
also shows that on Unix everything is a file.

(c) ketabton.com: The Digital Library

the Linux file tree

52

9.1. filesystem hierarchy standard
Many Linux distributions partially follow the Filesystem Hierarchy Standard. The
FHS may help make more Unix/Linux file system trees conform better in the future.
The FHS is available online at http://www.pathname.com/fhs/ where we read: "The
filesystem hierarchy standard has been designed to be used by Unix distribution
developers, package developers, and system implementers. However, it is primarily
intended to be a reference and is not a tutorial on how to manage a Unix filesystem
or directory hierarchy."

9.2. man hier
There are some differences in the filesystems between Linux distributions. For
help about your machine, enter man hier to find information about the file system
hierarchy. This manual will explain the directory structure on your computer.

9.3. the root directory /
All Linux systems have a directory structure that starts at the root directory. The
root directory is represented by a forward slash, like this: /. Everything that exists
on your Linux system can be found below this root directory. Let's take a brief look
at the contents of the root directory.

[paul@RHELv4u3 ~]$ ls /
bin dev home media mnt proc sbin srv tftpboot usr
boot etc lib misc opt root selinux sys tmp var

(c) ketabton.com: The Digital Library

the Linux file tree

53

9.4. binary directories
Binaries are files that contain compiled source code (or machine code). Binaries can
be executed on the computer. Sometimes binaries are called executables.

/bin

The /bin directory contains binaries for use by all users. According to the FHS the /
bin directory should contain /bin/cat and /bin/date (among others).

In the screenshot below you see common Unix/Linux commands like cat, cp, cpio,
date, dd, echo, grep, and so on. Many of these will be covered in this book.

paul@laika:~$ ls /bin
archdetect egrep mt setupcon
autopartition false mt-gnu sh
bash fgconsole mv sh.distrib
bunzip2 fgrep nano sleep
bzcat fuser nc stralign
bzcmp fusermount nc.traditional stty
bzdiff get_mountoptions netcat su
bzegrep grep netstat sync
bzexe gunzip ntfs-3g sysfs
bzfgrep gzexe ntfs-3g.probe tailf
bzgrep gzip parted_devices tar
bzip2 hostname parted_server tempfile
bzip2recover hw-detect partman touch
bzless ip partman-commit true
bzmore kbd_mode perform_recipe ulockmgr
cat kill pidof umount
...

other /bin directories

You can find a /bin subdirectory in many other directories. A user named serena
could put her own programs in /home/serena/bin.

Some applications, often when installed directly from source will put themselves in
/opt. A samba server installation can use /opt/samba/bin to store its binaries.

/sbin

/sbin contains binaries to configure the operating system. Many of the system
binaries require root privilege to perform certain tasks.

Below a screenshot containing system binaries to change the ip address, partition a
disk and create an ext4 file system.

paul@ubu1010:~$ ls -l /sbin/ifconfig /sbin/fdisk /sbin/mkfs.ext4
-rwxr-xr-x 1 root root 97172 2011-02-02 09:56 /sbin/fdisk
-rwxr-xr-x 1 root root 65708 2010-07-02 09:27 /sbin/ifconfig
-rwxr-xr-x 5 root root 55140 2010-08-18 18:01 /sbin/mkfs.ext4

(c) ketabton.com: The Digital Library

the Linux file tree

54

/lib

Binaries found in /bin and /sbin often use shared libraries located in /lib. Below is
a screenshot of the partial contents of /lib.

paul@laika:~$ ls /lib/libc*
/lib/libc-2.5.so /lib/libcfont.so.0.0.0 /lib/libcom_err.so.2.1
/lib/libcap.so.1 /lib/libcidn-2.5.so /lib/libconsole.so.0
/lib/libcap.so.1.10 /lib/libcidn.so.1 /lib/libconsole.so.0.0.0
/lib/libcfont.so.0 /lib/libcom_err.so.2 /lib/libcrypt-2.5.so

/lib/modules

Typically, the Linux kernel loads kernel modules from /lib/modules/$kernel-
version/. This directory is discussed in detail in the Linux kernel chapter.

/lib32 and /lib64

We currently are in a transition between 32-bit and 64-bit systems. Therefore, you
may encounter directories named /lib32 and /lib64 which clarify the register size used
during compilation time of the libraries. A 64-bit computer may have some 32-bit
binaries and libraries for compatibility with legacy applications. This screenshot uses
the file utility to demonstrate the difference.

paul@laika:~$ file /lib32/libc-2.5.so
/lib32/libc-2.5.so: ELF 32-bit LSB shared object, Intel 80386, \
version 1 (SYSV), for GNU/Linux 2.6.0, stripped
paul@laika:~$ file /lib64/libcap.so.1.10
/lib64/libcap.so.1.10: ELF 64-bit LSB shared object, AMD x86-64, \
version 1 (SYSV), stripped

The ELF (Executable and Linkable Format) is used in almost every Unix-like
operating system since System V.

/opt

The purpose of /opt is to store optional software. In many cases this is software from
outside the distribution repository. You may find an empty /opt directory on many
systems.

A large package can install all its files in /bin, /lib, /etc subdirectories within /opt/
$packagename/. If for example the package is called wp, then it installs in /opt/wp,
putting binaries in /opt/wp/bin and manpages in /opt/wp/man.

(c) ketabton.com: The Digital Library

the Linux file tree

55

9.5. configuration directories

/boot

The /boot directory contains all files needed to boot the computer. These files don't
change very often. On Linux systems you typically find the /boot/grub directory
here. /boot/grub contains /boot/grub/grub.cfg (older systems may still have /boot/
grub/grub.conf) which defines the boot menu that is displayed before the kernel
starts.

/etc

All of the machine-specific configuration files should be located in /etc. Historically
/etc stood for etcetera, today people often use the Editable Text Configuration
backronym.

Many times the name of a configuration files is the same as the application, daemon,
or protocol with .conf added as the extension.

paul@laika:~$ ls /etc/*.conf
/etc/adduser.conf /etc/ld.so.conf /etc/scrollkeeper.conf
/etc/brltty.conf /etc/lftp.conf /etc/sysctl.conf
/etc/ccertificates.conf /etc/libao.conf /etc/syslog.conf
/etc/cvs-cron.conf /etc/logrotate.conf /etc/ucf.conf
/etc/ddclient.conf /etc/ltrace.conf /etc/uniconf.conf
/etc/debconf.conf /etc/mke2fs.conf /etc/updatedb.conf
/etc/deluser.conf /etc/netscsid.conf /etc/usplash.conf
/etc/fdmount.conf /etc/nsswitch.conf /etc/uswsusp.conf
/etc/hdparm.conf /etc/pam.conf /etc/vnc.conf
/etc/host.conf /etc/pnm2ppa.conf /etc/wodim.conf
/etc/inetd.conf /etc/povray.conf /etc/wvdial.conf
/etc/kernel-img.conf /etc/resolv.conf
paul@laika:~$

There is much more to be found in /etc.

/etc/init.d/

A lot of Unix/Linux distributions have an /etc/init.d directory that contains scripts to
start and stop daemons. This directory could disappear as Linux migrates to systems
that replace the old init way of starting all daemons.

/etc/X11/

The graphical display (aka X Window System or just X) is driven by software from
the X.org foundation. The configuration file for your graphical display is /etc/X11/
xorg.conf.

(c) ketabton.com: The Digital Library

the Linux file tree

56

/etc/skel/

The skeleton directory /etc/skel is copied to the home directory of a newly created
user. It usually contains hidden files like a .bashrc script.

/etc/sysconfig/

This directory, which is not mentioned in the FHS, contains a lot of Red Hat
Enterprise Linux configuration files. We will discuss some of them in greater
detail. The screenshot below is the /etc/sysconfig directory from RHELv4u4 with
everything installed.

paul@RHELv4u4:~$ ls /etc/sysconfig/
apmd firstboot irda network saslauthd
apm-scripts grub irqbalance networking selinux
authconfig hidd keyboard ntpd spamassassin
autofs httpd kudzu openib.conf squid
bluetooth hwconf lm_sensors pand syslog
clock i18n mouse pcmcia sys-config-sec
console init mouse.B pgsql sys-config-users
crond installinfo named prelink sys-logviewer
desktop ipmi netdump rawdevices tux
diskdump iptables netdump_id_dsa rhn vncservers
dund iptables-cfg netdump_id_dsa.p samba xinetd
paul@RHELv4u4:~$

The file /etc/sysconfig/firstboot tells the Red Hat Setup Agent not to run at boot time.
If you want to run the Red Hat Setup Agent at the next reboot, then simply remove
this file, and run chkconfig --level 5 firstboot on. The Red Hat Setup Agent allows
you to install the latest updates, create a user account, join the Red Hat Network and
more. It will then create the /etc/sysconfig/firstboot file again.

paul@RHELv4u4:~$ cat /etc/sysconfig/firstboot
RUN_FIRSTBOOT=NO

The /etc/sysconfig/harddisks file contains some parameters to tune the hard disks.
The file explains itself.

You can see hardware detected by kudzu in /etc/sysconfig/hwconf. Kudzu is
software from Red Hat for automatic discovery and configuration of hardware.

The keyboard type and keymap table are set in the /etc/sysconfig/keyboard file.
For more console keyboard information, check the manual pages of keymaps(5),
dumpkeys(1), loadkeys(1) and the directory /lib/kbd/keymaps/.

root@RHELv4u4:/etc/sysconfig# cat keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"

We will discuss networking files in this directory in the networking chapter.

(c) ketabton.com: The Digital Library

the Linux file tree

57

9.6. data directories

/home

Users can store personal or project data under /home. It is common (but not
mandatory by the fhs) practice to name the users home directory after the user name
in the format /home/$USERNAME. For example:

paul@ubu606:~$ ls /home
geert annik sandra paul tom

Besides giving every user (or every project or group) a location to store personal files,
the home directory of a user also serves as a location to store the user profile. A typical
Unix user profile contains many hidden files (files whose file name starts with a dot).
The hidden files of the Unix user profiles contain settings specific for that user.

paul@ubu606:~$ ls -d /home/paul/.*
/home/paul/. /home/paul/.bash_profile /home/paul/.ssh
/home/paul/.. /home/paul/.bashrc /home/paul/.viminfo
/home/paul/.bash_history /home/paul/.lesshst

/root

On many systems /root is the default location for personal data and profile of the
root user. If it does not exist by default, then some administrators create it.

/srv

You may use /srv for data that is served by your system. The FHS allows locating
cvs, rsync, ftp and www data in this location. The FHS also approves administrative
naming in /srv, like /srv/project55/ftp and /srv/sales/www.

On Sun Solaris (or Oracle Solaris) /export is used for this purpose.

/media

The /media directory serves as a mount point for removable media devices such as
CD-ROM's, digital cameras, and various usb-attached devices. Since /media is rather
new in the Unix world, you could very well encounter systems running without this
directory. Solaris 9 does not have it, Solaris 10 does. Most Linux distributions today
mount all removable media in /media.

paul@debian5:~$ ls /media/
cdrom cdrom0 usbdisk

(c) ketabton.com: The Digital Library

the Linux file tree

58

/mnt

The /mnt directory should be empty and should only be used for temporary mount
points (according to the FHS).

Unix and Linux administrators used to create many directories here, like /mnt/
something/. You likely will encounter many systems with more than one directory
created and/or mounted inside /mnt to be used for various local and remote
filesystems.

/tmp

Applications and users should use /tmp to store temporary data when needed. Data
stored in /tmp may use either disk space or RAM. Both of which are managed by
the operating system. Never use /tmp to store data that is important or which you
wish to archive.

(c) ketabton.com: The Digital Library

the Linux file tree

59

9.7. in memory directories

/dev

Device files in /dev appear to be ordinary files, but are not actually located on the hard
disk. The /dev directory is populated with files as the kernel is recognising hardware.

common physical devices

Common hardware such as hard disk devices are represented by device files in /dev.
Below a screenshot of SATA device files on a laptop and then IDE attached drives
on a desktop. (The detailed meaning of these devices will be discussed later.)

#
SATA or SCSI or USB
#
paul@laika:~$ ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sdb /dev/sdb1 /dev/sdb2

#
IDE or ATAPI
#
paul@barry:~$ ls /dev/hd*
/dev/hda /dev/hda1 /dev/hda2 /dev/hdb /dev/hdb1 /dev/hdb2 /dev/hdc

Besides representing physical hardware, some device files are special. These special
devices can be very useful.

/dev/tty and /dev/pts

For example, /dev/tty1 represents a terminal or console attached to the system. (Don't
break your head on the exact terminology of 'terminal' or 'console', what we mean
here is a command line interface.) When typing commands in a terminal that is part
of a graphical interface like Gnome or KDE, then your terminal will be represented
as /dev/pts/1 (1 can be another number).

/dev/null

On Linux you will find other special devices such as /dev/null which can be
considered a black hole; it has unlimited storage, but nothing can be retrieved from
it. Technically speaking, anything written to /dev/null will be discarded. /dev/null
can be useful to discard unwanted output from commands. /dev/null is not a good
location to store your backups ;-).

(c) ketabton.com: The Digital Library

the Linux file tree

60

/proc conversation with the kernel

/proc is another special directory, appearing to be ordinary files, but not taking up
disk space. It is actually a view of the kernel, or better, what the kernel manages, and
is a means to interact with it directly. /proc is a proc filesystem.

paul@RHELv4u4:~$ mount -t proc
none on /proc type proc (rw)

When listing the /proc directory you will see many numbers (on any Unix) and some
interesting files (on Linux)

mul@laika:~$ ls /proc
1 2339 4724 5418 6587 7201 cmdline mounts
10175 2523 4729 5421 6596 7204 cpuinfo mtrr
10211 2783 4741 5658 6599 7206 crypto net
10239 2975 4873 5661 6638 7214 devices pagetypeinfo
141 29775 4874 5665 6652 7216 diskstats partitions
15045 29792 4878 5927 6719 7218 dma sched_debug
1519 2997 4879 6 6736 7223 driver scsi
1548 3 4881 6032 6737 7224 execdomains self
1551 30228 4882 6033 6755 7227 fb slabinfo
1554 3069 5 6145 6762 7260 filesystems stat
1557 31422 5073 6298 6774 7267 fs swaps
1606 3149 5147 6414 6816 7275 ide sys
180 31507 5203 6418 6991 7282 interrupts sysrq-trigger
181 3189 5206 6419 6993 7298 iomem sysvipc
182 3193 5228 6420 6996 7319 ioports timer_list
18898 3246 5272 6421 7157 7330 irq timer_stats
19799 3248 5291 6422 7163 7345 kallsyms tty
19803 3253 5294 6423 7164 7513 kcore uptime
19804 3372 5356 6424 7171 7525 key-users version
1987 4 5370 6425 7175 7529 kmsg version_signature
1989 42 5379 6426 7188 9964 loadavg vmcore
2 45 5380 6430 7189 acpi locks vmnet
20845 4542 5412 6450 7191 asound meminfo vmstat
221 46 5414 6551 7192 buddyinfo misc zoneinfo
2338 4704 5416 6568 7199 bus modules

Let's investigate the file properties inside /proc. Looking at the date and time will
display the current date and time showing the files are constantly updated (a view
on the kernel).

paul@RHELv4u4:~$ date
Mon Jan 29 18:06:32 EST 2007
paul@RHELv4u4:~$ ls -al /proc/cpuinfo
-r--r--r-- 1 root root 0 Jan 29 18:06 /proc/cpuinfo
paul@RHELv4u4:~$
paul@RHELv4u4:~$...time passes...
paul@RHELv4u4:~$
paul@RHELv4u4:~$ date
Mon Jan 29 18:10:00 EST 2007
paul@RHELv4u4:~$ ls -al /proc/cpuinfo
-r--r--r-- 1 root root 0 Jan 29 18:10 /proc/cpuinfo

(c) ketabton.com: The Digital Library

the Linux file tree

61

Most files in /proc are 0 bytes, yet they contain data--sometimes a lot of data. You
can see this by executing cat on files like /proc/cpuinfo, which contains information
about the CPU.

paul@RHELv4u4:~$ file /proc/cpuinfo
/proc/cpuinfo: empty
paul@RHELv4u4:~$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 43
model name : AMD Athlon(tm) 64 X2 Dual Core Processor 4600+
stepping : 1
cpu MHz : 2398.628
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge...
bogomips : 4803.54

Just for fun, here is /proc/cpuinfo on a Sun Sunblade 1000...

paul@pasha:~$ cat /proc/cpuinfo
cpu : TI UltraSparc III (Cheetah)
fpu : UltraSparc III integrated FPU
promlib : Version 3 Revision 2
prom : 4.2.2
type : sun4u
ncpus probed : 2
ncpus active : 2
Cpu0Bogo : 498.68
Cpu0ClkTck : 000000002cb41780
Cpu1Bogo : 498.68
Cpu1ClkTck : 000000002cb41780
MMU Type : Cheetah
State:
CPU0: online
CPU1: online

Most of the files in /proc are read only, some require root privileges, some files are
writable, and many files in /proc/sys are writable. Let's discuss some of the files in /
proc.

(c) ketabton.com: The Digital Library

the Linux file tree

62

/proc/interrupts

On the x86 architecture, /proc/interrupts displays the interrupts.

paul@RHELv4u4:~$ cat /proc/interrupts
 CPU0
 0: 13876877 IO-APIC-edge timer
 1: 15 IO-APIC-edge i8042
 8: 1 IO-APIC-edge rtc
 9: 0 IO-APIC-level acpi
 12: 67 IO-APIC-edge i8042
 14: 128 IO-APIC-edge ide0
 15: 124320 IO-APIC-edge ide1
169: 111993 IO-APIC-level ioc0
177: 2428 IO-APIC-level eth0
NMI: 0
LOC: 13878037
ERR: 0
MIS: 0

On a machine with two CPU's, the file looks like this.

paul@laika:~$ cat /proc/interrupts
 CPU0 CPU1
 0: 860013 0 IO-APIC-edge timer
 1: 4533 0 IO-APIC-edge i8042
 7: 0 0 IO-APIC-edge parport0
 8: 6588227 0 IO-APIC-edge rtc
 10: 2314 0 IO-APIC-fasteoi acpi
 12: 133 0 IO-APIC-edge i8042
 14: 0 0 IO-APIC-edge libata
 15: 72269 0 IO-APIC-edge libata
 18: 1 0 IO-APIC-fasteoi yenta
 19: 115036 0 IO-APIC-fasteoi eth0
 20: 126871 0 IO-APIC-fasteoi libata, ohci1394
 21: 30204 0 IO-APIC-fasteoi ehci_hcd:usb1, uhci_hcd:usb2
 22: 1334 0 IO-APIC-fasteoi saa7133[0], saa7133[0]
 24: 234739 0 IO-APIC-fasteoi nvidia
NMI: 72 42
LOC: 860000 859994
ERR: 0

/proc/kcore

The physical memory is represented in /proc/kcore. Do not try to cat this file, instead
use a debugger. The size of /proc/kcore is the same as your physical memory, plus
four bytes.

paul@laika:~$ ls -lh /proc/kcore
-r-------- 1 root root 2.0G 2007-01-30 08:57 /proc/kcore
paul@laika:~$

(c) ketabton.com: The Digital Library

the Linux file tree

63

/sys Linux 2.6 hot plugging

The /sys directory was created for the Linux 2.6 kernel. Since 2.6, Linux uses sysfs
to support usb and IEEE 1394 (FireWire) hot plug devices. See the manual pages
of udev(8) (the successor of devfs) and hotplug(8) for more info (or visit http://linux-
hotplug.sourceforge.net/).

Basically the /sys directory contains kernel information about hardware.

(c) ketabton.com: The Digital Library

the Linux file tree

64

9.8. /usr Unix System Resources
Although /usr is pronounced like user, remember that it stands for Unix System
Resources. The /usr hierarchy should contain shareable, read only data. Some
people choose to mount /usr as read only. This can be done from its own partition
or from a read only NFS share.

/usr/bin

The /usr/bin directory contains a lot of commands.

paul@deb508:~$ ls /usr/bin | wc -l
1395

(On Solaris the /bin directory is a symbolic link to /usr/bin.)

/usr/include

The /usr/include directory contains general use include files for C.

paul@ubu1010:~$ ls /usr/include/
aalib.h expat_config.h math.h search.h
af_vfs.h expat_external.h mcheck.h semaphore.h
aio.h expat.h memory.h setjmp.h
AL fcntl.h menu.h sgtty.h
aliases.h features.h mntent.h shadow.h
...

/usr/lib

The /usr/lib directory contains libraries that are not directly executed by users or
scripts.

paul@deb508:~$ ls /usr/lib | head -7
4Suite
ao
apt
arj
aspell
avahi
bonobo

/usr/local

The /usr/local directory can be used by an administrator to install software locally.

paul@deb508:~$ ls /usr/local/
bin etc games include lib man sbin share src
paul@deb508:~$ du -sh /usr/local/
128K /usr/local/

(c) ketabton.com: The Digital Library

the Linux file tree

65

/usr/share

The /usr/share directory contains architecture independent data. As you can see, this
is a fairly large directory.

paul@deb508:~$ ls /usr/share/ | wc -l
263
paul@deb508:~$ du -sh /usr/share/
1.3G /usr/share/

This directory typically contains /usr/share/man for manual pages.

paul@deb508:~$ ls /usr/share/man
cs fr hu it.UTF-8 man2 man6 pl.ISO8859-2 sv
de fr.ISO8859-1 id ja man3 man7 pl.UTF-8 tr
es fr.UTF-8 it ko man4 man8 pt_BR zh_CN
fi gl it.ISO8859-1 man1 man5 pl ru zh_TW

And it contains /usr/share/games for all static game data (so no high-scores or play
logs).

paul@ubu1010:~$ ls /usr/share/games/
openttd wesnoth

/usr/src

The /usr/src directory is the recommended location for kernel source files.

paul@deb508:~$ ls -l /usr/src/
total 12
drwxr-xr-x 4 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-686
drwxr-xr-x 18 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-common
drwxr-xr-x 3 root root 4096 2009-10-28 16:01 linux-kbuild-2.6.26

(c) ketabton.com: The Digital Library

the Linux file tree

66

9.9. /var variable data

Files that are unpredictable in size, such as log, cache and spool files, should be
located in /var.

/var/log

The /var/log directory serves as a central point to contain all log files.

[paul@RHEL4b ~]$ ls /var/log
acpid cron.2 maillog.2 quagga secure.4
amanda cron.3 maillog.3 radius spooler
anaconda.log cron.4 maillog.4 rpmpkgs spooler.1
anaconda.syslog cups mailman rpmpkgs.1 spooler.2
anaconda.xlog dmesg messages rpmpkgs.2 spooler.3
audit exim messages.1 rpmpkgs.3 spooler.4
boot.log gdm messages.2 rpmpkgs.4 squid
boot.log.1 httpd messages.3 sa uucp
boot.log.2 iiim messages.4 samba vbox
boot.log.3 iptraf mysqld.log scrollkeeper.log vmware-tools-guestd
boot.log.4 lastlog news secure wtmp
canna mail pgsql secure.1 wtmp.1
cron maillog ppp secure.2 Xorg.0.log
cron.1 maillog.1 prelink.log secure.3 Xorg.0.log.old

/var/log/messages

A typical first file to check when troubleshooting on Red Hat (and derivatives) is
the /var/log/messages file. By default this file will contain information on what just
happened to the system. The file is called /var/log/syslog on Debian and Ubuntu.

[root@RHEL4b ~]# tail /var/log/messages
Jul 30 05:13:56 anacron: anacron startup succeeded
Jul 30 05:13:56 atd: atd startup succeeded
Jul 30 05:13:57 messagebus: messagebus startup succeeded
Jul 30 05:13:57 cups-config-daemon: cups-config-daemon startup succeeded
Jul 30 05:13:58 haldaemon: haldaemon startup succeeded
Jul 30 05:14:00 fstab-sync[3560]: removed all generated mount points
Jul 30 05:14:01 fstab-sync[3628]: added mount point /media/cdrom for...
Jul 30 05:14:01 fstab-sync[3646]: added mount point /media/floppy for...
Jul 30 05:16:46 sshd(pam_unix)[3662]: session opened for user paul by...
Jul 30 06:06:37 su(pam_unix)[3904]: session opened for user root by paul

/var/cache

The /var/cache directory can contain cache data for several applications.

paul@ubu1010:~$ ls /var/cache/
apt dictionaries-common gdm man software-center
binfmts flashplugin-installer hald pm-utils
cups fontconfig jockey pppconfig
debconf fonts ldconfig samba

(c) ketabton.com: The Digital Library

the Linux file tree

67

/var/spool

The /var/spool directory typically contains spool directories for mail and cron, but
also serves as a parent directory for other spool files (for example print spool files).

/var/lib

The /var/lib directory contains application state information.

Red Hat Enterprise Linux for example keeps files pertaining to rpm in /var/lib/rpm/.

/var/...

/var also contains Process ID files in /var/run (soon to be replaced with /run) and
temporary files that survive a reboot in /var/tmp and information about file locks in
/var/lock. There will be more examples of /var usage further in this book.

(c) ketabton.com: The Digital Library

the Linux file tree

68

9.10. practice: file system tree
1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type
of these files ?

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?

3. Create a directory ~/test. Then issue the following commands:

cd ~/test

dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /
dev/zero to ~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

4. Now issue the following command:

dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /
dev/random to ~/test/random.txt. Can you describe the functionality of /dev/random
?

5. Issue the following two commands, and look at the first character of each output
line.

ls -l /dev/sd* /dev/hd*

ls -l /dev/tty* /dev/input/mou*

The first ls will show block(b) devices, the second ls shows character(c) devices. Can
you tell the difference between block and character devices ?

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the
purpose of these files ?

7. Are there any files in /etc/skel/ ? Check also for hidden files.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?

10. Can you enter the /root directory ? Are there (hidden) files ?

11. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are
these binaries in /sbin and not in /bin ?

12. Is /var/log a file or a directory ? What about /var/spool ?

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-
Alt-F1, Ctrl-Alt-F2, ...) and issue the who am i in both. Then try to echo a word from
one terminal to the other.

(c) ketabton.com: The Digital Library

the Linux file tree

69

14. Read the man page of random and explain the difference between /dev/random
and /dev/urandom.

(c) ketabton.com: The Digital Library

the Linux file tree

70

9.11. solution: file system tree
1. Does the file /bin/cat exist ? What about /bin/dd and /bin/echo. What is the type
of these files ?

ls /bin/cat ; file /bin/cat

ls /bin/dd ; file /bin/dd

ls /bin/echo ; file /bin/echo

2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot ?

ls -lh /boot/vm*

3. Create a directory ~/test. Then issue the following commands:

cd ~/test

dd if=/dev/zero of=zeroes.txt count=1 bs=100

od zeroes.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /
dev/zero to ~/test/zeroes.txt. Can you describe the functionality of /dev/zero ?

/dev/zero is a Linux special device. It can be considered a source of zeroes. You
cannot send something to /dev/zero, but you can read zeroes from it.

4. Now issue the following command:

dd if=/dev/random of=random.txt count=1 bs=100 ; od random.txt

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /
dev/random to ~/test/random.txt. Can you describe the functionality of /dev/random
?

/dev/random acts as a random number generator on your Linux machine.

5. Issue the following two commands, and look at the first character of each output
line.

ls -l /dev/sd* /dev/hd*

ls -l /dev/tty* /dev/input/mou*

The first ls will show block(b) devices, the second ls shows character(c) devices. Can
you tell the difference between block and character devices ?

Block devices are always written to (or read from) in blocks. For hard disks, blocks
of 512 bytes are common. Character devices act as a stream of characters (or bytes).
Mouse and keyboard are typical character devices.

6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the
purpose of these files ?

(c) ketabton.com: The Digital Library

the Linux file tree

71

/etc/hosts contains hostnames with their ip address

/etc/resolv.conf should contain the ip address of a DNS name server.

7. Are there any files in /etc/skel/ ? Check also for hidden files.

Issue "ls -al /etc/skel/". Yes, there should be hidden files there.

8. Display /proc/cpuinfo. On what architecture is your Linux running ?

The file should contain at least one line with Intel or other cpu.

9. Display /proc/interrupts. What is the size of this file ? Where is this file stored ?

The size is zero, yet the file contains data. It is not stored anywhere because /proc is
a virtual file system that allows you to talk with the kernel. (If you answered "stored
in RAM-memory, that is also correct...).

10. Can you enter the /root directory ? Are there (hidden) files ?

Try "cd /root". Yes there are (hidden) files there.

11. Are ifconfig, fdisk, parted, shutdown and grub-install present in /sbin ? Why are
these binaries in /sbin and not in /bin ?

Because those files are only meant for system administrators.

12. Is /var/log a file or a directory ? What about /var/spool ?

Both are directories.

13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-
Alt-F1, Ctrl-Alt-F2, ...) and issue the who am i in both. Then try to echo a word from
one terminal to the other.

tty-terminal: echo Hello > /dev/tty1

pts-terminal: echo Hello > /dev/pts/1

14. Read the man page of random and explain the difference between /dev/random
and /dev/urandom.

man 4 random

(c) ketabton.com: The Digital Library

Part III. shell expansion

(c) ketabton.com: The Digital Library

73

Chapter 10. commands and arguments

Table of Contents
10.1. echo .. 74
10.2. arguments ... 74
10.3. commands .. 76
10.4. aliases ... 77
10.5. displaying shell expansion ... 78
10.6. practice: commands and arguments ... 79
10.7. solution: commands and arguments ... 81

This chapter introduces you to shell expansion by taking a close look at commands
and arguments. Knowing shell expansion is important because many commands
on your Linux system are processed and most likely changed by the shell before they
are executed.

The command line interface or shell used on most Linux systems is called bash,
which stands for Bourne again shell. The bash shell incorporates features from sh
(the original Bourne shell), csh (the C shell), and ksh (the Korn shell).

(c) ketabton.com: The Digital Library

commands and arguments

74

10.1. echo
This chapter frequently uses the echo command to demonstrate shell features. The
echo command is very simple: it echoes the input that it receives.

paul@laika:~$ echo Burtonville
Burtonville
paul@laika:~$ echo Smurfs are blue
Smurfs are blue

10.2. arguments
One of the primary features of a shell is to perform a command line scan. When
you enter a command at the shell's command prompt and press the enter key, then
the shell will start scanning that line, cutting it up in arguments. While scanning the
line, the shell may make many changes to the arguments you typed. This process
is called shell expansion. When the shell has finished scanning and modifying that
line, then it will be executed.

white space removal

Parts that are separated by one or more consecutive white spaces (or tabs) are
considered separate arguments, any white space is removed. The first argument is
the command to be executed, the other arguments are given to the command. The
shell effectively cuts your command into one or more arguments.

This explains why the following four different command lines are the same after shell
expansion.

[paul@RHELv4u3 ~]$ echo Hello World
Hello World
[paul@RHELv4u3 ~]$ echo Hello World
Hello World
[paul@RHELv4u3 ~]$ echo Hello World
Hello World
[paul@RHELv4u3 ~]$ echo Hello World
Hello World

The echo command will display each argument it receives from the shell. The echo
command will also add a new white space between the arguments it received.

single quotes

You can prevent the removal of white spaces by quoting the spaces. The contents of
the quoted string are considered as one argument. In the screenshot below the echo
receives only one argument.

[paul@RHEL4b ~]$ echo 'A line with single quotes'
A line with single quotes
[paul@RHEL4b ~]$

(c) ketabton.com: The Digital Library

commands and arguments

75

double quotes

You can also prevent the removal of white spaces by double quoting the spaces.
Same as above, echo only receives one argument.

[paul@RHEL4b ~]$ echo "A line with double quotes"
A line with double quotes
[paul@RHEL4b ~]$

Later in this book, when discussing variables we will see important differences
between single and double quotes.

echo and quotes

Quoted lines can include special escaped characters recognised by the echo command
(when using echo -e). The screenshot below shows how to use \n for a newline and
\t for a tab (usually eight white spaces).

[paul@RHEL4b ~]$ echo -e "A line with \na newline"
A line with
a newline
[paul@RHEL4b ~]$ echo -e 'A line with \na newline'
A line with
a newline
[paul@RHEL4b ~]$ echo -e "A line with \ta tab"
A line with a tab
[paul@RHEL4b ~]$ echo -e 'A line with \ta tab'
A line with a tab
[paul@RHEL4b ~]$

The echo command can generate more than white spaces, tabs and newlines. Look
in the man page for a list of options.

(c) ketabton.com: The Digital Library

commands and arguments

76

10.3. commands

external or builtin commands ?

Not all commands are external to the shell, some are builtin. External commands
are programs that have their own binary and reside somewhere in the file system.
Many external commands are located in /bin or /sbin. Builtin commands are an
integral part of the shell program itself.

type

To find out whether a command given to the shell will be executed as an external
command or as a builtin command, use the type command.

paul@laika:~$ type cd
cd is a shell builtin
paul@laika:~$ type cat
cat is /bin/cat

As you can see, the cd command is builtin and the cat command is external.

You can also use this command to show you whether the command is aliased or not.

paul@laika:~$ type ls
ls is aliased to `ls --color=auto'

running external commands

Some commands have both builtin and external versions. When one of these
commands is executed, the builtin version takes priority. To run the external version,
you must enter the full path to the command.

paul@laika:~$ type -a echo
echo is a shell builtin
echo is /bin/echo
paul@laika:~$ /bin/echo Running the external echo command...
Running the external echo command...

which

The which command will search for binaries in the $PATH environment variable
(variables will be explained later). In the screenshot below, it is determined that cd
is builtin, and ls, cp, rm, mv, mkdir, pwd, and which are external commands.

[root@RHEL4b ~]# which cp ls cd mkdir pwd
/bin/cp
/bin/ls
/usr/bin/which: no cd in (/usr/kerberos/sbin:/usr/kerberos/bin:...
/bin/mkdir
/bin/pwd

(c) ketabton.com: The Digital Library

commands and arguments

77

10.4. aliases

create an alias

The shell allows you to create aliases. Aliases are often used to create an easier to
remember name for an existing command or to easily supply parameters.

[paul@RHELv4u3 ~]$ cat count.txt
one
two
three
[paul@RHELv4u3 ~]$ alias dog=tac
[paul@RHELv4u3 ~]$ dog count.txt
three
two
one

abbreviate commands

An alias can also be useful to abbreviate an existing command.

paul@laika:~$ alias ll='ls -lh --color=auto'
paul@laika:~$ alias c='clear'
paul@laika:~$

default options

Aliases can be used to supply commands with default options. The example below
shows how to set the -i option default when typing rm.

[paul@RHELv4u3 ~]$ rm -i winter.txt
rm: remove regular file `winter.txt'? no
[paul@RHELv4u3 ~]$ rm winter.txt
[paul@RHELv4u3 ~]$ ls winter.txt
ls: winter.txt: No such file or directory
[paul@RHELv4u3 ~]$ touch winter.txt
[paul@RHELv4u3 ~]$ alias rm='rm -i'
[paul@RHELv4u3 ~]$ rm winter.txt
rm: remove regular empty file `winter.txt'? no
[paul@RHELv4u3 ~]$

Some distributions enable default aliases to protect users from accidentally erasing
files ('rm -i', 'mv -i', 'cp -i')

viewing aliases

You can provide one or more aliases as arguments to the alias command to get their
definitions. Providing no arguments gives a complete list of current aliases.

paul@laika:~$ alias c ll
alias c='clear'
alias ll='ls -lh --color=auto'

(c) ketabton.com: The Digital Library

commands and arguments

78

unalias

You can undo an alias with the unalias command.

[paul@RHEL4b ~]$ which rm
/bin/rm
[paul@RHEL4b ~]$ alias rm='rm -i'
[paul@RHEL4b ~]$ which rm
alias rm='rm -i'
 /bin/rm
[paul@RHEL4b ~]$ unalias rm
[paul@RHEL4b ~]$ which rm
/bin/rm
[paul@RHEL4b ~]$

10.5. displaying shell expansion
You can display shell expansion with set -x, and stop displaying it with set +x. You
might want to use this further on in this course, or when in doubt about exactly what
the shell is doing with your command.

[paul@RHELv4u3 ~]$ set -x
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ echo $USER
+ echo paul
paul
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ echo \$USER
+ echo '$USER'
$USER
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ set +x
+ set +x
[paul@RHELv4u3 ~]$ echo $USER
paul

(c) ketabton.com: The Digital Library

commands and arguments

79

10.6. practice: commands and arguments
1. How many arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

2. Is tac a shell builtin command ?

3. Is there an existing alias for rm ?

4. Read the man page of rm, make sure you understand the -i option of rm. Create
and remove a file to test the -i option.

5. Execute: alias rm='rm -i' . Test your alias with a test file. Does this work as
expected ?

6. List all current aliases.

7a. Create an alias called 'city' that echoes your hometown.

7b. Use your alias to test that it works.

8. Execute set -x to display shell expansion for every command.

9. Test the functionality of set -x by executing your city and rm aliases.

10 Execute set +x to stop displaying shell expansion.

11. Remove your city alias.

12. What is the location of the cat and the passwd commands ?

13. Explain the difference between the following commands:

echo

/bin/echo

14. Explain the difference between the following commands:

echo Hello

echo -n Hello

15. Display A B C with two spaces between B and C.

(optional)16. Complete the following command (do not use spaces) to display exactly
the following output:

4+4 =8
10+14 =24

18. Use echo to display the following exactly:

??\\

(c) ketabton.com: The Digital Library

commands and arguments

80

Find two solutions with single quotes, two with double quotes and one without quotes
(and say thank you to René and Darioush from Google for this extra).

19. Use one echo command to display three words on three lines.

(c) ketabton.com: The Digital Library

commands and arguments

81

10.7. solution: commands and arguments
1. How many arguments are in this line (not counting the command itself).

touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"

answer: three

2. Is tac a shell builtin command ?

type tac

3. Is there an existing alias for rm ?

alias rm

4. Read the man page of rm, make sure you understand the -i option of rm. Create
and remove a file to test the -i option.

man rm

touch testfile

rm -i testfile

5. Execute: alias rm='rm -i' . Test your alias with a test file. Does this work as
expected ?

touch testfile

rm testfile (should ask for confirmation)

6. List all current aliases.

alias

7a. Create an alias called 'city' that echoes your hometown.

alias city='echo Antwerp'

7b. Use your alias to test that it works.

city (it should display Antwerp)

8. Execute set -x to display shell expansion for every command.

set -x

9. Test the functionality of set -x by executing your city and rm aliases.

shell should display the resolved aliases and then execute the command:
paul@deb503:~$ set -x
paul@deb503:~$ city
+ echo antwerp
antwerp

10 Execute set +x to stop displaying shell expansion.

set +x

11. Remove your city alias.

(c) ketabton.com: The Digital Library

commands and arguments

82

unalias city

12. What is the location of the cat and the passwd commands ?

which cat (probably /bin/cat)

which passwd (probably /usr/bin/passwd)

13. Explain the difference between the following commands:

echo

/bin/echo

The echo command will be interpreted by the shell as the built-in echo command.
The /bin/echo command will make the shell execute the echo binary located in the
/bin directory.

14. Explain the difference between the following commands:

echo Hello

echo -n Hello

The -n option of the echo command will prevent echo from echoing a trailing newline.
echo Hello will echo six characters in total, echo -n hello only echoes five characters.

(The -n option might not work in the Korn shell.)

15. Display A B C with two spaces between B and C.

echo "A B C"

16. Complete the following command (do not use spaces) to display exactly the
following output:

4+4 =8
10+14 =24

The solution is to use tabs with \t.

echo -e "4+4\t=8" ; echo -e "10+14\t=24"

18. Use echo to display the following exactly:

??\\
echo '??\\'
echo -e '??\\\\'
echo "??\\\\"
echo -e "??\\\\\\"
echo ??\\\\

Find two solutions with single quotes, two with double quotes and one without quotes
(and say thank you to René and Darioush from Google for this extra).

19. Use one echo command to display three words on three lines.

echo -e "one \ntwo \nthree"

(c) ketabton.com: The Digital Library

83

Chapter 11. control operators

Table of Contents
11.1. ; semicolon ... 84
11.2. & ampersand .. 84
11.3. $? dollar question mark ... 84
11.4. && double ampersand ... 85
11.5. || double vertical bar .. 85
11.6. combining && and || ... 85
11.7. # pound sign .. 86
11.8. \ escaping special characters .. 86
11.9. practice: control operators ... 87
11.10. solution: control operators ... 88

In this chapter we put more than one command on the command line using control
operators. We also briefly discuss related parameters ($?) and similar special
characters(&).

(c) ketabton.com: The Digital Library

control operators

84

11.1. ; semicolon

You can put two or more commands on the same line separated by a semicolon ; .
The shell will scan the line until it reaches the semicolon. All the arguments before
this semicolon will be considered a separate command from all the arguments after
the semicolon. Both series will be executed sequentially with the shell waiting for
each command to finish before starting the next one.

[paul@RHELv4u3 ~]$ echo Hello
Hello
[paul@RHELv4u3 ~]$ echo World
World
[paul@RHELv4u3 ~]$ echo Hello ; echo World
Hello
World
[paul@RHELv4u3 ~]$

11.2. & ampersand

When a line ends with an ampersand &, the shell will not wait for the command
to finish. You will get your shell prompt back, and the command is executed in
background. You will get a message when this command has finished executing in
background.

[paul@RHELv4u3 ~]$ sleep 20 &
[1] 7925
[paul@RHELv4u3 ~]$
...wait 20 seconds...
[paul@RHELv4u3 ~]$
[1]+ Done sleep 20

The technical explanation of what happens in this case is explained in the chapter
about processes.

11.3. $? dollar question mark

The exit code of the previous command is stored in the shell variable $?. Actually $?
is a shell parameter and not a variable, since you cannot assign a value to $?.

paul@debian5:~/test$ touch file1
paul@debian5:~/test$ echo $?
0
paul@debian5:~/test$ rm file1
paul@debian5:~/test$ echo $?
0
paul@debian5:~/test$ rm file1
rm: cannot remove `file1': No such file or directory
paul@debian5:~/test$ echo $?
1
paul@debian5:~/test$

(c) ketabton.com: The Digital Library

control operators

85

11.4. && double ampersand
The shell will interpret && as a logical AND. When using && the second command
is executed only if the first one succeeds (returns a zero exit status).

paul@barry:~$ echo first && echo second
first
second
paul@barry:~$ zecho first && echo second
-bash: zecho: command not found

Another example of the same logical AND principle. This example starts with a
working cd followed by ls, then a non-working cd which is not followed by ls.

[paul@RHELv4u3 ~]$ cd gen && ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[paul@RHELv4u3 gen]$ cd gen && ls
-bash: cd: gen: No such file or directory

11.5. || double vertical bar
The || represents a logical OR. The second command is executed only when the first
command fails (returns a non-zero exit status).

paul@barry:~$ echo first || echo second ; echo third
first
third
paul@barry:~$ zecho first || echo second ; echo third
-bash: zecho: command not found
second
third
paul@barry:~$

Another example of the same logical OR principle.

[paul@RHELv4u3 ~]$ cd gen || ls
[paul@RHELv4u3 gen]$ cd gen || ls
-bash: cd: gen: No such file or directory
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2

11.6. combining && and ||
You can use this logical AND and logical OR to write an if-then-else structure on
the command line. This example uses echo to display whether the rm command was
successful.

paul@laika:~/test$ rm file1 && echo It worked! || echo It failed!
It worked!
paul@laika:~/test$ rm file1 && echo It worked! || echo It failed!
rm: cannot remove `file1': No such file or directory
It failed!
paul@laika:~/test$

(c) ketabton.com: The Digital Library

control operators

86

11.7. # pound sign
Everything written after a pound sign (#) is ignored by the shell. This is useful to
write a shell comment, but has no influence on the command execution or shell
expansion.

paul@debian4:~$ mkdir test # we create a directory
paul@debian4:~$ cd test #### we enter the directory
paul@debian4:~/test$ ls # is it empty ?
paul@debian4:~/test$

11.8. \ escaping special characters
The backslash \ character enables the use of control characters, but without the shell
interpreting it, this is called escaping characters.

[paul@RHELv4u3 ~]$ echo hello \; world
hello ; world
[paul@RHELv4u3 ~]$ echo hello\ \ \ world
hello world
[paul@RHELv4u3 ~]$ echo escaping \\\ \#\ \&\ \"\ \'
escaping \ # & " '
[paul@RHELv4u3 ~]$ echo escaping \\\?*\"\'
escaping \?*"'

end of line backslash

Lines ending in a backslash are continued on the next line. The shell does not interpret
the newline character and will wait on shell expansion and execution of the command
line until a newline without backslash is encountered.

[paul@RHEL4b ~]$ echo This command line \
> is split in three \
> parts
This command line is split in three parts
[paul@RHEL4b ~]$

(c) ketabton.com: The Digital Library

control operators

87

11.9. practice: control operators
0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

2. What kind of file is that ?

3. Execute the pwd command twice. (remember 0.)

4. Execute ls after cd /etc, but only if cd /etc did not error.

5. Execute cd /etc after cd etc, but only if cd etc fails.

6. Echo it worked when touch test42 works, and echo it failed when the touch
failed. All on one command line as a normal user (not root). Test this line in your
home directory and in /bin/ .

7. Execute sleep 6, what is this command doing ?

8. Execute sleep 200 in background (do not wait for it to finish).

9. Write a command line that executes rm file55. Your command line should print
'success' if file55 is removed, and print 'failed' if there was a problem.

(optional)10. Use echo to display "Hello World with strange' characters \ * [} ~ \
\ ." (including all quotes)

(c) ketabton.com: The Digital Library

control operators

88

11.10. solution: control operators
0. Each question can be answered by one command line!

1. When you type passwd, which file is executed ?

which passwd

2. What kind of file is that ?

file /usr/bin/passwd

3. Execute the pwd command twice. (remember 0.)

pwd ; pwd

4. Execute ls after cd /etc, but only if cd /etc did not error.

cd /etc && ls

5. Execute cd /etc after cd etc, but only if cd etc fails.

cd etc || cd /etc

6. Echo it worked when touch test42 works, and echo it failed when the touch
failed. All on one command line as a normal user (not root). Test this line in your
home directory and in /bin/ .

paul@deb503:~$ cd ; touch test42 && echo it worked || echo it failed
it worked
paul@deb503:~$ cd /bin; touch test42 && echo it worked || echo it failed
touch: cannot touch `test42': Permission denied
it failed

7. Execute sleep 6, what is this command doing ?

pausing for six seconds

8. Execute sleep 200 in background (do not wait for it to finish).

sleep 200 &

9. Write a command line that executes rm file55. Your command line should print
'success' if file55 is removed, and print 'failed' if there was a problem.

rm file55 && echo success || echo failed

(optional)10. Use echo to display "Hello World with strange' characters \ * [} ~ \
\ ." (including all quotes)

echo \"Hello World with strange\' characters \\ * \[\} \~ \\\\ \. \"

or

echo \""Hello World with strange' characters \ * [} ~ \\ . "\"

(c) ketabton.com: The Digital Library

89

Chapter 12. variables

Table of Contents
12.1. about variables ... 90
12.2. quotes ... 92
12.3. set ... 92
12.4. unset ... 92
12.5. env .. 93
12.6. export ... 93
12.7. delineate variables .. 94
12.8. unbound variables .. 94
12.9. shell options ... 95
12.10. shell embedding ... 96
12.11. practice: shell variables .. 97
12.12. solution: shell variables ... 98

In this chapter we learn to manage environment variables in the shell. These
variables are often read by applications.

We also take a brief look at child shells, embedded shells and shell options.

(c) ketabton.com: The Digital Library

variables

90

12.1. about variables

$ dollar sign

Another important character interpreted by the shell is the dollar sign $. The shell
will look for an environment variable named like the string following the dollar
sign and replace it with the value of the variable (or with nothing if the variable does
not exist).

These are some examples using $HOSTNAME, $USER, $UID, $SHELL, and
$HOME.

[paul@RHELv4u3 ~]$ echo This is the $SHELL shell
This is the /bin/bash shell
[paul@RHELv4u3 ~]$ echo This is $SHELL on computer $HOSTNAME
This is /bin/bash on computer RHELv4u3.localdomain
[paul@RHELv4u3 ~]$ echo The userid of $USER is $UID
The userid of paul is 500
[paul@RHELv4u3 ~]$ echo My homedir is $HOME
My homedir is /home/paul

case sensitive

This example shows that shell variables are case sensitive!

[paul@RHELv4u3 ~]$ echo Hello $USER
Hello paul
[paul@RHELv4u3 ~]$ echo Hello $user
Hello

$PS1

The $PS1 variable determines your shell prompt. You can use backslash escaped
special characters like \u for the username or \w for the working directory. The bash
manual has a complete reference.

In this example we change the value of $PS1 a couple of times.

paul@deb503:~$ PS1=prompt
prompt
promptPS1='prompt '
prompt
prompt PS1='> '
>
> PS1='\u@\h$ '
paul@deb503$
paul@deb503$ PS1='\u@\h:\W$'
paul@deb503:~$

(c) ketabton.com: The Digital Library

variables

91

To avoid unrecoverable mistakes, you can set normal user prompts to green and the
root prompt to red. Add the following to your .bashrc for a green user prompt:

color prompt by paul
RED='\[\033[01;31m\]'
WHITE='\[\033[01;00m\]'
GREEN='\[\033[01;32m\]'
BLUE='\[\033[01;34m\]'
export PS1="${debian_chroot:+($debian_chroot)}$GREEN\u$WHITE@$BLUE\h$WHITE\w\$ "

$PATH

The $PATH variable is determines where the shell is looking for commands to
execute (unless the command is builtin or aliased). This variable contains a list of
directories, separated by colons.

[[paul@RHEL4b ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:

The shell will not look in the current directory for commands to execute! (Looking
for executables in the current directory provided an easy way to hack PC-DOS
computers). If you want the shell to look in the current directory, then add a . at the
end of your $PATH.

[paul@RHEL4b ~]$ PATH=$PATH:.
[paul@RHEL4b ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:.
[paul@RHEL4b ~]$

Your path might be different when using su instead of su - because the latter will take
on the environment of the target user. The root user typically has /sbin directories
added to the $PATH variable.

[paul@RHEL3 ~]$ su
Password:
[root@RHEL3 paul]# echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
[root@RHEL3 paul]# exit
[paul@RHEL3 ~]$ su -
Password:
[root@RHEL3 ~]# echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
[root@RHEL3 ~]#

creating variables

This example creates the variable $MyVar and sets its value. It then uses echo to
verify the value.

[paul@RHELv4u3 gen]$ MyVar=555
[paul@RHELv4u3 gen]$ echo $MyVar
555
[paul@RHELv4u3 gen]$

(c) ketabton.com: The Digital Library

variables

92

12.2. quotes
Notice that double quotes still allow the parsing of variables, whereas single quotes
prevent this.

[paul@RHELv4u3 ~]$ MyVar=555
[paul@RHELv4u3 ~]$ echo $MyVar
555
[paul@RHELv4u3 ~]$ echo "$MyVar"
555
[paul@RHELv4u3 ~]$ echo '$MyVar'
$MyVar

The bash shell will replace variables with their value in double quoted lines, but not
in single quoted lines.

paul@laika:~$ city=Burtonville
paul@laika:~$ echo "We are in $city today."
We are in Burtonville today.
paul@laika:~$ echo 'We are in $city today.'
We are in $city today.

12.3. set
You can use the set command to display a list of environment variables. On Ubuntu
and Debian systems, the set command will also list shell functions after the shell
variables. Use set | more to see the variables then.

12.4. unset
Use the unset command to remove a variable from your shell environment.

[paul@RHEL4b ~]$ MyVar=8472
[paul@RHEL4b ~]$ echo $MyVar
8472
[paul@RHEL4b ~]$ unset MyVar
[paul@RHEL4b ~]$ echo $MyVar

[paul@RHEL4b ~]$

(c) ketabton.com: The Digital Library

variables

93

12.5. env
The env command without options will display a list of exported variables. The
difference with set with options is that set lists all variables, including those not
exported to child shells.

But env can also be used to start a clean shell (a shell without any inherited
environment). The env -i command clears the environment for the subshell.

Notice in this screenshot that bash will set the $SHELL variable on startup.

[paul@RHEL4b ~]$ bash -c 'echo $SHELL $HOME $USER'
/bin/bash /home/paul paul
[paul@RHEL4b ~]$ env -i bash -c 'echo $SHELL $HOME $USER'
/bin/bash
[paul@RHEL4b ~]$

You can use the env command to set the $LANG, or any other, variable for just
one instance of bash with one command. The example below uses this to show the
influence of the $LANG variable on file globbing (see the chapter on file globbing).

[paul@RHEL4b test]$ env LANG=C bash -c 'ls File[a-z]'
Filea Fileb
[paul@RHEL4b test]$ env LANG=en_US.UTF-8 bash -c 'ls File[a-z]'
Filea FileA Fileb FileB
[paul@RHEL4b test]$

12.6. export
You can export shell variables to other shells with the export command. This will
export the variable to child shells.

[paul@RHEL4b ~]$ var3=three
[paul@RHEL4b ~]$ var4=four
[paul@RHEL4b ~]$ export var4
[paul@RHEL4b ~]$ echo $var3 $var4
three four
[paul@RHEL4b ~]$ bash
[paul@RHEL4b ~]$ echo $var3 $var4
four

But it will not export to the parent shell (previous screenshot continued).

[paul@RHEL4b ~]$ export var5=five
[paul@RHEL4b ~]$ echo $var3 $var4 $var5
four five
[paul@RHEL4b ~]$ exit
exit
[paul@RHEL4b ~]$ echo $var3 $var4 $var5
three four
[paul@RHEL4b ~]$

(c) ketabton.com: The Digital Library

variables

94

12.7. delineate variables
Until now, we have seen that bash interprets a variable starting from a dollar sign,
continuing until the first occurrence of a non-alphanumeric character that is not an
underscore. In some situations, this can be a problem. This issue can be resolved with
curly braces like in this example.

[paul@RHEL4b ~]$ prefix=Super
[paul@RHEL4b ~]$ echo Hello $prefixman and $prefixgirl
Hello and
[paul@RHEL4b ~]$ echo Hello ${prefix}man and ${prefix}girl
Hello Superman and Supergirl
[paul@RHEL4b ~]$

12.8. unbound variables
The example below tries to display the value of the $MyVar variable, but it fails
because the variable does not exist. By default the shell will display nothing when a
variable is unbound (does not exist).

[paul@RHELv4u3 gen]$ echo $MyVar

[paul@RHELv4u3 gen]$

There is, however, the nounset shell option that you can use to generate an error
when a variable does not exist.

paul@laika:~$ set -u
paul@laika:~$ echo $Myvar
bash: Myvar: unbound variable
paul@laika:~$ set +u
paul@laika:~$ echo $Myvar

paul@laika:~$

In the bash shell set -u is identical to set -o nounset and likewise set +u is identical
to set +o nounset.

(c) ketabton.com: The Digital Library

variables

95

12.9. shell options
Both set and unset are builtin shell commands. They can be used to set options of
the bash shell itself. The next example will clarify this. By default, the shell will treat
unset variables as a variable having no value. By setting the -u option, the shell will
treat any reference to unset variables as an error. See the man page of bash for more
information.

[paul@RHEL4b ~]$ echo $var123

[paul@RHEL4b ~]$ set -u
[paul@RHEL4b ~]$ echo $var123
-bash: var123: unbound variable
[paul@RHEL4b ~]$ set +u
[paul@RHEL4b ~]$ echo $var123

[paul@RHEL4b ~]$

To list all the set options for your shell, use echo $-. The noclobber (or -C) option
will be explained later in this book (in the I/O redirection chapter).

[paul@RHEL4b ~]$ echo $-
himBH
[paul@RHEL4b ~]$ set -C ; set -u
[paul@RHEL4b ~]$ echo $-
himuBCH
[paul@RHEL4b ~]$ set +C ; set +u
[paul@RHEL4b ~]$ echo $-
himBH
[paul@RHEL4b ~]$

When typing set without options, you get a list of all variables without function when
the shell is on posix mode. You can set bash in posix mode typing set -o posix.

(c) ketabton.com: The Digital Library

variables

96

12.10. shell embedding
Shells can be embedded on the command line, or in other words, the command line
scan can spawn new processes containing a fork of the current shell. You can use
variables to prove that new shells are created. In the screenshot below, the variable
$var1 only exists in the (temporary) sub shell.

[paul@RHELv4u3 gen]$ echo $var1

[paul@RHELv4u3 gen]$ echo $(var1=5;echo $var1)
5
[paul@RHELv4u3 gen]$ echo $var1

[paul@RHELv4u3 gen]$

You can embed a shell in an embedded shell, this is called nested embedding of
shells.

This screenshot shows an embedded shell inside an embedded shell.

paul@deb503:~$ A=shell
paul@deb503:~$ echo CB$A $(B=sub;echo CB$A; echo $(C=sub;echo CB$A))
shell subshell subsubshell

backticks

Single embedding can be useful to avoid changing your current directory. The
screenshot below uses backticks instead of dollar-bracket to embed.

[paul@RHELv4u3 ~]$ echo `cd /etc; ls -d * | grep pass`
passwd passwd- passwd.OLD
[paul@RHELv4u3 ~]$

You can only use the $() notation to nest embedded shells, backticks cannot do this.

backticks or single quotes

Placing the embedding between backticks uses one character less than the dollar
and parenthesis combo. Be careful however, backticks are often confused with single
quotes. The technical difference between ' and ` is significant!

[paul@RHELv4u3 gen]$ echo `var1=5;echo $var1`
5
[paul@RHELv4u3 gen]$ echo 'var1=5;echo $var1'
var1=5;echo $var1
[paul@RHELv4u3 gen]$

(c) ketabton.com: The Digital Library

variables

97

12.11. practice: shell variables
1. Use echo to display Hello followed by your username. (use a bash variable!)

2. Create a variable answer with a value of 42.

3. Copy the value of $LANG to $MyLANG.

4. List all current shell variables.

5. List all exported shell variables.

6. Do the env and set commands display your variable ?

6. Destroy your answer variable.

7. Find the list of shell options in the man page of bash. What is the difference
between set -u and set -o nounset?

8. Create two variables, and export one of them.

9. Display the exported variable in an interactive child shell.

10. Create a variable, give it the value 'Dumb', create another variable with value 'do'.
Use echo and the two variables to echo Dumbledore.

11. Activate nounset in your shell. Test that it shows an error message when using
non-existing variables.

12. Deactivate nounset.

13. Find the list of backslash escaped characters in the manual of bash. Add the time
to your PS1 prompt.

14. Execute cd /var and ls in an embedded shell.

15. Create the variable embvar in an embedded shell and echo it. Does the variable
exist in your current shell now ?

16. Explain what "set -x" does. Can this be useful ?

(optional)17. Given the following screenshot, add exactly four characters to that
command line so that the total output is FirstMiddleLast.

[paul@RHEL4b ~]$ echo First; echo Middle; echo Last

18. Display a long listing (ls -l) of the passwd command using the which command
inside back ticks.

(c) ketabton.com: The Digital Library

variables

98

12.12. solution: shell variables
1. Use echo to display Hello followed by your username. (use a bash variable!)

echo Hello $USER

2. Create a variable answer with a value of 42.

answer=42

3. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

4. List all current shell variables.

set

set|more on Ubuntu/Debian

5. List all exported shell variables.

env

6. Do the env and set commands display your variable ?

env | more
set | more

6. Destroy your answer variable.

unset answer

7. Find the list of shell options in the man page of bash. What is the difference
between set -u and set -o nounset?

read the manual of bash (man bash), search for nounset -- both mean the same thing.

8. Create two variables, and export one of them.

var1=1; export var2=2

9. Display the exported variable in an interactive child shell.

bash
echo $var2

10. Create a variable, give it the value 'Dumb', create another variable with value 'do'.
Use echo and the two variables to echo Dumbledore.

varx=Dumb; vary=do

echo ${varx}le${vary}re
solution by Yves from Dexia : echo $varx'le'$vary're'
solution by Erwin from Telenet : echo "$varx"le"$vary"re

11. Activate nounset in your shell. Test that it shows an error message when using
non-existing variables.

(c) ketabton.com: The Digital Library

variables

99

set -u
OR
set -o nounset

Both these lines have the same effect.

12. Deactivate nounset.

set +u
OR
set +o nounset

13. Find the list of backslash escaped characters in the manual of bash. Add the time
to your PS1 prompt.

PS1='\t \u@\h \W$ '

14. Execute cd /var and ls in an embedded shell.

echo $(cd /var ; ls)

The echo command is only needed to show the result of the ls command. Omitting
will result in the shell trying to execute the first file as a command.

15. Create the variable embvar in an embedded shell and echo it. Does the variable
exist in your current shell now ?

$(embvar=emb;echo $embvar) ; echo $embvar (the last echo fails).

$embvar does not exist in your current shell

16. Explain what "set -x" does. Can this be useful ?

It displays shell expansion for troubleshooting your command.

(optional)17. Given the following screenshot, add exactly four characters to that
command line so that the total output is FirstMiddleLast.

[paul@RHEL4b ~]$ echo First; echo Middle; echo Last

echo -n First; echo -n Middle; echo Last

18. Display a long listing (ls -l) of the passwd command using the which command
inside back ticks.

ls -l `which passwd`

(c) ketabton.com: The Digital Library

100

Chapter 13. shell history

Table of Contents
13.1. repeating the last command ... 101
13.2. repeating other commands ... 101
13.3. history ... 101
13.4. !n ... 101
13.5. Ctrl-r ... 102
13.6. $HISTSIZE .. 102
13.7. $HISTFILE .. 102
13.8. $HISTFILESIZE .. 102
13.9. (optional)regular expressions ... 103
13.10. (optional)repeating commands in ksh .. 103
13.11. practice: shell history ... 104
13.12. solution: shell history ... 105

The shell makes it easy for us to repeat commands, this chapter explains how.

(c) ketabton.com: The Digital Library

shell history

101

13.1. repeating the last command
To repeat the last command in bash, type !!. This is pronounced as bang bang.

paul@debian5:~/test42$ echo this will be repeated > file42.txt
paul@debian5:~/test42$!!
echo this will be repeated > file42.txt
paul@debian5:~/test42$

13.2. repeating other commands
You can repeat other commands using one bang followed by one or more characters.
The shell will repeat the last command that started with those characters.

paul@debian5:~/test42$ touch file42
paul@debian5:~/test42$ cat file42
paul@debian5:~/test42$!to
touch file42
paul@debian5:~/test42$

13.3. history
To see older commands, use history to display the shell command history (or use
history n to see the last n commands).

paul@debian5:~/test$ history 10
38 mkdir test
39 cd test
40 touch file1
41 echo hello > file2
42 echo It is very cold today > winter.txt
43 ls
44 ls -l
45 cp winter.txt summer.txt
46 ls -l
47 history 10

13.4. !n
When typing ! followed by the number preceding the command you want repeated,
then the shell will echo the command and execute it.

paul@debian5:~/test$!43
ls
file1 file2 summer.txt winter.txt

(c) ketabton.com: The Digital Library

shell history

102

13.5. Ctrl-r
Another option is to use ctrl-r to search in the history. In the screenshot below i only
typed ctrl-r followed by four characters apti and it finds the last command containing
these four consecutive characters.

paul@debian5:~$
(reverse-i-search)`apti': sudo aptitude install screen

13.6. $HISTSIZE
The $HISTSIZE variable determines the number of commands that will be
remembered in your current environment. Most distributions default this variable to
500 or 1000.

paul@debian5:~$ echo $HISTSIZE
500

You can change it to any value you like.

paul@debian5:~$ HISTSIZE=15000
paul@debian5:~$ echo $HISTSIZE
15000

13.7. $HISTFILE
The $HISTFILE variable points to the file that contains your history. The bash shell
defaults this value to ~/.bash_history.

paul@debian5:~$ echo $HISTFILE
/home/paul/.bash_history

A session history is saved to this file when you exit the session!

Closing a gnome-terminal with the mouse, or typing reboot as root will NOT save
your terminal's history.

13.8. $HISTFILESIZE
The number of commands kept in your history file can be set using $HISTFILESIZE.

paul@debian5:~$ echo $HISTFILESIZE
15000

(c) ketabton.com: The Digital Library

shell history

103

13.9. (optional)regular expressions
It is possible to use regular expressions when using the bang to repeat commands.
The screenshot below switches 1 into 2.

paul@deianb5:~/test$ cat file1
paul@debian5:~/test$!c:s/1/2
cat file2
hello
paul@debian5:~/test$

13.10. (optional)repeating commands in ksh
Repeating a command in the Korn shell is very similar. The Korn shell also has the
history command, but uses the letter r to recall lines from history.

This screenshot shows the history command. Note the different meaning of the
parameter.

$ history 17
17 clear
18 echo hoi
19 history 12
20 echo world
21 history 17

Repeating with r can be combined with the line numbers given by the history
command, or with the first few letters of the command.

$ r e
echo world
world
$ cd /etc
$ r
cd /etc
$

(c) ketabton.com: The Digital Library

shell history

104

13.11. practice: shell history
1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

2. Repeat the previous command using only two characters (there are two solutions!)

3. Display the last 5 commands you typed.

4. Issue the long echo from question 1 again, using the line numbers you received
from the command in question 3.

5. How many commands can be kept in memory for your current shell session ?

6. Where are these commands stored when exiting the shell ?

7. How many commands can be written to the history file when exiting your current
shell session ?

8. Make sure your current bash shell remembers the next 5000 commands you type.

9. Open more than one console (press Ctrl-shift-t in gnome-terminal) with the same
user account. When is command history written to the history file ?

(c) ketabton.com: The Digital Library

shell history

105

13.12. solution: shell history
1. Issue the command echo The answer to the meaning of life, the universe and
everything is 42.

echo The answer to the meaning of life, the universe and everything is 42

2. Repeat the previous command using only two characters (there are two solutions!)

!!
OR
!e

3. Display the last 5 commands you typed.

paul@ubu1010:~$ history 5
 52 ls -l
 53 ls
 54 df -h | grep sda
 55 echo The answer to the meaning of life, the universe and everything is 42
 56 history 5

You will receive different line numbers.

4. Issue the long echo from question 1 again, using the line numbers you received
from the command in question 3.

paul@ubu1010:~$!56
echo The answer to the meaning of life, the universe and everything is 42
The answer to the meaning of life, the universe and everything is 42

5. How many commands can be kept in memory for your current shell session ?

echo $HISTSIZE

6. Where are these commands stored when exiting the shell ?

echo $HISTFILE

7. How many commands can be written to the history file when exiting your current
shell session ?

echo $HISTFILESIZE

8. Make sure your current bash shell remembers the next 5000 commands you type.

HISTSIZE=5000

9. Open more than one console (press Ctrl-shift-t in gnome-terminal) with the same
user account. When is command history written to the history file ?

when you type exit

(c) ketabton.com: The Digital Library

106

Chapter 14. file globbing

Table of Contents
14.1. * asterisk .. 107
14.2. ? question mark .. 107
14.3. [] square brackets ... 107
14.4. a-z and 0-9 ranges ... 108
14.5. $LANG and square brackets .. 108
14.6. preventing file globbing ... 109
14.7. practice: shell globbing .. 110
14.8. solution: shell globbing .. 111

The shell is also responsible for file globbing (or dynamic filename generation). This
chapter will explain file globbing.

(c) ketabton.com: The Digital Library

file globbing

107

14.1. * asterisk
The asterisk * is interpreted by the shell as a sign to generate filenames, matching
the asterisk to any combination of characters (even none). When no path is given,
the shell will use filenames in the current directory. See the man page of glob(7) for
more information. (This is part of LPI topic 1.103.3.)

[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls File*
File4 File55 FileA Fileab FileAB
[paul@RHELv4u3 gen]$ ls file*
file1 file2 file3 fileab fileabc
[paul@RHELv4u3 gen]$ ls *ile55
File55
[paul@RHELv4u3 gen]$ ls F*ile55
File55
[paul@RHELv4u3 gen]$ ls F*55
File55
[paul@RHELv4u3 gen]$

14.2. ? question mark
Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to
generate filenames, matching the question mark with exactly one character.

[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls File?
File4 FileA
[paul@RHELv4u3 gen]$ ls Fil?4
File4
[paul@RHELv4u3 gen]$ ls Fil??
File4 FileA
[paul@RHELv4u3 gen]$ ls File??
File55 Fileab FileAB
[paul@RHELv4u3 gen]$

14.3. [] square brackets
The square bracket [is interpreted by the shell as a sign to generate filenames,
matching any of the characters between [and the first subsequent]. The order in this
list between the brackets is not important. Each pair of brackets is replaced by exactly
one character.

[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls File[5A]
FileA
[paul@RHELv4u3 gen]$ ls File[A5]
FileA
[paul@RHELv4u3 gen]$ ls File[A5][5b]
File55
[paul@RHELv4u3 gen]$ ls File[a5][5b]
File55 Fileab

(c) ketabton.com: The Digital Library

file globbing

108

[paul@RHELv4u3 gen]$ ls File[a5][5b][abcdefghijklm]
ls: File[a5][5b][abcdefghijklm]: No such file or directory
[paul@RHELv4u3 gen]$ ls file[a5][5b][abcdefghijklm]
fileabc
[paul@RHELv4u3 gen]$

You can also exclude characters from a list between square brackets with the
exclamation mark !. And you are allowed to make combinations of these wild cards.

[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls file[a5][!Z]
fileab
[paul@RHELv4u3 gen]$ ls file[!5]*
file1 file2 file3 fileab fileabc
[paul@RHELv4u3 gen]$ ls file[!5]?
fileab
[paul@RHELv4u3 gen]$

14.4. a-z and 0-9 ranges
The bash shell will also understand ranges of characters between brackets.

[paul@RHELv4u3 gen]$ ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[paul@RHELv4u3 gen]$ ls file[a-z]*
fileab fileab2 fileabc
[paul@RHELv4u3 gen]$ ls file[0-9]
file1 file2 file3
[paul@RHELv4u3 gen]$ ls file[a-z][a-z][0-9]*
fileab2
[paul@RHELv4u3 gen]$

14.5. $LANG and square brackets
But, don't forget the influence of the LANG variable. Some languages include lower
case letters in an upper case range (and vice versa).

paul@RHELv4u4:~/test$ ls [A-Z]ile?
file1 file2 file3 File4
paul@RHELv4u4:~/test$ ls [a-z]ile?
file1 file2 file3 File4
paul@RHELv4u4:~/test$ echo $LANG
en_US.UTF-8
paul@RHELv4u4:~/test$ LANG=C
paul@RHELv4u4:~/test$ echo $LANG
C
paul@RHELv4u4:~/test$ ls [a-z]ile?
file1 file2 file3
paul@RHELv4u4:~/test$ ls [A-Z]ile?
File4
paul@RHELv4u4:~/test$

(c) ketabton.com: The Digital Library

file globbing

109

14.6. preventing file globbing
The screenshot below should be no surprise. The echo * will echo a * when in an
empty directory. And it will echo the names of all files when the directory is not
empty.

paul@ubu1010:~$ mkdir test42
paul@ubu1010:~$ cd test42
paul@ubu1010:~/test42$ echo *
*
paul@ubu1010:~/test42$ touch file42 file33
paul@ubu1010:~/test42$ echo *
file33 file42

Globbing can be prevented using quotes or by escaping the special characters, as
shown in this screenshot.

paul@ubu1010:~/test42$ echo *
file33 file42
paul@ubu1010:~/test42$ echo *
*
paul@ubu1010:~/test42$ echo '*'
*
paul@ubu1010:~/test42$ echo "*"
*

(c) ketabton.com: The Digital Library

file globbing

110

14.7. practice: shell globbing
1. Create a test directory and enter it.

2. Create files file1 file10 file11 file2 File2 File3 file33 fileAB filea fileA fileAAA
file(file 2 (the last one has 6 characters including a space)

3. List (with ls) all files starting with file

4. List (with ls) all files starting with File

5. List (with ls) all files starting with file and ending in a number.

6. List (with ls) all files starting with file and ending with a letter

7. List (with ls) all files starting with File and having a digit as fifth character.

8. List (with ls) all files starting with File and having a digit as fifth character and
nothing else.

9. List (with ls) all files starting with a letter and ending in a number.

10. List (with ls) all files that have exactly five characters.

11. List (with ls) all files that start with f or F and end with 3 or A.

12. List (with ls) all files that start with f have i or R as second character and end
in a number.

13. List all files that do not start with the letter F.

14. Copy the value of $LANG to $MyLANG.

15. Show the influence of $LANG in listing A-Z or a-z ranges.

16. You receive information that one of your servers was cracked, the cracker
probably replaced the ls command. You know that the echo command is safe to use.
Can echo replace ls ? How can you list the files in the current directory with echo ?

17. Is there another command besides cd to change directories ?

(c) ketabton.com: The Digital Library

file globbing

111

14.8. solution: shell globbing
1. Create a test directory and enter it.

mkdir testdir; cd testdir

2. Create files file1 file10 file11 file2 File2 File3 file33 fileAB filea fileA fileAAA
file(file 2 (the last one has 6 characters including a space)

touch file1 file10 file11 file2 File2 File3
touch file33 fileAB filea fileA fileAAA
touch "file("
touch "file 2"

3. List (with ls) all files starting with file

ls file*

4. List (with ls) all files starting with File

ls File*

5. List (with ls) all files starting with file and ending in a number.

ls file*[0-9]

6. List (with ls) all files starting with file and ending with a letter

ls file*[a-z]

7. List (with ls) all files starting with File and having a digit as fifth character.

ls File[0-9]*

8. List (with ls) all files starting with File and having a digit as fifth character and
nothing else.

ls File[0-9]

9. List (with ls) all files starting with a letter and ending in a number.

ls [a-z]*[0-9]

10. List (with ls) all files that have exactly five characters.

ls ?????

11. List (with ls) all files that start with f or F and end with 3 or A.

ls [fF]*[3A]

12. List (with ls) all files that start with f have i or R as second character and end
in a number.

ls f[iR]*[0-9]

13. List all files that do not start with the letter F.

ls [!F]*

(c) ketabton.com: The Digital Library

file globbing

112

14. Copy the value of $LANG to $MyLANG.

MyLANG=$LANG

15. Show the influence of $LANG in listing A-Z or a-z ranges.

see example in book

16. You receive information that one of your servers was cracked, the cracker
probably replaced the ls command. You know that the echo command is safe to use.
Can echo replace ls ? How can you list the files in the current directory with echo ?

echo *

17. Is there another command besides cd to change directories ?

pushd popd

(c) ketabton.com: The Digital Library

Part IV. pipes and commands

(c) ketabton.com: The Digital Library

114

Chapter 15. redirection and pipes

Table of Contents
15.1. stdin, stdout, and stderr .. 115
15.2. output redirection ... 115
15.3. error redirection ... 117
15.4. input redirection ... 118
15.5. confusing redirection .. 119
15.6. quick file clear ... 119
15.7. swapping stdout and stderr .. 119
15.8. pipes ... 120
15.9. practice: redirection and pipes ... 121
15.10. solution: redirection and pipes ... 122

One of the powers of the Unix command line is the use of redirection and pipes.

This chapter first explains redirection of input, output and error streams. It then
introduces pipes that consist of several commands.

(c) ketabton.com: The Digital Library

redirection and pipes

115

15.1. stdin, stdout, and stderr
The shell (and almost every other Linux command) takes input from stdin (stream
0) and sends output to stdout (stream 1) and error messages to stderr (stream 2) .

The keyboard often serves as stdin, stdout and stderr both go to the display. The
shell allows you to redirect these streams.

15.2. output redirection

> stdout

stdout can be redirected with a greater than sign. While scanning the line, the shell
will see the > sign and will clear the file.

[paul@RHELv4u3 ~]$ echo It is cold today!
It is cold today!
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$

Note that the > notation is in fact the abbreviation of 1> (stdout being referred to
as stream 1.

output file is erased

To repeat: While scanning the line, the shell will see the > sign and will clear the
file! This means that even when the command fails, the file will be cleared!

[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found
[paul@RHELv4u3 ~]$ cat winter.txt
[paul@RHELv4u3 ~]$

noclobber

Erasing a file while using > can be prevented by setting the noclobber option.

[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ set -o noclobber
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ set +o noclobber
[paul@RHELv4u3 ~]$

(c) ketabton.com: The Digital Library

redirection and pipes

116

overruling noclobber

The noclobber can be overruled with >|.

[paul@RHELv4u3 ~]$ set -o noclobber
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ echo It is very cold today! >| winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is very cold today!
[paul@RHELv4u3 ~]$

>> append

Use >> to append output to a file.

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ echo Where is the summer ? >> winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
Where is the summer ?
[paul@RHELv4u3 ~]$

(c) ketabton.com: The Digital Library

redirection and pipes

117

15.3. error redirection

2> stderr

Redirecting stderr is done with 2>. This can be very useful to prevent error messages
from cluttering your screen. The screenshot below shows redirection of stdout to a
file, and stderr to /dev/null. Writing 1> is the same as >.

[paul@RHELv4u3 ~]$ find / > allfiles.txt 2> /dev/null
[paul@RHELv4u3 ~]$

2>&1

To redirect both stdout and stderr to the same file, use 2>&1.

[paul@RHELv4u3 ~]$ find / > allfiles_and_errors.txt 2>&1
[paul@RHELv4u3 ~]$

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2)
to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error made a copy
of the standard output before the standard output was redirected to dirlist.

(c) ketabton.com: The Digital Library

redirection and pipes

118

15.4. input redirection

< stdin

Redirecting stdin is done with < (short for 0<).

[paul@RHEL4b ~]$ cat < text.txt
one
two
[paul@RHEL4b ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE
ZZO
[paul@RHEL4b ~]$

<< here document

The here document (sometimes called here-is-document) is a way to append input
until a certain sequence (usually EOF) is encountered. The EOF marker can be typed
literally or can be called with Ctrl-D.

[paul@RHEL4b ~]$ cat <<EOF > text.txt
> one
> two
> EOF
[paul@RHEL4b ~]$ cat text.txt
one
two
[paul@RHEL4b ~]$ cat <<brol > text.txt
> brel
> brol
[paul@RHEL4b ~]$ cat text.txt
brel
[paul@RHEL4b ~]$

<<< here string

The here string can be used to directly pass strings to a command. The result is the
same as using echo string | command (but you have one less process running).

paul@ubu1110~$ base64 <<< linux-training.be
bGludXgtdHJhaW5pbmcuYmUK
paul@ubu1110~$ base64 -d <<< bGludXgtdHJhaW5pbmcuYmUK
linux-training.be

See rfc 3548 for more information about base64.

(c) ketabton.com: The Digital Library

redirection and pipes

119

15.5. confusing redirection
The shell will scan the whole line before applying redirection. The following
command line is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt

But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt

Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

15.6. quick file clear
So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

15.7. swapping stdout and stderr
When filtering an output stream, e.g. through a regular pipe (|) you only can filter
stdout. Say you want to filter out some unimportant error, out of the stderr stream.
This cannot be done directly, and you need to 'swap' stdout and stderr. This can be
done by using a 4th stream referred to with number 3:

3>&1 1>&2 2>&3

This Tower Of Hanoi like construction uses a temporary stream 3, to be able to swap
stdout (1) and stderr (2). The following is an example of how to filter out all lines
in the stderr stream, containing $error.

$command 3>&1 1>&2 2>&3 | grep -v $error 3>&1 1>&2 2>&3

But in this example, it can be done in a much shorter way, by using a pipe on
STDERR:

/usr/bin/$somecommand |& grep -v $error

(c) ketabton.com: The Digital Library

redirection and pipes

120

15.8. pipes
One of the most powerful advantages of Linux is the use of pipes.

A pipe takes stdout from the previous command and sends it as stdin to the next
command. All commands in a pipe run simultaneously.

| vertical bar

Consider the following example.

paul@debian5:~/test$ ls /etc > etcfiles.txt
paul@debian5:~/test$ tail -4 etcfiles.txt
X11
xdg
xml
xpdf
paul@debian5:~/test$

This can be written in one command line using a pipe.

paul@debian5:~/test$ ls /etc | tail -4
X11
xdg
xml
xpdf
paul@debian5:~/test$

The pipe is represented by a vertical bar | between two commands.

multiple pipes

One command line can use multiple pipes. All commands in the pipe can run at the
same time.

paul@deb503:~/test$ ls /etc | tail -4 | tac
xpdf
xml
xdg
X11

(c) ketabton.com: The Digital Library

redirection and pipes

121

15.9. practice: redirection and pipes
1. Use ls to output the contents of the /etc/ directory to a file called etc.txt.

2. Activate the noclobber shell option.

3. Verify that nocclobber is active by repeating your ls on /etc/.

4. When listing all shell options, which character represents the noclobber option ?

5. Deactivate the noclobber option.

6. Make sure you have two shells open on the same computer. Create an empty
tailing.txt file. Then type tail -f tailing.txt. Use the second shell to append a line of
text to that file. Verify that the first shell displays this line.

7. Create a file that contains the names of five people. Use cat and output redirection
to create the file and use a here document to end the input.

(c) ketabton.com: The Digital Library

redirection and pipes

122

15.10. solution: redirection and pipes
1. Use ls to output the contents of the /etc/ directory to a file called etc.txt.

ls /etc > etc.txt

2. Activate the noclobber shell option.

set -o noclobber

3. Verify that nocclobber is active by repeating your ls on /etc/.

ls /etc > etc.txt (should not work)

4. When listing all shell options, which character represents the noclobber option ?

echo $- (noclobber is visible as C)

5. Deactivate the noclobber option.

set +o noclobber

6. Make sure you have two shells open on the same computer. Create an empty
tailing.txt file. Then type tail -f tailing.txt. Use the second shell to append a line of
text to that file. Verify that the first shell displays this line.

paul@deb503:~$ > tailing.txt
paul@deb503:~$ tail -f tailing.txt
hello
world

in the other shell:
paul@deb503:~$ echo hello >> tailing.txt
paul@deb503:~$ echo world >> tailing.txt

7. Create a file that contains the names of five people. Use cat and output redirection
to create the file and use a here document to end the input.

paul@deb503:~$ cat > tennis.txt << ace
> Justine Henin
> Venus Williams
> Serena Williams
> Martina Hingis
> Kim Clijsters
> ace
paul@deb503:~$ cat tennis.txt
Justine Henin
Venus Williams
Serena Williams
Martina Hingis
Kim Clijsters
paul@deb503:~$

(c) ketabton.com: The Digital Library

123

Chapter 16. filters

Table of Contents
16.1. cat ... 124
16.2. tee ... 124
16.3. grep ... 124
16.4. cut ... 126
16.5. tr ... 126
16.6. wc ... 127
16.7. sort .. 128
16.8. uniq ... 129
16.9. comm .. 129
16.10. od .. 130
16.11. sed .. 131
16.12. pipe examples ... 132
16.13. practice: filters ... 133
16.14. solution: filters ... 134

Commands that are created to be used with a pipe are often called filters. These
filters are very small programs that do one specific thing very efficiently. They can
be used as building blocks.

This chapter will introduce you to the most common filters. The combination of
simple commands and filters in a long pipe allows you to design elegant solutions.

(c) ketabton.com: The Digital Library

filters

124

16.1. cat
When between two pipes, the cat command does nothing (except putting stdin on
stdout.

[paul@RHEL4b pipes]$ tac count.txt | cat | cat | cat | cat | cat
five
four
three
two
one
[paul@RHEL4b pipes]$

16.2. tee
Writing long pipes in Unix is fun, but sometimes you might want intermediate results.
This is were tee comes in handy. The tee filter puts stdin on stdout and also into a
file. So tee is almost the same as cat, except that it has two identical outputs.

[paul@RHEL4b pipes]$ tac count.txt | tee temp.txt | tac
one
two
three
four
five
[paul@RHEL4b pipes]$ cat temp.txt
five
four
three
two
one
[paul@RHEL4b pipes]$

16.3. grep
The grep filter is famous among Unix users. The most common use of grep is to
filter lines of text containing (or not containing) a certain string.

[paul@RHEL4b pipes]$ cat tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa
Venus Williams, USA

You can write this without the cat.

[paul@RHEL4b pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA

One of the most useful options of grep is grep -i which filters in a case insensitive
way.

(c) ketabton.com: The Digital Library

filters

125

[paul@RHEL4b pipes]$ grep Bel tennis.txt
Justine Henin, Bel
[paul@RHEL4b pipes]$ grep -i Bel tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$

Another very useful option is grep -v which outputs lines not matching the string.

[paul@RHEL4b pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$

And of course, both options can be combined to filter all lines not containing a case
insensitive string.

[paul@RHEL4b pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$

With grep -A1 one line after the result is also displayed.

paul@debian5:~/pipes$ grep -A1 Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 one line before the result is also displayed.

paul@debian5:~/pipes$ grep -B1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three
options (A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

paul@debian5:~/pipes$ grep -C1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa

(c) ketabton.com: The Digital Library

filters

126

16.4. cut
The cut filter can select columns from files, depending on a delimiter or a count of
bytes. The screenshot below uses cut to filter for the username and userid in the /etc/
passwd file. It uses the colon as a delimiter, and selects fields 1 and 3.

[[paul@RHEL4b pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510
Pfaff:511
Harry:516
Hermione:517
[paul@RHEL4b pipes]$

When using a space as the delimiter for cut, you have to quote the space.

[paul@RHEL4b pipes]$ cut -d" " -f1 tennis.txt
Amelie
Kim
Justine
Serena
Venus
[paul@RHEL4b pipes]$

This example uses cut to display the second to the seventh character of /etc/passwd.

[paul@RHEL4b pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:
faff:x
arry:x
ermion
[paul@RHEL4b pipes]$

16.5. tr
You can translate characters with tr. The screenshot shows the translation of all
occurrences of e to E.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'e' 'E'
AmEliE MaurEsmo, Fra
Kim ClijstErs, BEL
JustinE HEnin, BEl
SErEna Williams, usa
VEnus Williams, USA

Here we set all letters to uppercase by defining two ranges.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA
KIM CLIJSTERS, BEL
JUSTINE HENIN, BEL
SERENA WILLIAMS, USA
VENUS WILLIAMS, USA
[paul@RHEL4b pipes]$

Here we translate all newlines to spaces.

[paul@RHEL4b pipes]$ cat count.txt
one

(c) ketabton.com: The Digital Library

filters

127

two
three
four
five
[paul@RHEL4b pipes]$ cat count.txt | tr '\n' ' '
one two three four five [paul@RHEL4b pipes]$

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

[paul@RHEL4b pipes]$ cat spaces.txt
one two three
 four five six
[paul@RHEL4b pipes]$ cat spaces.txt | tr -s ' '
one two three
 four five six
[paul@RHEL4b pipes]$

You can also use tr to 'encrypt' texts with rot13.

[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'nopqrstuvwxyzabcdefghijklm'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'n-za-m'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$

This last example uses tr -d to delete characters.

paul@debian5:~/pipes$ cat tennis.txt | tr -d e
Amli Maursmo, Fra
Kim Clijstrs, BEL
Justin Hnin, Bl
Srna Williams, usa
Vnus Williams, USA

16.6. wc
Counting words, lines and characters is easy with wc.

[paul@RHEL4b pipes]$ wc tennis.txt
 5 15 100 tennis.txt
[paul@RHEL4b pipes]$ wc -l tennis.txt
5 tennis.txt
[paul@RHEL4b pipes]$ wc -w tennis.txt
15 tennis.txt
[paul@RHEL4b pipes]$ wc -c tennis.txt
100 tennis.txt
[paul@RHEL4b pipes]$

(c) ketabton.com: The Digital Library

filters

128

16.7. sort
The sort filter will default to an alphabetical sort.

paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Led Zeppelin
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Led Zeppelin
Queen

But the sort filter has many options to tweak its usage. This example shows sorting
different columns (column 1 or column 2).

[paul@RHEL4b pipes]$ sort -k1 country.txt
Belgium, Brussels, 10
France, Paris, 60
Germany, Berlin, 100
Iran, Teheran, 70
Italy, Rome, 50
[paul@RHEL4b pipes]$ sort -k2 country.txt
Germany, Berlin, 100
Belgium, Brussels, 10
France, Paris, 60
Italy, Rome, 50
Iran, Teheran, 70

The screenshot below shows the difference between an alphabetical sort and a
numerical sort (both on the third column).

[paul@RHEL4b pipes]$ sort -k3 country.txt
Belgium, Brussels, 10
Germany, Berlin, 100
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
[paul@RHEL4b pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
Germany, Berlin, 100

(c) ketabton.com: The Digital Library

filters

129

16.8. uniq
With uniq you can remove duplicates from a sorted list.

paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Queen
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Queen
Queen
paul@debian5:~/pipes$ sort music.txt |uniq
Abba
Brel
Queen

uniq can also count occurrences with the -c option.

paul@debian5:~/pipes$ sort music.txt |uniq -c
 1 Abba
 1 Brel
 2 Queen

16.9. comm
Comparing streams (or files) can be done with the comm. By default comm will
output three columns. In this example, Abba, Cure and Queen are in both lists, Bowie
and Sweet are only in the first file, Turner is only in the second.

paul@debian5:~/pipes$ cat > list1.txt
Abba
Bowie
Cure
Queen
Sweet
paul@debian5:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
paul@debian5:~/pipes$ comm list1.txt list2.txt
 Abba
Bowie
 Cure
 Queen
Sweet
 Turner

(c) ketabton.com: The Digital Library

filters

130

The output of comm can be easier to read when outputting only a single column. The
digits point out which output columns should not be displayed.

paul@debian5:~/pipes$ comm -12 list1.txt list2.txt
Abba
Cure
Queen
paul@debian5:~/pipes$ comm -13 list1.txt list2.txt
Turner
paul@debian5:~/pipes$ comm -23 list1.txt list2.txt
Bowie
Sweet

16.10. od
European humans like to work with ascii characters, but computers store files in bytes.
The example below creates a simple file, and then uses od to show the contents of
the file in hexadecimal bytes

paul@laika:~/test$ cat > text.txt
abcdefg
1234567
paul@laika:~/test$ od -t x1 text.txt
0000000 61 62 63 64 65 66 67 0a 31 32 33 34 35 36 37 0a
0000020

The same file can also be displayed in octal bytes.

paul@laika:~/test$ od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020

And here is the file in ascii (or backslashed) characters.

paul@laika:~/test$ od -c text.txt
0000000 a b c d e f g \n 1 2 3 4 5 6 7 \n
0000020

(c) ketabton.com: The Digital Library

filters

131

16.11. sed
The stream editor sed can perform editing functions in the stream, using regular
expressions.

paul@debian5:~/pipes$ echo level5 | sed 's/5/42/'
level42
paul@debian5:~/pipes$ echo level5 | sed 's/level/jump/'
jump5

Add g for global replacements (all occurrences of the string per line).

paul@debian5:~/pipes$ echo level5 level7 | sed 's/level/jump/'
jump5 level7
paul@debian5:~/pipes$ echo level5 level7 | sed 's/level/jump/g'
jump5 jump7

With d you can remove lines from a stream containing a character.

paul@debian5:~/test42$ cat tennis.txt
Venus Williams, USA
Martina Hingis, SUI
Justine Henin, BE
Serena williams, USA
Kim Clijsters, BE
Yanina Wickmayer, BE
paul@debian5:~/test42$ cat tennis.txt | sed '/BE/d'
Venus Williams, USA
Martina Hingis, SUI
Serena williams, USA

(c) ketabton.com: The Digital Library

filters

132

16.12. pipe examples

who | wc

How many users are logged on to this system ?

[paul@RHEL4b pipes]$ who
root tty1 Jul 25 10:50
paul pts/0 Jul 25 09:29 (laika)
Harry pts/1 Jul 25 12:26 (barry)
paul pts/2 Jul 25 12:26 (pasha)
[paul@RHEL4b pipes]$ who | wc -l
4

who | cut | sort

Display a sorted list of logged on users.

[paul@RHEL4b pipes]$ who | cut -d' ' -f1 | sort
Harry
paul
paul
root

Display a sorted list of logged on users, but every user only once .

[paul@RHEL4b pipes]$ who | cut -d' ' -f1 | sort | uniq
Harry
paul
root

grep | cut

Display a list of all bash user accounts on this computer. Users accounts are
explained in detail later.

paul@debian5:~$ grep bash /etc/passwd
root:x:0:0:root:/root:/bin/bash
paul:x:1000:1000:paul,,,:/home/paul:/bin/bash
serena:x:1001:1001::/home/serena:/bin/bash
paul@debian5:~$ grep bash /etc/passwd | cut -d: -f1
root
paul
serena

(c) ketabton.com: The Digital Library

filters

133

16.13. practice: filters
1. Put a sorted list of all bash users in bashusers.txt.

2. Put a sorted list of all logged on users in onlineusers.txt.

3. Make a list of all filenames in /etc that contain the string samba.

4. Make a sorted list of all files in /etc that contain the case insensitive string samba.

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and
the subnet mask.

6. Write a line that removes all non-letters from a stream.

7. Write a line that receives a text file, and outputs all words on a separate line.

8. Write a spell checker on the command line. (There might be a dictionary in /usr/
share/dict/ .)

(c) ketabton.com: The Digital Library

filters

134

16.14. solution: filters
1. Put a sorted list of all bash users in bashusers.txt.

grep bash /etc/passwd | cut -d: -f1 | sort > bashusers.txt

2. Put a sorted list of all logged on users in onlineusers.txt.

who | cut -d' ' -f1 | sort > onlineusers.txt

3. Make a list of all filenames in /etc that contain the string samba.

ls /etc | grep samba

4. Make a sorted list of all files in /etc that contain the case insensitive string samba.

ls /etc | grep -i samba | sort

5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and
the subnet mask.

/sbin/ifconfig | head -2 | grep 'inet ' | tr -s ' ' | cut -d' ' -f3,5

6. Write a line that removes all non-letters from a stream.

paul@deb503:~$ cat text
This is, yes really! , a text with ?&* too many str$ange# characters ;-)
paul@deb503:~$ cat text | tr -d ',!$?.*&^%#@;()-'
This is yes really a text with too many strange characters

7. Write a line that receives a text file, and outputs all words on a separate line.

paul@deb503:~$ cat text2
it is very cold today without the sun

paul@deb503:~$ cat text2 | tr ' ' '\n'
it
is
very
cold
today
without
the
sun

8. Write a spell checker on the command line. (There might be a dictionary in /usr/
share/dict/ .)

paul@rhel ~$ echo "The zun is shining today" > text

paul@rhel ~$ cat > DICT
is
shining
sun
the
today

(c) ketabton.com: The Digital Library

filters

135

paul@rhel ~$ cat text | tr 'A-Z ' 'a-z\n' | sort | uniq | comm -23 - DICT
zun

You could also add the solution from question number 6 to remove non-letters, and
tr -s ' ' to remove redundant spaces.

(c) ketabton.com: The Digital Library

136

Chapter 17. basic Unix tools

Table of Contents
17.1. find ... 137
17.2. locate .. 138
17.3. date ... 138
17.4. cal ... 139
17.5. sleep ... 139
17.6. time ... 139
17.7. gzip - gunzip .. 140
17.8. zcat - zmore ... 140
17.9. bzip2 - bunzip2 .. 141
17.10. bzcat - bzmore ... 141
17.11. practice: basic Unix tools .. 142
17.12. solution: basic Unix tools .. 143

This chapter introduces commands to find or locate files and to compress files,
together with other common tools that were not discussed before. While the tools
discussed here are technically not considered filters, they can be used in pipes.

(c) ketabton.com: The Digital Library

basic Unix tools

137

17.1. find
The find command can be very useful at the start of a pipe to search for files. Here are
some examples. You might want to add 2>/dev/null to the command lines to avoid
cluttering your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

find /etc > etcfiles.txt

Find all files of the entire system and put the list in allfiles.txt

find / > allfiles.txt

Find files that end in .conf in the current directory (and all subdirs).

find . -name "*.conf"

Find files of type file (not directory, pipe or etc.) that end in .conf.

find . -type f -name "*.conf"

Find files of type directory that end in .bak .

find /data -type d -name "*.bak"

Find files that are newer than file42.txt

find . -newer file42.txt

Find can also execute another command on every file found. This example will look
for *.odf files and copy them to /backup/.

find /data -name "*.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found.
This example will remove *.odf files if you approve of it for every file found.

find /data -name "*.odf" -ok rm {} \;

(c) ketabton.com: The Digital Library

basic Unix tools

138

17.2. locate
The locate tool is very different from find in that it uses an index to locate files. This
is a lot faster than traversing all the directories, but it also means that it is always
outdated. If the index does not exist yet, then you have to create it (as root on Red
Hat Enterprise Linux) with the updatedb command.

[paul@RHEL4b ~]$ locate Samba
warning: locate: could not open database: /var/lib/slocate/slocate.db:...
warning: You need to run the 'updatedb' command (as root) to create th...
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[paul@RHEL4b ~]$ updatedb
fatal error: updatedb: You are not authorized to create a default sloc...
[paul@RHEL4b ~]$ su -
Password:
[root@RHEL4b ~]# updatedb
[root@RHEL4b ~]#

Most Linux distributions will schedule the updatedb to run once every day.

17.3. date
The date command can display the date, time, time zone and more.

paul@rhel55 ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customised to display the format of your choice. Check the man
page for more options.

paul@rhel55 ~$ date +'%A %d-%m-%Y'
Saturday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second
being the first second of the first of January 1970). Use date +%s to display Unix
time in seconds.

paul@rhel55 ~$ date +%s
1271501080

When will this seconds counter reach two thousand million ?

paul@rhel55 ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

(c) ketabton.com: The Digital Library

basic Unix tools

139

17.4. cal
The cal command displays the current month, with the current day highlighted.

paul@rhel55 ~$ cal
 April 2010
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

You can select any month in the past or the future.

paul@rhel55 ~$ cal 2 1970
 February 1970
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

17.5. sleep
The sleep command is sometimes used in scripts to wait a number of seconds. This
example shows a five second sleep.

paul@rhel55 ~$ sleep 5
paul@rhel55 ~$

17.6. time
The time command can display how long it takes to execute a command. The date
command takes only a little time.

paul@rhel55 ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real 0m0.014s
user 0m0.008s
sys 0m0.006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu
time.

paul@rhel55 ~$ time sleep 5

real 0m5.018s
user 0m0.005s
sys 0m0.011s

(c) ketabton.com: The Digital Library

basic Unix tools

140

This bzip2 command compresses a file and uses a lot of cpu time.

paul@rhel55 ~$ time bzip2 text.txt

real 0m2.368s
user 0m0.847s
sys 0m0.539s

17.7. gzip - gunzip
Users never have enough disk space, so compression comes in handy. The gzip
command can make files take up less space.

paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
paul@rhel55 ~$ gzip text.txt
paul@rhel55 ~$ ls -lh text.txt.gz
-rw-rw-r-- 1 paul paul 760K Apr 17 13:11 text.txt.gz

You can get the original back with gunzip.

paul@rhel55 ~$ gunzip text.txt.gz
paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

17.8. zcat - zmore
Text files that are compressed with gzip can be viewed with zcat and zmore.

paul@rhel55 ~$ head -4 text.txt
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
paul@rhel55 ~$ gzip text.txt
paul@rhel55 ~$ zcat text.txt.gz | head -4
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

(c) ketabton.com: The Digital Library

basic Unix tools

141

17.9. bzip2 - bunzip2
Files can also be compressed with bzip2 which takes a little more time than gzip,
but compresses better.

paul@rhel55 ~$ bzip2 text.txt
paul@rhel55 ~$ ls -lh text.txt.bz2
-rw-rw-r-- 1 paul paul 569K Apr 17 13:11 text.txt.bz2

Files can be uncompressed again with bunzip2.

paul@rhel55 ~$ bunzip2 text.txt.bz2
paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt

17.10. bzcat - bzmore
And in the same way bzcat and bzmore can display files compressed with bzip2.

paul@rhel55 ~$ bzip2 text.txt
paul@rhel55 ~$ bzcat text.txt.bz2 | head -4
/
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh

(c) ketabton.com: The Digital Library

basic Unix tools

142

17.11. practice: basic Unix tools
1. Explain the difference between these two commands. This question is very
important. If you don't know the answer, then look back at the shell chapter.

find /data -name "*.txt"

find /data -name *.txt

2. Explain the difference between these two statements. Will they both work when
there are 200 .odf files in /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data/*.odf > data_odf.txt

3. Write a find command that finds all files created after January 30th 2010.

4. Write a find command that finds all *.odf files created in September 2009.

5. Count the number of *.conf files in /etc and all its subdirs.

6. Two commands that do the same thing: copy *.odf files to /backup/ . What would
be a reason to replace the first command with the second ? Again, this is an important
question.

cp -r /data/*.odf /backup/

find /data -name "*.odf" -exec cp {} /backup/ \;

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How
do you make locate find this file ?

8. Use find and -exec to rename all .htm files to .html.

9. Issue the date command. Now display the date in YYYY/MM/DD format.

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything
special ?

(c) ketabton.com: The Digital Library

basic Unix tools

143

17.12. solution: basic Unix tools
1. Explain the difference between these two commands. This question is very
important. If you don't know the answer, then look back at the shell chapter.

find /data -name "*.txt"

find /data -name *.txt

When *.txt is quoted then the shell will not touch it. The find tool will look in the
/data for all files ending in .txt.

When *.txt is not quoted then the shell might expand this (when one or more files
that ends in .txt exist in the current directory). The find might show a different result,
or can result in a syntax error.

2. Explain the difference between these two statements. Will they both work when
there are 200 .odf files in /data ? How about when there are 2 million .odf files ?

find /data -name "*.odf" > data_odf.txt

find /data/*.odf > data_odf.txt

The first find will output all .odf filenames in /data and all subdirectories. The shell
will redirect this to a file.

The second find will output all files named .odf in /data and will also output all files
that exist in directories named *.odf (in /data).

With two million files the command line would be expanded beyond the maximum
that the shell can accept. The last part of the command line would be lost.

3. Write a find command that finds all files created after January 30th 2010.

touch -t 201001302359 marker_date
find . -type f -newer marker_date

There is another solution :
find . -type f -newerat "20100130 23:59:59"

4. Write a find command that finds all *.odf files created in September 2009.

touch -t 200908312359 marker_start
touch -t 200910010000 marker_end
find . -type f -name "*.odf" -newer marker_start ! -newer marker_end

The exclamation mark ! -newer can be read as not newer.

5. Count the number of *.conf files in /etc and all its subdirs.

find /etc -type f -name '*.conf' | wc -l

6. Two commands that do the same thing: copy *.odf files to /backup/ . What would
be a reason to replace the first command with the second ? Again, this is an important
question.

cp -r /data/*.odf /backup/

(c) ketabton.com: The Digital Library

basic Unix tools

144

find /data -name "*.odf" -exec cp {} /backup/ \;

The first might fail when there are too many files to fit on one command line.

7. Create a file called loctest.txt. Can you find this file with locate ? Why not ? How
do you make locate find this file ?

You cannot locate this with locate because it is not yet in the index.

updatedb

8. Use find and -exec to rename all .htm files to .html.

paul@rhel55 ~$ find . -name '*.htm'
./one.htm
./two.htm
paul@rhel55 ~$ find . -name '*.htm' -exec mv {} {}l \;
paul@rhel55 ~$ find . -name '*.htm*'
./one.html
./two.html

9. Issue the date command. Now display the date in YYYY/MM/DD format.

date +%Y/%m/%d

10. Issue the cal command. Display a calendar of 1582 and 1752. Notice anything
special ?

cal 1582

The calendars are different depending on the country. Check http://linux-training.be/
files/studentfiles/dates.txt

(c) ketabton.com: The Digital Library

Part V. vi

(c) ketabton.com: The Digital Library

146

Chapter 18. Introduction to vi

Table of Contents
18.1. command mode and insert mode ... 147
18.2. start typing (a A i I o O) ... 147
18.3. replace and delete a character (r x X) .. 148
18.4. undo and repeat (u .) .. 148
18.5. cut, copy and paste a line (dd yy p P) ... 148
18.6. cut, copy and paste lines (3dd 2yy) ... 149
18.7. start and end of a line (0 or ^ and $) ... 149
18.8. join two lines (J) and more .. 149
18.9. words (w b) .. 150
18.10. save (or not) and exit (:w :q :q!) ... 150
18.11. Searching (/ ?) .. 151
18.12. replace all (:1,$ s/foo/bar/g) ... 151
18.13. reading files (:r :r !cmd) ... 151
18.14. text buffers ... 152
18.15. multiple files .. 152
18.16. abbreviations .. 152
18.17. key mappings ... 153
18.18. setting options .. 153
18.19. practice: vi(m) .. 154
18.20. solution: vi(m) .. 155

The vi editor is installed on almost every Unix. Linux will very often install vim (vi
improved) which is similar. Every system administrator should know vi(m), because
it is an easy tool to solve problems.

The vi editor is not intuitive, but once you get to know it, vi becomes a very powerful
application. Most Linux distributions will include the vimtutor which is a 45 minute
lesson in vi(m).

(c) ketabton.com: The Digital Library

Introduction to vi

147

18.1. command mode and insert mode
The vi editor starts in command mode. In command mode, you can type commands.
Some commands will bring you into insert mode. In insert mode, you can type text.
The escape key will return you to command mode.

Table 18.1. getting to command mode

key action

Esc set vi(m) in command mode.

18.2. start typing (a A i I o O)
The difference between a A i I o and O is the location where you can start typing.
a will append after the current character and A will append at the end of the line. i
will insert before the current character and I will insert at the beginning of the line.
o will put you in a new line after the current line and O will put you in a new line
before the current line.

Table 18.2. switch to insert mode

command action

a start typing after the current character

A start typing at the end of the current line

i start typing before the current character

I start typing at the start of the current line

o start typing on a new line after the current line

O start typing on a new line before the current line

(c) ketabton.com: The Digital Library

Introduction to vi

148

18.3. replace and delete a character (r x X)
When in command mode (it doesn't hurt to hit the escape key more than once) you
can use the x key to delete the current character. The big X key (or shift x) will delete
the character left of the cursor. Also when in command mode, you can use the r key
to replace one single character. The r key will bring you in insert mode for just one
key press, and will return you immediately to command mode.

Table 18.3. replace and delete

command action

x delete the character below the cursor

X delete the character before the cursor

r replace the character below the cursor

p paste after the cursor (here the last deleted character)

xp switch two characters

18.4. undo and repeat (u .)
When in command mode, you can undo your mistakes with u. You can do your
mistakes twice with . (in other words, the . will repeat your last command).

Table 18.4. undo and repeat

command action

u undo the last action

. repeat the last action

18.5. cut, copy and paste a line (dd yy p P)
When in command mode, dd will cut the current line. yy will copy the current line.
You can paste the last copied or cut line after (p) or before (P) the current line.

Table 18.5. cut, copy and paste a line

command action

dd cut the current line

yy (yank yank) copy the current line

p paste after the current line

P paste before the current line

(c) ketabton.com: The Digital Library

Introduction to vi

149

18.6. cut, copy and paste lines (3dd 2yy)
When in command mode, before typing dd or yy, you can type a number to repeat
the command a number of times. Thus, 5dd will cut 5 lines and 4yy will copy (yank)
4 lines. That last one will be noted by vi in the bottom left corner as "4 line yanked".

Table 18.6. cut, copy and paste lines

command action

3dd cut three lines

4yy copy four lines

18.7. start and end of a line (0 or ^ and $)
When in command mode, the 0 and the caret ̂ will bring you to the start of the current
line, whereas the $ will put the cursor at the end of the current line. You can add 0 and
$ to the d command, d0 will delete every character between the current character and
the start of the line. Likewise d$ will delete everything from the current character till
the end of the line. Similarly y0 and y$ will yank till start and end of the current line.

Table 18.7. start and end of line

command action

0 jump to start of current line

^ jump to start of current line

$ jump to end of current line

d0 delete until start of line

d$ delete until end of line

18.8. join two lines (J) and more
When in command mode, pressing J will append the next line to the current line.
With yyp you duplicate a line and with ddp you switch two lines.

Table 18.8. join two lines

command action

J join two lines

yyp duplicate a line

ddp switch two lines

(c) ketabton.com: The Digital Library

Introduction to vi

150

18.9. words (w b)

When in command mode, w will jump to the next word and b will move to the
previous word. w and b can also be combined with d and y to copy and cut words
(dw db yw yb).

Table 18.9. words

command action

w forward one word

b back one word

3w forward three words

dw delete one word

yw yank (copy) one word

5yb yank five words back

7dw delete seven words

18.10. save (or not) and exit (:w :q :q!)

Pressing the colon : will allow you to give instructions to vi (technically speaking,
typing the colon will open the ex editor). :w will write (save) the file, :q will quit an
unchanged file without saving, and :q! will quit vi discarding any changes. :wq will
save and quit and is the same as typing ZZ in command mode.

Table 18.10. save and exit vi

command action

:w save (write)

:w fname save as fname

:q quit

:wq save and quit

ZZ save and quit

:q! quit (discarding your changes)

:w! save (and write to non-writable file!)

The last one is a bit special. With :w! vi will try to chmod the file to get write
permission (this works when you are the owner) and will chmod it back when the
write succeeds. This should always work when you are root (and the file system is
writable).

(c) ketabton.com: The Digital Library

Introduction to vi

151

18.11. Searching (/ ?)

When in command mode typing / will allow you to search in vi for strings (can be
a regular expression). Typing /foo will do a forward search for the string foo and
typing ?bar will do a backward search for bar.

Table 18.11. searching

command action

/string forward search for string

?string backward search for string

n go to next occurrence of search string

/^string forward search string at beginning of line

/string$ forward search string at end of line

/br[aeio]l search for bral brel bril and brol

/\<he\> search for the word he (and not for here or the)

18.12. replace all (:1,$ s/foo/bar/g)

To replace all occurrences of the string foo with bar, first switch to ex mode with : .
Then tell vi which lines to use, for example 1,$ will do the replace all from the first
to the last line. You can write 1,5 to only process the first five lines. The s/foo/bar/
g will replace all occurrences of foo with bar.

Table 18.12. replace

command action

:4,8 s/foo/bar/g replace foo with bar on lines 4 to 8

:1,$ s/foo/bar/g replace foo with bar on all lines

18.13. reading files (:r :r !cmd)

When in command mode, :r foo will read the file named foo, :r !foo will execute the
command foo. The result will be put at the current location. Thus :r !ls will put a
listing of the current directory in your text file.

Table 18.13. read files and input

command action

:r fname (read) file fname and paste contents

:r !cmd execute cmd and paste its output

(c) ketabton.com: The Digital Library

Introduction to vi

152

18.14. text buffers
There are 36 buffers in vi to store text. You can use them with the " character.

Table 18.14. text buffers

command action

"add delete current line and put text in buffer a

"g7yy copy seven lines into buffer g

"ap paste from buffer a

18.15. multiple files
You can edit multiple files with vi. Here are some tips.

Table 18.15. multiple files

command action

vi file1 file2 file3 start editing three files

:args lists files and marks active file

:n start editing the next file

:e toggle with last edited file

:rew rewind file pointer to first file

18.16. abbreviations
With :ab you can put abbreviations in vi. Use :una to undo the abbreviation.

Table 18.16. abbreviations

command action

:ab str long string abbreviate str to be 'long string'

:una str un-abbreviate str

(c) ketabton.com: The Digital Library

Introduction to vi

153

18.17. key mappings
Similarly to their abbreviations, you can use mappings with :map for command mode
and :map! for insert mode.

This example shows how to set the F6 function key to toggle between set number
and set nonumber. The <bar> separates the two commands, set number! toggles
the state and set number? reports the current state.

:map <F6> :set number!<bar>set number?<CR>

18.18. setting options
Some options that you can set in vim.

:set number (also try :se nu)
:set nonumber
:syntax on
:syntax off
:set all (list all options)
:set tabstop=8
:set tx (CR/LF style endings)
:set notx

You can set these options (and much more) in ~/.vimrc for vim or in ~/.exrc for
standard vi.

paul@barry:~$ cat ~/.vimrc
set number
set tabstop=8
set textwidth=78
map <F6> :set number!<bar>set number?<CR>
paul@barry:~$

(c) ketabton.com: The Digital Library

Introduction to vi

154

18.19. practice: vi(m)
1. Start the vimtutor and do some or all of the exercises. You might need to run
aptitude install vim on xubuntu.

2. What 3 key combination in command mode will duplicate the current line.

3. What 3 key combination in command mode will switch two lines' place (line five
becomes line six and line six becomes line five).

4. What 2 key combination in command mode will switch a character's place with
the next one.

5. vi can understand macro's. A macro can be recorded with q followed by the name
of the macro. So qa will record the macro named a. Pressing q again will end the
recording. You can recall the macro with @ followed by the name of the macro. Try
this example: i 1 'Escape Key' qa yyp 'Ctrl a' q 5@a (Ctrl a will increase the number
with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use
the arrow keys to select a Visual Block, you can copy this with y or delete it with
d. Try pasting it.

7. What does dwwP do when you are at the beginning of a word in a sentence ?

(c) ketabton.com: The Digital Library

Introduction to vi

155

18.20. solution: vi(m)
1. Start the vimtutor and do some or all of the exercises. You might need to run
aptitude install vim on xubuntu.

vimtutor

2. What 3 key combination in command mode will duplicate the current line.

yyp

3. What 3 key combination in command mode will switch two lines' place (line five
becomes line six and line six becomes line five).

ddp

4. What 2 key combination in command mode will switch a character's place with
the next one.

xp

5. vi can understand macro's. A macro can be recorded with q followed by the name
of the macro. So qa will record the macro named a. Pressing q again will end the
recording. You can recall the macro with @ followed by the name of the macro. Try
this example: i 1 'Escape Key' qa yyp 'Ctrl a' q 5@a (Ctrl a will increase the number
with one).

6. Copy /etc/passwd to your ~/passwd. Open the last one in vi and press Ctrl v. Use
the arrow keys to select a Visual Block, you can copy this with y or delete it with
d. Try pasting it.

cp /etc/passwd ~
vi passwd
(press Ctrl-V)

7. What does dwwP do when you are at the beginning of a word in a sentence ?

dwwP can switch the current word with the next word.

(c) ketabton.com: The Digital Library

Part VI. scripting

(c) ketabton.com: The Digital Library

157

Chapter 19. scripting introduction

Table of Contents
19.1. prerequisites ... 158
19.2. hello world ... 158
19.3. she-bang ... 158
19.4. comment ... 159
19.5. variables ... 159
19.6. sourcing a script ... 159
19.7. troubleshooting a script .. 160
19.8. prevent setuid root spoofing .. 160
19.9. practice: introduction to scripting .. 161
19.10. solution: introduction to scripting .. 162

Shells like bash and Korn have support for programming constructs that can be saved
as scripts. These scripts in turn then become more shell commands. Many Linux
commands are scripts. User profile scripts are run when a user logs on and init
scripts are run when a daemon is stopped or started.

This means that system administrators also need basic knowledge of scripting to
understand how their servers and their applications are started, updated, upgraded,
patched, maintained, configured and removed, and also to understand how a user
environment is built.

The goal of this chapter is to give you enough information to be able to read and
understand scripts. Not to become a writer of complex scripts.

(c) ketabton.com: The Digital Library

scripting introduction

158

19.1. prerequisites
You should have read and understood part III shell expansion and part IV pipes
and commands before starting this chapter.

19.2. hello world
Just like in every programming course, we start with a simple hello_world script.
The following script will output Hello World.

echo Hello World

After creating this simple script in vi or with echo, you'll have to chmod +x
hello_world to make it executable. And unless you add the scripts directory to your
path, you'll have to type the path to the script for the shell to be able to find it.

[paul@RHEL4a ~]$ echo echo Hello World > hello_world
[paul@RHEL4a ~]$ chmod +x hello_world
[paul@RHEL4a ~]$./hello_world
Hello World
[paul@RHEL4a ~]$

19.3. she-bang
Let's expand our example a little further by putting #!/bin/bash on the first line of
the script. The #! is called a she-bang (sometimes called sha-bang), where the she-
bang is the first two characters of the script.

#!/bin/bash
echo Hello World

You can never be sure which shell a user is running. A script that works flawlessly
in bash might not work in ksh, csh, or dash. To instruct a shell to run your script in
a certain shell, you can start your script with a she-bang followed by the shell it is
supposed to run in. This script will run in a bash shell.

#!/bin/bash
echo -n hello
echo A bash subshell `echo -n hello`

This script will run in a Korn shell (unless /bin/ksh is a hard link to /bin/bash). The
/etc/shells file contains a list of shells on your system.

#!/bin/ksh
echo -n hello
echo a Korn subshell `echo -n hello`

(c) ketabton.com: The Digital Library

scripting introduction

159

19.4. comment
Let's expand our example a little further by adding comment lines.

#!/bin/bash
#
Hello World Script
#
echo Hello World

19.5. variables
Here is a simple example of a variable inside a script.

#!/bin/bash
#
simple variable in script
#
var1=4
echo var1 = $var1

Scripts can contain variables, but since scripts are run in their own shell, the variables
do not survive the end of the script.

[paul@RHEL4a ~]$ echo $var1

[paul@RHEL4a ~]$./vars
var1 = 4
[paul@RHEL4a ~]$ echo $var1

[paul@RHEL4a ~]$

19.6. sourcing a script
Luckily, you can force a script to run in the same shell; this is called sourcing a script.

[paul@RHEL4a ~]$ source ./vars
var1 = 4
[paul@RHEL4a ~]$ echo $var1
4
[paul@RHEL4a ~]$

The above is identical to the below.

[paul@RHEL4a ~]$. ./vars
var1 = 4
[paul@RHEL4a ~]$ echo $var1
4
[paul@RHEL4a ~]$

(c) ketabton.com: The Digital Library

scripting introduction

160

19.7. troubleshooting a script
Another way to run a script in a separate shell is by typing bash with the name of
the script as a parameter.

paul@debian6~/test$ bash runme
42

Expanding this to bash -x allows you to see the commands that the shell is executing
(after shell expansion).

paul@debian6~/test$ bash -x runme
+ var4=42
+ echo 42
42
paul@debian6~/test$ cat runme
the runme script
var4=42
echo $var4
paul@debian6~/test$

Notice the absence of the commented (#) line, and the replacement of the variable
before execution of echo.

19.8. prevent setuid root spoofing
Some user may try to perform setuid based script root spoofing. This is a rare but
possible attack. To improve script security and to avoid interpreter spoofing, you need
to add -- after the #!/bin/bash, which disables further option processing so the shell
will not accept any options.

#!/bin/bash -
or
#!/bin/bash --

Any arguments after the -- are treated as filenames and arguments. An argument of
- is equivalent to --.

(c) ketabton.com: The Digital Library

scripting introduction

161

19.9. practice: introduction to scripting
0. Give each script a different name, keep them for later!

1. Write a script that outputs the name of a city.

2. Make sure the script runs in the bash shell.

3. Make sure the script runs in the Korn shell.

4. Create a script that defines two variables, and outputs their value.

5. The previous script does not influence your current shell (the variables do not exist
outside of the script). Now run the script so that it influences your current shell.

6. Is there a shorter way to source the script ?

7. Comment your scripts so that you know what they are doing.

(c) ketabton.com: The Digital Library

scripting introduction

162

19.10. solution: introduction to scripting
0. Give each script a different name, keep them for later!

1. Write a script that outputs the name of a city.

$ echo 'echo Antwerp' > first.bash
$ chmod +x first.bash
$./first.bash
Antwerp

2. Make sure the script runs in the bash shell.

$ cat first.bash
#!/bin/bash
echo Antwerp

3. Make sure the script runs in the Korn shell.

$ cat first.bash
#!/bin/ksh
echo Antwerp

Note that while first.bash will technically work as a Korn shell script, the name ending
in .bash is confusing.

4. Create a script that defines two variables, and outputs their value.

$ cat second.bash
#!/bin/bash

var33=300
var42=400

echo $var33 $var42

5. The previous script does not influence your current shell (the variables do not exist
outside of the script). Now run the script so that it influences your current shell.

source second.bash

6. Is there a shorter way to source the script ?

. ./second.bash

7. Comment your scripts so that you know what they are doing.

$ cat second.bash
#!/bin/bash
script to test variables and sourcing

define two variables
var33=300
var42=400

output the value of these variables
echo $var33 $var42

(c) ketabton.com: The Digital Library

163

Chapter 20. scripting loops

Table of Contents
20.1. test [] ... 164
20.2. if then else ... 165
20.3. if then elif .. 165
20.4. for loop ... 165
20.5. while loop .. 166
20.6. until loop .. 166
20.7. practice: scripting tests and loops .. 167
20.8. solution: scripting tests and loops .. 168

(c) ketabton.com: The Digital Library

scripting loops

164

20.1. test []
The test command can test whether something is true or false. Let's start by testing
whether 10 is greater than 55.

[paul@RHEL4b ~]$ test 10 -gt 55 ; echo $?
1
[paul@RHEL4b ~]$

The test command returns 1 if the test fails. And as you see in the next screenshot,
test returns 0 when a test succeeds.

[paul@RHEL4b ~]$ test 56 -gt 55 ; echo $?
0
[paul@RHEL4b ~]$

If you prefer true and false, then write the test like this.

[paul@RHEL4b ~]$ test 56 -gt 55 && echo true || echo false
true
[paul@RHEL4b ~]$ test 6 -gt 55 && echo true || echo false
false

The test command can also be written as square brackets, the screenshot below is
identical to the one above.

[paul@RHEL4b ~]$ [56 -gt 55] && echo true || echo false
true
[paul@RHEL4b ~]$ [6 -gt 55] && echo true || echo false
false

Below are some example tests. Take a look at man test to see more options for tests.

[-d foo] Does the directory foo exist ?
[-e bar] Does the file bar exist ?
['/etc' = $PWD] Is the string /etc equal to the variable $PWD ?
[$1 != 'secret'] Is the first parameter different from secret ?
[55 -lt $bar] Is 55 less than the value of $bar ?
[$foo -ge 1000] Is the value of $foo greater or equal to 1000 ?
["abc" < $bar] Does abc sort before the value of $bar ?
[-f foo] Is foo a regular file ?
[-r bar] Is bar a readable file ?
[foo -nt bar] Is file foo newer than file bar ?
[-o nounset] Is the shell option nounset set ?

Tests can be combined with logical AND and OR.

paul@RHEL4b:~$ [66 -gt 55 -a 66 -lt 500] && echo true || echo false
true
paul@RHEL4b:~$ [66 -gt 55 -a 660 -lt 500] && echo true || echo false
false
paul@RHEL4b:~$ [66 -gt 55 -o 660 -lt 500] && echo true || echo false
true

(c) ketabton.com: The Digital Library

scripting loops

165

20.2. if then else
The if then else construction is about choice. If a certain condition is met, then
execute something, else execute something else. The example below tests whether a
file exists, and if the file exists then a proper message is echoed.

#!/bin/bash

if [-f isit.txt]
then echo isit.txt exists!
else echo isit.txt not found!
fi

If we name the above script 'choice', then it executes like this.

[paul@RHEL4a scripts]$./choice
isit.txt not found!
[paul@RHEL4a scripts]$ touch isit.txt
[paul@RHEL4a scripts]$./choice
isit.txt exists!
[paul@RHEL4a scripts]$

20.3. if then elif
You can nest a new if inside an else with elif. This is a simple example.

#!/bin/bash
count=42
if [$count -eq 42]
then
 echo "42 is correct."
elif [$count -gt 42]
then
 echo "Too much."
else
 echo "Not enough."
fi

20.4. for loop
The example below shows the syntax of a classical for loop in bash.

for i in 1 2 4
do
 echo $i
done

An example of a for loop combined with an embedded shell.

#!/bin/ksh
for counter in `seq 1 20`
do
 echo counting from 1 to 20, now at $counter
 sleep 1
done

(c) ketabton.com: The Digital Library

scripting loops

166

The same example as above can be written without the embedded shell using the bash
{from..to} shorthand.

#!/bin/bash
for counter in {1..20}
do
 echo counting from 1 to 20, now at $counter
 sleep 1
done

This for loop uses file globbing (from the shell expansion). Putting the instruction
on the command line has identical functionality.

kahlan@solexp11$ ls
count.ksh go.ksh
kahlan@solexp11$ for file in *.ksh ; do cp $file $file.backup ; done
kahlan@solexp11$ ls
count.ksh count.ksh.backup go.ksh go.ksh.backup

20.5. while loop
Below a simple example of a while loop.

i=100;
while [$i -ge 0] ;
do
 echo Counting down, from 100 to 0, now at $i;
 let i--;
done

Endless loops can be made with while true or while : , where the colon is the
equivalent of no operation in the Korn and bash shells.

#!/bin/ksh
endless loop
while :
do
 echo hello
 sleep 1
done

20.6. until loop
Below a simple example of an until loop.

let i=100;
until [$i -le 0] ;
do
 echo Counting down, from 100 to 1, now at $i;
 let i--;
done

(c) ketabton.com: The Digital Library

scripting loops

167

20.7. practice: scripting tests and loops
1. Write a script that uses a for loop to count from 3 to 7.

2. Write a script that uses a for loop to count from 1 to 17000.

3. Write a script that uses a while loop to count from 3 to 7.

4. Write a script that uses an until loop to count down from 8 to 4.

5. Write a script that counts the number of files ending in .txt in the current directory.

6. Wrap an if statement around the script so it is also correct when there are zero files
ending in .txt.

(c) ketabton.com: The Digital Library

scripting loops

168

20.8. solution: scripting tests and loops
1. Write a script that uses a for loop to count from 3 to 7.

#!/bin/bash

for i in 3 4 5 6 7
do
 echo Counting from 3 to 7, now at $i
done

2. Write a script that uses a for loop to count from 1 to 17000.

#!/bin/bash

for i in `seq 1 17000`
do
 echo Counting from 1 to 17000, now at $i
done

3. Write a script that uses a while loop to count from 3 to 7.

#!/bin/bash

i=3
while [$i -le 7]
do
 echo Counting from 3 to 7, now at $i
 let i=i+1
done

4. Write a script that uses an until loop to count down from 8 to 4.

#!/bin/bash

i=8
until [$i -lt 4]
do
 echo Counting down from 8 to 4, now at $i
 let i=i-1
done

5. Write a script that counts the number of files ending in .txt in the current directory.

#!/bin/bash

let i=0
for file in *.txt
do
 let i++
done
echo "There are $i files ending in .txt"

6. Wrap an if statement around the script so it is also correct when there are zero files
ending in .txt.

#!/bin/bash

ls *.txt > /dev/null 2>&1
if [$? -ne 0]

(c) ketabton.com: The Digital Library

scripting loops

169

then echo "There are 0 files ending in .txt"
else
 let i=0
 for file in *.txt
 do
 let i++
 done
 echo "There are $i files ending in .txt"
fi

(c) ketabton.com: The Digital Library

170

Chapter 21. scripting parameters

Table of Contents
21.1. script parameters .. 171
21.2. shift through parameters .. 172
21.3. runtime input .. 172
21.4. sourcing a config file ... 173
21.5. get script options with getopts ... 174
21.6. get shell options with shopt ... 175
21.7. practice: parameters and options .. 176
21.8. solution: parameters and options ... 177

(c) ketabton.com: The Digital Library

scripting parameters

171

21.1. script parameters
A bash shell script can have parameters. The numbering you see in the script below
continues if you have more parameters. You also have special parameters containing
the number of parameters, a string of all of them, and also the process id, and the last
return code. The man page of bash has a full list.

#!/bin/bash
echo The first argument is $1
echo The second argument is $2
echo The third argument is $3

echo \$ $$ PID of the script
echo \# $# count arguments
echo \? $? last return code
echo * $* all the arguments

Below is the output of the script above in action.

[paul@RHEL4a scripts]$./pars one two three
The first argument is one
The second argument is two
The third argument is three
$ 5610 PID of the script
3 count arguments
? 0 last return code
* one two three all the arguments

Once more the same script, but with only two parameters.

[paul@RHEL4a scripts]$./pars 1 2
The first argument is 1
The second argument is 2
The third argument is
$ 5612 PID of the script
2 count arguments
? 0 last return code
* 1 2 all the arguments
[paul@RHEL4a scripts]$

Here is another example, where we use $0. The $0 parameter contains the name of
the script.

paul@debian6~$ cat myname
echo this script is called $0
paul@debian6~$./myname
this script is called ./myname
paul@debian6~$ mv myname test42
paul@debian6~$./test42
this script is called ./test42

(c) ketabton.com: The Digital Library

scripting parameters

172

21.2. shift through parameters
The shift statement can parse all parameters one by one. This is a sample script.

kahlan@solexp11$ cat shift.ksh
#!/bin/ksh

if ["$#" == "0"]
 then
 echo You have to give at least one parameter.
 exit 1
fi

while (($#))
 do
 echo You gave me $1
 shift
 done

Below is some sample output of the script above.

kahlan@solexp11$./shift.ksh one
You gave me one
kahlan@solexp11$./shift.ksh one two three 1201 "33 42"
You gave me one
You gave me two
You gave me three
You gave me 1201
You gave me 33 42
kahlan@solexp11$./shift.ksh
You have to give at least one parameter.

21.3. runtime input
You can ask the user for input with the read command in a script.

#!/bin/bash
echo -n Enter a number:
read number

(c) ketabton.com: The Digital Library

scripting parameters

173

21.4. sourcing a config file
The source (as seen in the shell chapters) can be used to source a configuration file.

Below a sample configuration file for an application.

[paul@RHEL4a scripts]$ cat myApp.conf
The config file of myApp

Enter the path here
myAppPath=/var/myApp

Enter the number of quines here
quines=5

And her an application that uses this file.

[paul@RHEL4a scripts]$ cat myApp.bash
#!/bin/bash
#
Welcome to the myApp application

. ./myApp.conf

echo There are $quines quines

The running application can use the values inside the sourced configuration file.

[paul@RHEL4a scripts]$./myApp.bash
There are 5 quines
[paul@RHEL4a scripts]$

(c) ketabton.com: The Digital Library

scripting parameters

174

21.5. get script options with getopts
The getopts function allows you to parse options given to a command. The following
script allows for any compination of the options a, f and z.

kahlan@solexp11$ cat options.ksh
#!/bin/ksh

while getopts ":afz" option;
do
 case $option in
 a)
 echo received -a
 ;;
 f)
 echo received -f
 ;;
 z)
 echo received -z
 ;;
 *)
 echo "invalid option -$OPTARG"
 ;;
 esac
done

This is sample output from the script above. First we use correct options, then we
enter twice an invalid option.

kahlan@solexp11$./options.ksh
kahlan@solexp11$./options.ksh -af
received -a
received -f
kahlan@solexp11$./options.ksh -zfg
received -z
received -f
invalid option -g
kahlan@solexp11$./options.ksh -a -b -z
received -a
invalid option -b
received -z

(c) ketabton.com: The Digital Library

scripting parameters

175

You can also check for options that need an argument, as this example shows.

kahlan@solexp11$ cat argoptions.ksh
#!/bin/ksh

while getopts ":af:z" option;
do
 case $option in
 a)
 echo received -a
 ;;
 f)
 echo received -f with $OPTARG
 ;;
 z)
 echo received -z
 ;;
 :)
 echo "option -$OPTARG needs an argument"
 ;;
 *)
 echo "invalid option -$OPTARG"
 ;;
 esac
done

This is sample output from the script above.

kahlan@solexp11$./argoptions.ksh -a -f hello -z
received -a
received -f with hello
received -z
kahlan@solexp11$./argoptions.ksh -zaf 42
received -z
received -a
received -f with 42
kahlan@solexp11$./argoptions.ksh -zf
received -z
option -f needs an argument

21.6. get shell options with shopt
You can toggle the values of variables controlling optional shell behaviour with the
shopt built-in shell command. The example below first verifies whether the cdspell
option is set; it is not. The next shopt command sets the value, and the third shopt
command verifies that the option really is set. You can now use minor spelling
mistakes in the cd command. The man page of bash has a complete list of options.

paul@laika:~$ shopt -q cdspell ; echo $?
1
paul@laika:~$ shopt -s cdspell
paul@laika:~$ shopt -q cdspell ; echo $?
0
paul@laika:~$ cd /Etc
/etc

(c) ketabton.com: The Digital Library

scripting parameters

176

21.7. practice: parameters and options
1. Write a script that receives four parameters, and outputs them in reverse order.

2. Write a script that receives two parameters (two filenames) and outputs whether
those files exist.

3. Write a script that asks for a filename. Verify existence of the file, then verify that
you own the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config
file, logging means writing detailed output of everything the script does to a log file
in /tmp.

(c) ketabton.com: The Digital Library

scripting parameters

177

21.8. solution: parameters and options
1. Write a script that receives four parameters, and outputs them in reverse order.

echo $4 $3 $2 $1

2. Write a script that receives two parameters (two filenames) and outputs whether
those files exist.

#!/bin/bash

if [-f $1]
then echo $1 exists!
else echo $1 not found!
fi

if [-f $2]
then echo $2 exists!
else echo $2 not found!
fi

3. Write a script that asks for a filename. Verify existence of the file, then verify that
you own the file, and whether it is writable. If not, then make it writable.

4. Make a configuration file for the previous script. Put a logging switch in the config
file, logging means writing detailed output of everything the script does to a log file
in /tmp.

(c) ketabton.com: The Digital Library

178

Chapter 22. more scripting

Table of Contents
22.1. eval ... 179
22.2. (()) ... 179
22.3. let .. 180
22.4. case ... 181
22.5. shell functions .. 182
22.6. practice : more scripting .. 183
22.7. solution : more scripting .. 184

(c) ketabton.com: The Digital Library

more scripting

179

22.1. eval
eval reads arguments as input to the shell (the resulting commands are executed).
This allows using the value of a variable as a variable.

paul@deb503:~/test42$ answer=42
paul@deb503:~/test42$ word=answer
paul@deb503:~/test42$ eval x=\$$word ; echo $x
42

Both in bash and Korn the arguments can be quoted.

kahlan@solexp11$ answer=42
kahlan@solexp11$ word=answer
kahlan@solexp11$ eval "y=\$$word" ; echo $y
42

Sometimes the eval is needed to have correct parsing of arguments. Consider this
example where the date command receives one parameter 1 week ago.

paul@debian6~$ date --date="1 week ago"
Thu Mar 8 21:36:25 CET 2012

When we set this command in a variable, then executing that variable fails unless
we use eval.

paul@debian6~$ lastweek='date --date="1 week ago"'
paul@debian6~$ $lastweek
date: extra operand `ago"'
Try `date --help' for more information.
paul@debian6~$ eval $lastweek
Thu Mar 8 21:36:39 CET 2012

22.2. (())
The (()) allows for evaluation of numerical expressions.

paul@deb503:~/test42$ ((42 > 33)) && echo true || echo false
true
paul@deb503:~/test42$ ((42 > 1201)) && echo true || echo false
false
paul@deb503:~/test42$ var42=42
paul@deb503:~/test42$ ((42 == var42)) && echo true || echo false
true
paul@deb503:~/test42$ ((42 == $var42)) && echo true || echo false
true
paul@deb503:~/test42$ var42=33
paul@deb503:~/test42$ ((42 == var42)) && echo true || echo false
false

(c) ketabton.com: The Digital Library

more scripting

180

22.3. let
The let built-in shell function instructs the shell to perform an evaluation of arithmetic
expressions. It will return 0 unless the last arithmetic expression evaluates to 0.

[paul@RHEL4b ~]$ let x="3 + 4" ; echo $x
7
[paul@RHEL4b ~]$ let x="10 + 100/10" ; echo $x
20
[paul@RHEL4b ~]$ let x="10-2+100/10" ; echo $x
18
[paul@RHEL4b ~]$ let x="10*2+100/10" ; echo $x
30

The shell can also convert between different bases.

[paul@RHEL4b ~]$ let x="0xFF" ; echo $x
255
[paul@RHEL4b ~]$ let x="0xC0" ; echo $x
192
[paul@RHEL4b ~]$ let x="0xA8" ; echo $x
168
[paul@RHEL4b ~]$ let x="8#70" ; echo $x
56
[paul@RHEL4b ~]$ let x="8#77" ; echo $x
63
[paul@RHEL4b ~]$ let x="16#c0" ; echo $x
192

There is a difference between assigning a variable directly, or using let to evaluate
the arithmetic expressions (even if it is just assigning a value).

kahlan@solexp11$ dec=15 ; oct=017 ; hex=0x0f
kahlan@solexp11$ echo $dec $oct $hex
15 017 0x0f
kahlan@solexp11$ let dec=15 ; let oct=017 ; let hex=0x0f
kahlan@solexp11$ echo $dec $oct $hex
15 15 15

(c) ketabton.com: The Digital Library

more scripting

181

22.4. case
You can sometimes simplify nested if statements with a case construct.

[paul@RHEL4b ~]$./help
What animal did you see ? lion
You better start running fast!
[paul@RHEL4b ~]$./help
What animal did you see ? dog
Don't worry, give it a cookie.
[paul@RHEL4b ~]$ cat help
#!/bin/bash
#
Wild Animals Helpdesk Advice
#
echo -n "What animal did you see ? "
read animal
case $animal in
 "lion" | "tiger")
 echo "You better start running fast!"
 ;;
 "cat")
 echo "Let that mouse go..."
 ;;
 "dog")
 echo "Don't worry, give it a cookie."
 ;;
 "chicken" | "goose" | "duck")
 echo "Eggs for breakfast!"
 ;;
 "liger")
 echo "Approach and say 'Ah you big fluffy kitty...'."
 ;;
 "babelfish")
 echo "Did it fall out your ear ?"
 ;;
 *)
 echo "You discovered an unknown animal, name it!"
 ;;
esac
[paul@RHEL4b ~]$

(c) ketabton.com: The Digital Library

more scripting

182

22.5. shell functions
Shell functions can be used to group commands in a logical way.

kahlan@solexp11$ cat funcs.ksh
#!/bin/ksh

function greetings {
echo Hello World!
echo and hello to $USER to!
}

echo We will now call a function
greetings
echo The end

This is sample output from this script with a function.

kahlan@solexp11$./funcs.ksh
We will now call a function
Hello World!
and hello to kahlan to!
The end

A shell function can also receive parameters.

kahlan@solexp11$ cat addfunc.ksh
#!/bin/ksh

function plus {
let result="$1 + $2"
echo $1 + $2 = $result
}

plus 3 10
plus 20 13
plus 20 22

This script produces the following output.

kahlan@solexp11$./addfunc.ksh
3 + 10 = 13
20 + 13 = 33
20 + 22 = 42

(c) ketabton.com: The Digital Library

more scripting

183

22.6. practice : more scripting
1. Write a script that asks for two numbers, and outputs the sum and product (as
shown here).

Enter a number: 5
Enter another number: 2

Sum: 5 + 2 = 7
Product: 5 x 2 = 10

2. Improve the previous script to test that the numbers are between 1 and 100, exit
with an error if necessary.

3. Improve the previous script to congratulate the user if the sum equals the product.

4. Write a script with a case insensitive case statement, using the shopt nocasematch
option. The nocasematch option is reset to the value it had before the scripts started.

5. If time permits (or if you are waiting for other students to finish this practice),
take a look at linux system scripts in /etc/init.d and /etc/rc.d and try to understand
them. Where does execution of a script start in /etc/init.d/samba ? There are also some
hidden scripts in ~, we will discuss them later.

(c) ketabton.com: The Digital Library

more scripting

184

22.7. solution : more scripting
1. Write a script that asks for two numbers, and outputs the sum and product (as
shown here).

Enter a number: 5
Enter another number: 2

Sum: 5 + 2 = 7
Product: 5 x 2 = 10

#!/bin/bash

echo -n "Enter a number : "
read n1

echo -n "Enter another number : "
read n2

let sum="$n1+$n2"
let pro="$n1*$n2"

echo -e "Sum\t: $n1 + $n2 = $sum"
echo -e "Product\t: $n1 * $n2 = $pro"

2. Improve the previous script to test that the numbers are between 1 and 100, exit
with an error if necessary.

echo -n "Enter a number between 1 and 100 : "
read n1

if [$n1 -lt 1 -o $n1 -gt 100]
then
 echo Wrong number...
 exit 1
fi

3. Improve the previous script to congratulate the user if the sum equals the product.

if [$sum -eq $pro]
then echo Congratulations $sum == $pro
fi

4. Write a script with a case insensitive case statement, using the shopt nocasematch
option. The nocasematch option is reset to the value it had before the scripts started.

#!/bin/bash
#
Wild Animals Case Insensitive Helpdesk Advice
#

if shopt -q nocasematch; then
 nocase=yes;
else
 nocase=no;
 shopt -s nocasematch;
fi

echo -n "What animal did you see ? "
read animal

(c) ketabton.com: The Digital Library

more scripting

185

case $animal in
 "lion" | "tiger")
 echo "You better start running fast!"
 ;;
 "cat")
 echo "Let that mouse go..."
 ;;
 "dog")
 echo "Don't worry, give it a cookie."
 ;;
 "chicken" | "goose" | "duck")
 echo "Eggs for breakfast!"
 ;;
 "liger")
 echo "Approach and say 'Ah you big fluffy kitty.'"
 ;;
 "babelfish")
 echo "Did it fall out your ear ?"
 ;;
 *)
 echo "You discovered an unknown animal, name it!"
 ;;
esac

if [nocase = yes] ; then
 shopt -s nocasematch;
else
 shopt -u nocasematch;
fi

5. If time permits (or if you are waiting for other students to finish this practice),
take a look at linux system scripts in /etc/init.d and /etc/rc.d and try to understand
them. Where does execution of a script start in /etc/init.d/samba ? There are also some
hidden scripts in ~, we will discuss them later.

(c) ketabton.com: The Digital Library

Part VII. local user management

(c) ketabton.com: The Digital Library

187

Chapter 23. users

Table of Contents
23.1. identify yourself ... 188
23.2. users ... 189
23.3. passwords ... 191
23.4. home directories ... 196
23.5. user shell .. 197
23.6. switch users with su ... 198
23.7. run a program as another user ... 199
23.8. practice: users .. 201
23.9. solution: users .. 202
23.10. shell environment ... 204

(c) ketabton.com: The Digital Library

users

188

23.1. identify yourself

whoami

The whoami command tells you your username.

[root@RHEL5 ~]# whoami
root
[root@RHEL5 ~]# su - paul
[paul@RHEL5 ~]$ whoami
paul

who

The who command will give you information about who is logged on the system.

[paul@RHEL5 ~]$ who
root tty1 2008-06-24 13:24
sandra pts/0 2008-06-24 14:05 (192.168.1.34)
paul pts/1 2008-06-24 16:23 (192.168.1.37)

who am i

With who am i the who command will display only the line pointing to your current
session.

[paul@RHEL5 ~]$ who am i
paul pts/1 2008-06-24 16:23 (192.168.1.34)

w

The w command shows you who is logged on and what they are doing.

$ w
 05:13:36 up 3 min, 4 users, load average: 0.48, 0.72, 0.33
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty1 - 05:11 2.00s 0.32s 0.27s find / -name shad
inge pts/0 192.168.1.33 05:12 0.00s 0.02s 0.02s -ksh
paul pts/2 192.168.1.34 05:13 25.00s 0.07s 0.04s top

id

The id command will give you your user id, primary group id, and a list of the groups
that you belong to.

root@laika:~# id
uid=0(root) gid=0(root) groups=0(root)
root@laika:~# su - brel
brel@laika:~$ id
uid=1001(brel) gid=1001(brel) groups=1001(brel),1008(chanson),11578(wolf)

(c) ketabton.com: The Digital Library

users

189

23.2. users

user management

User management on any Unix can be done in three complimentary ways. You can
use the graphical tools provided by your distribution. These tools have a look and
feel that depends on the distribution. If you are a novice Linux user on your home
system, then use the graphical tool that is provided by your distribution. This will
make sure that you do not run into problems.

Another option is to use command line tools like useradd, usermod, gpasswd, passwd
and others. Server administrators are likely to use these tools, since they are familiar
and very similar across many different distributions. This chapter will focus on these
command line tools.

A third and rather extremist way is to edit the local configuration files directly using
vi (or vipw/vigr). Do not attempt this as a novice on production systems!

/etc/passwd

The local user database on Linux (and on most Unixes) is /etc/passwd.

[root@RHEL5 ~]# tail /etc/passwd
inge:x:518:524:art dealer:/home/inge:/bin/ksh
ann:x:519:525:flute player:/home/ann:/bin/bash
frederik:x:520:526:rubius poet:/home/frederik:/bin/bash
steven:x:521:527:roman emperor:/home/steven:/bin/bash
pascale:x:522:528:artist:/home/pascale:/bin/ksh
geert:x:524:530:kernel developer:/home/geert:/bin/bash
wim:x:525:531:master damuti:/home/wim:/bin/bash
sandra:x:526:532:radish stresser:/home/sandra:/bin/bash
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

As you can see, this file contains seven columns separated by a colon. The columns
contain the username, an x, the user id, the primary group id, a description, the name
of the home directory, and the login shell.

root

The root user also called the superuser is the most powerful account on your Linux
system. This user can do almost anything, including the creation of other users. The
root user always has userid 0 (regardless of the name of the account).

[root@RHEL5 ~]# head -1 /etc/passwd
root:x:0:0:root:/root:/bin/bash

(c) ketabton.com: The Digital Library

users

190

useradd

You can add users with the useradd command. The example below shows how to
add a user named yanina (last parameter) and at the same time forcing the creation
of the home directory (-m), setting the name of the home directory (-d), and setting
a description (-c).

[root@RHEL5 ~]# useradd -m -d /home/yanina -c "yanina wickmayer" yanina
[root@RHEL5 ~]# tail -1 /etc/passwd
yanina:x:529:529:yanina wickmayer:/home/yanina:/bin/bash

The user named yanina received userid 529 and primary group id 529.

/etc/default/useradd

Both Red Hat Enterprise Linux and Debian/Ubuntu have a file called /etc/default/
useradd that contains some default user options. Besides using cat to display this
file, you can also use useradd -D.

[root@RHEL4 ~]# useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel

userdel

You can delete the user yanina with userdel. The -r option of userdel will also remove
the home directory.

[root@RHEL5 ~]# userdel -r yanina

usermod

You can modify the properties of a user with the usermod command. This example
uses usermod to change the description of the user harry.

[root@RHEL4 ~]# tail -1 /etc/passwd
harry:x:516:520:harry potter:/home/harry:/bin/bash
[root@RHEL4 ~]# usermod -c 'wizard' harry
[root@RHEL4 ~]# tail -1 /etc/passwd
harry:x:516:520:wizard:/home/harry:/bin/bash

(c) ketabton.com: The Digital Library

users

191

23.3. passwords

passwd

Passwords of users can be set with the passwd command. Users will have to provide
their old password before twice entering the new one.

[harry@RHEL4 ~]$ passwd
Changing password for user harry.
Changing password for harry
(current) UNIX password:
New UNIX password:
BAD PASSWORD: it's WAY too short
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[harry@RHEL4 ~]$

As you can see, the passwd tool will do some basic verification to prevent users
from using too simple passwords. The root user does not have to follow these rules
(there will be a warning though). The root user also does not have to provide the old
password before entering the new password twice.

/etc/shadow

User passwords are encrypted and kept in /etc/shadow. The /etc/shadow file is read
only and can only be read by root. We will see in the file permissions section how it
is possible for users to change their password. For now, you will have to know that
users can change their password with the /usr/bin/passwd command.

[root@RHEL5 ~]# tail /etc/shadow
inge:1yWMSimOV$YsYvcVKqByFVYLKnU3ncd0:14054:0:99999:7:::
ann:!!:14054:0:99999:7:::
frederik:!!:14054:0:99999:7:::
steven:!!:14054:0:99999:7:::
pascale:!!:14054:0:99999:7:::
geert:!!:14054:0:99999:7:::
wim:!!:14054:0:99999:7:::
sandra:!!:14054:0:99999:7:::
annelies:!!:14054:0:99999:7:::
laura:1Tvby1Kpa$lL.WzgobujUS3LClIRmdv1:14054:0:99999:7:::

The /etc/shadow file contains nine colon separated columns. The nine fields contain
(from left to right) the user name, the encrypted password (note that only inge and
laura have an encrypted password), the day the password was last changed (day 1 is
January 1, 1970), number of days the password must be left unchanged, password
expiry day, warning number of days before password expiry, number of days after
expiry before disabling the account, and the day the account was disabled (again,
since 1970). The last field has no meaning yet.

(c) ketabton.com: The Digital Library

users

192

password encryption

encryption with passwd

Passwords are stored in an encrypted format. This encryption is done by the crypt
function. The easiest (and recommended) way to add a user with a password to the
system is to add the user with the useradd -m user command, and then set the user's
password with passwd.

[root@RHEL4 ~]# useradd -m xavier
[root@RHEL4 ~]# passwd xavier
Changing password for user xavier.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root@RHEL4 ~]#

encryption with openssl

Another way to create users with a password is to use the -p option of useradd, but that
option requires an encrypted password. You can generate this encrypted password
with the openssl passwd command.

[root@RHEL4 ~]# openssl passwd stargate
ZZNX16QZVgUQg
[root@RHEL4 ~]# useradd -m -p ZZNX16QZVgUQg mohamed

encryption with crypt

A third option is to create your own C program using the crypt function, and compile
this into a command.

[paul@laika ~]$ cat MyCrypt.c
#include <stdio.h>
#define __USE_XOPEN
#include <unistd.h>

int main(int argc, char** argv)
{
 if(argc==3)
 {
 printf("%s\n", crypt(argv[1],argv[2]));
 }
 else
 {
 printf("Usage: MyCrypt $password $salt\n");
 }
 return 0;
}

(c) ketabton.com: The Digital Library

users

193

This little program can be compiled with gcc like this.

[paul@laika ~]$ gcc MyCrypt.c -o MyCrypt -lcrypt

To use it, we need to give two parameters to MyCript. The first is the unencrypted
password, the second is the salt. The salt is used to perturb the encryption algorithm in
one of 4096 different ways. This variation prevents two users with the same password
from having the same entry in /etc/shadow.

paul@laika:~$./MyCrypt stargate 12
12L4FoTS3/k9U
paul@laika:~$./MyCrypt stargate 01
01Y.yPnlQ6R.Y
paul@laika:~$./MyCrypt stargate 33
330asFUbzgVeg
paul@laika:~$./MyCrypt stargate 42
42XFxoT4R75gk

Did you notice that the first two characters of the password are the salt?

The standard output of the crypt function is using the DES algorithm which is old
and can be cracked in minutes. A better method is to use md5 passwords which can
be recognized by a salt starting with 1.

paul@laika:~$./MyCrypt stargate '$1$12'
$1$12$xUIQ4116Us.Q5Osc2Khbm1
paul@laika:~$./MyCrypt stargate '$1$01'
$1$01$yNs8brjp4b4TEw.v9/IlJ/
paul@laika:~$./MyCrypt stargate '$1$33'
$1$33$tLh/Ldy2wskdKAJR.Ph4M0
paul@laika:~$./MyCrypt stargate '$1$42'
$1$42$Hb3nvP0KwHSQ7fQmIlY7R.

The md5 salt can be up to eight characters long. The salt is displayed in /etc/shadow
between the second and third $, so never use the password as the salt!

paul@laika:~$./MyCrypt stargate '1stargate'
1stargate$qqxoLqiSVNvGr5ybMxEVM1

(c) ketabton.com: The Digital Library

users

194

password defaults

/etc/login.defs

The /etc/login.defs file contains some default settings for user passwords like
password aging and length settings. (You will also find the numerical limits of user
ids and group ids and whether or not a home directory should be created by default).

[root@RHEL4 ~]# grep -i pass /etc/login.defs
Password aging controls:
PASS_MAX_DAYS Maximum number of days a password may be used.
PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_MIN_LEN Minimum acceptable password length.
PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

chage

The chage command can be used to set an expiration date for a user account (-E),
set a minimum (-m) and maximum (-M) password age, a password expiration date,
and set the number of warning days before the password expiration date. Much of
this functionality is also available from the passwd command. The -l option of chage
will list these settings for a user.

[root@RHEL4 ~]# chage -l harry
Minimum: 0
Maximum: 99999
Warning: 7
Inactive: -1
Last Change: Jul 23, 2007
Password Expires: Never
Password Inactive: Never
Account Expires: Never
[root@RHEL4 ~]#

disabling a password

Passwords in /etc/shadow cannot begin with an exclamation mark. When the second
field in /etc/passwd starts with an exclamation mark, then the password can not be
used.

Using this feature is often called locking, disabling, or suspending a user account.
Besides vi (or vipw) you can also accomplish this with usermod.

The first line in the next screenshot will disable the password of user harry, making
it impossible for harry to authenticate using this password.

(c) ketabton.com: The Digital Library

users

195

[root@RHEL4 ~]# usermod -L harry
[root@RHEL4 ~]# tail -1 /etc/shadow
harry:!$1$143TO9IZ$RLm/FpQkpDrV4/Tkhku5e1:13717:0:99999:7:::

The root user (and users with sudo rights on su) still will be able to su to harry
(because the password is not needed here). Also note that harry will still be able to
login if he has set up passwordless ssh!

[root@RHEL4 ~]# su - harry
[harry@RHEL4 ~]$

You can unlock the account again with usermod -U.

Watch out for tiny differences in the command line options of passwd, usermod,
and useradd on different distributions! Verify the local files when using features like
"disabling, suspending, or locking" users and passwords!

editing local files

If you still want to manually edit the /etc/passwd or /etc/shadow, after knowing these
commands for password management, then use vipw instead of vi(m) directly. The
vipw tool will do proper locking of the file.

[root@RHEL5 ~]# vipw /etc/passwd
vipw: the password file is busy (/etc/ptmp present)

(c) ketabton.com: The Digital Library

users

196

23.4. home directories

creating home directories

The easiest way to create a home directory is to supply the -m option with useradd
(it is likely set as a default option on Linux).

A less easy way is to create a home directory manually with mkdir which also
requires setting the owner and the permissions on the directory with chmod and
chown (both commands are discussed in detail in another chapter).

[root@RHEL5 ~]# mkdir /home/laura
[root@RHEL5 ~]# chown laura:laura /home/laura
[root@RHEL5 ~]# chmod 700 /home/laura
[root@RHEL5 ~]# ls -ld /home/laura/
drwx------ 2 laura laura 4096 Jun 24 15:17 /home/laura/

/etc/skel/

When using useradd the -m option, the /etc/skel/ directory is copied to the newly
created home directory. The /etc/skel/ directory contains some (usually hidden) files
that contain profile settings and default values for applications. In this way /etc/skel/
serves as a default home directory and as a default user profile.

[root@RHEL5 ~]# ls -la /etc/skel/
total 48
drwxr-xr-x 2 root root 4096 Apr 1 00:11 .
drwxr-xr-x 97 root root 12288 Jun 24 15:36 ..
-rw-r--r-- 1 root root 24 Jul 12 2006 .bash_logout
-rw-r--r-- 1 root root 176 Jul 12 2006 .bash_profile
-rw-r--r-- 1 root root 124 Jul 12 2006 .bashrc

deleting home directories

The -r option of userdel will make sure that the home directory is deleted together
with the user account.

[root@RHEL5 ~]# ls -ld /home/wim/
drwx------ 2 wim wim 4096 Jun 24 15:19 /home/wim/
[root@RHEL5 ~]# userdel -r wim
[root@RHEL5 ~]# ls -ld /home/wim/
ls: /home/wim/: No such file or directory

(c) ketabton.com: The Digital Library

users

197

23.5. user shell

login shell

The /etc/passwd file specifies the login shell for the user. In the screenshot below
you can see that user annelies will log in with the /bin/bash shell, and user laura with
the /bin/ksh shell.

[root@RHEL5 ~]# tail -2 /etc/passwd
annelies:x:527:533:sword fighter:/home/annelies:/bin/bash
laura:x:528:534:art dealer:/home/laura:/bin/ksh

You can use the usermod command to change the shell for a user.

[root@RHEL5 ~]# usermod -s /bin/bash laura
[root@RHEL5 ~]# tail -1 /etc/passwd
laura:x:528:534:art dealer:/home/laura:/bin/bash

chsh

Users can change their login shell with the chsh command. First, user harry obtains
a list of available shells (he could also have done a cat /etc/shells) and then changes
his login shell to the Korn shell (/bin/ksh). At the next login, harry will default into
ksh instead of bash.

[harry@RHEL4 ~]$ chsh -l
/bin/sh
/bin/bash
/sbin/nologin
/bin/ash
/bin/bsh
/bin/ksh
/usr/bin/ksh
/usr/bin/pdksh
/bin/tcsh
/bin/csh
/bin/zsh
[harry@RHEL4 ~]$ chsh -s /bin/ksh
Changing shell for harry.
Password:
Shell changed.
[harry@RHEL4 ~]$

(c) ketabton.com: The Digital Library

users

198

23.6. switch users with su

su to another user

The su command allows a user to run a shell as another user.

[paul@RHEL4b ~]$ su harry
Password:
[harry@RHEL4b paul]$

su to root

Yes you can alsu su to become root, when you know the root password.

[harry@RHEL4b paul]$ su root
Password:
[root@RHEL4b paul]#

su as root

Unless you are logged in as root, running a shell as another user requires that you
know the password of that user. The root user can become any user without knowing
the user's password.

[root@RHEL4b paul]# su serena
[serena@RHEL4b paul]$

su - $username

By default, the su command maintains the same shell environment. To become
another user and also get the target user's environment, issue the su - command
followed by the target username.

[paul@RHEL4b ~]$ su - harry
Password:
[harry@RHEL4b ~]$

su -

When no username is provided to su or su -, the command will assume root is the
target.

[harry@RHEL4b ~]$ su -
Password:
[root@RHEL4b ~]#

(c) ketabton.com: The Digital Library

users

199

23.7. run a program as another user

about sudo

The sudo program allows a user to start a program with the credentials of another
user. Before this works, the system administrator has to set up the /etc/sudoers file.
This can be useful to delegate administrative tasks to another user (without giving
the root password).

The screenshot below shows the usage of sudo. User paul received the right to run
useradd with the credentials of root. This allows paul to create new users on the
system without becoming root and without knowing the root password.

paul@laika:~$ useradd -m inge
useradd: unable to lock password file
paul@laika:~$ sudo useradd -m inge
[sudo] password for paul:
paul@laika:~$

setuid on sudo

The sudo binary has the setuid bit set, so any user can run it with the effective userid
of root.

paul@laika:~$ ls -l `which sudo`
-rwsr-xr-x 2 root root 107872 2008-05-15 02:41 /usr/bin/sudo
paul@laika:~$

visudo

Check the man page of visudo before playing with the /etc/sudoers file.

sudo su

On some linux systems like Ubuntu and Kubuntu, the root user does not have a
password set. This means that it is not possible to login as root (extra security). To
perform tasks as root, the first user is given all sudo rights via the /etc/sudoers. In
fact all users that are members of the admin group can use sudo to run all commands
as root.

root@laika:~# grep admin /etc/sudoers
Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

(c) ketabton.com: The Digital Library

users

200

The end result of this is that the user can type sudo su - and become root without
having to enter the root password. The sudo command does require you to enter your
own password. Thus the password prompt in the screenshot below is for sudo, not
for su.

paul@laika:~$ sudo su -
Password:
root@laika:~#

(c) ketabton.com: The Digital Library

users

201

23.8. practice: users
1. Create the users Serena Williams, Venus Williams and Justine Henin, all of them
with password set to stargate, with username (lower case!) as their first name, and
their full name in the comment. Verify that the users and their home directory are
properly created.

2. Create a user called kornuser, give him the Korn shell (/bin/ksh) as his default
shell. Log on with this user (on a command line or in a tty).

3. Create a user named einstime without home directory, give him /bin/date as his
default logon shell. What happens when you log on with this user ? Can you think of
a useful real world example for changing a user's login shell to an application ?

4. Try the commands who, whoami, who am i, w, id, echo $USER $UID .

5a. Lock the venus user account with usermod.

5b. Use passwd -d to disable the serena password. Verify the serena line in /etc/
shadow before and after disabling.

5c. What is the difference between locking a user account and disabling a user
account's password ?

6. As root change the password of einstime to stargate.

7. Now try changing the password of serena to serena as serena.

8. Make sure every new user needs to change his password every 10 days.

9. Set the warning number of days to four for the kornuser.

10a. Set the password of two separate users to stargate. Look at the encrypted
stargate's in /etc/shadow and explain.

10b. Take a backup as root of /etc/shadow. Use vi to copy an encrypted stargate to
another user. Can this other user now log on with stargate as a password ?

11. Put a file in the skeleton directory and check whether it is copied to user's home
directory. When is the skeleton directory copied ?

12. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

13. Use chsh to list all shells, and compare to cat /etc/shells. Change your login shell
to the Korn shell, log out and back in. Now change back to bash.

14. Which useradd option allows you to name a home directory ?

15. How can you see whether the password of user harry is locked or unlocked ? Give
a solution with grep and a solution with passwd.

(c) ketabton.com: The Digital Library

users

202

23.9. solution: users
1. Create the users Serena Williams, Venus Williams and Justine Henin, all of them
with password set to stargate, with username (lower case) as their first name, and
their full name in the comment. Verify that the users and their home directory are
properly created.

useradd -m -c "Serena Williams" serena ; passwd serena
useradd -m -c "Venus Williams" venus ; passwd venus
useradd -m -c "Justine Henin" justine ; passwd justine
tail /etc/passwd ; tail /etc/shadow ; ls /home

Keep user logon names in lowercase!

2. Create a user called kornuser, give him the Korn shell (/bin/ksh) as his default
shell. Log on with this user (on a command line or in a tty).

useradd -s /bin/ksh kornuser ; passwd kornuser

3. Create a user named einstime without home directory, give him /bin/date as his
default logon shell. What happens when you log on with this user ? Can you think of
a useful real world example for changing a user's login shell to an application ?

useradd -s /bin/date einstime ; passwd einstime

It can be useful when users need to access only one application on the server. Just
logging on opens the application for them, and closing the application automatically
logs them off.

4. Try the commands who, whoami, who am i, w, id, echo $USER $UID .

who ; whoami ; who am i ; w ; id ; echo $USER $UID

5a. Lock the venus user account with usermod.

usermod -L venus

5b. Use passwd -d to disable the serena password. Verify the serena line in /etc/
shadow before and after disabling.

grep serena /etc/shadow; passwd -d serena ; grep serena /etc/shadow

5c. What is the difference between locking a user account and disabling a user
account's password ?

Locking will prevent the user from logging on to the system with his password (by
putting a ! in front of the password in /etc/shadow). Disabling with passwd will erase
the password from /etc/shadow.

6. As root change the password of einstime to stargate.

Log on as root and type: passwd einstime

7. Now try changing the password of serena to serena as serena.

log on as serena, then execute: passwd serena... it should fail!

(c) ketabton.com: The Digital Library

users

203

8. Make sure every new user needs to change his password every 10 days.

For an existing user: chage -M 10 serena

For all new users: vi /etc/login.defs (and change PASS_MAX_DAYS to 10)

9. Set the warning number of days to four for the kornuser.

chage -W 4 kornuser

10a. Set the password of two separate users to stargate. Look at the encrypted
stargate's in /etc/shadow and explain.

If you used passwd, then the salt will be different for the two encrypted passwords.

10b. Take a backup as root of /etc/shadow. Use vi to copy an encrypted stargate to
another user. Can this other user now log on with stargate as a password ?

Yes.

11. Put a file in the skeleton directory and check whether it is copied to user's home
directory. When is the skeleton directory copied ?

When you create a user account with a new home directory.

12. Why use vipw instead of vi ? What could be the problem when using vi or vim ?

vipw will give a warning when someone else is already using that file.

13. Use chsh to list all shells, and compare to cat /etc/shells. Change your login shell
to the Korn shell, log out and back in. Now change back to bash.

On Red Hat Enterprise Linux: chsh -l
On Debian/Ubuntu: cat /etc/shells

14. Which useradd option allows you to name a home directory ?

-d

15. How can you see whether the password of user harry is locked or unlocked ? Give
a solution with grep and a solution with passwd.

grep harry /etc/shadow

passwd -S harry

(c) ketabton.com: The Digital Library

users

204

23.10. shell environment

It is nice to have these preset and custom aliases and variables, but where do they all
come from ? The shell uses a number of startup files that are checked (and executed)
whenever the shell is invoked. What follows is an overview of startup scripts.

/etc/profile

Both the bash and the ksh shell will verify the existence of /etc/profile and execute
it if it exists.

When reading this script, you might notice (at least on Debian Lenny and on Red Hat
Enterprise Linux 5) that it builds the PATH environment variable. The script might
also change the PS1 variable, set the HOSTNAME and execute even more scripts
like /etc/inputrc

You can use this script to set aliases and variables for every user on the system.

~/.bash_profile

When this file exists in the users home directory, then bash will execute it. On Debian
Linux it does not exist by default.

RHEL5 uses a brief ~/.bash_profile where it checks for the existence of ~/.bashrc
and then executes it. It also adds $HOME/bin to the $PATH variable.

[serena@rhel53 ~]$ cat .bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH

~/.bash_login

When .bash_profile does not exist, then bash will check for ~/.bash_login and
execute it.

Neither Debian nor Red Hat have this file by default.

(c) ketabton.com: The Digital Library

users

205

~/.profile

When neither ~/.bash_profile and ~/.bash_login exist, then bash will verify the
existence of ~/.profile and execute it. This file does not exist by default on Red Hat.

On Debian this script can execute ~/.bashrc and will add $HOME/bin to the $PATH
variable.

serena@deb503:~$ tail -12 .profile
if running bash
if [-n "$BASH_VERSION"]; then
 # include .bashrc if it exists
 if [-f "$HOME/.bashrc"]; then
 . "$HOME/.bashrc"
 fi
fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

~/.bashrc

As seen in the previous points, the ~/.bashrc script might be executed by other scripts.
Let us take a look at what it does by default.

Red Hat uses a very simple ~/.bashrc, checking for /etc/bashrc and executing it. It
also leaves room for custom aliases and functions.

[serena@rhel53 ~]$ more .bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions

On Debian this script is quite a bit longer and configures $PS1, some history variables
and a number af active and inactive aliases.

serena@deb503:~$ ls -l .bashrc
-rw-r--r-- 1 serena serena 3116 2008-05-12 21:02 .bashrc

(c) ketabton.com: The Digital Library

users

206

~/.bash_logout

When exiting bash, it can execute ~/.bash_logout. Debian and Red Hat both use this
opportunity to clear the screen.

serena@deb503:~$ cat .bash_logout
~/.bash_logout: executed by bash(1) when login shell exits.

when leaving the console clear the screen to increase privacy

if ["$SHLVL" = 1]; then
 [-x /usr/bin/clear_console] && /usr/bin/clear_console -q
fi

[serena@rhel53 ~]$ cat .bash_logout
~/.bash_logout

/usr/bin/clear

Debian overview

Below is a table overview of when Debian is running any of these bash startup scripts.

Table 23.1. Debian User Environment

script su su - ssh gdm

~./bashrc no yes yes yes

~/.profile no yes yes yes

/etc/profile no yes yes yes

/etc/bash.bashrc yes no no yes

RHEL5 overview

Below is a table overview of when Red Hat Enterprise Linux 5 is running any of
these bash startup scripts.

Table 23.2. Red Hat User Environment

script su su - ssh gdm

~./bashrc yes yes yes yes

~/.bash_profile no yes yes yes

/etc/profile no yes yes yes

/etc/bashrc yes yes yes yes

(c) ketabton.com: The Digital Library

207

Chapter 24. groups

Table of Contents
24.1. about groups ... 208
24.2. groupadd ... 208
24.3. /etc/group .. 208
24.4. usermod .. 209
24.5. groupmod ... 209
24.6. groupdel .. 209
24.7. groups ... 209
24.8. gpasswd .. 210
24.9. vigr ... 210
24.10. practice: groups .. 211
24.11. solution: groups .. 212

(c) ketabton.com: The Digital Library

groups

208

24.1. about groups
Users can be listed in groups. Groups allow you to set permissions on the group level
instead of having to set permissions for every individual user. Every Unix or Linux
distribution will have a graphical tool to manage groups. Novice users are advised
to use this graphical tool. More experienced users can use command line tools to
manage users, but be careful: Some distributions do not allow the mixed use of GUI
and CLI tools to manage groups (YaST in Novell Suse). Senior administrators can
edit the relevant files directly with vi or vigr.

24.2. groupadd
Groups can be created with the groupadd command. The example below shows the
creation of five (empty) groups.

root@laika:~# groupadd tennis
root@laika:~# groupadd football
root@laika:~# groupadd snooker
root@laika:~# groupadd formula1
root@laika:~# groupadd salsa

24.3. /etc/group
Users can be a member of several groups. Group membership is defined by the /etc/
group file.

root@laika:~# tail -5 /etc/group
tennis:x:1006:
football:x:1007:
snooker:x:1008:
formula1:x:1009:
salsa:x:1010:
root@laika:~#

The first field is the group's name. The second field is the group's (encrypted)
password (can be empty). The third field is the group identification or GID. The
fourth field is the list of members, these groups have no members.

(c) ketabton.com: The Digital Library

groups

209

24.4. usermod
Group membership can be modified with the useradd or usermod command.

root@laika:~# usermod -a -G tennis inge
root@laika:~# usermod -a -G tennis katrien
root@laika:~# usermod -a -G salsa katrien
root@laika:~# usermod -a -G snooker sandra
root@laika:~# usermod -a -G formula1 annelies
root@laika:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
snooker:x:1008:sandra
formula1:x:1009:annelies
salsa:x:1010:katrien
root@laika:~#

Be careful when using usermod to add users to groups. By default, the usermod
command will remove the user from every group of which he is a member if the group
is not listed in the command! Using the -a (append) switch prevents this behaviour.

24.5. groupmod
You can change the group name with the groupmod command.

root@laika:~# groupmod -n darts snooker
root@laika:~# tail -5 /etc/group
tennis:x:1006:inge,katrien
football:x:1007:
formula1:x:1009:annelies
salsa:x:1010:katrien
darts:x:1008:sandra

24.6. groupdel
You can permanently remove a group with the groupdel command.

root@laika:~# groupdel tennis
root@laika:~#

24.7. groups
A user can type the groups command to see a list of groups where the user belongs to.

[harry@RHEL4b ~]$ groups
harry sports
[harry@RHEL4b ~]$

(c) ketabton.com: The Digital Library

groups

210

24.8. gpasswd
You can delegate control of group membership to another user with the gpasswd
command. In the example below we delegate permissions to add and remove group
members to serena for the sports group. Then we su to serena and add harry to the
sports group.

[root@RHEL4b ~]# gpasswd -A serena sports
[root@RHEL4b ~]# su - serena
[serena@RHEL4b ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry)
[serena@RHEL4b ~]$ gpasswd -a harry sports
Adding user harry to group sports
[serena@RHEL4b ~]$ id harry
uid=516(harry) gid=520(harry) groups=520(harry),522(sports)
[serena@RHEL4b ~]$ tail -1 /etc/group
sports:x:522:serena,venus,harry
[serena@RHEL4b ~]$

Group administrators do not have to be a member of the group. They can remove
themselves from a group, but this does not influence their ability to add or remove
members.

[serena@RHEL4b ~]$ gpasswd -d serena sports
Removing user serena from group sports
[serena@RHEL4b ~]$ exit

Information about group administrators is kept in the /etc/gshadow file.

[root@RHEL4b ~]# tail -1 /etc/gshadow
sports:!:serena:venus,harry
[root@RHEL4b ~]#

To remove all group administrators from a group, use the gpasswd command to set
an empty administrators list.

[root@RHEL4b ~]# gpasswd -A "" sports

24.9. vigr
Similar to vipw, the vigr command can be used to manually edit the /etc/group file,
since it will do proper locking of the file. Only experienced senior administrators
should use vi or vigr to manage groups.

(c) ketabton.com: The Digital Library

groups

211

24.10. practice: groups
1. Create the groups tennis, football and sports.

2. In one command, make venus a member of tennis and sports.

3. Rename the football group to foot.

4. Use vi to add serena to the tennis group.

5. Use the id command to verify that serena is a member of tennis.

6. Make someone responsible for managing group membership of foot and sports.
Test that it works.

(c) ketabton.com: The Digital Library

groups

212

24.11. solution: groups
1. Create the groups tennis, football and sports.

groupadd tennis ; groupadd football ; groupadd sports

2. In one command, make venus a member of tennis and sports.

usermod -a -G tennis,sports venus

3. Rename the football group to foot.

groupmod -n foot football

4. Use vi to add serena to the tennis group.

vi /etc/group

5. Use the id command to verify that serena is a member of tennis.

id (and after logoff logon serena should be member)

6. Make someone responsible for managing group membership of foot and sports.
Test that it works.

gpasswd -A (to make manager)

gpasswd -a (to add member)

(c) ketabton.com: The Digital Library

Part VIII. file security

(c) ketabton.com: The Digital Library

214

Chapter 25. standard file permissions

Table of Contents
25.1. file ownership .. 215
25.2. list of special files .. 216
25.3. permissions ... 217
25.4. practice: standard file permissions ... 222
25.5. solution: standard file permissions ... 223

(c) ketabton.com: The Digital Library

standard file permissions

215

25.1. file ownership

user owner and group owner

The users and groups of a system can be locally managed in /etc/passwd and /etc/
group, or they can be in a NIS, LDAP, or Samba domain. These users and groups
can own files. Actually, every file has a user owner and a group owner, as can be
seen in the following screenshot.

paul@RHELv4u4:~/test$ ls -l
total 24
-rw-rw-r-- 1 paul paul 17 Feb 7 11:53 file1
-rw-rw-r-- 1 paul paul 106 Feb 5 17:04 file2
-rw-rw-r-- 1 paul proj 984 Feb 5 15:38 data.odt
-rw-r--r-- 1 root root 0 Feb 7 16:07 stuff.txt
paul@RHELv4u4:~/test$

User paul owns three files, two of those are also owned by the group paul; data.odt is
owned by the group proj. The root user owns the file stuff.txt, as does the group root.

chgrp

You can change the group owner of a file using the chgrp command.

root@laika:/home/paul# touch FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root root 0 2008-08-06 14:11 FileForPaul
root@laika:/home/paul# chgrp paul FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root paul 0 2008-08-06 14:11 FileForPaul

chown

The user owner of a file can be changed with chown command.

root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root paul 0 2008-08-06 14:11 FileForPaul
root@laika:/home/paul# chown paul FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 paul paul 0 2008-08-06 14:11 FileForPaul

You can also use chown to change both the user owner and the group owner.

root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 paul paul 0 2008-08-06 14:11 FileForPaul
root@laika:/home/paul# chown root:project42 FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root project42 0 2008-08-06 14:11 FileForPaul

(c) ketabton.com: The Digital Library

standard file permissions

216

25.2. list of special files
When you use ls -l, for each file you can see ten characters before the user and group
owner. The first character tells us the type of file. Regular files get a -, directories get
a d, symbolic links are shown with an l, pipes get a p, character devices a c, block
devices a b, and sockets an s.

Table 25.1. Unix special files

first
character

file type

- normal file

d directory

l symbolic link

p named pipe

b block device

c character device

s socket

Below a screenshot of a character device (the console) and a block device (the hard
disk).

paul@debian6lt~$ ls -ld /dev/console /dev/sda
crw------- 1 root root 5, 1 Mar 15 12:45 /dev/console
brw-rw---- 1 root disk 8, 0 Mar 15 12:45 /dev/sda

And here you can see a directory, a regular file and a symbolic link.

paul@debian6lt~$ ls -ld /etc /etc/hosts /etc/motd
drwxr-xr-x 128 root root 12288 Mar 15 18:34 /etc
-rw-r--r-- 1 root root 372 Dec 10 17:36 /etc/hosts
lrwxrwxrwx 1 root root 13 Dec 5 10:36 /etc/motd -> /var/run/motd

(c) ketabton.com: The Digital Library

standard file permissions

217

25.3. permissions

rwx

The nine characters following the file type denote the permissions in three triplets. A
permission can be r for read access, w for write access, and x for execute. You need
the r permission to list (ls) the contents of a directory. You need the x permission to
enter (cd) a directory. You need the w permission to create files in or remove files
from a directory.

Table 25.2. standard Unix file permissions

permission on a file on a directory

r (read) read file contents (cat) read directory contents (ls)

w (write) change file contents (vi) create files in (touch)

x (execute) execute the file enter the directory (cd)

three sets of rwx

We already know that the output of ls -l starts with ten characters for each file. This
screenshot shows a regular file (because the first character is a -).

paul@RHELv4u4:~/test$ ls -l proc42.bash
-rwxr-xr-- 1 paul proj 984 Feb 6 12:01 proc42.bash

Below is a table describing the function of all ten characters.

Table 25.3. Unix file permissions position

position characters function

1 - this is a regular file

2-4 rwx permissions for the user owner

5-7 r-x permissions for the group owner

8-10 r-- permissions for others

When you are the user owner of a file, then the user owner permissions apply to
you. The rest of the permissions have no influence on your access to the file.

When you belong to the group that is the group owner of a file, then the group
owner permissions apply to you. The rest of the permissions have no influence on
your access to the file.

When you are not the user owner of a file and you do not belong to the group
owner, then the others permissions apply to you. The rest of the permissions have
no influence on your access to the file.

(c) ketabton.com: The Digital Library

standard file permissions

218

permission examples

Some example combinations on files and directories are seen in this screenshot. The
name of the file explains the permissions.

paul@laika:~/perms$ ls -lh
total 12K
drwxr-xr-x 2 paul paul 4.0K 2007-02-07 22:26 AllEnter_UserCreateDelete
-rwxrwxrwx 1 paul paul 0 2007-02-07 22:21 EveryoneFullControl.txt
-r--r----- 1 paul paul 0 2007-02-07 22:21 OnlyOwnersRead.txt
-rwxrwx--- 1 paul paul 0 2007-02-07 22:21 OwnersAll_RestNothing.txt
dr-xr-x--- 2 paul paul 4.0K 2007-02-07 22:25 UserAndGroupEnter
dr-x------ 2 paul paul 4.0K 2007-02-07 22:25 OnlyUserEnter
paul@laika:~/perms$

To summarise, the first rwx triplet represents the permissions for the user owner.
The second triplet corresponds to the group owner; it specifies permissions for all
members of that group. The third triplet defines permissions for all other users that
are not the user owner and are not a member of the group owner.

setting permissions (chmod)

Permissions can be changed with chmod. The first example gives the user owner
execute permissions.

paul@laika:~/perms$ ls -l permissions.txt
-rw-r--r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt
paul@laika:~/perms$ chmod u+x permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwxr--r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

This example removes the group owners read permission.

paul@laika:~/perms$ chmod g-r permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwx---r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

This example removes the others read permission.

paul@laika:~/perms$ chmod o-r permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwx------ 1 paul paul 0 2007-02-07 22:34 permissions.txt

This example gives all of them the write permission.

paul@laika:~/perms$ chmod a+w permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwx-w--w- 1 paul paul 0 2007-02-07 22:34 permissions.txt

(c) ketabton.com: The Digital Library

standard file permissions

219

You don't even have to type the a.

paul@laika:~/perms$ chmod +x permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwx-wx-wx 1 paul paul 0 2007-02-07 22:34 permissions.txt

You can also set explicit permissions.

paul@laika:~/perms$ chmod u=rw permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rw--wx-wx 1 paul paul 0 2007-02-07 22:34 permissions.txt

Feel free to make any kind of combination.

paul@laika:~/perms$ chmod u=rw,g=rw,o=r permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

Even fishy combinations are accepted by chmod.

paul@laika:~/perms$ chmod u=rwx,ug+rw,o=r permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwxrw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

(c) ketabton.com: The Digital Library

standard file permissions

220

setting octal permissions

Most Unix administrators will use the old school octal system to talk about and set
permissions. Look at the triplet bitwise, equating r to 4, w to 2, and x to 1.

Table 25.4. Octal permissions

binary octal permission

000 0 ---

001 1 --x

010 2 -w-

011 3 -wx

100 4 r--

101 5 r-x

110 6 rw-

111 7 rwx

This makes 777 equal to rwxrwxrwx and by the same logic, 654 mean rw-r-xr-- . The
chmod command will accept these numbers.

paul@laika:~/perms$ chmod 777 permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwxrwxrwx 1 paul paul 0 2007-02-07 22:34 permissions.txt
paul@laika:~/perms$ chmod 664 permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rw-rw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt
paul@laika:~/perms$ chmod 750 permissions.txt
paul@laika:~/perms$ ls -l permissions.txt
-rwxr-x--- 1 paul paul 0 2007-02-07 22:34 permissions.txt

(c) ketabton.com: The Digital Library

standard file permissions

221

umask

When creating a file or directory, a set of default permissions are applied. These
default permissions are determined by the umask. The umask specifies permissions
that you do not want set on by default. You can display the umask with the umask
command.

[Harry@RHEL4b ~]$ umask
0002
[Harry@RHEL4b ~]$ touch test
[Harry@RHEL4b ~]$ ls -l test
-rw-rw-r-- 1 Harry Harry 0 Jul 24 06:03 test
[Harry@RHEL4b ~]$

As you can also see, the file is also not executable by default. This is a general security
feature among Unixes; newly created files are never executable by default. You have
to explicitly do a chmod +x to make a file executable. This also means that the 1 bit
in the umask has no meaning--a umask of 0022 is the same as 0033.

mkdir -m

When creating directories with mkdir you can use the -m option to set the mode.
This screenshot explains.

paul@debian5~$ mkdir -m 700 MyDir
paul@debian5~$ mkdir -m 777 Public
paul@debian5~$ ls -dl MyDir/ Public/
drwx------ 2 paul paul 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 paul paul 4096 2011-10-16 19:16 Public/

(c) ketabton.com: The Digital Library

standard file permissions

222

25.4. practice: standard file permissions
1. As normal user, create a directory ~/permissions. Create a file owned by yourself
in there.

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file
now ?

3. As root, create a file in the users ~/permissions directory.

4. As normal user, look at who owns this file created by root.

5. Change the ownership of all files in ~/permissions to yourself.

6. Make sure you have all rights to these files, and others can only read.

7. With chmod, is 770 the same as rwxrwx--- ?

8. With chmod, is 664 the same as r-xr-xr-- ?

9. With chmod, is 400 the same as r-------- ?

10. With chmod, is 734 the same as rwxr-xr-- ?

11a. Display the umask in octal and in symbolic form.

11b. Set the umask to 077, but use the symbolic format to set it. Verify that this works.

12. Create a file as root, give only read to others. Can a normal user read this file ?
Test writing to this file with vi.

13a. Create a file as normal user, give only read to others. Can another normal user
read this file ? Test writing to this file with vi.

13b. Can root read this file ? Can root write to this file with vi ?

14. Create a directory that belongs to a group, where every member of that group
can read and write to files, and create files. Make sure that people can only delete
their own files.

(c) ketabton.com: The Digital Library

standard file permissions

223

25.5. solution: standard file permissions
1. As normal user, create a directory ~/permissions. Create a file owned by yourself
in there.

mkdir ~/permissions ; touch ~/permissions/myfile.txt

2. Copy a file owned by root from /etc/ to your permissions dir, who owns this file
now ?

cp /etc/hosts ~/permissions/

The copy is owned by you.

3. As root, create a file in the users ~/permissions directory.

(become root)# touch /home/username/permissions/rootfile

4. As normal user, look at who owns this file created by root.

ls -l ~/permissions

The file created by root is owned by root.

5. Change the ownership of all files in ~/permissions to yourself.

chown user ~/permissions/*

You cannot become owner of the file that belongs to root.

6. Make sure you have all rights to these files, and others can only read.

chmod 644 (on files)

chmod 755 (on directories)

7. With chmod, is 770 the same as rwxrwx--- ?

yes

8. With chmod, is 664 the same as r-xr-xr-- ?

No

9. With chmod, is 400 the same as r-------- ?

yes

10. With chmod, is 734 the same as rwxr-xr-- ?

no

11a. Display the umask in octal and in symbolic form.

umask ; umask -S

(c) ketabton.com: The Digital Library

standard file permissions

224

11b. Set the umask to 077, but use the symbolic format to set it. Verify that this works.

umask -S u=rwx,go=

12. Create a file as root, give only read to others. Can a normal user read this file ?
Test writing to this file with vi.

(become root)

echo hello > /home/username/root.txt

chmod 744 /home/username/root.txt

(become user)

vi ~/root.txt

13a. Create a file as normal user, give only read to others. Can another normal user
read this file ? Test writing to this file with vi.

echo hello > file ; chmod 744 file

Yes, others can read this file

13b. Can root read this file ? Can root write to this file with vi ?

Yes, root can read and write to this file. Permissions do not apply to root.

14. Create a directory that belongs to a group, where every member of that group
can read and write to files, and create files. Make sure that people can only delete
their own files.

mkdir /home/project42 ; groupadd project42

chgrp project42 /home/project42 ; chmod 775 /home/project42

You can not yet do the last part of this exercise...

(c) ketabton.com: The Digital Library

225

Chapter 26. advanced file permissions

Table of Contents
26.1. sticky bit on directory .. 226
26.2. setgid bit on directory .. 226
26.3. setgid and setuid on regular files ... 227
26.4. practice: sticky, setuid and setgid bits ... 228
26.5. solution: sticky, setuid and setgid bits ... 229

(c) ketabton.com: The Digital Library

advanced file permissions

226

26.1. sticky bit on directory
You can set the sticky bit on a directory to prevent users from removing files that
they do not own as a user owner. The sticky bit is displayed at the same location as
the x permission for others. The sticky bit is represented by a t (meaning x is also
there) or a T (when there is no x for others).

root@RHELv4u4:~# mkdir /project55
root@RHELv4u4:~# ls -ld /project55
drwxr-xr-x 2 root root 4096 Feb 7 17:38 /project55
root@RHELv4u4:~# chmod +t /project55/
root@RHELv4u4:~# ls -ld /project55
drwxr-xr-t 2 root root 4096 Feb 7 17:38 /project55
root@RHELv4u4:~#

The sticky bit can also be set with octal permissions, it is binary 1 in the first of four
triplets.

root@RHELv4u4:~# chmod 1775 /project55/
root@RHELv4u4:~# ls -ld /project55
drwxrwxr-t 2 root root 4096 Feb 7 17:38 /project55
root@RHELv4u4:~#

You will typically find the sticky bit on the /tmp directory.

root@barry:~# ls -ld /tmp
drwxrwxrwt 6 root root 4096 2009-06-04 19:02 /tmp

26.2. setgid bit on directory
setgid can be used on directories to make sure that all files inside the directory are
owned by the group owner of the directory. The setgid bit is displayed at the same
location as the x permission for group owner. The setgid bit is represented by an
s (meaning x is also there) or a S (when there is no x for the group owner). As
this example shows, even though root does not belong to the group proj55, the files
created by root in /project55 will belong to proj55 since the setgid is set.

root@RHELv4u4:~# groupadd proj55
root@RHELv4u4:~# chown root:proj55 /project55/
root@RHELv4u4:~# chmod 2775 /project55/
root@RHELv4u4:~# touch /project55/fromroot.txt
root@RHELv4u4:~# ls -ld /project55/
drwxrwsr-x 2 root proj55 4096 Feb 7 17:45 /project55/
root@RHELv4u4:~# ls -l /project55/
total 4
-rw-r--r-- 1 root proj55 0 Feb 7 17:45 fromroot.txt
root@RHELv4u4:~#

You can use the find command to find all setgid directories.

paul@laika:~$ find / -type d -perm -2000 2> /dev/null
/var/log/mysql
/var/log/news
/var/local
...

(c) ketabton.com: The Digital Library

advanced file permissions

227

26.3. setgid and setuid on regular files
These two permissions cause an executable file to be executed with the permissions
of the file owner instead of the executing owner. This means that if any user executes
a program that belongs to the root user, and the setuid bit is set on that program,
then the program runs as root. This can be dangerous, but sometimes this is good
for security.

Take the example of passwords; they are stored in /etc/shadow which is only readable
by root. (The root user never needs permissions anyway.)

root@RHELv4u4:~# ls -l /etc/shadow
-r-------- 1 root root 1260 Jan 21 07:49 /etc/shadow

Changing your password requires an update of this file, so how can normal non-root
users do this? Let's take a look at the permissions on the /usr/bin/passwd.

root@RHELv4u4:~# ls -l /usr/bin/passwd
-r-s--x--x 1 root root 21200 Jun 17 2005 /usr/bin/passwd

When running the passwd program, you are executing it with root credentials.

You can use the find command to find all setuid programs.

paul@laika:~$ find /usr/bin -type f -perm -04000
/usr/bin/arping
/usr/bin/kgrantpty
/usr/bin/newgrp
/usr/bin/chfn
/usr/bin/sudo
/usr/bin/fping6
/usr/bin/passwd
/usr/bin/gpasswd
...

In most cases, setting the setuid bit on executables is sufficient. Setting the setgid bit
will result in these programs to run with the credentials of their group owner.

(c) ketabton.com: The Digital Library

advanced file permissions

228

26.4. practice: sticky, setuid and setgid bits
1a. Set up a directory, owned by the group sports.

1b. Members of the sports group should be able to create files in this directory.

1c. All files created in this directory should be group-owned by the sports group.

1d. Users should be able to delete only their own user-owned files.

1e. Test that this works!

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing
your password as a normal user. Reset the permissions back and try again.

3. If time permits (or if you are waiting for other students to finish this practice), read
about file attributes in the man page of chattr and lsattr. Try setting the i attribute on
a file and test that it works.

(c) ketabton.com: The Digital Library

advanced file permissions

229

26.5. solution: sticky, setuid and setgid bits
1a. Set up a directory, owned by the group sports.

groupadd sports

mkdir /home/sports

chown root:sports /home/sports

1b. Members of the sports group should be able to create files in this directory.

chmod 770 /home/sports

1c. All files created in this directory should be group-owned by the sports group.

chmod 2770 /home/sports

1d. Users should be able to delete only their own user-owned files.

chmod +t /home/sports

1e. Test that this works!

Log in with different users (group members and others and root), create files and
watch the permissions. Try changing and deleting files...

2. Verify the permissions on /usr/bin/passwd. Remove the setuid, then try changing
your password as a normal user. Reset the permissions back and try again.

root@deb503:~# ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd
root@deb503:~# chmod 755 /usr/bin/passwd
root@deb503:~# ls -l /usr/bin/passwd
-rwxr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

A normal user cannot change password now.

root@deb503:~# chmod 4755 /usr/bin/passwd
root@deb503:~# ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 31704 2009-11-14 15:41 /usr/bin/passwd

3. If time permits (or if you are waiting for other students to finish this practice), read
about file attributes in the man page of chattr and lsattr. Try setting the i attribute on
a file and test that it works.

paul@laika:~$ sudo su -
[sudo] password for paul:
root@laika:~# mkdir attr
root@laika:~# cd attr/
root@laika:~/attr# touch file42
root@laika:~/attr# lsattr
------------------ ./file42
root@laika:~/attr# chattr +i file42

(c) ketabton.com: The Digital Library

advanced file permissions

230

root@laika:~/attr# lsattr
----i------------- ./file42
root@laika:~/attr# rm -rf file42
rm: cannot remove `file42': Operation not permitted
root@laika:~/attr# chattr -i file42
root@laika:~/attr# rm -rf file42
root@laika:~/attr#

(c) ketabton.com: The Digital Library

231

Chapter 27. access control lists

Table of Contents
27.1. acl in /etc/fstab ... 232
27.2. getfacl ... 232
27.3. setfacl ... 232
27.4. remove an acl entry ... 233
27.5. remove the complete acl .. 233
27.6. the acl mask ... 233
27.7. eiciel ... 234

Standard Unix permissions might not be enough for some organisations. This chapter
introduces access control lists or acl's to further protect files and directories.

(c) ketabton.com: The Digital Library

access control lists

232

27.1. acl in /etc/fstab
File systems that support access control lists, or acls, have to be mounted with the
acl option listed in /etc/fstab. In the example below, you can see that the root file
system has acl support, whereas /home/data does not.

root@laika:~# tail -4 /etc/fstab
/dev/sda1 / ext3 acl,relatime 0 1
/dev/sdb2 /home/data auto noacl,defaults 0 0
pasha:/home/r /home/pasha nfs defaults 0 0
wolf:/srv/data /home/wolf nfs defaults 0 0

27.2. getfacl
Reading acls can be done with /usr/bin/getfacl. This screenshot shows how to read
the acl of file33 with getfacl.

paul@laika:~/test$ getfacl file33
file: file33
owner: paul
group: paul
user::rw-
group::r--
mask::rwx
other::r--

27.3. setfacl
Writing or changing acls can be done with /usr/bin/setfacl. These screenshots show
how to change the acl of file33 with setfacl.

First we add user sandra with octal permission 7 to the acl.

paul@laika:~/test$ setfacl -m u:sandra:7 file33

Then we add the group tennis with octal permission 6 to the acl of the same file.

paul@laika:~/test$ setfacl -m g:tennis:6 file33

The result is visible with getfacl.

paul@laika:~/test$ getfacl file33
file: file33
owner: paul
group: paul
user::rw-
user:sandra:rwx
group::r--
group:tennis:rw-
mask::rwx
other::r--

(c) ketabton.com: The Digital Library

access control lists

233

27.4. remove an acl entry
The -x option of the setfacl command will remove an acl entry from the targeted file.

paul@laika:~/test$ setfacl -m u:sandra:7 file33
paul@laika:~/test$ getfacl file33 | grep sandra
user:sandra:rwx
paul@laika:~/test$ setfacl -x sandra file33
paul@laika:~/test$ getfacl file33 | grep sandra

Note that omitting the u or g when defining the acl for an account will default it to
a user account.

27.5. remove the complete acl
The -b option of the setfacl command will remove the acl from the targeted file.

paul@laika:~/test$ setfacl -b file33
paul@laika:~/test$ getfacl file33
file: file33
owner: paul
group: paul
user::rw-
group::r--
other::r--

27.6. the acl mask
The acl mask defines the maximum effective permissions for any entry in the acl.
This mask is calculated every time you execute the setfacl or chmod commands.

You can prevent the calculation by using the --no-mask switch.

paul@laika:~/test$ setfacl --no-mask -m u:sandra:7 file33
paul@laika:~/test$ getfacl file33
file: file33
owner: paul
group: paul
user::rw-
user:sandra:rwx #effective:rw-
group::r--
mask::rw-
other::r--

(c) ketabton.com: The Digital Library

access control lists

234

27.7. eiciel
Desktop users might want to use eiciel to manage acls with a graphical tool.

You will need to install eiciel and nautilus-actions to have an extra tab in nautilus
to manage acls.

paul@laika:~$ sudo aptitude install eiciel nautilus-actions

(c) ketabton.com: The Digital Library

235

Chapter 28. file links

Table of Contents
28.1. inodes ... 236
28.2. about directories ... 237
28.3. hard links ... 238
28.4. symbolic links .. 239
28.5. removing links ... 239
28.6. practice : links .. 240
28.7. solution : links .. 241

An average computer using Linux has a file system with many hard links and
symbolic links.

To understand links in a file system, you first have to understand what an inode is.

(c) ketabton.com: The Digital Library

file links

236

28.1. inodes

inode contents

An inode is a data structure that contains metadata about a file. When the file system
stores a new file on the hard disk, it stores not only the contents (data) of the file, but
also extra properties like the name of the file, the creation date, its permissions, the
owner of the file, and more. All this information (except the name of the file and the
contents of the file) is stored in the inode of the file.

The ls -l command will display some of the inode contents, as seen in this screenshot.

root@rhel53 ~# ls -ld /home/project42/
drwxr-xr-x 4 root pro42 4.0K Mar 27 14:29 /home/project42/

inode table

The inode table contains all of the inodes and is created when you create the file
system (with mkfs). You can use the df -i command to see how many inodes are
used and free on mounted file systems.

root@rhel53 ~# df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/mapper/VolGroup00-LogVol00
 4947968 115326 4832642 3% /
/dev/hda1 26104 45 26059 1% /boot
tmpfs 64417 1 64416 1% /dev/shm
/dev/sda1 262144 2207 259937 1% /home/project42
/dev/sdb1 74400 5519 68881 8% /home/project33
/dev/sdb5 0 0 0 - /home/sales
/dev/sdb6 100744 11 100733 1% /home/research

In the df -i screenshot above you can see the inode usage for several mounted file
systems. You don't see numbers for /dev/sdb5 because it is a fat file system.

inode number

Each inode has a unique number (the inode number). You can see the inode numbers
with the ls -li command.

paul@RHELv4u4:~/test$ touch file1
paul@RHELv4u4:~/test$ touch file2
paul@RHELv4u4:~/test$ touch file3
paul@RHELv4u4:~/test$ ls -li
total 12
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817267 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
paul@RHELv4u4:~/test$

(c) ketabton.com: The Digital Library

file links

237

These three files were created one after the other and got three different inodes (the
first column). All the information you see with this ls command resides in the inode,
except for the filename (which is contained in the directory).

inode and file contents

Let's put some data in one of the files.

paul@RHELv4u4:~/test$ ls -li
total 16
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
paul@RHELv4u4:~/test$ cat file2
It is winter now and it is very cold.
We do not like the cold, we prefer hot summer nights.
paul@RHELv4u4:~/test$

The data that is displayed by the cat command is not in the inode, but somewhere
else on the disk. The inode contains a pointer to that data.

28.2. about directories

a directory is a table

A directory is a special kind of file that contains a table which maps filenames
to inodes. Listing our current directory with ls -ali will display the contents of the
directory file.

paul@RHELv4u4:~/test$ ls -ali
total 32
817262 drwxrwxr-x 2 paul paul 4096 Feb 5 15:42 .
800768 drwx------ 16 paul paul 4096 Feb 5 15:42 ..
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 1 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
paul@RHELv4u4:~/test$

. and ..

You can see five names, and the mapping to their five inodes. The dot . is a mapping
to itself, and the dotdot .. is a mapping to the parent directory. The three other names
are mappings to different inodes.

(c) ketabton.com: The Digital Library

file links

238

28.3. hard links

creating hard links

When we create a hard link to a file with ln, an extra entry is added in the directory.
A new file name is mapped to an existing inode.

paul@RHELv4u4:~/test$ ln file2 hardlink_to_file2
paul@RHELv4u4:~/test$ ls -li
total 24
817266 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file1
817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
817270 -rw-rw-r-- 2 paul paul 92 Feb 5 15:42 hardlink_to_file2
paul@RHELv4u4:~/test$

Both files have the same inode, so they will always have the same permissions and
the same owner. Both files will have the same content. Actually, both files are equal
now, meaning you can safely remove the original file, the hardlinked file will remain.
The inode contains a counter, counting the number of hard links to itself. When the
counter drops to zero, then the inode is emptied.

finding hard links

You can use the find command to look for files with a certain inode. The screenshot
below shows how to search for all filenames that point to inode 817270. Remember
that an inode number is unique to its partition.

paul@RHELv4u4:~/test$ find / -inum 817270 2> /dev/null
/home/paul/test/file2
/home/paul/test/hardlink_to_file2

(c) ketabton.com: The Digital Library

file links

239

28.4. symbolic links
Symbolic links (sometimes called soft links) do not link to inodes, but create a name
to name mapping. Symbolic links are created with ln -s. As you can see below, the
symbolic link gets an inode of its own.

paul@RHELv4u4:~/test$ ln -s file2 symlink_to_file2
paul@RHELv4u4:~/test$ ls -li
total 32
817273 -rw-rw-r-- 1 paul paul 13 Feb 5 17:06 file1
817270 -rw-rw-r-- 2 paul paul 106 Feb 5 17:04 file2
817268 -rw-rw-r-- 1 paul paul 0 Feb 5 15:38 file3
817270 -rw-rw-r-- 2 paul paul 106 Feb 5 17:04 hardlink_to_file2
817267 lrwxrwxrwx 1 paul paul 5 Feb 5 16:55 symlink_to_file2 -> file2
paul@RHELv4u4:~/test$

Permissions on a symbolic link have no meaning, since the permissions of the target
apply. Hard links are limited to their own partition (because they point to an inode),
symbolic links can link anywhere (other file systems, even networked).

28.5. removing links
Links can be removed with rm.

paul@laika:~$ touch data.txt
paul@laika:~$ ln -s data.txt sl_data.txt
paul@laika:~$ ln data.txt hl_data.txt
paul@laika:~$ rm sl_data.txt
paul@laika:~$ rm hl_data.txt

(c) ketabton.com: The Digital Library

file links

240

28.6. practice : links
1. Create two files named winter.txt and summer.txt, put some text in them.

2. Create a hard link to winter.txt named hlwinter.txt.

3. Display the inode numbers of these three files, the hard links should have the same
inode.

4. Use the find command to list the two hardlinked files

5. Everything about a file is in the inode, except two things : name them!

6. Create a symbolic link to summer.txt called slsummer.txt.

7. Find all files with inode number 2. What does this information tell you ?

8. Look at the directories /etc/init.d/ /etc/rc.d/ /etc/rc3.d/ ... do you see the links ?

9. Look in /lib with ls -l...

10. Use find to look in your home directory for regular files that do not(!) have one
hard link.

(c) ketabton.com: The Digital Library

file links

241

28.7. solution : links
1. Create two files named winter.txt and summer.txt, put some text in them.

echo cold > winter.txt ; echo hot > summer.txt

2. Create a hard link to winter.txt named hlwinter.txt.

ln winter.txt hlwinter.txt

3. Display the inode numbers of these three files, the hard links should have the same
inode.

ls -li winter.txt summer.txt hlwinter.txt

4. Use the find command to list the two hardlinked files

find . -inum xyz

5. Everything about a file is in the inode, except two things : name them!

The name of the file is in a directory, and the contents is somewhere on the disk.

6. Create a symbolic link to summer.txt called slsummer.txt.

ln -s summer.txt slsummer.txt

7. Find all files with inode number 2. What does this information tell you ?

It tells you there is more than one inode table (one for every formatted partition +
virtual file systems)

8. Look at the directories /etc/init.d/ /etc/rc.d/ /etc/rc3.d/ ... do you see the links ?

ls -l /etc/init.d

ls -l /etc/rc.d

ls -l /etc/rc3.d

9. Look in /lib with ls -l...

ls -l /lib

10. Use find to look in your home directory for regular files that do not(!) have one
hard link.

find ~ ! -links 1 -type f

(c) ketabton.com: The Digital Library

Part IX. Appendices

(c) ketabton.com: The Digital Library

243

Appendix A. certifications

A.1. Certification

LPI: Linux Professional Institute

LPIC Level 1

This is the junior level certification. You need to pass exams 101 and 102 to
achieve LPIC 1 certification. To pass level one, you will need Linux command
line, user management, backup and restore, installation, networking, and basic system
administration skills.

LPIC Level 2

This is the advanced level certification. You need to be LPIC 1 certified and pass
exams 201 and 202 to achieve LPIC 2 certification. To pass level two, you will need
to be able to administer medium sized Linux networks, including Samba, mail, news,
proxy, firewall, web, and ftp servers.

LPIC Level 3

This is the senior level certification. It contains one core exam (301) which tests
advanced skills mainly about ldap. To achieve this level you also need LPIC Level
2 and pass a specialty exam (302 or 303). Exam 302 mainly focuses on Samba, and
303 on advanced security. More info on http://www.lpi.org.

Ubuntu

When you are LPIC Level 1 certified, you can take a LPI Ubuntu exam (199) and
become Ubuntu certified.

Red Hat Certified Engineer

The big difference with most other certifications is that there are no multiple choice
questions for RHCE. Red Hat Certified Engineers have to take a live exam consisting
of two parts. First, they have to troubleshoot and maintain an existing but broken
setup (scoring at least 80 percent), and second they have to install and configure a
machine (scoring at least 70 percent).

(c) ketabton.com: The Digital Library

certifications

244

MySQL

There are two tracks for MySQL certification; Certified MySQL 5.0 Developer
(CMDEV) and Certified MySQL 5.0 DBA (CMDBA). The CMDEV is focused
towards database application developers, and the CMDBA towards database
administrators. Both tracks require two exams each. The MySQL cluster DBA
certification requires CMDBA certification and passing the CMCDBA exam.

Novell CLP/CLE

To become a Novell Certified Linux Professional, you have to take a live practicum.
This is a VNC session to a set of real SLES servers. You have to perform several
tasks and are free to choose your method (commandline or YaST or ...). No multiple
choice involved.

Sun Solaris

Sun uses the classical formula of multiple choice exams for certification. Passing
two exams for an operating system gets you the Solaris Certified Administrator for
Solaris X title.

Other certifications

There are many other lesser known certifications like EC council's Certified Ethical
Hacker, CompTIA's Linux+, and Sair's Linux GNU.

(c) ketabton.com: The Digital Library

245

Appendix B. keyboard settings

B.1. about keyboard layout
Many people (like US-Americans) prefer the default US-qwerty keyboard layout. So
when you are not from the USA and want a local keyboard layout on your system,
then the best practice is to select this keyboard at installation time. Then the keyboard
layout will always be correct. Also, whenever you use ssh to remotely manage a linux
system, your local keyboard layout will be used, independent of the server keyboard
configuration. So you will not find much information on changing keyboard layout
on the fly on linux, because not many people need it. Below are some tips to help you.

B.2. X Keyboard Layout
This is the relevant portion in /etc/X11/xorg.conf, first for Belgian azerty, then for
US-qwerty.

[paul@RHEL5 ~]$ grep -i xkb /etc/X11/xorg.conf
 Option "XkbModel" "pc105"
 Option "XkbLayout" "be"

[paul@RHEL5 ~]$ grep -i xkb /etc/X11/xorg.conf
 Option "XkbModel" "pc105"
 Option "XkbLayout" "us"

When in Gnome or KDE or any other graphical environment, look in the graphical
menu in preferences, there will be a keyboard section to choose your layout. Use the
graphical menu instead of editing xorg.conf.

B.3. shell keyboard layout
When in bash, take a look in the /etc/sysconfig/keyboard file. Below a sample US-
qwerty configuration, followed by a Belgian azerty configuration.

[paul@RHEL5 ~]$ cat /etc/sysconfig/keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"

[paul@RHEL5 ~]$ cat /etc/sysconfig/keyboard
KEYBOARDTYPE="pc"
KEYTABLE="be-latin1"

The keymaps themselves can be found in /usr/share/keymaps or /lib/kbd/keymaps.

(c) ketabton.com: The Digital Library

keyboard settings

246

[paul@RHEL5 ~]$ ls -l /lib/kbd/keymaps/
total 52
drwxr-xr-x 2 root root 4096 Apr 1 00:14 amiga
drwxr-xr-x 2 root root 4096 Apr 1 00:14 atari
drwxr-xr-x 8 root root 4096 Apr 1 00:14 i386
drwxr-xr-x 2 root root 4096 Apr 1 00:14 include
drwxr-xr-x 4 root root 4096 Apr 1 00:14 mac
lrwxrwxrwx 1 root root 3 Apr 1 00:14 ppc -> mac
drwxr-xr-x 2 root root 4096 Apr 1 00:14 sun

(c) ketabton.com: The Digital Library

247

Appendix C. hardware

C.1. buses

about buses

Hardware components communicate with the Central Processing Unit or cpu over
a bus. The most common buses today are usb, pci, agp, pci-express and pcmcia aka
pc-card. These are all Plag and Play buses.

Older x86 computers often had isa buses, which can be configured using jumpers
or dip switches.

/proc/bus

To list the buses recognised by the Linux kernel on your computer, look at the
contents of the /proc/bus/ directory (screenshot from Ubuntu 7.04 and RHEL4u4
below).

root@laika:~# ls /proc/bus/
input pccard pci usb

[root@RHEL4b ~]# ls /proc/bus/
input pci usb

Can you guess which of these two screenshots was taken on a laptop ?

/usr/sbin/lsusb

To list all the usb devices connected to your system, you could read the contents
of /proc/bus/usb/devices (if it exists) or you could use the more readable output of
lsusb, which is executed here on a SPARC system with Ubuntu.

root@shaka:~# lsusb
Bus 001 Device 002: ID 0430:0100 Sun Microsystems, Inc. 3-button Mouse
Bus 001 Device 003: ID 0430:0005 Sun Microsystems, Inc. Type 6 Keyboard
Bus 001 Device 001: ID 04b0:0136 Nikon Corp. Coolpix 7900 (storage)
root@shaka:~#

/var/lib/usbutils/usb.ids

The /var/lib/usbutils/usb.ids file contains a gzipped list of all known usb devices.

(c) ketabton.com: The Digital Library

hardware

248

paul@barry:~$ zmore /var/lib/usbutils/usb.ids | head
------> /var/lib/usbutils/usb.ids <------
#
List of USB ID's
#
Maintained by Vojtech Pavlik <vojtech@suse.cz>
If you have any new entries, send them to the maintainer.
The latest version can be obtained from
http://www.linux-usb.org/usb.ids
#
$Id: usb.ids,v 1.225 2006/07/13 04:18:02 dbrownell Exp $

/usr/sbin/lspci

To get a list of all pci devices connected, you could take a look at /proc/bus/pci or
run lspci (partial output below).

paul@laika:~$ lspci
...
00:06.0 FireWire (IEEE 1394): Texas Instruments TSB43AB22/A IEEE-139...
00:08.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-816...
00:09.0 Multimedia controller: Philips Semiconductors SAA7133/SAA713...
00:0a.0 Network controller: RaLink RT2500 802.11g Cardbus/mini-PCI
00:0f.0 RAID bus controller: VIA Technologies, Inc. VIA VT6420 SATA ...
00:0f.1 IDE interface: VIA Technologies, Inc. VT82C586A/B/VT82C686/A...
00:10.0 USB Controller: VIA Technologies, Inc. VT82xxxxx UHCI USB 1....
00:10.1 USB Controller: VIA Technologies, Inc. VT82xxxxx UHCI USB 1....
...

C.2. interrupts

about interrupts

An interrupt request or IRQ is a request from a device to the CPU. A device raises
an interrupt when it requires the attention of the CPU (could be because the device
has data ready to be read by the CPU).

Since the introduction of pci, irq's can be shared among devices.

Interrupt 0 is always reserved for the timer, interrupt 1 for the keyboard. IRQ 2 is
used as a channel for IRQ's 8 to 15, and thus is the same as IRQ 9.

/proc/interrupts

You can see a listing of interrupts on your system in /proc/interrupts.

paul@laika:~$ cat /proc/interrupts

(c) ketabton.com: The Digital Library

hardware

249

 CPU0 CPU1
0: 1320048 555 IO-APIC-edge timer
1: 10224 7 IO-APIC-edge i8042
7: 0 0 IO-APIC-edge parport0
8: 2 1 IO-APIC-edge rtc
10: 3062 21 IO-APIC-fasteoi acpi
12: 131 2 IO-APIC-edge i8042
15: 47073 0 IO-APIC-edge ide1
18: 0 1 IO-APIC-fasteoi yenta
19: 31056 1 IO-APIC-fasteoi libata, ohci1394
20: 19042 1 IO-APIC-fasteoi eth0
21: 44052 1 IO-APIC-fasteoi uhci_hcd:usb1, uhci_hcd:usb2,...
22: 188352 1 IO-APIC-fasteoi ra0
23: 632444 1 IO-APIC-fasteoi nvidia
24: 1585 1 IO-APIC-fasteoi VIA82XX-MODEM, VIA8237

dmesg

You can also use dmesg to find irq's allocated at boot time.

paul@laika:~$ dmesg | grep "irq 1[45]"
[28.930069] ata3: PATA max UDMA/133 cmd 0x1f0 ctl 0x3f6 bmdma 0x2090 irq 14
[28.930071] ata4: PATA max UDMA/133 cmd 0x170 ctl 0x376 bmdma 0x2098 irq 15

C.3. io ports

about io ports

Communication in the other direction, from CPU to device, happens through IO
ports. The CPU writes data or control codes to the IO port of the device. But this is
not only a one way communication, the CPU can also use a device's IO port to read
status information about the device. Unlike interrupts, ports cannot be shared!

/proc/ioports

You can see a listing of your system's IO ports via /proc/ioports.

[root@RHEL4b ~]# cat /proc/ioports
0000-001f : dma1
0020-0021 : pic1
0040-0043 : timer0
0050-0053 : timer1
0060-006f : keyboard
0070-0077 : rtc
0080-008f : dma page reg
00a0-00a1 : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
02f8-02ff : serial
...

(c) ketabton.com: The Digital Library

hardware

250

C.4. dma

about dma

A device that needs a lot of data, interrupts and ports can pose a heavy load on the
cpu. With dma or Direct Memory Access a device can gain (temporary) access to
a specific range of the ram memory.

/proc/dma

Looking at /proc/dma might not give you the information that you want, since it only
contains currently assigned dma channels for isa devices.

root@laika:~# cat /proc/dma
1: parport0
4: cascade

pci devices that are using dma are not listed in /proc/dma, in this case dmesg can be
useful. The screenshot below shows that during boot the parallel port received dma
channel 1, and the Infrared port received dma channel 3.

root@laika:~# dmesg | egrep -C 1 'dma 1|dma 3'
[20.576000] parport: PnPBIOS parport detected.
[20.580000] parport0: PC-style at 0x378 (0x778), irq 7, dma 1...
[20.764000] irda_init()
--
[21.204000] pnp: Device 00:0b activated.
[21.204000] nsc_ircc_pnp_probe() : From PnP, found firbase 0x2F8...
[21.204000] nsc-ircc, chip->init

(c) ketabton.com: The Digital Library

251

Index
Symbols
; (shell), 84
!! (shell), 101
! (bash history), 101
! (file globbing), 108
? (file globbing), 107
/, 28, 52
/bin, 53, 76
/bin/bash, 73, 204
/bin/cat, 53
/bin/csh, 73
/bin/date, 53
/bin/ksh, 73, 204
/bin/rm, 77
/bin/sh, 73
/boot, 55
/boot/grub, 55
/boot/grub/grub.cfg, 55
/boot/grub/grub.conf, 55
/dev, 36, 59
/dev/null, 59, 117
/dev/pts/1, 59
/dev/random, 70
/dev/tty1, 59
/dev/urandom, 69, 71
/dev/zero, 70
/etc, 55
/etc/bashrc, 205
/etc/default/useradd, 190
/etc/fstab, 232
/etc/group, 208, 215
/etc/gshadow, 210
/etc/hosts, 71
/etc/init.d/, 55
/etc/inputrc, 204
/etc/login.defs, 194
/etc/passwd, 132, 189, 195, 195, 197, 215
/etc/profile, 204
/etc/resolv.conf, 71
/etc/shadow, 191, 193, 227
/etc/shells, 158, 197
/etc/skel, 56, 196
/etc/sudoers, 199, 199
/etc/sysconfig, 56
/etc/sysconfig/firstboot, 56

/etc/sysconfig/harddisks, 56
/etc/sysconfig/hwconf, 56
/etc/sysconfig/keyboard, 56
/etc/X11/xorg.conf, 55
/export, 57
/home, 57
/lib, 54
/lib/kbd/keymaps/, 56
/lib/modules, 54
/lib32, 54
/lib64, 54
/media, 57
/opt, 54
/proc, 36, 60
/proc/bus, 247
/proc/bus/pci, 248
/proc/bus/usb/devices, 247
/proc/cpuinfo, 61
/proc/dma, 250
/proc/interrupts, 62, 248
/proc/ioports, 249
/proc/kcore, 62
/proc/sys, 61
/root, 57
/run, 67
/sbin, 53, 76
/srv, 57
/sys, 63
/tmp, 58, 226
/usr, 64
/usr/bin, 64
/usr/bin/getfacl, 232
/usr/bin/passwd, 227
/usr/bin/setfacl, 232
/usr/include, 64
/usr/lib, 64
/usr/local, 64
/usr/share, 65
/usr/share/games, 65
/usr/share/man, 65
/usr/src, 65
/var, 66
/var/cache, 66
/var/lib, 67
/var/lib/rpm, 67
/var/lib/usbutils/usb.ids, 247
/var/lock, 67
/var/log, 66

(c) ketabton.com: The Digital Library

Index

252

/var/log/messages, 66
/var/log/syslog, 66
/var/run, 67
/var/spool, 67
/var/tmp, 67
., 27
.., 27
.. (directory), 237
. (directory), 237
. (shell), 159
.bash_history, 102
.bash_login, 204
.bash_logout, 206
.bash_profile, 204
.bashrc, 204, 205
.exrc, 153
.vimrc, 153
`(backtick), 96
~, 27
'(single quote), 96
" (double quotes), 75
(((shell), 179
-- (shell), 160
[(file globbing), 107
[(shell), 164
$? (shell variables), 84
$() embedded shell, 96
$ (shell variables), 90
$HISTFILE, 102
$HISTFILESIZE, 102
$HISTSIZE, 102
$LANG, 108
$PATH, 76, 91
$PS1, 28
* (file globbing), 107
\ (backslash), 86
&, 84
&&, 85
#!/bin/bash, 158
#! (shell), 158
(pound sign), 86
>, 115
>>, 116
>|, 116
|, 120
||, 85
1>, 117
2>, 117

2>&1, 117
777, 220

A
access control list, 232
acl, 234
acls, 232
agp, 247
AIX, 3
alias(bash), 77
alias(shell), 77
apropos, 23
arguments(shell), 74

B
backticks, 96
base64, 118
bash, 171
bash history, 101
bash -x, 160
binaries, 53
Bourne again shell, 73
BSD, 3
bunzip2, 141
bus, 247
bzcat, 141
bzip2, 140, 141, 141
bzmore, 141

C
cal, 139
case, 181
case sensitive, 36
cat, 124
cat(1), 46
cd(bash builtin), 27
cd -(bash builtin), 28
CentOS, 5
chage(1), 194
chgrp(1), 215
chkconfig, 56
chmod, 196, 220
chmod(1), 150, 218
chmod +x, 158, 221
chown, 196
chown(1), 215
chsh(1), 197
CMDBA, 244
CMDEV, 244

(c) ketabton.com: The Digital Library

Index

253

comm(1), 129
command line scan, 74
command mode(vi), 147
copyleft, 8
copyright, 7, 7
cp(1), 38, 38
cpu, 247
crypt, 192
csh, 158
Ctrl d, 46
ctrl-r, 102
current directory, 27
cut, 132
cut(1), 126

D
daemon, 23
date, 138
Debian, 5
Dennis Ritchie, 3
devfs, 63
df -i, 236
directory, 237
distribution, 4
distributions, 52
dma, 250
dmesg(1), 249, 250
dumpkeys(1), 56

E
echo, 74
echo(1), 74, 75
echo $-, 95
echo *, 109
Edubuntu, 5
eiciel, 234
ELF, 54
elif, 165
embedding(shell), 96
env(1), 93, 93
environment variable, 90
EOF, 118
escaping (shell), 109
eval, 179
executables, 53
exit (bash), 102
export, 93

F
Fedora, 5
FHS, 52
file(1), 36, 54
file globbing, 106
file ownership, 215
Filesystem Hierarchy Standard, 52
filters, 123
find(1), 137, 226, 227, 238
FireWire, 63
for (bash), 165
FOSS, 7
four freedoms, 8
Free Software, 7
free software, 8
freeware, 7
function (shell), 182

G
gcc(1), 193
getfacl, 232
getopts, 174
GID, 208
glob(7), 107
GNU, 3
gpasswd, 210
GPL, 8
GPLv3, 8
grep(1), 124
grep -i, 124
grep -v, 125
groupadd(1), 208
groupdel(1), 209
groupmod(1), 209
groups, 208
groups(1), 209
gunzip(1), 140
gzip, 140
gzip(1), 140

H
hard link, 238
head(1), 45
here directive, 47
here document, 118
here string, 118
hidden files, 29
HP, 3

(c) ketabton.com: The Digital Library

Index

254

HP-UX, 3
http://www.pathname.com/fhs/, 52

I
IBM, 3
id(1), 188
IEEE 1394, 63
if then else (bash), 165
inode, 235, 238
inode table, 236
insert mode(vi), 147
interrupt, 248
IO Ports, 249
IRQ, 248
isa, 247

K
Ken Thompson, 3
kernel, 54
keymaps(5), 56
Korn shell, 103
Korn Shell, 197
ksh, 103, 158
kudzu, 56

L
less(1), 48
let, 180
Linus Torvalds, 3
Linux Mint, 5
ln, 239
ln(1), 238
loadkeys(1), 56
locate(1), 138
logical AND, 85
logical OR, 85
Logiciel Libre, 8
LPIC 1 Certification, 243
LPIC 2 Certification, 243
ls, 217, 236
ls(1), 29, 29, 236, 237
ls -l, 216
lspci, 248
lsusb, 247

M
magic(5), 36
man(1), 23, 24, 24
mandb(1), 25

man hier, 52
man -k, 23
md5, 193
mkdir, 196
mkdir(1), 31, 221
mkdir -p, 31
mkfs, 236
more(1), 48
mv(1), 39

N
noclobber, 115
nounset(shell), 94
Novell Certified Linux Professional, 244

O
octal permissions, 220
od(1), 130
OEL, 5
open source, 8
open source definition, 8
open source software, 7
openssl(1), 192
Oracle Enterprise Linux, 5
owner, 217

P
parent directory, 27
passwd, 194
passwd(1), 24, 191, 191, 192, 227
passwd(5), 24
path, 28, 29
pc-card, 247
pci, 247
pci-express, 247
pcmcia, 247
pipe, 120
popd, 34
primary group, 190
proprietary, 7
public domain, 7
pushd, 34
pwd(1), 27, 28

R
random number generator, 70
read, 172
reboot, 102
Red Hat, 5

(c) ketabton.com: The Digital Library

Index

255

regular expressions, 103
rename(1), 40
repository, 4
RHCE, 243
Richard Stallman, 3
rm(1), 37, 239
rmdir(1), 31
rmdir -p, 31
rm -rf, 38
root, 53, 189, 198, 199, 199
root directory, 52
rpm, 67

S
salt (encryption), 193
Scientific, 5
sed, 131
set, 95
set(shell), 92
set +x, 78
setfacl, 232
setgid, 226, 226
setuid, 160, 199, 227, 227
set -x, 78
she-bang (shell), 158
shell, 204
shell comment, 86
shell escaping, 86
shell expansion, 74, 74
shell functions, 182
shift, 172
shopt, 175
skeleton, 56
sleep, 139
soft link, 239
Solaris, 3
sort, 132
sort(1), 128
source, 159, 173
stderr, 115
stdin, 115, 120, 124
stdout, 115, 120, 124
sticky bit, 226
strings(1), 48
su, 195, 210
su -, 91
su(1), 198, 198
sudo, 195, 199

sudo(1), 199
sudo su -, 200
Sun, 3
SunOS, 3
superuser, 189
symbolic link, 239
sysfs, 63
System V, 54

T
tab key(bash), 29
tac(1), 47
tail(1), 45
tee(1), 124
test, 164
time, 139
touch(1), 37
tr, 127
tr(1), 126
type(shell), 76

U
Ubuntu, 5
umask(1), 221
unalias(bash), 78
uniq, 132
uniq(1), 129
Unix, 3
unset, 95
unset(shell), 92
until (bash), 166
updatedb(1), 138
usb, 63, 247
useradd, 190, 196
useradd(1), 192, 196
useradd -D, 190
userdel(1), 190
usermod, 209
usermod(1), 190, 194, 195

V
vi, 210
vi(1), 146
vigr(1), 210
vim(1), 146
vimtutor(1), 146
vipw(1), 195
visudo(1), 199
vrije software, 8

(c) ketabton.com: The Digital Library

Index

256

W
w(1), 188
wc(1), 127
whatis(1), 23
whereis(1), 24
which(1), 76
while (bash), 166
white space(shell), 74
who, 132
who(1), 188
who am i, 188
whoami(1), 188
wild cards, 108

X
X, 55
X Window System, 55

Z
zcat, 140
zmore, 140

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

