Building Design and Engineeri Approaches to Airborne Infection

Basic Concepts of Ventilation Design

Jack Price

Ketabton.com

General Principles of Ventilation

Introduction

Need for ventilation:

ComfortContamination Control

both maintain healthy work environment

General Principles of Ventilation

• Office buildings ----- In-door air quality

Occupational exposure ---- OSHA

Environmental releases ---- EPA

General Principles of Ventilation

Regulatory Agencies (compliance concerns)

- Federal
- State
- Local

Good Practice

- Standard of care (industry standards ANSI, ASME, etc.)
- Work productivity
- Process control

Types of Systems

Supply

Temperature & Humidity

Replacement (make-up air)

Return (recirculated air)

General (dilution)

• Exhaust •

Local Control (hoods)

HVAC Systems

Air Handling System with Economizer

Air Balance in a Conditioned Space

Design Concerns

- Temperature
- Pressure
- Air Contaminants
- Work Practices
- Product Protection
- Worker Protection
- Building Codes

- Equipment Selection
- Energy Conservation
- Maintenance
- Security
- Expansion

Patient Isolation Room with HEPA Exhaust Filtration

Air Conditioning System Water and Refrigeration Circuits

Factors in the Perception of Air Quality

Conversion Factors

Quantity	To Convert	Into	Multiply By:
Volumetric Flow	cubic feet/minute (ft ³ /min)	cubic meters/second (m ³ /sec)	4.719 x 10 ^{- 4}
Velocity	feet/minute (fpm)	meters/second (m/s)	0.00508
Pressure	inches water (in w.g.)	Pascals (Pa)	249.1

Conservation of Mass

Conservation of Mass

AIR FLOW

- At standard temperature and pressure (STP):
 * 1 atmosphere & 70° F *
 The density of air is 0.075 lb_m/ft³
- Air will flow from a higher pressure region to a lower pressure region
- Three Different Types of Pressure Measurements
 * Static * Velocity * Total *

Types of Pressure Measurements

Static Pressure (S_P)

potential energy can be + or –

bursting or collapsing measured perpendicular to flow

Velocity Pressure (V_P)

kinetic energy Exerted in direction of flow accelerates from 0 to some velocity always +

Total Pressure (T_P)

combined static & velocity components can be + or -

measure of energy content of air stream Always decreasing as flow travels downstream thru a system only rising when going across a fan

TP = SP + VP

Conservation of Energy

- TP = SP + VP or $T_P = S_P + V_P$
- Energy losses:
 - Acceleration of air
 - Hood entry
 - Duct losses: friction (function of system materials & design)
 - Fitting losses: contractions & expansions
- $T_{P1} = T_{P2} + h_L$ now substitute $T_P = S_P + V_P$

•
$$S_{P1} + V_{P1} = S_{P2} + V_{P2} + h_L$$

Pressure Graphs for TP, SP, and VP

Velocity Pressure & Velocity

• V = 1096 (V_P/p)^{0.5}

where p = air density@ STP $p = 0.075 \text{ lb}_m/\text{ft}^3$

• $V = 4005 (V_P)^{0.5}$

- Velocity pressure is a function of the velocity and fluid density.
- Velocity pressure will only be exerted in the direction of air flow and is always positive.

- $\mathbf{Q}_1 = \mathbf{Q}_2$
- If Q desired is 300 cfm
- Then Q = V A
 - V = Q A
 - V = (300) / (0.0068)
 - V = 4490 fpm

If there are no losses from the grinder hood entry then:

 $SP_1 + VP_1 = SP_2 + VP_2$

but: $SP_1 = 0$ and $VP_1 \rightarrow 0$

we then have:

or

$$0 = SP_2 + VP_2$$
$$-VP_2 = SP_2$$

• If there are no losses from the grinder hood entry then:

 $SP_1 + VP_1 = SP_2 + VP_2$

but: $SP_1 = 0$ and $VP_1 \rightarrow 0$

we then have:

 $0 = SP_2 + VP_2$ or $SP_2 = (-VP_2)$

- from $V = 4005 (VP)^{0.5}$
- $VP_2 = (4490/4005)^2$
- VP₂ = 1.26 in w.g.
- then: $SP_2 = (-VP_2)$

$$SP_2 = -1.26$$
 in w.g.

• However there are losses thru the grinder hood entry SP - (VP + h) where h is the energy

 $SP_2 = -(VP_2 + h_e)$ where h_e is the energy loss of the hood entry

- Static pressure (SP) must decrease due to acceleration of air up to the duct velocity
- **F**_h is defined as the energy loss factor (for that hood design)
- Energy losses will be measured as a function of the velocity pressure in the system $h_e = (F_h) (VP)$
- Now we define the static pressure at the hood as SP_h
- **SP**_h is also called the hood static suction and is the absolute value of **SP**₂

Now add the hood entry loss:

$$SP_{h} = VP_{2} + h_{e} = VP_{2+}(F_{h})(VP_{2})$$

Assume that the hood energy loss factor for this hood is 0.40

• $SP_h = 1.26 + (0.40) (1.26) = 1.76$ in w.g.

Hood Entry Coefficients

Actual Flow

 $C_e = Hypothetical Flow no losses$

 $C_{P} = \frac{(4005) (VP)^{0.5} (A)}{=} = \frac{(VP)^{0.5}}{=}$

(4005) $(SP_h)^{0.5}(A)$ $(SP_h)^{0.5}$

$C_e = (VP/SP_h)^{0.5}$

Hood Entry Coefficients

$C_e = (VP/SP_h)^{0.5}$

Typical values for C_e are known for some hoods.

For the bench grinder hood with a straight take-off :

 $C_{e} = 0.78$

Example Problem

- What static pressure (SP_h) should be set at the bench grinder hood to maintain a duct velocity of 4000 fpm if the take-off duct size is 4 inch diameter ?
- What is the volumetric flow rate ?

Example Problem

- V = 4000 fpm $Q = VA = 4005(A)(VP)^{0.5}$
- A for 4 inch duct diameter = 0.087 ft²
- C_e bench grinder hood = 0.78

$$C_e = (VP/SP_h)^{0.5} = 0.78$$

 $(VP/SP_h) = (0.78)^2$

V = 4005 (VP)^{0.5} (VP)^{0.5} = (4000)/(4005) VP = 0.998 in w.g.

Q = VA = 348 cfm

 $SP_{h} = VP/(0.78)^2 = (0.998)/(0.608) = 1.64$ in w.g.

Air Flow Characteristics

See Industrial Ventilation Manual notes

Blowing vs. Exhausting

Air Flow Characteristics

Capture Velocity

$$V_{(x)} = Q/(10 X^2 + A)$$

Figure 2. Hood Capture Velocity Equation (without Range)

Capture velocity is only effective in the immediate vicinity of the hood

Room supply air (makeup air) discharge can influence effectiveness of hood capture

Questions ?

In-Place Filter Testing Workshop

Ventilation Systems: Operation and Testing

HVAC Systems

Air Handling System with Economizer

Air Balance in a Conditioned Space

Questions ?

Get more e-books from www.ketabton.com Ketabton.com: The Digital Library