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Preface

Audience

This textbook presents an introduction to reinforced concrete design. We authors hope the
material is written in such a manner as to interest students in the subject and to encourage
them to continue its study in the years to come. The text was prepared with an introductory
three-credit course in mind, but sufficient material is included for an additional three-credit
course.

New to This Edition
Updated Code

With the ninth edition of this text, the contents have been updated to conform to the 2017
Building Code of the American Concrete Institute (ACI 318-11). Changes to this edition of the
code include:

¢ Factored load combinations are now based on ASCE/SEI 7-10, which now treats wind
as a strength level load.

* Minor revisions to development length to headed bars.
* Addition of minimum reinforcement provisions to deep beams.
 Introduction of Grade 80 deformed bars in accordance with ASTM 615 and ASTM 706.

e Zinc and epoxy dual-coated reinforcing bars are now permitted in accordance with ASTM
A1055.

New Chapter on Concrete Masonry

A new chapter on strength design of reinforced concrete masonry has been added to replace the
previous Chapter 20 on formwork. Surveys revealed that the forms chapter was not being used
and that a chapter on masonry would be more valuable. Because strength design of reinforced
concrete masonry is so similar to that of reinforced concrete, the authors felt that this would be
a logical extension to the application of the theories developed earlier in the text. The design
of masonry lintels, walls loaded out-of-plane, and shear walls are included. The subject of this
chapter could easily occupy an entire textbook, so this chapter is limited in scope to only the
basics. An example of the design of each type of masonry element is also included to show
the student some typical applications.

XV
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PREFACE

Units Added to Example Problems

The example problems now have units associated with the input values. This will assist the
student in determining the source of each input value as well as help in the use of dimensional
analysis in determining the correct answers and the units of the answers. Often the student
can catch errors in calculations simply by checking the dimensions of the calculated answer
against what the units are known to be.

Organization

The text is written in the order that the authors feel would follow the normal sequence of
presentation for an introductory course in reinforced concrete design. In this way, it is hoped
that skipping back and forth from chapter to chapter will be minimized. The material on
columns is included in three chapters (Chapters 9, 10, and 11). Some instructors do not have
time to cover the material on slender columns, so it was put in a separate chapter (Chapter
11). The remaining material on columns was separated into two chapters in order to emphasize
the difference between columns that are primarily axially loaded (Chapter 9) and those with
significant bending moment combined with axial load (Chapter 10). The material formerly in
Chapter 21, “Seismic Design of Concrete Structures,” has been updated and moved to a new
appendix (Appendix D).

Instructor and Student Resources

The website for the book is located at www.wiley.com/college/mccormac and contains the
following resources.

For Instructors

Solutions Manual A password-protected Solutions Manual, which contains complete solu-
tions for all homework problems in the text, is available for download. Most are handwritten,
but some are carried out using spreadsheets or Mathcad.

Figures in PPT Format Also available are the figures from the text in PowerPoint format,
for easy creation of lecture slides.

Lecture Presentation Slides in PPT Format Presentation slides developed by Dr. Terry
Weigel of the University of Louisville are available for instructors who prefer to use PowerPoint
for their lectures. The PowerPoint files are posted rather than files in PDF format to permit the
instructor to modify them as appropriate for his or her class.

Sample Exams Examples of sample exams are included for most topics in the text. Prob-
lems in the back of each chapter are also suitable for exam questions.

Course Syllabus A course syllabus along with a typical daily schedule are included in
editable format.

Visit the Instructor Companion Site portion of the book website at www.wiley.com/
college/mccormac to register for a password. These resources are available for instructors
who have adopted the book for their course. The website may be updated periodically with
additional material.


http://www.wiley.com/college/mccormac
http://www.wiley.com/college/mccormac

For Students and Instructors

Excel Spreadsheets Excel spreadsheets were created to provide the student and the instruc-
tor with tools to analyze and design reinforced concrete elements quickly to compare alternative
solutions. Spreadsheets are provided for most chapters of the text, and their use is self-
explanatory. Many of the cells contain comments to assist the new user. The spreadsheets
can be modified by the student or instructor to suit their more specific needs. In most cases,
calculations contained within the spreadsheets mirror those shown in the example problems
in the text. The many uses of these spreadsheets are illustrated throughout the text. At the
end of most chapters are example problems demonstrating the use of the spreadsheet for that
particular chapter. Space does not permit examples for all of the spreadsheet capabilities. The
examples chosen were thought by the authors to be the most relevant.

Visit the Student Companion Site portion of the book website at www.wiley.com/
college/mccormac to download this software.
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Introduction CHAPTER 1

1.1 Concrete and Reinforced Concrete

Concrete is a mixture of sand, gravel, crushed rock, or other aggregates held together in a
rocklike mass with a paste of cement and water. Sometimes one or more admixtures are added
to change certain characteristics of the concrete such as its workability, durability, and time of
hardening.

As with most rocklike substances, concrete has a high compressive strength and a very
low tensile strength. Reinforced concrete is a combination of concrete and steel wherein the
steel reinforcement provides the tensile strength lacking in the concrete. Steel reinforcing is also
capable of resisting compression forces and is used in columns as well as in other situations,
which are described later.

1.2 Advantages of Reinforced Concrete as a
Structural Material

Reinforced concrete may be the most important material available for construction. It is used
in one form or another for almost all structures, great or small—buildings, bridges, pavements,
dams, retaining walls, tunnels, drainage and irrigation facilities, tanks, and so on.

The tremendous success of this universal construction material can be understood quite
easily if its numerous advantages are considered. These include the following:

1. It has considerable compressive strength per unit cost compared with most other mate-
rials.

2. Reinforced concrete has great resistance to the actions of fire and water and, in fact, is
the best structural material available for situations where water is present. During fires
of average intensity, members with a satisfactory cover of concrete over the reinforcing
bars suffer only surface damage without failure.

3. Reinforced concrete structures are very rigid.
4. Tt is a low-maintenance material.

5. As compared with other materials, it has a very long service life. Under proper conditions,
reinforced concrete structures can be used indefinitely without reduction of their load-
carrying abilities. This can be explained by the fact that the strength of concrete does
not decrease with time but actually increases over a very long period, measured in years,
because of the lengthy process of the solidification of the cement paste.

6. It is usually the only economical material available for footings, floor slabs, basement
walls, piers, and similar applications.

7. A special feature of concrete is its ability to be cast into an extraordinary variety of
shapes from simple slabs, beams, and columns to great arches and shells.
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Courtesy of Portland Cement Association.

NCNB Tower in Charlotte, North Carolina, completed 1991.

8. In most areas, concrete takes advantage of inexpensive local materials (sand, gravel, and
water) and requires relatively small amounts of cement and reinforcing steel, which may
have to be shipped from other parts of the country.

9. A lower grade of skilled labor is required for erection as compared with other materials
such as structural steel.

1.3 Disadvantages of Reinforced Concrete as a
Structural Material

To use concrete successfully, the designer must be completely familiar with its weak points as
well as its strong ones. Among its disadvantages are the following:

1. Concrete has a very low tensile strength, requiring the use of tensile reinforcing.

2. Forms are required to hold the concrete in place until it hardens sufficiently. In addi-
tion, falsework or shoring may be necessary to keep the forms in place for roofs, walls,
floors, and similar structures until the concrete members gain sufficient strength to sup-
port themselves. Formwork is very expensive. In the United States, its costs run from
one-third to two-thirds of the total cost of a reinforced concrete structure, with average
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Courtesy of EFCO Corp.

The 320-ft-high Pyramid Sports Arena, Memphis, Tennessee.

values of about 50%. It should be obvious that when efforts are made to improve the
economy of reinforced concrete structures, the major emphasis is on reducing formwork
costs.

3. The low strength per unit of weight of concrete leads to heavy members. This becomes
an increasingly important matter for long-span structures, where concrete’s large dead
weight has a great effect on bending moments. Lightweight aggregates can be used to
reduce concrete weight, but the cost of the concrete is increased.

4. Similarly, the low strength per unit of volume of concrete means members will be
relatively large, an important consideration for tall buildings and long-span structures.

5. The properties of concrete vary widely because of variations in its proportioning and
mixing. Furthermore, the placing and curing of concrete is not as carefully controlled
as is the production of other materials, such as structural steel and laminated wood.

Two other characteristics that can cause problems are concrete’s shrinkage and creep.
These characteristics are discussed in Section 1.11 of this chapter.

1.4 Historical Background

Most people believe that concrete has been in common use for many centuries, but this is
not the case. The Romans did make use of a cement called pozzolana before the birth of
Christ. They found large deposits of a sandy volcanic ash near Mt. Vesuvius and in other
places in Italy. When they mixed this material with quicklime and water as well as sand
and gravel, it hardened into a rocklike substance and was used as a building material. One
might expect that a relatively poor grade of concrete would result, as compared with today’s
standards, but some Roman concrete structures are still in existence today. One example is
the Pantheon (a building dedicated to all gods), which is located in Rome and was completed
in A.D. 126.

The art of making pozzolanic concrete was lost during the Dark Ages and was not revived
until the eighteenth and nineteenth centuries. A deposit of natural cement rock was discovered
in England in 1796 and was sold as “Roman cement.” Various other deposits of natural cement
were discovered in both Europe and America and were used for several decades.
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The real breakthrough for concrete occurred in 1824, when an English bricklayer named
Joseph Aspdin, after long and laborious experiments, obtained a patent for a cement that he
called portland cement because its color was quite similar to that of the stone quarried on the
Isle of Portland off the English coast. He made his cement by taking certain quantities of clay
and limestone, pulverizing them, burning them in his kitchen stove, and grinding the resulting
clinker into a fine powder. During the early years after its development, his cement was used
primarily in stuccos.! This wonderful product was adopted very slowly by the building industry
and was not even introduced in the United States until 1868; the first portland cement was not
manufactured in the United States until the 1870s.

The first uses of concrete are not very well known. Much of the early work was done
by the Frenchmen Francgois Le Brun, Joseph Lambot, and Joseph Monier. In 1832, Le Brun
built a concrete house and followed it with the construction of a school and a church with
the same material. In about 1850, Lambot built a concrete boat reinforced with a network
of parallel wires or bars. Credit is usually given to Monier, however, for the invention of
reinforced concrete. In 1867, he received a patent for the construction of concrete basins or
tubs and reservoirs reinforced with a mesh of iron wire. His stated goal in working with this
material was to obtain lightness without sacrificing strength.?

From 1867 to 1881, Monier received patents for reinforced concrete railroad ties, floor
slabs, arches, footbridges, buildings, and other items in both France and Germany. Another
Frenchman, Francgois Coignet, built simple reinforced concrete structures and developed basic
methods of design. In 1861, he published a book in which he presented quite a few applications.
He was the first person to realize that the addition of too much water to the mix greatly reduced
concrete’s strength. Other Europeans who were early experimenters with reinforced concrete
included the Englishmen William Fairbairn and William B. Wilkinson, the German G. A.
Wayss, and another Frenchman, Frangois Hennebique.>#

William E. Ward built the first reinforced concrete building in the United States in Port
Chester, New York, in 1875. In 1883, he presented a paper before the American Society of
Mechanical Engineers in which he claimed that he got the idea of reinforced concrete by
watching English laborers in 1867 trying to remove hardened cement from their iron tools.

Thaddeus Hyatt, an American, was probably the first person to correctly analyze the
stresses in a reinforced concrete beam, and in 1877, he published a 28-page book on the
subject, entitled An Account of Some Experiments with Portland Cement Concrete, Combined
with Iron as a Building Material. In this book he praised the use of reinforced concrete and
said that “rolled beams (steel) have to be taken largely on faith.” Hyatt put a great deal of
emphasis on the high fire resistance of concrete.

E. L. Ransome of San Francisco reportedly used reinforced concrete in the early 1870s
and was the originator of deformed (or twisted) bars, for which he received a patent in 1884.
These bars, which were square in cross section, were cold-twisted with one complete turn in
a length of not more than 12 times the bar diameter.” (The purpose of the twisting was to
provide better bonding or adhesion of the concrete and the steel.) In 1890 in San Francisco,
Ransome built the Leland Stanford Jr. Museum. It is a reinforced concrete building 312 ft
long and 2 stories high in which discarded wire rope from a cable-car system was used as
tensile reinforcing. This building experienced little damage in the 1906 earthquake and the fire

! Kirby, R. S. and Laurson, P. G., 1932, The Early Years of Modern Civil Engineering (New Haven: Yale University Press),
p. 266.

2Tbid., pp. 273-275.

3 Straub, H., 1964, A History of Civil Engineering (Cambridge: MIT Press), pp. 205-215. Translated from the German Die
Geschichte der Bauingenieurkunst (Basel: Verlag Birkhauser), 1949.

#Kirby and Laurson, The Early Years of Modern Civil Engineering, pp. 273-275.

5SWard, W. E., 1883, “Béton in Combination with Iron as a Building Material,” Transactions ASME, 4, pp. 388-403.

6 Kirby and Laurson, The Early Years of Modern Civil Engineering, p. 275.

7 American Society for Testing Materials, 1911, Proceedings, 11, pp. 66—68.
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Installation of the concrete gravity base substructure (CGBS) for the LUNA oil-and-gas
platform in the Sea of Okhotsk, Sakhalin region, Russia.

that ensued. The limited damage to this building and other concrete structures that withstood
the great 1906 fire led to the widespread acceptance of this form of construction on the West
Coast. Since the early 1900s, the development and use of reinforced concrete in the United
States has been very rapid.®?

1.5 Comparison of Reinforced Concrete and Structural Steel
for Buildings and Bridges

When a particular type of structure is being considered, the student may be puzzled by the
question, “Should reinforced concrete or structural steel be used?” There is much joking on this
point, with the proponents of reinforced concrete referring to steel as that material that rusts
and those favoring structural steel referring to concrete as the material that, when overstressed,
tends to return to its natural state—that is, sand and gravel.

There is no simple answer to this question, inasmuch as both of these materials have
many excellent characteristics that can be utilized successfully for so many types of structures.
In fact, they are often used together in the same structures with wonderful results.

The selection of the structural material to be used for a particular building depends on
the height and span of the structure, the material market, foundation conditions, local building
codes, and architectural considerations. For buildings of less than 4 stories, reinforced concrete,
structural steel, and wall-bearing construction are competitive. From 4 to about 20 stories,
reinforced concrete and structural steel are economically competitive, with steel having been
used in most of the jobs above 20 stories in the past. Today, however, reinforced concrete
is becoming increasingly competitive above 20 stories, and there are a number of reinforced
concrete buildings of greater height around the world. The 74-story, 859-ft-high Water Tower
Place in Chicago is the tallest reinforced concrete building in the world. The 1465-ft CN tower
(not a building) in Toronto, Canada, is the tallest reinforced concrete structure in the world.

8 Wang, C. K. and Salmon, C. G., 1998, Reinforced Concrete Design, 6th ed. (New York: HarperCollins), pp. 3-5.
9 “The Story of Cement, Concrete and Reinforced Concrete,” Civil Engineering, November 1977, pp. 63—65.
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Although we would all like to be involved in the design of tall, prestigious reinforced
concrete buildings, there are just not enough of them to go around. As a result, nearly all of
our work involves much smaller structures. Perhaps 9 out of 10 buildings in the United States
are 3 stories or fewer in height, and more than two-thirds of them contain 15,000 sq ft or less
of floor space.

Foundation conditions can often affect the selection of the material to be used for the
structural frame. If foundation conditions are poor, using a lighter structural steel frame may
be desirable. The building code in a particular city may favor one material over the other.
For instance, many cities have fire zones in which only fireproof structures can be erected—a
very favorable situation for reinforced concrete. Finally, the time element favors structural steel
frames, as they can be erected more quickly than reinforced concrete ones. The time advantage,
however, is not as great as it might seem at first because, if the structure is to have any type
of fire rating, the builder will have to cover the steel with some kind of fireproofing material
after it is erected.

Making decisions about using concrete or steel for a bridge involves several factors,
such as span, foundation conditions, loads, architectural considerations, and others. In general,
concrete is an excellent compression material and normally will be favored for short-span
bridges and for cases where rigidity is required (as, perhaps, for railway bridges).

1.6 Compatibility of Concrete and Steel

Concrete and steel reinforcing work together beautifully in reinforced concrete structures. The
advantages of each material seem to compensate for the disadvantages of the other. For instance,
the great shortcoming of concrete is its lack of tensile strength, but tensile strength is one of
the great advantages of steel. Reinforcing bars have tensile strengths equal to approximately
100 times that of the usual concretes used.

The two materials bond together very well so there is little chance of slippage between
the two; thus, they will act together as a unit in resisting forces. The excellent bond obtained
is the result of the chemical adhesion between the two materials, the natural roughness of the
bars, and the closely spaced rib-shaped deformations rolled onto the bars’ surfaces.

Reinforcing bars are subject to corrosion, but the concrete surrounding them provides
them with excellent protection. The strength of exposed steel subjected to the temperatures
reached in fires of ordinary intensity is nil, but enclosing the reinforcing steel in concrete
produces very satisfactory fire ratings. Finally, concrete and steel work well together in relation
to temperature changes because their coefficients of thermal expansion are quite close. For steel,
the coefficient is 0.0000065 per unit length per degree Fahrenheit, while it varies for concrete
from about 0.000004 to 0.000007 (average value: 0.0000055).

1.7 Design Codes

The most important code in the United States for reinforced concrete design is the American
Concrete Institute’s Building Code Requirements for Structural Concrete (ACI 318-11).19 This
code, which is used primarily for the design of buildings, is followed for the majority of the
numerical examples given in this text. Frequent references are made to this document, and
section numbers are provided. Design requirements for various types of reinforced concrete
members are presented in the code along with a “commentary” on those requirements. The com-
mentary provides explanations, suggestions, and additional information concerning the design
requirements. As a result, users will obtain a better background and understanding of the code.

10 American Concrete Institute, 2011, Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills,
Michigan.
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The ACI Code is not in itself a legally enforceable document. It is merely a statement
of current good practice in reinforced concrete design. It is, however, written in the form of
a code or law so that various public bodies, such as city councils, can easily vote it into their
local building codes, and then it becomes legally enforceable in that area. In this manner, the
ACI Code has been incorporated into law by countless government organizations throughout
the United States. The International Building Code (IBC), which was first published in 2000
by the International Code Council, has consolidated the three regional building codes (Building
Officials and Code Administrators, International Conference of Building Officials, and Southern
Building Code Congress International) into one national document. The IBC Code is updated
every three years and refers to the most recent edition of ACI 318 for most of its provisions
related to reinforced concrete design, with only a few modifications. It is expected that IBC
2012 will refer to ACI 318-11 for most of its reinforced concrete provisions. The ACI 318
Code is also widely accepted in Canada and Mexico and has had tremendous influence on the
concrete codes of all countries throughout the world.

As more knowledge is obtained pertaining to the behavior of reinforced concrete, the
ACI revises its code. The present objective is to make yearly changes in the code in the form
of supplements and to provide major revisions of the entire code every three years.

Other well-known reinforced concrete specifications are those of the American Associ-
ation of State Highway and Transportation Officials (AASHTO) and the American Railway
Engineering Association (AREA).

1.8 Sl Units and Shaded Areas

Most of this book is devoted to the design of reinforced concrete structures using U.S.
customary units. The authors, however, feel that it is absolutely necessary for today’s
engineer to be able to design in either customary or SI units. Thus, SI equations, where
different from those in customary units, are presented herein, along with quite a few
numerical examples using SI units. The equations are taken from the American Concrete
Institute’s metric version of Building Code Requirements for Structural Concrete (ACI
318M-11).!!

For many people it is rather distracting to read a book in which numbers, equations,
and so on are presented in two sets of units. To try to reduce this annoyance, the authors
have placed a shaded area around any items pertaining to SI units throughout the text.

If readers are working at a particular time with customary units, they can completely
ignore the shaded areas. It is hoped, however, that the same shaded areas will enable a
person working with SI units to easily find appropriate equations, examples, and so on.

1.9 Types of Portland Cement

Concretes made with normal portland cement require about 2 weeks to achieve a sufficient
strength to permit the removal of forms and the application of moderate loads. Such concretes
reach their design strengths after about 28 days and continue to gain strength at a slower rate
thereafter.

! Ibid.
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Courtesy of Portland Cement Association.

One Peachtree Center in Atlanta, Georgia, is 854 ft high; built for
the 1996 Olympics.

On many occasions it is desirable to speed up construction by using high-early-strength
cements, which, although more expensive, enable us to obtain desired strengths in 3 to 7
days rather than the normal 28 days. These cements are particularly useful for the fabrication
of precast members, in which the concrete is placed in forms where it quickly gains desired
strengths and is then removed from the forms and the forms are used to produce more members.
Obviously, the quicker the desired strength is obtained, the more efficient the operation. A
similar case can be made for the forming of concrete buildings floor by floor. High-early-
strength cements can also be used advantageously for emergency repairs of concrete and for
shotcreting (where a mortar or concrete is blown through a hose at a high velocity onto a
prepared surface).

There are other special types of portland cements available. The chemical process that
occurs during the setting or hardening of concrete produces heat. For very massive concrete
structures such as dams, mat foundations, and piers, the heat will dissipate very slowly and can
cause serious problems. It will cause the concrete to expand during hydration. When cooling,
the concrete will shrink and severe cracking will often occur.

Concrete may be used where it is exposed to various chlorides and/or sulfates. Such
situations occur in seawater construction and for structures exposed to various types of soil.



Some portland cements are manufactured that have lower heat of hydration, and others are
manufactured with greater resistance to attack by chlorides and sulfates.

In the United States, the American Society for Testing and Materials (ASTM) recognizes
five types of portland cement. These different cements are manufactured from just about the
same raw materials, but their properties are changed by using various blends of those materials.
Type I cement is the normal cement used for most construction, but four other types are useful
for special situations in which high early strength or low heat or sulfate resistance is needed:

Type I—The common, all-purpose cement used for general construction work.

Type II—A modified cement that has a lower heat of hydration than does Type I cement
and that can withstand some exposure to sulfate attack.

Type III—A high-early-strength cement that will produce in the first 24 hours a concrete
with a strength about twice that of Type I cement. This cement does have a much
higher heat of hydration.

Type IV—A low-heat cement that produces a concrete which generates heat very slowly.
It is used for very large concrete structures.

Type V—A cement used for concretes that are to be exposed to high concentrations of
sulfate.

Should the desired type of cement not be available, various admixtures may be purchased
with which the properties of Type I cement can be modified to produce the desired effect.

1.10 Admixtures

Materials added to concrete during or before mixing are referred to as admixtures. They are
used to improve the performance of concrete in certain situations as well as to lower its cost.
There is a rather well-known saying regarding admixtures, to the effect that they are to concrete
as beauty aids are to the populace. Several of the most common types of admixtures are listed
and briefly described here.

 Air-entraining admixtures, conforming to the requirements of ASTM C260 and C618, are
used primarily to increase concrete’s resistance to freezing and thawing and provide better
resistance to the deteriorating action of deicing salts. The air-entraining agents cause the
mixing water to foam, with the result that billions of closely spaced air bubbles are
incorporated into the concrete. When concrete freezes, water moves into the air bubbles,
relieving the pressure in the concrete. When the concrete thaws, the water can move out
of the bubbles, with the result that there is less cracking than if air entrainment had not
been used.

¢ The addition of accelerating admixtures, such as calcium chloride, to concrete will accel-
erate its early strength development. The results of such additions (particularly useful
in cold climates) are reduced times required for curing and protection of the concrete
and the earlier removal of forms. (Section 3.6.3 of the ACI Code states that because
of corrosion problems, calcium chloride may not be added to concretes with embedded
aluminum, concretes cast against stay-in-place galvanized steel forms, or prestressed con-
cretes.) Other accelerating admixtures that may be used include various soluble salts as
well as some other organic compounds.

* Retarding admixtures are used to slow the setting of the concrete and to retard temperature
increases. They consist of various acids or sugars or sugar derivatives. Some concrete
truck drivers keep sacks of sugar on hand to throw into the concrete in case they get

1.10 Admixtures
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caught in traffic jams or are otherwise delayed. Retarding admixtures are particularly
useful for large pours where significant temperature increases may occur. They also
prolong the plasticity of the concrete, enabling better blending or bonding of successive
pours. Retarders can also slow the hydration of cement on exposed concrete surfaces or
formed surfaces to produce attractive exposed aggregate finishes.

e Superplasticizers are admixtures made from organic sulfonates. Their use enables engi-
neers to reduce the water content in concretes substantially while at the same time
increasing their slumps. Although superplasticizers can also be used to keep water—cement
ratios constant while using less cement, they are more commonly used to produce work-
able concretes with considerably higher strengths while using the same amount of cement.
(See Section 1.13.) A relatively new product, self-consolidating concrete, uses superplas-
ticizers and modifications in mix designs to produce an extremely workable mix that
requires no vibration, even for the most congested placement situations.

» Waterproofing materials usually are applied to hardened concrete surfaces, but they may
be added to concrete mixes. These admixtures generally consist of some type of soap or
petroleum products, as perhaps asphalt emulsions. They may help retard the penetration
of water into porous concretes but probably don’t help dense, well-cured concretes very
much.

1.11 Properties of Concrete

A thorough knowledge of the properties of concrete is necessary for the student before he or she
begins to design reinforced concrete structures. An introduction to several of these properties
is presented in this section.

Compressive Strength

The compressive strength of concrete, f/, is determined by testing to failure 28-day-old 6-in.
diameter by 12-in. concrete cylinders at a specified rate of loading (4-in. diameter by 8-in.
cylinders were first permitted in the 2008 code in lieu of the larger cylinders). For the 28-day
period, the cylinders are usually kept under water or in a room with constant temperature
and 100% humidity. Although concretes are available with 28-day ultimate strengths from
2500 psi up to as high as 10,000 psi to 20,000 psi, most of the concretes used fall into the
3000-psi to 7000-psi range. For ordinary applications, 3000-psi and 4000-psi concretes are
used, whereas for prestressed construction, 5000-psi and 6000-psi strengths are common. For
some applications, such as for the columns of the lower stories of high-rise buildings, concretes
with strengths up to 9000 psi or 10,000 psi have been used and can be furnished by ready-
mix companies. As a result, the use of such high-strength concretes is becoming increasingly
common. At Two Union Square in Seattle, concrete with strengths up to 19,000 psi was used.

The values obtained for the compressive strength of concretes, as determined by testing,
are to a considerable degree dependent on the sizes and shapes of the test units and the
manner in which they are loaded. In many countries, the test specimens are cubes, 200 mm
(7.87 in.) on each side. For the same batches of concrete, the testing of 6-in. by 12-in. cylinders
provides compressive strengths only equal to about 80% of the values in psi determined with
the cubes.

It is quite feasible to move from 3000-psi concrete to 5000-psi concrete without requiring
excessive amounts of labor or cement. The approximate increase in material cost for such a
strength increase is 15% to 20%. To move above 5000-psi or 6000-psi concrete, however,
requires very careful mix designs and considerable attention to such details as mixing, placing,
and curing. These requirements cause relatively larger increases in cost.
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Several comments are made throughout the text regarding the relative economy of using
different strength concretes for different applications, such as those for beams, columns, foot-
ings, and prestressed members.

To ensure that the compressive strength of concrete in the structure is at least as strong as
the specified value, f/, the design of the concrete mix must target a higher value, f/.. Section
5.3 of the ACI Code requires that the concrete compressive strengths used as a basis for
selecting the concrete proportions exceed the specified 28-day strengths by fairly large values.
For concrete production facilities that have sufficient field strength test records not older than
24 months to enable them to calculate satisfactory standard deviations (as described in ACI
Section 5.3.1.1), a set of required average compressive strengths (f/.) to be used as the basis
for selecting concrete properties is specified in ACI Table 5.3.2.1. For facilities that do not
have sufficient records to calculate satisfactory standard deviations, ACI Table 5.3.2.2 pro-
vides increases in required average design compressive strength (f.) of 1000 psi for specified
concrete strength (f) of less than 3000 psi and appreciably higher increases for higher f!
concretes.

The stress—strain curves of Figure 1.1 represent the results obtained from compression
tests of sets of 28-day-old standard cylinders of varying strengths. You should carefully study
these curves because they bring out several significant points:

(a) The curves are roughly straight while the load is increased from zero to about one-third
to one-half the concrete’s ultimate strength.

(b) Beyond this range the behavior of concrete is nonlinear. This lack of linearity of concrete
stress—strain curves at higher stresses causes some problems in the structural analysis of
concrete structures because their behavior is also nonlinear at higher stresses.

(c) Of particular importance is the fact that regardless of strengths, all the concretes reach
their ultimate strengths at strains of about 0.002.

(d) Concrete does not have a definite yield strength; rather, the curves run smoothly on
to the point of rupture at strains of from 0.003 to 0.004. It will be assumed for the
purpose of future calculations in this text that concrete fails at 0.003 (ACI 10.2.3). The
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FIGURE 1.1 Typical concrete stress—strain curve, with short-term loading.
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reader should note that this value, which is conservative for normal-strength concretes,
may not be conservative for higher-strength concretes in the 8000-psi-and-above range.
The European code uses a different value for ultimate compressive strain for columns
(0.002) than for beams and eccentrically loaded columns (0.0035).12

(e) Many tests have clearly shown that stress—strain curves of concrete cylinders are almost
identical to those for the compression sides of beams.

(f) It should be further noticed that the weaker grades of concrete are less brittle than the
stronger ones—that is, they will take larger strains before breaking.

Static Modulus of Elasticity

Concrete has no clear-cut modulus of elasticity. Its value varies with different concrete
strengths, concrete age, type of loading, and the characteristics and proportions of the cement
and aggregates. Furthermore, there are several different definitions of the modulus:

(a) The initial modulus is the slope of the stress—strain diagram at the origin of the curve.

(b) The tangent modulus is the slope of a tangent to the curve at some point along the
curve—for instance, at 50% of the ultimate strength of the concrete.

(¢c) The slope of a line drawn from the origin to a point on the curve somewhere between
25% and 50% of its ultimate compressive strength is referred to as a secant modulus.

(d) Another modulus, called the apparent modulus or the long-term modulus, is determined
by using the stresses and strains obtained after the load has been applied for a certain
length of time.

Section 8.5.1 of the ACI Code states that the following expression can be used for
calculating the modulus of elasticity of concretes weighing from 90 1b/ft} to 155 Ib/ft’:

E, =w!333/f!

In this expression, E,. is the modulus of elasticity in psi, w, is the weight of the concrete in
pounds per cubic foot, and f;/ is its specified 28-day compressive strength in psi. This is actually
a secant modulus with the line (whose slope equals the modulus) drawn from the origin to a
point on the stress—strain curve corresponding approximately to the stress (0.45f) that would
occur under the estimated dead and live loads the structure must support.

For normal-weight concrete weighing approximately 145 Ib/ft?, the ACI Code states that
the following simplified version of the previous expression may be used to determine the
modulus:

E, = 57,000/f!

Table A.1 (see Appendix A at the end of the book) shows values of E_ for different
strength concretes having normal-weight aggregate. These values were calculated with the first
of the preceding formulas assuming 145 1b/ft> concrete.

12 MacGregor, J. G. and Wight, J. K., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ:
Pearson Prentice Hall), p. 111.
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In SI units, E, = w/3(0.043)/f! with w, varying from 1500 to 2500 kg/m* and with f;
in N/mm? or MPa (megapascals). Should normal crushed stone or gravel concrete (with a
mass of approximately 2320 kg/m®) be used, E, = 4700\/f7 . Table B.1 of Appendix B of
this text provides moduli values for several different strength concretes.

The term unit weight is constantly used by structural engineers working with U.S.
customary units. When using the SI system, however, this term should be replaced by the
term mass density A kilogram is not a force unit and only indicates the amount of matter
in an object. The mass of a particular object is the same anywhere on Earth, whereas the
weight of an object in our customary units varies depending on altitude because of the
change in gravitational acceleration.

Concretes with strength above 6000 psi are referred to as high-strength concretes. Tests
have indicated that the usual ACI equations for E,. when applied to high-strength concretes
result in values that are too large. Based on studies at Cornell University, the expression to
follow has been recommended for normal-weight concretes with f; values greater than 6000 psi
and up to 12,000 psi and for lightweight concretes with f, greater than 6000 psi and up to

9000 psi.'3-14
E,(psi) = [40,000\/17 n 106] (122_)1.5

In SI units with £/ in MPa and w, in kg/m?3, the expression is

E,(MPa) = [3.32\/107 N 6895] (2;1/;0)1.5

Dynamic Modulus of Elasticity

The dynamic modulus of elasticity, which corresponds to very small instantaneous strains, is
usually obtained by sonic tests. It is generally 20% to 40% higher than the static modulus and
is approximately equal to the initial modulus. When structures are being analyzed for seismic
or impact loads, the use of the dynamic modulus seems appropriate.

Poisson’s Ratio

As a concrete cylinder is subjected to compressive loads, it not only shortens in length but also
expands laterally. The ratio of this lateral expansion to the longitudinal shortening is referred
to as Poisson’s ratio. Its value varies from about 0.11 for the higher-strength concretes to as
high as 0.21 for the weaker-grade concretes, with average values of about 0.16. There does
not seem to be any direct relationship between the value of the ratio and the values of items
such as the water—cement ratio, amount of curing, aggregate size, and so on.

”Nawy, E. G., 2006, Prestressed Concrete: A Fundamental Approach, 5th ed. (Upper Saddle River, NJ: Prentice-Hall),
p. 38.

14 Carrasquillol, R., Nilson, A., and Slate, F., 1981, “Properties of High-Strength Concrete Subject to Short-Term Loads.”
Journal of ACI Proceedings, 78(3), May—June.
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Concert at Naumburg bandshell in Central Park, New York, New York.

For most reinforced concrete designs, no consideration is given to the so-called Poisson
effect. It may very well have to be considered, however, in the analysis and design of arch
dams, tunnels, and some other statically indeterminate structures. Spiral reinforcing in columns
takes advantage of Poisson’s ratio and will be discussed in Chapter 9.

Shrinkage

When the materials for concrete are mixed, the paste consisting of cement and water fills
the voids between the aggregate and bonds the aggregate together. This mixture needs to be
sufficiently workable or fluid so that it can be made to flow in between the reinforcing bars and
all through the forms. To achieve this desired workability, considerably more water (perhaps
twice as much) is used than is necessary for the cement and water to react (called hydration).

After the concrete has been cured and begins to dry, the extra mixing water that was
used begins to work its way out of the concrete to the surface, where it evaporates. As a result,
the concrete shrinks and cracks. The resulting cracks may reduce the shear strength of the
members and be detrimental to the appearance of the structure. In addition, the cracks may
permit the reinforcing to be exposed to the atmosphere or chemicals, such as deicers, thereby
increasing the possibility of corrosion. Shrinkage continues for many years, but under ordinary
conditions probably about 90% of it occurs during the first year. The amount of moisture that
is lost varies with the distance from the surface. Furthermore, the larger the surface area of
a member in proportion to its volume, the larger the rate of shrinkage; that is, members with
small cross sections shrink more proportionately than do those with large cross sections.

The amount of shrinkage is heavily dependent on the type of exposure. For instance, if
concrete is subjected to a considerable amount of wind during curing, its shrinkage will be
greater. In a related fashion, a humid atmosphere means less shrinkage, whereas a dry one
means more.

It should also be realized that it is desirable to use low-absorptive aggregates such as those
from granite and many limestones. When certain absorptive slates and sandstone aggregates are
used, the result may be one and a half or even two times the shrinkage with other aggregates.
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To minimize shrinkage it is desirable to: (1) keep the amount of mixing water to a
minimum; (2) cure the concrete well; (3) place the concrete for walls, floors, and other large
items in small sections (thus allowing some of the shrinkage to take place before the next
section is placed); (4) use construction joints to control the position of cracks; (5) use shrinkage
reinforcement; and (6) use appropriate dense and nonporous aggregates. !>

Creep

Under sustained compressive loads, concrete will continue to deform for long periods of time.
After the initial deformation occurs, the additional deformation is called creep, or plastic flow.
If a compressive load is applied to a concrete member, an immediate or instantaneous elastic
shortening occurs. If the load is left in place for a long time, the member will continue to shorten
over a period of several years, and the final deformation will usually be two to three times the
initial deformation. You will find in Chapter 6 that this means that long-term deflections may
also be as much as two or three times initial deflections. Perhaps 75% of the total creep will
occur during the first year.

Should the long-term load be removed, the member will recover most of its elastic strain
and a little of its creep strain. If the load is replaced, both the elastic and creep strains will
again develop.

The amount of creep is largely dependent on the amount of stress. It is almost directly
proportional to stress as long as the sustained stress is not greater than about one-half of f;.
Beyond this level, creep will increase rapidly.

Long-term loads not only cause creep but also can adversely affect the strength of the
concrete. For loads maintained on concentrically loaded specimens for a year or longer, there
may be a strength reduction of perhaps 15% to 25%. Thus a member loaded with a sustained
load of, say, 85% of its ultimate compression strength, !, may very well be satisfactory for a
while but may fail later.'®

Several other items affecting the amount of creep are:

* The longer the concrete cures before loads are applied, the smaller will be the creep.
Steam curing, which causes quicker strengthening, will also reduce creep.

* Higher-strength concretes have less creep than do lower-strength concretes stressed at the
same values. However, applied stresses for higher-strength concretes are, in all probabil-
ity, higher than those for lower-strength concretes, and this fact tends to cause increasing
creep.

e Creep increases with higher temperatures. It is highest when the concrete is at about
150°F to 160°F.

e The higher the humidity, the smaller will be the free pore water that can escape from the
concrete. Creep is almost twice as large at 50% humidity than at 100% humidity. It is
obviously quite difficult to distinguish between shrinkage and creep.

* Concretes with the highest percentage of cement—water paste have the highest creep
because the paste, not the aggregate, does the creeping. This is particularly true if a
limestone aggregate is used.

* Obviously, the addition of reinforcing to the compression areas of concrete will greatly
reduce creep because steel exhibits very little creep at ordinary stresses. As creep tends

S 1eet, K., 1991, Reinforced Concrete Design, 2nd ed. (New York: McGraw-Hill), p. 35.
16 Riisch, H., 1960, “Researches Toward a General Flexure Theory for Structural Concrete,” Journal ACI, 57(1), pp. 1-28.
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to occur in the concrete, the reinforcing will block it and pick up more and more of the
load.

e Large concrete members (i.e., those with large volume-to-surface area ratios) will creep
proportionately less than smaller thin members where the free water has smaller distances
to travel to escape.

Tensile Strength

The tensile strength of concrete varies from about 8% to 15% of its compressive strength. A
major reason for this small strength is the fact that concrete is filled with fine cracks. The
cracks have little effect when concrete is subjected to compression loads because the loads
cause the cracks to close and permit compression transfer. Obviously, this is not the case for
tensile loads.

Although tensile strength is normally neglected in design calculations, it is nevertheless
an important property that affects the sizes and extent of the cracks that occur. Furthermore,
the tensile strength of concrete members has a definite reduction effect on their deflections.
(Because of the small tensile strength of concrete, little effort has been made to determine
its tensile modulus of elasticity. Based on this limited information, however, it seems that its
value is equal to its compression modulus.)

You might wonder why concrete is not assumed to resist a portion of the tension in a
flexural member and the steel the remainder. The reason is that concrete cracks at such small
tensile strains that the low stresses in the steel up to that time would make its use uneconomical.
Once tensile cracking has occurred, concrete has no more tensile strength.

The tensile strength of concrete doesn’t vary in direct proportion to its ultimate compres-
sion strength, f/. It does, however, vary approximately in proportion to the square root of f.
This strength is quite difficult to measure with direct axial tension loads because of problems
in gripping test specimens so as to avoid stress concentrations and because of difficulties in
aligning the loads. As a result of these problems, two indirect tests have been developed to
measure concrete’s tensile strength. These are the modulus of rupture and the split-cylinder
tests.

The tensile strength of concrete in flexure is quite important when considering beam
cracks and deflections. For these considerations, the tensile strengths obtained with the modulus
of rupture test have long been used. The modulus of rupture (which is defined as the flexural
tensile strength of concrete) is usually measured by loading a 6-in. x 6-in. x 30-in. plain
(i.e., unreinforced) rectangular beam (with simple supports placed 24 in. on center) to failure
with equal concentrated loads at its one-third points as per ASTM C78-2002.!7 The load is
increased until failure occurs by cracking on the tensile face of the beam. The modulus of
rupture, f,, is then determined from the flexure formula. In the following expressions, b is the
beam width, 4 is its depth, and M is PL/6, which is the maximum computed moment:

; _ Mc M (h/2)
e W
I Lbn3
f dulus of rupt M _ PL
= modulus o1 rupture¢ = — = —
r p th th

17 American Society for Testing and Materials, 2002, Standard Test Method for Flexural Strength of Concrete (Using Simple
Beam with Third-Point Loading) (ASTM C78-2002), West Conshohocken, Pennsylvania.
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FIGURE 1.2 Split-cylinder test.

The stress determined in this manner is not very accurate because, in using the flexure
formula, we are assuming the concrete stresses vary in direct proportion to distances from the
neutral axis. This assumption is not very good.

Based on hundreds of tests, the code (Section 9.5.2.3) provides a modulus of rupture f,
equal to 7.5k\/ﬂ , where f, and f/ are in units of psi.!® The A term reduces the modulus of
rupture when lightweight aggregates are used (see Section 1.12).

The tensile strength of concrete may also be measured with the split-cylinder test.'
A cylinder is placed on its side in the testing machine, and a compressive load is applied
uniformly along the length of the cylinder, with support supplied along the bottom for the
cylinder’s full length (see Figure 1.2). The cylinder will split in half from end to end when its
tensile strength is reached. The tensile strength at which splitting occurs is referred to as the
split-cylinder strength and can be calculated with the following expression, in which P is the
maximum compressive force, L is the length, and D is the diameter of the cylinder:

2P
wLD

Even though pads are used under the loads, some local stress concentrations occur during
the tests. In addition, some stresses develop at right angles to the tension stresses. As a result,
the tensile strengths obtained are not very accurate.

ft:

Shear Strength

It is extremely difficult in laboratory testing to obtain pure shear failures unaffected by other
stresses. As a result, the tests of concrete shearing strengths through the years have yielded

'8 In ST units, f, = 0.7,/f. MPa.
19 American Society for Testing and Materials, Standard Test Method.
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values all the way from one-third to four-fifths of the ultimate compressive strengths. You will
learn in Chapter 8 that you do not have to worry about these inconsistent shear strength tests
because design approaches are based on very conservative assumptions of that strength.

1.12 Aggregates

The aggregates used in concrete occupy about three-fourths of the concrete volume. Since
they are less expensive than the cement, it is desirable to use as much of them as possible.
Both fine aggregates (usually sand) and coarse aggregates (usually gravel or crushed stone)
are used. Any aggregate that passes a No. 4 sieve (which has wires spaced % in. on centers in
each direction) is said to be fine aggregate. Material of a larger size is coarse aggregate.

The maximum-size aggregates that can be used in reinforced concrete are specified in
Section 3.3.2 of the ACI Code. These limiting values are as follows: one-fifth of the narrowest
dimensions between the sides of the forms, one-third of the depth of slabs, or three-quarters of
the minimum clear spacing between reinforcing. Larger sizes may be used if, in the judgment
of the engineer, the workability of the concrete and its method of consolidation are such that
the aggregate used will not cause the development of honeycomb or voids.

Aggregates must be strong, durable, and clean. Should dust or other particles be present,
they may interfere with the bond between the cement paste and the aggregate. The strength
of the aggregate has an important effect on the strength of the concrete, and the aggregate
properties greatly affect the concrete’s durability.

Concretes that have 28-day strengths equal to or greater than 2500 psi and air-dry weights
equal to or less than 115 Ib/ft® are said to be structural lightweight concretes. The aggregates
used for these concretes are made from expanded shales of volcanic origin, fired clays, or
slag. When lightweight aggregates are used for both fine and coarse aggregate, the result is
called all-lightweight concrete. If sand is used for fine aggregate and if the coarse aggregate
is replaced with lightweight aggregate, the result is referred to as sand-lightweight concrete.
Concretes made with lightweight aggregates may not be as durable or tough as those made
with normal-weight aggregates.

Some of the structural properties of concrete are affected by the use of lightweight
aggregates. ACI 318-11 Section 8.4 requires that the modulus of rupture be reduced by the
introduction of the term A in the equation

£, =75x0/F (ACI Equation 9-10)

or, in SI units with f in N/mm?, f, = 0.74,/f/

The value of A depends on the aggregate that is replaced with lightweight material. If only the
coarse aggregate is replaced (sand-lightweight concrete), A is 0.85. If the sand is also replaced
with lightweight material (all-lightweight concrete), A is 0.75. Linear interpolation is permitted
between the values of 0.85 and 1.0 as well as from 0.75 to 0.85 when partial replacement
with lightweight material is used. Alternatively, if the average splitting tensile strength of
lightweight concrete, f,,, is specified, ACI 318-11 Section 8.6.1 defines A as

Jar
A=—19_ <10
6.7Jf ~

For normal-weight concrete and for concrete having normal-weight fine aggregate and a blend
of lightweight and normal-weight coarse aggregate, A = 1.0. Use of lightweight aggregate
concrete can affect beam deflections, shear strength, coefficient of friction, development lengths
of reinforcing bars and hooked bars, and prestressed concrete design.
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1.13 High-Strength Concretes

Concretes with compression strengths exceeding 6000 psi are referred to as high-strength
concretes. Another name sometimes given to them is high-performance concretes because
they have other excellent characteristics besides just high strengths. For instance, the low
permeability of such concretes causes them to be quite durable as regards the various physical
and chemical agents acting on them that may cause the material to deteriorate.

Up until a few decades ago, structural designers felt that ready-mix companies could
not deliver concretes with compressive strengths much higher than 4000 psi or 5000 psi.
This situation, however, is no longer the case as these same companies can today deliver
concretes with compressive strengths up to at least 9000 psi. Even stronger concretes than
these have been used. At Two Union Square in Seattle, 19,000-psi concrete was obtained
using ready-mix concrete delivered to the site. Furthermore, concretes have been produced in
laboratories with strengths higher than 20,000 psi. Perhaps these latter concretes should be
called super-high-strength concretes or super-high-performance concretes.

If we are going to use a very high-strength cement paste, we must not forget to use a
coarse aggregate that is equally as strong. If the planned concrete strength is, say, 15,000 psi
to 20,000 psi, equally strong aggregate must be used, and such aggregate may very well not
be available within reasonable distances. In addition to the strengths needed for the coarse
aggregate, their sizes should be well graded, and their surfaces should be rough so that better
bonding to the cement paste will be obtained. The rough surfaces of aggregates, however, may
decrease the concrete’s workability.

From an economical standpoint, you should realize that though concretes with 12,000-
psi to 15,000-psi strengths cost approximately three times as much to produce as do 3000-psi
concretes, their compressive strengths are four to five times as large.

High-strength concretes are sometimes used for both precast and prestressed members.
They are particularly useful in the precast industry where their strength enables us to produce
smaller and lighter members, with consequent savings in storage, handling, shipping, and
erection costs. In addition, they have sometimes been used for offshore structures, but their
common use has been for columns of tall reinforced concrete buildings, probably over 25 to
30 stories in height where the column loads are very large, say, 1000 kips or more. Actually,
for such buildings, the columns for the upper floors, where the loads are relatively small, are
probably constructed with conventional 4000-psi or 5000-psi concretes, while high-strength
concretes are used for the lower heavily loaded columns. If conventional concretes were used
for these lower columns, the columns could very well become so large that they would occupy
excessive amounts of rentable floor space. High-strength concretes are also of advantage in
constructing shear walls. (Shear walls are discussed in Chapter 18.)

To produce concretes with strengths above 6000 psi, it is first necessary to use more
stringent quality control of the work and to exercise special care in the selection of the mate-
rials to be used. Strength increases can be made by using lower water—cement ratios, adding
admixtures, and selecting good clean and solid aggregates. The actual concrete strengths used
by the designer for a particular job will depend on the size of the loads and the quality of the
aggregate available.

In recent years, appreciable improvements have been made in the placing, vibrating,
and finishing of concrete. These improvements have resulted in lower water—cement ratios
and, thus, higher strengths. The most important factor affecting the strength of concrete is its
porosity, which is controlled primarily by the water—cement ratio. This ratio should be kept
as small as possible as long as adequate workability is maintained. In this regard, there are
various water-reducing admixtures with which the ratios can be appreciably reduced, while at
the same time maintaining suitable workability.

Concretes with strengths from 6000 psi to 10,000 psi or 12,000 psi can easily be obtained
if admixtures such as silica fume and superplasticizers are used. Silica fume, which is more
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than 90% silicon dioxide, is an extraordinarily fine powder that varies in color from light to
dark gray and can even be blue-green-gray. It is obtained from electric arc furnaces as a by-
product during the production of metallic silicon and various other silicon alloys. It is available
in both powder and liquid form. The amount of silica fume used in a mix varies from 5% to
30% of the weight of the cement.

Silica fume particles have diameters approximately 100 times smaller than the average
cement particle, and their surface areas per unit of weight are roughly 40 to 60 times those
of portland cement. As a result, they hold more water. (By the way, this increase of surface
area causes the generation of more heat of hydration.) The water—cement ratios are smaller,
and strengths are higher. Silica fume is a pozzolan: a siliceous material that by itself has no
cementing quality, but when used in concrete mixes its extraordinarily fine particles react with
the calcium hydroxide in the cement to produce a cementious compound. Quite a few pozzolans
are available that can be used satisfactorily in concrete. Two of the most common ones are fly
ash and silica fume. Here, only silica fume is discussed.

When silica fume is used, it causes increases in the density and strength of the concrete.
These improvements are due to the fact that the ultrafine silica fume particles are dispersed
between the cement particles. Unfortunately, this causes a reduction in the workability of the
concrete, and it is necessary to add superplasticizers to the mix. Superplasticizers, also called
high-range water reducers, are added to concretes to increase their workability. They are made
by treating formaldehyde or napthaline with sulfuric acid. Such materials used as admixtures
lower the viscosity or resistance to flow of the concrete. As a result, less water can be used,
thus yielding lower water—cement ratios and higher strengths.

Organic polymers can be used to replace a part of the cement as the binder. An organic
polymer is composed of molecules that have been formed by the union of thousands of
molecules. The most commonly used polymers in concrete are latexes. Such additives improve
concrete’s strength, durability, and adhesion. In addition, the resulting concretes have excellent
resistance to abrasion, freezing, thawing, and impact.

Another procedure that can increase the strength of concrete is consolidation. When pre-
cast concrete products are consolidated, excess water and air are squeezed out, thus producing
concretes with optimum air contents. In a similar manner, the centrifugal forces caused by the
spinning of concrete pipes during their manufacture consolidate the concrete and reduce the
water and air contents. Not much work has been done in the consolidation area for cast-in-place
concrete because of the difficulty of applying the squeezing forces. To squeeze such concretes,
it is necessary to apply pressure to the forms. One major difficulty in doing this is that very
special care must be used to prevent distortion of the wet concrete members.

1.14 Fiber-Reinforced Concretes

In recent years, a great deal of interest has been shown in fiber-reinforced concrete, and today
there is much ongoing research on the subject. The fibers used are made from steel, plastics,
glass, and other materials. Various experiments have shown that the addition of such fibers in
convenient quantities (normally up to about 1% or 2% by volume) to conventional concretes
can appreciably improve their characteristics.

The compressive strengths of fiber-reinforced concretes are not significantly greater than
they would be if the same mixes were used without the fibers. The resulting concretes, however,
are substantially tougher and have greater resistance to cracking and higher impact resistance.
The use of fibers has increased the versatility of concrete by reducing its brittleness. The reader
should note that a reinforcing bar provides reinforcing only in the direction of the bar, while
randomly distributed fibers provide additional strength in all directions.

Steel is the most commonly used material for the fibers. The resulting concretes seem
to be quite durable, at least as long as the fibers are covered and protected by the cement
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mortar. Concretes reinforced with steel fibers are most often used in pavements, thin shells,
and precast products as well as in various patches and overlays. Glass fibers are more often
used for spray-on applications as in shotcrete. It is necessary to realize that ordinary glass will
deteriorate when in contact with cement paste. As a result, using alkali-resistant glass fibers is
necessary.

The fibers used vary in length from about 0.25 in. up to about 3 in. while their diameters
run from approximately 0.01 in. to 0.03 in. For improving the bond with the cement paste, the
fibers can be hooked or crimped. In addition, the surface characteristics of the fibers can be
chemically modified in order to increase bonding.

The improvement obtained in the toughness of the concrete (the total energy absorbed
in breaking a member in flexure) by adding fibers is dependent on the fibers’ aspect ratio
(Iength/diameter). Typically, the aspect ratios used vary from about 25 up to as much as 150,
with 100 being about an average value. Other factors affecting toughness are the shape and
texture of the fibers. ASTM C1018% is the test method for determining the toughness of
fiber-reinforced concrete using the third-point beam-loading method described earlier.

When a crack opens up in a fiber-reinforced concrete member, the few fibers bridging
the crack do not appreciably increase the strength of the concrete. They will, however, provide
resistance to the opening up of the crack because of the considerable work that would be
necessary to pull them out. As a result, the ductility and toughness of the concrete is increased.
The use of fibers has been shown to increase the fatigue life of beams and lessen the widths
of cracks when members are subject to fatigue loadings.

The use of fibers does significantly increase costs. It is probably for this reason that fiber-
reinforced concretes have been used for overlays for highway pavements and airport runways
rather than for whole concrete projects. Actually in the long run, if the increased service lives of
fiber-reinforced concretes are considered, they may very well prove to be quite cost-effective.
For instance, many residential contractors use fiber-reinforced concrete to construct driveways
instead of regular reinforced concrete.

Some people have the feeling that the addition of fibers to concrete reduces its slump
and workability as well as its strength. Apparently, they feel this way because the concrete
looks stiffer to them. Actually, the fibers do not reduce the slump unless the quantity is too
great—that is, much above about one pound per cubic yard. The fibers only appear to cause
a reduction in workability, but as a result concrete finishers will often add more water so that
water-cement ratios are increased and strengths decreased. ASTM C1018 uses the third-point
beam-loading method described earlier to measure the toughness and first-crack strength of
fiber-reinforced concrete.

1.15 Concrete Durability

The compressive strength of concrete may be dictated by exposure to freeze-thaw conditions
or chemicals such as deicers or sulfates. These conditions may require a greater compressive
strength or lower water—cement ratio than those required to carry the calculated loads. Chapter 4
of the 2008 code imposes limits on water—cement ratio, f/, and entrained air for elements
exposed to freeze-thaw cycles. For concrete exposed to deicing chemicals, the amount of fly
ash or other pozzolans is limited in this chapter. Finally, the water—cement ratio is limited by
exposure to sulfates as well. The designer is required to determine whether structural load-
carrying requirements or durability requirements are more stringent and to specify the more
restrictive requirements for f;, water—cement ratio, and air content.

20 American Society for Testing and Materials, 1997, Standard Test Method for Flexural Toughness and First-Crack Strength
of Fiber-Reinforced Concrete (Using Simple Beam with Third-Point Loading) (ASTM C1018-1997), West Conshohocken,
Pennsylvania.
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1.16 Reinforcing Steel

The reinforcing used for concrete structures may be in the form of bars or welded wire fabric.
Reinforcing bars are referred to as plain or deformed. The deformed bars, which have ribbed
projections rolled onto their surfaces (patterns differing with different manufacturers) to provide
better bonding between the concrete and the steel, are used for almost all applications. Instead
of rolled-on deformations, deformed wire has indentations pressed into it. Plain bars are not
used very often except for wrapping around longitudinal bars, primarily in columns.

Plain round bars are indicated by their diameters in fractions of an inch as %q&, %q&,
and %q&. Deformed bars are round and vary in sizes from #3 to #11, with two very large sizes,
#14 and #18, also available. For bars up to and including #8, the number of the bar coincides
with the bar diameter in eighths of an inch. For example, a #7 bar has a diameter of % in. and a
cross-sectional area of 0.60 in.2 (which is the area of a circle with a %—in. diameter). Bars were
formerly manufactured in both round and square cross sections, but today all bars are round.

The #9, #10, and #11 bars have diameters that provide areas equal to the areas of the
old 1-in. x 1-in. square bars, lé—in. X lé—in. square bars, and li—in. X li—in. square bars,
respectively. Similarly, the #14 and #18 bars correspond to the old 1%—in. X 1%—in. square bars
and 2-in. x 2-in. square bars, respectively. Table A.2 (see Appendix A) provides details as

Courtesy of EFCO Corp.
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to areas, diameters, and weights of reinforcing bars. Although #14 and #18 bars are shown in
this table, the designer should check his or her suppliers to see if they have these very large
sizes in stock. Reinforcing bars may be purchased in lengths up to 60 ft. Longer bars have to
be specially ordered. In general, longer bars are too flexible and difficult to handle.

Welded wire fabric is also frequently used for reinforcing slabs, pavements, and shells,
and places where there is normally not sufficient room for providing the necessary concrete
cover required for regular reinforcing bars. The mesh is made of cold-drawn wires running
in both directions and welded together at the points of intersection. The sizes and spacings
of the wire may be the same in both directions or may be different, depending on design
requirements. Wire mesh is easily placed and has excellent bond with the concrete, and the
spacing of the wires is well controlled.

Table A.3(A) in Appendix A provides information concerning certain styles of welded
wire fabric that have been recommended by the Wire Reinforcement Institute as common
stock styles (normally carried in stock at the mills or at warehousing points and, thus, usually
immediately available). Table A.3(B) provides detailed information about diameters, areas,
weights, and spacings of quite a few wire sizes normally used to manufacture welded wire
fabric. Smooth and deformed wire fabric is made from wires whose diameters range from
0.134 in. to 0.628 in. for plain wire and from 0.225 in. to 0.628 in. for deformed wires.

Smooth wire is denoted by the letter W followed by a number that equals the cross-
sectional area of the wire in hundredths of a square inch. Deformed wire is denoted by the
letter D followed by a number giving the area. For instance, a D4 wire is a deformed wire
with a cross-sectional area equal to 0.04 in.> Smooth wire fabric is actually included within
the ACI Code’s definition of deformed reinforcement because of its mechanical bonding to the
concrete caused by the wire intersections. Wire fabric that actually has deformations on the
wire surfaces bonds even more to the concrete because of the deformations as well as the wire
intersections. According to the code, deformed wire is not permitted to be larger than D31 or
smaller than D4.

Headed Steel Bars for Concrete Reinforcement (ASTM A970/970M) were added to
the ACI 318 Code in 2008. Headed bars can be used instead of straight or hooked bars,
with considerably less congestion in crowded areas such as beam—column intersections. The
specification covers plain and deformed bars cut to lengths and having heads either forged or
welded to one or both ends. Alternatively, heads may be connected to the bars by internal
threads in the head mating to threads on the bar end or by a separate threaded nut to secure the
head to the bar. Heads are forge formed, machined from bar stock, or cut from plate. Figure 1.3
illustrates a headed bar detail. The International Code Council has published acceptance criteria
for headed ends of concrete reinforcement (ACC 347).

FIGURE 1.3 Headed deformed
/' reinforcing bar.

1.16 Reinforcing Steel
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1.17 Grades of Reinforcing Steel

Reinforcing bars may be rolled from billet steel, axle steel, or rail steel. Only occasionally,
however, are they rolled from old train rails or locomotive axles. These latter steels have been
cold-worked for many years and are not as ductile as the billet steels.

There are several types of reinforcing bars, designated by the ASTM, which are listed
after this paragraph. These steels are available in different grades as Grade 50, Grade 60, and
so on, where Grade 50 means the steel has a specified yield point of 50,000 psi, Grade 60
means 60,000 psi, and so on.

* ASTM A615: Deformed and plain billet steel bars. These bars, which must be marked
with the letter S (for type of steel), are the most widely used reinforcing bars in the
United States. Bars are of four minimum yield strength levels: 40,000 psi (280 MPa);
60,000 psi (420 MPa); 75,000 psi (520 MPa); and 80,000 psi (550 MPa).

* ASTM A706: Low-alloy deformed and plain bars. These bars, which must be marked
with the letter W (for type of steel), are to be used where controlled tensile properties
and/or specially controlled chemical composition is required for welding purposes. They
are available in two grades: 60,000 psi (420 MPa) and 80,000 psi (550 MPa), designated
as Grade 60 (420) and Grade 80 (550), respectively.

* ASTM A996: Deformed rail steel or axle steel bars. They must be marked with the letter
R (for type of steel).

e When deformed bars are produced to meet both the A615 and A706 specifications, they
must be marked with both the letters S and W.

Designers in almost all parts of the United States will probably never encounter rail or
axle steel bars (A996) because they are available in such limited areas of the country. Of the
23 U.S. manufacturers of reinforcing bars listed by the Concrete Reinforcing Steel Institute,?!
only five manufacture rail steel bars and not one manufactures axle bars.

Almost all reinforcing bars conform to the A615 specification, and a large proportion of
the material used to make them is not new steel but is melted reclaimed steel, such as that from
old car bodies. Bars conforming to the A706 specification are intended for certain uses when
welding and/or bending are of particular importance. Bars conforming to this specification may
not always be available from local suppliers.

There is only a small difference between the prices of reinforcing steel with yield strengths
of 40 ksi and 60 ksi. As a result, the 60-ksi bars are the most commonly used in reinforced
concrete design.

When bars are made from steels with f} of 60 ksi or more, the ACI (Section 3.5.3.2)
states that the specified yield strength must be the stress corresponding to a strain of 0.35%.
For bars with f, less than 60 ksi, the yield strength shall be taken as the stress corresponding
to a strain of 0.5%. The ACI (Section 9.4) has established an upper limit of 80 ksi on yield
strengths permitted for design calculations for reinforced concrete. If the ACI were to permit
the use of steels with yield strengths greater than 80 ksi, it would have to provide other design
restrictions, since the yield strain of 80 ksi steel is almost equal to the ultimate concrete strain
in compression. (This last sentence will make sense after the reader has studied Chapter 2.)

There has been gradually increasing demand through the years for Grade 75 and Grade
80 steel, particularly for use in high-rise buildings, where it is used in combination with high-
strength concretes. The results are smaller columns, more rentable floor space, and smaller
foundations for the resulting lighter buildings.

2l Concrete Reinforcing Steel Institute, 2001, Manual of Standard Practice, 27th ed., Chicago. Appendix A, pp. A-1 to A-5.



1.18 Sl Bar Sizes and Material Strengths

Grade 75 and Grade 80 steel are appreciably higher in cost, and the #14 and #18 bars
are often unavailable from stock and will probably have to be specially ordered from the steel
mills. This means that there may have to be a special rolling to supply the steel. As a result,
its use may not be economically justified unless at least 50 or 60 tons are ordered.

Yield stresses above 60 ksi are also available in welded wire fabric, but the specified
stresses must correspond to strains of 0.35%. Smooth fabric must conform to ASTM A185,
whereas deformed fabric cannot be smaller than size D4 and must conform to ASTM A496.

The modulus of elasticity for nonprestressed steels is considered to be equal to 29 x 10°
psi. For prestressed steels, it varies somewhat from manufacturer to manufacturer, with a value
of 27 x 10° psi being fairly common.

Stainless steel reinforcing (ASTM A955) was introduced in the 2008 code. It is highly
resistant to corrosion, especially pitting and crevice corrosion from exposure to chloride-
containing solutions such as deicing salts. While it is more expensive than normal carbon
steel reinforcement, its life-cycle cost may be less when the costs of maintenance and repairs
are considered.

1.18 Sl Bar Sizes and Material Strengths

The metric version of the ACI Code 318M-11 makes use of the same reinforcing bars used
for designs using U.S. customary units. The metric bar dimensions are merely soft conver-
sions (i.e., almost equivalent) of the customary sizes. The SI concrete strengths (f) and
the minimum steel yield strengths (f)) are converted from the customary values into metric
units and rounded off a bit. A brief summary of metric bar sizes and material strengths
is presented in the following paragraphs. These values are used for the SI examples and
homework problems throughout the text.

1. The bar sizes used in the metric version of the code correspond to U.S. sizes
#3 through #18 bars. They are numbered 10, 13, 16, 19, 22, 25, 29, 32, 36, 43,
and 57. These numbers represent the U.S. customary bar diameters rounded to
the nearest millimeter (mm). For instance, the metric #10 bar has a diameter
equal to 9.5 mm, the metric #13 bar has a diameter equal to 12.7 mm, and
so on. Detailed information concerning metric reinforcing bar diameters, cross-
sectional areas, masses, and ASTM classifications is provided in Appendix B,
Tables B.2 and B.3.

2. The steel reinforcing grades, or minimum steel yield strengths, referred to in
the code are 300, 350, 420, and 520 MPa. These correspond, respectively, to
43,511, 50,763, 60,916, and 75,420 psi and, thus, correspond approximately to
Grade 40, 50, 60, and 75 bars. Appendix B, Table B.3 provides ASTM numbers,
steel grades, and bar sizes available in each grade.

3. The concrete strengths in metric units referred to in the code are 17, 21, 24, 28, 35,
and 42 MPa. These correspond respectively to 2466, 3046, 3481, 4061, 5076, and
6092 psi, that s, to 2500-, 3000-, 3500-, 4000-, 5000-, and 6000-psi concretes.

In 1997, the producers of steel reinforcing bars in the United States began to produce
soft metric bars. These are the same bars we have long called standard inch-pound bars, but
they are marked with metric units. Today, the large proportion of metric bars manufactured in
the United States are soft metric. By producing the exact same bars, the industry does not have
to keep two different inventories (one set of inch-pound bar sizes and another set of different
bar sizes in metric units). Table 1.1 shows the bar sizes given in both sets of units.
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TABLE 1.1 Reinforcement Bar Sizes and Areas

Standard Inch-Pound Bars Soft Metric Bars
Bar No. Diameter (in.) Area (in.2) Bar No. Diameter (mm) Area (mm?)
3 0.375 0.11 10 9.5 71
4 0.500 0.20 13 12.7 129
5 0.625 0.31 16 15.9 199
6 0.750 0.44 19 19.1 284
7 0.875 0.60 22 22.2 387
8 1.000 0.79 25 254 510
9 1.128 1.00 29 28.7 645
10 1.270 1.27 32 32.3 819
11 1.410 1.56 36 35.8 1006
14 1.693 2.25 43 43.0 1452
18 2.257 4.00 57 57.3 2581

1.19 Corrosive Environments

When reinforced concrete is subjected to deicing salts, seawater, or spray from these substances,
it is necessary to provide special corrosion protection for the reinforcing. The structures usually
involved are bridge decks, parking garages, wastewater treatment plants, and various coastal
structures. We must also consider structures subjected to occasional chemical spills that involve
chlorides.

Should the reinforcement be insufficiently protected, it will corrode; as it corrodes, the
resulting oxides occupy a volume far greater than that of the original metal. The results are
large outward pressures that can lead to severe cracking and spalling of the concrete. This
reduces the concrete protection, or cover, for the steel, and corrosion accelerates. Also, the
bond, or sticking of the concrete to the steel, is reduced. The result of all of these factors is a
decided reduction in the life of the structure.

Section 7.7.6 of the code requires that for corrosive environments, more concrete cover
must be provided for the reinforcing; it also requires that special concrete proportions or mixes
be used.

The lives of such structures can be greatly increased if epoxy-coated reinforcing bars are
used. Such bars need to be handled very carefully so as not to break off any of the coating.
Furthermore, they do not bond as well to the concrete, and their embedment lengths will have
to be increased somewhat for that reason, as you will learn in Chapter 7. A new type of bar
coating, a dual coating of a zinc alloy and an epoxy coating, was introduced in the 2011 ACI
318 Code: ASTM A1055. Use of stainless steel reinforcing, as described in Section 1.14, can
also significantly increase the service life of structures exposed to corrosive environments.

1.20 Identifying Marks on Reinforcing Bars

It is essential for people in the shop and the field to be able to identify at a glance the sizes
and grades of reinforcing bars. If they are not able to do this, smaller and lower-grade bars
other than those intended by the designer may be used. To prevent such mistakes, deformed
bars have rolled-in identification markings on their surfaces. These markings are described in
the following list and are illustrated in Figure 1.4.

1. The producing company is identified with a letter.

2. The bar size number (3 to 18) is given next.
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1.20 Identifying Marks on Reinforcing Bars

Courtesy of Concrete Reinforcing Steel Institute.

GRADES 300 AND 350

FIGURE 1.4 Identification marks for ASTM standard bars.

3. Another letter is shown to identify the type of steel (S for billet, R in addition to a rail
sign for rail steel, A for axle, and W for low alloy).

4. Finally, the grade of the bars is shown either with numbers or with continuous lines. A
Grade 60 bar has either the number 60 on it or a continuous longitudinal line in addition
to its main ribs. A Grade 75 bar will have the number 75 on it or two continuous lines

in addition to the main ribs.
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1.21 Introduction to Loads

Perhaps the most important and most difficult task faced by the structural designer is the
accurate estimation of the loads that may be applied to a structure during its life. No loads
that may reasonably be expected to occur may be overlooked. After loads are estimated,
the next problem is to decide the worst possible combinations of these loads that might
occur at one time. For instance, would a highway bridge completely covered with ice and
snow be simultaneously subjected to fast-moving lines of heavily loaded trailer trucks in
every lane and to a 90-mile lateral wind, or is some lesser combination of these loads more
reasonable?

The next few sections of this chapter provide a brief introduction to the types of loads
with which the structural designer must be familiar. The purpose of these sections is not to
discuss loads in great detail but rather to give the reader a feel for the subject. As will be seen,
loads are classed as being dead, live, or environmental.

1.22 Dead Loads

Dead loads are loads of constant magnitude that remain in one position. They include the weight
of the structure under consideration as well as any fixtures that are permanently attached to
it. For a reinforced concrete building, some dead loads are the frames, walls, floors, ceilings,
stairways, roofs, and plumbing.

To design a structure, it is necessary for the weights or dead loads of the various parts
to be estimated for use in the analysis. The exact sizes and weights of the parts are not known
until the structural analysis is made and the members of the structure are selected. The weights,
as determined from the actual design, must be compared with the estimated weights. If large
discrepancies are present, it will be necessary to repeat the analysis and design using better
estimated weights.

Reasonable estimates of structure weights may be obtained by referring to similar struc-
tures or to various formulas and tables available in most civil engineering handbooks. An
experienced designer can estimate very closely the weights of most structures and will spend
little time repeating designs because of poor estimates.

The approximate weights of some common materials used for floors, walls, roofs, and
the like are given in Table 1.2.

TABLE 1.2 Weights of Some Common Building Materials

Reinforced concrete (12 in.) 150 psf 2 x 12 @ 16-in. double wood floor 7 psf
Acoustical ceiling tile 1 psf Linoleum or asphalt tile 1 psf
Suspended ceiling 2 psf Hardwood flooring (% in.) 4 psf
Plaster on concrete 5 psf 1-in. cement on stone-concrete fill 32 psf
Asphalt shingles 2 psf Movable steel partitions 4 psf
3-ply ready roofing 1 psf Wood studs with 1E—in. gypsum 8 psf

Mechanical duct allowance 4 psf Clay brick wythes (4 in.) 39 psf




1.23 Live Loads

Live loads are loads that can change in magnitude and position. They include occupancy loads,
warehouse materials, construction loads, overhead service cranes, equipment operating loads,
and many others. In general, they are induced by gravity.

Some typical floor live loads that act on building structures are presented in Table 1.3.
These loads, which are taken from Table 4-1 in ASCE 7-10,2% act downward and are distributed
uniformly over an entire floor. By contrast, roof live loads are 20 psf (pounds per square feet)
maximum distributed uniformly over the entire roof.

Among the many other types of live loads are:

Traffic loads for bridges—Bridges are subjected to series of concentrated loads of varying
magnitude caused by groups of truck or train wheels.

Impact loads—Impact loads are caused by the vibration of moving or movable loads.
It is obvious that a crate dropped on the floor of a warchouse or a truck bouncing
on uneven pavement of a bridge causes greater forces than would occur if the loads
were applied gently and gradually. Impact loads are equal to the difference between
the magnitude of the loads actually caused and the magnitude of the loads had they
been dead loads.

Longitudinal loads—Longitudinal loads also need to be considered in designing some
structures. Stopping a train on a railroad bridge or a truck on a highway bridge causes
longitudinal forces to be applied. It is not difficult to imagine the tremendous longi-
tudinal force developed when the driver of a 40-ton trailer truck traveling at 60 mph
suddenly has to apply the brakes while crossing a highway bridge. There are other
longitudinal load situations, such as ships running into docks and the movement of
traveling cranes that are supported by building frames.

Miscellaneous loads—Among the other types of live loads with which the structural
designer will have to contend are soil pressures (such as the exertion of lateral earth
pressures on walls or upward pressures on foundations), hydrostatic pressures (such as
water pressure on dams, inertia forces of large bodies of water during earthquakes, and
uplift pressures on tanks and basement structures), blast loads (caused by explosions,
sonic booms, and military weapons), and centrifugal forces (such as those caused on
curved bridges by trucks and trains or similar effects on roller coasters).

TABLE 1.3 Some Typical Uniformly Distributed Live Loads

Lobbies of assembly areas 100 psf Classrooms in schools 40 psf
Dance hall and ballrooms 100 psf Upper-floor corridors in schools 80 psf
Library reading rooms 60 psf Stairs and exitways 100 psf
Library stack rooms 150 psf Heavy storage warehouse 250 psf
Light manufacturing 125 psf Retail stores —first floor 100 psf
Offices in office buildings 50 psf Retail stores — upper floors 75 psf
Residential dwelling areas 40 psf Walkways and elevated platforms 60 psf

psf = pounds per square foot

22 American Society of Civil Engineers, 2010, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 (Reston,
VA: American Society of Civil Engineers), pp. 17-19.

1.23 Live Loads
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Courtesy of The Burke Company.

Sewage treatment plant, Redwood City, California.

Live load reductions are permitted, according to Section 4.8 of ASCE 7, because is it
unlikely that the entire structure will be subjected to its full design live load over its entire
floor area all at one time. This reduction can significantly reduce the total design live load on
a structure, resulting in much lower column loads at lower floors and footing loads.

1.24 Environmental Loads

Environmental loads are loads caused by the environment in which the structure is located. For
buildings, they are caused by rain, snow, wind, temperature change, and earthquake. Strictly
speaking, these are also live loads, but they are the result of the environment in which the
structure is located. Although they do vary with time, they are not all caused by gravity or
operating conditions, as is typical with other live loads. In the next few paragraphs, a few
comments are made about the various kinds of environmental loads.

1. Snow and ice. In the colder states, snow and ice loads are often quite important. One
inch of snow is equivalent to approximately 0.5 psf, but it may be higher at lower elevations
where snow is denser. For roof designs, snow loads of from 10 psf to 40 psf are used, the
magnitude depending primarily on the slope of the roof and to a lesser degree on the character
of the roof surface. The larger values are used for flat roofs, the smaller ones for sloped roofs.
Snow tends to slide off sloped roofs, particularly those with metal or slate surfaces. A load of
approximately 10 psf might be used for 45° slopes, and a 40-psf load might be used for flat
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roofs. Studies of snowfall records in areas with severe winters may indicate the occurrence of
snow loads much greater than 40 psf, with values as high as 80 psf in northern Maine.

Snow is a variable load, which may cover an entire roof or only part of it. There may be
drifts against walls or buildup in valleys or between parapets. Snow may slide off one roof and
onto a lower one. The wind may blow it off one side of a sloping roof, or the snow may crust
over and remain in position even during very heavy winds. The snow loads that are applied to
a structure are dependent upon many factors, including geographic location, the pitch of the
roof, sheltering, and the shape of the roof.

2. Rain. Although snow loads are a more severe problem than rain loads for the usual
roof, the situation may be reversed for flat roofs—particularly those in warmer climates. If
water on a flat roof accumulates faster than it runs off, the result is called ponding because
the increased load causes the roof to deflect into a dish shape that can hold more water, which
causes greater deflections, and so on. This process continues until equilibrium is reached or
until collapse occurs. Ponding is a serious matter, as illustrated by the large number of flat-roof
failures that occur as a result of ponding every year in the United States. It has been claimed that
almost 50% of the lawsuits faced by building designers are concerned with roofing systems.?
Ponding is one of the common subjects of such litigation.

3. Wind. A survey of engineering literature for the past 150 years reveals many references
to structural failures caused by wind. Perhaps the most infamous of these have been bridge
failures such as those of the Tay Bridge in Scotland in 1879 (which caused the deaths of 75
persons) and the Tacoma Narrows Bridge (Tacoma, Washington) in 1940. There have also
been some disastrous building failures from wind during the same period, such as that of the
Union Carbide Building in Toronto in 1958. It is important to realize that a large percentage
of building failures from wind have occurred during the buildings’ erection.?*

A great deal of research has been conducted in recent years on the subject of wind
loads. Nevertheless, more study is needed because the estimation of wind forces can by no
means be classified as an exact science. The magnitude and duration of wind loads vary with
geographical locations, the heights of structures aboveground, the types of terrain around the
structures, the proximity of other buildings, the location within the structure, and the character
of the wind itself.

Chapters 26 to 31 of the ASCE 7-10 specification provide a rather lengthy procedure
for estimating the wind pressures applied to buildings. The procedure involves several factors
with which we attempt to account for the terrain around the building, the importance of the
building regarding human life and welfare, and of course the wind speed at the building site.
Although use of the equations is rather complex, the work can be greatly simplified with the
tables presented in the specification. The reader is cautioned, however, that the tables presented
are for buildings of regular shapes. If a building having an irregular or unusual geometry is
being considered, wind tunnel studies may be necessary.

The basic form of the equation presented in the specification is

p =4qCG

In this equation, p is the estimated wind load (in psf) acting on the structure. This wind
load will vary with height above the ground and with the location on the structure. The
quantity, g, is the reference velocity pressure. It varies with height and with exposure to

23 Van Ryzin, Gary, 1980, “Roof Design: Avoid Ponding by Sloping to Drain,” Civil Engineering (January), pp. 77-81.
24 Task Committee on Wind Forces, Committee on Loads and Stresses, Structural Division, ASCE, 1961, “Wind Forces on
Structures,” Final Report, Transactions ASCE 126, Part 11, pp. 1124-1125.
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the wind. The aerodynamic shape factor, C, is dependent upon the shape and orientation
of the building with respect to the direction from which the wind is blowing. Lastly,
the gust response factor, G, is dependent upon the nature of the wind and the location
of the building. Other considerations in determining design wind pressure include importance
factor and surface roughness.

4. Seismic loads. Many areas of the world are in earthquake territory, and in those
areas, it is necessary to consider seismic forces in design for all types of structures. Through
the centuries, there have been catastrophic failures of buildings, bridges, and other structures
during earthquakes. It has been estimated that as many as 50,000 people lost their lives in
the 1988 earthquake in Armenia.>> The 1989 Loma Prieta and 1994 Northridge earthquakes
in California caused many billions of dollars of property damage as well as considerable loss
of life. The 2008 earthquake in Sichuan Province, China, caused 69,000 fatalities and another
18,000 missing.

Recent earthquakes have clearly shown that the average building or bridge that has not
been designed for earthquake forces can be destroyed by an earthquake that is not particularly
severe. Most structures can be economically designed and constructed to withstand the forces
caused during most earthquakes. The cost of providing seismic resistance to existing structures
(called retrofitting), however, can be extremely high.

Some engineers seem to think that the seismic loads to be used in design are merely
percentage increases of the wind loads. This assumption is incorrect, however, as seismic loads
are different in their action and are not proportional to the exposed area of the building but
rather are proportional to the distribution of the mass of the building above the particular level
being considered.

Another factor to be considered in seismic design is the soil condition. Almost all of the
structural damage and loss of life in the Loma Prieta earthquake occurred in areas that have
soft clay soils. Apparently these soils amplified the motions of the underlying rock.2°

It is well to understand that earthquakes load structures in an indirect fashion. The ground
is displaced, and because the structures are connected to the ground, they are also displaced and
vibrated. As a result, various deformations and stresses are caused throughout the structures.

From the preceding information, you can understand that no external forces are applied
aboveground by earthquakes to structures. Procedures for estimating seismic forces such as
the ones presented in Chapters 11 to 23 of ASCE 7-10 are very complicated. As a result, they
usually are addressed in advanced structural analysis courses, such as structural dynamics or
earthquake resistance design courses.

1.25 Selection of Design Loads

To assist the designer in estimating the magnitudes of live loads with which he or she should
proportion structures, various records have been assembled through the years in the form of
building codes and specifications. These publications provide conservative estimates of live-
load magnitudes for various situations. One of the most widely used design-load specifications
for buildings is that published by the American Society of Civil Engineers (ASCE).?’

25 Fairweather, V., 1990, “The Next Earthquake,” Civil Engineering (March), pp. 54-57.

26 Ibid.

27 American Society of Civil Engineers, 2010, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 (Reston,
VA: American Society of Civil Engineers), 608 pages.
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Courtesy of EFCO Corp.

Croke Park Stadium, Dublin, Ireland.

The designer is usually fairly well controlled in the design of live loads by the building
code requirements in his or her particular area. Unfortunately, the values given in these various
codes vary from city to city, and the designer must be sure to meet the requirements of a
particular locality. In the absence of a governing code, the ASCE Code is an excellent one to
follow.

Some other commonly used specifications are:

* For railroad bridges, American Railway Engineering Association (AREA).?

» For highway bridges, American Association of State Highway and Transportation Officials
(AASHTO).®

« For buildings, the International Building Code (IBC).*°

These specifications will on many occasions clearly prescribe the loads for which struc-
tures are to be designed. Despite the availability of this information, the designer’s ingenuity
and knowledge of the situation are often needed to predict what loads a particular structure
will have to support in years to come. Over the past several decades, insufficient estimates of
future traffic loads by bridge designers have resulted in a great number of replacements with
wider and stronger structures.

1.26 Calculation Accuracy

A most important point, which many students with their amazing computers and pocket cal-
culators have difficulty in understanding, is that reinforced concrete design is not an exact
science for which answers can be confidently calculated to six or eight places. The reasons

28 American Railway Engineering Association (AREA), 2003, Manual for Railway Engineering (Chicago: AREA).

2 Standard Specifications for Highway Bridges, 2002, 17th ed. (Washington, DC: American Association of State Highway
and Transportation Officials [AASHTO]).

30 International Building Code, 2006, International Code Council, Inc.
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for this statement should be quite obvious: The analysis of structures is based on partly true
assumptions; the strengths of materials used vary widely; structures are not built to the exact
dimensions shown on the plans; and maximum loadings can only be approximated. With respect
to this last sentence, how many users of this book could estimate to within 10% the maximum
live load in pounds per square foot that will ever occur on the building floor they are now
occupying? Calculations to more than two or three significant figures are obviously of little
value and may actually mislead students into a false sense of accuracy.

1.27 Impact of Computers on Reinforced Concrete Design

The availability of personal computers has drastically changed the way in which reinforced
concrete structures are analyzed and designed. In nearly every engineering school and office,
computers are routinely used to handle structural design problems.

Many calculations are involved in reinforced concrete design, and many of these calcu-
lations are quite time consuming. With a computer, the designer can reduce the time required
for these calculations tremendously and, thus, supposedly have time to consider alternative
designs.

Although computers do increase design productivity, they do undoubtedly tend at the
same time to reduce the designer’s “feel” for structures. This can be a special problem for
young engineers with little previous design experience. Unless designers have this “feel,”
computer usage, though expediting the work and reducing many errors, may occasionally
result in large mistakes.

It is interesting to note that up to the present time, the feeling at most engineering schools
has been that the best way to teach reinforced concrete design is with chalk and blackboard,
supplemented with some computer examples.

Accompanying this text are several Excel spreadsheets that can be downloaded from this
book’s website at: www.wiley.com/college/mccormac.

These spreadsheets are intended to allow the student to consider multiple alternative
designs and not as a tool to work basic homework problems.

PROBLEMS

Problem 1.1 Name several of the admixtures that are used in ~ Problem 1.7 Why do the surfaces of reinforcing bars have
concrete mixes. What is the purpose of each? rolled-on deformations?

Problem 1.2 What is Poisson’s ratio, and where can it be of Problem 1.8 What are “soft metric” reinforcing bars?

significance in concrete work? .
£ Problem 1.9 What are three factors that influence the

Problem 1.3 What factors influence the creep of concrete? magnitude of the earthquake load on a structure?

Problem 1.4 What steps can be taken to reduce creep? Problem 1.10 Why are epoxy-coated bars sometimes used in

. . the construction of reinforced concrete?
Problem 1.5 What is the effect of creep in reinforced concrete

columns that are subjected to axial compression loads? Problem 1.11 What is the diameter and cross-sectional area of

Lo S #5 reinforcing bar?
Problem 1.6 Why is silica fume used in high-strength a 7o refnforeing bat

concrete? What does it do?
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Flexural Analysis of Beams CHAPTER 2

2.1 Introduction

In this section, it is assumed that a small transverse load is placed on a concrete beam with
tensile reinforcing and that the load is gradually increased in magnitude until the beam fails. As
this takes place, the beam will go through three distinct stages before collapse occurs. These
are: (1) the uncracked concrete stage, (2) the concrete cracked—elastic stresses stage, and (3)
the ultimate-strength stage. A relatively long beam is considered for this discussion so that
shear will not have a large effect on its behavior.

Uncracked Concrete Stage

At small loads when the tensile stresses are less than the modulus of rupture (the bending
tensile stress at which the concrete begins to crack), the entire cross section of the beam resists
bending, with compression on one side and tension on the other. Figure 2.1 shows the variation
of stresses and strains for these small loads; a numerical example of this type is presented in
Section 2.2.

Concrete Cracked-Elastic Stresses Stage

As the load is increased after the modulus of rupture of the concrete is exceeded, cracks begin
to develop in the bottom of the beam. The moment at which these cracks begin to form—that
is, when the tensile stress in the bottom of the beam equals the modulus of rupture—is referred
to as the cracking moment, M ,.. As the load is further increased, these cracks quickly spread up
to the vicinity of the neutral axis, and then the neutral axis begins to move upward. The cracks
occur at those places along the beam where the actual moment is greater than the cracking
moment, as shown in Figure 2.2(a).

Now that the bottom has cracked, another stage is present because the concrete in the
cracked zone obviously cannot resist tensile stresses—the steel must do it. This stage will

€.1n compression /.. in compression

Js  (This term is defined
€ for steel in tension /T in Section 2.3.)

[ ]
[ ]
®

i
(AN

€.in tension J;tension in concrete

strains stresses

FIGURE 2.1 Uncracked concrete stage.
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FIGURE 2.2 Concrete cracked—elastic stresses stage.

continue as long as the compression stress in the top fibers is less than about one-half of the
concrete’s compression strength, f7, and as long as the steel stress is less than its yield stress.
The stresses and strains for this range are shown in Figure 2.2(b). In this stage, the compressive
stresses vary linearly with the distance from the neutral axis or as a straight line.

The straight-line stress—strain variation normally occurs in reinforced concrete beams
under normal service-load conditions because at those loads, the stresses are generally less
than 0.50f/. To compute the concrete and steel stresses in this range, the transformed-area
method (to be presented in Section 2.3) is used. The service or working loads are the loads that
are assumed to actually occur when a structure is in use or service. Under these loads, moments
develop that are considerably larger than the cracking moments. Obviously, the tensile side
of the beam will be cracked. You will learn to estimate crack widths and methods of limiting
their widths in Chapter 6.

Beam Failure — Ultimate-Strength Stage

As the load is increased further so that the compressive stresses are greater than 0.50f/, the
tensile cracks move farther upward, as does the neutral axis, and the concrete compression
stresses begin to change appreciably from a straight line. For this initial discussion, it is
assumed that the reinforcing bars have yielded. The stress variation is much like that shown in
Figure 2.3. You should relate the information shown in this figure to that given in Figure 1.1
in Chapter 1 as to the changing ratio of stress to strain at different stress levels.

To further illustrate the three stages of beam behavior that have just been described, a
moment—curvature diagram is shown in Figure 2.4.! For this diagram, @ is defined as the angle

! MacGregor, J. G., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ: Prentice Hall), p. 109.
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FIGURE 24 Moment—curvature diagram for reinforced concrete beam with
tensile reinforcing only.

change of the beam section over a certain length and is computed by the following expression
in which € is the strain in a beam fiber at some distance, y, from the neutral axis of the beam:

0=—
y

The first stage of the diagram is for small moments less than the cracking moment, M ,,
where the entire beam cross section is available to resist bending. In this range, the strains are
small, and the diagram is nearly vertical and very close to a straight line. When the moment is

increased beyond the cracking moment, the slope of the curve will decrease a little because the
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Courtesy of EFCO Corp.

Construction of Kingdome, Seattle, Washington.

beam is not quite as stiff as it was in the initial stage before the concrete cracked. The diagram
will follow almost a straight line from M, to the point where the reinforcing is stressed to
its yield point. Until the steel yields, a fairly large additional load is required to appreciably
increase the beam’s deflection.

After the steel yields, the beam has very little additional moment capacity, and only a
small additional load is required to substantially increase rotations as well as deflections. The
slope of the diagram is now very flat.

2.2 Cracking Moment

The area of reinforcing as a percentage of the total cross-sectional area of a beam is quite
small (usually 2% or less), and its effect on the beam properties is almost negligible as long
as the beam is uncracked. Therefore, an approximate calculation of the bending stresses in
such a beam can be obtained based on the gross properties of the beam’s cross section. The
stress in the concrete at any point a distance y from the neutral axis of the cross section can
be determined from the following flexure formula in which M is the bending moment equal to
or less than the cracking moment of the section and /, is the gross moment of inertia of the
Ccross section:

Section 9.5.2.3 of the ACI Code states that the cracking moment of a section may be
determined with ACI Equation 9-9, in which f, is the modulus of rupture of the concrete and
¥, is the distance from the centroidal axis of the section to its extreme fiber in tension. In this
section, with its equation 9-10, the code states that f, may be taken equal to 7.5k\/ﬁ with f!
in psi.

Or in SI units with f/ in N/mm® or MPa, f, = 0.74,/f/



2.2 Cracking Moment

The “lambda” term is 1.0 for normal-weight concrete and is less than 1.0 for lightweight
concrete, as described in Section 1.12. The cracking moment is as follows:

M, = Uk
Vi
Example 2.1 presents calculations for a reinforced concrete beam where tensile stresses
are less than its modulus of rupture. As a result, no tensile cracks are assumed to be present,
and the stresses are similar to those occurring in a beam constructed with a homogeneous
material.

Example 2.1

(a) Assuming the concrete is uncracked, compute the bending stresses in the extreme fibers of
the beam of Figure 2.5 for a bending moment of 25 ft-k. The normal-weight concrete has an
f. of 4000 psi and a modulus of rupture f, = 7.5(1.0)+/4000 psi = 474 psi.

(b) Determine the cracking moment of the section.

(ACI Equation 9-9)

SOLUTION

(a) Bending stresses:
1

_ 3 . _ . _ .
ly = 5bh® with b = 12in. and h = 18 n.
1 . .3 .4
ly = <E> (121in.) (18 in.)® = 5832 in.
f= % with M = 25 ft-k = 25,000 ft-Ib
g

Next, multiply the 25,000 ft-Ib by 12 in/ft to obtain in-Ib as shown here:
(12 in/ft x 25,000 ft-Ib) (9.00 in.)
5832 in.4

Since this stress is less than the tensile strength or modulus of rupture of the concrete of
474 psi, the section is assumed not to have cracked.

f= = 463 psi

(b) Cracking moment:

Y. — filg (474 psi) (5832in.%)
o=y, T 9.00 in.

= 307,152 in-lb = 25.6 ft-k

15 in. 181
3 #9 bars -
(A,=3.00in.%)
Y
e o o ¥,
m

re—12 in.—>

FIGURE 25 Beam cross section for Example 2.1.
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Example 2.2

(a) If the T-beam shown is uncracked, calculate the stress in the concrete at the top and bottom
extreme fibers under a positive bending moment of 80 ft-k.

(b) If fL =3000 psi and normal-weight concrete is used, what is the maximum uniformly
distributed load the beam can carry if it is used as a simple beam with 24-ft span without
exceeding the modulus of rupture of the concrete?

(c) Repeat part (b) if the beam is inverted.

|(— by=60 in.—)l

v ¥
F=1081in. | | #=s5in
centroid S >0 4
21.19 in. 27 in.
v v
H F
b, =12 in.
SOLUTION
(a) Locate the neutral axis with respect to the top of the section:
h h—h
bh; <Ef> +(bs) (h — hy) <h, - f)
y =
b¢hg + (by) (h — hy)
. . . . . . 27 in.
(60in)(5in)(2.5in)+ (12in.)(27 in.){ 5in. +
= =10.81in.

60in)(5in.) + (12in.) (27 in.)

The moment of inertia is:

2
b.h3 _ h\? by, (h—h)3 _ h—h
| =1t +b,h,[<y——f> +M+bw(h—h,) y—hf—( 5 2

9 12 2 12

_ (60in) (5 in)° . 5 in.>2 (12in.) (32 in. — 5in.)3
- 12 2

(60in.)(5in.) <10.81 in. — 2

i 2
+(12in)(32in. — 5in.) <10.81 in. — 5in. — 272'”'>

=60,185in.*

The stress in the bottom fiber under the given moment of 80 ft-k is:

Me _ (80 ft-K) (12in/ft)@2in. —10.811n) _ ope i o gag 2

o= T 60,185 in.”

fi

The stress in the top fiber is:

Mc (80 ft-K) (12 in/ft) (10.81 in.)

- = 0.172 k/in.? = 172 Ib/in.?
o 60,185 in.*

i
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(b) The modulus of rupture, f,, of normal-weight concrete with f, = 3000 psi is:
f. = 7.51/f, = 7.5(1.0)+/3000 = 411 Ib/in.?
The moment that causes a stress equal to the modulus of rupture is:

flg  (4111b/in.?) (60,185 in.%)
=2 = = 1167.344 in-Ib = 97.28 ft-k
o c (32in. — 10.81in.) n

The uniformly distributed load on a simple span that causes this much moment is:
_ 8M  8(97.28 ft-K)
TR (24112

(c) If the beam is inverted, then the ¢ term used to calculate M, is 10.81 in. instead of 21.19 in.,
hence:

= 1.351 k/ft = 1351 Ib/ft

fly  (4111b/in.?) (60,185 in.%)

_ e _ _ inlb — 190,60 ft-
M., = c (10.81in) 2,288,255 in-Ib = 190.69 ft-k

cr

The uniformly distributed load on a simple span that causes this much moment is:

8M  8(190.69 ft-k)

wW=——
2 (24 ft)2

This is almost double the load that the beam can carry if oriented the opposite way. Don’t

get the impression that this is the best orientation for a T beam, however. In the next section,
when we examine reinforced sections, the opposite will be true.

= 2.648 k/ft = 2648 Ib/ft

2.3 Elastic Stresses —Concrete Cracked

When the bending moment is sufficiently large to cause the tensile stress in the extreme fibers
to be greater than the modulus of rupture, it is assumed that all of the concrete on the tensile
side of the beam is cracked and must be neglected in the flexure calculations.

The cracking moment of a beam is normally quite small compared to the service load
moment. Thus, when the service loads are applied, the bottom of the beam cracks. The cracking
of the beam does not necessarily mean that the beam is going to fail. The reinforcing bars on
the tensile side begin to pick up the tension caused by the applied moment.

On the tensile side of the beam, an assumption of perfect bond is made between the
reinforcing bars and the concrete. Thus, the strain in the concrete and in the steel will be equal
at equal distances from the neutral axis. If the strains in the two materials at a particular point
are the same, however, their stresses cannot be the same since they have different moduli of
elasticity. Thus, their stresses are in proportion to the ratio of their moduli of elasticity. The
ratio of the steel modulus to the concrete modulus is called the modular ratio, n:

If the modular ratio for a particular beam is 10, the stress in the steel will be 10 times
the stress in the concrete at the same distance from the neutral axis. Another way of say-
ing this is that when n = 10, 1 in.2 of steel will carry the same total force as 10 in.> of
concrete.

For the beam of Figure 2.6, the steel bars are replaced with an equivalent area of fictitious
concrete (nA;), which supposedly can resist tension. This area is referred to as the transformed
area. The resulting revised cross section or transformed section is handled by the usual methods
for elastic homogeneous beams. Also shown in the figure is a diagram showing the stress
variation in the beam. On the tensile side, a dashed line is shown because the diagram is
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/

FIGURE 2.6 Cracked, transformed section.

discontinuous. There, the concrete is assumed to be cracked and unable to resist tension. The
value shown opposite the steel is the fictitious stress in the concrete if it could carry tension.
This value is shown as f; /n because it must be multiplied by n to give the steel stress f;.

Examples 2.3, 2.4, and 2.5 are transformed-area problems that illustrate the calculations
necessary for determining the stresses and resisting moments for reinforced concrete beams.
The first step to be taken in each of these problems is to locate the neutral axis, which is assumed
to be located a distance x from the compression surface of the beam. The first moment of the
compression area of the beam cross section about the neutral axis must equal the first moment
of the tensile area about the neutral axis. The resulting quadratic equation can be solved by
completing the squares or by using the quadratic formula.

Donovan Reese/Getty Images, Inc.

Bridge construction on an expressway interchange.
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After the neutral axis is located, the moment of inertia of the transformed section
is calculated, and the stresses in the concrete and the steel are computed with the flexure
formula.

Example 2.3

Calculate the bending stresses in the beam shown in Figure 2.7 by using the transformed area
method, f, = 3000 psi, n = 9, and M = 70 ft-k.

SOLUTION

Taking Moments about Neutral Axis (Referring to Figure 2.8)
(121in.) (x) (’2—() — (9)(3.00in.) (17 in. — x)
6x? = 459 — 27.00x
Solving by Completing the Square

6x% + 27.00x = 459
x> +4.50x = 76.5
(X + 2.25) (x + 2.25) = 76.5 + (2.25)

X =2.25+,/76.5 + (2.25)2

X =6.780in.
Moment of Inertia

I = <%> (12in.) (6.78 in.)® + (9)(3.00 in.2) (10.22 in.)? = 4067 in.*

Bending Stresses

My  (12)(70,000 ft-Ib) (6.78 in.)

fo=—2 = — 1400 psi

c 4067 in.* Laied el

- oMy _ o) (12) (70,000 ft—Ib)£10.22 in) _ 18,008 psi
/ 4067 in. —

12 in.‘—|
1 |
17 in
20 in. Y
3 #9 bars N.A. _ l :
(A,=3.001in.%) | - T 17 in.
e o o |—— _
3in. A ., 17 in. —x
nAg;=27in.
e—12 in.—{ T | -
FIGURE 2.7 Beam cross section for FIGURE 2.8 Cracked, transformed section for

Example 2.3. Example 2.3.
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Example 2.4

Determine the allowable resisting moment of the beam of Example 2.3, if the allowable stresses
are f, = 1350 psi and f; = 20,000 psi.

SOLUTION
. .4
M, = el _ (1850PsHUO67in- ) _ g4 500 i1 — 67.5 fi-k «
y 6.78 in. —
£/ (20,000 psi) (4067 in.4) .
M= = e toaa ) = 884823 in-lb = 737 firk
Discussion

For a given beam, the concrete and steel will not usually reach their maximum allowable
stresses at exactly the same bending moments. Such is the case for this example beam, where
the concrete reaches its maximum permissible stress at 67.5 ft-k, while the steel does not reach
its maximum value until 73.7 ft-k is applied. The resisting moment of the section is 67.5 ft-k
because if that value is exceeded, the concrete becomes overstressed even though the steel
stress is less than its allowable stress.

Example 2.5

Compute the bending stresses in the beam shown in Figure 2.9 by using the transformed-area
method; n = 8 and M = 110 ft-k.

SOLUTION
Locating Neutral Axis (Assuming Neutral Axis below Hole)
(18in.)(x) (g) —(6in.)(6in.) (x — 3 in.) = (8)(5.06 in.2) (23 in. — X)
9x2 — 36x + 108 = 931 — 40.48x
9x® 4 4.48x = 823
x? 4+ 0.50x = 91.44
(x + 0.25) (x + 0.25) = 91.44 + (0.25)%> = 91.50

X +0.25 = +/91.50 = 9.57
X =9.32in. > 6in. . N.A. below hole as assumed

Moment of Inertia

I = <%> (6in.)(9.32 in.)%(2) + <%> (6in.)(3.32in.)® + (8) (5.06 in.?) (13.68 in.)? = 10,887 in.*

Computing Stresses

- (12) (110,000 ft-Ib) 4(9.32 M) _ 1130 psi
10,887 in. —_—

12) (110,000 ft-Ib) (13.68 in.
£ = (g2010. )2 ) _ 13269 psi
10,887 in. ==
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6 in. 6 in. 6 in.
6in. T
4 ¥
N.A. 14
23 in.
23in. —x
4 #10
(5.06 in.2) L
L] e o L]
3in.
18in. T FIGURE 2.9 Beam cross section for Example 2.5.

Example 2.6

Calculate the bending stresses in the concrete and the reinforcing steel, using the transformed
area method: f, = 3000 psi, normal-weight concrete, n = 9, M = 250 ft-k.

< br= 60 in. >| — ). = 60 in, —>
| ! |l ¢ | / |y
| |  #=siA | | m=sin A\
0 _08i A e
[ d=28in. T — d=28in.
y
O - |—_L| A4
> < — |<—
b, =12 in. b, =12in.

transformed section

SOLUTION

Assume the neutral axis is in the web, and take moments about the neutral axis of the transformed
section for this example:

2 2

5in. 12in.) (x)2

60in. — 121in) 5 in) (x — 2 4 (200 67
2 2

Using a calculator with a solver for quadratic equations results in x = 5.65 in. Since this value

of x exceeds h; of 5 in., the assumption that the neutral axis is in the web is valid. If x had been

smaller than 5 in., then the value we obtained would not have been valid, and the preceding

equations would have to be rewritten and solved assuming x < h;.

2
(b; — b, )h, <x - fﬁ) + 2 A —x)

= (9)(4.71in.2) (28 in. — x)

(b, — b, )h3 h\%2 b, x3 X
I, = % + (b; — b,)h; <x - Ef> + ;V—Z +b,x (5) + nA(d — x)?
_— . . \3 . 2
_ 60in. = 12in)OIN)S . 6hin —12in)(5in) (5.65in. — 2
12 2
121in.) (5.65 in.)3
+ M +(9)(4.71in2) (28 in. — 5.65in.)

=24,778in.*



46 CHAPTER 2 Flexural Analysis of Beams

The T-shaped part of the transformed section could be divided into rectangles in other ways
besides the one shown. The resulting answer would still be the same.
The stress in the concrete can now be calculated:

g Mx_ (50K (650N, 4(12 1) _ 0,684 kin2 = 684 Ib/in 2
I 24,778 in.

This concrete stress is well below the allowable values that were once in the ACI Code. They
used to be 0.45f, = (0.45) (3000 Ib/in.2) = 1350 Ib/in.2.
The stress in the reinforcing steel can now be calculated:

- nM(d —x) _ (9)(250 ft-K) (28 in. - 5.35 i) (1200/8) _ o4 et 10in2 — 24,354 Iofin 2
I, 24,778 in.

This reinforcing steel stress is slightly greater than the allowable values that were once in
the ACI Code. They used to be 24,000 Ib/in.? for Grade 60 reinforcing steel. This is about a
1.5% overstress in the steel, and many engineers would accept this much overstress as being
within the accuracy of their other assumptions. This beam would be called “‘tension controlled”
because the moment capacity is controlled by the steel, not the concrete. This same beam
could be compression controlled if a lot more steel were used. Tension-controlled beams are
preferable to compression-controlled ones, as will be discussed later in this text.

Example 2.7 illustrates the analysis of a doubly reinforced concrete beam—that is, one
that has compression steel as well as tensile steel. Compression steel is generally thought to
be uneconomical, but occasionally its use is quite advantageous.

Compression steel will permit the use of appreciably smaller beams than those that make
use of tensile steel only. Reduced sizes can be very important where space or architectural
requirements limit the sizes of beams. Compression steel is quite helpful in reducing long-term
deflections, and such steel is useful for positioning stirrups or shear reinforcing, a subject to
be discussed in Chapter 8. A detailed discussion of doubly reinforced beams is presented in
Chapter 5.

The creep or plastic flow of concrete was described in Section 1.11. Should the com-
pression side of a beam be reinforced, the long-term stresses in that reinforcing will be greatly
affected by the creep in the concrete. As time goes by, the compression concrete will compact
more tightly, leaving the reinforcing bars (which themselves have negligible creep) to carry
more and more of the load.

As a consequence of this creep in the concrete, the stresses in the compression bars
computed by the transformed-area method are assumed to double as time goes by. In
Example 2.7, the transformed area of the compression bars is assumed to equal 2n times their
area, A

On the subject of “hairsplitting,” it will be noted in the example that the compression
steel area is really multiplied by 2n — 1. The transformed area of the compression side equals
the gross compression area of the concrete plus 2rnA/;, minus the area of the holes in the concrete
(1A), which theoretically should not have been included in the concrete part. This equals the
compression concrete area plus (2n — 1)A%. Similarly, 2n — 1 is used in the moment of inertia
calculations. The stresses in the compression bars are determined by multiplying 2x times the
stresses in the concrete located at the same distance from the neutral axis.
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Example 2.7

Compute the bending stresses in the beam shown in Figure 2.10;n = 10 and M = 118 ft-k.

SOLUTION
Locating Neutral Axis
(14 in.) (x) ()E() +(20 — 1)(2.00in.%) (x — 2.5 in.) = (10) (4.00 in.2)(17.5 in. — x)
7x? +38x — 95 = 700 — 40x

7X% +78x = 795
X2 +11.14x = 113.57

X +5.57 = \/113.57 + (5.57)2 = 12.02

X = 6.45in.
Moment of Inertia
I = <%> (14in.) (6.45 in.)® + (20 — 1)(2.00 in.?) (3.95 in.)? + (10) (4.00 in.?) (11.05 in.)?
= 6729in.*

Bending Stresses

(12) (118,000 ft-Ib) (6.45 in.)

f,= 6729 1n3 = 1357 psi
, My (12) (118,000 ft-Ib) (3.95 in.) _
fo=2n——=(2)(10 = 16,624 psi
s ;= @00 6729 in.* —= B
12) (118,000 ft-Ib) (11.05 in. .
£ = (102! )4( ) _ 93 253 psi
6729 in. _—
2;—in. (2n—1)A;
| ~——14in—>]
I ® o ® -
(A,=2.00in.?%)
- - ~ 20in.
17.51in. — x 4#9 15 in.
(A, =4.00in.%)
1 | e e 0o o |—L Je—nd,
- 14 in. 11
27in
(a) Actual section (b) Transformed section

FIGURE 2.10 Beam cross section for Example 2.7.
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2.4 Ultimate or Nominal Flexural Moments

In this section, a very brief introduction to the calculation of the ultimate or nominal flexural
strength of beams is presented. This topic is continued at considerable length in the next chapter,
where formulas, limitations, designs, and other matters are presented. For this discussion, it is
assumed that the tensile reinforcing bars are stressed to their yield point before the concrete on
the compressive side of the beam is crushed. You will learn in Chapter 3 that the ACI Code
requires all beam designs to fall into this category.

After the concrete compression stresses exceed about 0.50f/, they no longer vary directly
as the distance from the neutral axis or as a straight line. Rather, they vary much as shown
in Figure 2.11(b). It is assumed for the purpose of this discussion that the curved com-
pression diagram is replaced with a rectangular one with a constant stress of 0.85f/, as
shown in part (c) of the figure. The rectangular diagram of depth a is assumed to have
the same c.g. (center of gravity) and total magnitude as the curved diagram. (In Section
3.4 of Chapter 3 of this text, you will learn that this distance a is set equal to B;c, where
B, is a value determined by testing and specified by the code.) These assumptions will
enable us to easily calculate the theoretical or nominal flexural strength of reinforced concrete
beams. Experimental tests show that with the assumptions used here, accurate flexural strengths
are determined.

To obtain the nominal or theoretical moment strength of a beam, the simple steps to
follow are illustrated in Figure 2.11 and Example 2.8.

1. Compute total tensile force T = A f,.

2. Equate total compression force C = 0.85f/ab to A f, and solve for a. In this expression,
ab is the assumed area stressed in compression at 0.85f,. The compression force C and
the tensile force 7 must be equal to maintain equilibrium at the section.

3. Calculate the distance between the centers of gravity of 7"and C. (For a rectangular beam
cross section, it equals d — a/2.)

4. Determine M,, which equals 7 or C times the distance between their centers of

gravity.
0.851
concrete 3
compressive |¢ fic=a e ("= 0.85f ab
stress
d - d- 4
2
AS
® & o __..._--—*f\ 7'=/1va
b
(a) Beam (b) Actual compression (c) Assumed compression
stress variation stress variation

FIGURE 2.11 Compression and tension couple at nominal moment.
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Example 2.8

Determine M,,, the nominal or theoretical ultimate moment strength of the beam section shown
in Figure 2.12, if fy = 60,000 psi and f, = 3000 psi.

SOLUTION
Computing Tensile and Compressive Forces T and C

T =Asf, =(3.00 in.2) (60 k/in.?) = 180 k

C = 0.85f.ab = (0.85) (3 k/in.?)(a) (14 in.) = 35.7a
Equating T and C and Solving for a

T = C for equilibrium
180 k = 35.7a
a=>5.04in.

Computing the Internal Moment Arm and Nominal Moment Capacity

_904in. e 4gin.

a
d——-=21i
5 in

M, = (180 k) (18.48 in.) = 3326.4 in-k = 277.2 ft-k

0.85f
LII TC
d=211in. Sa
24 in. d 2
3 #9 bars
(A,=3.00in.%)
\. o & | =T
3in.
b =14 in.—* T

FIGURE 2.12 Beam cross section for Example 2.8.

In Example 2.9, the nominal moment capacity of another beam is determined much as
it was in Example 2.8. The only difference is that the cross section of the compression area
(A,) stressed at 0.85f, is not rectangular. As a result, once this area is determined, we need to
locate its center of gravity. The c.g. for the beam of Figure 2.13 is shown as being a distance
y from the top of the beam in Figure 2.14. The lever arm from C to T is equal to d — y (which
corresponds to d — a/2 in Example 2.8) and M,, equals A.f,(d — ).

With this very simple procedure, values of M, can be computed for tensilely reinforced
beams of any cross section.
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6in. | 6in. | 6in. c.g.of
compression
area A,

6in. L] 36 in.” / 1 T
kN % 61m' a= 91.23 in.

4 2din 5822 )

4 #9 bars d-y T

_ ia 2 :
(A;=4.001in.2) 38.121in. _ 3934y,
e e 0o 0 3 18 in.

. b
T <X | o o o o
18 in. -
18 in.

FIGURE 2.13 Beam cross section for

Example 2.9.
FIGURE 2.14 Area under compression stress

block for Example 2.9.

Example 2.9

Calculate the nominal or theoretical ultimate moment strength of the beam section shown in
Figure 2.13, if fy = 60,000 psi and f; = 3000 psi. The 6-in.-wide ledges on top are needed for
the support of precast concrete slabs.

SOLUTION

T = Af, = (4.00n.2) (60 k/in.%) = 240 k
C = (0.85f;) (area of concrete A, stressed to 0.85f/)
= 0.851.A,

| =l

a ¥
- S
. 1
L ]
Iy L |
|Foeat Slarm

famcenEs o

Courtes.y of EFCO Corp.

Finger piers for U.S. Coast Guard base, Boston, Massachusetts.
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Equating T and C and Solving for A,

T _ 280Kk g4q0in2

A =
¢ 0.85f  (0.85)(3 k/in.?)

The top 94.12 in.? of the beam in Figure 2.14 is stressed in compression to 0.85f,. This area
can be shown to extend 9.23 in. down from the top of the beam. Its c.g. is located by taking
moments at the top of the beam as follows:

3.23in.

(36in.%) (3 in.) + (58.12in.?) <6 in. + )
=5.85in.

y= 9412
d—7=21in.—585in. = 15.15in.

M, = (240 k) (15.15 in.) = 3636 in-k = 303 ft-k

2.5 S| Example

In Example 2.10, the nominal moment strength of a beam is computed using SI units.
Appendix B, Tables B.1 to B.9 provide information concerning various concrete and steel
grades, as well as bar diameters, areas, and so on, all given in SI units.

Example 2.10

Determine the nominal moment strength of the beam shown in Figure 2.15 if f, = 28 MPa
andf, = 420 MPa.

SOLUTION
n=c
Asfy = O.85féab
A.f 2
a_ sy _ (1530 mm=<) (420 MPa) — 90 mm
0.85f.b (0.85) (28 MPa) (300 mm)
a a a
My =T(d=3)=C(d-3) =Ad(d-3)
5 90 mm
= (1530 mm*) (420 MPa) ( 430 mm —
= 2.474 x 108 N-mm = 247.4 kN-m
430 mm
500 mm
— 3 #25 bars
e o o ==
70 mm
|<—300 mm—>| .
FIGURE 2.15 Beam cross section for

(Ag=1530 mm? from Appendix B, Table B.4) Example 2.10.
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2.6 Computer Examples

On the John Wiley website for this textbook, several spreadsheets have been provided for
the student to use in assisting in the solution of problems. They are categorized by chapter.
Note that most of the spreadsheets have multiple worksheets indicated by tabs at the bottom.
The three worksheets available for Chapter 2 include (1) calculation of cracking moment, (2)
stresses in singly reinforced rectangular beams, and (3) nominal strength of singly reinforced
rectangular beams.

Example 2.11

Repeat Example 2.1 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet and select the worksheet called Cracking Moment. Input only
the cells highlighted in yellow (only in the Excel spreadsheets, not in the printed example), the
first six values below.

fo = 4000 psi
M = 25  ft-k
b = 12 in.
h = 18 in.
Ve = 145 pcf
o= 1.00

ly =bh*/12 = 5832 in*
f, = 7.5.SQRT(f;) = 474 psi
f = 463 psi
My, 307,373 in-lb
M, = 25.6  ft-k

The last five values are the same as calculated in Example 2.1.

Example 2.12

Repeat Example 2.3 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet and select the worksheet called Elastic Stresses. Input only the
cells highlighted in yellow, the first seven values below.

b = 12 in.
d 17 in.
n 9

A, = 3 in?

4



g~ X

o
|

= Mx/I =
= nM(d —x)/l =

o
|

70 ft-k

3000 psi

145  pcf

3,155,924  psi
9.19
0.132

6.78 in.

4067 int

1401 psi

18,996 psi

2.6 Computer Examples

The last four values are the same (within a small roundoff) as calculated in Example 2.2.

Example 2.13

Repeat Example 2.8 using the spreadsheet provided for Chapter 2.

SOLUTION

Open the Chapter 2 spreadsheet, and select the worksheet called Nominal Moment Strength.
Input only the cells highlighted in yellow, the first five values below.

=

> Q T
@

< 0

3000 psi
14 in.
21 in.
3 in.2
60 ksi
5.04
3326.2 in-k
277.2 ft-k

The third worksheet, called Nominal Moment Strength, can be used to easily work Example
2.8. In this case, enter the first five values, and the results are the same as in the example.
The process can be reversed if “goal seek” is used. Suppose that you would like to
know how much reinforcing steel, A, is needed to resist a moment, M,, of 320 ft-k

for the beam shown in Example 2.8. Highlight the
cell where M,, is calculated in ft-k (cell C11), then
go to “Data” at the top of the Excel window and
select “What-If Analysis’” and “Goal seek...” The
Goal Seek window shown will open. In “Set cell,”
C11 appears because it was highlighted when
you selected “Goal seek...”. In “To value,” type
320 because that is the moment you are seeking.
Finally, for “By changing cell,” insert C7 because
the area of reinforcing steel is what you want to

Goal Seek rz]
Set cell: Cl11 ko
To walue: 320
By changing cell: $47| =

[ OK ] [ Cancel l
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vary to produce a moment of 320 ft-k. Click OK, and the value of A will change to 3.55. This
means that a steel area of 3.55 in.? is required to produce a moment capacity M,, of 320 ft-k.
The Goal Seek feature can be used in a similar manner for most of the spreadsheets provided in
this text.

PROBLEMS

Cracking Moments

For Problems 2.1 to 2.5, determine the cracking moments for the Problem 2.4
sections shown if f/ = 4000 psi and f, = 7.5,/f!

6 in.
Problem 2.1 (Ans. 34.8 ft-k) ’.i.{
18 20 in.
mn .
21in. 26 in
° 40#90 ° e _‘_3 in.
—— [ ] [ ] [ ) [ ] -1
3in. 3in. |
12 in.—»‘ T |<—18 in.Ab‘

Problem 2.5 (Ans. 85.3 ft-k)

Problem 2.2
9in.
18 in i
21 in
2#9 9in. 27i
° ° _3_ _+_
1 3#10 }
— | e ) ] 9 in.
<«—14 in.—| T 3 ili +
Gin| 6in. | 6in.
Problem 2.3 (Ans. 31.6 ft-k) b
18 in.
30 in. >
i 4 in.
17 in. 24 in
1 #11
[ ]
3in.
‘4—» ?

6 in.



Problems

For Problems 2.6 and 2.7, calculate the uniform load (in addi- Problem 2.9 Repeat Problem 2.8 if four #6 bars are used.
tion to the beam weight) that will cause the sections to begin (Ans. f, = 1356 psi, f; = 26,494 psi)
to crack if they are used for 28-ft simple spans. £/ = 4000 psi,

= 7.5./f, and reinforced concrete weight = 150 Ib/ft3.
r c g
Problem 2.10

Problem 2.6

21 in. 21 in.
24in.
4 #7 27 in.
e o o o 8 #9
3in. e o o o —
3in.
T e o e o —_
14in. 3in.
M =120 fik
18 in. n=9
Problem 2.7 (Ans. 0.343 k/ft) Problem 2.11 (Ans. f. = 1258 psi, f, = 14,037 psi in

bottom layer, f; = 12,889 psi at steel centroid)

4 in.
18 in
24 in.
— > l4infe—22in. 30in. 6 #9
[ ] Y —
3in.
e o o o e
3in.
349 @ o @ |::2@n- i
2. M =110 ft-k
|<—12 in.—»l n=_8

Transformed-Area Method

For Problems 2.8 to 2.14, assume the sections have cracked and
use the transformed-area method to compute their flexural stresses
for the loads or moments given.

Problem 2.8

17 in.
20 in.

e o o o —
3in.

M = 60 ft-k

‘4—14 in. n=8
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Problem 2.12

) n=10
17 5 in.
1.5 k/ft (including beam weight) 2 201,
/%} /% 448
| | e o 0 0 (—
| 24 ft | 25in
12 in. T

Problem 2.13 (Ans. f, = 2369 psi, f, = 32,574 psi at the steel centroid, 36,255 psi in the bottom layer)

30
2 k/tt (including beam weight)
v ' A 28in. | "8
;3 ‘ ;/2 32in.

‘4—10 ft | 20 ft 6 #9
| 30 ft ¢ o o '
e o o 4 in.
l 16 in. l T
Problem 2.14 Problem 2.16 Compute the resisting moment of the beam

of Problem 2.13 if eight #10 bars are used and n = 10,

_ _ _ f. = 20,000 psi, and f, = 1125 psi. Use the transformed-
5in. | Sin., 5in. area method.

Problem 2.17 Using transformed area, what allowable

4in. uniform load can this beam support in addition to its own
weight for a 28-ft simple span? Concrete weight = 150 Ib/ft?,
f; = 24,000 psi, and f, = 1800 psi. (Ans. 2.757 k/ft)

. 6in. | 8in. | 6in.
30in. M =70 ft-k ‘4—»\4—»\4—»{
23 in. n=9 ¢

4in.
4#9 8 in.
e o o o —
3in.
32 in. n=8
15 in.
17 in.
. 5 #10
Problem 2.15 Using the transformed-area method, compute e 000 o
the resisting moment of the beam of Problem 2.10 if 3in.

f, = 24,000 psi and f, = 1800 psi. (Ans. 258.8 ft-k) 1
20 in.



Problems

For Problems 2.18 to 2.21, determine the flexural stresses in these members using the transformed-area method.

Problem 2.18

I 48 in. |
L
4 in
T M =100 ft-k
21
14111. m I’l=10
3#9 ¢
o o o A
3in

|<—12 in.—»‘ T

Problem 2.19 (Ans. f, = 1374 psi, f, = 32,611 psi at the steel centroid)

l

3in.

in.  M=130ftk

20
2 #8 \ n=g
[ ] [ ]

T
—»| 5in. 28 in. 5in. |« Tl 2in
25in
Problem 2.20 Problem 2.21 (Ans. f. = 1406 psi, f; = 16,886 psi,
f, = 36,217 psi)
24
15 in. 21
2 #3 i
° 24 in.
3in. e o o o _
° — 4 #8
6 in.
A
32 in. M =320 ft-k
L]O in,—>‘<—10 in,—»‘ M =90 ft-k 1. n=9
n=9 26 7 in.
4 #9
e o o o —0
3in.

! 18 in. |
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Problem 2.22 Compute the allowable resisting moment of the
section shown using transformed area if allowable stresses are
f. = 1800 psi, f, = f/ = 24,000 psi, and n = 8.

12 in.
1#10 2in.+
° —>— 4in
2 in.
— |<=— 4in. 16 in.
2#10 2in.
° ® |—— 4in
2in.+
10 in.

For Problems 2.23 to 2.25, using the transformed-area method, determine the allowable resisting moments of the sections shown.

Problem 2.23 (Ans. 140.18 ft-k)

E =29 x 10° psi, f,jow tension or compression = 30,000 psi

~
b
l_.
15

1

E=20x 10 psi, f,0\ tension or compression = 20,000 psi

B
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Problem 2.24

%—in. x9 %—in. steel plate (E, =29 x 10° psi, f,0, tension or compression = 24,000 psi)

_OO
nas

. . 1. L.
\ wood beams dressed dimensions 17 in. X 975 in.

(E,, = 1.76 X 10° psi, foyow tension or compression = 1875 psi)

Problem 2.25 (Ans. 124.4 ft-k)

1in.

/ 1-in. x 5-in. steel plate (E, =29 x 10° psi, f,j,0, tension or compression = 24,000 psi)

LY

11Lin. four wood planks dressed dimensions 1 %in. x 11 % in.
4 /

(E, =176 x 10° Psi, faliow tension or compression = 1800 psi)

Lz

l [*—5 in.—>

1in.

Nominal Strength Analysis

For Problems 2.26 to 2.29, determine the nominal or theoretical moment capacity M, of each beam if f, = 60,000 psi and
[ = 4000 psi.
Problem 2.26 Problem 2.27 (Ans. 688.2 ft-k)
21 in. 2 in. 25in.
30 in.
3#8
e o o |——
6#9 .
T e o o —27in.
16 in. 3in. e o o —27in.

~——16 in.—>| f
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Problem 2.28

4#10
e o o o

25

in.

28 in.

Tin.

e—om—] !

Problem 2.29

(Ans. 845.5 ft-k)

24 in.
30 in.
6 #10
° o | —
3in.
o o [ ) °
3in.

e ism—]

For Problems 2.30 to 2.34, determine the nominal moment capacity M, for each of the rectangular beams.

Problem b (in.) d (in.) Bars S (ksi) fv (ksi) Ans.
No.

2.30 14 21 3#9 4.0 60 —
2.31 16 27 8 #9 4.0 60 903.6 ft-k
2.32 14 20.5 4 #10 5.0 60 —
2.33 21 28 4 #10 5.0 75 818.3 ft-k
2.34 22 36 6 #11 3.0 60 —

For Problems 2.35 to 2.39, determine M, if f, = 60,000 psi and f; = 4000 psi.

Problem 2.35 (Ans. 704 ft-k)

24 in.

)

41

n.

S5#9
e 0o 0 00

26

in. 33

in.

|<—16 in.—»l

Problem 2.36

<10 in. 14 in.
Oin-rf=—14in—]
t4in
!
Sin.
A
4 #8 7 in.
[ ) [ ) [ ] [ ) T
in.

24 in. !

Problem 2.37 Repeat Problem 2.35 if four #11 bars are used.

(Ans. 865 ft-k)

Problem 2.38 Compute M, for the beam of Problem 2.36 if
six #8 bars are used.
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Problem 2.39 (Ans. 763.3 ft-k)

3in.3 in 3in. 3 in

W iﬁm- i‘LLL l
‘ ‘ 3in.

3in.

33 in.
24 in.
4 #11

e e o o —

3in.

| 18 in. | ?

Problem 2.40 Determine the nominal uniform load w, (including beam weight) that will cause a bending moment equal to M,,.
£, = 60,000 psi and f = 4000 psi.

w, k/ft
23 in.

26 in.

3#9

FM— in—

Problem 2.41 Determine the nominal uniform load w,, (including beam weight) that will cause a bending moment equal to M, .
£/ =3000 psi and f, = 60,000 psi. (Ans. 6.77 k/ft)

. A
7 7

18 ft

y 3in.

w, k/ft

23 in.

4 #10

27 in. /%g_
|

4 in.

A
i

24 ft

16 in. >
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Problems in Sl Units

For Problems 2.42 to 2.44, determine the cracking moments for
the sections shown if f] = 28 MPa and the modulus of rupture

is f, = 0.7,/f/ with £/ in MPa.
Problem 2.42

520 mm
600 mm

3 #19

80 mm

+—350 mm—]

Problem 2.43 (Ans. 46.30 kN-m)

420 mm
500 mm

2 #25

80 mm

<— 300 mm —

Problem 2.46

20 kN/m (including beam weight)

[ /
o /ﬁ%

|

| |

Problem 2.44

——— 600 mm —— |

100 mm

2 #19
. e

80 mm
200 mm |

For Problems 2.45 to 2.47, compute the flexural stresses
in the concrete and steel for the beams shown using the
transformed-area method.

Problem 2.45 (Ans. f/ =7.785 MPa, f, = 109.31 MPa)

4 #29
e o o

530 mm — 130 kKN
600 mm M= ‘m
n=9
‘ ——
70 mm

<—— 350 mm ——

4 #36
e o o

420 mm
500

80 mm

mm

}d— 300 mm 4»‘ T



Problem 2.47 (Ans. f, =

f, = 188.56 MPa)

2 #25

4 #29

560 mm

e 0o 0o 0 |[—
70 mm

700 mm

}47 400 mm —»

M =275 kNem
n=238

For Problems 2.48 to 2.55, compute M, values.

10.20 MPa, f; = 103.10 MPa,

Problem b (mm) d (mm) Bars f! (MPa) fy (MPa) Ans.
No.
2.48 300 600 3 #36 35 350 —
2.49 320 600 3 #36 28 350 560.5 kN-m
2.50 350 530 3 #25 24 420 —
2.51 370 530 3 #25 24 420 313 kN-m
Problem 2.52
f,=420 MPa
fi=24 MPa
mm
600 mm
6 #25
e o o .
70 mm
° ° ° —
70 mm
}4— 350 mm —|

Problem 2.53 Repeat Problem 2.48 if four #36 bars

are used. (Ans. 734 kN-m)

Problems
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Problem 2.54

! 1.200 m

i
IIOO mm fi=28 MPa
T /=350 MPa
330 mm 500 mm
2 #36
° o
70 mm
250 mm
Problem 2.55 (Ans. 689.7 kN-m)
| 800 mm
| { 80 mm £,=300 MPa
fi=28 MPa
300 mm
560 mm
6 #36
e o o
1 100 mm
e o o
1 80 mm

Problem 2.56 Repeat Problem 2.27 using Chapter 2
spreadsheets.

Problem 2.57 Repeat Problem 2.28 using Chapter 2
spreadsheets. (Ans. 561.9 ft-k)

Problem 2.58 Prepare a flowchart for the determination of M,

for a rectangular tensilely reinforced concrete beam.



Strength Analysis of Beams CHAPTER 3
According to ACI Code

3.1 Design Methods

From the early 1900s until the early 1960s, nearly all reinforced concrete design in the United
States was performed by the working-stress design method (also called allowable-stress design
or straight-line design). In this method, frequently referred to as WSD, the dead and live loads
to be supported, called working loads or service loads, were first estimated. Then the members
of the structure were proportioned so that stresses calculated by a transformed area did not
exceed certain permissible or allowable values.

After 1963, the ultimate-strength design method rapidly gained popularity because (1) it
makes use of a more rational approach than does WSD, (2) it uses a more realistic consideration
of safety, and (3) it provides more economical designs. With this method (now called strength
design), the working dead and live loads are multiplied by certain load factors (equivalent
to safety factors), and the resulting values are called factored loads. The members are then
selected so they will theoretically just fail under the factored loads.

Even though almost all of the reinforced concrete structures the reader will encounter
will be designed by the strength design method, it is still useful to be familiar with WSD for
several reasons:

1. Some designers use WSD for proportioning fluid-containing structures (such as water
tanks and various sanitary structures). When these structures are designed by WSD,
stresses are kept at fairly low levels, with the result that there is appreciably less cracking
and less consequent leakage. (If the designer uses strength design and makes use of
proper crack control methods, as described in Chapter 6, there should be few leakage
problems.)

2. The ACI method for calculating the moments of inertia to be used for deflection calcu-
lations requires some knowledge of the working-stress procedure.

3. The design of prestressed concrete members is based not only on the strength method
but also on elastic stress calculations at service load conditions.

The reader should realize that working-stress design has several disadvantages. When
using the method, the designer has little knowledge about the magnitudes of safety factors
against collapse; no consideration is given to the fact that different safety factors are desirable
for dead and live loads; the method does not account for variations in resistances and loads,
nor does it account for the possibility that as loads are increased, some increase at different
rates than others.

In 1956, the ACI Code for the first time included ultimate-strength design, as an appendix,
although the concrete codes of several other countries had been based on such considera-
tions for several decades. In 1963, the code gave ultimate-strength design equal status with
working-stress design; the 1971 code made the method the predominant method and only briefly
mentioned the working-stress method. From 1971 until 1999, each issue of the code permit-
ted designers to use working-stress design and set out certain provisions for its application.
Beginning with the 2002 code, however, permission is not included for using the method.
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Today’s design method was called ultimate-strength design for several decades, but, as
mentioned, the code now uses the term strength design. The strength for a particular reinforced
concrete member is a value given by the code and is not necessarily the true ultimate strength of
the member. Therefore, the more general term strength design is used whether beam strength,
column strength, shear strength, or others are being considered.

3.2 Advantages of Strength Design

Among the several advantages of the strength design method as compared to the no-longer-
permitted working-stress design method are the following:

1. The derivation of the strength design expressions takes into account the nonlinear shape
of the stress—strain diagram. When the resulting equations are applied, decidedly better
estimates of load-carrying ability are obtained.

2. With strength design, a more consistent theory is used throughout the designs of rein-
forced concrete structures. For instance, with working-stress design the transformed-area
or straight-line method was used for beam design, and a strength design procedure was
used for columns.

3. A more realistic factor of safety is used in strength design. The designer can certainly
estimate the magnitudes of the dead loads that a structure will have to support more
accurately than he or she can estimate the live and environmental loads. With working-
stress design, the same safety factor was used for dead, live, and environmental loads.
This is not the case for strength design. For this reason, use of different load or safety
factors in strength design for the different types of loads is a definite improvement.

4. A structure designed by the strength method will have a more uniform safety factor
against collapse throughout. The strength method takes considerable advantage of higher-
strength steels, whereas working-stress design did so only partly. The result is better
economy for strength design.

5. The strength method permits more flexible designs than did the working-stress method.
For instance, the percentage of steel may be varied quite a bit. As a result, large sections
may be used with small percentages of steel, or small sections may be used with large
percentages of steel. Such variations were not the case in the relatively fixed working-
stress method. If the same amount of steel is used in strength design for a particular
beam as would have been used with WSD, a smaller section will result. If the same size
section is used as required by WSD, a smaller amount of steel will be required.

3.3 Structural Safety

The structural safety of a reinforced concrete structure can be calculated with two methods.
The first method involves calculations of the stresses caused by the working or service loads
and their comparison with certain allowable stresses. Usually the safety factor against collapse
when the working-stress method was used was said to equal the smaller of f/f, or f; /f,.

The second approach to structural safety is the one used in strength design in which
uncertainty is considered. The working loads are multiplied by certain load factors that are
larger than 1. The resulting larger or factored loads are used for designing the structure. The
values of the load factors vary depending on the type and combination of the loads.

To accurately estimate the ultimate strength of a structure, it is necessary to take into
account the uncertainties in material strengths, dimensions, and workmanship. This is done
by multiplying the theoretical ultimate strength (called the nominal strength herein) of each



3.4 Derivation of Beam Expressions

Courtesy of Symons Corporation.

B

T
waan

Water Tower Place, Chicago, Illinois, tallest reinforced concrete building in the
United States (74 stories, 859 ft).

member by the strength reduction factor, ¢, which is less than 1. These values generally vary
from 0.90 for bending down to 0.65 for some columns.

In summary, the strength design approach to safety is to select a member whose computed
ultimate load capacity multiplied by its strength reduction factor will at least equal the sum of
the service loads multiplied by their respective load factors.

Member capacities obtained with the strength method are appreciably more accurate than
member capacities predicted with the working-stress method.

3.4 Derivation of Beam Expressions

Tests of reinforced concrete beams confirm that strains vary in proportion to distances from
the neutral axis even on the tension sides and even near ultimate loads. Compression stresses
vary approximately in a straight line until the maximum stress equals about 0.50f,. This is not
the case, however, after stresses go higher. When the ultimate load is reached, the strain and
stress variations are approximately as shown in Figure 3.1.

The compressive stresses vary from zero at the neutral axis to a maximum value at or
near the extreme fiber. The actual stress variation and the actual location of the neutral axis
vary somewhat from beam to beam, depending on such variables as the magnitude and history
of past loadings, shrinkage and creep of the concrete, size and spacing of tension cracks, speed
of loading, and so on.

If the shape of the stress diagram were the same for every beam, it would be possible
to derive a single rational set of expressions for flexural behavior. Because of these stress
variations, however, it is necessary to base the strength design on a combination of theory and
test results.

Although the actual stress distribution given in Figure 3.2(b) may seem to be important,
in practice any assumed shape (rectangular, parabolic, trapezoidal, etc.) can be used if the

67
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€52 €yield
o o o '
strain variation at stress variation at
ultimate load condition ultimate load condition

FIGURE 3.1 Nonlinear stress distribution at ultimate conditions.

resulting equations compare favorably with test results. The most common shapes proposed
are the rectangle, parabola, and trapezoid, with the rectangular shape used in this text as shown
in Figure 3.2(c) being the most common one.

If the concrete is assumed to crush at a strain of about 0.003 (which is a little conservative
for most concretes) and the steel to yield at f,, it is possible to make a reasonable derivation
of beam formulas without knowing the exact stress distribution. However, it is necessary to
know the value of the total compression force and its centroid.

Whitney' replaced the curved stress block [Figure 3.2(b)] with an equivalent rectangular
block of intensity 0.85f] and depth « = B;c, as shown in Figure 3.2(c). The area of this
rectangular block should equal that of the curved stress block, and the centroids of the two
blocks should coincide. Sufficient test results are available for concrete beams to provide the
depths of the equivalent rectangular stress blocks. The values of B, given by the code (10.2.7.3)
are intended to give this result. For f; values of 4000 psi or less, 8; = 0.85, and it is to be
reduced continuously at a rate of 0.05 for each 1000-psi increase in f; above 4000 psi. Their
value may not be less than 0.65. The values of 8, are reduced for high-strength concretes
primarily because of the shapes of their stress—strain curves (see Figure 1.1 in Chapter 1).

For concretes with f/ > 4000 psi, 8, can be determined with the following formula:

£, — 4000 psi

=0.85 — 0.05) > 0.65
Bi ( 1000 ) 0.05) >

i 0.85f

o o o —_— T=Af, ———— T=Af,

(a) (®) (©

FIGURE 3.2 Some possible stress distribution shapes.

! Whitney, C. S., 1942, “Plastic Theory of Reinforced Concrete Design,” Transactions ASCE, 107, pp. 251-326.
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In SI units, B, is to be taken equal to 0.85 for concrete strengths up to and including
30 MPa. For strengths above 30 MPa, §, is to be reduced continuously at a rate of 0.05
for each 7 MPa of strength in excess of 30 MPa but shall not be taken less than 0.65.

For concretes with f/ > 30 MPa, B, can be determined with the following expres-
sion:

B, = 0.85 — 0.008 (f/ — 30 MPa) > 0.65

Based on these assumptions regarding the stress block, statics equations can easily be
written for the sum of the horizontal forces and for the resisting moment produced by the
internal couple. These expressions can then be solved separately for a and for the moment, M,,.

A very clear statement should be made here regarding the term M, because it otherwise
can be confusing to the reader. M, is defined as the theoretical or nominal resisting moment of
a section. In Section 3.3, it was stated that the usable strength of a member equals its theoretical
strength times the strength reduction factor, or, in this case, ¢M,. The usable flexural strength
of a member, ¢M,, must at least be equal to the calculated factored moment, M,, caused by
the factored loads

oM, > M,

For writing the beam expressions, reference is made to Figure 3.3. Equating the horizontal
forces C and T and solving for a, we obtain

0.85f/ab = Af,

Lo A Pl
T 0.85f/b  0.85f!

A
re p = ﬁ = percentage of tensile steel

Because the reinforcing steel is limited to an amount such that it will yield well before the
concrete reaches its ultimate strength, the value of the nominal moment, M,,, can be written as

M—T(d a)—Af(d “)
n 2 A Y 2
and the usable flexural strength is
a
oM, = 9Af, (d - 3) (Eq. 3-1)

If we substitute into this expression the value previously obtained for a (it was pf,d/ 0.85f)),
replace A, with pbd, and equate ¢ M,, to M,, we obtain the following expression:

oM, =M, = ¢pbd’f,p (1 — lp ;} /) (Eq. 3-2)

0.85¢.

1 2 : TFa2 coosspa
! 0T

J )
° —L - 7=4y

b

FIGURE 3.3 Beam internal forces at ultimate conditions.

agmae ) efiond

[Tl

° >
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Replacing A, with pbd and letting R, = M, /¢pbd*, we can solve this expression for p (the
percentage of steel required for a particular beam) with the following results:

0.85f 2R
L/ T Eq. 3-3
=7 ( 0.85fo> (Eq. 3-3)

Instead of substituting into this equation for p when rectangular sections are involved, the
reader will find Tables A.8 to A.I3 in Appendix A of this text to be quite convenient.
(For ST units, refer to Tables B.8 and B.9 in Appendix B.) Another way to obtain the same
information is to refer to Graph 1 in Appendix A. The user, however, will have some
difficulty in reading this small-scale graph accurately. This expression for p is also very
useful for tensilely reinforced rectangular sections that do not fall into the tables. An iter-
ative technique for determination of reinforcing steel area is also presented later in this
chapter.

3.5 Strains in Flexural Members

As previously mentioned, Section 10.2.2 of the code states that the strains in concrete members
and their reinforcement are to be assumed to vary directly with distances from their neutral
axes. (This assumption is not applicable to deep flexural members whose depths over their clear
spans are greater than 0.25.) Furthermore, in Section 10.2.3 the code states that the maximum
usable strain in the extreme compression fibers of a flexural member is to be 0.003. Finally,
Section 10.3.3 states that for Grade 60 reinforcement and for all prestressed reinforcement we
may set the strain in the steel equal to 0.002 at the balanced condition. (Theoretically, for
60,000-psi steel, it equals f, /E; = 60,000 psi/29 x 10° psi = 0.00207.)

In Section 3.4, a value was derived for a, the depth of the equivalent stress block of a
beam. It can be related to ¢ with the factor 8, also given in that section:

Af,
a=-—2_ = Bic
0.85f/b
Then the distance ¢ from the extreme concrete compression fibers to the neutral axis is
a
c=—
Bi

In Example 3.1, the values of a and ¢ are determined for the beam previously considered
in Example 2.8, and by straight-line proportions the strain in the reinforcing €, is computed.

Example 3.1

Determine the values of a, ¢, and ¢, for the beam shown in Figure 3.4. fy = 60,000 psi and
f,. = 3000 psi.

SOLUTION

Af in.2 -
gl A (B00In%E0ks) _ o0
0.85f,b _ (0.85)(3 ksi)(14 in.)

B4 = 0.85 for 3000-psi concrete



3.7 Strength Reduction or ¢ Factors

0.003
!
c
21 in.
d-c
3 #9 bars
(3.00in.2)
o o ¢
\__Y_J
er = 4=€(0.003)
) FIGURE 3.4 Beam cross section for
141n. Example 3.1.
a 5.04in.
= —= =5.93
B, 085 n
d-c 21in. —5.93 in.
= 0.003) = { ————— ) (0.003) = 0.00762
&= —5 (0003 < 5.931n. >( ) =0.00762

This value of strain is much greater than the yield strain of 0.002. This is an indication of ductile
behavior of the beam, because the steel is well into its yield plateau before concrete crushes.

3.6 Balanced Sections, Tension-Controlled Sections,
and Compression-Controlled or Brittle Sections

A beam that has a balanced steel ratio is one for which the tensile steel will theoretically just
reach its yield point at the same time the extreme compression concrete fibers attain a strain
equal to 0.003. Should a flexural member be so designed that it has a balanced steel ratio or
be a member whose compression side controls (i.e., if its compression strain reaches 0.003
before the steel yields), the member can suddenly fail without warning. As the load on such a
member is increased, its deflections will usually not be particularly noticeable, even though the
concrete is highly stressed in compression and failure will probably occur without warning to
users of the structure. These members are compression controlled and are referred to as brittle
members. Obviously, such members must be avoided.

The code, in Section 10.3.4, states that members whose computed tensile strains are equal
to or greater than 0.0050 at the same time the concrete strain is 0.003 are to be referred to as
tension-controlled sections. For such members, the steel will yield before the compression side
crushes and deflections will be large, giving users warning of impending failure. Furthermore,
members with €, > 0.005 are considered to be fully ductile. The ACI chose the 0.005 value
for €, to apply to all types of steel permitted by the code, whether regular or prestressed. The
code further states that members that have net steel strains or €, values between €, and 0.005
are in a transition region between compression-controlled and tension-controlled sections. For
Grade 60 reinforcing steel, which is quite common, €, is approximated by 0.002.

3.7 Strength Reduction or ¢ Factors

Strength reduction factors are used to take into account the uncertainties of material strengths,
inaccuracies in the design equations, approximations in analysis, possible variations in dimen-
sions of the concrete sections and placement of reinforcement, the importance of members in

7
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the structures of which they are part, and so on. The code (9.3) prescribes ¢ values or strength
reduction factors for most situations. Among these values are the following:

0.90 for tension-controlled beams and slabs

0.75 for shear and torsion in beams

0.65 or 0.75 for columns

0.65 or 0.75 to 0.9 for columns supporting very small axial loads
0.65 for bearing on concrete

The sizes of these factors are rather good indications of our knowledge of the subject in
question. For instance, calculated nominal moment capacities in reinforced concrete members
seem to be quite accurate, whereas computed bearing capacities are more questionable.

For ductile or tension-controlled beams and slabs where €, > 0.005, the value of ¢ for
bending is 0.90. Should €, be less than 0.005, it is still possible to use the sections if €, is
not less than certain values. This situation is shown in Figure 3.5, which is similar to Figure
R.9.3.2 in the ACI Commentary to the 2011 code.

Members subject to axial loads equal to or less than 0.10ﬂAg may be used only when
€, is no lower than 0.004 (ACI Section 10.3.5). An important implication of this limit is that
reinforced concrete beams must have a tension strain of at least 0.004. Should the members be
subject to axial loads > 0.10f/A,, then €, is not limited. When ¢, values fall between 0.002 and
0.005, they are said to be in the transition range between tension-controlled and compression-
controlled sections. In this range, ¢ values will fall between 0.65 or 0.70 and 0.90, as shown
in Figure 3.5. When ¢, < 0.002, the member is compression controlled, and the column ¢
factors apply.

The procedure for determining ¢ values in the transition range is described later in this
section. You must clearly understand that the use of flexural members in this range is usually
uneconomical, and it is probably better, if the situation permits, to increase member depths
and/or decrease steel percentages until €, is equal to or larger than 0.005. If this is done, not
only will ¢ values equal 0.9 but also steel percentages will not be so large as to cause crowding
of reinforcing bars. The net result will be slightly larger concrete sections, with consequent
smaller deflections. Furthermore, as you will learn in subsequent chapters, the bond of the
reinforcing to the concrete will be increased as compared to cases where higher percentages
of steel are used.

$=0.75+(e,— 0.002)%)

0.90 —
\ e
Spiral 2011 code -

0.75 p=======--1 -

- |

=065+ (¢,— 0.002) %O

0.65 other l lower bound on ¢, for
I)/ members with factored axial
i compressive load < 0.10 /A,

compression . !
controlled transition | tension controlled

:
€=0002  ¢=0004 ¢ =0.005
¢/d,=0.600 c/d,=3/T c/d,=0375

FIGURE 3.5 Variation of ¢ with net tensile strain €, and c/d, for
Grade 60 reinforcement and for prestressing steel.



3.7 Strength Reduction or ¢ Factors

We have computed values of steel percentages for different grades of concrete and steel
for which €, will exactly equal 0.005 and present them in Appendix Tables A.7 and B.7 of this
textbook. It is desirable, under ordinary conditions, to design beams with steel percentages that
are no larger than these values, and we have shown them as suggested maximum percentages
to be used.

The horizontal axis of Figure 3.5 gives values also for c¢/d, ratios. If ¢/d, for a particular
flexural member is < 0.375, the beam will be ductile, and if it is > 0.600, it will be brittle. In
between is the transition range. You may prefer to compute c¢/d, for a particular beam to check
its ductility rather than computing p or €,. In the transition region, interpolation to determine
¢ using c/d, instead of €,, when 0.375 < ¢/d, < 0.600, can be performed using the equations

¢ =0.7540.15 < — —) for spiral members

c/d, 3

5
¢ =0.65+0.25 < — —) for other members

c/d, 3
The equations for ¢ here and in Figure 3.5 are for the special case where f, = 60 ksi and for
prestressed concrete. For other cases, replace 0.002 with €, = f, /E,. Figure 10.25 in Chapter
10 shows Figure 3.5 for the general case, where €, is not assumed to be 0.002.

The resulting general equations in the range €, < €, < 0.005 are

0.15
¢ =0.75+ (¢, — e},)m for spiral members
and
¢ =065+ (¢ —¢,) 025 for oth b
=0. —€)——— or other members
tY0.005 — €,)

The impact of the variable ¢ factor on moment capacity is shown in Figure 3.6. The two
curves show the moment capacity with and without the application of the ¢ factor. Point A
corresponds to a tensile strain, €,, of 0.005 and p = 0.0181 (Appendix A, Table A.7). This
is the largest value of p for ¢ = 0.9. Above this value of p, ¢ decreases to as low as 0.65
as shown by point B, which corresponds to €, of €,. ACI 10.3.5 requires €, not be less than
0.004 for flexural members with compressive axial loads less than 0.10 f,,A,. This situation
corresponds to point C in Figure 3.6. The only allowable range for p is below point C. From
the figure, it is clear that little moment capacity is gained in adding steel area above point A.
The variable ¢ factor provisions essentially permit a constant value of ¢M, when ¢, is less

04 ol
035 E- =
0.3 § | Pie
o 025 CIE S
3 27 M fbd ]
§ 0.2 .= A Ic B
0.15 — i
0.1 / i
0.05 / ; #=4000psi | |
cT 7 J £, = 60,000 psi
0 L -

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
p

FIGURE 3.6 Moment capacity versus p.
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74 CHAPTER 3 Strength Analysis of Beams According to ACI Code

than 0.005. It is important for the designer to know this because often actual bar selections
result in more steel area than theoretically required. If the slope between points A and C were
negative, the designer could not use a larger area. Knowing the slope is slightly positive, the
designer can use the larger bar area with confidence that the design capacity is not reduced.

For values of f, of 75 ksi and higher, the slope between point A and B in Figure 3.6
is actually negative. It is therefore especially important, when using high-strength reinforcing
steel, to verify your final design to be sure the bars you have selected do not result in a moment
capacity less than the design value.

Continuing our consideration of Figure 3.5, you can see that when ¢, is less than 0.005,
the values of ¢ will vary along a straight line from their 0.90 value for ductile sections to 0.65
at balanced conditions where ¢, is 0.002. Later you will learn that ¢ can equal 0.75 rather than
0.65 at this latter strain situation if spirally reinforced sections are being considered.

3.8 Minimum Percentage of Steel

A brief discussion of the modes of failure that occur for various reinforced beams was pre-
sented in Section 3.6. Sometimes, because of architectural or functional requirements, beam
dimensions are selected that are much larger than are required for bending alone. Such members
theoretically require very small amounts of reinforcing.

Actually, another mode of failure can occur in very lightly reinforced beams. If the
ultimate resisting moment of the section is less than its cracking moment, the section will fail
immediately when a crack occurs. This type of failure may occur without warning. To prevent
such a possibility, the ACI (10.5.1) specifies a certain minimum amount of reinforcing that
must be used at every section of flexural members where tensile reinforcing is required by
analysis, whether for positive or negative moments. In the following equations, b,, represents
the web width of beams.

3Jf!
As‘min = fL bwd

200b,,d

nor less than (ACI Equation 10-3)

Jy

_ _ N/ 1.4b,,d _
In ST units, these expressions are 4 b,,d and 7 , respectively.

y y

The (200b,,d)/f, value was obtained by calculating the cracking moment of a plain
concrete section and equating it to the strength of a reinforced concrete section of the same
size, applying a safety factor of 2.5 and solving for the steel required. It has been found,
however, that when f is higher than about 5000 psi, this value may not be sufficient. Thus, the
(3\/]7 / f}) b,,d value is also required to be met, and it will actually control when f/ is greater
than 4440 psi.

This ACI equation (10-3) for the minimum amount of flexural reinforcing can be written
as a percentage, as follows:

/
5
Values of p,,;, for flexure have been calculated by the authors and are shown for several grades of

concrete and steel in Appendix A, Table A.7 of this text. They are also included in Tables A.8 to
A.13. (For SI units, the appropriate tables are in Appendix B, Tables B.7 to B.9.)

Pmin for flexure =



3.9 Balanced Steel Percentage

Courtesy of EFCO Corp.

Wastewater treatment plant, Fountain Hills, Arizona.

Section 10.5.3 of the code states that the preceding minimums do not have to be met if
the area of the tensile reinforcing furnished at every section is at least one-third greater than the
area required by moment. Furthermore, ACI Section 10.5.4 states that for slabs and footings
of uniform thickness, the minimum area of tensile reinforcing in the direction of the span is
that specified in ACI Section 7.12 for shrinkage and temperature steel which is much lower.
When slabs are overloaded in certain areas, there is a tendency for those loads to be distributed
laterally to other parts of the slab, thus substantially reducing the chances of sudden failure.
This explains why a reduction of the minimum reinforcing percentage is permitted in slabs of
uniform thickness. Supported slabs, such as slabs on grade, are not considered to be structural
slabs in this section unless they transmit vertical loads from other parts of the structure to the
underlying soil.

3.9 Balanced Steel Percentage

In this section, an expression is derived for p,, the percentage of steel required for a balanced
design. At ultimate load for such a beam, the concrete will theoretically fail (at a strain of
0.00300), and the steel will simultaneously yield (see Figure 3.7).

The neutral axis is located by the triangular strain relationships that follow, noting that
E, = 29 x 10 psi for the reinforcing bars:

c 0.00300 B 0.00300
d  0.00300 + (f,/E,) ~ 0.003 + (f,/29 x 10° psi)

This expression is rearranged and simplified, giving

. _ 87000
87,000 +f,
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0.003 in./in.

[ N

c

i ot

L

FIGURE 3.7 Balanced conditions.
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In Section 3.4 of this chapter, an expression was derived for depth of the compression
stress block, a, by equating the values of C and 7. This value can be converted to the neutral
axis depth, ¢, by dividing it by 8;:

rhyd
a =
0.85f/
_a _ Phd
B, 0.858,f!

Two expressions are now available for ¢, and they are equated to each other and solved for
the percentage of steel. This is the balanced percentage, p,:

pfd 87,000
0.858,f/ 87,000 +f,

(0858, 87,000
=\ 87,000+ f,

. . 0.858,f, 600
or in SI units
fy 600 + f}

Values of p, can easily be calculated for different values of f/ and /, and tabulated for U.S.
customary units as shown in Appendix A, Table A.7. For SI units, it’s Appendix B, Table B.7.

Previous codes (1963—-1999) limited flexural members to 75% of the balanced steel
ratio, p,. However, this approach was changed in the 2002 code to the new philosophy
explained in Section 3.7, whereby the member capacity is penalized by reducing the ¢ factor
when the strain in the reinforcing steel at ultimate is less than 0.005.

3.10 Example Problems

Examples 3.2 to 3.4 present the computation of the design moment capacities of three beams
using the ACI Code limitations. Remember that, according to the code (10.3.5), beams whose
axial load is less than O.IOfL./Ay may not, when loaded to their nominal strengths, have net
tensile calculated strains less than 0.004.



3.10 Example Problems

Example 3.2

Determine the ACI design moment capacity, ¢M,,, of the beam shown in Figure 3.8 if f, = 4000 psi
and fy = 60,000 psi.

SOLUTION
Checking Steel Percentage
A 4.00in.2

S

“bd _ (15in)(24in)
> Pmin = 0.0033 both from
< Pmax = 0.0181) Appendix A, Table A.7

P —0.0111

e Adf, _ (4.00 in.2)(60,goo p_si) 4Ttin
0.85f.b ~ (0.85)(4000 psi) (15 in.)

B4 = 0.85 for 4000 psi concrete

a 4.71 in.

=—=———=554in.
B, 085 n

Drawing Strain Diagram (Figure 3.9)
d-c 18.46 in.
&= (0.003) = W(O.OOS) = 0.0100
> 0.005 .. tension controlled
B ay ) . . 4.71in.
M, = A, (d - 5) — (4.00in.2) (60 ksi) <24 in. — ==

— 5194.8 in-k = 432.9 ft-k
oM, = (0.9) (432.9 ft-k) = 389.6 ft-k

€,=0.003
c=554in.
24 in. d=24in.
27 in.
(jgg bag; d—c=18.461n.
A m.
\. [ 3N N ] JE A
3 in. FIGURE 3.9 Neutral axis location for
Example 3.2.
15 in.

FIGURE 3.8 Beam cross section for
Example 3.2.
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Example 3.3

Determine the ACI design moment capacity, $M,, of the beam shown in Figure 3.10 if
f, = 4000 psi and fy = 60,000 psi.

SOLUTION

Checking Steel Percentage

A, 468in?
" bd (12in.)(15in.)
> pmax = 0.0181 (from Appendix A, Table A.7). As a result, we know that ¢; will be < 0.005.

p =0.026 > p;, = 0.0033

Computing Value of ¢,

Af, (4.68 in.2) (60,000 psi)

2= 0851b ~ (0.85)(4000 ps)(12in) ~ Coo ™
B, = 0.85 for 4000 psi concrete
a 6.88 in.
=5 = =8.09in.
B4 0.85 In
d-c 15in. — 8.09 in.
: (0009 gogin. 0003

= 0.00256 < 0.004

.. Section is not ductile and may not be used as per ACI Section 10.3.5.

3#11 bars 15 in.

(4.68 in.2)
\o oo |

3in.

18 in.

12 in. FIGURE 3.10 Beam cross section for Example 3.3.

Example 3.4

Determine the ACI design moment capacity, pM,,, for the beam of Figure 3.11 if f, = 4000 psi
and fy = 60,000 psi.

SOLUTION

Checking Steel Percentage
A, 38.00in?
P = bd = @0in)(15in)
but also < p,,, = 0.0181 (for ¢, = 0.005)

=0.020 > p;, = 0.0033



3.11 Computer Examples

Computing Value of ¢,

Adf,  (3.00in.2) (60,000 psi) 509

@ = 0.851,b — (0.85)(4000 psi) (10 in.)

B4 = 0.85 for 4000 psi concrete

a 5.29in.
=229 _gooin,
B~ 085 n
e, = 2=%0.003) = <%) (0.003) = 0.00423 > 0.004 and < 0.005

. Beam is in transition zone and

¢ (from Figure 3.5) = 0.65 + (0.00423 — 0.002) <¥> - 0.836

5.291n.

M, = A, (d - ;1) = (3.00 in.?) (60 ksi) <15 in. — ) —2223.9in-k = 185.3 ft-k

oM, = (0.836) (185.3 ft-k) = 154.9 ft-k

3 #9 bars Ty
(3.00in2) -
\. e O | ——
3in.
~—10in—> FIGURE 3.11 Beam cross section for Example 3.4.

3.11 Computer Examples

Example 3.5

Repeat Example 3.2 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet, and open the Rectangular Beam worksheet. Enter values only
in the cells highlighted yellow (only in the Excel spreadsheet, not the printed example). The final
result is oM, = 389.6 ft-k (same answer as Example 3.2).
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Example 3.6

Repeat Example 3.3 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet and the Rectangular Beam worksheet. Enter values only in
the cells highlighted yellow. The spreadsheet displays a message, “‘code violation ...too much
steel.” This is an indication that the beam violates ACI Section 10.3.5 and is not ductile. This
beam is not allowed by the ACI Code.

Example 3.7

Repeat Example 3.4 using the Excel spreadsheet provided for Chapter 3.

SOLUTION

Open the Chapter 3 spreadsheet and the Rectangular Beam worksheet. Enter values only in the
cells highlighted yellow. The final result is pM, = 154.5 ft-k (nearly the same answer as Example
3.4). The ¢ factor is also nearly the same as Example 3.4 (0.0834 compared with 0.0836). The
difference is the result of the spreadsheet using the more general value for €, of f, /E; = 0.00207
instead of the approximate value of 0.002 permitted by the code for Grade 60 reinforcing steel.
A difference of this magnitude is not important, as discussed in Section 1.25, “Calculation

Accuracy.”

PROBLEMS

Problem 3.1 What are the advantages of the strength design For Problems 3.7 to 3.9, determine the values of €,, ¢, and ¢ M,
method as compared to the allowable stress or alternate design for the sections shown.

thod?
meto Problem 3.7 (Ans. $M, = 379.1 ftk)

Problem 3.2 What is the purpose of strength reduction
factors? Why are they smaller for columns than for beams?

Problem 3.3 What are the basic assumptions of the strength

design theory? 4

27 in.
Problem 3.4 Why does the ACI Code specify that a certain

minimum percentage of reinforcing be used in beams? 4 #9 bars

0000 |_ 1V
Problem 3.5 Distinguish between tension-controlled and 3in.

compression-controlled beams. £, = 60,000 psi
y ,

Problem 3.6 Explain the purpose of the minimum cover ~—12in.—~ f:= 4,000 psi
requirements for reinforcing specified by the ACI Code.



Problem 3.8

3 #11 bars

in.
21 in.

3in.

1y

Problem 3.9 (Ans. €, = 0.00408,
oM, = 1320.7 ft-k)

= 75,000 psi

~—14 in.—| f.=5,000 psi

¢ = 0.797,

7 #11 bars
o000O0OCCO

27 in. 30 in.

3in.

20 in.

f,= 80,000 psi
f&=16,000 psi

Problems

Problem 3.10
12 in. .
4 #10 bars 15 in.
e 6 06 o N A
3in.
f). = 60,000 psi
18 in. f&=4,000 psi

81



82

CHAPTER 4

Design of Rectangular Beams
and One-Way Slabs

4.1 Load Factors

Load factors are numbers, almost always larger than 1.0, that are used to increase the estimated
loads applied to structures. They are used for loads applied to all types of members, not just
beams and slabs. The loads are increased to attempt to account for the uncertainties involved
in estimating their magnitudes. How close can you estimate the largest wind or seismic loads
that will ever be applied to the building that you are now occupying? How much uncertainty
is present in your answer?

You should note that the load factors for dead loads are much smaller than the ones used
for live and environmental loads. Obviously, the reason is that we can estimate the magnitudes
of dead loads much more accurately than we can the magnitudes of those other loads. In this
regard, you will notice that the magnitudes of loads that remain in place for long periods of
time are much less variable than are those loads applied for brief periods, such as wind and
SNOW.

Section 9.2 of the code presents the load factors and combinations that are to be used for
reinforced concrete design. The required strength, U, or the load-carrying ability of a particular
reinforced concrete member, must at least equal the largest value obtained by substituting
into ACI Equations 9-1 to 9-7. The following equations conform to the requirements of the
International Building Code (IBC)' as well as to the values required by ASCE/SEI 7-10.2

U=14D (ACI Equation 9-1)
U=12D+ 1.6L+ 0.5(L, or S or R) (ACI Equation 9-2)
U=12D + 1.6(L, or S or R) + (L or 0.5W) (ACI Equation 9-3)
U=12D + 1.0W + L 4+ 0.5(L, or S or R) (ACI Equation 9-4)
U=12D 4+ 1.0E + L + 0.2§ (ACI Equation 9-5)
U=09D + 1.0W (ACI Equation 9-6)
U=09D + 1.0E (ACI Equation 9-7)

In the preceding expressions, the following values are used:

U = the design or ultimate load the structure needs to be able to resist
D = dead load

L =live load

! International Code Council, 2012, International Building Code, Falls Church, Virginia 22041-3401.
2 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 (Reston, VA:
American Society of Civil Engineers), p. 7.
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L, = roof live load
S = snow load

R

rain load
W = wind load
E = seismic or earthquake load effects

When impact effects need to be considered, they should be included with the live loads as
per ACI Section 9.2.2. Such situations occur when those loads are quickly applied, as they are
for parking garages, elevators, loading docks, cranes, and others.

The load combinations presented in ACI Equations 9-6 and 9-7 contain a 0.9D value.
This 0.9 factor accounts for cases where larger dead loads tend to reduce the effects of other
loads. One obvious example of such a situation may occur in tall buildings that are subject
to lateral wind and seismic forces where overturning may be a possibility. As a result, the
dead loads are reduced by 10% to take into account situations where they may have been
overestimated.

The reader must realize that the sizes of the load factors do not vary in relation to the
seriousness of failure. You may think that larger load factors should be used for hospitals or high-
rise buildings than for cattle barns, but such is not the case. The load factors were developed on
the assumption that designers would consider the seriousness of possible failure in specifying
the magnitude of their service loads. Furthermore, the ACI load factors are minimum values,
and designers are perfectly free to use larger factors as they desire. The magnitude of wind loads
and seismic loads, however, reflects the importance of the structure. For example, in ASCE-7,?
a hospital must be designed for an earthquake load 50% larger than a comparable building
with less serious consequences of failure.

For some special situations, ACI Section 9.2 permits reductions in the specified load
factors. These situations are as follows:

(a) In ACI Equations 9-3 to 9-5, the factor used for live loads may be reduced to 0.5 except
for garages, areas used for public assembly, and all areas where the live loads exceed
100 psf.

(b) If the load W is based on service-level wind loads, replace 1.0W in ACI Equations 9-4
and 9-6 with 1.6W. Also, replace 0.5W with 0.8W in ACI Equation 9-3.

(¢) Frequently, building codes and design load references convert seismic loads to strength-
level values (i.e., in effect they have already been multiplied by a load factor). This is
the situation assumed in ACI Equations 9-5 and 9-7. If, however, service-load seismic
forces are specified, it will be necessary to replace 1.0E with 1.4E in these two equations.

(d) Self-restraining effects, 7, in reinforced concrete structures include the effects of tem-
perature, creep, shrinkage, and differential settlement. In some cases, the effects can be
additive. For example, creep, shrinkage, and reduction in temperature all cause a reduc-
tion of concrete volume. Often such effects can be reduced or eliminated by proper use
of control joints.

(e) Fluid loads, F, resulting from the weight and pressure of fluids shall be included with
the same load factor as D in ACI Equations 9-5 through 9-7.

3 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures. ASCE 7-10 (Reston, VA:
American Society of Civil Engineers), p. 5.
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(f) Where soil loads, H, are present, they must be added to the load combinations in accor-
dance with one of the following:

e where H acts alone or adds to the effects of other loads, it shall be included with a
load factor of 1.6;

* where the effect of H is permanent and counteracts the effects of other loads, it shall
be included with a load factor of 0.9;

* where the effect of H is not permanent but, when present, counteracts the effects of
other loads, H shall not be included.

Example 4.1 presents the calculation of factored loads for a reinforced concrete column
using the ACI load combinations. The largest value obtained is referred to as the critical or
governing load combination and is the value to be used in design. Notice that the values of
the wind and seismic loads can be different depending on the direction of those forces, and it
may be possible for the sign of those loads to be different (i.e., compression or tension). This is
the situation assumed to exist in the column of this example. These rather tedious calculations
can be easily handled with the Excel spreadsheet entitled Load Combinations on this book’s
website: www.wiley.com/college/mccormac.

Example 4.1

The compression gravity axial loads for a building column have been estimated with the
following results: D = 150 k; live load from roof, L, = 60 k; and live loads from floors, L = 300 k.

Compression wind, W = 70 k; tensile wind, W = 60 k; seismic compression load = 50 k; and
tensile seismic load = 40 k. Determine the critical design load using the ACI load combinations.

SOLUTION

©-1) U=1.4D=(1.4)(150 k) = 210 k
(9-2) U=12D+1.6L+05(L, orS orR) = (1.2)(150 k) + (1.6) (300 k) + (0.5) (60 k) = 690 k
(9-3)(a) U=1.2D+1.6(L, or S or R) + (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (300 k) = 576 k
b) U=1.2D+1.6(L, or S or R)+ (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (0.5) (70 k) = 311 k
) U=1.2D+1.6(L, or S or R)+ (L or 0.5W) = (1.2) (150 k) + (1.6) (60 k) + (0.5) (—60 k) = 246 k
) U=1.2D+1.0W +L+0.5(L, or S or R) = (1.2) (150 k) + (1.0) (70 k) + (300 k) + 0.5(60 k) = 580 k
1.2) (150 K) + (1.0) (—60 k) + (300 k) + 0.5(60 k) = 450 k

b) U=1.2D+1.0W + L +0.5(, or S or R) = (1.
(1.0) (50 k) + (300 k) + (0.2) (0 k) = 530 k
(1.0

(
(
(c
(
(
(9-5)(a) U=1.2D+1.0E + L +0.2S = (1.2)(150 k) +
( .0) (—40 k) + (300 k) + (0.2) (0 k) = 440 k
(
(
(
(

(9-4)(a

)
b) U=1.2D+1.0E+L +0.2S = (1.2)(150 k) +
(9-6)(a) U =0.9D + 1.0W = (0.9) (150 k) + (1.0) (70 k) = 205 k
b) U =0.9D + 1.0W = (0.9) (150 k) + (1.0) (—60 k) = 75 k
(9-7)(a) U =0.9D + 1.0E = (0.9) (150) +
b) U =0.9D + 1.0E = (0.9) (150) +

.0)(50 k) = 185 k

A
(1.0)(~40 k) = 95 k

Answer: Largest value = 690 k from load case 9.2.

For most of the example problems presented in this textbook, in the interest of reducing
the number of computations, only dead and live loads are specified. As a result, the only
load factor combination usually applied herein is the one presented by ACI Equation 9-2.
Occasionally, when the dead load is quite large compared to the live load, it is also necessary
to consider Equation 9-1.
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4.2 Design of Rectangular Beams

Before the design of an actual beam is attempted, several miscellaneous topics need to be
discussed. These include the following:

1. Beam proportions. Unless architectural or other requirements dictate the proportions of
reinforced concrete beams, the most economical beam sections are usually obtained for shorter
beams (up to 20 ft or 25 ft in length), when the ratio of d to b is in the range of 1% to 2.
For longer spans, better economy is usually obtained if deep, narrow sections are used. The
depths may be as large as three or four times the widths. However, today’s reinforced concrete
designer is often confronted with the need to keep members rather shallow to reduce floor
heights. As a result, wider and shallower beams are used more frequently than in the past. You
will notice that the overall beam dimensions are selected to whole inches. This is done for
simplicity in constructing forms or for the rental of forms, which are usually available in 1-in.
or 2-in. increments. Furthermore, beam widths are often selected in multiples of 2 in. or 3 in.

2. Deflections. Considerable space is devoted in Chapter 6 to the topic of deflections
in reinforced concrete members subjected to bending. However, the ACI Code in its Table
9.5(a) provides minimum thicknesses of beams and one-way slabs for which such deflection
calculations are not required. These values are shown in Table 4.1. The purpose of such
limitations is to prevent deflections of such magnitudes as would interfere with the use of or
cause injury to the structure. If deflections are computed for members of lesser thicknesses
than those listed in the table and are found to be satisfactory, it is not necessary to abide by
the thickness rules. For simply supported slabs, normal-weight concrete, and Grade 60 steel,
the minimum depth given when deflections are not computed equals £/20, where £ is the span
length of the slab. For concrete of other weights and for steel of different yield strengths, the
minimum depths required by the ACI Code are somewhat revised, as indicated in the footnotes
to Table 4.1. The ACI does not specify changes in the table for concretes weighing between
120 Ib/ft and 145 1b/ft because substitution into the correction expression given yields correction
factors almost equal to 1.0.

The minimum thicknesses provided apply only to members that are not supporting or
attached to partitions or other construction likely to be damaged by large deflections.

3. Estimated beam weight. The weight of the beam to be selected must be included in the
calculation of the bending moment to be resisted, because the beam must support itself as well
as the external loads. The weight estimates for the beams selected in this text are generally
very close because the authors were able to perform a little preliminary paperwork before

TABLE 4.1 Minimum Thickness of Nonprestressed Beams or One-Way Slabs Unless
Deflections Are Computed'?

Minimum Thickness, h

Simply One end Both ends
supported continuous continuous Cantilever
Members not supporting or attached to partitions or other
Member construction likely to be damaged by large deflections
Solid one-way slabs £/20 L)24 L/28 £/10
Beams or ribbed
one-way slabs L/16 L/18.5 L/21 L/8

1Span length, £, is in inches.
2Values given shall be used directly for members with normal-weight concrete and Grade 60 reinforcement. For
other conditions, the values shall be modified as follows:
(a) For lightweight concrete having equilibrium density in the range 90 Ib/ft3 to 115 Ib/ft3, the values shall be
multiplied by (1.65 — 0.005w_) but not less than 1.09, where w_, is the unit weight in Io/ft3.
(b) For fy other than 60,000 psi, the values shall be multiplied by (0.4 + fy/1 00,000).
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86 CHAPTER 4 Design of Rectangular Beams and One-Way Slabs

making their estimates. You are not expected to be able to glance at a problem and give an
exact estimate of the weight of the beam required. Following the same procedures as did the
authors, however, you can do a little figuring on the side and make a very reasonable estimate.
For instance, you could calculate the moment due to the external loads only, select a beam
size, and calculate its weight. From this beam size, you should be able to make a very good
estimate of the weight of the final beam section.

Another practical method for estimating beam sizes is to assume a minimum overall
depth, h, equal to the minimum depth specified by Table 4.1 [ACI-318-11, Table 9.5(a)] if
deflections are not to be calculated. The ACI minimum for the beam in question may be
determined by referring to Table 4.1. Then the beam width can be roughly estimated equal to
about one-half of the assumed value of / and the weight of this estimated beam calculated =
bh/144 times the concrete weight per cubic foot. Because concrete weighs approximately 150
pcf (if the weight of steel is included), a quick-and-dirty calculation of self-weight is simply
b x h because the concrete weight approximately cancels the 144 conversion factor.

After M, is determined for all of the loads, including the estimated beam weight, the
section is selected. If the dimensions of this section are significantly different from those
initially assumed, it will be necessary to recalculate the weight and M, and repeat the beam
selection. At this point you may very logically ask, “What’s a significant change?” Well, you
must realize that we are not interested academically in how close our estimated weight is to
the final weight, but rather we are extremely interested in how close our calculated M,, is to
the actual M,. In other words, our estimated weight may be considerably in error, but if it
doesn’t affect M, by more than say 1% or 1%%, forget it.

In Example 4.2, beam proportions are estimated as just described, and the dimensions so
selected are taken as the final ones. As a result, you can see that it is not necessary to check
the beam weight and recalculate M, and repeat the design.

In Example 4.3, a beam is designed for which the total value of M|, (including the beam
weight) has been provided, as well as a suggested steel percentage.

Finally, with Example 4.4, the authors have selected a beam whose weight is unknown.
Without a doubt, many students initially have a little difficulty understanding how to make
reasonable member weight estimates for cases such as this one. To show how easily, quickly,
and accurately this may be done for beams, this example is included.

We dreamed up a beam weight estimated out of the blue equal to 400 1b/ft. (We could
just as easily and successfully have made it 10 Ib/ft or 1000 1b/ft.) With this value, a beam
section was selected and its weight calculated to equal 619 1b/ft. With this value, a very good
weight estimate was then made. The new section obviously would be a little larger than the first
one. So we estimated the weight a little above the 619 lb/ft value, recalculated the moment,
selected a new section, and determined its weight. The results were very satisfactory.

4. Selection of bars. After the required reinforcing area is calculated, Appendix A,
Table A.4 is used to select bars that provide the necessary area. For the usual situations, bars
of sizes #11 and smaller are practical. It is usually convenient to use bars of one size only in
a beam, although occasionally two sizes will be used. Bars for compression steel and stirrups
are usually a different size, however. Otherwise the ironworkers may become confused.

5. Cover. The reinforcing for concrete members must be protected from the surround-
ing environment; that is, fire and corrosion protection need to be provided. To do this, the
reinforcing is located at certain minimum distances from the surface of the concrete so that
a protective layer of concrete, called cover, is provided. In addition, the cover improves the
bond between the concrete and the steel. In Section 7.7 of the ACI Code, specified cover is
given for reinforcing bars under different conditions. Values are given for reinforced concrete
beams, columns, and slabs; for cast-in-place members; for precast members; for prestressed
members; for members exposed to earth and weather; for members not so exposed; and so on.
The concrete for members that are to be exposed to deicing salts, brackish water, seawater, or



4.2 Design of Rectangular Beams

minimum edge distance = cover + d + 2d;
=150+ 2+ (=23

|~ details for hooks

/

@‘\ /4@ given in Chapter 7

#4 hangers
|+ #3 stirrups
—{|~—d,
| &P
#10 bars
@_ o @

d.=

s

. — 1.
in. — § 15 -in. clear cover
11 in. clear cover

2 |

-

/

5. L
2 5 in. minimum

oo|w

~2d,= 3 in.

FIGURE 4.1 Determining minimum edge distance.

spray from these sources must be especially proportioned to satisfy the exposure requirements
of Chapter 4 of the code. These requirements pertain to air entrainment, water—cement ratios,
cement types, concrete strength, and so on.

The beams designed in Examples 4.2, 4.3, and 4.4 are assumed to be located inside a
building and thus protected from the weather. For this case, the code requires a minimum cover
of 1% in. of concrete outside of any reinforcement.

In Chapter 8, you will learn that vertical stirrups are used in most beams for shear
reinforcing. A sketch of a stirrup is shown in the3 beam of Figure 4.1. The minimum stirrup

diameter (d,) that the code permits us to use is g in. when the longitudinal bars are #10 or

smaller; for #11 and larger bars, the minimum stirrup diameter is % in. The minimum inside
radius of the 90° stirrup bent around the outside longitudinal bars is two times the stirrup
diameter (2d,). As a result, when the longitudinal bars are #14 or smaller, there will be a gap
between the bars and the stirrups, as shown in the figure. This is based on the assumption that
each outside longitudinal bar is centered over the horizontal point of tangency of the stirrup
corner bend. For #18 bars, however, the half-bar diameter is larger than 2d; and controls.
For the beam of Figure 4.1 it is assumed that 1.50-in. clear cover, #3 stirrups, and #10
longitudinal bars are used. The minimum horizontal distance from the center of the outside

longitudinal bars to the edge of the concrete can be determined as follows:
3 3 5
Minimum edge distance = cover + d; + 2d; = 1.50 in. + 3 in. + (2) (§ in.) = 2§ in.

The minimum cover required for concrete cast against earth, as in a footing, is 3 in., and for
concrete not cast against the earth but later exposed to it, as by backfill, 2 in. Precast and
prestressed concrete or other concrete cast under plant control conditions requires less cover,
as described in Sections 7.7.2 and 7.7.3 of the ACI Code.

Notice the two #4 bars called hangers placed in the compression side of this beam. Their
purpose is to provide support for the stirrups and to hold the stirrups in position.

If concrete members are exposed to very harsh surroundings, such as deicing salts, smoke,
or acid vapors, the cover should be increased above these minimums.

6. Minimum spacing of bars. The code (7.6) states that the clear distance between parallel
bars cannot be less than 1 in.[*! or less than the nominal bar diameter. If the bars are placed
in more than one layer, those in the upper layers are required to be placed directly over the
ones in the lower layers, and the clear distance between the layers must be not less than 1 in.

425 mm in SL
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Courtesy of Alabama Metal Industries Corporation.

Reinforcing bars. Note the supporting metal chairs.

A major purpose of these requirements is to enable the concrete to pass between the
bars. The ACI Code further relates the spacing of the bars to the maximum aggregate sizes for
the same purpose. In the code Section 3.3.2, maximum permissible aggregate sizes are limited
to the smallest of (a) one-fifth of the narrowest distance between side forms, (b) one-third of
slab depths, and (c) three-fourths of the minimum clear spacing between bars.

A reinforcing bar must extend an appreciable length in both directions from its point of
highest stress in order to develop its stress by bonding to the concrete. The shortest length in
which a bar’s stress can be increased from 0 to f, is called its development length.

If the distance from the end of a bar to a point where it theoretically has a stress equal
to fy is less than its required development length, the bar may very well pull loose from the
concrete. Development lengths are discussed in detail in Chapter 7. There you will learn that
required development lengths for reinforcing bars vary appreciably with their spacings and
their cover. As a result, it is sometimes wise to use greater cover and larger bar spacings than
the specified minimum values in order to reduce development lengths.

When selecting the actual bar spacing, the designer will comply with the preceding code
requirements and, in addition, will give spacings and other dimensions in inches and fractions,
not in decimals. The workers in the field are accustomed to working with fractions and would
be confused by a spacing of bars such as 3 at 1.45 in. The designer should always strive for
simple spacings, for such dimensions will lead to better economy.

Each time a beam is designed, it is necessary to select the spacing and arrange-
ment of the bars. To simplify these calculations, Appendix A, Table A.5 is given.
Corresponding information is provided in SI units in Appendix B, Table B.5. These tables
show the minimum beam widths required for different numbers of bars. The values given are
based on the assumptions that %—in. stirrups and 1%—in. cover are required except for #18 bars,

where the stirrup diameter is % in. If three #10 bars are required, it can be seen from the table
that a minimum beam width of 10.4 in. (say 11 in.) is required.
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This value can be checked as follows, noting that 2d; is the radius of bend of the bar,
and the minimum clear spacing between bars in this case is d,:
d d
Minimum beam width = cover + d, + 2d, + Eb +d, +d, +d, + Eb +2d, + d; + cover

. 3. 3. 1.27 in. . 1.27 in.
= 1.50 in. + 3 in. + (2) (§ 1n.> + > + (3)(1.27 in.) +

3 3
+2)| - in. ) + - in. 4+ 1.50 in.
8 8
= 10.33 in.rounded to 10.4 in.

4.3 Beam Design Examples

Example 4.2 illustrates the design of a simple span rectangular beam. For this introductory
example, approximate dimensions are assumed for the beam cross section. The depth, 4, is
assumed to equal about one-tenth of the beam span, while its width, b, is assumed to equal
about %h. Next the percentage of reinforcing needed is determined with the equation derived
in Section 3.4, and reinforcing bars are selected to satisfy that percentage. Finally, ¢M,, is
calculated for the final design.

Example 4.2

Design a rectangular beam for a 22-ft simple span if a dead load of 1 k/ft (not including the beam
weight) and a live load of 2 k/ft are to be supported. Use f, = 4000 psi and fy = 60,000 psi.

SOLUTION
Estimating Beam Dimensions and Weight

Assume h = (0.10)(22 ft) = 2.2 ft  Say 27 in.(d = 24.5 in.)

1, 27in.

Assume b = Eh 5 Say 14 in.
Beam wt = M (150 Ib/ft3) = 394 Ib/ft = 0.394 k/ft (kIf)
144 in°/ft

Computing w, and M,
w, = (1.2)(1 kIf 4+ 0.394 KkIf) + (1.6) (2 kIf) = 4.873 kif

2 2
M, = wléL _ (4878 kg) 2P oy ark

Assuming ¢ = 0.90 and computing p with the following expression, which was derived in

Section 3.4.
0851, °R,
P=F (1 V- 0.85fg>

y

M,  (12in/ft)(294,800 ft-lo) .
An = 3bc? = 090)(14in)@as e ~ 207 Pl

_ (0.85)(4000 psi) [ , _ (2)(467.7 ps)
~ 60,000 psi ~\ (0.85)(4000 psi)

} = 0.00842
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Selecting Reinforcing

As = pbd = (0.00842) (14 in.) (24.5 in.) = 2.89 in.?
Use 3 #9 bars (A, = 3.00 in.?)

Appendix A.5 indicates a minimum beam width of 9.8 in. for interior exposure for three #9 bars.
If five #7 bars had been selected, a minimum width of 12.8 in. would be required. Either choice
would be acceptable since the beam width of 14 in. exceeds either requirement. If we had
selected a beam width of 12 in. earlier in the design process, we might have been limited to the
larger #9 bars because of this minimum beam width requirement.

Checking Solution

Aq 3.00in.2

P = bd T (14in)(24.5in)

= 0.00875 > p,, = 0.0033

< Pmax = 0.0181 (p values from Appendix A, Table A.7). .. Section is ductile and ¢ = 0.90

A f . 2 R
g Aty (B00In?)(0ks) _ o0
0.85f,b _ (0.85)(4ksi) (14 in.)

oM, = DAL, (d - g) — (0.90) (3.00in.2) (60 ksi) <24.5 in. —

3.78 in.
2

= 3662 in-k = 305.2 ft-k > 294.8 ft-k  OK
Final Section (Figure 4.2)

245 in.

27 in.
3 #9 bars
\O e e |— .
25 in.
2@4 in.

3in4 !=3m~!£-3in.

~—14 in.—|

FIGURE 4.2 Final beam cross section for Example 4.2.

Use of Graphs and Tables

In Section 3.4, the following equation was derived:

1 pof,
M, =¢A, fd |1 — ——=
w =94y ( 1.7 ﬂ)
If A, in this equation is replaced with pbd, the resulting expression can be solved for M, /¢pbd>.
1 ofy
M, =¢pbdf,d |1 — — —
w = 9pbd, ( 17 f )

and dividing both sides of the equation by ¢bd?,
M, 1 ofy
A
¢bd 1.7 f!

For a given steel percentage, p, certain concrete, f/, and certain steel, fy, the value of
M, /¢bd* can be calculated and listed in tables, as is illustrated in Appendix A, Tables A.8




4.3 Beam Design Examples

Courtesy of Cement and Concrete Association.

Barnes Meadow Interchange, Northampton, England.

through A.13, or in graphs (see Graph 1 of Appendix A). SI values are provided in Appendix
Tables B.8 through B.9. It is much easier to accurately read the tables than the graphs (at least
to the scale to which the graphs are shown in this text). For this reason, the tables are used
for the examples here. The units for M,/¢bd” in both the tables and the graphs of Appendix
A are pounds per square inch. In Appendix B, the units are MPa.

Once M, /¢bd? is determined for a particular beam, the value of M, can be calculated as
illustrated in the alternate solution for Example 3.1. The same tables and graphs can be used
for either the design or analysis of beams.

The value of p, determined in Example 4.2 by substituting into that long and tedious
equation, can be directly selected from Appendix A, Table A.13. We enter that table with the
M, /¢bd? value previously calculated in the example, and we read a value of p between 0.0084
and 0.0085. Interpolation can be used to find the actual value of 0.00842, but such accuracy is not
really necessary. It is conservative to use the higher value (0.0085) to calculate the steel area.

In Example 4.3, which follows, a value of p was specified in the problem statement, and
the long equation was used to determine the required dimensions of the structure as represented
by bd>. Again, it is much easier to use the appropriate appendix table to determine this value. In
nearly every other case in this textbook, the tables are used for design or analysis purposes.

Once the numerical value of bd? is determined, the authors take what seems to be
reasonable values for b (in this case 12 in., 14 in., and 16 in.) and compute the required d
for each width so that the required bd” is satisfied. Finally, a section is selected in which b
is roughly % to % of d. (For long spans, d may be two and a half or three or more times b
for economical reasons.)

Example 4.3

A beam is to be selected with p = 0.0120, M, = 600 ft-k, fy = 60,000 psi, and f, = 4000 psi.

SOLUTION

Assuming ¢ = 0.90 and substituting into the following equation from Section 3.4:

M _ P Y%
obdz Y 177,
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(12 in/ft) (600,000 ft-Ib)

— (0.0120) (60,000 psi) {1 - <i> (0.0120) (60’000p3i)}

(0.9) (ba?) 1.7 4000 psi
b x d .
. . This one seems
5 .3 |12in. x 32.18in.
bd“ = 12,427 in. pretty reasonable

14in. x 29.79in. <
16in. x 27.87in.

to the authors.

Note: Alternatively, we could have used tables to help calculate bd?. Upon entering Appendix A,
Table A.13, we find M,,/¢bd? = 643.5 psiwhen p = 0.0120.

(12 in/ft) (600,000 ft-lb) .
—12432in3  OK
(0.90) (643.5 psi) As2in" OK

Try14in. x 33 in. (d = 30.00 in.)

- bd2 —

A, = pbd = (0.0120)(14 in)) (30 in.) = 5.04in.2
Use 4 #10 (A, = 5.06in.2)

Note: Appendix A.5 indicates a minimum beam width of 12.9 in. for this bar selection. Since our
width is 14 in., the bars will fit.

Checking Solution

Aq 5.06in.2

= Os o >N 501205~ p. =0.0033
bd ~ (14in)(301n) 7 Proin

)
< Pmax = 0.0181 (from Appendix A, Table A.7)

Note: A value of p = 0.0206 is permitted by the code, but the corresponding value of ¢ would
be less than 0.9 (see Figure 3.5 and Table A.7). Since a value of ¢ of 0.9 was used in the above
calculations, it is necessary to use a maximum value of p = 0.0181.

With p = 0.01205, Mu/¢>bd2 by interpolation from Table A.13 equals 645.85.

oM, = (645.85 psi) (pbd?) = (645.85 psi) (0.9) (14 in.) (30 in.)?
— 7,323,939 in-Ib = 610.3 ft-k > 600 ft-k

Final Section (Figure 4.3)

30in. 334p,

4 #10 bars

\. e 00 | —[—
3in.

1. 3@3 | L.
221n.—|I —9in. I|—221n.
T

~— 14in.— FIGURE 4.3 Final cross section for Example 4.3.
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Through quite a few decades of reinforced concrete design experience, it has been found
that if steel percentages are kept fairly small, say roughly 0.18f// f, or perhaps 0.375p,,, beam
cross sections will be sufficiently large so that deflections will seldom be a problem. As the
areas of steel required will be fairly small, there will be little problem fitting them into beams
without crowding.

If these relatively small percentages of steel are used, there will be little difficulty in
placing the bars and in getting the concrete between them. Of course, from the standpoint
of deflection, higher percentages of steel, and thus smaller beams, can be used for short
spans where deflections present no problem. Whatever steel percentages are used, the resulting
members will have to be carefully checked for deflections, particularly for long-span beams,
cantilever beams, and shallow beams and slabs. Of course, such deflection checks are not
required if the minimum depths specified in Table 4.1 of this chapter are met.

Another reason for using smaller percentages of steel is given in ACI Section 8.4, where
a plastic redistribution of moments (a subject to be discussed in Chapter 14) is permitted in
continuous members whose €, values are 0.0075 or greater. Such tensile strains will occur
when smaller percentages of steel are used. For the several reasons mentioned here, structural
designers believe that keeping steel percentages fairly low will result in good economy.

Example 4.4

A rectangular beam is to be sized with fy = 60,000 psi, f, = 3000psi, and a p approximately
equal to O.18fé/fy. It is to have a 25-ft simple span and to support a dead load, in addition to its
own weight, equal to 2 k/ft and a live load equal to 3 k/ft.

SOLUTION

Assume Beam wt = 400 Ib/ft

w, = (1.2)(2 KIf + 0.400 KIf) + (1.6) (3 kif) = 7.68 kif (k/ft)

(7.68 KIf) (25 ft)

M, = === = 600 ft-k
_ (0.18)(3ksi)
P= oksi - 0009
M . .
(j)[)# = 482.6 psi (from Appendix A, Table A.12)
b — M _ (12in/ft) (600,000 ft-Ib)
T 94826 ps)  (0.9)(482.6 psi)

Solving this expression for bd 2 and trying varying values of b and d.

b x d

16in. x 32.19in.
bd? =16,577in3 {18in. x 30.35in. <« seems reasonable
20in. x 28.79in.

Try 18-in. x 33-in. Beam (d = 30.50in.)
181in.) (33 in.
Bmwt = (01N (33in) ?(2 o ) (150 Ib/ft%) = 619 Ib/ft
144 in2/ft

> the estimated 400 Ib/ft  No good
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Assume Beam wt a Little Higher Than 619 Ib/ft

Estimate wt = 650 Ib/ft
w, = (1.2) (2 kif + 0.650 klif) + (1.6) (3 kif) = 7.98 KIf

7.98 Kif) (25 ft)?
M, = % = 623.4 ft-k

o — My _ (12in/ft) (623,400 ft-Ib)

$(482.6 psi) (0.9) (482.6 psi)

16in. x 32.81in.
=17,223in3 {18in. x 30.93in. <«  seems reasonable
20in. x 29.35in.

Try 18-in. x 34-in. Beam (d = 31.00 in.)

(18in.) (34 in.)

144 e (150 Ib/ft®) = 637.5 Ib/ft < 650 Ib/ft  OK
in

Bmwt =

A, = pbd = (0.009) (18 in.)(31 in.) = 5.02 in.2

Try five #9 bars (minimum width is 14.3 in. from Appendix A, Table A.5) OK
Normally a bar selection should exceed the theoretical value of A,. In this case, the area
chosen was less than, but very close to, the theoretical area, and it will be checked to be sure it
has enough capacity.
Asfy 5.00in.2(60 ksi)

2= 0851b _ (0.85)(3ksi)(181n) n

M, = $A, (d - 7) =0.9(5.00in?) G0ksi <31 in. 6'5;‘ i”')

= 7487.6 in-Ib = 623.9 ft-k > M,

The reason a beam with less reinforcing steel than calculated is acceptable is that a value of d
exceeding the theoretical value was selected (d = 31 in. > 30.93 in.). Whenever the value of b
and d selected results in a ba? that exceeds the calculated value based on the assumed p, the
actual value of p will be lower than the assumed value.

If avalue of b = 18 in. and d = 30 in. had been selected, the result would have been that
the actual value of p would be greater than the assumed value of 0.009. Using the actual values
of b and d to recalculate p

M, (12 in/ft) (623,400 ft-Ib)

Sbc — (0.9)(18in)@0inE o > 1ps

From Appendix A, Table A.12, p = 0.00965, which exceeds the assumed value of 0.009. The
required value of A; will be larger than that required for d = 31 in.

A, = pbd = (0.00965) (18 in.) (30 in.) = 5.21in.2 (Use 7 #8bars, A, = 5.50in.?)

Either design is acceptable. This kind of flexibility is sometimes perplexing to the student who
simply wants to know the right answer. One of the best features of reinforced concrete is that
there is so much flexibility in the choices that can be made.
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4.4 Miscellaneous Beam Considerations

This section introduces two general limitations relating to beam design: lateral bracing and
deep beams.

Lateral Support

It is unlikely that laterally unbraced reinforced concrete beams of any normal proportions will
buckle laterally, even if they are deep and narrow, unless they are subject to appreciable lateral
torsion. As a result, the ACI Code (10.4.1) states that lateral bracing for a beam is not required
closer than 50 times the least width, b, of the compression flange or face. Should appreciable
torsion be present, however, it must be considered in determining the maximum spacing for
lateral support.

Skin Reinforcement for Deep Beams

Beams with web depths that exceed 3 ft have a tendency to develop excessively wide cracks
in the upper parts of their tension zones. To reduce these cracks, it is necessary to add some
additional longitudinal reinforcing in the zone of flexural tension near the vertical side faces of
their webs, as shown in Figure 4.4. The code (10.6.7) states that additional skin reinforcement
must be uniformly distributed along both side faces of members with 4> 36 in. for distances
equal to //2 nearest the flexural reinforcing.

The spacing, s, between this skin reinforcement shall be as provided in ACI 10.6.4. These
additional bars may be used in computing the bending strengths of members only if appropriate
strains for their positions relative to neutral axes are used to determine bar stresses. The total
area of the skin reinforcement in both side faces of the beam does not have to exceed one-half
of the required bending tensile reinforcement in the beam. The ACI does not specify the actual
area of skin reinforcing; it merely states that some additional reinforcement should be placed
near the vertical faces of the tension zone to prevent cracking in the beam webs.

Some special requirements must be considered relating to shear in deep beams, as
described in the ACI Code (11.7) and in Section 8.14 of this text. Should these latter pro-
visions require more reinforcing than required by ACI Section 10.6.7, the larger values will
govern.

For a beam designed in SI units with an effective depth > 1 m, additional skin reinforce-
ment must be determined with the following expression, in which A is the area of skin
reinforcement per meter of height on each side of the beam:

Its maximum spacing may not exceed d/6 on 300 mm or 10004, /(d — 750).

h
[ J ® |

skin reinforcement ° ° s
; ) h
each side = A, s Z
° °o | | — i

s

computedA, —>| ® ® @ @

FIGURE 4.4 Skin reinforcement for deep
beams with & > 36 in., as required by ACI
Code Section 10.6.7.
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96 CHAPTER 4 Design of Rectangular Beams and One-Way Slabs

Other Items

The next four chapters of this book are devoted to several other important items relating to
beams. These include different shaped beams, compression reinforcing, cracks, bar development
lengths, and shear.

Further Notes on Beam Sizes

From the standpoints of economy and appearance, only a few different sizes of beams should
be used in a particular floor system. Such a practice will save appreciable amounts of money
by simplifying the formwork and at the same time will provide a floor system that has a more
uniform and attractive appearance.

If a group of college students studying the subject of reinforced concrete were to design
a floor system and then compare their work with a design of the same floor system made by an
experienced structural designer, the odds are that the major difference between the two designs
would be in the number of beam sizes. The practicing designer would probably use only a few
different sizes, whereas the average student would probably use a larger number.

The designer would probably examine the building layout to decide where to place the
beams and then would make the beam subject to the largest bending moment as small as
practically possible (i.e., with a fairly high percentage of reinforcing). Then he or she would
proportion as many as possible of the other similar beams with the same outside dimensions.
The reinforcing percentages of these latter beams might vary quite a bit because of their
different moments.

4.5 Determining Steel Area When Beam Dimensions
Are Predetermined

Sometimes the external dimensions of a beam are predetermined by factors other than
moments and shears. The depth of a member may have been selected on the basis of the
minimum thickness requirements discussed in Section 4.2 for deflections. The size of a whole
group of beams may have been selected to simplify the formwork, as discussed in Section
4.4. Finally, a specific size may have been chosen for architectural reasons. Next we briefly
mention three methods for computing the reinforcing required. Example 4.5 illustrates the
application of each of these methods.

Appendix Tables

The value of M,/¢bd* can be computed, and p can be selected from the tables. For most
situations this is the quickest and most practical method. The tables given in Appendices A
and B of this text apply only to tensilely reinforced rectangular sections. Furthermore, we must
remember to check ¢ values.

Use of p Formula

The following equation was previously developed in Section 3.4 for rectangular sections.

085/ | | 2R,
- 0.85f/




4.5 Determining Steel Area When Beam Dimensions Are Predetermined

Trial-and-Error (lterative) Method

A value of a can be assumed, the value of A, computed, the value of a determined for that
value of A, another value of a calculated, and so on. Alternatively, a value of the lever arm
from C to T (it’s d — a/2 for rectangular sections) can be estimated and used in the trial-and-
error procedure. This method is a general one that will work for all cross sections with tensile
reinforcing. It is particularly useful for T beams, as will be illustrated in the next chapter.

Example 4.5

The dimensions of the beam shown in Figure 4.5 have been selected for architectural reasons.
Determine the reinforcing steel area by each of the methods described in this section.

SOLUTION

Using Appendix Tables

M,  (12in/ft)(160,000 ft-lb) .
_ — 3023
$b? ~  (0.9)(16in) @1 in)2 psl

p (from Appendix A, Table A.12) = 0.00538 (by interpolation)

A, = (0.00538) (16 in.) (21 in.) = 1.81 in.2
Use 6 #5 bars (1.84 in.?)

Using p Formula

M .
R, = ¢>bcl;2 = 302.3 psi

_ (0.85)(3000 psi) { ; \/ , _ (3023 psi }
= o000 |1~ V" ~ 0855000 £

60,000 psi 0.85) (3000 psi)
= 0.00538 (same as obtained from Appendix A)

Trial-and-Error (lterative) Method

Here it is necessary to estimate the value of a. The student probably has no idea of a reasonable
value for this quantity, but the accuracy of the estimate is not a matter of importance. He or she
can assume some value probably considerably less than d/2 and then compute d —a/2 and Ag
With this value of Ay, a new value of a can be computed and the cycle repeated. After two or
three cycles, a very good value of a will be obtained.

2in M, = 160 ft-k
24in.  f. = 3000 psi
f, = 60,000 psi
o o o |—
3in.

3ing 10in. 3 in,|
> >t

FIGURE 45 Beam cross section for
Example 4.5.

10 in—3
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Assumea = 2in.:

A — M, B (12 in/ft) (160,000 ft-Ib) — 178in2

) ay - .
¢%,(d=3)  (0.9)(60,000 ps) <21 in. — %”)

A f . 2 -
gl A (1.78n)(80,000ps) _, oo
0.85f,b _ (0.85)(3000 psi) (16 in.)

Assumea = 2.6in.:

A - (12 in/ft) (160,000 ft-Ib) —181in2

’ .
(0.9) (60,000 psi) <21 o 2.65 |n_>

(1.81in.2) (60,000 psi) )
= —266in. (cl h
@ = 0853000 ps (16 7n) ~ 200 (close enough)

Based on this method, use a theoretical value of A, = 1.81 in.2

4.6 Bundled Bars

Sometimes when large amounts of steel reinforcing are required in a beam or column, it is very
difficult to fit all the bars in the cross section. For such situations, groups of parallel bars may
be bundled together. Up to four bars can be bundled, provided they are enclosed by stirrups
or ties. The ACI Code (7.6.6.3) states that bars larger than #11 shall not be bundled in beams
or girders. This is primarily because of crack control problems, a subject discussed in Chapter
6 of this text. That is, if the ACI crack control provisions are to be met, bars larger than
#11 cannot practically be used. The AASHTO permits the use of two-, three-, and four-bar
bundles for bars up through the #11 size. For bars larger than #11, however, AASHTO limits
the bundles to two bars (AASHTO Sections 8.21.5 ASD and 5.10.3.1.5 strength design).

Typical configurations for two-, three-, and four-bar bundles are shown in Figure 4.6.
When bundles of more than one bar deep vertically are used in the plane of bending, they may
not practically be hooked or bent as a unit. If end hooks are required, it is preferable to stagger
the hooks of the individual bars within the bundle.

Although the ACI permits the use of bundled bars, their use in the tension areas of beams
may very well be counterproductive because of the other applicable code restrictions that are
brought into play as a result of their use.

When spacing limitations and cover requirements are based on bar sizes, the bundled
bars may be treated as a single bar for computation purposes; the diameter of the fictitious
bar is to be calculated from the total equivalent area of the group. When individual bars in
a bundle are cut off within the span of beams or girders, they should terminate at different
points. The code (7.6.6.4) requires that there be a stagger of at least 40 bar diameters.

[
1 “ ' ‘ FIGURE 4.6 Bundled-bar arrangements.



4.7 One-Way Slabs

Reinforced concrete slabs are large flat plates that are supported by reinforced concrete beams,
walls, or columns; by masonry walls; by structural steel beams or columns; or by the ground.
If they are supported on two opposite sides only, they are referred to as one-way slabs because
the bending is in one direction only—that is, perpendicular to the supported edges. Should the
slab be supported by beams on all four edges, it is referred to as a two-way slab because the
bending is in both directions. Actually, if a rectangular slab is supported on all four sides, but
the long side is two or more times as long as the short side, the slab will, for all practical
purposes, act as a one-way slab, with bending primarily occurring in the short direction. Such
slabs are designed as one-way slabs. You can easily verify these bending moment ideas by
supporting a sheet of paper on two opposite sides or on four sides with the support situation
described. This section is concerned with one-way slabs; two-way slabs are considered in
Chapters 16 and 17. It should be realized that a large percentage of reinforced concrete slabs
fall into the one-way class.

A one-way slab is assumed to be a rectangular beam with a large ratio of width to depth.
Normally, a 12-in.-wide piece of such a slab is designed as a beam (see Figure 4.7), the slab
being assumed to consist of a series of such beams side by side. The method of analysis is
somewhat conservative because of the lateral restraint provided by the adjacent parts of the
slab. Normally, a beam will tend to expand laterally somewhat as it bends, but this tendency
to expand by each of the 12-in. strips is resisted by the adjacent 12-in.-wide strips, which tend
to expand also. In other words, Poisson’s ratio is assumed to be zero. Actually, the lateral
expansion tendency results in a very slight stiffening of the beam strips, which is neglected in
the design procedure used here.

The 12-in.-wide beam is quite convenient when thinking of the load calculations because
loads are normally specified as so many pounds per square foot, and thus the load carried per
foot of length of the 12-in.-wide beam is the load supported per square foot by the slab. The
load supported by the one-way slab, including its own weight, is transferred to the members
supporting the edges of the slab. Obviously, the reinforcing for flexure is placed perpendicular
to these supports—that is, parallel to the long direction of the 12-in.-wide beams. This flexural
reinforcing may not be spaced farther on center than three times the slab thickness, or 18 in.,
according to the ACI Code (7.6.5). Of course, there will be some reinforcing placed in the
other direction to resist shrinkage and temperature stresses.

FIGURE 4.7 A 12-in. strip in a simply supported one-way slab.

4.7 One-Way Slabs
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100 CHAPTER 4 Design of Rectangular Beams and One-Way Slabs

The thickness required for a particular one-way slab depends on the bending, the deflec-
tion, and shear requirements. As described in Section 4.2, the ACI Code (9.5.2.1) provides
certain span/depth limitations for concrete flexural members where deflections are not calcu-
lated.

Because of the quantities of concrete involved in floor slabs, their depths are rounded
off to closer values than are used for beam depths. Slab thicknesses are usually rounded off to
the nearest % in. on the high side for slabs of 6 in. or less in thickness and to the nearest % in.
on the high side for slabs thicker than 6 in.

As concrete hardens, it shrinks. In addition, temperature changes occur that cause expan-
sion and contraction of the concrete. When cooling occurs, the shrinkage effect and the
shortening due to cooling add together. The code (7.12) states that shrinkage and tempera-
ture reinforcement must be provided in a direction perpendicular to the main reinforcement for
one-way slabs. (For two-way slabs, reinforcement is provided in both directions for bending.)
The code states that for Grade 40 or 50 deformed bars, the minimum percentage of this steel is
0.002 times the gross cross-sectional area of the slab. Notice that the gross cross-sectional area
is bh (where h is the slab thickness). The code (7.12.2.2) states that shrinkage and temperature
reinforcement may not be spaced farther apart than five times the slab thickness, or 18 in.
When Grade 60 deformed bars or welded wire fabric is used, the minimum area is 0.0018bh.
For slabs with f} > 60,000 psi, the minimum value is (0.0018 x 60,000)/}‘}, > 0.0014.

In SI units, the minimum percentages of reinforcing are 0.002 for Grades 300 and 350
steels and 0.0018 for Grade 420 steel. When f; > 420 MPa, the minimum percentage equals
(0.0018 x 420)/f. The reinforcing may not be spaced farther apart than five times the
slab thickness, or 500 mm.

Should structural walls or large columns provide appreciable resistance to shrinkage and
temperature movements, it may very well be necessary to increase the minimum amounts listed.

Shrinkage and temperature steel serves as mat steel in that it is tied perpendicular to
the main flexural reinforcing and holds it firmly in place as a mat. This steel also helps to
distribute concentrated loads transversely in the slab. (In a similar manner, the AASHTO gives
minimum permissible amounts of reinforcing in slabs transverse to the main flexural reinforcing
for lateral distribution of wheel loads.)

Areas of steel are often determined for 1-ft widths of reinforced concrete slabs, footings,
and walls. A table of areas of bars in slabs such as Appendix A, Table A.6 is very useful in
such cases for selecting the specific bars to be used. A brief explanation of the preparation of
this table is provided here.

For a 1 ft width of concrete, the total steel area obviously equals the total or average
number of bars in a 1-ft width times the cross-sectional area of one bar. This can be expressed
as (12 in./bar spacing c. to c.)(area of 1 bar). Some examples follow, and the values obtained
can be checked in the table. Understanding these calculations enables one to expand the table
as desired.

1. #9 bars, 6-in. o.c. total area in 1-ft width = (%) (1.00) = 2.00in.?
2. #9 bars, 5-in. o.c. total area in 1-ft width = (%) (1.00) = 2.40in.?

Example 4.6 illustrates the design of a one-way slab. It will be noted that the code
(7.7.1.c) cover requirement for reinforcement in slabs (#11 and smaller bars) is % in. clear,
unless corrosion or fire protection requirements are more severe.



4.7 One-Way Slabs

Example 4.6

Design a one-way slab for the inside of a building using the span, loads, and other data given in
Figure 4.8. Normal-weight aggregate concrete is specified with a density of 145 pcf.

SOLUTION

Minimum Total Slab Thickness h If Deflections Are Not Computed (See Table 4.1)

L (12 in/ft) (10 ft) .
h == —e0esw— = 6

20 20 n
Assume 6-in. slab (with d = approximately 6in. — %in. Cover —% in. for estimated half-
diameter of bar size = 5.0 in.). The moment is calculated, and then the amount of steel required
is determined. If this value seems unreasonable, a different thickness is tried.

Design a 12-in.-wide strip of the slab. Thus, b = 12 in., and the load on the slab in units
of Ib/ft?> becomes Ib/ft. Usually 5 pcf is added to account for the weight of reinforcement, so 150
pcf is used in calculating the weight of a normal-weight concrete member.
6 in.

LL = 200 psf
w, = (1.2)(75psf) + (1.6) (200 psf) = 410 psf

2
M, = (0.410 kg) AOR2 o oee

M,  (12in/ft)(5125 ft-b) .
SbcZ ~ (0.9)(12in) B.00 )2 — 22/ 8Ppsi

) (150 pcf) = 75 psf

p = 0.00393 (from Appendix A, Table A.13)
> Pmin = 0.0033
A, = pbd = (0.00393) (12 in.) (5.0 in.) = 0.236 in/ft

Use #4 @ 10 in. from Table A.6 (A, = 0.24 in?/ft)
Spacing < maximum of 18 in. as per ACI 7.6.5
Transverse Direction — Shrinkage and Temperature Steel
A, = 0.0018bd = (0.0018) (12 in.) (6 in.) = 0.1296 in?/ft
Use #3 @ 10 in. (0.13 in?/ft) as selected from Table A.6
Spacing < maximum of 18 in. as per ACI 7.12.2.2 %

The #4 bars are placed below the #3 bars in this case. The #4 bars are the primary flexural
reinforcing, and the value of d is based on this assumption. The #3 bars are for temperature and
shrinkage control, and their depth within the slab is not as critical.

200 psf
4000 psi
60,000 psi

TT‘_§>
¥

SN
o

10 ft >

FIGURE 4.8 Given information for Example 4.6.
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The designers of reinforced concrete structures must be very careful to comply with
building code requirements for fire resistance. If the applicable code requires a certain fire
resistance rating for floor systems, that requirement may very well cause the designer to use
thicker slabs than might otherwise be required to meet the ACI strength design requirements.
In other words, the designer of a building should study carefully the fire resistance provisions
of the governing building code before proceeding with the design. Section 7.7.8 of ACI 318-11
includes such a requirement.

4.8 Cantilever Beams and Continuous Beams

Cantilever beams supporting gravity loads are subject to negative moments throughout their
lengths. As a result, their reinforcement is placed in their top or tensile sides, as shown in
Figures 4.9 and 4.10(a). The reader will note that for such members the maximum moments
occur at the faces of the fixed supports. As a result, the largest amounts of reinforcing are
required at those points. You should also note that the bars cannot be stopped at the support
faces. They must be extended or anchored in the concrete beyond the support face. We will
later call this development length. The development length does not have to be straight as
shown in the figure, because the bars may be hooked at 90° or 180°. Development lengths and
hooked bars are discussed in depth in Chapter 7.

Up to this point, only statically determinate members have been considered. The very com-
mon situation, however, is for beams and slabs to be continuous over several supports, as shown
in Figure 4.10. Because reinforcing is needed on the tensile sides of the beams, we will place it
in the bottoms when we have positive moments and in the tops when we have negative moments.
There are several ways in which the reinforcing bars can be arranged to resist the positive and
negative moments in continuous members. One possible arrangement is shown in Figure 4.10(a).
These members, including bar arrangements, are discussed in detail in Chapter 14.

development FIGURE 4.9 Cantilever beam
length development length.

Note: Some of +A +Ag
continues into supports. @
a

/ NI/ Vl/ N

FIGURE 4.10 Continuous slab showing theoretical placement of bars for given moment
diagram.
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Chris Condon/US PGA TOUR/Getty Images, Inc.

Workers pour the first concrete of the new clubhouse during the TPC Sawgrass
renovation (May 10, 20006).

4.9 Sl Example

Example 4.7 illustrates the design of a beam using SI units.

Example 4.7

Design a rectangular beam for a 10-m simple span to support a dead load of 20 kN/m
(not including beam weight) and a live load of 30 kN/m. Use p = 0.5p,, f. = 28 MPa, and
fy = 420 MPa, and concrete weight is 23.5 kN/m3. Do not use the ACI thickness limitation.

SOLUTION
Assume that the beam weight is 10 kN/m and ¢ = 0.90.
w, = (1.2) (30 kN/m) + (1.6) (30 kN/m) = 84 kN/m

(84 kN/m) (10 m)?

v T s
1

p = <§> (0.0283) = 0.01415 (from Appendix B, Table B.7)

M = 1050 kKN-m

1 f
M, = ¢pf,bd? (1 — —p2
u = ¢ofyb ( 1.7pfg>

420 MPa)]

6 — 2 - 1_ —
(10° (1050 kN-m) = (0.9) (0.01415) (420 MPa) (bd )[1 (1 _7> (0.01415)< 28 MPa

400 mm x 749 mm
bd? =2.2432 x 108 mm® {450 mm x 706 mm

500 mm x 670 mm <«
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Use 500-mm x 800-mm Section (d = 680 mm)

(500 mm) (800 mm)
10® mm2/m2

Beam wt = (23.5 kN/m®) = 9.4 kN/m

< 10 kN/m assumed

A, = (0.01415) (500 mm) (680 mm) = 4811 mm?  OK

Use six #32 bars in two rows (4914 mm?). One row could be used here.

Asfy (4914 mm3) (420 MPa)
a— — =173 mm
0.85f;b  (0.85) (28 MPa) (500 mm)

a 173 mm

= _—=—_ =204
B, ~ 085 mm
680 mm — 204 mm
€ = 504 (0.003) = 0.0070 > 0.005 .9 =0.90

Note: Can more easily be checked with p values.

bin = 267 mm (from Appendix B, Table B.5 for three bars in a layer)
<500mm  OK
The final section is shown in Figure 4.11.

Note: This problem can be solved more quickly by making use of the Appendix tables. In
Table B.9 with f, = 420 MPa, f; = 28MPa, and p = 0.01415.

M
¢bclil2 = 5.201MPa (by interpolation)
M 1050 kN-m) (10)3
bd? — y _ M0 _ 52432 » 108 mm?

#(5.201 MPa) _ (0.9)(5.201 MPa)

After this step, proceed as shown above, when bd? was found using equations.

640 mm
800 mm
6 #32
[ ) [ J [ ] —
80 mm
() (] [} ===
80 mm

80 2@ 80
mm| 70 mm _|mm
=340 mm |

500 mm —— FIGURE 4.11 Beam cross section for Example 4.7.
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4.10 Computer Example

Example 4.8

Repeat Example 4.4 using the Excel spreadsheet for Chapter 4.

SOLUTION

Use the worksheet called Beam Design. Enter material properties (f/, fy) and M, (can be taken
from the bottom part of the spreadsheet or just entered if you already know it). Input p = 0.009
(given in the example). The two tables with headings b and d give some choices for b and d
based on the p value you picked. Larger assumed values of p result in smaller values of b and
d and vice versa. Select b = 18 in. and d = 31 in. (many other choices are also correct).
Add 2.5 in. or more to d to get h, and enter that value (used only to find beam weight below).
The spreadsheet recalculates p and A from actual values of b and d chosen, so note that p is
not the same as originally assumed (0.00895 instead of 0.009). This results in a slightly smaller
calculated steel area than in Example 4.4. You can also enter the number of bars and size to get
a value for A,. This value must exceed the theoretical value or an error message will appear. You
should check to see if this bar selection will fit within the width selected.

At the bottom of the spreadsheet, the design moment M,, can be obtained if the beam is
simply supported and uniformly loaded with only dead and live loads. The beam self-weight is
calculated based on the input values for b and h (Cells D23 and D25). You may have to iterate a
few times before these values all agree. In this example, the dead load is 2 klf plus self-weight.
The input value for wy is 2.0 + 0.65 plf, with the second term being taken from the spreadsheet.
In working this problem the first time, you probably would not have these dimensions for b and
h, hence the self-weight would not be correct. Iteration as done in Example 4.4 is also required
with the spreadsheet, although it is much faster.

Design of singly reinforced rectangular beams

fo= 3 ksi
_ . Instructions: Enter values only in cells
1 y— 60 ksi that are highlighted in yellow. Other
Bi1= 0.85 values calculated from those input values.
M,= | 623.4 ftk
Assume p =0.009
M .
bd? = 1” 7 =17,215in.3
Ofyp——=7
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R b d b d

1 25.82 25.82 14 35.07
1.2 22.86 27.44 15 33.88
1.4 20.63 28.88 16 32.80
1.5 19.70 29.56 17 31.82
1.6 18.87 30.20 18 30.93
1.7 18.13 30.82 19 30.10
1.8 17.45 3141 20 29.34
1.9 16.83 31.98 21 28.63
2 16.27 32.53 22 27.97

Select b and d b= N
d= 31 in. } These tables give some choices
h= 34in. for b and d that you may round

R = 480.5 up to enter here.
" .

p =0851./f, {1— [1-2R, /(.85f;)]0-5} = 0.00895

Ay= pbd =499 in.2 <-- theoretical steel area
No. of bars Bar size —
select bars 5 #9 Ay=5.00in.2

wp = 2.65 KiIf
wp = 3 kif
span = 25 ft

w, = 7.980 KIf
M, = 6234 ft-k
Y, = 145 pcf
self wt = 0.6375 KkIf

PROBLEMS

Problem 4.1 The estimated service or working axial loads and Problem 4.3 A reinforced concrete slab must support a dead
bending moments for a particular column are as follows: working floor load of 80 psf, which includes the weight of the
P, = 100k, P, = 40k, M, = 30 ft-k, and M; = 16 ft-k. concrete slab and a live working load of 40 psf. Determine the
Compute the axial load and moment values that must be used in  factored uniform load for which the slab must be designed.

the design. (Ans. P, = 184k, M, = 61.6 ft-k) (Ans. w, = 160 psf)

Problem 4.2 Determine the required design strength for a Problem 4.4 Using the Chapter 4 spreadsheet, Load
column for which P, = 120k, P, = 40 k, and wind Combination worksheet, repeat the following problems:
Py, = 60 k compression or 80 k tension. (a) Problem 4.1

(b) Problem 4.2
(¢) Problem 4.3
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For Problems 4.5 to 4.9, design rectangular sections for the beams, loads, and values given. Beam weights are not included in
the given loads. Show sketches of beam cross sections, including bar sizes, arrangement, and spacing. Assume concrete weighs

150 Ib/f3. Use h = d + 2.5 in.

wp and wy,

%

/i
% %

I 4

[
Problem
No. £, (psi) S (psi) Span £ (ft) wp not incl. beam wt (k/ft) wy (k/ft) p*
45 60,000 4000 30 2 1 0.181//f,
4.6 60,000 4000 30 2 2 0.181//f,
4.7 50,000 3000 18 3 4 %pb
4.8 60,000 4000 32 2 1.8 %pb
4.9 60,000 3000 25 1.8 1.5 €, = 0.0075
*See Appendix A, Table A.7 for p values that correspond to the €, values listed.
One ans. Problem 4.5: 16 in. x 29 in. with 4 #10 bars.
One ans. Problem 4.7: 16 in. x 28 in. with 4 #11 bars.
One ans. Problem 4.9: 18 in. x 26 in. with 6 #8 bars.
For Problems 4.10 to 4.22, design rectangular sections for the Problem 4.12
beams, loads, and p values shown. Beam weights are not included
in the loads shown. Show sketches of cross sections, including
bar sizes, arrangement, and spacing. Assume concrete weighs P =20k P; =20k
150 b/t 5= 60,000 psi, and f! = 4000 psi, unless given
otherwise. i i wp = 1.5 K/t

Problem 4.10

P =30k
l wp =3 k/ft
AN Q
‘ V4
- 12 ft —l 12 ft
24 ft
0.18 17,
Use p= ———
=y

Problem 4.11 Repeat Problem 4.10, if w, = 2 k/ft and if
P, = 20 k. (One ans. 14 in. x 28 in. with 3 #11 bars)

%
]

10 ft

10 ft |

10 ft

Use

30 ft

pP= fv

0.18

Problem 4.13 Repeat Problem 4.12 if w, = 2.0 k/ft and
P, = 20 k. (One ans. 16 in. x 33 in. with 4 #11 bars)
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Problem 4.14

P, =36k
l wp =2 k/ft
’QIOft | 20 ft
| 30 ft
1
Use p=750p

Problem 4.15 Repeat Problem 4.14 if w, = 3 k/ft,
P, = 40k, f/ =3000psi, and p = 0.5p,,. (One ans.
18 in. x 37 in. with 5 #11 bars)

Problem 4.16

wp =3 K/t wy = 2 k/ft

4

]

0.18 f!

Use p=
se fy

Problem 4.17 Repeat Problem 4.16 if the beam span =12 ft.
(One ans. 14 in. x 31 in. with 4 #10 bars in top)

Problem 4.18
P, =30k

wp =2 k/ft

L

Y

XXX

{~ 16 ft

Usep=%P1,

Problem 4.19 Repeat Problem 4.18 if P, = 20 k, ¢ = 12ft,
and p = %pb. (One ans. 20 in. x 26 in. with 7 #9 in top)

Problem 4.20

P, =30k P =20k

wp = 2 k/ft l JL

16 ft

Use p = 5 Pmax

Problem 4.21 Select reinforcing bars for the beam shown if
M, = 250 ft-k, f, = 60,000 psi, and f = 4000 psi. (Hint:
Assume that the distance from the c.g. of the tensile steel to the
c.g. of the compression block equals 0.9 times the effective
depth, d, of the beam.) After a steel area is computed, check the
assumed distance and revise the steel area if necessary. Is
€,>0.005? (Ans. A, = 2.84 in%, ¢, = 0.00538 > 0.005)

<5 in. 5 in. 5 in.—»‘
6 in.
18 in.
A,
. Y
15 in.

Problem 4.22 Repeat Problem 4.21 for M,, = 150 ft-k.
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For Problems 4.23 and 4.24, design rectangular sections for the beams and loads shown. Beam weights are not included in the given
loads. f, = 60,000 psi and f = 4000 psi. Live loads are to be placed where they will cause the most severe conditions at the sections
being considered. Select beam size for the largest moment (positive or negative), and then select the steel required for maximum
positive and negative moment. Finally, sketch the beam and show approximate bar locations.

Problem 4.23 (One ans. 12 in. x 28 in. with 3 #10 bars negative reinforcement and 3 #9 bars positive reinforcement)
wp = 2 k/ft, w, = 4 k/ft
| |
I 18 ft |

0.18f,,
5

%

9 ft I

Use p =

Problem 4.24

wp =2 k/ft, w; = 1.5 k/ft

&

Ve

8 ft |

20 fit |

Use p=0.5p,

For Problems 4.25 and 4.26, design interior one-way slabs Problem 4.27 Repeat Problem 4.25 using the ACI Code’s

for the situations shown. Concrete weight=150 Ib/ft}, 5=

60,000 psi, and f/ = 4000 psi. Do not use the ACI Code’s mini-
mum thickness for deflections (Table 4.1). Steel percentages are
given in the figures. The only dead load is the weight of the slab.

Problem 4.25 (One ans. 7.5-in. slab with #8 @ 9 in. main
reinf.)

w; = 150 psf
Vo000
p= %P;,
| |
* 24 ft i
Problem 4.26
wy = 100 psf
|
b 16 ft ~1|
Use p = O;Sf'c

minimum thickness requirement for cases where deflections are
not computed (Table 4.1). Do not use the p given in Problem
4.26. (Ans. 14.5-in. slab with #6 @ 9 in. main reinf.)

Problem 4.28 Using f = 3000psi, f, = 60,000 psi, and p
corresponding to €, = 0.005, determine the depth required for a
simple beam to support itself for a 200-ft simple span.

Problem 4.29 Determine the depth required for a beam to
support itself only for a 100-ft span. Neglect concrete cover in
self-weight calculations. Given f = 4000psi, f, = 60,000 psi,
and p =0.50,. (Ans. d = 32.5in.)

Problem 4.30 Determine the stem thickness for maximum
moment for the retaining wall shown in the accompanying
illustration. Also, determine the steel area required at the bottom
and mid-depth of the stem if | = 4000psi and f, = 60,000 psi.
Assume that #8 bars are to be used and that the stem thickness
is constant for the 18-ft height. Also, assume that the clear
cover required is 2 in. and p = 0.5p,.

R

stem
18 ft -

L
|

500 psf = asssumed
lateral liquid pressure
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Problem 4.31 Problem 4.32 Prepare a flow chart for the design of tensilely
(a) Design a 24-in.-wide precast concrete slab to support a reinforced rectangular beams.

60-psf live load for a simple span of 15 ft. Assume Problem 4.33 Using the Chapter 4 spreadsheets, solve the

minimum concrete cover required is % in. as per Section following problems.

7.7.3 of the code. Use welded wire fabric for reinforcing. ) ) )

£ = 60,000 psi, £/ = 3000psi, and p = 0.18f'/f (a) Problem 4.6. (Ans. 16 in. x 33 in. with 5 #10 bars)

'y ) s Je ) A8 /1

(Ans. 4-in. slab with 4 x 8 D12/D6) (b) Problem 4.18. (Ans. 18 in. x 39 in. with 8 #10 bars)

(b) Can a 300-1b football tackle walk across the center of the
span when the other live load is not present? Assume 100%
impact. (Ans. yes)

Problems in Sl Units Problem 4.35 (One ans. 450 mm x 890 mm
with 6 #32 bars)

For Problems 4.34 to 4.39, design rectangular sections for

. P, =100 kN
the beams, loads, and p values shown. Beam weights are not
included in the loads given. Show sketches of cross sections
. ) . . wp = 25 kN/m
including bar sizes, arrangements, and spacing. Assume con- % Z
crete weighs 23.5 kN/m®. f, = 420 MPa and f, = 28 MPa. ;: ;/2
-1
6 m 6 m P=75P
12m

Problem 4.34 Problem 4.36

wp = 20 kN/m wp = 26 kN/m

wy = 12 kN/m w; = 20 kN/m

LIS SITY, 7 7

1
P=5Pp

ERANNNN

- 5m l

0.18f,
g
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Problem 4.37 Place live loads to cause maximum positive and negative moments. p = 0.18f//f,. (One ans.
450 mm x 900 mm with 6 #32 bars positive reinf.) '

wp = 30 kN/m, w; = 20 kN/m

K

]
Ve e
—<—3m l 12 m I Sm—l

Problem 4.38

Pp =60 kN
wp =6 kN/m

wy = 10 kN/m

| AAAA A, 7

e

_ 1
P—fl’b

Problem 4.39 Design the one-way slab shown in the
accompanying figure to support a live load of 12 kN/m?.
Do not use the ACI thickness limitation for deflections.
Assume concrete weighs 23.5 kN/m?. f/ = 28 MPa and
f, = 420 MPa. Use p = p_ ... (One ans. 240-mm slab
with #25 @ 140-mm main steel)

A,

2
Vs




LUl Analysis and Design of T Beams
and Doubly Reinforced Beams

5.1 T Beams

Reinforced concrete floor systems normally consist of slabs and beams that are placed mono-
lithically. As a result, the two parts act together to resist loads. In effect, the beams have extra
widths at their tops, called flanges, and the resulting T-shaped beams are called T beams. The
part of a T beam below the slab is referred to as the web or stem. (The beams may be L shaped
if the stem is at the end of a slab.) The stirrups (described in Chapter 8) in the webs extend
up into the slabs, as perhaps do bent-up bars, with the result that they further make the beams
and slabs act together.

There is a problem involved in estimating how much of the slab acts as part of the beam.
Should the flanges of a T beam be rather stocky and compact in cross section, bending stresses
will be fairly uniformly distributed across the compression zone. If, however, the flanges are
wide and thin, bending stresses will vary quite a bit across the flange due to shear deformations.
The farther a particular part of the slab or flange is away from the stem, the smaller will be
its bending stress.

Instead of considering a varying stress distribution across the full width of the flange,
the ACI Code (8.12.2) calls for a smaller width with an assumed uniform stress distribution
for design purposes. The objective is to have the same total compression force in the reduced
width that actually occurs in the full width with its varying stresses.

The hatched area in Figure 5.1 shows the effective size of a T beam. For T beams with
flanges on both sides of the web, the code states that the effective flange width may not exceed
one-fourth of the beam span, and the overhanging width on each side may not exceed eight
times the slab thickness or one-half the clear distance to the next web. An isolated T beam
must have a flange thickness no less than one-half the web width, and its effective flange width
may not be larger than four times the web width (ACI 8.12.4). If there is a flange on only one
side of the web, the width of the overhanging flange cannot exceed one-twelfth the span, 6A;,
or half the clear distance to the next web (ACI 8.12.3).

The analysis of T beams is quite similar to the analysis of rectangular beams in that
the specifications relating to the strains in the reinforcing are identical. To repeat briefly, it is
desirable to have ¢, values > 0.005, and they may not be less than 0.004 unless the member
is subjected to an axial load > 0.10f/A,. You will learn that €, values are almost always
much larger than 0.005 in T beams because of their very large compression flanges. For such
members, the values of ¢ are normally very small, and calculated €, values very large.

The neutral axis (N.A.) for T beams can fall either in the flange or in the stem, depending
on the proportions of the slabs and stems. If it falls in the flange, and it almost always does
for positive moments, the rectangular beam formulas apply, as can be seen in Figure 5.2(a).
The concrete below the neutral axis is assumed to be cracked, and its shape has no effect on
the flexure calculations (other than weight). The section above the neutral axis is rectangular.
If the neutral axis is below the flange, however, as shown for the beam of Figure 5.2(b), the
compression concrete above the neutral axis no longer consists of a single rectangle, and thus
the normal rectangular beam expressions do not apply.
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FIGURE 5.1 Effective width of T beams.
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FIGURE 5.2 Neutral axis locations.

If the neutral axis is assumed to fall within the flange, the value of a can be computed
as it was for rectangular beams:

Lo A Pl
"~ 0.85(/b  0.85f!

The distance to the neutral axis, ¢, equals a/g,. If the computed value of a is equal to
or less than the flange thickness, the section for all practical purposes can be assumed to be
rectangular, even though the computed value of ¢ is actually greater than the flange thickness.

A beam does not really have to look like a T beam to be one. This fact is shown by the
beam cross sections shown in Figure 5.3. For these cases the compression concrete is T shaped,
and the shape or size of the concrete on the tension side, which is assumed to be cracked, has
no effect on the theoretical resisting moments. It is true, however, that the shapes, sizes, and
weights of the tensile concrete do affect the deflections that occur (as is described in Chapter
6), and their dead weights affect the magnitudes of the moments to be resisted.

5.1 T Beams
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FIGURE 5.3 Various cross sections of T beams.

Courtesy of Cement and Concrete Association.

Natural History Museum, Kensington, London, England.

5.2 Analysis of T Beams

The calculation of the design strengths of T beams is illustrated in Examples 5.1 and 5.2. In
the first of these problems, the neutral axis falls in the flange, while for the second, it is in the
web. The procedure used for both examples involves the following steps:

1. Check A; i, as per ACI Section 10.5.1 using b,, as the web width.
2. Compute T = A f,.
3. Determine the area of the concrete in compression (A.) stressed to 0.85f/.
C =T =0.85A,
T
A, =
0.85f/

4. Calculatea,c, an de,.

5. Calculate ¢M,,.



5.2 Analysis of T Beams

For Example 5.1, where the neutral axis falls in the flange, it would be logical to apply
the normal rectangular equations of Section 3.4 of this book, but the authors have used the
couple method as a background for the solution of Example 5.2, where the neutral axis falls
in the web. This same procedure can be used for determining the design strengths of tensilely
reinforced concrete beams of any shape (T, [, '], triangular, circular, etc.).

Example 5.1

Determine the design strength of the T beam shown in Figure 5.4, with f, = 4000 psi and
fy = 60,000 psi. The beam has a 30-ft span and is cast integrally with a floor slab that is 4 in.
thick. The clear distance between webs is 50 in.

SOLUTION
Check Effective Flange Width

b <16h;+b, = 16(4in.)+10in. = 74 in.
b < average clear distance to adjacent webs +b, =50in. +10in. =60in. <

30 ft
b < SaﬂzT:ZSﬂ:QOin.
Checking A nin

A 3/f, g (3+/4000 psi)

. . _ .2
s min = "¢ Pud = “gooag o (10in)(241n) =0.76 n.

200b,,d _ (200)(10in.) (24 in.)

f, N 60,000 psi

=0.80in.2 «

nor less than

<A, =6.00in2 OK

Computing T
T =Adf, = (6.00 in.2) (60 ksi) = 360 k

t<————— effective width = 60 in. ——————01 l
[ | 4in.
f

24 in.

6 #9 [ N N
6.00in?) |eoee

"10 in.=

FIGURE 5.4 Beam cross section for Example 5.1.
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Determining A,

T 360 k
A = - =105.88 in.2
©= 0.857, _ (0.85)(4 ks)) n
< flange area = (60 in.) (4 in.) = 240 in.2 .. Compression stress block, a, is in flange
Calculating a, ¢, and ¢,
105.88 in.? _
B W =1.76in.
a 1.76 in.
=—=———=207in.
B~ 085 n
d-—c 24in. —2.07 in.
= 0.003) = ————— "} (0.003
“t < c >( ) < 2.07in. >( )
= 0.0318 > 0.005 .. Section is ductile and ¢ = 0.90

Calculating ¢M,,

Obviously, the stress block is entirely within the flange, and the rectangular formulas apply.
However, using the couple method as follows:

1.76in.

Leverarm:z:d—g:24 in. — —23.121in.
éM, — ¢Tz — (0.90) (360 K) (23.12 in.)

= 7490.9 in-k = 624.2 ft-k

Example 5.2

Compute the design strength for the T beam shown in Figure 5.5, in which f, = 4000 psi and

f, = 60,000 psi.
SOLUTION
Checking A; in
3/4000psi _ . . . .
A in = m(m in.)(30in.) = 1.33in.2
(200)(14in)(30in.) 5
nor less than 60,000 psi =1.40in.” «
<A, =10.12in? OK
Computing T

T =Af, =(10.12 in.2) (60 ksi) = 607.2 k
Determining A, and Its Center of Gravity
T 607.2 k
A = - =178.59in.2
©= 0.857, _ (0.85)(4 ks)) n
> flange area = (30 in.)(4 in.) =120 in.2

Obviously, the stress block must extend below the flange to provide the necessary compression
area, 178.6 in.2 — 120 in.2 = 58.6 in.2, as shown in Figure 5.6.



5.2 Analysis of T Beams

I-— effective width = 30 in.——| |
| ] 4in.
3

30 in.
26 in.

14 n.-——l
' FIGURE 55 Beam cross section for Example 5.2.

Computing the Distance y from the Top of the Flange to the Center of Gravity of A,
4.19in.

(120in.2) (2 in.) + (58.6 in.?) <4 in. + )
=3.341in.

Y= 178.6 in2
The Lever Arm Distance from Tto C = 30.00in. — 3.34in. = 26.66 in. = z
Calculating a, ¢, and ¢;

a=4in.+4.19in. =8.19in.

a 8.191in.
= = =9.64in.
=3 ~ 085 n
d-c 30in. —9.64 in.
= 0.003) = { ——————(0.003) = 0.00634
ét (0.003) < 9.64n. ) (0.003)
> 0.005 .. Section is ductile and ¢ = 0.90

Calculating oM,
oM, = ¢Tz = (0.90) (607.2 k) (26.66 in.) = 14,569 in-k
= 1214 ft-k

|
_l— V. 120 in2 ) 4in.

58.6in.2 7 —5ff =419 in.

30 in.

8 #10
(10.12 in.%)

FIGURE 5.6 Area of concrete in

14 in .
compression.
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5.3 Another Method for Analyzing T Beams

The preceding section presented a very important method of analyzing reinforced concrete
beams. It is a general method that is applicable to tensilely reinforced beams of any cross
section, including T beams. T beams are so very common, however, that many designers
prefer another method that is specifically designed for T beams.

First, the value of a is determined as previously described in this chapter. Should it be
less than the flange thickness, ¢, we will have a rectangular beam and the rectangular beam
formulas will apply. Should it be greater than the flange thickness, A, (as was the case for
Example 5.2), the special method to be described here will be very useful.

The beam is divided into a set of rectangular parts consisting of the overhanging parts
of the flange and the compression part of the web (see Figure 5.7).

The total compression, C,,, in the web rectangle, and the total compression in the over-
hanging flange, C;, are computed:

C, = 0.85f/ab,

C; = 0.85f/(b — b,) (hy)

Then the nominal moment, M,,, is determined by multiplying C,, and C; by their respec-
tive lever arms from their centroids to the centroid of the steel:

ancw(d—%>+cf(d—%>

This procedure is illustrated in Example 5.3. Although it seems to offer little advantage
in computing M, , we will learn that it does simplify the design of T beams when a > h;
because it permits a direct solution of an otherwise trial-and-error problem.

b= effective widthI

a I‘f ‘I‘L%T hf:[ :__ —T_
i = I !d'% + i { d“g
R R it 1)
L2d L1
-

(a) (b) ©

FIGURE 5.7 Separation of T beam into rectangular parts.



5.3 Another Method for Analyzing T Beams

Example 5.3

Repeat Example 5.2 using the value of a (8.19 in.) previously obtained and the alternate formulas
just developed. Reference is made to Figure 5.8, the dimensions of which were taken from
Figure 5.5.

SOLUTION

(Noting that a > hy)

Computing C,, and C;

C, = (0.85)(4 ksi)(8.19in.) (14 in.) = 389.8 k
C; =(0.85)(4 ksi) (80 in. —14in.) (4 in.) = 217.6 k

Computing ¢ and ¢,

a 8.191in. .
d-c 30in. —9.64 in.
= 0.003) = { —————— ) (0.003) = 0.00634
“t < c >( ) < 9.641in. >( )
> 0.005 .. Section is ductile and ¢ = 0.90

Calculating M,, and ¢M,,

ancw(d—g)+cf< _%)

— (389.8 k) <3o in. — 8'12 'n'> +(217.6 k) <3o in. — 4%”)

= 16,190 in-k = 1349 ft-k

#M,, = (0.90) (1349 ft-K) = 1214 ft-k

' 30 in.

|
108 in.O|<—-]4 in,—18 in.’l L

a:S.lE) in®% 4.195_13

21.81 in.

30 in.

FIGURE 5.8 Concrete compression areas
for Example 5.3.
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5.4 Design of T Beams

For the design of T beams, the flange has normally already been selected in the slab design, as it
is for the slab. The size of the web is normally not selected on the basis of moment requirements
but probably is given an area based on shear requirements; that is, a sufficient area is used so as
to provide a certain minimum shear capacity, as will be described in Chapter 8. It is also possible
that the width of the web may be selected on the basis of the width estimated to be needed to put in
the reinforcing bars. Sizes may also have been preselected, as previously described in Section 4.5,
to simplify formwork for architectural requirements or for deflection reasons. For the examples
that follow (5.4 and 5.5), the values of hf, d, and b,, are given.

The flanges of most T beams are usually so large that the neutral axis probably falls
within the flange, and thus the rectangular beam formulas apply. Should the neutral axis fall
within the web, a trial-and-error process is often used for the design. In this process, a lever
arm from the center of gravity of the compression block to the center of gravity of the steel is
estimated to equal the larger of 0.9d or d — (h/2), and from this value, called z, a trial steel
area is calculated (A; = M, /f,z). Then by the process used in Example 5.2, the value of the
estimated lever arm is checked. If there is much difference, the estimated value of z is revised
and a new A, determined. This process is continued until the change in A is quite small.
T beams are designed in Examples 5.4 and 5.5 by this process.

Often a T beam is part of a continuous beam that spans over interior supports, such as
columns. The bending moment over the support is negative, so the flange is in tension. Also,
the magnitude of the negative moment is usually larger than that of the positive moment near
midspan. This situation will control the design of the T beam because the depth and web width
will be determined for this case. Then, when the beam is designed for positive moment at
midspan, the width and depth are already known. See Section 5.5 for other details on T beams
with negative moments.

Example 5.6 presents a more direct approach for the case where a > h. This is the case
where the beam is assumed to be divided into its rectangular parts.

Example 5.4

Design a T beam for the floor system shown in Figure 5.9, for which b, and d are given.
Mp = 80 ft-k, M, =100 ft-k, f; = 4000 psi, fy = 60,000 psi, and simple span = 20 ft.

SOLUTION
Effective Flange Width

(@ 7 ftx20ft=5ft=60in.
(b) 12in. +(2)(8)(4in.) = 76 in.
(c) 10ft=120in.

1 d=18in.
[ ] [] o) — — L
_.I |<—bw =12in.
10 £t 0 in.——l4———— 10 ¢ 0 in. , 10 ft 0 in. i 10 ft 0 in.

FIGURE 5.9 Cross section of T-beam floor system for Example 5.4.




5.4 Design of T Beams

Computing Moments Assuming ¢ = 0.90
M, = (1.2)(80 ft-k) + (1.6) (100 ft-k) = 256 ft-k

by _ My _ 2561tk
"= % T 0.0

= 284.4 ft-k

Assuming a Lever Arm z Equal to the Larger of 0.9d or d — (h;/2)

7 =(0.9)(18in) = 16.20 in.
z=18in. — % — 16.00 in.

Trial Steel Area
ASfyz =M,
(12 in/ft) (284.4 ft-k)

— — in 2
As= TBoks)(1620m) oo

Computing Values of a and z
0.85flA, = Adf,

(0.85) (4 ksi) (A, in.?) = (3.51 in.?) (60 ksi)

A, =61.9in2 < (4in.)(60 in.) = 240 in.2 - N.A. in flange
61.9in.2 .
= W =1.03in.

1.03in.

z:d—g:18in — 17.48in.

Calculating A; with This Revised z

(12 in/ft) (284.4 ft-K) -
s = 60 ksi) (17.48 in) n

Computing Values of a and z

(3.25 in.2) (60 ksi)

A = 220N )OUKS) 52 4in2
¢ = 77(0.85) (4 k) n
57.4in.2
= 204N h96in.
60 in. n
z=18in. — 2N _ 47 e0in.

Calculating A; with This Revised z

_ (12in/ft) (284.4 ft-K) _ .
s~ G0ks)(1752n) 3.25in. OK, close enough to previous value

Checking Minimum Reinforcing

A 3/, ,_ 3/4000psi
s min = ¥~ ™ 60,000 psi

(12in.) (18 in.) = 0.68 in.2
fy

but not less than

A _ 200b,d  (200)(12in.)(18in.) _0.72in2 =325in2 OK

s min f, 60,000 psi =

121



122 CHAPTER 5 Analysis and Design of T Beams and Doubly Reinforced Beams

of pmin (from Appendix A, Table A.7) = 0.0033

A, . =(0.0033)(12in)(18in) = 0.71in2 <325in2 OK

s min
Computing c, ¢;, and ¢
a 0.96in.

CZE_ ogs = 18in.
d—c 18in. — 1.13/in.
- 0.003) = (—————~"")(0.003
“t < c >( ) < 1.130n. >( )
= 0.045 > 0.005 .¢ =0.90 as assumed
As roqd = 325 in.2

Design a T beam for the floor system shown in Figure 5.10, for which b, and d are given.
Mp =200 ft-k, M, = 425 ft-k, f, = 3000 psi, fy = 60,000 psi, and simple span = 18 ft.

SOLUTION

Effective Flange Width

(@ 7 ftx18ft=41ft6in. =54in.
(b) 15in.+(2)(8)(3in.) = 63 in.
(c) 6t =72in.

Moments Assuming ¢ = 0.90

M, = (1.2) (200 ft-K) + (1.6) (425 ft-k) = 920 ft-k

u
M 920 ft-k
Mn = u —

0.90 0.90

Assuming a Lever Arm z

= 1022 ft-k

(Note that the compression area in the slab is very wide, and thus its required depth is very
small.)

7 = (0.90)(24 in) = 21.6 in.
z=24in. — 3%” —225in,

115 in. [e— —-llSin‘I<— —{15 in. |e—
i 6 ft 0 in. !~ 6ft0 in.——-’-—6 ft O inm—

FIGURE 5.10 Cross section for T-beam floor system of Example 5.5.

-6 ft O in.




5.4 Design of T Beams

Trial Steel Area
(12 in/ft) (1022 ft-k)

A, = =9.08in.2
s = (60 ksi) 22.5 i) n

Checking Values of a and z

_ (BOksi)(9.08in.%) 5
AC B W =213.61in.

The stress block extends down into the web, as shown in Figure 5.11.
Computing the Distance y from the Top of the Flange to the Center of Gravity of A,
3.44 in.

(162in.2)(1.5 in.) + (51.6 in.?) <3 in. + )
=2.28in.

Y= 213.6 in.2

z=24in.—2.28in.=21.72in.

(12 in/ft) (1022 ft-K) .,
A — —9.41in.
s = 60 ksi) (21.72 i) n

The steel area required (9.41 in.?) could be refined a little by repeating the design, but space is
not used to do this. (If this is done, A, = 9.51 in.2.)

Checking Minimum Reinforcing

Pmin (from Appendix A, Table A.7) = 0.00333

or
A i = (0.00333)(15in.) (24 in) =1.20in2 <9.51in2 OK

Checking Values of ¢; and ¢
a=3in. + 3.44in. =6.44in.
a 6.44in.

=3 ~ 085

¢ — <d;c> (0.003) = <24 in. —7.58 in.) (0.003)

=7.58in.

7.58in.
= 0.00650 > 0.005 . ¢ =0.90 as assumed

If the calculations for ¢, and ¢ are repeated using the more refined values of A, = 9.5 in.2, then
a =712in, ¢ = 0.0056, and ¢ =0.90.

I 54 in: 71
—[ Y e 2000 §sin
y 51.6in2 Y7
% 13.44 in, 2400
[ ]
le~15 in.—

FIGURE 5.11 Concrete compression area for Example 5.5.
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124 CHAPTER 5 Analysis and Design of T Beams and Doubly Reinforced Beams

Our procedure for designing T beams has been to assume a value of z, compute a trial
steel area of A, determine a for that steel area assuming a rectangular section, and so on.
Should a > hy, we will have a real T beam. A trial-and-error process was used for such a
beam in Example 5.5. It is easily possible, however, to determine A directly using the method
of Section 5.3, where the member was broken down into its rectangular components. For this
discussion, reference is made to Figure 5.7.

The compression force provided by the overhanging flange rectangles must be balanced
by the tensile force in part of the tensile steel, Ay, while the compression force in the web is
balanced by the tensile force in the remaining tensile steel, Ag,,.

For the overhanging flange, we have

0.85//(b —b,,) (hy) = Ayf,
from which the required area of steel, Ay, equals

0.85f/(b — by, )hs
Asf -
vy

The design strength of these overhanging flanges is

hy
Muf = ¢A3f.fy (d - 7)

The remaining moment to be resisted by the web of the T beam and the steel required
to balance that value are determined next.

Muw = Mu - Muf

The steel required to balance the moment in the rectangular web is obtained by the usual
rectangular beam expression. The value M,,, /¢b, d* is computed, and p,, is determined from
the appropriate Appendix table or the expression for p,, previously given in Section 3.4 of this
book. Think of p,, as the reinforcement ratio for the beam shown in Figure 5.7(b). Then

Asw = Py bwd
AS = Asf + Asw

Example 5.6

Rework Example 5.5 using the rectangular component method just described.

SOLUTION

First assume a < h; (which is very often the case). Then the design would proceed like that of a
rectangular beam with a width equal to the effective width of the T-beam flange.

M, 920 ft-k(12,000 in-lb/ft-k)
#bd? —  (0.9)(54 in.)(24 in.)2

p = 0.0072 (from Appendix A, Table A.12)

= 394.4 psi

L_ Phd _ 0.0072(60 ksi)(241n)
T 085  (0.85)(3 ksi)

=4.06in. > hy =3in.

The beam acts like a T beam, not a rectangular beam, and the values for p and a above
are not correct. If the value of a had been < h;, the value of A, would have been simply
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pbd = 0.0072(54 in.) (24 in.) = 9.33 in.2. Now break the beam up into two parts (Figure 5.7) and
design it as a T beam.

Assuming ¢ = 0.90

_ (0.85)(3ksi)(54in. —15in.)(3in.) .5
Agr = 60 Kksi =4.97in.

M,; = (0.9)(4.97 in.2) (60 ksi) <24 in. — g in.) — 6039 in-k = 503 ft-k
M,,, = 920 ft-k — 503 ft-k = 417 ft-k

Designing a Rectangular Beam with b,, = 15 in. and d = 24 in. to Resist 417 ft-k

M,  (12in/ft)(417 ft-K) (1000 Ib/k) .
_ — 6435
b, o 0.9)(15n) (24 in)? psl

o, = 0.0126 (from Appendix A, Table A.12)

A,,, = (0.0126)(15 in.) (24 in.) = 4.54 in2

A, =4.97in? +4.54in? =9.51in.?

5.5 Design of T Beams for Negative Moments

When T beams are resisting negative moments, their flanges will be in tension and the bottom
of their stems will be in compression, as shown in Figure 5.12. Obviously, for such situations,
the rectangular beam design formulas will be used. Section 10.6.6 of the ACI Code requires that
part of the flexural steel in the top of the beam in the negative-moment region be distributed
over the effective width of the flange or over a width equal to one-tenth of the beam span,
whichever is smaller. Should the effective width be greater than one-tenth of the span length,
the code requires that some additional longitudinal steel be placed in the outer portions of the
flange. The intention of this part of the code is to minimize the sizes of the flexural cracks
that will occur in the top surface of the flange perpendicular to the stem of a T beam subject
to negative moments.

In Section 3.8, it was stated that if a rectangular section had a very small amount of
tensile reinforcing, its design-resisting moment, ¢M,,, might very well be less than its cracking
moment. If this were the case, the beam might fail without warning when the first crack
occurred. The same situation applies to T beams with a very small amount of tensile reinforcing.

When the flange of a T beam is in tension, the amount of tensile reinforcing needed
to make its ultimate resisting moment equal to its cracking moment is about twice that of
a rectangular section or that of a T section with its flange in compression. As a result, ACI

N.A.

FIGURE 5.12 T beam with flange in tension
and bottom (hatched) in compression
(a rectangular beam).

N




126

CHAPTER 5 Analysis and Design of T Beams and Doubly Reinforced Beams

New Comiskey Park, Chicago, Illinois.

Courtesy of EFCO Corp.

Courtesy of EFCO Corp.



5.7 Compression Steel

Section 10.5.1 states that the minimum amount of reinforcing required equals the larger of the
two values that follow:

31!
A = i b,d (ACI Equation 10-3)

s min w
fy

or
_ 200b,,d

s min —
5

For statically determinate members with their flanges in tension, b,, in the above expres-
sion is to be replaced with either 2b,, or the width of the flange, whichever is smaller.

5.6 L-Shaped Beams

The author assumes for this discussion that L beams (i.e., edge T beams with a flange on one
side only) are not free to bend laterally. Thus they will bend about their horizontal axes and
will be handled as symmetrical sections, exactly as with T beams.

For L beams, the effective width of the overhanging flange may not be larger than one-
twelfth the span length of the beam, six times the slab thickness, or one-half the clear distance
to the next web (ACI 8.12.3).

If an L beam is assumed to be free to deflect both vertically and horizontally, it will be
necessary to analyze it as an unsymmetrical section with bending about both the horizontal
and vertical axes. An excellent reference on this topic is given in a book by MacGregor.!

5.7 Compression Steel

The steel that is occasionally used on the compression sides of beams is called compression
steel, and beams with both tensile and compressive steel are referred to as doubly reinforced
beams. Compression steel is not normally required in sections designed by the strength method
because use of the full compressive strength of the concrete decidedly decreases the need for
such reinforcement, as compared to designs made with the working-stress design method.
Occasionally, however, space or aesthetic requirements limit beams to such small sizes
that compression steel is needed in addition to tensile steel. To increase the moment capacity
of a beam beyond that of a tensilely reinforced beam with the maximum percentage of steel
[when (¢, = 0.005)], it is necessary to introduce another resisting couple in the beam. This is
done by adding steel in both the compression and tensile sides of the beam. Compressive steel
increases not only the resisting moments of concrete sections but also the amount of curvature
that a member can take before flexural failure. This means that the ductility of such sections
will be appreciably increased. Though expensive, compression steel makes beams tough and
ductile, enabling them to withstand large moments, deformations, and stress reversals such as
might occur during earthquakes. As a result, many building codes for earthquake zones require
that certain minimum amounts of compression steel be included in flexural members.
Compression steel is very effective in reducing long-term deflections due to shrinkage
and plastic flow. In this regard you should note the effect of compression steel on the long-term
deflection expression in Section 9.5.2.5 of the code (to be discussed in Chapter 6 of this text).
Continuous compression bars are also helpful for positioning stirrups (by tying them to the
compression bars) and keeping them in place during concrete placement and vibration.

! Wight, J. K. and MacGregor, J. G., 2011, Reinforced Concrete Mechanics and Design, 6th ed. (Upper Saddle River, NIJ:
Pearson Prentice Hall), pp. 165-168.
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128 CHAPTER 5 Analysis and Design of T Beams and Doubly Reinforced Beams

Tests of doubly reinforced concrete beams have shown that even if the compression
concrete crushes, the beam may very well not collapse if the compression steel is enclosed by
stirrups. Once the compression concrete reaches its crushing strain, the concrete cover spalls
or splits off the bars, much as in columns (see Chapter 9). If the compression bars are confined
by closely spaced stirrups, the bars will not buckle until additional moment is applied. This
additional moment cannot be considered in practice because beams are not practically useful
after part of their concrete breaks off. (Would you like to use a building after some parts of
the concrete beams have fallen on the floor?)

Section 7.11.1 of the ACI Code states that compression steel in beams must be enclosed
by ties or stirrups or by welded wire fabric of equivalent area. In Section 7.10.5.1, the code
states that the ties must be at least #3 in size for longitudinal bars #10 and smaller and at
least #4 for larger longitudinal bars and bundled longitudinal bars. The ties may not be spaced
farther apart than 16 bar diameters, 48 tie diameters, or the least dimension of the beam cross
section (code 7.10.5.2).

For doubly reinforced beams, an initial assumption is made that the compression steel
yields as well as the tensile steel. (The tensile steel is always assumed to yield because of the
ductile requirements of the ACI Code.) If the strain at the extreme fiber of the compression
concrete is assumed to equal 0.00300 and the compression steel, A, is located two-thirds of the
distance from the neutral axis to the extreme concrete fiber, then the strain in the compression
steel equals % x 0.003 = 0.002. If this is greater than the strain in the steel at yield, as say
50,000/(29 x 10%) = 0.00172 for 50,000-psi steel, the steel has yielded. It should be noted that
actually the creep and shrinkage occurring in the compression concrete help the compression
steel to yield.

Sometimes the neutral axis is quite close to the compression steel. As a matter of fact,
in some beams with low steel percentages, the neutral axis may be right at the compression
steel. For such cases, the addition of compression steel adds little, if any, moment capacity to
the beam. It can, however, make the beam more ductile.

When compression steel is used, the nominal resisting moment of the beam is assumed to
consist of two parts: the part due to the resistance of the compression concrete and the balancing
tensile reinforcing, and the part due to the nominal moment capacity of the compression
steel and the balancing amount of the additional tensile steel. This situation is illustrated in
Figure 5.13. In the expressions developed here, the effect of the concrete in compression,
which is replaced by the compressive steel, A., is neglected. This omission will cause us to
overestimate M, by a very small and negligible amount (less than 1%). The first of the two
resisting moments is illustrated in Figure 5.13(b).

a
Mnl = Aslfy (d - 5)

- -—=n n
° | ° -
A | Ag |
} |
= d+ ) 1d—d
1 |
Ag A5 I Agy |
° ° 1 ) j—
| A J
MVt:Mnl +M712 Mnl =Aslfy(d_% Mn2=As’f;"(d_d,)=ASZf;> (d_d')
(a) (b) ©

FIGURE 5.13 Doubly reinforced beam broken into parts.



5.7 Compression Steel

The second resisting moment is that produced by the additional tensile and compressive
steel (A, and A}), which is presented in Figure 5.13(c).

M,, = Alf,(d —d)

Up to this point it has been assumed that the compression steel has reached its yield
stress. If such is the case, the values of A, and A, will be equal because the addition to T of
Ajof, must be equal to the addition to C of Agf} for equilibrium. If the compression steel has
not yielded, A, must be larger than A_,, as will be described later in this section.

Combining the two values, we obtain

M, =Af, (d - %) +Auf,(d — d')
oM, = [Aaf, (4= 5) +Anfd = )]

The addition of compression steel only on the compression side of a beam will have
little effect on the nominal resisting moment of the section. The lever arm, z, of the internal
couple is not affected very much by the presence of the compression steel, and the value of T
will remain the same. Thus, the value M, = Tz will change very little. To increase the nominal
resisting moment of a section, it is necessary to add reinforcing on both the tension and the
compression sides of the beam, thus providing another resisting moment couple.

Examples 5.7 and 5.8 illustrate the calculations involved in determining the design
strengths of doubly reinforced sections. In each of these problems, the strain, f7, in the com-
pression steel is checked to determine whether or not it has yielded. With the strain obtained,
the compression steel stress, f;, is determined, and the value of A, is computed with the
following expression:

Af, = Alfl

In addition, it is necessary to compute the strain in the tensile steel, €,, because if it is
less than 0.005, the value of the bending, ¢, will have to be computed, inasmuch as it will be
less than its usual 0.90 value. The beam may not be used in the unlikely event that ¢, is less
than 0.004.

To determine the value of these strains, an equilibrium equation is written, which upon
solution will yield the value of ¢ and thus the location of the neutral axis. To write this equation,
the nominal tensile strength of the beam is equated to its nominal compressive strength. Only
one unknown appears in the equation, and that is c.

Initially the stress in the compression steel is assumed to be at yield (f] = /y). From
Figure 5.14, summing forces horizontally in the force diagram and substituting g, ¢ for a leads to

Afy = 0.85f!/B,cb +A;fy
@A, - A,
~ 0.85f/B/b
Referring to the strain diagram of Figure 5.14, from similar triangles

c /
¢l = (0.003)

c

If the strain in the compression steel €; > €, = f,/E,, the assumption is valid and f{ is at
yield, f,. If €, < €, the compression steel is not yielding, and the value of ¢ calculated above
is not correct. A new equilibrium equation must be written that assumes f, < 1y

!/

d
) (0.003)E,

c —

Af, = 0.85f/Bicb + A, (

where E; = 29,000,000 psi = 29,000 ksi.
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. 0.003
ES A
Yoo ~«— C.=085f.ab
©c O : ~— Ci=Afi=Agf,
A AN
d
Ag
(O ONG) T=Afy
H_/ :
€,  strain internal forces

FIGURE 5.14 Internal strains and forces for doubly reinforced
rectangular beam.

The value of ¢ determined enables us to compute the strains in both the compression and
tensile steels and thus their stresses. Even though the writing and solving of this equation are
not too tedious, use of the Excel spreadsheet for beams with compression steel makes short
work of the whole business.

Examples 5.7 and 5.8 illustrate the computation of the design moment strength of doubly
reinforced beams. In the first of these examples, the compression steel yields, while in the
second, it does not.

Example 5.7

Determine the design moment capacity of the beam shown in Figure 5.15 for which fy =
60,000 psi and f, = 3000 psi.

SOLUTION
Writing the Equilibrium Equation Assuming f; = f,

Aff, = 0.85f,bp;c +ALf,
(6.25 in.2) (60 ksi) = (0.85) (3 ksi) (14 in.) (0.85¢) + (2.00 in.2) (60 ksi)

d'I 21in
[ ] [ ) —_—T
2#9
(2.00 in.2)
27 in.
215 in.
4411
(6.25in.%)
e O o o —
3in.

| 14 in. | ?

| FIGURE 5.15 Beam cross section for Example 5.7.




5.7 Compression Steel

_ (6.25in.” —2.00in.?)(60 ksi) _
c= (0.85) (3 ksi) (0.85) (14 in.) 8.40 in.

a=p,c=(0.85)(8.40in.) =7.14 in.

Computing Strains in Compression Steel to Verify Assumption that It Is Yielding

—-d 8.40in. —25in.
e, = =9 (0.003) = %(0.003) — 0.00211
f, 60,000 psi
_ Yy _ ’ _ ’ .
%= E, ~ 39,000000psi _ 007 =< ~fs =1y @ assumed

Note: Example 5.8 shows what to do if this assumption is not correct.

_Af,  (2.00in.2) (60,000 psi)

f, B 60,000 psi

Ay =A; —A, =6.25in2 —2.00in.? = 4.25in.?

Ay =2.00in.?

9=C0,003 = W(o.oos) = 0.00557 > 0.005 =09

€ =

Then the design moment strength is
a

¢Mn = ¢ [As1 fy (d 2) +A,sfs,(d - d,)j|

714 in.

—09 [(4.25 in.2) (60 ksi) <24 in. — ) +(2.00in.2) (60 ksi) (24 in. — 2.5 in.)}

= 7010in-k = 584.2 ft-k

Example 5.8

Compute the design moment strength of the section shown in Figure 5.16 if fy = 60,000 psi and
f, = 4000 psi.

[ ] [ ) —_—T
2#7
(1.20in.2)
27 in.
215 in.
4410
(5.06 in.%)
e O o o
3in

| 14 in. l ?

FIGURE 5.16 Beam cross section for Example 5.8.
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SOLUTION
Writing the Equilibrium Equation Assuming f; = f,
Asf, = 0.85f bpic + Adf,
(5.06 in.2) (60 ksi) = (0.85) (4 ksi) (14 in.) (0.85¢) + (1.20 in.2) (60 ksi)

_ (5.08in.2 —1.20in.?) (60 ksi) _
T (0.85) (4 ksi) (0.85) =5.721in.

a=pc=(0.85)(5.72in) = 4.86 in.

Computing Strains in Compression Steel to Verify Assumption that It Is Yielding

—d 5.72in. — 2.5 n.
e =79 0.003) = %(0.003) — 0.00169
f 60,000 psi
_ y _ ’ _ ’ . £
% =E, ~29,000000psi 00077 < +fs 71y s assumed

Since the assumption is not valid, we have to use the equilibrium equation that is based on f
not yielding.
c—d

Af, = 0.85,,cb + A, < ) (0.003)E,
(5.06 in.2) (60 ksi) = (0.85) (4 ksi) (0.85¢) (14 in.) + (1.20 in.?) <°_2%> (0.003) (29,000 ksi)

Solving the Quadratic Equation for ¢ = 6.00 in. and a = ;¢ = 5.10 in.

Compute strains, stresses, and steel areas

—d 6.00 in. — 2.5 in.
¢ = <C _ )(0.003) - %(0.003) = 0.00175 < ¢,

f. = €.E, = (0.00175) (29,000 ksi) = 50.75 ksi

_Af,  (1.20in.2)(50,750 psi)

A, = = =1.015in.2
2= 60,000 psi n
Ay =A,—A, =506in2-1.015in.? = 4.045in.2
d-c 24in. — 6.00 in.
6 = < . ) (0.003) = ——2—~-=———(0.003) = 0.0090 > 0.005 ¢ =09

Then the design moment strength is
a ! g /'
oM, = ¢ [As1 fy (d - E) + Afs(d — d)j|

5.10in.

-09 [(4.045 in.2) (60 ksi) <24 in. — ) +(1.20in.2)(50.75 ksi) (24 in. — 2.5 in.)}

= 5863 in-k = 488.6 ft-k

5.8 Design of Doubly Reinforced Beams

Sufficient tensile steel can be placed in most beams so that compression steel is not needed.
But if it is needed, the design is usually quite straightforward. Examples 5.9 and 5.10 illustrate
the design of doubly reinforced beams. The solutions follow the theory used for analyzing
doubly reinforced sections.



5.8 Design of Doubly Reinforced Beams

Example 5.9

Design a rectangular beam for M, =325 ft-k and M, = 400 ft-k if f; = 4000 psi and f, =
60,000 psi. The maximum permissible beam dimensions are shown in Figure 5.17.

M, = (1.2) (325 ft-k) + (1.6) (400 ft-k) = 1030 ft-k
SOLUTION

Assuming ¢ = 0.90 u 1030 fi-k
t-
M =YY= ———— =1144.4 ft-k
n ¢ 0.90
Assuming maximum possible tensile steel with no compression steel and computing beam’s
nominal moment strength

Pmax (from Appendix A, Table A.7) = 0.0181

Ay, = (0.0181)(15in.) (28 in.) = 7.60 in.2

M
For p = 0.0181 ¢>bcl;2 (from Table A.13) = 912.0 psi

M, = (912.0 psi) (0.9) (15 in.) (28 in.)2 = 9,652,608 in-Ib

— 804.4 ft-k
804.4
My = 5og = 8938 ftk

M., =M, — M, =1144.4 ft-k — 893.8 ft-k = 250.6 ft-k
Checking to See Whether Compression Steel Has Yielded
(7.60 in.2) (60 ksi)

_ —8.94in.
2= 085 @ ksi)(15in) n
8.94 in. .
. /1052in. —3in.
e = <W> (0.00300) = 0.00214 > 0.00207

Therefore, compression steel has yielded.

|:‘<—

3i
o
A
31 in.
25 in.
AS
. —_—
3in.

15 in. | ?

| FIGURE 5.17 Beam cross section for Example 5.9.
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. , o My o (12in/ft) (2506 ft-k) o
Theoretical Ag required = 7)d—d) = G0ks)@8in.—31n) _ 2.00in.
Afe = Apf,
_Af, (2.00in.2) (60 ksi) o 5
Ao = ;= c0ks =2.00in. Try 2 #9 (2.00 in.2)
As =Ag +Ag
A, =7.60in.2 +2.00in.2 = 9.60 in.? Try 8 #10 (10.12in.?)

If we had been able to select bars with exactly the same areas as calculated here, ¢; would have
remained = 0.005 as originally assumed and ¢ = 0.90, but such was not the case.

From the equation for ¢ in Section 5.7, ¢ is found to equal 11.24 in.anda =84c = 9.55in.
using actual, not theoretical, bar areas for A, and A;.

11.24in. — 3in.

e = <%) (0.003) = 0.00220 > 0.00207 compression steel yields
28in. —11.24 in.

¢ = <W> (0.003) = 0.00447 < 0.005

250
¢ = 0.65 + (0.00447 — 0.002) <T> - 0.855

$M_ — 0.855 [(10.12 in2 — 2.00in.2) (60 ksi) <28 in, — 9:95 '”')

+(2.00 in.2) (60 ksi) (25 in.)}

= 12,241 in-Ib = 1020 ft-k < 1030 ft-k ~ No good

The beam does not have sufficient capacity because of the variable ¢ factor. This can be
avoided if you are careful in picking bars. Note that the actual value of A; is exactly the same
as the theoretical value. The actual value of Ag, however, is higher than the theoretical value
by 10.12 — 9.6 = 0.52 in.2. If a new bar selection for Aj is made whereby the actual value of
A; exceeds the theoretical value by about this much (0.52 in.?), the design will be adequate.
Select three #8 bars (A, = 2.36 in.2) and repeat the previous steps. Note that the actual steel
areas are used below, not the theoretical ones. As a result, the values of ¢, a, €/, and f’; must be
recalculated.

Assuming f; =f,

(As —AJdf,  (10.12n.2 —2.36 in.?) (60 ksi)

€= 0.857,bp; _ (0.85)(4 ksi)(15in.)(0.85) 10.74 in.

/ c—d 10.74 in. — 3in. S

s = < c ) (0.003) = W(O-OOS) = 0.00216 > ¢, .. Assumption is valid
d-c 28in. — 10.74 in.

“= < c ) (0.008) = ——5— 5. (0.003) = 0.00482 < 0.005 . $#£09

¢ = 0.65 + (¢, — 0.002) <23i0> —0.88



5.8 Design of Doubly Reinforced Beams

A, (2.36in.2)(60 ksi) L,
Ay = - oS —2.36 in.

Ay =A, — A, =1012in2 —2.36in.2 = 7.76 in.?

My = Agif, (d _ g) — (7.76 in.2) (60 ksi) [28 in. — w} —10,912in-k = 909.3 ft-k

M, = Agf,(d — ') = (2.36 in.?) (60 ks (28 in. — 3 in.) = 3540 in-k = 295 ft-k
M, =M, +M,, =909.3 ft-k +295 ft-k = 1204.3 ft-k

$M, = (0.88)(1204.3 ft-k) = 1059.9 ft-k > M, OK

Note that eight #10 bars will not fit in a single layer in this beam. If they were placed in two
layers, the centroid would have to be more than 3 in. from the bottom of the section. It would be
necessary to increase the beam depth, h, in order to provide for two layers or to use bundled

bars (Section 7.4).

Example 5.10

A beam is limited to the dimensions b=15in.,d =20in., and d' =4 in. If My =170 ft-k,
M, =225 ft-k, f, = 4000 psi, and fy = 60,000 psi, select the reinforcing required.

SOLUTION
M, = (1.2)(170 ft-k) + (1.6) (225 ft-k) = 564 ft-k

Assuming ¢ = 0.90

564 ft-k
0.90

Max A, = (0.0181)(15in.) (20 in.) = 5.43 in.2

M, = = 626.7 ft-k

M,
For p = 0.0181—%. = 912.0 psi (from Appendix A, Table A.13)

$ba?
M, = (912 psi) (0.90) (15 in.) (20 in.)? = 4,924,800 in-Ib = 410.4 ft-k
410.4 ft-k
M,ﬂ = W = 4560 ft'k

M, = 626.7 ft-k — 456.0 ft-k = 170.7 ft-k

Checking to See If Compression Steel Has Yielded

Asif, (5.43 in.%) (60 ksi)

0.85f,b _ (0.85)(4 ksi) (15 in.) n
6.39 in. .
=085 = 7.521n.
, 7.52in. —4.00 in. 60 ksi
s = <T> (0.003) = 0.00140 < 29.000 ksl — 0.00207

~.f, = (0.00140) (29,000 ksi) = 40.6 ksi
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M
Theoretical A oqq = W(TIQCW)
(d —

(12 in/ft) (170.7 ft-K)

= =3.15in.? Try 4 #8 (3.14in.?
(406 ks) (201, —4in) =20 ry4#8 814in.7)
Afs = Agf,
_ (8.14in.2)(40.6 ksi) g
Ay = 0 ks =2.12in.
A, =Ay +A, =543in24+212in?=7.55in.2 Try 6 #10 (7.59in.?)

Subsequent checks using actual steel areas reveal ¢, = 0.00495, ¢ = 0.896, and pM,, = 459.4
ft-k, which is less than M, by about 0.1%.

5.9 Sl Examples

Examples 5.11 and 5.12 illustrate the analysis of a T beam and the design of a doubly
reinforced beam using SI units.

Example 5.11

Determine the design strength of the T beam shown in Figure 5.18 if fy = 420 MPa,
f. = 35 MPa, and E; = 200,000 MPa.

SOLUTION
Computing T and A,
T = (3060 mm?) (420 MPa) = 1 285 200 N

T 1 285 200 N
A, = = =43 200 mm?
© = 0.857, _ (0.85)(35 MPa) mm

|<— effective width = 1200 mm —>|

100 mm
550 mm
6 #25 450 mm
(3060 mm?)
e o ©o
e o o
|<— 300 mm —|

FIGURE 5.18 Beam cross section for Example 5.11.



5.9 Sl Examples
A, 3060 mm?
?=b,d " (300 mm) (550 mm) = Pmax
= 0.0216 (from Appendix B, Table B.7) %
i /35 MPa
y
or
1.4 1.4
— =———— =0.003 33 < 0.0185 K
f, = 420 MPa = oK

Calculating Design Strength

43,200 mm?2

1200 mm =36 mm < h; = 100 mm
.. stress block is entirely within flange

Eellin =532 mm

z=d—2 —550mm—
2
oM, = ¢Tz
—(0.9)(1 285 200 N) (532 mm)

=6.153 x 108 N-mm = 615.3 kN-m

Example 5.12

If M, = 1225 kN-m, determine the steel area required for the section shown in Figure 5.19.
Should compression steel be required, assume that it will be placed 70 mm from the
compression face. f, =21 MPa, fy = 420 MPa, and E; = 200,000 MPa.

SOLUTION
1225 kKN-m
= —— =1361 kN-m
" 0.9
700 mm
o () () [
l—— 350 _ FIGURE 5.19 Beam cross section for
e Example 5.12.
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Pmax If Singly reinforced = 0.0135 (from Appendix B, Table B.7)

A, = (0.0135) (350 mm) (700 mm) = 3307 mm?

M
¢>bléi12 = 4.769 MPa (from Table B.8)

(4.769 MPa) (0.9) (350 mm) (700 mm)?

S =736.1 kN-m

M, = (¢bd?) (4.769 MPa) =

_ 736.1 kN-m

Mm = 0.9

=818 kN-m

<M, of 1361 kN-m .". Double reinf. required

M,y = M, — M, = 1361 kN-m — 818 kN-m = 543 kN-m

Checking to See If Compression Steel Yields

(3307 mm?2) (420 MPa)
_ — 20030
@ = (0.85) (21 MPa) (350 mm) mm

_222.32 mm
085
, 261.55 mm — 70 mm
= ( 261.55 mm

420 MPa
~ 200 000 MPa
M., 543 kN-m x 10°

! = = = 2052 mm?
sread = Fq— ) (700 mm — 70 mm) (420 MPa) |

= 261.55mm

) (0.003) = 0.00220

=0.002 10 .. Compression steel yields

Use 3 #32 bars (2457 mm?)

A, = A +Ag, = 3307 mm? 4 2052 mm? = 5359 mm?

Use 6 #36 bars (A, = 6036 mm?)

5.10 Computer Examples

Example 5.13

Repeat Example 5.3 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for T beams and select the Analysis worksheet tab at the bottom.
Input only cells C3 through C9 highlighted in yellow (only in the Excel spreadsheets, not the
printed example).



T-Beam Analysis

5.10 Computer Examples

fl, = 4,000 psi
f,= 60,000 psi
Dot = 30 in. ,
b, = 14 in. a |
d= 30 in. w1
hy = 4 in. T d
A = 10.12  in.2 o o i
By = 0.85
b, |<«— — b, |<— —
3. /f —> DOy W
As min = \f/:bwd =1.33in?
y
200
As min = ——by,d = 1.40 in2  Agmin=1.40in.2  minimum steel is OK

y

Ifa < hy: a > hg, so this analysis is not valid.

Pl
0.85f,b n
M, = Adf,(d —a/2) = — in-lb = See solution below  ft-k

c =a/py = 7.00346

d—
=" ©(0.003) = 0.009851 —

¢ =09
oM, = — in-lb = See solution below  ft-k
Ifa>h;: a=> hy, so this analysis is valid —acts like a T beam.
0.85f;(b — b,)h
Ay = 0.851c(b = bulftr _ 5 67 in 2
fy
Ag, = As — Ay = 6.493 in.?
Pl

= 8.185 in.

~ 0.85f.b
hy a .
My = A, (d = 3 ) +Asf (d - §> — 16,186,387 in-Ib = 1348.9 ft-k
c =a/B; = 9.629263 in,

d—c
€t=

(0.003) = 0.006347  —
¢ =09
oM, = 14,567,748 in-lb = 1214.0 ft-k

139



140 CHAPTER 5 Analysis and Design of T Beams and Doubly Reinforced Beams

Example 5.14

Repeat Example 5.6 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for T beams and select the T-Beam Design worksheet tab at the
bottom. Input only cells C3 through C9 highlighted in yellow.

T-Beam Design

. beff
fl = 3,000 psi l
f, = 60,000  psi hy
beff == 54 in. T d
_ : clear span
b, = U n. O | between 0-4L
= 24 in. parallel T
hf = 3 in. — bw Bms# bw |—— —
M, = 920  ft-k
By = 0.85
M,, = 697.1  ft-k
Ifa < h;: a> hg, so this analysis is not valid.
M :
(Rl = ¢b22 = 394.38in.
0.85f, 2R
o= cl1-/1- "] =0.007179
. 0.85f¢
of,d .
= = 4.054201 in.
4= 0.857, n
c=a/py =4.769648
d-— 3V/f;
e = 2-°(0.003) = 0.012005 A, .. = f—\/?bwd = 0.985901 in.?
y
¢ =0.9 - =
200
A, = pbd = 9.304391 in.2 As min = ——byd =12 in.?
y
Ifa>h;: a> h, so this analysis is valid —acts like a T beam.
0.85f,(b — by)h
o= # =4.97in.?
y

h
My = A, <d - 5") = 503.5 ft-k



My, = My — M, = 416.5

M,
R, = ¢b“C;V2 = 642.8
0.85f, 2R
= 1- [1- = ) _0.012573
Pw="% ( 0.85fg>
_ pifd :
a= 0.857, — 7.100128 in.
c =a/py = 8.353092 in.
d—
&= € (0.003) = 0.00562 -
¢=0.9 —
3 /
Agy = p,byd = 4.53in.2 Ag min = ;—Fcbwd = 0.985901 in.?
y
200
A=Ay, +Ag = 9.50in.2 As min = ——byd =1.2 in.?
y

Note: Solution is based on ¢ = 0.9.

5.10 Computer Examples

Example 5.15

Repeat Example 5.7 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for Beams with Compression Steel and select the Analysis worksheet
tab at the bottom. Input only cells C3 through C9 highlighted in yellow. Other values are calculated

from those input values. See comment on cell E22 for Goal Seek instructions.

Analysis of Doubly Reinforced Beams by ACI 318-11
A AL b, d, M, fl, fy known or specified

b = 14 in.

d= 24 in.

d = 2.5 in.
A, = 2.00 in.2
A= 6.25 in.2
f,= 3,000 psi
f, = 60,000 psi

By = 0.85
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Determine the location of the neutral axis, c.

c= 8.40 _ in.
€= 000211 >,
a= 7.14 in.\ "
fi= 60.00  psi Cmtn}qusion steel is at yield
0.85fBich + A, f] = Afy N
0.85 f/B,ch = 255 N
Alf = 120 kips \ ~ -
Ady= 375 kips | O gy n el
0.85 f:ﬁ#’b T A_}.-ff— Asf_\- = % D14. Go to “Data” at the top of
Ao = A;_f; f(fy — 2.000 in.2 the .screen, thn “What If Analysis”
R to find Goal Seek.
Ag =A—Ap = 4250 in.”
€= d: £(0.003) = 0.005568 OK tensile strain exceeds 0.004
o= 0900 -
My = (As—f,—A'f})(d—a/2) = 5209.29 in-lb = 434.11 kip-ft
oM,; = 4688.36 in-lb = 390.70 kip-ft
M,, = 2580.00 in-lb = 215.00 kip-ft
oM,y = 2322.00 in-lb = 193.50 kip-ft
M, = 7789.29 in-lb = 649.11 kip-ft

oM, = 7010.36 in-Ib = kip-ft

Example 5.16

Repeat Example 5.9 using the Excel spreadsheet.

SOLUTION

Open the Excel spreadsheet for Beams with Compression Steel and select the ACI 318-11 Case
| worksheet tab at the bottom. Input only cells C3 through C9 highlighted in yellow. Other values
are calculated from those input values.

Design of Doubly Reinforced Beams by ACI 318-11 when both A, and A} are unknown

Casel: A, and Ag are unknown; b, d, M, f;, f, known or specified.
M, = 1,030.00 ft-k
b= 15 in.
d= 28 in.
d = 3 in.
fl = 4,000 psi
f, = 60,000 psi

By = 0.85
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1. Determine the maximum ultimate moment permitted by the code for the beam if it were singly
reinforced (using the maximum value of p associated with ¢ = 0.9).

p = 0.375(0.856, f, /f,) = 0.018063

9,642,313.4 in-lb
803.53 ft-k

_ 2 rty
me—@md@<1—17,%
2. If M, = M, compression steel is not needed. Design as singly reinforced beam. If M., <
M,,, continue to step 3.
3. The most economical design uses M4 = M,,,,, which corresponds to p; = the maximum
value of p associated with ¢ = 0.9.

Py = 0.018063
Agq =pbd = 7.586 in.?
M, = Ay f,(d—a/2) = 9,642,313.41 in-Ib
= 803.53 ft-k
Adf, o
= = 8.925 in. = — =10.500n.
a=5g5 b in c 5 in
d-c
€ = (0.003) = 0.00500
¢ = 0.65 + (¢, — 0.002)(250/3) = 0.900
4. My, =M,—M, = 226.47 ft-k
M
5. Ap=——%2— = 2013 in?
2= 44, —d) '
6. c =a/p, = 10.500 in.
/ c—d f ] / R
7. f{ = (87,0000 = 62,143 psi iffe > 1, usef, =1, f. = 60,000 psi
8. A — ASny . 201 in2 Select b No. of bars Bar size A =236 2
A= = .01 in. elect bars ™ 3 #8 L =2.361n.
9. Al =As +A, = 9.60 in?2 Selectbars 8 #10 A, =10.13in.2
PROBLEMS
Problem 5.1 What is the effective width of a T beam? What Problem 5.3 If additional reinforcing bars are placed only in
does it represent? the compression side of a reinforced concrete beam, will they
L , 9 .
Problem 5.2 What factors affect the selection of the Zﬂ;l;ﬁlfmﬁcantly to the beam’s flexural strength? Explain your

dimensions of T-beam stems?
Problem 5.4 Why is compression reinforcing particularly
important in reinforced concrete flexural members located in
earthquake-prone areas?
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Analysis of T Beams

For Problems 5.5 to 5.15, determine the design moment strengths  Problem 5.11 (Ans. 297 .4 ft-k)

¢M, of the sections shown. Use f, =60,000 psi and f/ =
4000 psi, except for Problem 5.9, where f/ = 5000 psi. Check

each section to see if it is ductile. 4 4in
y4in.
Problem 5.5 (Ans. 369.1 ft-k) 1
}‘7 effective width = 40 in. —>| l 12 in. 22 in.
| I 3in.
T 2491 o 2#9 e !r .
3in.
® o | — ¥
28 in. 3in.
5in. 5in.
34#9 -~ 26 in. -
°
~¢ 36 in. >
<14 in.—]
Problem 5.6 Repeat Problem 5.5 if four #10 bars are used.
Problem 5.7 Repeat Problem 5.5 if 10 #7 bars are used.
(Ans. 721.4 ft-k)
Problem 5.12
Problem 5.8
]
‘<— effective width = 36 in.4>‘ | 4 in.
l .
| I 3in.
t 8 in.
Y
4
32 in.
36 in.
6 #10 21 in.
°
~—14in—>] 5#10 |
[ J [ J ® ® -1
“3 in.
P 5
Problem 5.9 Repeat Problem 5.8 if £/ = 5000 psi. (Ans.
1042 ft-k) 6 in. 6 in. 6in.
Problem 5.10 Repeat Problem 5.8 if eight #9 bars are used
and f = 4000 psi. -« 18 in: >
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Problem 5.13 (Ans. 419.7 ft-k) Problem 5.15 (Ans. 1075.2 ft-k)

} 1
6 in 6 in.
)
20in. 32in.
18 in. 301in.
-3 in.
6 #11 Sin
e e 0 0 0 0 ,
3in.
3#10 3 in.
o o o — 6 in. . 6 in. T
3 in. 12 in.
24 in.
14 in. >
Problem 5.14
48 in.
6 in.
29 in.
20 in.
6 #9
e 0o o o o o
3in.
18 in: T
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Problem 5.16 Calculate the design strength ¢M,, for one of the T beams if £/ = 5000 psi, J, = 60,000 psi, and the section has a
24-ft simple span. Is €, > 0.005?

in,

4#8 )| @ 44#8] @ 4#8] @
-1 12 in.fe— ‘b|]2in.}ﬂ— —-—'12in.L<—
6 ft O in. 6 ft 0 in. !~ 6 ft0in. ! 6 ft O in.

Problem 5.17 Repeat Problem 5.16 if f/ = 3000 psi and three
#11 bars are used in each web. (Ans. 486.1 ft-k)

Design of T Beams

Problem 5.18 Determine the theoretical area of reinforcing Problem 5.19 Repeat Problem 5.18 if M, = 500 ft-k. (Ans.
steel required for the T beam shown if £/ = 3000 psi, 4.12 in2)
fy = 60,000 psi, M,, =400 ft-k, and L = 28 ft. Clear distance

between flanges = 3 ft. Problem 5.20 Repeat Problem 5.18 if f, = 50,000 psi and

£/ = 5000 psi.

I 48 in. i ‘

| ‘ I 4 in.

28 in.

o]

Problem 5.21 Determine the amount of reinforcing steel required for each T beam in the accompanying illustration if
£, = 60,000 psi, £ = 4000 psi, simple span = 24 ft, clear distance between stems = 3 ft, M, = 200 ft-k (includes effect of
concrete weight), and M, = 400 ft-k. (Ans. 6.80 in.2)

!

4tin. T

30 in.

® ® ° 4L
——NlZin‘r‘— —>|12in.l<-— —*IlZirl.Q——

4 ft 0 in. | 4 £t 0 in. *r 4t 0 in. i 4 ft 0 in.
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Problem 5.22 Select the tensile reinforcing needed for the T beams if the reinforced concrete is assumed to weigh 150 Ib/ft> and
a live floor load of 140 Ib/ft? is to be supported. Assume 40-ft simple spans, f, = 60,000 psi, and f = 3000 psi.

4 in.

!

}
22in. 30 in.
Y

° ° °
15in 15 in. 15 in. 4 in.
10 ft 0 in. I 10 ft O in. I 10 ft 0 in. I 10 ft 0 in.

Problem 5.23 With f, = 60,000 psi and f = 4000 psi, select the reinforcing for T beam AB for the floor system shown. Assume
simple supports at A and B. The live load is to be 80 psf, while the dead load in addition to the concrete’s weight is to be 100 psf.
Concrete is assumed to weigh 150 Ib/ft3. The slab is 4 in. thick, while d is 24 in. and b,, is 15 in. (Ans. 5.01 in.2, use 4 #10 bars)

A

edge

T

I

I

I

I

I

I b

I Q
L beam | A;l“ cams 32 ft
I

I

I

I

I

I

I

|

/

I
|
|
:
|
~
l
|
|
|
|
|
|
|

B

| 6ft
I | 4@ 12ft=48ft

Problem 5.24 Repeat Problem 5.23 if the span is 36 ft and the Problem 5.26

live load is 120 psf. l
Problem 5.25 Prepare a flowchart for the design of tensilely
reinforced T beams with ¢ = 0.9. ¢ o o0 T
¢ 4 #8
. . 2 Lin.
Analysis of Doubly Reinforced Beams 2
For Problems 5.26 to 5.32, compute the design moment 36 in.

strengths @M, of the beams shown if f = 60,000 psi and
f! = 4000 psi. Check the maximum permissible A  in each case
to ensure ductile behavior.

8 #10
e o 0 o
e o 0o o

}4715 in.—>
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Problem 5.27 (Ans. 679.1 ft-k)

‘

L 2C I
3#8

B | —= —

32 in.

4#10
e o0 |—

°
}4—15 in.—|

Problem 5.28

e o o
3#8

T

[\
[SIE

30 in.

4#11
e o 06 0 |——

f—1s in.—>|

Problem 5.29 (Ans. 613.0 ft-k)

2#8

28 in.

4 #11
°

2] |

3in.

Problem 5.30

3in.
2 #8 ° —
3in.
14 in. 26 in.
| 4in.
4 #9 3in.
[ ] [ ] [ ] —_—
3in.
16 in.
Problem 5.31 (Ans. 737.1 ft-k)
’49 in.>|
} 3in
[ N J -
2 #9
24 in.
33 in.
4 #11 3in.
° ° [} o | ——
3in.
15 in.
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Problem 5.32 Design of Doubly Reinforced Beams
For Problems 5.35 to 5.38, determine the theoretical steel areas
6 in. 3in. required for the sections shown. In each case, the dimensions
{ are limited to the values shown. If compression steel is required,
assume it will be placed 3 in. from the compression face, f =
4000 psi, and f, = 60,000 psi.
° [ ] psy, y B p
2 #9
6 in.
| Problem 5.35 (Ans. A, = 8.87 in%, A, = 1.77 in.?)
12 in. 30 in.
28 in.
J
5411 6 in.
e o o o o —L e o0 |——

A |<—14 in.—>|

M, = 950 fi-k
3 in.—| 4@3in.=12in>| |= 3in.

Problem 5.36

18 in.

Problem 5.33 Compute the design moment strength, ¢M,,, of
the beam shown. How much can this permissible moment be

increased if four #9 bars are added to the top 2% in. from the )
compression face, f = 4000 psi, and f, = 60,000 psi? (Ans. 28in.
690.2 ft-k, 35.5 ft-k)

- e O o E—
\
|4—12in.—>|
M, = 1000 ft-k
28 in.
Problem 537 (Ans. A, = 8.02 in2, AL =237 in.2)
4#11
o 06 00 _—
l+—16in.—] 26 in.
e o o _—

Problem 5.34 Repeat Problem 5.30 if three #10 bars are used
in the top. |<—12 in.—»{

M, =800 fi-k
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Problem 5.38 Problem 5.39 Prepare a flowchart for the design of doubly
reinforced rectangular beams.

Computer Problems

14 in. .
" Solve Problems 5.40 to 5.45 using the Chapter 5 spreadsheet.

20 in.

Problem 5.40 Problem 5.5

3in.

d d * |30 Problem 5.41 Problem 5.7 (Ans. 721.4 fi-k)

-3 in.—>|<—1 0in- 8 in> Problem 5.42 Problem 5.14
Problem 5.43 Problem 5.21 (Ans. A; = 6.80 in%)

26 in.

Problem 5.44 Problem 5.27

M, =300 ft-k .,
Problem 5.45 Problem 5.35 (Ans. A, = 8.86 in.”,

Al =1.78 in.?)

Problems in Sl Units
For Problems 5.46 and 5.47, determine the design moment strengths of the beams shown in the accompanying illustrations if
f! =28 MPa and fy =420 MPa. Are the steel percentages in each case sufficient to ensure tensile behavior; that is, €, > 0.005?

c

Problem 5.46

i effective width = 1800 mm

|
|
| | 1

S f~—

700 mm
600 mm
4 #29 \
e o 0 o
| 400 mm

Problem 547 (Ans. 1785 kN-m)

800 mm i l

| 100 mm

800 mm
700 mm
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For Problems 5.48 and 5.49, determine the area of reinforcing steel required for the T beams shown if f/ = 28 MPa and
fy =420 MPa. Check ¢, to see that it is > 0.005.

Problem 5.48

| effective width = 1600 mm

|

|
|
| | 100 mm

600 mm
500 mm

300 mm

M, =475 kN+m

Problem 5.49 (Ans. 3750 mm?)

|« effective width = 1400 mm 4.{ l

I | 70 mm

800 mm
730 mm

M, = 1100 kN+m

400 mm ‘
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For Problems 5.50 to 5.52, compute the design moment
strengths of the beams shown if f, =420 MPa and f =
21 MPa. Check the maximum permissible A, in each case to

ensure ductile failure. £, = 200 000 MPa.

Problem 5.50

o o
3 #29

4 #36
e o o

|<— 450 mm —>|

70 mm

650 mm
580 mm

Problem 5.51 (Ans. 926.9 kN-m)

Problem 5.52

2#22

4 #36
e o o

700 mm
630 mm

|<— 400 mm —>|

200 mm
? 70 mm
[ ] [ ] —
2#29
330 mm
5 #32 100 mm
) ) ° ° ° —k
100 mm
~———— 500 mm ——

For Problems 5.53 and 5.54, determine the theoretical steel
areas required for the sections shown. In each case, the dimen-
sions are limited to the values shown. If compression steel is
required, assume it will be placed 70 mm from the compression
face. f! = 28 MPa, f, = 420 MPa, and E; =200 000 MPa.

Problem 5.53 (Ans. A; = 6592 mm?, Al =2158 mm?)

Problem 5.54

700 mm

~<—350 mm—-|

M, =1500 kN*m

500 mm

350 mm

M, =750 kNem




More Detailed Problems

Problem 5.55 Two-foot-wide, 4-in.-deep precast reinforced
concrete slabs are to be used for a flat roof deck. The slabs are
to be supported at their ends by precast rectangular beams
spanning the 30 ft width of the roof (measured c. to c. of the
supporting masonry walls). Select f, and f, design the slabs
including their length, and design one of the supporting interior
beams. Assume 30-pst roof live load and 6-psf built-up roof.
(One ans. Use 12-in. x 24-in. beams with 3 #9 bars.)

Problem 5.56 Repeat Problem 5.55 if the beams span is 40 ft
and roof live load is 40 psf.

Problem 5.57 For the same building considered in Problem
5.55, a 6-in.-deep cast-in-place concrete slab has been designed.
It is to be supported by T beams cast integrally with the slabs.
The architect says that the 30-ft-long T beams are to be
supported by columns that are to be spaced 18 ft o.c. The
building is to be used for light manufacturing (see Table 1.3 in
Chapter 1 for live loads). Select f, and f!, and design one of the
interior T beams. (One ans. Use T beam web 12 in. wide,
h=32in, f/ =4 ksi,fv = 60 ksi, and 4 #10 bars.)

Problem 5.58 Repeat Problem 5.57 if the building is to be
used for offices. The beam spans are to be 36 ft and the
columns are to be placed 20 ft. o.c.

Problems 153

Problem 5.59 Determine the lowest cost design for a tensilely
reinforced concrete beam for the conditions that follow:

f, =60 ksi, f =4 ksi, M, =400 ft-k, £ =24 ft,

h =d + 2.5 in.; concrete costs $120 per yard and weighs

150 1b/ft3; and reinforcing bars cost $0.95/1b and weigh 490
1b/ft3. Design the beam for the moment given with d = 1.5b,
and calculate its cost per linear foot. Plot the cost per linear foot
of beam (y-axis) versus steel percentage (x-axis). Then change
the beam size and recalculate p and the new cost. Limit beam
sizes to increments of 1 in. for b. Find the lowest-cost design
and the corresponding value of p. (Ans. Approx. p = 0.0139
and cost = $26.03/ft.)

Cost
$/ft

Steel Percentage.,p

Problem 5.60 Repeat Problem 5.59 if d = 2b.
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Serviceability

6.1 Introduction

Today the structural design profession is concerned with a limit states philosophy. The term
limit state is used to describe a condition at which a structure or some part of a structure
ceases to perform its intended function. There are two categories of limit states: strength and
serviceability.

Strength limit states are based on the safety or load-carrying capacity of structures and
include buckling, fracture, fatigue, overturning, and so on. Chapters 3 to 5 have been concerned
with the bending limit state of various members.

Serviceability limit states refer to the performance of structures under normal service loads
and are concerned with the uses and/or occupancy of structures. Serviceability is measured
by considering the magnitudes of deflections, cracks, and vibrations of structures, as well
as by considering the amounts of surface deterioration of the concrete and corrosion of the
reinforcing. You will note that these items may disrupt the use of structures but do not usually
involve collapse.

This chapter is concerned with serviceability limits for deflections and crack widths. The
ACI Code contains very specific requirements relating to the strength limit states of reinforced
concrete members but allows the designer some freedom of judgment in the serviceability
areas. This doesn’t mean that the serviceability limit states are not significant, but by far the
most important consideration (as in all structural specifications) is the life and property of the
public. As a result, public safety is not left up to the judgment of the individual designer.

Vertical vibration for bridge and building floors, as well as lateral and torsional vibration
in tall buildings, can be quite annoying to users of these structures. Vibrations are not usually
a problem in the average-size reinforced concrete building, but we should be on the lookout
for the situations where they can be objectionable.

The deterioration of concrete surfaces can be greatly minimized by exercising good
control of the mixing, placing, and curing of the concrete. When those surfaces are subjected
to harsh chemicals, special cements with special additives can be used to protect the surfaces.
The corrosion of reinforcing can be greatly minimized by giving careful attention to concrete
quality, using good vibration of the concrete, using adequate cover thickness for the bars, and
limiting crack sizes.

6.2 Importance of Deflections

The adoption of the strength design method, together with the use of higher-strength concretes
and steels, has permitted the use of relatively slender members. As a result, deflections and
deflection cracking have become more severe problems than they were a few decades ago.
The magnitudes of deflections for concrete members can be quite important. Excessive
deflections of beams and slabs may cause sagging floors, ponding on flat roofs, excessive
vibrations, and even interference with the proper operation of supported machinery. Such
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deflections may damage partitions and cause poor fitting of doors and windows. In addition,
they may damage a structure’s appearance or frighten the occupants of the building, even
though the building may be perfectly safe. Any structure used by people should be quite rigid
and relatively vibration-free so as to provide a sense of security.

Perhaps the most common type of deflection damage in reinforced concrete structures
is the damage to light masonry partitions. They are particularly subject to damage because
of concrete’s long-term creep. When the floors above and below deflect, the relatively rigid
masonry partitions do not bend easily and are often severely damaged. The more flexible
gypsum board partitions are much more adaptable to such distortions.

6.3 Control of Deflections

One of the best ways to reduce deflections is by increasing member depths—but designers are
always under pressure to keep members as shallow as possible. (As you can see, shallower
members mean thinner floors, and thinner floors mean buildings with less height, with con-
sequent reductions in many costs, such as plumbing, wiring, elevators, outside materials on
buildings, and so on.) Reinforced concrete specifications usually limit deflections by specifying
certain minimum depths or maximum permissible computed deflections.

Minimum Thicknesses

Table 4.1 in Chapter 4, which is Table 9.5(a) of the ACI Code, provides a set of minimum
thicknesses for beams and one-way slabs to be used, unless actual deflection calculations
indicate that lesser thicknesses are permissible. These minimum thickness values, which were
developed primarily on the basis of experience over many years, should be used only for
beams and slabs that are not supporting or attached to partitions or other members likely to be
damaged by deflections.
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TABLE 6.1 Maximum Permissible Computed Deflections

Type of Member Deflection to Be Considered Deflection Limitation
Z*
Flat roofs not supporting or attached Immediate deflection due to live load L —
to nonstructural elements likely to 180
be damaged by large deflections
Floors not supporting or attached to Immediate deflection due to live load L L
nonstructural elements likely to be 360
damaged by large deflections
Roof or floor construction supporting That part of the total deflection occurring ﬂ
or attached to nonstructural after attachment of nonstructural 480
elements likely to be damaged by elements (sum of the long-term
large deflections deflection due to all sustained loads and
the immediate deflection due to any 18
Roof or floor construction supporting additional live load)’ 220

or attached to nonstructural
elements not likely to be damaged
by large deflections

*Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection,
including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber,

construction tolerances, and reliability of provisions for drainage.

TLong-term deflection shall be determined in accordance with ACI Code 9.5.2.5 or 9.5.4.3 but may be reduced by the
amount of deflection calculated to occur before attachment of nonstructured elements. This amount shall be determined
on the basis of accepted engineering data relating to time-deflection characteristics of members similar to those being

considered.

#Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.
§But not greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that

total deflection minus camber does not exceed limit.

Maximum Deflections

If the designer chooses not to meet the minimum thicknesses given in Table 4.1, he or she
must compute deflections. If this is done, the values determined may not exceed the values

specified in Table 6.1, which is Table 9.5(b) of the ACI Code.

Camber

The deflection of reinforced concrete members may also be controlled by cambering. The
members are constructed of such a shape that they will assume their theoretical shape under
some service loading condition (usually dead load and perhaps some part of the live load). A
simple beam would be constructed with a slight convex bend, so that under certain gravity loads,
it would become straight, as assumed in the calculations. (See Figure 6.1.) Some designers
take into account both dead and full live loads in figuring the amount of camber. Camber is

generally used only for longer-span members.
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(a) Beam constructed with (b) Beam straight under dead load
upward camber plus some percentage of live load

FIGURE 6.1 Cambering.



6.4 Calculation of Deflections

6.4 Calculation of Deflections

Deflections for reinforced concrete members can be calculated with the usual deflection expres-
sions, several of which are shown in Figure 6.2. A few comments should be made about the
magnitudes of deflections in concrete members as determined by the expressions given in
this figure. It can be seen that the centerline deflection of a uniformly loaded simple beam
[Figure 6.2(a)] is five times as large as the centerline deflection of the same beam if its
ends are fixed [Figure 6.2(b)]. Nearly all concrete beams and slabs are continuous, and their
deflections fall somewhere between the two extremes mentioned here.

Because of the very large deflection variations that occur with different end restraints, it
is essential that those restraints be considered if realistic deflection calculations are to be made.
For most practical purposes, it is sufficiently accurate to calculate the centerline deflection of a
member as though it is simply supported and to subtract from that value the deflection caused
by the average of the negative moments at the member ends. (This can be done by using a
combination of expressions taken from Figure 6.2. For instance, the deflection equation of part
(a) may be used together with the one of part (g) applied at one or both ends as necessary.)
Loads used in these expressions are unfactored loads. In some cases, only the live load is
considered; in others, both live and dead (sustained) loads are considered.
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FIGURE 6.2 Some deflection expressions.
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FIGURE 6.2 (continued)

6.5 Effective Moments of Inertia

Regardless of the method used for calculating deflections, there is a problem in determining
the moment of inertia to be used. The trouble lies in the amount of cracking that has occurred.
If the bending moment is less than the cracking moment (i.e., if the flexural stress is less than
the modulus of rupture of about 7.5)L\/]7), the full uncracked section provides rigidity, and
the moment of inertia for the gross section /, is available. When larger moments are present,
different-size tension cracks occur and the position of the neutral axis varies.

Figure 6.3 illustrates the problem involved in selecting the moment of inertia to be used
for deflection calculations. Although a reinforced concrete beam may be of constant size (or
prismatic) throughout its length, for deflection calculations, it will behave as though it were
composed of segments of different-size beams.!

For the portion of a beam where the moment is less than the cracking moment, M, the
beam can be assumed to be uncracked, and the moment of inertia can be assumed to equal /.
When the moment is greater than M,,, the tensile cracks that develop in the beam will, in
effect, cause the beam cross section to be reduced, and the moment of inertia may be assumed
to equal the transformed value, /... It is as though the beam consists of the segments shown
in Figure 6.3(d).

The problem is even more involved than indicated by Figure 6.3. It is true that at cross
sections where tension cracks are actually located, the moment of inertia is probably close to
the transformed 7, but in between cracks, it is perhaps closer to /,. Furthermore, diagonal
tension cracks may exist in areas of high shear, causing other variations. As a result, it is
difficult to decide what value of I should be used.

I'Leet, K., 1997, Reinforced Concrete Design, 3rd ed. (New York: McGraw-Hill), p. 155.
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(a) Actual beam

(b) Moment diagram

(0Ll VY VRV Y

(c) Cracks where M =2 M.,

(d) Effect of cracks on effective
beam cross section

FIGURE 6.3 Effects of cracks on deflections.

A concrete section that is fully cracked on its tension side will have a rigidity of anywhere
from one-third to three-fourths of its uncracked full section rigidity. At different sections along
the beam, the rigidity varies depending on the moment present. It is easy to see that an accurate
method of calculating deflections must take these variations into account.

If it is desired to obtain the immediate deflection of an uncracked prismatic member, the
moment of inertia may be assumed to equal I, along the length of the member. Should
the member be cracked at one or more sections along its length, or if its depth varies along
the span, a more exact value of I needs to be used.

Section 9.5.2.3 of the code gives a moment of inertia expression that is to be used for
deflection calculations. This moment of inertia provides a transitional value between I, and /.,
that depends upon the extent of cracking caused by applied loads. It is referred to as I,, the
effective moment of inertia, and is based on an estimation of the probable amount of cracking
caused by the varying moment throughout the span?:

M, \ M, \
I = (Ma> @)+ |1- (M> I (ACI Equation 9-8)

a

2 Branson, D. E., 1965, “Instantaneous and Time-Dependent Deflections on Simple Continuous Reinforced Concrete Beams,”
HPR Report No. 7, Part 1, Alabama Highway Department, Bureau of Public Roads, August 1963, pp. 1-78.

159



160 CHAPTER 6 Serviceability

In this expression, I, is the gross amount of inertia (without considering the steel) of the
section and M, is the cracking moment = f.1,/y,, with f, = 7.5k\/ﬁ.[3] M, is the maximum
service-load moment occurring for the condition under consideration, and /., is the transformed
moment of inertia of the cracked section, as described in Section 2.3.

You will note that the values of the effective moment of inertia vary with different loading
conditions. This is because the service-load moment, M, used in the equation for /,, is differ-
ent for each loading condition. Some designers ignore this fact and use only one /, for each
member, even though different loading conditions are considered. They feel that their com-
puted values are just as accurate as those obtained with the different /, values. It is true that
the varying conditions involved in constructing reinforced concrete members (workmanship,
curing conditions, age of members when loads were first applied, etc.) make the calculation of
deflections by any present-day procedure a very approximate process.

In this chapter the authors compute /, for each different loading condition. The work is
a little tedious, but it can be greatly expedited with various tables, such as the ones provided
in the ACI Design Handbook.*

6.6 Long-Term Deflections

With 7, and the appropriate deflection expressions, instantaneous or immediate deflections are
obtained. Long-term or sustained loads, however, cause significant increases in these deflections
because of shrinkage and creep. The factors affecting deflection increases include humidity,
temperature, curing conditions, compression steel content, ratio of stress to strength, and the
age of the concrete at the time of loading.

If concrete is loaded at an early age, its long-term deflections will be greatly increased.
Excessive deflections in reinforced concrete structures can very often be traced to the early
application of loads. The creep strain after about five years (after which creep is negligible)
may be as high as four or five times the initial strain when loads were first applied 7 to 10
days after the concrete was placed, while the ratio may only be two or three when the loads
were first applied 3 or 4 months after concrete placement.

Because of the several factors mentioned in the last two paragraphs, the magnitudes
of long-term deflections can only be estimated. The code (9.5.2.5) states that to estimate the
increase in deflection due to these causes, the part of the instantaneous deflection that is due
to sustained loads may be multiplied by the empirically derived factor A at the end of this
paragraph and the result added to the instantaneous deflection.’

§

Ay = TS0,0’ (ACI Equation 9-11)

In this expression, which is applicable to both normal- and lightweight concrete, & is a
time-dependent factor that may be determined from Table 6.2.

Should times differing from the values given in Table 6.2 be used, values of § may be
selected from the curve of Figure 6.4.

The effect of compression steel on long-term deflections is taken into account in the A
expression with the term p’. It equals A}, /bd and is to be computed at midspan for simple and
continuous spans, and at the supports for cantilevers.

The full dead load of a structure can be classified as a sustained load, but the type of
occupancy will determine the percentage of live load that can be called sustained. For an

3 0.7A\/ﬁ in SL.
4 American Concrete Institute, 2009, ACI Design Handbook (Farmington Hills, MI: ACI), Publication SP-17 (09).
5 Branson, D. E., 1971, “Compression Steel Effect on Long-Time Deflections,” Journal ACI, 68(8), pp. 555-559.
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TABLE 6.2 Time Factor for Sustained Loads (ACI Code 9.5.2.5)

Duration of Sustained Load Time-Dependent Factor &
5 years or more 2.0

12 months 1.4
6 months 1.2
3 months 1.0

apartment house or for an office building, perhaps only 20% to 25% of the service live load
should be considered as being sustained, whereas perhaps 70% to 80% of the service live load
of a warehouse might fall into this category.

A study by the ACI indicates that under controlled laboratory conditions, 90% of test
specimens had deflections between 20% below and 30% above the values calculated by the
method described in this chapter.6 The reader should realize, however, that field conditions are
not lab conditions, and deflections in actual structures will vary much more than those occurring
in the lab specimens. Despite the use of plans and specifications and field inspection, it is diffi-
cult to control fieldwork adequately. Construction crews may add a little water to the concrete
to make it more workable. Further, they may not obtain satisfactory mixing and compaction
of the concrete, with the result that voids and honeycomb occur. Finally, the forms may be
removed before the concrete has obtained its full design strength. If this is the case, the moduli
of rupture and elasticity will be low, and excessive cracks may occur in beams that would
not have occurred if the concrete had been stronger. All of these factors can cause reinforced
concrete structures to deflect appreciably more than is indicated by the usual computations.

It is logical to assume that the live load cannot act on a structure when the dead load is
not present. As a result of this fact, we will compute an effective /, and a deflection &, for the
case where the dead load alone is acting. Then we will compute an /, and a deflection &,
for the case where both dead and live loads are acting. This will enable us to determine the
initial live load part of the deflection as follows:

8, =8p+r—p

2.0
//
T
15 /z’
g
1.0
0.5
0 FIGURE 6.4 Multipliers for long-time
0136 12 18 24 30 36 48 60  deflections. (ACI Commentary
Duration of load, months Figure R9.5.2.5.)

% ACI Committee 435, 1972, “Variability of Deflections of Simply Supported Reinforced Concrete Beams,” Journal ACI,
69(1), p. 29.
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The long-term deflection will equal the initial live load deflection, §;, plus the infinitely
long-term multiplier, A, times the dead load deflection, §, plus A,, the live load sustained
multiplier, times the initial live load deflection, d; .

SLT == 8L + )“OOSD + )\‘ISSL
The steps involved in calculating instantaneous and long-term deflections can be sum-
marized as follows:
(a) Compute the instantaneous or short-term deflection, &, for dead load only.
(b) Compute instantaneous deflection, 85 ;, for dead plus full live load.

(¢) Determine instantaneous deflection, §;, for full live load only.

(d) Compute instantaneous deflection due to dead load plus the sustained part of the live
load, 6, +dg;.

(e) Determine instantaneous deflection, §,, for the part of the live load that is sustained.
(f) Determine the long-term deflection for dead load plus the sustained part of the live load,
SLT.
As previously mentioned, the deflections calculated as described in this chapter should

not exceed certain limits, depending on the type of structure. Maximum deflections permitted
by the ACI for several floor and roof situations were presented in Table 6.1.

6.7 Simple-Beam Deflections

Example 6.1 presents the calculation of instantaneous and long-term deflections for a uniformly
loaded simple beam.

Example 6.1

The beam of Figure 6.5 has a simple span of 20 ft and supports a dead load including its own
weight of 1 kIf and a live load of 0.7 kif. f, = 3000 psi.

(a) Calculate the instantaneous deflection for D + L.

(b) Calculate the deflection assuming that 30% of the live load is continuously applied for three

years.

17 in.

20 in.
3 #9 l
e oo d

)

3in
12 i“'—" f FIGURE 6.5 Beam cross section for Example 6.1.



6.7 Simple-Beam Deflections

SOLUTION

(@)

(b)

()

Instantaneous or Short-Term Dead Load Deflection (5,)

1
ly= <§> (12 in.)(20 in.)® = 8000 in.*
B fg _ (7.5+/3000 psi) (8000 in.%)
Ty 10in.
1.0 kif) (20 ft)?
= (OKIROM ooy,
Should the dead load moment, M, be less than the cracking moment, M, we should use
Mg = Mgand l, = I.
By transformed-area calculations, the values of x and /., can be determined as
previously illustrated in Example 2.3.

= 328,633 in-Ib = 27.4 ft-k

x =6.781in.
I, = 4067 in.*

Then |, is calculated with ACI Equation 9-8:

27 4 ft-k\> 27 4 ft-k\>
I,=(=—") (8000in.* 1— (== ") [4067in.* = 4714 in.*
e <50ft—k>( n H{ <50ft—k>:| n n

E, = 57,000+/3000 psi = 3.122 x 106 psi

<1ooo plf

5wt 12 in/ft
D™ BB4E.,  (384)(3.122 x 10° psi) (4714 in%)

) (12 in/ft x 20 ft)*

=0.245in.*

Instantaneous or Short-Term Deflection for Dead + Full Live Load (5p,,)
1.7 kif) (20 ft)2
M, = % — 85 ft-k

Noting that the value of /, changes when the moments change

27.4 ft-k\\ 4 27.4 ft-k\ . 4
I, = <W> (8000 in.%) + [1 - <W> (4067 in.%) = 4199 in.

1700 plf
N 12 in/ft
D+ ™ (384)(3.122 x 10° psi) (4199 in.%)

) (12 in/ft x 20 ft)*
— 0.467 in.*

Initial Deflection for Full Live Load (5,)
8, =68p,. —8p =0.467 in. —0.245in. = 0.222 in.”

This is the live load deflection that would be compared with the first or second row of
Table 6.1. If the beam is part of a floor system that is “not supporting or attached to
nonstructural elements likely to be damaged by large deflections” (left column of Table 6.1),

*The authors really got carried away in this chapter when they calculated deflection to thousandths of an inch. We cannot
expect this kind of accuracy, and accuracy to within hundredths of an inch, and perhaps even tenths, is more realistic. These

instances are denoted in this chapter by *’s.
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then the deflection limit is £/480 = (20 ft) (12 in/ft)/360 = 0.67 in. This limit would easily be
satisfied in this case, as the calculated deflection is only 0.22 in.

(d) Initial Deflection Due to Dead Load + 30% Live Load (6, + dg,)

2
M, (1.0 KIf + 0.30 ; 07 KNRORZ _ oo

27.4 ft-k\® - 27.4 ft-k\® . 4

(1000 pif +0.30 x 700 pH) e roy s

12 — —0.315in."
(384) (3.122 x 10° psi) (44321n.%)

(e) Initial Deflection Due to 30% Live Load (g, )

()

8D +83L =

5s. = (0 +8s,) — 8p = 0.315 in. — 0.245 in. = 0.070 in.”

() Long-Term Deflection for Dead Load Plus Three Years of 30% Sustained
Live Load (5, 1)

2.0 2.0

Ay =——""—=—-—=20
o 14500’ 1+0
1.80
3years — m =1.80

87 =81 + As8p + A3 yearsOsL
= 0.222in. + (2.0) (0.245 in.) + (1.80) (0.070 in.) = 0.838 in.*
The middle column of Table 6.1 describes this deflection for the last two rows of the table. The

answer is compared with either £/480 or £/240, depending on whether the structural member
supports elements likely to be damaged by large deflections.

6.8 Continuous-Beam Deflections

The following discussion considers a continuous T beam subjected to both positive and
negative moments. As shown in Figure 6.6, the effective moment of inertia used for calculating
deflections varies a great deal throughout the member. For instance, at the center of the span
at Section 1-1 where the positive moment is largest, the web is cracked and the effective
section consists of the hatched section plus the tensile reinforcing in the bottom of the web. At
Section 2-2 in the figure, where the largest negative moment occurs, the flange is cracked and
the effective section consists of the hatched part of the web (including any compression steel
in the bottom of the web) plus the tensile bars in the top. Finally, near the points of inflection,
the moment will be so low that the beam will probably be uncracked, and thus the whole
cross section is effective, as shown for Section 3-3 in the figure. (For this case [ is usually
calculated only for the web, and the effect of the flanges is neglected, as shown in Figure 6.10.)

From the preceding discussion it is obvious that to calculate the deflection in a continuous
beam, theoretically it is necessary to use a deflection procedure that takes into account the
varying moment of inertia along the span. Such a procedure would be very lengthy, and it is
doubtful that the results so obtained would be within +=20% of the actual values. For this reason
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Section 3-3
near inflection point

FIGURE 6.6 Deflections for a continuous T beam.

the ACI Code (9.5.2.4) permits the use of a constant moment of inertia throughout the member
equal to the average of the I, values computed at the critical positive- and negative-moment
sections. The I, values at the critical negative-moment sections are averaged with each other,
and then that average is averaged with I, at the critical positive-moment section. It should also
be noted that the multipliers for long-term deflection at these sections should be averaged, as
were the /, values.

Example 6.2 illustrates the calculation of deflections for a continuous member. Although
much of the repetitious math is omitted from the solution given herein, you can see that
the calculations are still very lengthy, and you will understand why approximate deflection
calculations are commonly used for continuous spans.

Example 6.2

Determine the instantaneous deflection at the midspan of the continuous T beam shown in
Figure 6.7(a). The member supports a dead load, including its own weight, of 1.5 k/ft, and a live
load of 2.5 k/ft. f; = 3000 psi and n = 9. The moment diagram for full dead and live loads is
shown in Figure 6.7(b), and the beam cross section is shown in Figure 6.7(c).
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| |
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FIGURE 6.7 Information for Example 6.2.

SOLUTION
For Positive-Moment Region

1. Locating centroidal axis for uncracked section and calculating gross moment of inertia Ig and
cracking moment M, for the positive-moment region (Figure 6.8). See Example 2.2 of this
text.

5in. 27 in.

(60in.) (5 in.) <—> +@7in)(12in.) <5 in. + )
y = 2 —10.81in
y= 601in.)(5in.) + (27 in.)(121in.) -
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| 60 in. |
P22 A
| 2

12 in.—

FIGURE 6.8 Centroid of uncracked section in Example 6.2.

_ (60in)(5in)?
o= *

. 2 . .
(60 in.) (5 in.) <10.81 in. — 5&) (12in)(27 in)?

g 12
27in.\?
+ (12in) (27 in) <21.19in.— '”) — 60,185 in.4
7.5) (+/3000 psi) (60,185 in.*
m,, = TN 212?; 18500) _ 4.166,754 in-Ib = 97.2 ft-k

2. Locating the centroidal axis of cracked section and calculating transformed moment of inertia
1., for the positive-moment region (Figure 6.9). See Example 2.6 of this text.

60 in. ‘i

:7 G2

28 in.

: oot 6#8@471in?) —1-

12 in.—

FIGURE 6.9 Centroidal axis of cracked section in Example 6.2.



168 CHAPTER 6 Serviceability

3. Calculating the effective moment of inertia in the positive-moment region.
M, = 150 ft-k
I, = <M>3(60,185 in.%) + {1 - <M>T 24,778 in.* = 34,412 in.*
150 ft-k 150 ft-k
For Negative-Moment Region

1. Locating the centroidal axis for uncracked section and calculating gross moment of inertia

I and cracking moment M_, for the negative-moment region, considering only the hatched
rectangle shown in Figure 6.10.

<322'”'> —16in.

1 . g 4
= <E> (121in.) (32 in.)® = 32,768 in.

y

~

. . 4
BRI 30001 ZS;: 82,7681n-) _ 41,302 in-Ib = 70.1 ft-k

The code does not require that the designer ignore the flanges in tension for this calculation.
The authors used this method to be conservative. If the tension flanges are considered,
then the cracking moment is calculated from the section in Figure 6.8. The value of y is taken
to the top of the section (10.81 in.) because the top is in tension for negative moment, so

M

_7.5,/3000 psi(60,185 in.”)
er 10.81 in.

= 2,287,096 in-Ib = 190.6 ft-k

If this larger value for M., were used in step 3 below, the value of I, would be 33,400 in.*.

2. Locating the centroidal axis of the cracked section and calculating the transformed moment

of inertia /;, for the negative-moment region (Figure 6.11). See Example 2.7 for this type of
calculation.

x = 10.43in.
I, = 24,147 in.*

e——— g ———=]

321

|

te—12 in.—>

FIGURE 6.10 Centroid of uncracked section for negative moment in
Example 6.2.
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% (2.35in.2) l
Pl

FIGURE 6.11 Centroidal axis of cracked section for negative moment in
Example 6.2.

3. Calculating the effective moment of inertia in the negative-moment region.

M, = 300 ft-k
70.1 ft-k\® 4 70.1 ft-k\® 4 4
Ie = <m> (32,768 In. )+ |:1 — <m> 24,147 In." = 24,257 n.

Instantaneous Deflection

The I, to be used is obtained by averaging the /, at the positive-moment section, with the average
of I, computed at the negative-moment sections at the ends of the span.

1| (24,257 in* + 24,257 in*
Average I, = = 5

5 ) +34,412 in.“} = 29,334 in.*

E, = 57,000~/3000 psi = 3.122 x 10° psi

Using the equation from Figure 6.2(b) and using only live loads to calculate deflections,

owlt (2.5 kif) (30 ft)*
LT BB4E,  (384)(3122 ksi) (29,334 in.)

(1728 in%/ft%) = 0.10 in.

In this case the authors used an approximate method to calculate §; . Instead of the cumbersome
equation (8, =8p,, —p) we used earlier in Example 6.1(c), we simply used w, as the load in
the above equation and averaged /,. This approximation ignores the difference between I, for
dead load compared with /, for dead and live load. This method gives a larger deflection, so it
is conservative. Many designers have conservative approximations that they try first on many
engineering calculations. If they work, there is no need to carry out the more cumbersome ones.

It has been shown that for continuous spans, the code (9.5.2.4) suggests an averaging
of the I, values at the critical positive- and negative-moment sections. The ACI Commentary
(R9.5.2.4) says that for approximate deflection calculations for continuous prismatic members,
it is satisfactory to use the midspan section properties for simple and continuous spans and at
supports for cantilevers. This is because these properties, which include the effect of cracking,
have the greatest effect on deflections.
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ACI Committee 435 has shown that better results for the deflections in continuous mem-
bers can be obtained if an I, is used that gives greater weight to the midspan values.” The
committee suggests the use of the following expressions in which 1,,,, I,, and I,, are the com-

puted effective moments of inertia at the midspan and the two ends of the span, respectively.
Beams with two ends continuous

Avg 1, =0.701,, +0.15(,; +1,5)
Beams with one end continuous
Avg 1, =0.851,, + 0.15(Z.ont ena)

For the beam of Example 6.2 with its two continuous ends, the effective moment of
inertia would be

Avg I, = (0.70) (34,412 in*) 4 (0.15) (24,257 in.* + 24,257 in*)
=31,365 in.*

6.9 Types of Cracks

This section presents a few introductory comments concerning some of the several types of
cracks that occur in reinforced concrete beams. The remainder of this chapter is concerned
with the estimated widths of flexural cracks and recommended maximum spacings of flexural
bars to control cracks.

Flexural cracks are vertical cracks that extend from the tension sides of beams up to
the region of their neutral axes. They are illustrated in Figure 6.12(a). Should beams have
very deep webs (more than 3 ft or 4 ft), the cracks will be very closely spaced, with some of
them coming together above the reinforcing and some disappearing there. These cracks may
be wider up in the middle of the beam than at the bottom.

;\)>(>(3?51

Y e

(a) Flexural cracks

7 flexure-shear cracks

/077 NN\ (L f 438
- flexure
ﬁ cracks

(b) Web-shear cracks (c) Flexure-shear cracks
torsion
eV
/| :##q‘-::::::::::::
(d) Torsion cracks (e) Bond cracks

FIGURE 6.12 Some types of cracks in concrete members.

7 ACI Committee 435, 1978, “Proposed Revisions by Committee 435 to ACI Building Code and Commentary Provisions on
Deflections,” Journal ACI, 75(6), pp. 229-238.
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Inclined cracks due to shear can develop in the webs of reinforced concrete beams
either as independent cracks or as extensions of flexural cracks. Occasionally, inclined cracks
will develop independently in a beam, even though no flexural cracks are in that locality.
These cracks, which are called web-shear cracks and which are illustrated in Figure 6.12(b),
sometimes occur in the webs of prestressed sections, particularly those with large flanges and
thin webs.

The usual type of inclined shear cracks are the flexure-shear cracks, which are illustrated
in Figure 6.12(c). They commonly develop in both prestressed and nonprestressed beams.

Torsion cracks, which are illustrated in Figure 6.12(d), are quite similar to shear cracks
except that they spiral around the beam. Should a plain concrete member be subjected to pure
torsion, it will crack and fail along 45° spiral lines due to the diagonal tension corresponding
to the torsional stresses. For a very effective demonstration of this type of failure, you can take
a piece of chalk in your hands and twist it until it breaks. Although torsion stresses are very
similar to shear stresses, they will occur on all faces of a member. As a result, they add to the
shear stresses on one side and subtract from them on the other.

Sometimes bond stresses between the concrete and the reinforcing lead to a splitting
along the bars, as shown in Figure 6.12(e).

Of course, there are other types of cracks not illustrated here. Members that are loaded
in axial tension will have transverse cracks through their entire cross sections. Cracks can
also occur in concrete members due to shrinkage, temperature change, settlements, and so on.
Considerable information concerning the development of cracks is available.®

6.10 Control of Flexural Cracks

Cracks are going to occur in reinforced concrete structures because of concrete’s low tensile
strength. For members with low steel stresses at service loads, the cracks may be very small and
in fact may not be visible except upon careful examination. Such cracks, called microcracks,
are generally initiated by bending stresses.

When steel stresses are high at service load, particularly where high-strength steels are
used, visible cracks will occur. These cracks should be limited to certain maximum sizes SO
that the appearance of the structure is not spoiled and so that corrosion of the reinforcing does
not result. The use of high-strength bars and the strength method of design have made crack
control a very important item indeed. Because the yield stresses of reinforcing bars in general
use have increased from 40 ksi to 60 ksi and above, it has been rather natural for designers to
specify approximately the same size bars as they are accustomed to using, but fewer of them.
The result has been more severe cracking of members.

Although cracks cannot be eliminated, they can be limited to acceptable sizes by spread-
ing out or distributing the reinforcement. In other words, smaller cracks will result if several
small bars are used with moderate spacings rather than a few large ones with large spacings.
Such a practice will usually result in satisfactory crack control even for Grades 60 and 75 bars.
An excellent rule of thumb to use as regards cracking is “don’t use a bar spacing larger than
about 9 in.”

The maximum crack widths that are considered to be acceptable vary from approximately
0.004 in. to 0.016 in., depending on the location of the member in question, the type of
structure, the surface texture of the concrete, illumination, and other factors. Somewhat smaller
values may be required for members exposed to very aggressive environments, such as deicing
chemicals and saltwater spray.

8 Wight, J. K. and MacGregor, J. G., 2011, Reinforced Concrete Mechanics and Design, 6th ed. (Upper Saddle River, NIJ:
Prentice-Hall), pp. 434-442.
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TABLE 6.3 Permissible Crack Widths

Permissible Crack Widths
Members Subjected to (in.) (mm)
Dry air 0.016 0.41
Moist air, soil 0.012 0.30
Deicing chemicals 0.007 0.18
Seawater and seawater spray 0.006 0.15
Use in water-retaining structures 0.004 0.10

ACI Committee 224, in a report on cracking,” presented a set of approximately permis-
sible maximum crack widths for reinforced concrete members subject to different exposure
situations. These values are summarized in Table 6.3.

Definite data are not available as to the sizes of cracks above which bar corrosion
becomes particularly serious. As a matter of fact, tests seem to indicate that concrete quality,
cover thickness, amount of concrete vibration, and other variables may be more important than
crack sizes in their effect on corrosion.

Results of laboratory tests of reinforced concrete beams to determine crack sizes vary.
The sizes are greatly affected by shrinkage and other time-dependent factors. The purpose of
crack-control calculations is not really to limit cracks to certain rigid maximum values but
rather to use reasonable bar details, as determined by field and laboratory experience, that will
in effect keep cracks within a reasonable range.

The following equation was developed for the purpose of estimating the maximum widths
of cracks that will occur in the tension faces of flexural members.!? It is merely a simplification
of the many variables affecting crack sizes.

w = 0.076B, f, J/d.A

where

w = the estimated cracking width in thousandths of inches

B, = ratio of the distance to the neutral axis from the extreme tension concrete fiber
to the distance from the neutral axis to the centroid of the tensile steel (values
to be determined by the working-stress method)

f, = steel stress, in kips per square inch at service loads (designer is permitted to use
0.6 f} for normal structures)

d. = the cover of the outermost bar measured from the extreme tension fiber to the
center of the closest bar or wire (for bundled bars, d.. is measured to the
centroid of the bundles)

A = the effective tension area of concrete around the main reinforcing (having the
same centroid as the reinforcing) divided by the number of bars

This expression is referred to as the Gergely—Lutz equation after its developers. In apply-
ing it to beams, reasonable results are usually obtained if g, is set equal to 1.20. For thin
one-way slabs, however, more realistic values are obtained if §,, is set equal to 1.35.

The number of reinforcing bars present in a particular member decidedly affects the value
of A to be used in the equation and thus the calculated crack width. If more and smaller bars

9 ACI Committee 224, 1972, “Control of Cracking in Concrete Structures,” Journal ACI, 69(12), pp. 717-753.
10 Gergely, P., and Lutz, L. A., 1968, “Maximum Crack Width in Reinforced Flexural Members,” Causes, Mechanisms and
Control of Cracking in Concrete, SP-20 (Detroit: American Concrete Institute), pp. 87-117.



6.10 Control of Flexural Cracks

Courtesy of Portland Cement Association.

Lake Point Tower, Chicago, Illinois.

are used to provide the necessary area, the value of A will be smaller, as will the estimated
crack widths.

Should all the bars in a particular group not be the same size, their number (for use in
the equation) should be considered to equal the total reinforcing steel area actually provided
in the group divided by the area of the largest bar size used.

Example 6.3 illustrates the determination of the estimated crack widths occurring in a
tensilely reinforced rectangular beam.

Example 6.3

Assuming 8, = 1.20 and fy = 60 ksi, calculate the estimated width of flexural cracks that
will occur in the beam of Figure 6.13. If the beam is to be exposed to moist air, is this width
satisfactory as compared to the values given in Table 6.3 of this chapter? Should the cracks be
too wide, revise the design of the reinforcing and recompute the crack width.

SOLUTION

Substituting into the Gergely-Lutz Equation
d, =3in.
A 6 |n.)é16 in.) —30in2

w = (0.076)(1.20) (0.6 x 60 ksi)J (3 in.) (32 in.2)

_ 15.031n.

= 000 — 0.015in. > 0.012in.  No good
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L=1.5k/ft
D =1 k/ft (including beam weight)

AAASS SIS, . .

|
[ 30 ft |

24 in. .
27 in.

Shaded area is 3L

concrete that has the —— // / -

same centroid as the 3in.=d,

reinforcing steel. . f
o]

FIGURE 6.13 Beam properties for Example 6.3.

Replace the three #11 bars (4.68 in.2) with five #9 bars (5.00 in.2).

6in.) (16 in.)
5

A= =19.2in.2

w = (0.076) (1.20) (0.6 x 60 ksi)\"/ (3in.)(19.2in.?)

~ 12.68in.
~ 71000

Try six #8 bars (4.71in.?).

=0.0127in. > 0.012in.  No good

=16in.2

_ (6in)(161n)
A=—%

w = (0.076) (1.20) (0.6 x 60 ksi)/(3 in.) (16 in.2)

11.93 in. _ _
= —a55~ = 00119in. < 0.012in.  OK

Use 6 #8 bars.

If reinforced concrete members are tested under carefully controlled laboratory conditions
and cracks measured for certain loadings, considerable variations in crack sizes will occur.
Consequently, the calculations of crack widths described in this chapter should only be used
to help the designer select good details for reinforcing bars. The calculations are clearly not
sufficiently accurate for comparison with field crack sizes.

The bond stress between the concrete and the reinforcing steel decidedly affects the
sizes and spacings of the cracks in concrete. When bundled bars are used, there is appreciably
less contact between the concrete and the steel, as compared to the cases where the bars are
placed separately from each other. To estimate crack widths successfully with the Gergely—Lutz
equation when bundled bars are used, it is necessary to take into account this reduced contact
surface.!!

1 Nawy, E. G., 2009, Reinforced Concrete: A Fundamental Approach, 6th ed. (Upper Saddle River, NJ: Prentice-Hall),
pp. 307-309.
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When bundled bars are present, some designers use a very conservative procedure in
computing the value of A. For this calculation they assume each bundle is one bar, that bar
having an area equal to the total area of the bars in that bundle. Certainly, the bond properties
of a group of bundled bars are better than those of a single large “equivalent bar.”

Particular attention needs to be given to crack control for doubly reinforced beams, where
it is common to use small numbers of large-diameter tensile bars. Calculation of crack widths
for such beams may result in rather large values, thus in effect requiring the use of a larger
number of rather closely spaced smaller bars.

Special rules are given in ACI Section 10.6.6 for the spacings of reinforcing to help
control the amount of cracking in T beams whose flanges are in tension.

6.11 ACI Code Provisions Concerning Cracks

In the ACI Code, Sections 10.6.3 and 10.6.4 require that flexural tensile reinforcement be
well distributed within the zones of maximum tension so that the center-to-center spacing of
the reinforcing closest to a tension surface is not greater than the value computed with the
following expression:

4 4
s = (15) ( 0}00()) —2.5¢, < (12) ( 0}00()) (ACI Equation 10-4)

JS§

JS§

In this expression, f; is the computed tensile stress at working load. It may be calculated
by dividing the unfactored bending moment by the beam’s internal moment arm (see Example
2.3), or it may simply be taken equal to %f} The term c,. represents the clear cover from the
nearest surface in tension to the surface of the tensile reinforcement in inches.

For beams with Grade 60 reinforcing and with 2-in. clear cover, the maximum code-
permitted bar spacing is

40,000 .
s = (15) - ) — (2.5) (2 in))
0.667 x 60,000 psi

40,000
0.667 x 60,000 psi

=10.0 in. < (12) ( ) =120 in.

A bar spacing not more than 10.0 in. would thus be required. This limit can control the
spacing of bars in one-way slabs but is not likely to control beam bar spacings.

The authors feel that these ACI maximum bar-spacing provisions are quite reasonable
for one-way slabs and for beams with wide webs. For beams with normal web widths used in
ordinary buildings, we also feel that estimating crack widths with the Gergely—Lutz equation
and comparing the results to the values given in Table 6.3 of this chapter may be a more
reasonable procedure.!?

The ACI equation for maximum spacing does not apply to beams with extreme exposure
or to structures that are supposed to be watertight. Special consideration must be given to such
situations. It is probably well to use the Gergely—Lutz equation and a set of maximum crack
widths, such as those of Table 6.3, for such situations.

The effect of cracks and their widths on the corrosion of reinforcing is not clearly
understood. There does not seem to be a direct relationship between crack widths and corrosion,
at least at the reinforcing stresses occurring when members are subjected to service loads. Thus
the ACI Code no longer distinguishes between interior and exterior exposure, as it once did.
Research seems to indicate that the total corrosion occurring in reinforcing is not clearly
correlated to crack widths. It is true, however, that the time required for corrosion to begin in
reinforcing is inversely related to the widths of cracks.

12 1bid., p. 303.
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When using the Gergely—Lutz crack width expression with SI units, the equation is
w = 0.01 13ﬂhfs\3/dLj, with the resulting crack widths in mm.

The SI version of the ACI Code for the maximum spacing of tensile bars from the
standpoint of crack widths is given here. To use this expression correctly, s and ¢, must
be used in mm, while f; must be in MPa.

s = (380) <%) —2.5¢, = (300) <%)

6.12 Miscellaneous Cracks

The beginning designer will learn that it is wise to include a few reinforcing bars in certain
places in some structures, even though there seems to be no theoretical need for them. Certain
spots in some structures (such as in abutments, retaining walls, building walls near openings,
etc.) will develop cracks. The young designer should try to learn about such situations from
more experienced people. Better structures will be the result.

6.13 Sl Example

Example 6.4

Is the spacing of the bars shown in Figure 6.14 within the requirements of the ACI Code
from the standpoint of cracking, if fy = 420 MPa?

SOLUTION
For f, = 420 MPa and ¢, = 75 mm — 28'7% — 60.65 mm
280

s = (380) ( ) — (2.5)(60.65 mm)

0.667 x 420 MPa
280

= 229 i) << (i) (m)

= 300 mm

Since the actual bar spacing of 75 mm is less than 228 mm, this spacing is acceptable.

350 mm
500 mm
5 #29
[ ] [ ] —
_ 75 mm
ytoc.g. of e o o | [—
bars = 105 mm I 75 mm

75 75
mm| 150 mm |mm

! ! FIGURE 6.14 Beam cross section for
300 mm Example 6.4.
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6.14 Computer Example

Example 6.5

Repeat Example 6.1 using the Excel spreadsheet in Chapter 6.

Deflection Calculator for Simply Supported, Uniformly Loaded, Rectangular Beam

b= 12 in.
d= 17 in.
h = 20 in.
A = 3.00 in.2
A = 0.00 in.2
fl = 3 ksi
f, = 60 ksi
Ve = 145 pcf
A= 1

& = (from Table 6.2 or Figure 6.4) 2.0

wp = 1,000 plf
w, = 700 plf
L= 20 ft
Deflection limit (denominator from Table 6.1) 180

% live load that is sustained 30 %
E. = 3,156 ksi
n = Ey/E, 9.189

p = 0.015

np = 0.132

k = 0.399

X = 6.78 in.
I, = 4,067 in4
ly = 8,000 in.4
f, = 410.8 psi
M, = 27.4 ft-k
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Dead + full live load

MepiL = 85 | ft-k

(Mer/M,py1)° = 0.0334

I, = (’)\”ﬂ_irf/g + {1 _ (’)\%)3] I, = 4,198.3 |in*

SpyL = 0.462 |in.
Dead load only

M,p = 50 |ft-k

Me /M, p)° 0.1643

I, = 4,713.1 |in*

8p = 0.242 |in.
Live load only

8, = 8py —Op = 0.220 |in.
Initial § from D + %L

Mapior = 60.5

Mer/Map o) = 0.0928

I, = 4,431.6 |in4

SprosL = 0.311 |in.
Initial § from %L only

895, = (Op + 8051) —8p = 0.069 |in.
Long-term § for D +
long-term sustained L

p = 0

ha = E/(1+ ) 2

Syp = ) + hy8p + hpydoy = 0.843 |in.

Stimit = 1.3333333 |in.

Deflection complies with Table 6.1




Problems 179

PROBLEMS

Problem 6.1 What factors make it difficult to estimate Problem 6.3 How can the deflection of concrete beams be
accurately the magnitude of deflections in reinforced concrete limited?

members?

Problem 6.4 Why is it necessary to limit the width of cracks
Problem 6.2 Why do deflections in concrete members in reinforced concrete members? How can it be done?
increase as time goes by?

Deflections

For Problems 6.5 to 6.10, calculate the instantaneous deflections for the dead and live loads shown. Use 5= 60,000 psi, f, =
4000 psi, and n = 8. Beam weights are included in the wy, values.

Problem 6.5 (Ans. 0.637 in.)

3in.
wp =2 k/ft oo |—T
7 wy =3 kit 3#11
Z
“ . 34in,
? 31 in.
Z |
15 ft
i |
y Y
|.—zo in. —

Problem 6.6

4%in
P, =20k {
(N N
¥ wp =2 k/ft 2 .é;l]. T
7777777777777, o
- 277in.
-— 18 ft —E l ‘
16 in.—‘l
Problem 6.7 (Ans. 1.12 in.)
24in
|
P =120k P =10k eeesee |
6 #10
% wp = 1.8 k/ft v
2////4//////////////// | 34in
e 315 in.
-
7 } 10 ft ! 10 f——>
|<—24 in.—
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Problem 6.8

6in. | 6in. | 6in.
I -
-
8 in.
10 in
wp= 3 kfft
W;‘=2kffl Y 36in
/ fg % 5 ; 15 in.
! 28 ft | 5 #10
EXEEXEEem
3in. i
18 in. -
Problem 6.9 (Ans. 1.54 in.) Problem 6.10 Repeat Problem 6.8 if a 25-k concentrated live

load is added at the centerline of the span.
l 2in.
[o o o] =2

348 f
wp = 0.5 k/ft

wy =3.0 k/ft 10in. 18 in.

/
W27 | %
/ .
B——
41in.
14 in.

For Problems 6.11 and 6.12, calculate the instantaneous deflections and the long-term deflections after four years, assuming that
30% of the live loads are continuously applied for 48 months. f;, = 60,000 psi, f!'=4000 psi, and n = 8.

Problem 6.11 (Ans. Instantaneous § for full w;, + w;, = 1.056 in., long-term § = 1.832 in.)

wp =1 K/t T
wy = 1.5 k/ft
17]—m.
(. /] >0 in.
Ve 77| e | ]
[N N N J
|

an I FIZ in.*»‘ T

1.
25 in.
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¥ 24 in.
wp = 1.6 K/ft o o
wy = 2.4 k/ft 2#9
/'%} /;% 4#10
e 0 00
~ 30 fi -

Problem 6.13 Repeat Problem 6.12 if the two top #9
compression bars are removed. (Ans. Instantaneous & for full
D + L = 2.11 in., long-term § = 3.66 in.)

Problem 6.14 Repeat Problem 6.12 using sand-lightweight
concrete (y, = 125 pcf).

Problem 6.15 Using Chapter 6 Excel spreadsheet, repeat
Problem 6.12 using all-lightweight concrete (., 100 pcf).
(Ans. Instantaneous § for full w, + w; = 2.14 in., long-term
§ = 3.16in.)

Crack Widths

Problem 6.16 Select a rectangular beam section for the span
and loads shown. Use p = %pb, #9 bars,fc’ = 3000 psi, and

f, = 60,000 psi. Compute the estimated maximum crack widths
using the Gergely—Lutz equation. Are they less than the
suggested maximum value given in Table 6.3 for dry air?

wy =3 k/ft
wp = 2 k/ft (including beam weight)

V)

me.»‘ 311,

For Problems 6.17 and 6.18, estimate maximum crack widths
with the Gergely—Lutz equation. Compare the results with the
suggested maximums given in Table 6.3. Assume f, = 60 ksi and
B 1.20. Also, calculate maximum permissible bar spacings
as per ACI Equation 10.4. Assume moist air conditions.

Problem 6.17 (Ans. 0.0144 in. > 0.012 in., max: ACI
spacing = 9.09 in.)

3in. 2@5 in. 3111
| ~10in] 3in.
| 1}
e 00
3 #10 |
25 in. 28 in.
l r
I“—16 in.—"l
Problem 6.18
18 in.
6#9 24 in.
®e 0o o0 —-'—3 ,
e o of "
3 iIl. r
3 in/3in)3 in43in._
L_—lIZ in.—|
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For Problems 6.19 to 6.21, same questions as for Problems 6.17 Problem 6.21 (Ans. 0.0165 in. > 0.016 in., 6.59 in.)
and 6.18, but assume interior exposure.

Problem 6.19 (Ans. 0.0129 in. < 0.016 in., max: ACI

28 in. !
21in
spacing = 9.26 in.) r .2 49 ¢ I_2__in
15 in. 24jn, 32 1™
6 #l11 21 in.
[ ] L] 2
eeeoe 1 . 3 ﬁl().
3@3in. 3in. y L
Pl 4 in.
=9in. Tl L | 3in 3in -
Ry ant L= : : 6 in. 3 in.
3in’ 15 in. 12 in.l;:]/ bottom in tension
Problem 6.20
o 52 in. I
T - Problem 6.22 What is the maximum permissible spacing of
I gl #5 bars in the one-way slab shown that will satisfy the ACI
Code crack requirements? f; = 60,000 psi.
22 in .
*32in
549 33in. 1
'
e o S in ® @ ® ° —*1— 1
e 00 o 137in.
3in. 4 P

Problems in Sl Units

For Problems 6.23 to 6.25, calculate the instantaneous deflections. Use normal-weight concrete with f/ =28 MPa and
f, = 420 MPa.

Assume that the wy, values shown include the beam weights. £, = 200 000 MPa
Problem 6.23 (Ans. 17.2 mm)

wy = 16 kN/m

V. 7/ . A 460 mm
) V4
a

530 mm

4 #22
6 m r{ o000 | —

[~

300 mm | 70 mm
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Problem 6.24

P; =24 kN
wp =20 kN/m
;/\V Al;/) 530 mm
’ 600 mm
~ 4 m i 4 m 4 #25
000 | —

- 8 m l<' ’l T
350 mm 70 mm

Problem 6.25 (Ans. 10.22 mm)

2 @ 150 mm
100 mm / 100 mm
65mm 100 mm
— e o o —_—
70 mm
—— [ ] ° [ ]
P; = 60 kN 6 #29
wp = 15 kN/m
900 mm
800 mm
5m I
I 500 mm I

For Problems 6.26 and 6.27, do these beams meet the maximum
spacing requirements of the ACI Code if f, = 420 MPa?

Problem 6.26 The beam of Problem 6.24.
Problem 6.27 The beam of Problem 6.25 (s = 253 mm).

Problem 6.28 Rework Problem 6.11 using the Chapter 6
Excel spreadsheet.
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Bond, Development Lengths,
and Splices

7.1 Cutting Off or Bending Bars

The beams designed up to this point have been selected on the basis of maximum moments.
These moments have occurred at or near span centerlines for positive moments and at the
faces of supports for negative moments. At other points in the beams, the moments were less.
Although it is possible to vary beam depths in some proportion to the bending moments, it is
normally more economical to use prismatic sections and reduce or cut off some reinforcing
when the bending moments are sufficiently small. Reinforcing steel is quite expensive, and
cutting it off where possible may appreciably reduce costs.

Should the bending moment fall off 50% from its maximum, approximately 50% of
the bars can be cut off or perhaps bent up or down to the other face of the beam and made
continuous with the reinforcing in the other face. For this discussion, the uniformly loaded
simple beam of Figure 7.1 is considered. This beam has six bars, and it is desired to cut off
two bars when the moment falls off a third and two more bars when it falls off another third.
For the purpose of this discussion, the maximum moment is divided into three equal parts by
the horizontal lines shown. If the moment diagram is drawn to scale, a graphical method is
satisfactory for finding the theoretical cutoff points.

For the parabolic moment diagram of Figure 7.1, the following expressions can be written
and solved for the bar lengths x; and x, shown in the figure:

x% _ 2
(£/2? 6
x22 _ 4_1
/2?6

For different-shaped moment diagrams, other mathematical expressions would have to
be written, or a graphical method used.
Actually, the design ultimate moment capacity

oM, = ¢Af,(d - 3)

does not vary exactly in proportion to the area of the reinforcing bars, as is illustrated in
Example 7.1, because of variations in the depth of the compression block as the steel area is
changed. The change is so slight, however, that for all practical purposes, the moment capacity
of a beam can be assumed to be directly proportional to the steel area.

It will be shown in this chapter that the moment capacities calculated as illustrated in
this example problem will have to be reduced if sufficient lengths are not provided beyond the
theoretical cutoff points for the bars to develop their full stresses.



7.1 Cutting Off or Bending Bars

w, k/ft

’-4—)(1-————————-» Mu max
2
2 ““Mu max

L 2 N
yd 2 ~

first 2 bars cut off
need to be this long = 2x;

second 2 bars cut off
need to be this long = 2x,

e
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FIGURE 7.1 Theoretical cutoff locations for a simple span beam.

Example 7.1

For the uniformly loaded simple beam of Figure 7.2, determine the theoretical points on each
end of the beam where two bars can be cut off, and then determine the points where two more

bars can be cut off. f, = 3000 psi, fy = 60,000 psi.
SOLUTION
When the beam has only four bars,

A f . 2 "
o Ay _ @00in?E0ks) _ o0
0.85f,b _ (0.85)(3 ksi) (18 in.)

oM, = PA, (d - g) — (0.9)(4.00 in.?) (60 ksi) <27 in. — 5'22 '”') — 5267 in-k = 439 ft-k

When the moment falls off to 439 ft-k, two of the six bars can theoretically be cut off.

w, = 5.5 k/ft T T
7 7777777 S
ﬁ ﬁ 6 #9 30 in.
| | (6.00 in.2)
= 30 ft > [ X X X X X J
!
Jetgin—] P

FIGURE 7.2 Given information for Example 7.1.
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5.5 k/ft
AN, 4
A
4—.\’—’7 1
82.5k 825k
~ 30 ft > FIGURE 7.3 Beam reactions.

When the beam has only two bars,

_ (2.00in.%) (60 ksi) .
&= 085 @Bks)(18in) 2.61in.

oM, = (0.9)(2.00 in.2) (60 ksi) <27 in. —

2.61in.

) = 2775 in-k = 231 ft-k

When the moment falls off to 231 ft-k, two more bars can theoretically be cut off, leaving two
bars in the beam.

(Notice that p with 6 bars = 6.00 in.2/(18 in.) (27 in.) = 0.0123, which is less than p.,, =
0.0136 from Appendix A, Table A.7, so the beam is ductile and ¢ = 0.9. Also, this p is > p, Of
200/60,000 psi = 0.00333.)

The moment at any section in the beam at a distance x from the left support is as follows,
with reference being made to Figure 7.3:

M = 82.5x — (5.5x) (’E‘)

From this expression, the location of the points in the beam where the moment is 439 ft-k
and 231 ft-k can be determined. The results are shown in Figure 7.4.

Discussion: If the approximate procedure had been followed (where bars are cut off purely on
the basis of the ratio of the number of bars to the maximum moment, as was illustrated with the
equations on the previous page), the first two bars would have had lengths equal to 17.2 ft (as
compared to the theoretically correct value of 16.16 ft), and the second two bar lengths would
be equal to 24.45 ft (as compared to the theoretically correct value of 23.75 ft). It can then be
seen that the approximate procedure yields fairly reasonable results.

a2
e ' X
& & o
G oy G
(=) ol N
p : 2 % o
2 5
all 6 bars
16.16 ft
4 bars _ FIGURE 74 ¢M, diagram for beam in
"~ 23.75 ft o Example 7.1.




Courtesy of Portland Cement Association.

Lab Building, Portland Cement Association, Skokie, Illinois.

In this section, the theoretical points of cutoff have been discussed. As will be seen in
subsequent sections of this chapter, the bars will have to be run additional distances because
of variations of moment diagrams, anchorage requirements of the bars, and so on.

7.2 Bond Stresses

A basic assumption made for reinforced concrete design is that there must be absolutely no
slippage of the bars in relation to the surrounding concrete. In other words, the steel and the
concrete should stick together, or bond, so that they will act as a unit. If there is no bonding
between the two materials and if the bars are not anchored at their ends, they will pull loose
from the concrete. As a result, the concrete beam will act as an unreinforced member and will
be subject to sudden collapse as soon as the concrete cracks.

It is obvious that the magnitude of bond stresses will change in a reinforced concrete
beam as the bending moments in the beam change. The greater the rate of bending moment
change (occurring at locations of high shear), the greater will be the rate of change of bar
tensions and, thus, bond stresses.

What may not be so obvious is the fact that bond stresses are also drastically affected by
the development of tension cracks in the concrete. At a point where a crack occurs, all of the
longitudinal tension will be resisted by the reinforcing bar. At a small distance along the bar
at a point away from the crack, the longitudinal tension will be resisted by both the bar and
the uncracked concrete. In this small distance, there can be a large change in bar tension due
to the fact that the uncracked concrete is now resisting tension. Thus the bond stress in the
surrounding concrete, which was zero at the crack, will drastically change within this small
distance as the tension in the bar changes.

In the past, it was common to compute the maximum theoretical bond stresses at points
in the members and to compare them with certain allowable values obtained by tests. It is

7.2 Bond Stresses
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- :

FIGURE 7.5 Bearing forces on bar and bearing of
bar ribs on concrete.

ribs

the practice today, however, to look at the problem from an ultimate standpoint, where the
situation is a little different. Even if the bars are completely separated from the concrete over
considerable parts of their length, the ultimate strength of the beam will not be affected if the
bars are so anchored at their ends that they cannot pull loose.

The bonding of the reinforcing bars to the concrete is due to several factors, including the
chemical adhesion between the two materials, the friction due to the natural roughness of the
bars, and the bearing of the closely spaced rib-shaped deformations on the bar surfaces against
the concrete. The application of the force P to the bar shown in Figure 7.5 is considered in
the discussion that follows.

When the force is first applied to the bar, the resistance to slipping is provided by the
adhesion between the bar and the concrete. If plain bars were used, it would not take much
tension in the bars to break this adhesion, particularly adjacent to a crack in the concrete.
If this were to happen for a smooth surface bar, only friction would remain to keep the bar
from slipping. There is also some Poisson’s effect due to the tension in the bars. As they are
tensioned, they become a little smaller, enabling them to slip more easily. If we were to use
straight, plain, or smooth reinforcing bars in beams, there would be very little bond strength,
and the beams would be only a little stronger than if there were no bars. Deformed bars were
introduced so that in addition to the adhesion and friction, there would also be a resistance due
to the bearing of the concrete on the lugs or ribs (or deformations) of the bars as well as the
so-called shear-friction strength of the concrete between the lugs.

Deformed bars are used in almost all work. However, plain bars or plain wire fabrics
are sometimes used for transverse reinforcement in compression members (as ties or spirals,
as described in Chapter 9), for members subject to torsion, and for confining reinforcing in
splices (ACI R3.5.4).

As a result of these facts, reinforcing bars are made with rib-type deformations. The
chemical adhesion and friction between the ribs are negligible, and thus bond is primarily
supplied by bearing on the ribs. Based on testing, the crack patterns in the concrete show that
the bearing stresses are inclined to the axis of the bars from about 45° to 80° (the angle being
appreciably affected by the shape of the ribs).!

Courtesy of Clemson University Communications Center.

Twisted square bar, formerly used to increase bond between concrete and steel.

' Goto, Y., 1971, “Cracks Formed on Concrete Around Deformed Tensioned Bar,” ACI Journal, Proceedings 68, p. 244.
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cracks cracks
crack
A\

(a) Side cover (b) Cover on sides (c) Bottom cover
and one-half and bottom equal < side cover and
clear spacing and < one-half < one-half clear
between bars clear spacing spacing between
< bottom cover between bars bars

FIGURE 7.6 Types of bond failures.

Equal and opposite forces develop between the reinforcing bars and the concrete, as
shown in Figure 7.5. These internal forces are caused by the wedging action of the ribs bearing
against the concrete. They will cause tensile stresses in a cylindrical piece of concrete around
each bar. It’s rather like a concrete pipe filled with water that is pressing out against the pipe
wall, causing it to be placed in tension. If the tension becomes too high, the pipe will split.

In a similar manner, if the bond stresses in a beam become too high, the concrete will
split around the bars, and eventually the splits will extend to the side and/or bottom of the
beam. If either of these types of splits runs all the way to the end of the bar, the bar will slip
and the beam will fail. The closer the bars are spaced together and the smaller the cover, the
thinner will be the concrete cylinder around each bar and the more likely that a bond-splitting
failure will occur.

Figure 7.6 shows examples of bond failures that may occur for different values of concrete
cover and bar spacing. These are as shown by MacGregor.?

Splitting resistance along bars depends on quite a few factors, such as the thickness of
the concrete cover, the spacing of the bars, the presence of coatings on the bars, the types of
aggregates used, the transverse confining effect of stirrups, and so on. Because there are so
many variables, it is impossible to make comprehensive bond tests that are good for a wide
range of structures. Nevertheless, the ACI has attempted to do just this with its equations, as
will be described in the sections to follow.

7.3 Development Lengths for Tension Reinforcing

For this discussion, reference is made to the cantilever beam of Figure 7.7. It can be seen that
both the maximum moment in the beam and the maximum stresses in the tensile bars occur
at the face of the support. Theoretically, a small distance back into the support the moment
is zero, and thus it would seem that reinforcing bars would no longer be required. This is
the situation pictured in Figure 7.7(a). Obviously, if the bars were stopped at the face of the
support, the beam would fail.

The bar stresses must be transferred to the concrete by bond between the steel and the
concrete before the bars can be cut off. In this case the bars must be extended some distance
back into the support and out into the beam to anchor them or develop their strength. This
distance, called the development length (L), is shown in Figure 7.7(b). It can be defined as

zMacGregor, J. G., 2005, Reinforced Concrete Mechanics and Design, 4th ed. (Upper Saddle River, NJ: Prentice-Hall),
p. 334.
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maximum
bar stress

not less
la than £,

(a) No development (b) Bars extended into the
length at support support a distance = £,
(beam will fail)

FIGURE 7.7 Development length in a cantilever support.

the minimum length of embedment of bars that is necessary to permit them to be stressed to
their yield point plus some extra distance to ensure member toughness. A similar case can be
made for bars in other situations and in other types of beams.

As previously mentioned, the ACI for many years required designers to calculate bond
stresses with a formula that was based on the change of moment in a beam. Then the computed
values were compared to allowable bond stresses in the code. Originally, bond strength was
measured by means of pullout tests. A bar would be cast in a concrete cylinder and a jack
would be used to see how much force was required to pull it out. The problem with such a
test is that the concrete is placed in compression, preventing the occurrence of cracks. In a
flexural member, however, we have an entirely different situation due to the off-again/on-again
nature of the bond stresses caused by the tension cracks in the concrete. In recent years, more
realistic tests have been made with beams; the ACI Code development length expressions to be
presented in this chapter are based primarily on such tests at the National Institute of Standards
and Technology and the University of Texas.

The development lengths used for deformed bars or wires in tension may not be less than
the values computed with ACI Equation 12-1 or 12 in. If the equation is written as (£,/d,),
the results obtained will be in terms of bar diameters. This form of answer is very convenient
to use as, say, 30 bar diameters, 40 bar diameters, and so on.

3/ !
Ly = — f’ Vi d, (ACI Equation 12-1)
40 )\.,/fL/. (Cb + Ktr)
d,

or

L 3 f ey
d, 401 /f] (cb +K,,.>

dy

Or in SI units,

[ _2 f} wtwews d
TP <cb +K,,> 2
dy

This expression, which seems to include so many terms, is much easier to use than it
might at first appear because several of the terms are usually equal to 1.0. Even if not equal
to 1.0, the factors can be quickly obtained.
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TABLE 7.1 Factors for Use in the Expressions for Determining Required Development Lengths for
Deformed Bars and Deformed Wires in Tension (ACI 12.2.4)

(1) v, = reinforcement location factor
Horizontal reinforcement so placed that more than 12 in. of fresh concrete is cast in the member
below the developmentlength orsplice. ... ... ... . . . . . . . 1.3

Other reinforcement . . ... ... 1.0
(2) v, = coating factor
Epoxy-coated bars or wires with cover less than 3d,, or clear spacing lessthan6d, ... ........ 1.5
All other epoxy-coated bars Or Wires . . .. ... ... 1.2
Uncoated and zinc-coated reinforcement .. .. ... .. .. 1.0
However, the product of v, need not be taken as greater than 1.7.
(8) v, = reinforcement size factor
No. 6 and smaller bars and deformed wires. .. ... ... .. .. . . 0.8
No. 7 and larger bars . . .. ... 1.0
In Sl units
No. 19 and smaller bars and deformed wires . .. ... ... .. ... ... .. .. . . ... 0.8
No.22 and larger bars . . .. ... . 1.0
(4) A (lambda) = lightweight aggregate concrete factor
When lightweight aggregate concrete is used, A shallnotexceed . .. ...................... 0.75
However, when f, is specified, A shall be permitted to be taken as 6.7 /. /f,,
It's /f./1.8f, in S
but not greaterthan .. ... ... . 1.0
When normal weight concrete isused .. .. ... ... . 1.0

(5) c, = spacing or cover dimension, in.
Use the smaller of either the distance from the center of the bar or wire to the nearest concrete surface,
or one-half the center-to-center spacing of the bars or wires being developed.

In the following paragraphs, all of the terms in ACI Equation 12-1 that have not pre-
viously been introduced are described. Then their values for different situations are given in
Table 7.1.

1. Location of reinforcement—Horizontal bars that have a least 12 in.[3! of fresh concrete
placed beneath them do not bond as well to concrete as do bars placed nearer the bottom
of the concrete. These bars are referred to as fop bars. During the placing and vibration
of the concrete, some air and excess water tend to rise toward the top of the concrete,
and some portion may be caught under the higher bars. In addition, there may be some
settlement of the concrete below. As a result, the reinforcement does not bond as well to
the concrete underneath, and increased development lengths will be needed. To account
for this effect, the reinforcement location factor, ,, is used.

2. Coating of bars—Epoxy-coated reinforcing bars are frequently used today to protect the
steel from severe corrosive situations, such as where deicing chemicals are used. Bridge
decks and parking garage slabs in the colder states fit into this class. When bar coatings
are used, bonding is reduced and development lengths must be increased. To account
for this fact, the term v,—the coating factor—is used in the equation.

3. Sizes of reinforcing—If small bars are used in a member to obtain a certain total cross-
sectional area, the total surface area of the bars will be appreciably larger than if fewer
but larger bars are used to obtain the same total bar area. As a result, the required

3300 mm in SI.
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development lengths for smaller bars with their larger surface bonding areas (in propor-
tion to their cross-sectional areas) are less than those required for larger-diameter bars.
This factor is accounted for with the reinforcement size factor, V.

4. Lightweight aggregates—The dead weight of concrete can be substantially reduced by
substituting lightweight aggregate for the regular stone aggregate. The use of such aggre-
gates (expanded clay or shale, slag, etc.) generally results in lower-strength concretes.
Such concretes have lower splitting strengths, and so development lengths will have to
be larger. In the equation, A is the lightweight concrete modification factor discussed in
Section 1.12.

5. Spacing of bars or cover dimensions—Should the concrete cover or the clear spacing
between the bars be too small, the concrete may very well split, as was previously
shown in Figure 7.6. This situation is accounted for with the (¢, + K,,)/d,, term in the
development length expression. It is called the confinement term. In the equation, c,
represents the smaller of the distance from the center of the tension bar or wire to the
nearest concrete surface, or one-half the center-to-center spacing of the reinforcement.

In this expression, K,, is a factor called the transverse reinforcement index. It is used to
account for the contribution of confining reinforcing (stirrups or ties) across possible splitting

planes.
404,,
r
sn
where
A, = the total cross-sectional area of all transverse reinforcement having the

center-to-center spacing s and a yield strength £,

n = the number of bars or wires being developed along the plane of splitting. If steel
is in two layers, n is the largest number of bars in a single layer.

s = center-to-center spacing of transverse reinforcing

The code in Section 12.2.3 conservatively permits the use of K,, = 0 to simplify the cal-
culations, even if transverse reinforcing is present. ACI 12.2.3 limits the value of (¢, + K,,)/d,,
used in the equation to a maximum value of 2.5. (It has been found that if values larger than
2.5 are used, the shorter development lengths resulting will increase the danger of pullout-type
failures.)

The calculations involved in applying ACI Equation 12-1 are quite simple, as is illustrated
in Example 7.2.

Atrfyt

In ST units, K, = T
sn

Example 7.2

Determine the development length required for the #8 uncoated bottom bars shown in Figure 7.8,
(@) assumeK;, = 0and
(b) use the computed value of K,,.

SOLUTION

From Table 7.1
¥; = 1.0 for bottom bars
Y, = 1.0 for uncoated bars
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B A
#3 stirrups 15in. I fy,=160,000 psi
@8in. 18in g — 3000 psi
348
e e o |-
3in.
250 2@3=6 in | 251
! I
1 in.

FIGURE 7.8 Beam cross section for Example 7.2.

¥ = 1.0 for #8 bars
A = 1.0 for normal-weight concrete
¢, = side cover of bars measured from center of bars = 2% in.

> ¢, = one-half of c. to c. spacing of bars = 1% in. <
(a) Using ACI Equation 12-1 withK,, =0
Cp +K,  1.50in. +0in.

dp 1.00 in.
ty 8 1 ViVe Vs

d, 4057, <cb +Kt,>

dp

=150 <250 OK

B < 3 ) [ 60,000 psi } (1.0)(1.0)(1.0)
~ 40/ [ (1.0)+/3000 psi 1.50

(b) Using Computed Value of K;,. and ACI Equation 12-1

= 55 diameters

_40A,  (40)(2)(0.11in.2) .
K= ' =G~ =037

¢, + K, 1.50in.+ 0.367 in.

—1.867 <25 OK

d, 1.0in.
Z_d _ <3> <60,000 pS|> (1.0)(1.0)(1.0)(1.0) — 44 diameters
d, 40 /3000 psi 1.867 e

In determining required development lengths, there are two more ACI specifications to
keep in mind:

1. Section 12.1.2 states that values of \/fT’ used in the equations cannot be greater than
100 psi or % MPa in SI. (This limit is imposed because there has not been a sufficient
amount of research on the development of bars in higher-strength concretes to justify
higher \/fT’ values, which would result in smaller £,/d,, values.)

2. When the amount of flexural reinforcing provided exceeds the theoretical amount
required, and where the specifications being used do not specifically require that
the development lengths be based on f,, the value of £,/d, may be multiplied by
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(Aj required/As providea)> according to ACI 12.2.5. This reduction factor may not be used
for the development of reinforcement at supports for positive reinforcement, for the
development of shrinkage and temperature reinforcement, or for a few other situations
referenced in R12.2.5. This reduction also is not permitted in regions of high seismic
risk, as described in ACI 318-11, Chapter 21.

Instead of using ACI Equation 12-1 for computing development lengths, the ACI in
its Section 12.2 permits the use of a somewhat simpler and more conservative approach (as
shown in Table 7.2 herein) for certain conditions. With this approach, the ACI recognizes that
in a very large percentage of cases, designers use spacing and cover values and confining
reinforcing that result in a value of (¢, + K,,)/d, equal to at least 1.5. Based on this value and
the appropriate values of ¥/, the expressions in Table 7.2 were determined.

For SI values, see Section 12.2.2 of the 318M-11 Code.

If a minimum cover equal to d;, and a minimum clear spacing between bars of 2d, (or a
minimum clear spacing of bars equal to dj,, along with a minimum of ties or stirrups) are used,
the expressions in Table 7.2 can be used. Otherwise, it is necessary to use the more rigorous
ACI Equation 12-1.

The authors feel that the application of the so-called simplified equations requires almost
as much effort as is needed to use the longer equation. Furthermore, the development lengths
computed with the “simpler” equations are often so much larger than the ones determined with
the regular equation as to be uneconomical.

For these reasons the authors recommend the use of Equation 12-1 for computing devel-
opment lengths. In using this long-form equation, however, you may very well like to assume
that K,. = 0, as the results obtained usually are only slightly more conservative than those
obtained with the full equation. The authors use Equation 12-1 with K,. = 0 for all applications
after this chapter.

Examples 7.3 and 7.4, which follow, present the determination of development lengths
using each of the methods that have been described in this section.

TABLE 7.2 Simplified Development Length Equations

#6 and Smaller Bars and
Deformed Wires #7 and Larger Bars
Clear spacing of bars being
developed or spliced not less
than d,, clear cover not less
than d,, and stirrups or ties
throughout £, not less than the
code minimum Z_d _ fy‘/’t‘/’e Z_d _ fy’/’!‘/’e
d, 250 /F d,  20h/f
or
Clear spacing of bars being
developed or spliced not less
than 2d,, and clear cover not
less than d,
L 30 £ 30,
Other cases d o _rte d o _y'tie
d,  501/f d,  40A/f
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Example 7.3

The #7 bottom bars shown in Figure 7.9 are epoxy coated. Assuming normal-weight concrete,
fy = 60,000 psi, and f, = 3500 psi, determine required development lengths

(a) Using the simplified equations of Table 7.2.

(b) Using the full ACI Equation 12-1 with the calculated value of K;,.

(c) Using ACI Equation 12-1 with K,, = 0.

SOLUTION

With reference to Table 7.1
Y; = 1.0 for bottom bars
Y, = 1.5 for epoxy-coated bars with clear spacing <6d,
Ve = (1.0)(1.5) =15 <17 OK
¥ = 1.0 for #7 and larger bars
A = 1.0 for normal-weight concrete
c, = cover=3in.
or
¢, = one-half of c. to c. spacing of bars = 1% in. <— controls

(a) Using Simplified Equation

Ly f¥ive (60,000 psi)(1.0) (1.5)
d, 20af,  20(1.0)+/3500 psi

= 76 diameters

(b) Using ACI Equation 12-1 with Computed Value of K,

_ 40A,  (40)(2)(0.11in2) :
Ke= =t =@ — =037

cp + Ky 1.5in.+0.367 in.
dy 0.875 in.

Ly _ 8 G vibels
dy 40 /F, Cp + Ky
db
B < 3 ) < 60,000 psi ) (1.0)(1.5)(1.0)
~ \40/ \ (1.0) /3500 psi 213

= 54 diameters

=213<250 OK

(c) Using ACI Equation 12-1 withK,, =0

¢, +K, 1.5in.+0in.
d,  0875in.
ty (3 60,000 psi \ (1.0)(1.5)(1.0)
dy <40> <(1.0)Mpsi> 1.71

= 67 diameters

=1.71<250 OK
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a A
#3 stirrups .
. 21 in.
@6in. 24 in.
#7 bars
e o o ¢ v
31in.
3in. | 3@3=9in. |3in,
I T
15 in. FIGURE 7.9 Beam cross section for Example 7.3.

Example 7.4

The required reinforcing steel area for the lightweight concrete beam of Figure 7.10 is 2.88 in.?
The #8 top bars shown are uncoated. Compute development lengths if fy = 60,000 psi and
f,, = 3500 psi.

(a) Using simplified equations.

(b) Using the full ACI Equation 12-1.

(c) Using Equation 12-1 with K. = 0.

SOLUTION

With reference to Table 7.1
Y; = 1.3 for top bars
¥, = 1.0 for uncoated bars
Ve = (1.3)(1.0)< 1.7 OK
Y = 1.0 for #7 and larger bars
A = 0.75 for lightweight concrete
¢, = cover = 3in.

or
¢, = one-half of c. to c. spacing of bars = 2 in. < controls
18 in.
3in. [3@4=12in] 3in,
I 1
3 in]
@ & @& o) —
4 #8 bars
(3.14in.2)
_ 26in.
#3 stirrups 23 in.
@ 8 in.
2 NS FIGURE 7.10 Cross section of cantilever beam
for Example 7.4.
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(a) Using Simplified Equations

f -
Ly _ fy¥e _ (60,000 psi)(1.3)(1.0) _ 88 diameters
d, 20nf,  20(0.75)+/3500 psi

2.88in.2

3.14in?2

{ .
d_d reduced for excess reinforcement to (
b

(b) Using ACI Equation 12-1 with Computed Value of K,

40A,  (40)(2)(0.11in2)

tr sn (8in.)(4)
Cp + Ky _ 2.0 |n.+(?.275 . _ 5575 - 05 oK
d, 1.01in. =
[_d — i fy wtwews
d, 40, /f Co+Ky
db

_ < 3 ) [ 60,000 psi } (1.3)(1.0)(1.0)
— \40/ | (0.75) +/3500 psi 2.275

= 58 diameters

b 3.14in?2
(c) Using ACI Equation 12-1 with K;. =0

Cp+ Ky 20in.4+0in.

G = ion 20<25
by < 3 ) [ 60,000 psi } (1.3)(1.0)(1.0)
d, ~ \40) [ (0.75) /3500 psi 2.0

= 66 diameters

Ly _ 2.88in.2 _
—~ reduced for excess reinforcement to | ———— | (66) = 61 diameters
dp 3.14 in. E—

> (88) = 81 diameters

L 2.88in.?2
d_d reduced for excess reinforcement to (7"1) (58) = 53 diameters

7.4 Development Lengths for Bundled Bars

When bundled bars are used, greater development lengths are needed because there is not
a “core” of concrete between the bars to provide resistance to slipping. The code, Section
12.4.1, states that splice and development lengths for bundled bars are to be determined by
first computing the lengths needed for the individual bars and then by increasing those values

by 20% for three-bar bundles and 33% for four-bar bundles.

When the factors relating to cover and clear spacing are being computed for a particular
bundle, the bars are treated as though their area were furnished by a single bar. In other words,
it is necessary to replace the bundle of bars with a fictitious single bar with a diameter such
that its cross-sectional area equals that of the bundle of bars. This is conservative because the
bond properties of the bundled bars are actually better than for the fictitious single bar. When
determining c;,, the confinement term, and the i, factor, the bundle is considered to have a
centroid coinciding with that of the bar bundle. Example 7.5 presents the calculation of the

development length needed for a three-bar bundle of #8 bars.

197
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Example 7.5

Compute the development length required for the uncoated bundled bars shown in Figure 7.11,
if fy = 60,000 psi and f, = 4000 psi with normal-weight concrete. Use ACI Equation 12-1 and
assume K, = 0.

SOLUTION

With reference to Table 7.1
wt:we:ws:A':1'O
Area of 3 #8 bars = 2.35in.?
Diameter d,; of a single bar of area 2.35 in.?

ndgf
— =235
4

Find the lowest value for ¢, [Figure 7.11(b)].

3
Cp1 = side cover of bars = 2 in. + 3 in. 4+1.00 in. = 3.38 in.

3 3
Cp = bottom cover of bars = 2in. + 2 in. + 0.79d,"! = 2in. + g in-+0.79(1.00in) = 3.16 in. <
where d, is the actual (not the fictitious) bar diameter.

10in. — (2) <g in.) —(2)(1.001in.)

=3.62in.
5 In

1
Cpz = 3 c. to c. spacing of bars =

~ A
#3 20 in. '
stirrup 22 in.
3#8 0.79d,, to centroid
// of bundle
\é_&; 1]
~Tin (b) Centroid of three-bar bundle

2in|_ 10in. [2ind

! I

measured outside
14 in. of stirrups

(a) Bar location dimenstions

FIGURE 7.11 Beam cross section for Example 7.5.

4See Figure 7.11(b) for this dimension.



Using ACI Equation 12-1 with K. =0

Cp +Ky  3.16i0n. +0in.
dpr 1.73 in.

ty < 3 ) < 60,000 psi ) (1.0)(1.0)(1.0)
d,  \40/\ (1.0) /4000 psi 1.83

= 39 diameters

=183<25

But should be increased 20% for a three-bar bundle according to ACI Section 12.4.1.

Y/
d—d = (1.20) (39) = 47 diameters
b

L, = (47)(1.0in) = 47 in.

Note that the actual bar diameter is used in the last equation, not the fictitious bar.

7.5 Hooks

When sufficient space is not available to anchor zension bars by running them straight for their
required development lengths, as described in Section 7.3, hooks may be used. (Hooks are

considered ineffective for compression bars for development length purposes.)

Figure 7.12 shows details of the standard 90° and 180° hooks specified in Sections 7.1
and 7.2 of the ACI Code. Either the 90° hook with an extension of 12 bar diameters (12d,)
at the free end or the 180° hook with an extension of 4 bar diameters (4d,) but not less than
Z%in. may be used at the free end. The radii and diameters shown are measured on the inside

of the bends.

12d,

I..__..I
ﬁ

r = same as for 180° below

]
T
(a) 90° hook

j~—D 4dp > 27 in.

D = 6d,, for #3 through #8
— |, D = 8d,, for #9 through #11
D = 10d,, for #14 and #18

(b) 180° hook FIGURE 7.12 Hook configurations.

7.5 Hooks
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The dimensions given for hooks were developed to protect members against splitting of
the concrete or bar breakage, no matter what concrete strengths, bar sizes, or bar stresses are
used. Actually, hooks do not provide an appreciable increase in anchorage strength because the
concrete in the plane of the hook is somewhat vulnerable to splitting. This means that adding
more length (i.e., more than the specified 12d, or 4d, values) onto bars beyond the hooks
doesn’t really increase their anchorage strengths.

The development length needed for a hook is directly proportional to the bar diameter.
This is because the magnitude of compressive stresses in the concrete on the inside of the hook
is governed by d,,. To determine the development lengths needed for standard hooks, the ACI
(12.5.2) requires the calculation of

0.02Y..f,d,
b= —T"F7—
AT

The value of £, according to ACI Section 12.5.1, may not be less than 6 in. or 8d,,. For
deformed bars, the ACI, Section 12.5.2, states that v, in this expression can be taken as equal
to 1.2 for epoxy-coated reinforcing and the A used as equal to 0.75 for lightweight aggregate
concrete. For all other cases, v, and A are to be set equal to 1.0.

0.24, f,
Vi

In ST units, £, = d,

The development length, £,,, is measured from the critical section of the bar to the
outside end or edge of the hooks, as shown in Figure 7.13.

The modification factors that may have to be successively multiplied by £, are listed
in Section 12.5.3 of the code and are summarized in subparagraphs (a) to (d). These values
apply only for cases where standard hooks are used. The effect of hooks with larger radii is

dy
T e
T j
__— critical !
section l 12d,

1
dy I
T e § : T

 N—
4d, | #3 through #8
4d, or <
2%in. min. 5d, | #9,#10,and #11
6d, | #14 and #18
-« L -~

FIGURE 7.13 Hooked-bar details for development of standard hooks.



not covered by the code. For the design of hooks, no distinction is made between top bars and
other bars. (It is difficult to distinguish top from bottom anyway when hooks are involved.)

(a) Cover—When hooks are made with #11 or smaller bars and have side cover values

normal to the plane of the hooks no less than 2% in. and where the cover on the bar
extensions beyond 90° hooks is not less than 2 in., multiply by 0.7.

(b) Ties or stirrups—When hooks made of #11 or smaller bars are enclosed either vertically

(¢)

or horizontally within ties or stirrup ties along their full development length £, and
the stirrups or ties are spaced no farther apart than 3d, (where d,, is the diameter of
the hooked bar), multiply by 0.8. This situation is shown in Figure 7.14. (Detailed
dimensions are given for stirrup and tie hooks in Section 7.1.3 of the ACI Code.)

When 180° hooks consisting of #11 or smaller bars are used and are enclosed within
ties or stirrups placed perpendicular to the bars being developed, and spaced no further
than 3d apart along the development length £, of the hook, multiply by 0.8. If the
90° hook shown in Figure 7.14 is replaced with a 180° hook and ties or stirrups are
perpendicular (not parallel) to the longitudinal bar being developed, Figure 7.14 applies
to this case as well.

(d) Should anchorage or development length not be specially required for f; of the bars, it

to the

is permissible to multiply £, by A; requirea/A

s provided

The danger of a concrete splitting failure is quite high if both the side cover (perpendicular
hook) and the top and bottom cover (in the plane of the hook) are small. The code

(12.5.4), therefore, states that when standard hooks with less than 2% in. side and top or
bottom cover are used at discontinuous ends of members, the hooks shall be enclosed within
ties or stirrups spaced no farther than 3d,, for the full development length, £,. The first tie
or stirrup must enclose the bent part of the hook within a distance of 2d,; of the outside of
the bend. Furthermore, the modification factor of 0.8 of items (b) and (c) herein shall not be

i

-~ b

S~
longitudinal bar being developed
with diameter dj, (< #11)

stirrups or ties perpendicular

u to the bar being developed

<2d, < 3d,

i

FIGURE 7.14 Stirrup or tie detail for 90° hooks complying with
the 0.8 multiplier. The stirrups or ties shown can be either
vertical (as illustrated) or horizontal.

7.5 Hooks
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202 CHAPTER 7 Bond, Development Lengths, and Splices

applicable. If the longitudinal bar being developed with the hook shown in Figure 7.14 were at
a discontinuous end of a member, such as the free end of a cantilever beam, the ties or stirrups
shown in that figure would be required, unless side and top cover both were at least 2% in.

Example 7.6, which follows, illustrates the calculations necessary to determine the devel-
opment lengths required at the support for the tensile bars of a cantilever beam. The lengths
for straight or hooked bars are determined.

Example 7.6

Determine the development or embedment length required for the epoxy-coated bars of the
beam shown in Figure 7.15

(a) If the bars are straight, assuming K;, = 0.
(b) If a 180° hook is used.
(c) Ifa90° hook is used.

The six #9 bars shown are considered to be top bars. f;, = 4000 psi and fy = 60,000 psi.

SOLUTION
(a) Straight Bars

¥, = 1.3 for top bars
Y, = 1.5 for coated bars with cover < 3d,, or clear spacing < 6d,,
Ve = (1.3)(1.5) = 1.95>17 - Usel?
¥ = 1.0for 9 bars
A = 1.0 for normal-weight concrete
C, = side cover = top cover = 2.5 in.

¢, = one-half of c. to c. spacing of bars = 2.25 in. < controls

C, +K;, 225in.4+0in.
= =199 <25 OK
d, 1.1281in. = oK

Ly <3> < 60,000 psi ) (1.7)(1.0)
d, \40/)\(1.0)4/4000 psi/ 1.99

£, = (61)(1.128 in.) = 69 in.

= 61 diameters

14 in.
P | oo l:
25m.|2 @ 45 =9 1n.| 27111.
| |

Z%in.
[ ] [ ] [ ] —
4%in.
= 6#9 ‘| e o o —1
6 #9 )
= (6.00 in.2) 20in.
—
13 in.

FIGURE 7.15 Given information for Example 7.6.



7.6 Development Lengths for Welded Wire Fabric in Tension

(b) Using 180° hooks (see Figure 7.16) note that y,, = 1.2 as required in ACI Section 12.5.2 for
epoxy-coated hooks

~ 0.02y,f,d,  (0.02)(1.2) (60,000 psi)(1.128 in.)

LW A (1.0)+/4000 psi
—25.68in. Say 26 in.

Note: The dimensions shown in the beam cross section (Figure 7.15) indicate 2% in. from the
bar center to the top and side of the beam. The coveris 2.5in. — d,/2 = 1.936in. <2.5in.
If this hook were in the free end of a cantilever beam, ties or stirrups would be required, and
the 0.8 reduction factor would not be applicable. In this example, the hook is in a column,
so special ties are not required. If they were provided, a reduction of 0.8 would apply. In this
example, they are not provided.

‘<_ldh =26 in.——

1 |
(E |/ critical section

5d,= 53 in. 4de )
8 \‘: :.'=4Em.

FIGURE 7.16 Details for 180° hook.

(c) Using 90° hooks (see Figure 7.17)

as the 0.8 reduction factor does not apply because ties or stirrups are not provided.

point of ~—1{;, =26 in——

a '
|/ critical section

12d,= 132 in, ,

I |

FIGURE 7.17 Details for 90° hook.

tangency

7.6 Development Lengths for Welded Wire Fabric in Tension

Section 12.7 of the ACI Code provides minimum required development lengths for deformed
welded wire fabric, whereas Section 12.8 provides minimum values for plain welded wire
fabric.

The minimum required development length for deformed welded wire fabric in tension
measured from the critical section equals the value determined for £,, as per ACI Section
12.2.2 or 12.2.3, multiplied by a wire fabric factor, v,,, from ACI Section 12.7.2 or 12.7.3.

This factor, which follows, contains the term s, which is the spacing of the wire to
be developed. The resulting development length may not be less than 8 in. except in the
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204 CHAPTER 7 Bond, Development Lengths, and Splices

computation of lap splices. You might note that epoxy coatings seem to have little effect on
the lengths needed for welded wire fabric, and it is thus permissible to use ¥, = 1.0.
The wire fabric factor, y,,, for welded wire fabric with at least one crosswire within the
development length not less than 2 in. from the critical section is
fy — 35,000 d,

5
w = —— not less than —
5 s

but need not be taken > 1.0.

In ST units for welded wire fabric with at least one crosswire within the development length
and not less than 50 mm from the point of the critical section, the wire fabric factor, ¥,
is (f, — 240)/f,, not less than 5d,,/s but need not be taken > 1.0.

The yield strength of welded plain wire fabric is considered to be adequately developed
by two crosswires if the closer one is not less than 2 in. from the critical section. The code
(Section 12.8), however, says that the development length, £,, measured from the critical
section to the outermost crosswire may not be less than the value computed from the following
equation, in which A, is the area of the individual wire to be developed.

A ,
L, =027+ 5 but not < 6 in.
s \MJFL

Or in SI units

A )
L; =332 ( 5 ) but not < 150 mm
s

Wi

The development lengths obtained for either plain or deformed wire may be reduced, as
were earlier development lengths, by multiplying them by (Ay ;equired /Ay furnishea) (ACI 12.2.5),
but the modified results may not be less than the minimum values given in this section.

7.7 Development Lengths for Compression Bars

There is not a great deal of experimental information available about bond stresses and needed
embedment lengths for compression steel. It is obvious, however, that embedment lengths will
be smaller than those required for tension bars. For one reason, there are no tensile cracks
present to encourage slipping. For another, there is some bearing of the ends of the bars on
concrete, which also helps develop the load.

The code (12.3.2) states that the minimum basic development length provided for com-
pression bars (£,,) may not be less than the value computed from the following expression.

0.02f,d,

L, = ———
dc )\‘\/fT/

> 0.0003 f,d, but not less than 8 in.

Or in SI units
0.0nydb

L,
dc )u\/fié

> 0.0003 f,d, but not less than 200 mm



7.7 Development Lengths for Compression Bars

If more compression steel is used than is required by analysis, £,. may be multiplied
by (Aj required/As provided) s per ACI Section 12.3.3. When bars are enclosed in spirals for any
kind of concrete members, the members become decidedly stronger due to the confinement
or lateral restraint of the concrete. The normal use of spirals is in spiral columns, which are
discussed in Chapter 9. Should compression bars be enclosed by spirals of not less than % in.
diameter and with a pitch not greater than 4 in., or within #4 ties spaced at not more than
4 in. on center, the value of £,. may be multiplied by 0.75 (ACI 12.3.3). In no case can the

development length be less than 8 in. Thus
L; = L, x applicable modification factors > 8.0 in.

An introductory development length problem for compression bars is presented in
Example 7.7. The forces in the bars at the bottom of the column of Figure 7.18 are to be
transferred down into a reinforced concrete footing by means of dowels. Dowels such as
these are usually bent at their bottoms (as shown in the figure) and set on the main footing
reinforcing where they can be tied securely in place. The bent or hooked parts of the dowels,
however, do not count as part of the required development lengths for compression bars (ACI
12.5.5), as they are ineffective.

In a similar fashion, the dowel forces must be developed up into the column. In
Example 7.7, the required development lengths up into the column and down into the footing
are different because the f values for the footing and the column are different in this case.
The topic of dowels and force transfer from walls and columns to footings is discussed
in some detail in Chapter 12. (The development lengths determined in this example are
for compression bars, as would normally be the case at the base of columns. If uplift is
possible, however, it will be necessary to consider tension development lengths, which could
very well control.)

Example 7.7

The forces in the column bars of Figure 7.18 are to be transferred into the footing with #9 dowels.
Determine the development lengths needed for the dowels (a) down into the footing and (b) up
into the column if fy = 60,000 psi. The concrete in both the column and the footing is normal
weight.

f. = 5000 psi for column

:I II ' £, up into column
| Il

A .
| ! £, down into column

N

fe = 3000 psi for footing

FIGURE 7.18 Information for Example 7.7.
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SOLUTION
(a) Down into the footing,

~0.02d,f,  (0.02)(1.128 in.) (60,000 psi)
AW A (1.0)+/3000 psi

L4, = (0.0003)(1.128 in.) (60,000 psi) = 20.30 in.

=24.71in. <

Hence £, = 24.71 in., say 25 in., as there are no applicable modification factors. Under no
circumstances may £, be less than 8 in.
(b) Up into column,
0.02)(1.128 in.) (60,000 psi
1, = 20201128 In) (60.000psi) _ 4g 444,
(1.0)4/5000 psi

L4, = (0.0003)(1.128 in.) (60,000 psi) = 20.30 in. «

Hence {, =20.30in., say 21 in. (can’t be < 8 in.), as there are no applicable modification
factors. (Answer: Extend the dowels 25 in. down into the footing and 21 in. up into the
column.)

Note: The bar details shown in Figure 7.18 are unsatisfactory for seismic areas, as the bars
should be bent inward and not outward. The reason for this requirement is that the code, Chapter
21, on seismic design, stipulates that hooks must be embedded in confined concrete.

7.8 Critical Sections for Development Length

Before the development length expressions can be applied in detail, it is necessary to understand
clearly the critical points for tensile and compressive stresses in the bars along the beam.

First, it is obvious that the bars will be stressed to their maximum values at those points
where maximum moments occur. Thus, those points must be no closer in either direction to
the bar ends than the £, values computed.

There are, however, other critical points for development lengths. As an illustration, a
critical situation occurs whenever there is a tension bar whose neighboring bars have just been
cut off or bent over to the other face of the beam. Theoretically, if the moment is reduced by
a third, one-third of the bars are cut off or bent, and the remaining bars would be stressed to
their yield points. The full development lengths would be required for those bars.

This could bring up another matter in deciding the development length required for the
remaining bars. The code (12.10.3) requires that bars that are cut off or bent be extended a
distance beyond their theoretical flexure cutoff points by d or 12 bar diameters, whichever
is greater. In addition, the point where the other bars are bent or cut off must also be at
least a distance £, from their points of maximum stress (ACI 12.10.4). Thus, these two items
might very well cause the remaining bars to have a stress less than f,, thus permitting their
development lengths to be reduced somewhat. A conservative approach is normally used,
however, in which the remaining bars are assumed to be stressed to f,.

7.9 Effect of Combined Shear and Moment
on Development Lengths
The ACI Code does not specifically consider the fact that shear affects the flexural tensile stress

in the reinforcing. The code (12.10.3) does require bars to be extended a distance beyond their
theoretical cutoff points by a distance no less than the effective depth of the member d or



7.10 Effect of Shape of Moment Diagram on Development Lengths

12 bar diameters, whichever is larger. The commentary (R12.10.3) states that this extension
is required to account for the fact that the locations of maximum moments may shift due
to changes in loading, support settlement, and other factors. It can be shown that a diagonal
tension crack in a beam without stirrups can shift the location of the computed tensile stress a
distance approximately equal to d toward the point of zero moment. When stirrups are present,
the effect is still there but is somewhat less severe.

The combined effect of shear and bending acting simultaneously on a beam may produce
premature failure due to overstress in the flexural reinforcing. Professor Charles Erdei’-%7 has
done a great deal of work on this topic. His work demonstrates that web reinforcing participates
in resisting bending moment. He shows that the presence of inclined cracks increases the force
in the tensile reinforcing at all points in the shear span except in the region of maximum
moment. The result is just as though we have a shifted moment diagram, which leads us to the
thought that we should be measuring £, from the shifted moment diagram rather than from
the basic one. He clearly explains the moment shift and the relationship between development
length and the shift in the moment diagram.

The late Professor P. M. Ferguson® stated that whether or not we decide to use the shifted
moment concept, it is nevertheless desirable to stagger the cutoff points of bars (and it is better
to bend them than to cut them).

7.10 Effect of Shape of Moment Diagram
on Development Lengths
A further consideration of development lengths will show the necessity of considering the

shape of the moment diagram. To illustrate this point, the uniformly loaded beam of Figure 7.19
with its parabolic moment diagram is considered. It is further assumed that the length of the

| Tl
Mu Mu Mu
2 2
L
less than ?d-
/ FIGURE 7.19 Effects of shape of moment
diagram.

5 Erdei, C. K., 1961, “Shearing Resistance of Beams by the Load-Factor Method,” Concrete and Constructional Engineering,
56(9), pp. 318-319.

6 Erdei, C. K., 1962, “Design of Reinforced Concrete for Combined Bending and Shear by Ultimate Lead Theory,” Journal
of the Reinforced Concrete Association, 1(1).

7 Erdei, C. K., 1963, “Ultimate Resistance of Reinforced Concrete Beams Subjected to Shear and Bending,” European Concrete
Committees Symposium on Shear, Wiesbaden, West Germany, pp. 102-114.

8 Ferguson, P. M., 1979, Reinforced Concrete Fundamentals, 4th ed. (New York: John Wiley & Sons), p. 187.
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reinforcing bars on each side of the beam centerline equals the computed development length
£,;. The discussion to follow will prove that this distance is not sufficient to properly develop
the bars for this moment diagram.’

At the centerline of the beam of Figure 7.19, the moment is assumed to equal M,,, and
the bars are assumed to be stressed to f,. Thus the development length of the bars on either
side of the beam centerline must be no less than £,;. If one then moves along this parabolic
moment diagram on either side to a point where the moment has fallen off to a value of M, /2,
it is correct to assume a required development length from this point equal to £;/2.

The preceding discussion clearly shows that the bars will have to be extended farther
out from the centerline than £,. For the moment to fall off 50%, one must move more than
halfway toward the end of the beam.

7.11 Cutting Off or Bending Bars (Continued)

This section presents a few concluding remarks concerning the cutting off of bars, a topic that
was introduced in Section 7.1. The last several sections have offered considerable information
that affects the points where bars may be cut off. Here we give a summary of the previously
mentioned requirements, together with some additional information. First, a few comments
concerning shear are in order.

When some of the tensile bars are cut off at a point in a beam, a sudden increase in the
tensile stress will occur in the remaining bars. For this increase to occur, there must be a rather
large increase in strain in the beam. Such a strain increase quite possibly may cause large
tensile cracks to develop in the concrete. If large cracks occur, there will be a reduced beam
cross section left to provide shear resistance—and thus a greater possibility of shear failure.

To minimize the possibility of a shear failure, Section 12.10.5 of the ACI Code states
that at least one of the following conditions must be met if bars are cut off in a tension zone:

1. The shear at the cutoff point must not exceed two-thirds of the design shear strength, ¢V, ,
in the beam, including the strength of any shear reinforcing provided (ACI 12.10.5.1).

2. An area of shear reinforcing in excess of that required for shear and torsion must be
provided for a distance equal to %d from the cutoff point. The minimum area of this
reinforcing and its maximum spacing are provided in Section 12.10.5.2 of the code.

3. When #11 or smaller bars are used, the continuing bars should provide twice the area of
steel required for flexure at the cutoff point, and the shear should not exceed three-fourths
of the permissible shear (ACI 12.10.5.3).

The moment diagrams used in design are only approximate. Variations in loading, settle-
ment of supports, the application of lateral loads, and other factors may cause changes in those
diagrams. In Section 7.9 of this chapter, we saw that shear forces could appreciably offset the
tensile stresses in the reinforcing bars, thus in effect changing the moment diagrams. As a result
of these factors, the code (12.10.3) says that reinforcing bars should be continued for a distance
of 12 bar diameters or the effective depth d of the member, whichever is greater (except at
the supports of simple spans and the free ends of cantilevers), beyond their theoretical cutoff
points.

Various other rules for development lengths apply specifically to positive-moment rein-
forcement, negative-moment reinforcement, and continuous beams. These are addressed in

9 Ibid., pp. 191-193.
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Courtesy of The Burke Company.

Los Angeles County water project.

Chapter 14 of this text. Another item presented in that chapter, which is usually of consider-
able interest to students, are the rules of thumb that are frequently used in practice to establish
cutoff and bend points.

Another rather brief development length example is presented in Example 7.8. A rect-
angular section and satisfactory reinforcing have been selected for the given span and loading
condition. It is desired to determine where two of the four bars may be cut off, considering
both moment and development length.

Example 7.8

The rectangular beam with four #8 bars shown in Figure 7.20(b) has been selected for the
span and loading shown in part (a) of the figure. Determine the cutoff point for two of the bars,
considering both the actual moment diagram and the required development length.
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f, = 60,000 psi
w, = 2.8KkIf f¢ = 4,000 psi 27 in.
30 in.
4 #8
(3.14in.%)

1 1 oo 00 —3in.}

! 32 fit | T
448k 448k -

. 3@4in. .
@ 3in. =12 in. 3in.
<—18 in. —

(b)

FIGURE 7.20 Given information for Example 7.8.

The design moment capacity (pM,) of this beam has been computed to equal 359.7 ft-k
when it has four bars and 185.3 ft-k when it has two bars. (Notice that o with two bars =
1.57 in.2/(18 in.)) (27 in.) = 0.00323 < Pmin = 200/60,000 psi = 0.00333, but is considered to be
close enough.) In addition, £, for the bars has been determined to equal 41 in., using ACI
Equation 12-1 with A = 0.75 and K;, = 0.275 in. based on #3 stirrups at s = 8 in. (similar to
Example 7.4).

SOLUTION

The solution for this problem is shown in Figure 7.21. There are two bars beginning at the left end
of the beam. As no development length is available, the design moment capacity of the member
is zero. If we move a distance £, from point A at the left end of the beam to point B, the design
moment capacity will increase in a straight line from 0 to 185.3 ft-k. From point B to point C, it
will remain equal to 185.3 ft-k.

At point C, we reach the cutoff point of the bars, and from C to D (a distance equal to £,),
the design moment capacity will increase from 185.3 ft-k to 359.7 ft-k. (In Figure 7.21(a) the bars
seem to be shown in two layers. They are actually on one level, but the authors have shown
them this way so that the reader can get a better picture of how many bars there are at any point
along the beam.)

At no point along the span may the design strength of the beam be less than the actual
bending moment caused by the loads. We can then see that point C is located where the
actual bending moment equals 185.3 ft-k. The left reaction for this beam is 44.8 k, as shown in
Figure 7.20(a). Using this value, an expression is written for the moment at point C (185.3 ft-k) at
a distance x from the left support. The resulting expression can be solved for x.

44.8x — (2.8X) (g) — 185.3 ft-k
X =488ft Say,4ft10in.

By the time we reach point D (3 ft 5 in. to the right of C and 8 ft 3 in. from the left support),
the required moment capacity is

8.25 ft

M, = (44.8 k) (8.25 ft) — (2.8 kif) (8.25 ft) < ) — 274.3 ft-k
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M, = (44.81)(8.25 f0) - (2.8 kIf)(8.25 ) (8230) = 274.3 f-k

cutoff points

R=448k

design moment capacity

of beam

359.7 ft-k 359.7 ft-k
D e —
o 358.4 ft-k T e
1853 fk B ST 2743 Mk 2743 frk X 185.3 fi-k
71853 fik moment diagram 1853 kSO
A o~ due to beam loads ~\
Zd=3ft5in.| 4;=31t5in] 15 ft 6 in. |ld=3ft51n. |Zd=3ft5in.
] I I \
1ft5in. 22 ft 4 in. (Iength of cutoff bars) 1ft5in.
(b)

FIGURE 7.21 Comparison of moment diagram to moment capacities.

Earlier in this section, reference was made to ACI Section 12.10.5, where shear at bar
cutoff points was considered. It is assumed that this beam will be properly designed for shear
as described in the next chapter and will meet the ACI shear requirements.

7.12 Bar Splices in Flexural Members

Field splices of reinforcing bars are often necessary because of the limited bar lengths available,
requirements at construction joints, and changes from larger bars to smaller bars. Although steel
fabricators normally stock reinforcing bars in 60-ft lengths, it is often convenient to work in
the field with bars of shorter lengths, thus necessitating the use of rather frequent splices.

The reader should carefully note that the ACI Code, Sections 1.2.1(h) and 12.14.1, clearly
state that the designer is responsible for specifying the types and locations for splices for rein-
forcement.

The most common method of splicing #11 or smaller bars is simply to lap the bars one
over the other. Lapped bars may be either separated from each other or placed in contact,
with the contact splices being much preferred since the bars can be wired together. Such bars
also hold their positions better during the placing of the concrete. Although lapped splices are
easy to make, the complicated nature of the resulting stress transfer and the local cracks that
frequently occur in the vicinity of the bar ends are disadvantageous. Obviously, bond stresses
play an important part in transferring the forces from one bar to another. Thus the required
splice lengths are closely related to development lengths. It is necessary to understand that the
minimum specified clear distances between bars also apply to the distances between contact
lap splices and adjacent splices or bars (ACI Section 7.6.4).

Lap splices are not very satisfactory for several situations. They include: (1) where they
would cause congestion; (2) where the laps would be very long, as they are for #9 to #11

211



212 CHAPTER 7 Bond, Development Lengths, and Splices

Grade 60 bars; (3) where #14 or #18 bars are used because the code (12.14.2) does not permit
them to be lap spliced except in a few special situations; and (4) where very long bar lengths
would be left protruding from existing concrete structures for purposes of future expansion.
For such situations, other types of splices, such as those made by welding or by mechanical
devices, may be used. Welded splices, from the view of stress transfer, are the best splices, but
they may be expensive and may cause metallurgical problems. The result may be particularly
disastrous in high seismic zones. The ACI Code (12.14.3.4) states that welded splices must
be accomplished by welding the bars together so that the connection will be able to develop
at least 125% of the specified yield strength of the bars. It is considered desirable to butt the
bars against each other, particularly for #7 and larger bars. Splices not meeting this strength
requirement can be used at points where the bars are not stressed to their maximum tensile
stresses. It should be realized that welded splices are usually the most expensive because of
the high labor costs and the costs of proper inspection.

Mechanical connectors usually consist of some type of sleeve splice, which fits over the
ends of the bars to be joined and into which a metallic grout filler is placed to interlock the
grooves inside the sleeve with the bar deformations. From the standpoint of stress transfer,
good mechanical connectors are next best to welded splices. They do have the disadvantage
that some slippage may occur in the connections; as a result, there may be some concrete
cracks in the area of the splices.

Before the specific provisions of the ACI Code are introduced, the background for these
provisions should be explained briefly. The following remarks are taken from a paper by
George F. Leyh of the CRSI.'?

1. Splicing of reinforcement can never reproduce exactly the same effect as continuous
reinforcing.

2. The goal of the splice provisions is to require a ductile situation where the reinforcing
will yield before the splices fail. Splice failures occur suddenly without warning and
with dangerous results.

3. Lap splices fail by splitting of the concrete along the bars. If some type of closed
reinforcing is wrapped around the main reinforcing (such as ties and spirals, described
for columns in Chapter 9), the chances of splitting are reduced and smaller splice lengths
are needed.

4. When stresses in reinforcement are reduced at splice locations, the chances of splice
failure are correspondingly reduced. For this reason, the code requirements are less
restrictive where stresses are low.

Splices should be located away from points of maximum tensile stress. Furthermore,
not all of the bars should be spliced at the same locations—that is, the splices should be
staggered. Should two bars of different diameters be lap spliced, the lap length used shall be
the splice length required for the smaller bar or the development length required for the larger
bar, whichever is greater (ACI Code 12.15.3).

The length of lap splices for bundled bars must be equal to the required lap lengths for
individual bars of the same size, but increased by 20% for three-bar bundles and 33% for
four-bar bundles (ACI Code 12.4) because there is a smaller area of contact between the bars
and the concrete, and thus less bond. Furthermore, individual splices within the bundles are
not permitted to overlap each other.

10 portland Cement Association, 1972, Proceedings of the PCA-ACI Teleconference on ACI 318-71 Building Code Requirements
(Skokie, IL: Portland Cement Association), p. 14-1.



7.14 Compression Splices

TABLE 7.3 Tension Lap Splices

Maximum Percent of A, Spliced within
Required Lap Length

A )
s provided 50 100
As required
Equal to or greater than 2 Class A Class B
Less than 2 Class B Class B

7.13 Tension Splices

The code (12.15) divides tension lap splices into two classes, A and B. The class of splice
used is dependent on the level of stress in the reinforcing and on the percentage of steel that
is spliced at a particular location.

Class A splices are those where the reinforcing is lapped for a minimum distance of
1.0£, (but not less than 12 in.) and where one-half or less of the reinforcing is spliced at any
one location.

Class B splices are those where the reinforcing is lapped for a minimum distance of 1.3 £,
(but not less than 12 in.) and where all the reinforcing is spliced at the same location.

The code (12.15.2) states that lap splices for deformed bars and deformed wire in tension
must be Class B unless (1) the area of reinforcing provided is equal to two or more times the
area required by analysis over the entire length of the splice and (2) one-half or less of the
reinforcing is spliced within the required lap length. A summary of this information is given
in Table 7.3, which is Table R12.15.2 in the ACI Commentary.

In calculating the value of £, to be multiplied by 1.0 or 1.3, the reduction for excess
reinforcing furnished, A ;ovided /As required» Should not be used because the class of splice (A
or B) already reflects any excess reinforcing at the splice location (see ACI Commentary
R12.15.1).

7.14 Compression Splices

Compression bars may be spliced by lapping, by end bearing, and by welding or mechanical
devices. (Mechanical devices consist of bars or plates or other pieces welded or otherwise
attached transversely to the flexural bars in locations where sufficient anchorage is not avail-
able.) The code (12.16.1) says that the minimum splice length of such bars should equal
0.0005f,d,, for bars with f, of 60,000 psi or less, (0.0009f, — 24)d,, for bars with higher f,
values, but not less than 12 in. Should the concrete strengths be less than 3000 psi, it is nec-
essary to increase the computed laps by one-third. Reduced values are given in the code for
cases where the bars are enclosed by ties or spirals (12.17.2.4 and 12.17.2.5).

The required length of lap splices for compression bars of different sizes is the larger of
the computed compression lap splice length of the smaller bars or the compression development
length, £, of the larger bars. It is permissible to lap splice #14 and #18 compression bars to
#11 and smaller bars (12.16.2).

The transfer of forces between bars that are always in compression can be accomplished
by end bearing, according to Section 12.16.4 of the code. For such transfer to be permitted,
the bars must have their ends square cut (within 1%0 of a right angle), must be fitted within 3°
of full bearing after assembly, and must be suitably confined (by closed ties, closed stirrups,
or spirals). Section 12.17.4 further states that when end-bearing splices are used in columns,
in each face of the column more reinforcement has to be added that is capable of providing
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Inc.

, USA,

Courtesy of Dywidag Systems International

Picture of #7 GR75 Dywidag THREADBAR (R) reinforcing bar
including a couple for transferring tension loads.

a tensile strength at least equal to 25% of the yield strength of the vertical reinforcement
provided in that face.

The code (12.14.2.1), with one exception, prohibits the use of lap splices for #14 or #18
bars. When column bars of those sizes are in compression, it is permissible to connect them to
footings by means of dowels of smaller sizes with lap splices, as described in Section 15.8.2.3
of the code.

7.15 Headed and Mechanically Anchored Bars

Headed deformed bars (Figure 1.3 in Chapter 1) were added to the code in the 2008 edition.
Such devices transfer force from the bar to the concrete through a combination of bearing force
at the head and bond forces along the bar. There are several limitations to the use of headed
bars, as follows:

(a) bar fy shall not exceed 60,000 psi

(b) bar size shall not exceed No. 11

(c) concrete shall be normal weight

(d) net bearing area of head A,,, shall not be less than four times the area of the bar A,
(e) clear cover for bar shall not be less than 2d,

(f) clear spacing between bars shall not be less than 4d,

Clear cover and clear spacing requirements in (e) and (f) are measured to the bar, not to the
head.

Headed bars are limited to those types that meet the requirements of HA heads in ASTM
A970 because a number of methods are used to attach heads to bars, some involving significant
obstructions or interruptions of the bar deformations. Headed bars with significant obstructions
or interruptions of the bar deformations were not evaluated in the tests used to formulate the
provisions in ACI Section 12.6.2.



7.16 Sl Example

The development length in tension for headed deformed bars that comply with the ASTM
A970 and other special requirements pertaining to obstructions (ACI Section 3.5.9) is given

by
0.016v. f,
dt = 7 d,
In applying this equation, f/ cannot be taken as greater than 6000 psi, and v, is 1.2 for
epoxy-coated bars and 1.0 otherwise. The calculated value of £, cannot be less than 8d,
or 6 in., whichever is larger. The multiplier used earlier for deformed bars without heads,
Ay required /Ay provideds 18 N0t permitted. There are no A, ¥, or ¥ terms in this expression.

0.192v, 1,
In ST units, £, = & b

The code (ACI 12.6.4) also permits other mechanical devices shown by tests to be effective
and approved by the building official.

Example 7.9

Repeat Example 7.6 using a headed bar, and compare with the results of Example 7.6.

| _ 0016v,f, , _ (0.016)(12)(60,000 psi)
AT R /4000 psi

This value compares with 69 in. for a straight bar and 26 in. for a 90° or 180° hooked bar.

(1.128 in.) = 20.54 in. Say 21 in.

7.16 Sl Example

Example 7.10

Determine the development length required for the epoxy-coated bottom bars shown in
Figure 7.22.

(@) assuming K;, = 0 and

(b) computing K;, with the appropriate equation, fy = 420 MPa and f, = 21 MPa.

SOLUTION

From Table 6.1 in Chapter 6
¥, = 1.0 for bottom bars
¥, = 1.5 for epoxy-coated bars with clear spacing < 6d,
Y= (1.0(1.5)=15<1.7 OK
Y= 1=10 -
¢, = side cover of bars = 80 mm
Cp= % of c. to c. spacing of bars = 40 mm <« controls
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~ A
#10
stirrups @ 600 mm 630 mm
200 mm
o.c.
4 #25
e o o o |-
80 mm
80 3@80 mm 80
mm | =240 mm .
! e ! FIGURE 7.22 Beam cross section for
~—— 400 mm ———] Example 7.10.

(a) Using Sl Equation 12-1 with K;, =0

K. 40 0
Cot Ry _AOMMAIMM _ 4 575 _05 OK
dy 25.4 mm =

Z_d _ 9 fy _ wtwews

d, 10./F,  Cpt+Ky
db

(i) ( 420 MPa ) (1.0)(1.5)(1.0)
10 (1.0) v/21 MPa 1.575

= 78.6 diameters

(b) Using Computed Value of K;. and S| Equation 12-1
424, (42)(2)(71 mm?)

K, — _ _ 7.45
= "on (200 mm) @) mm
K, 40 7.45
Cpt PRy ZUMMELASMM _ 4 a7 25 OK
d, 25.4 mm =
to _ <3> ( 2 ) (L0150 _ a6 5 giameters
g, \10)\ 70 va1 1.87 22.2 JlAMeers

7.17 Computer Example

Example 7.11

Using the worksheet entitled ‘“devel length tens - calc As” in the spreadsheet for Chapter 7,
determine the required tension development length £, of the beam shown in Figure 7.20 if
lightweight aggregate concrete and #3 stirrups at 8 in. centers are used.
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Development Length, Tension
fi= 4000 psi
f= 60,000 psi
Su= 60,000 psi
b= 18 in.* d h
d= 27 in.*
h= 30 in.* s
A= 314| in* ®
A,= 022 in?*
= 1 in. }4* b ‘.»‘
n= 4 *
5= 8 in.*
v, = 1.00
Y, = 1.00 *Cells indicate that this information is optional.
Y, = 1.00 M,, b, d, h, and A are needed only to calculate.
A= 0.75 A_ required, A, , 1, and s are needed only if the K term is
s Ir tr
¢, = 2.00 in. to be used. All terms with * can be omitted, and
M, = 358.40 ft-k*  |a conservative value of /, will result.
vy = 1
K, = 0.275
(c,+K)/d, = 2.28
3
l; = f;’ Y Ve Ys dy = 41.7 diameters
40 2 ./ fil et K, 41.7 in. (not adjusted for A JA| o iged)
dp
A4, requia= | 312736 in.
As required/As provided = 0.995975 ld = 415 in. (adjuSted for As/As provided)
but not less than 12 |(in.

Printout of Example 7.11 results.

SOLUTION

Input the values of the cells highlighted in yellow (only in the Excel spreadsheets, not the printed
example). Some cells are optional (see note marked with * in the printout for Example 7.11 shown
above). Pass the cursor over cells for comments explaining what is to be input. Note that two
answers are given, one with the Ag cquired/As provided "€duction and one without. In this example,
there is little difference because this ratio is nearly 1.0.

PROBLEMS

Problem 7.1 Why is it difficult to calculate actual bond

stresses?

Problem 7.2 What are top bars? Why are the required

Problem 7.3 Why do the cover of bars and the spacing of
those bars affect required development lengths?

Problem 7.4 Why isn’t the anchorage capacity of a standard

development lengths greater than they would be if they were not hook increased by extending the bar well beyond the end of the

top bars?

hook?
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Problem 7.5 For the cantilever beam shown, determine the point where two bars theoretically can be cut off from the standpoint
of the calculated moment strength, $M,, of the beam. f, = 60,000 psi and f, = 3000 psi. (Ans. 9.96 ft from free end)

16 in.
3@3in.=9in.
. ’._\ ol e
1. 31in
35in. 2

O WL
#3 449
stirrups \\

w, =5 k/ft

|
| 12 ft |

2

For Problems 7.6 to 7.9, determine the development lengths Problem 7.8 Epoxy-coated bars in lightweight concrete,
required for the tension bar situations described using ACI A, required = 2:76 in2.
Equation 12-1 and: (a) assuming K,, = 0, and (b) the calculated _

.
value of K,,. = A
Problem 7.6 Uncoated bars in normal-weight concrete. Jfy= 60,000 psi
— in 2 - 24 in. ,
A required = 3.44 in.”. #3 stirrups mn fé=3000 psi
— @ 71in. o.c.
) I 3#9
Q ° o 1
30in. fy = 60,000 psi _L3 in.
#3 stirrups fi= 4000 psi . . . .
@8in. oc. ¢ p !3m.!3m.!3m.!3m.!
3#10
. N o R Problem 7.9 Uncoated top bars in normal-weight concrete.
N 3in A, required = 3.68 in.2. (Ans. 59 in., 50 in.)
[3in| 4in_| 4in, |3 in.| [3in]3 @3in.=9in[3 in]
[~ I =~ == =1
T?a in.
. . ® o e o
Problem 7.7 Uncoated bars in normal-weight concrete. .
. o . . #3 stirrups 4#9
A requiea = 425107 (Ans. 43 in., 27 in.) @ 8 in. o.c. £, = 60,000 psi
) Jé=6000 psi
M ) 27 in.
i 26in.  f,=60,000 psi L N
stirrups Jé=4000 psi
@ 6in. o.c. 6#8 ( P
° ° ° Problem 7.10 Repeat Problem 7.6 if the bars are epoxy
e o o 3in. coated.
3in. Problem 7.11 Repeat Problem 7.7 if all-lightweight concrete

|3in. |3in.|3in.|3in | with f/ = 3000 psi and epoxy-coated bars are used. (Ans.
I I I I | 98.8 in., 62.1 in.)




Problem 7.12 Repeat Problem 7.8 if three uncoated #6 bars

_ )
are used and A required = 1.20 in.”.

Problem 7.13 Repeat Problem 7.9 if the bars are four #8 and
epoxy coated and all-lightweight concrete is used. (Ans.
81.6 in., 69.0 in.)

Problem 7.14 The bundled #10 bars shown are uncoated and

used in normal-weight concrete. A oqyireq = 444 in2.

— )
= 60,000 psi
] 32in. b P
#4 stirrups Jé=5000 psi
@ 6in. o.c.
#10 bars
oo [ I
4in
i
[3in| 9in |3 in}— measured to c.g. of outside
I

! ! longitudinal bar

Problem 7.15 Repeat Problem 7.14 if the bars are epoxy
coated and used in sand-lightweight concrete with
f. = 4000 psi. (Ans. 78.3 in., 63.4 in., etc.)

Problem 7.20

Problems 219

Problem 7.16 Set up a table for required development lengths
for the beam shown, using f, = 60,000 psi and ;. values of
3000 psi, 3500 psi, 4000 psi, 4500 psi, 5000 psi, 5500 psi, and
6000 psi. Assume the bars are uncoated and normal-weight
concrete is used. Use ACI Equation 12-1 and assume K,. = 0.

N Vi
#3 stirrups 40 in.
@ 6 in. o.c.
#9 bars
®© o e o v
3in.

[3 in.| [3in|
! 1 I |

3@4ir/1.=12in.

Problem 7.17 Repeat Problem 7.16 if #8 bars are used. (Ans.
41.1 in., 38.0 in., 35.6 in., 33.5 in., 31.8 in., etc.)

Problem 7.18 Repeat Problem 7.16 if #7 bars are used.

Problem 7.19 Repeat Problem 7.16 if #6 epoxy-coated bars
are used in lightweight concrete. (Ans. 39.4 in., 36.5 in.,
34.2 in., 32.2 in., 30.6 in., etc.)

(a) Determine the tensile development length required for the uncoated #8 bars shown if normal-weight concrete is used and the
bars are straight. Use ACI Equation 12-1 and compute the value of K. f = 4000 psi and f, = 60,000 psi.

(b) Repeat part (a) if 180° hooks are used.

Assume side, top, and bottom cover in all cases to be at least 2% in.

21 in.

‘ 3@5in.
R =15in. P!

#3 stirrups
@ 61in. o.c.

y 3in.

27 in. 30in.
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Problem 7.21 Are the uncoated #8 bars shown anchored
sufficiently with their 90° hooks? f/ = 3000 psi and

f, = 60 ksi. Side and top cover is 2% in. on bar extensions.
Normal-weight concrete is used. A
L,, = 14.3 in., sufficient)

s required

2 in. clear
3#8 /
1
<« 151in.

12 in. clear

|<—16 in.—>|

= 2.20 in.2. (Ans.

Problem 7.22 Repeat Problem 7.21 if headed bars are used
instead of 90° hooks and f/ = 5000 psi.

Problem 7.23 Repeat Problem 7.7 if the bars are in
compression. (Ans. 17.9 in.)

For Problems 7.24 to 7.29, use ACI Equation 12-1 and assume K,. = 0.

Problem 7.24 The required bar area for the wall footing shown is 0.65 in.2 per foot of width and #8 epoxy-coated bars 12 in. on
center are used. Maximum moment is assumed to occur at the face of the wall. If f, = 60,000 psi and f/ = 4000 psi, do the bars

have sufficient development lengths? Assume ¢, = 3 in.

wall
footing #8 bars s 12 in.
I 27 in | 12 in. I 27 in —!
3in. 3in
6 ft 0 in.

Problem 7.25 Repeat Problem 7.24 using #7 @ 9 in. and
without epoxy coating. (Ans. £; = 20.2 in. < 27 in. OK)

Problem 7.26 Problem 7.24 has insufficient embedment
length. List four design modifications that would reduce the
required development length.

Problem 7.27 The beam shown is subjected to an M, of

250 ft-k at the support. If ¢, = 1.5, K,. = 0, the concrete is
lightweight, f, = 60,000 psi, and f. = 4000 psi, do the
following: (a) select #9 bars to be placed in one row,

(b) determine the development lengths required if straight bars
are used in the beam, and (c) determine the development lengths
needed if 180° hooks are used in the support. (Ans. 3 #9,

95.2 in., 26.0 in.)

NNNNNAN



Problem 7.28

I #7

—

#8

In the column shown, the lower column bars
are #8 and the upper ones are #7. The bars are enclosed by ties
spaced 12 in. on center. If f, = 60,000 psi and £, = 4000 psi,
what is the minimum lap splice length needed? Normal-weight
concrete is to be used for the 12-in. x 12-in. column.

Problems 221

Problem 7.30 Calculations show that 4.90 in.? of top or

negative steel is required for the beam shown. If four uncoated
#10 bars have been selected, f, = 4000 psi, and
f, = 60,000 psi, determine the minimum development length

needed for the standard 90° hooks shown. Assume bars have
3-in. side and top cover measured from c.g. of bars and are used
in normal-weight concrete. The bars are not enclosed by ties or

stirrups spaced at 3d,, or less.

Problem 7.29 Calculations show that 2.64 in.? of top or
negative moment steel is required for the beam shown. Three #9
bars have been selected. Are the 4 ft. 6 in. embedment lengths
shown satisfactory if f/ = 4000 psi and f, = 60,000 psi? Bars
are spaced 3 in. o.c. with 3-in. side and top cover measured

from c.g. of bars. Use K,, = 0. (Ans. No; £, =69 in. >

4 ft 6 in., not adequate)

3#9 349
/ /
P S ——— P Ap——

4ft6in. | 4ft6in.
- b

Problem 7.31

21 in.
4 #8 '
[ 2N B N :
3in.
e -t
3@3in.
3in. 3in.

<—15 in.——|

4ft6in. | 4ft6in.

3in.
21 in.

lain =17

2 #8 bent

]

[e—-1 ft 6 in.

7
2 #8 straight

11 ft 0 in.—

1 ft 6 in. —

14 £t 0 in.— £

s required

If f, = 75,000 psi, fl =4000 psi, w, = 1.5 k/ft, and w, = 5 k/ft, are the development lengths of the straight
bars satisfactory? Assume that the bars extend 6 in. beyond the centerline of the reactions and that K,, = 0. A
The bars are uncoated and the concrete is normal weight. (Ans. £, = 57.6 in., embedment length is adequate)

= 3.05 in.2.
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Compression Splices

Problem 7.32 Determine the compression lap splices needed
for a 14-in. x 14-in. reinforced concrete column with ties
(whose effective area exceeds 0.0015 hs, as described in Section
12.17.2.4 of the code) for the cases to follow. There are eight
#8 longitudinal bars equally spaced around the column.

(@) f; =4000 psi and f, = 60,000 psi
(b) f. =12000 psi and f, = 50,000 psi

Problems in Sl Units

For Problems 7.33 to 7.36, determine the tensile development
lengths required using: (a) ACI Metric Equation 12-1, assuming
K, = 0, and (b) ACI Metric Equation 12-1 and the computed
value of K,,. Usefy = 420 MPa and f/ = 28 MPa.

Problem 7.33 (Ans. 922 mm, 769 mm)

~ A
#10
stirrups @
11500 mwn 620 mm
o.c. 700 mm
4 #25
e e o o | [
80 mm
80 |3 @ 100 mm | 80
mm =300 mm mm
| |
~<~—— 460 mm ——|

Computer Problems
For Problems 7.37 and 7.38, use the Chapter 7 spreadsheet.

Problem 7.37 Repeat Problem 7.6. (Ans. 52.1 in., 44.0 in.)
Problem 7.38 Repeat Problem 7.9.

Problem 7.39 Repeat Problem 7.22. (Ans. £, = 13.6 in. >
13 in. available .". no good)

Problem 7.34

#13
stirrups @
200 mm 425 mm
DE. 500 mm
3 #32
75 mm

75 2@100 | 75
| I
le—— 350 mm ——|

Problem 7.35 Repeat Problem 7.33 if the longitudinal bars
are #19. (Ans. 437 mm, 437 mm)

Problem 7.36 Repeat Problem 7.34 if the bars are epoxy
coated.



Shear and Diagonal Tension CHAPTER 8

8.1 Introduction

As repeatedly mentioned earlier in this book, the objective of today’s reinforced concrete
designer is to produce ductile members that provide warning of impending failure. To achieve
this goal, the code provides design shear values that have larger safety factors against shear
failures than do those provided for bending failures. The failures of reinforced concrete beams
in shear are quite different from their failures in bending. Shear failures occur suddenly with
little or no advance warning. Therefore, beams are designed to fail in bending under loads that
are appreciably smaller than those that would cause shear failures. As a result, those members
will fail ductilely. They may crack and sag a great deal if overloaded, but they will not fall
apart, as they might if shear failures were possible.

8.2 Shear Stresses in Concrete Beams

Although no one has ever been able to accurately determine the resistance of concrete to pure
shearing stress, the matter is not very important because pure shearing stress is probably never
encountered in concrete structures. Furthermore, according to engineering mechanics, if pure
shear is produced in a member, a principal tensile stress of equal magnitude will be produced
on another plane. Because the tensile strength of concrete is less than its shearing strength, the
concrete will fail in tension before its shearing strength is reached.

You have previously learned that in elastic homogeneous beams, where stresses are
proportional to strains, two kinds of stresses occur (bending and shear), and they can be
calculated with the following expressions:

f_Mc
T
Vo
V = ——
Ib

An element of a beam not located at an extreme fiber or at the neutral axis is subject to
both bending and shear stresses. These stresses combine into inclined compressive and tensile
stresses, called principal stresses, which can be determined from the following expression:

2
fngi <§> +v?

The direction of the principal stresses can be determined with the formula to follow, in
which « is the inclination of the stress to the beam’s axis:

2v
tan2a = —
f

223



224 CHAPTER 8 Shear and Diagonal Tension

© Danish Khan/iStockphoto.

Obviously, at different positions along the beam, the relative magnitudes of v and f
change, and thus the directions of the principal stresses change. It can be seen from the
preceding equation that at the neutral axis, the principal stresses will be located at a 45° angle
with the horizontal.

You understand by this time that tension stresses in concrete are a serious matter. Diag-
onal principal tensile stresses, called diagonal tension, occur at different places and angles in
concrete beams, and they must be carefully considered. If they reach certain values, additional
reinforcing, called web reinforcing, must be supplied.

The discussion presented up to this point relating to diagonal tension applies rather well
to plain concrete beams. If, however, reinforced concrete beams are being considered, the
situation is quite different because the longitudinal bending tension stresses are resisted quite
satisfactorily by the longitudinal reinforcing. These bars, however, do not provide significant
resistance to the diagonal tension stresses.

8.3 Lightweight Concrete

In the 2008 ACI 318 Code, the effect of lightweight aggregate concrete on shear strength
was modified by the introduction of the term A (see Section 1.12). This term was added to
most equations containing \/f? . The resulting combined term, k\/ﬁ , appears throughout this
chapter as well as in Chapter 7 on development length and Chapter 15 on torsion. If normal-
weight concrete is used, then A is simply taken as 1. This unified approach to the effects
of lightweight aggregate on the strength and other properties of concrete is a logical and
simplifying improvement found in the 2008 ACI Code.



8.4 Shear Strength of Concrete

8.4 Shear Strength of Concrete

A great deal of research has been done on the subject of shear and diagonal tension for
nonhomogeneous reinforced concrete beams, and many theories have been developed. Despite
all this work and all the resulting theories, no one has been able to provide a clear explanation
of the failure mechanism involved. As a result, design procedures are based primarily on test
data.

If v, is divided by the effective beam area, b, d, the result is what is called an average
shearing stress. This stress is not equal to the diagonal tension stress but merely serves as an
indicator of its magnitude. Should this indicator exceed a certain value, shear or web reinforcing
is considered necessary. In the ACI Code, the basic shear equations are presented in terms of
shear forces, not shear stresses. In other words, the average shear stresses described in this
paragraph are multiplied by the effective beam areas to obtain total shear forces.

For this discussion, V,, is considered to be the nominal or theoretical shear strength of a
member. This strength is provided by the concrete and by the shear reinforcement.

V,=V.+V;

The design shear strength of a member, ¢V, , is equal to ¢V, plus ¢V, which must at
least equal the factored shear force to be taken, V,

Vi =0V + oV,

The shear strength provided by the concrete, V,, is considered to equal an average shear
stress strength (normally ZA\/]?) times the effective cross-sectional area of the member, b,,d,
where b,, is the width of a rectangular beam or of the web of a T beam or an I beam.

V, =2x/f/b,d (ACI Equation 11-3)

Or in SI units with f/ in MPa

Beam tests have shown some interesting facts about the occurrence of cracks at different
average shear stress values. For instance, where large moments occur even though appropriate
longitudinal steel has been selected, extensive flexural cracks will be evident. As a result,
the uncracked area of the beam cross section will be greatly reduced, and the nominal shear
strength, V,, can be as low as 1.9)L\/.]7bwd. In regions where the moment is small, however,
the cross section will be either uncracked or slightly cracked, and a large portion of the cross
section is available to resist shear. For such a case, tests show that a V. of about 3.5)L\/]7 b,d
can be developed before shear failure occurs.!

Based on this information, the code (11.2.1.1) suggests that, conservatively, V.. (the shear
force that the concrete can resist without web reinforcing) can go as high as ZA\/Ebwd. As
an alternative, the following shear force (from Section 11.2.1.2 of the code) may be used,
which takes into account the effects of the longitudinal reinforcing and the moment and shear

! ACI-ASCE Committee 326, 1962, “Shear and Diagonal Tension,” part 2, Journal ACI, 59, p. 277.
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magnitudes. This value must be calculated separately for each point being considered in the
beam.

v,d
v, = (1.9A\/J§ + 25000, % )bwd < 3.50/flb,d (ACI Equation 11-5)

u

In SI units

V, = <A\/f7+ 120p,, V"d) byd < 0.37\/f!b,d
M, 7

In these expressions, p,, = A, /b, d and M, are the factored moment occurring simulta-
neously with V,, the factored shear at the section considered. The quantity V,d /M, cannot be
taken to be greater than unity in computing V,. by means of the above expressions.

From these expressions, it can be seen that V. increases as the amount of reinforcing
(represented by p,,) is increased. As the amount of steel is increased, the length and width of
cracks will be reduced. If the cracks are kept narrower, more concrete is left to resist shear,
and there will be closer contact between the concrete on opposite sides of the cracks. Hence
there will be more resistance to shear by friction (called aggregate interlock) on the two sides
of cracks.

Although this more complicated expression for V. can easily be used for computer
designs, it is quite tedious to apply when handheld calculators are used. The reason is that
the values of p,,, V,, and M, are constantly changing as we move along the span, requiring
the computation of V. at numerous positions. As a result, the alternate value ZA\/ﬁbwd is
normally used. If the same member is to be constructed many times, the use of the more
complex expression may be justified.

8.5 Shear Cracking of Reinforced Concrete Beams

Inclined cracks can develop in the webs of reinforced concrete beams, either as extensions
of flexural cracks or occasionally as independent cracks. The first of these two types is the
flexure—shear crack, an example of which is shown in Figure 8.1. These are the ordinary types
of shear cracks found in both prestressed and nonprestressed beams. For them to occur, the
moment must be larger than the cracking moment, and the shear must be rather large. The
cracks run at angles of about 45° with the beam axis and probably start at the top of a flexure
crack. The approximately vertical flexure cracks shown are not dangerous unless a critical
combination of shear stress and flexure stress occurs at the top of one of the flexure cracks.
Occasionally, an inclined crack will develop independently in a beam, even though
no flexure cracks are in that locality. Such cracks, which are called web—shear cracks, will

secondary crack flexure—shear crack l
\

S L L L LD

initiating or
flexural cracks

FIGURE 8.1 Flexure—shear crack.
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web—shear cracks

FIGURE 8.2 Web—shear cracks.

sometimes occur in the webs of prestressed sections, particularly those with large flanges and
thin webs. They also sometimes occur near the points of inflection of continuous beams or near
simple supports. At such locations, small moments and high shear often occur. These types
of cracks will form near the mid-depth of sections and will move on a diagonal path to the
tension surface. Web—shear cracks are illustrated in Figure 8.2.

As a crack moves up to the neutral axis, the result will be a reduced amount of concrete
left to resist shear—meaning that shear stresses will increase on the concrete above the crack.

It will be remembered that at the neutral axis, the bending stresses are zero, and the
shear stresses are at their maximum values. The shear stresses will therefore determine what
happens to the crack there.

After a crack has developed, the member will fail unless the cracked concrete section
can resist the applied forces. If web reinforcing is not present, the items that are available to
transfer the shear are as follows: (1) the shear resistance of the uncracked section above the
crack (estimated to be 20% to 40% of the total resistance); (2) the aggregate interlock, that
is, the friction developed due to the interlocking of the aggregate on the concrete surfaces on
opposite sides of the crack (estimated to be 33% to 50% of the total); (3) the resistance of the
longitudinal reinforcing to a frictional force, often called dowel action (estimated to be 15%
to 25%); and (4) a tied-arch type of behavior that exists in rather deep beams produced by the
longitudinal bars acting as the tie and by the uncracked concrete above and to the sides of the
crack acting as the arch above.”

8.6 Web Reinforcement

When the factored shear, V,,, is high, it shows that large cracks are going to occur unless some
type of additional reinforcing is provided. This reinforcing usually takes the form of stirrups
that enclose the longitudinal reinforcing along the faces of the beam. The most common
stirrups are U shaped, but they can be LI'U shaped or perhaps have only a single vertical
prong, as shown in Figure 8.3(c). Multiple stirrups such as the ones shown in Figure 8.3(e)
are considered to inhibit splitting in the plane of the longitudinal bars. As a consequence, they
are generally more desirable for wide beams than the ones shown in Figure 8.3(d). Sometimes
it is rather convenient to use lap spliced stirrups, such as the ones shown in Figure 8.3(g).
These stirrups, which are described in ACI Section 12.13.5, are occasionally useful for deep
members, particularly those with gradually varying depths. However, they are considered to be
unsatisfactory in seismic areas.

Bars called hangers (usually with about the same diameter as that of the stirrups)
are placed on the compression sides of beams to support the stirrups, as illustrated in

2 Taylor, H. P. J., 1974, “The Fundamental Behavior of Reinforced Concrete Beams in Bending and Shear,” Shear in Reinforced
Concrete, Vol. 1, SP-42 (Detroit: American Concrete Institute), pp. 43—47.
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Open stirrups for beams with negligible torsion (ACI 11.5.1)

hangers

(a) (b)

©

(d) (e)

Closed stirrups for beams with significant torsion (see ACI 11.5.2.1)
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®

concrete confinement
one side
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FIGURE 8.3 Types of stirrups.
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Figure 8.3(a) to (j). The stirrups are passed around the tensile steel and, to meet anchorage
requirements, they are run as far into the compression side of the beam as practical and hooked
around the hangers. Bending of the stirrups around the hangers reduces the bearing stresses
under the hooks. If these bearing stresses are too high, the concrete will crush and the stirrups
will tear out. When a significant amount of torsion is present in a member, it will be necessary
to use closed stirrups as shown in parts (f) through (j) of Figure 8.3 and as discussed in
Chapter 15.

The width of diagonal cracks is directly related to the strain in the stirrups. Consequently,
the ACI 11.4.2 does not permit the design yield stress of the stirrups to exceed 60 ksi. This
requirement limits the width of cracks that can develop. Such a result is important from the
standpoint of both appearance and aggregate interlock. When the width of cracks is limited,
it enables more aggregate interlock to develop. A further advantage of a limited yield stress
is that the anchorage requirements at the top of the stirrups are not quite as stringent as they
would be for stirrups with greater yield strengths.

The 60,000-psi limitation does not apply to deformed welded wire fabric because recent
research has shown that the use of higher-strength wires has been quite satisfactory. Tests have



8.7 Behavior of Beams with Web Reinforcement 229

shown that the width of inclined shear cracks at service load conditions is less for high-strength
wire fabric than for those occurring in beams reinforced with deformed Grade 60 stirrups. The
maximum stress permitted for deformed welded wire fabric is 80,000 psi (ACI 11.4.2).

In ST units, the maximum design yield stress values that may be used are 420 MPa for
regular shear reinforcing and 550 MPa for welded deformed wire fabric.

8.7 Behavior of Beams with Web Reinforcement

The actual behavior of beams with web reinforcement is not really understood, although several
theories have been presented through the years. One theory, which has been widely used for 100
years, is the so-called truss analogy, wherein a reinforced concrete beam with shear reinforcing
is said to behave much like a statically determinate parallel chord truss with pinned joints. The
flexural compression concrete is thought of as the top chord of the truss, whereas the tensile
reinforcing is said to be the bottom chord. The truss web is made up of stirrups acting as vertical
tension members and pieces of concrete between the approximately 45° diagonal tension cracks
acting as diagonal compression members.>** The shear reinforcing used is similar in its action
to the web members of a truss. For this reason, the term web reinforcement is used when
referring to shear reinforcing. A “truss” of the type described here is shown in Figure 8.4.

Although the truss analogy has been used for many years to describe the behavior of
reinforced concrete beams with web reinforcing, it does not accurately describe the manner in
which shear forces are transmitted. For example, the web reinforcing does increase the shearing
strength of a beam, but it has little to do with shear transfer in a beam before inclined cracks
form.

The code requires web reinforcement for all major beams. In Section 11.4.6.1, a minimum
area of web reinforcing is required for all concrete flexural members except (a) footings and
solid slabs; (b) certain hollow-core units; (c) concrete floor joists; (d) shallow beams with 4 not
more than 10 in.; (e) beams integral with slabs with % less than 24 in. and & not greater than
the larger of two and a half times their flange thicknesses or one-half their web widths; or (f)
beams constructed with steel fiber—reinforced, normal-weight concrete with f; not exceeding
6000 psi, & not greater than 24 in., and V,, not greater than 2¢\/]7 b, d. Various tests have shown
that shear failures do not occur before bending failures in shallow members. Shear forces are

concrete between compression concrete
inclined cracks (diagonals) t stirrups (verticals) L (top chord)
}\\\\\VL N N :\\ﬁ $
-7 \ \
— >\ NN JL — — J. -
tensile steel diagonal tension cracks
(bottom chord)

FIGURE 8.4 Truss analogy.

3 Ritter, W., 1899, “Die Bauweise Hennebique,” Schweizerische Bauzeitung, Vol. 33, No. 7.
4 Morsch, E., 1912, Der Eisenbetenbau, seine Theorie und Anwendung (Stuttgart: Verlag Konrad Wittwer).
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FIGURE 85 Bent-up bar web reinforcing.

distributed across these wide sections. For joists, the redistribution is via the slabs to adjacent
joists. Hooked or crimped steel fibers in dosages >100 Ib per cubic yard exhibit higher shear
strengths in laboratory tests. However, use of such fibers is not recommended when the concrete
is exposed to chlorides, such as deicing salts.

Inclined or diagonal stirrups lined up approximately with the principal stress directions
are more efficient in carrying the shears and preventing or delaying the formation of diagonal
cracks. Such stirrups, however, are not usually considered to be very practical in the United
States because of the high labor costs required for positioning them. Actually, they can be
rather practical for precast concrete beams where the bars and stirrups are preassembled into
cages before being used and where the same beams are duplicated many times.

Bent-up bars (usually at 45° angles) are another satisfactory type of web reinforcing
(see Figure 8.5). Although bent-up bars are commonly used in flexural members in the United
States, the average designer seldom considers the fact that they can resist diagonal tension.
Two reasons for not counting their contribution to diagonal tension resistance are that there
are only a few, if any, bent-up bars in a beam and that they may not be conveniently located
for use as web reinforcement.

Diagonal cracks will occur in beams with shear reinforcing at almost the same loads at
which they occur in beams of the same size without shear reinforcing. The shear reinforcing
makes its presence known only after the cracks begin to form. At that time, beams must have
sufficient shear reinforcing to resist the shear force not resisted by the concrete.

After a shear crack has developed in a beam, only a little shear can be transferred across
the crack unless web reinforcing is used to bridge the gap. When such reinforcing is present,
it keeps the pieces of concrete on the two sides of the crack from separating. Several benefits
result. These include:

1. The steel reinforcing passing across the cracks carries shear directly.

2. The reinforcing keeps the cracks from becoming larger, and this enables the concrete to
transfer shear across the cracks by aggregate interlock.

3. The stirrups wrapped around the core of concrete act like hoops and thus increase the
beam’s strength and ductility. In a related fashion, the stirrups tie the longitudinal bars
into the concrete core of the beam and restrain them from prying off the covering
concrete.

4. The holding together of the concrete on the two sides of the cracks helps keep the
cracks from moving into the compression zone of the beam. Remember that other than
for deformed wire fabric, the yield stress of the web reinforcing is limited to 60 ksi to
limit the width of the cracks.
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The maximum shear, V,, in a beam must not exceed the design shear capacity of the beam
cross section, ¢V, , where ¢ is 0.75 and V,, is the nominal shear strength of the concrete and
the shear reinforcing.

Vu S ¢Vn

The value of ¢V, can be broken down into the design shear strength of the concrete,
@V, plus the design shear strength of the shear reinforcing, ¢V, . The value of ¢V.. is provided
in the code for different situations, and thus we are able to compute the required value of ¢V,
for each situation:
V, < ¢V, + ¢V,

For this derivation, an equal sign is used:
V=9V, + 9V,

The purpose of stirrups is to minimize the size of diagonal tension cracks or to carry the
diagonal tension stress from one side of the crack to the other. Very little tension is carried by
the stirrups until after a crack begins to form. Before the inclined cracks begin to form, the
strain in the stirrups is equal to the strain in the adjacent concrete. Because this concrete cracks
at very low diagonal tensile stresses, the stresses in the stirrups at that time are very small,
perhaps only 3 ksi to 6 ksi. You can see that these stirrups do not prevent inclined cracks and
that they really aren’t a significant factor until the cracks begin to develop.

Tests made on reinforced concrete beams show that they will not fail by the widening
of the diagonal tension cracks until the stirrups going across the cracks have been stressed to
their yield stresses. For the derivation to follow, it is assumed that a diagonal tension crack has
developed and has run up into the compression zone but not all the way to the top, as shown
in Figure 8.6. It is further assumed that the stirrups crossing the crack have yielded.

The nominal shear strength of the stirrups, V, crossing the crack can be calculated from
the following expression, where n is the number of stirrups crossing the crack and A, is the
cross-sectional area each stirrup has crossing the crack. If a Ul stirrup is used, A, equals two
times the cross-sectional area of the stirrup bar. If it is a LI'U stirrup, A, equals four times the
cross-sectional area of the stirrup bar. The term f,, is the specified yield strength of transverse
reinforcement, or stirrups in this case.

Vs = Av. ytn

If it is conservatively assumed that the horizontal projection of the crack equals the
effective depth, d, of the section (thus a 45° crack), the number of stirrups crossing the crack
can be determined from the expression to follow, in which s is the center-to-center spacing of
the stirrups:

e ————4
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FIGURE 86 Beam with diagonal crack and
vertical stirrups.
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Then d
Vi =Afyu— (ACI Equation 11-15)
s
From this expression, the required spacing of vertical stirrups is
A, fyd
§=—
%

A

and the value of V, can be determined as follows:

Vi =9Ve + 8V

V, — ¢V,

VS: u ¢ C
¢

Going through a similar derivation, the following expression can be determined for
the required area for inclined stirrups, in which « is the angle between the stirrups and the
longitudinal axis of the member. Inclined stirrups should be placed so they form an angle of
at least 45° with respect to the longitudinal bars, and they must be securely tied in place.

v A, fy(sino + cosa)d

A

(ACI Equation 11-16)

N

And for a bent-up bar or a group of bent-up bars at the same distance from the support,
we have
V, =A,f, sina <3/f/b,d (ACI Equation 11-17)

8.9 ACI Code Requirements

This section presents a detailed list of the code requirements controlling the design of web
reinforcing, even though some of these items have been previously mentioned in this chapter:

1. When the factored shear, V,, exceeds one-half the shear design strength, ¢V,, the
code (11.4.6.1) requires the use of web reinforcing. The value of V, is normally taken as
ZA\/ﬁbwd, but the code (11.2.2.1) permits the use of the following less conservative value:

V,d
Vv, = (1.9x\/ﬁ + 25000, -

u

)bwd < 3.50/flb,d (ACI Equation 11-5)

As previously mentioned, M, is the moment occurring simultaneously with V, at the
section in question. The value of V,d /M, must not be taken as greater than 1.0 in calculating
V., according to the code.

2. When shear reinforcing is required, the code states that the amount provided must fall
between certain clearly specified lower and upper limits. If the amount of reinforcing is too
low, it may yield or even snap immediately after the formation of an inclined crack. As soon
as a diagonal crack develops, the tension previously carried by the concrete is transferred to
the web reinforcing. To prevent the stirrups (or other web reinforcing) from snapping at that
time, their area is limited to the minimum value provided at the end of the next paragraph.

ACI Section 11.4.6.3 specifies a minimum amount of web reinforcing so as to
provide an ultimate shear strength no less than 0.75k\/ﬁbws. Using this provision of
the code should prevent a sudden shear failure of the beam when inclined cracks occur.
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The shear strength calculated with this expression may not be less than 50b,s If a
0.75)L\/]7 psi strength is available for a web width b,, and a length of beam s equal to the
stirrup spacing, we will have

0.75\/f/b,s = A.f,
0.75\/f!b,,s
v min = fi
Jyt
but not less than the value obtained with a 50-psi strength 50b,,s /f,,.

If \/]7 is greater than 4444 psi, the minimum value of A, is controlled by the expression
0.75\/]7 b,,s/fy.. Should f! be less than 4444 psi, the minimum A, value will be controlled by
the 50b,,s/f,, expression.

A (ACI Equation 11-13)

In SI units | b 033h
S . S
A, = —Jf 2 > 2w

min 16 fy[ fy[

This expression from ACI Section 11.4.6.3 provides the minimum area of web rein-
forcing, A, that is to be used as long as the factored torsional moment, 7, does not exceed
one-fourth of the cracking torque, 7,,. Such a torque will not cause an appreciable reduction
in the flexural or shear strength of a member and may be neglected (ACI Section 11.5.1). For
nonprestressed members, this limiting value is

A?
2R (—”)
pL‘[?

In SI units >
o1V Acy
12 pg,

In this expression, ¢ = 0.75, A, is the area enclosed by the outside perimeter of the con-
crete cross section, and p,, is the outside perimeter of the concrete cross section. The compu-
tation of 7, and T, for various situations is presented in Chapter 15.

Although you may feel that the use of such minimum shear reinforcing is not necessary,
studies of earthquake damage in recent years have shown very large amounts of shear damage
occurring in reinforced concrete structures, and it is felt that the use of this minimum value will
greatly improve the resistance of such structures to seismic forces. Actually, many designers
believe that the minimum area of web reinforcing should be used throughout beams, not just
where V, is greater than ¢V, /2.

This requirement for a minimum amount of shear reinforcing may be waived if tests have
been conducted showing that the required bending and shear strengths can be met without the
shear reinforcing (ACI 11.4.6.2).

3. As previously described, stirrups cannot resist appreciable shear unless they are
crossed by an inclined crack. Thus, to make sure that each 45° crack is intercepted by at
least one stirrup, the maximum spacing of vertical stirrups permitted by the code (11.4.5.1)
is the lesser of d/2 or 24 in. for nonprestressed members and %h for prestressed members or
24 in. where h is the overall thickness of a member. Should, however, V. exceed 4\/ﬁbwd )

S

SInSL V, = 1 /fib,d.
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Nuclear power plant construction.

these maximum spacings are to be reduced by one-half (ACI 11.4.5.3). These closer spacings
will lead to narrower inclined cracks.

Another advantage of limiting maximum spacing values for stirrups is that closely spaced
stirrups will hold the longitudinal bars in the beam. They reduce the chance that the steel may
tear or buckle through the concrete cover or possibly slip on the concrete.

Under no circumstances may V, be allowed to exceed 8\/f7bwd (Code 11.4.7.9).° The
shear strength of a beam cannot be increased indefinitely by adding more and more shear
reinforcing, because the concrete will eventually disintegrate no matter how much shear rein-
forcing is added. The reader can understand the presence of an upper limit if he or she thinks
for a little while about the concrete above the crack. The greater the shear in the member that
is transferred by the shear reinforcing to the concrete above, the greater will be the chance of
a combination shear and compression failure of that concrete.

4. Section 11.1.2 of the code states that the values of \/f7 used for the design of web
reinforcing may not exceed 100 psi’ except for certain cases listed in Section 11.1.2.1. In
that section, permission is given to use a larger value for members having the minimum
reinforcing specified in ACI Sections 11.4.6.3, 11.4.6.4, and 11.5.5.2. Members meeting these
requirements for extra shear reinforcing have sufficient postcrack capacities to prevent diagonal
tension failures.

5. Section 12.13 of the code provides requirements about dimensions, development
lengths, and so forth. For stirrups to develop their design strengths, they must be adequately
anchored. Stirrups may be crossed by diagonal tension cracks at various points along their
depths. Since these cracks may cross very close to the tension or compression edges of the

°1s 2./f7b, d in SI units.

"1’s £ MPa in SI units.
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members, the stirrups must be able to develop their yield strengths along the full extent of
their lengths. It can then be seen why they should be bent around longitudinal bars of greater
diameters than their own and extended beyond by adequate development lengths. Should there
be compression reinforcing, the hooking of the stirrups around them will help prevent them
from buckling.

Stirrups should be carried as close to the compression and tension faces of beams as the
specified cover and longitudinal reinforcing will permit. The ends of stirrup legs should ideally
have 135° or 180° hooks bent around longitudinal bars, with development lengths as specified
in ACI Sections 8.1 and 12.13. Detailed information on stirrups follows:

(a) Stirrups with 90° bends and 6d,, extensions at their free ends may be used for #5 and
smaller bars, as shown in Figure 8.7(a). Tests have shown that 90° bends with 6d,
extensions should not be used for #6 or larger bars (unless f, is 40,000 psi or less)
because they tend to pop out under high loads.

(b) If f} is greater than 40,000 psi, #6, #7, and #8 bars with 90° bends may be used if the
extensions are 12d, [see Figure 8.7(b)]. The reason for this specification is that it is
not possible to bend these higher-strength bars tightly around the longitudinal bars.

(c) Stirrups with 135° bends and 6d,, extensions may be used for #8 and smaller bars, as
shown in Figure 8.7(c).

6. When a beam reaction causes compression in the end of a member in the same
direction as the external shear, the shearing strength of that part of the member is increased.
Tests of such reinforced concrete members have shown that, in general, as long as a gradually
varying shear is present (as with a uniformly loaded member), the first crack will occur at
a distance d from the face of the support. It is therefore permissible, according to the code
(11.1.3.1), to decrease somewhat the calculated shearing force for a distance d from the face
of the support. This is done by using a V,, in that range equal to the calculated V,, at a distance
d from the face of the support. Should a concentrated load be applied in this region, no such

6d,, but not
6d,  6d, 12d, 12d, less than 2 1 in.

H - ]

or

e e o 09 oo o o e 0090 o
(a) 90° bends for #5 (b) 90° bends for #6, (c) 135° bends for
and smaller stirrups #7, and #8 stirrups #8 and smaller
(also for #6, #7, and with £, > 40,000 psi stirrups
#8 stirrups with (135° or 180°
13+ 40,000 psi) hooks preferred)

Note: Fit stirrups as close to compression and tension surfaces as cover and other reinforcing permits.

FIGURE 8.7 Stirrup details.
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shear reduction is permitted. Such loads will be transmitted directly to the support above the
45° cracks, with the result that we are not permitted a reduction in the end shear for design
purposes.

Should the reaction tend to produce tension in this zone, no shear stress reduction is
permitted, because tests have shown that cracking may occur at the face of the support or
even inside it. Figure 8.8 shows two cases where the end shear reduction is not permitted. In
the situation shown in Figure 8.8(a), the critical section will be at the face of the support. In
Figure 8.8(b), an I-shaped section is shown, with the load applied to its tension flange. The
loads have to be transferred across the inclined crack before they reach the support. Another
crack problem like this one occurs in retaining wall footings and is discussed in Section 13.10
of this text.

7. Various tests of reinforced concrete beams of normal proportions with sufficient web
reinforcing have shown that shearing forces have no significant effect on the flexural capacities
of the beams. Experiments with deep beams, however, show that large shears will often keep
those members from developing their full flexural capacities. As a result, the code requirements
given in the preceding paragraphs are not applicable to beams whose clear spans divided by
their effective depths are less than four or for regions of beams that are loaded with concentrated
loads within a distance from the support equal to the member depth and that are loaded on
one face and supported on the opposite face. Such a situation permits the development of
compression struts between the loads and the supports. For such members as these, the code in
its Appendix A provides an alternate method of design, which is referred to as “strut and tie”
design. This method is briefly described in Appendix C of this text. Should the loads be applied
through the sides or bottom of such members, their shear design should be handled as it is for
ordinary beams. Members falling into this class include beams, short cantilevers, and corbels.
Corbels are brackets that project from the sides of columns and are used to support beams and
girders, as shown in Figure 8.9. They are quite commonly used in precast construction. Special
web reinforcing provisions are made for such members in Section 11.7 of the code and are
considered in Section 8.12 of this chapter.

8. Section 8.11.8 of the ACI Code permits a shear of 1.1V, for the ribs of joist
construction, as where we have closely spaced T beams with tapered webs. For the 10%
increase in V,, the joist proportions must meet the provisions of ACI Section 8.11. In ACI
Section 8.11.2, it is stated that the ribs must be no less than 4 in. wide, must have depths
not more than three and a half times the minimum width of the ribs, and may not have clear
spacings between the ribs greater than 30 in.

reaction

T load
crack load applied to
\ tension flange
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reaction

(a) (b)

FIGURE 8.8 Two situations where end shear reduction is not permitted.
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_~beam reaction

corbel

FIGURE 8.9 Corbel supporting beam reaction.

8.10 Shear Design Example Problems

Example 8.1 illustrates the selection of a beam with a sufficiently large cross section so that no
web reinforcing is required. The resulting beam is unusually large. It is normally considered
much better practice to use appreciably smaller sections constructed with web reinforcing.
The reader should also realize that it is good construction practice to use some stirrups in
all reinforced concrete beams (even though they may not be required by shear) because they
enable the workers to build for each beam a cage of steel that can be conveniently handled.

Example 8.1

Determine the minimum cross section required for a rectangular beam from a shear standpoint
so that no web reinforcing is required by the ACI Code if V,, = 38 k and f;, = 4000 psi. Use the
conservative value of V,, = 21,/f.b,,d.

SOLUTION

Shear strength provided by concrete is determined by the equation
#V, = (0.75) [2 (1.0) (+/4000 psi)bwd} = 94.87b,,d

But the ACI Code 11.4.6.1 states that a minimum area of shear reinforcement is to be
provided if V, exceeds 3¢V,

1
38,000 Ib = 7 (94.87b,,d)
b,d = 801.1in.2

Use 24-in. x 36-in. beam (d = 33.51in.)

The design of web reinforcing is illustrated by Examples 8.2 through 8.6. Maximum
vertical stirrup spacings have been given previously, whereas no comment has been made
about minimum spacings. Stirrups must be spaced far enough apart to permit the aggregate to
pass through, and, in addition, they must be reasonably few in number so as to keep within
reason the amount of labor involved in fabricating and placing them. Accordingly, minimum
spacings of 3 in. or 4 in. are normally used. Usually #3 stirrups are assumed, and if the
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238 CHAPTER 8 Shear and Diagonal Tension

calculated design spacings are less than d/4, larger-diameter stirrups can be used. Another
alternative is to use LI'U stirrups instead of LI stirrups. Different diameter stirrups should not
be used in the same beam, or confusion will result.

As is illustrated in Examples 8.3, 8.5, and 8.6, it is quite convenient to draw the V,
diagram and carefully label it with values of such items as ¢V,., ¢V./2, and V, at a distance
d from the face of the support and to show the dimensions involved.

Some designers place their first stirrup a distance of one-half of the end-calculated spacing
requirement from the face. Others put the first stirrup 2 in. or 3 in. from the support.

From a practical viewpoint, stirrups are usually spaced with center-to-center dimensions
that are multiples of 3 in. or 4 in. to simplify the fieldwork. Although this procedure may
require an additional stirrup or two, total costs should be less because of reduced labor costs.
A common field procedure is to place chalk marks at 2-ft intervals on the forms and to place
the stirrups by eye in between those marks. This practice is combined with a somewhat violent
placing of the heavy concrete in the forms, followed by vigorous vibration. These field practices
should clearly show the student that it is foolish to specify odd theoretical stirrup spacings
such as 4 @ 6% in. and 6 @ 5% in., because such careful positioning will not be achieved in
the actual members. Thus, the designer will normally specify stirrup spacings in multiples of
whole inches and perhaps in multiples of 3 in. or 4 in.

With available computer programs, it is easily possible to obtain theoretical arrangements
of stirrups with which the least total amounts of shear reinforcing will be required. The use
of such programs is certainly useful to the designer, but he or she needs to take the resulting
values and revise them into simple economical patterns with simple spacing arrangements—as
in multiples of 3 in., for example.

A summary of the steps required to design vertical stirrups is presented in Table 8.1. For
each step, the applicable section number of the code is provided. The authors have found this
to be a very useful table for students to refer to while designing stirrups.

TABLE 8.1 Summary of Steps Involved in Vertical Stirrup Design

Is Shear Reinforcing Necessary?

1. Draw V,, diagram. 11.1.3.1 and
Commentary
(R11.1.3.1)

2. Calculate V,, at a distance d from the support (with certain exceptions). 11.2.11

3. Calculate ¢V, = 2¢1,/f.b,,d (or use the alternate method). 11.2.2.1

4. Stirrups are needed if V,, > ;-¢vc (with some exceptions for slabs, footings, 11.4.6.1

shallow members, hollow-core units, steel fiber-reinforced beams, and joists).

Design of Stirrups

1. Galculate theoretical stirrup spacing, s = A, f,,d/V; where V = (V, — ¢V,)/¢. 11.4.7.2

2. Determine maximum spacing to provide minimum area of shear reinforcement, 11.4.6.3
s =A,f,/0.75,/fb,, but not more than A,f,,/50b,,.

3. Compute maximum spacing: d/2 < 24 in. if V < 4\/f—ébwd. 11.4.51

4. Compute maximum spacing: d/4 < 12 in. if V > 4\/€bwd. 11.4.5.3

5. V, may not be > 8,/f’b,,d. 11.4.7.9

6. Minimum practical spacing ~ 3 in. or 4 in.
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Example 8.2

The beam shown in Figure 8.10 was selected using fy = 60,000 psi and f, = 3000 psi, normal
weight. Determine the theoretical spacing of #3 L stirrups for each of the following shears:

(@ V,=12,000Ib

(b) V, =40,000Ib

(c) V,=60,000Ib

(d) Vv, =150,000Ib

SOLUTION

(@) V,=12,000 Ib (using » = 1.0 for normal-weight concrete)
oV, = ¢>2A\/Ebwd = (0.75)[2(1.0)+/3000 psil(14 in.) (24 in.) = 27,605 Ib

1
§¢>VC =13,803 Ib > 12,000 Ib .. Stirrups not required

(b) V, = 40,000 Ib

1
Stirrups needed because V,, > §¢>VC.
Theoretical spacing
PV +oVs =V,
V- V, — oV, _ 40,000 Ib — 27,605 Ib
s ) 0.75

Avfytd (2)(0.11 in.2) (60,000 psi) (24 in.) .
s = Vo= 16527 b =19.17in. «

S

=16,527 Ib

Maximum spacing to provide minimum A,

Af in.2 -
Al _@O1n. )(eo.,ooo .pS') oo
0.75(fb,  (0.75+/3000 psi) (14 in.)

A f . 2 "
o A _ @)011in%)(60,000 ps) _ oo
50b,, (50) (14 in.)

V, = 16,527 Ib < (4) (+/3000 psi) (14 in)) (24 in)) = 73,614 Ib

. Maximum s = g =12in. s=12.0in.

24 in.
27 in.

e & o o -_‘_3111

y 14 in. ’ FIGURE 8.10 Beam cross section for Example 8.2.
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240 CHAPTER 8 Shear and Diagonal Tension

(c) V,=60,000Ib
Theoretical spacing
_V,—¢V, 60,000Ib—27,605 Ib

% =43,193 Ib
s ) 0.75 ’
o Ad _ (2)(0.11in?) (60,000 ps)(24in) _ oo

% 43,193 Ib

S

Maximum spacing to provide minimum A,
Aty (2)(0.11 in.2) (60,000 psi)

0.75/f.b,,  (0.75+/3000 psi) (14 in.)
A f . 2 "
s A _ @(011in%)(60,000ps) _ oo

- 50b,, - (50)(14 in.)
V, = 43,193 Ib < (4)(v/3000 psi) (14 in.) (24 in.) = 73,614 Ib
. Maximum s = g =12in. s =7.33in.

(d) V, = 150,000 Ib

V- 150,000 Ib — 27,605 Ib
s 0.75

163,193 Ib > (8)(+/3000 psi) (14 in.) (24 in.) = 147,228 Ib
Vs may not be taken > 8\/Ebwd

=163,193 Ib

.. Need larger beam and/or one with larger f, value

Example 8.3

Select #3 U stirrups for the beam shown in Figure 8.11, for which w, = 4 k/ft and w, =6 k/ft.
f, = 4000 psi, normal weight, and fyt = 60,000 psi.

SOLUTION
V, at the face of the left support = (7 ft) (1.2 x 4 kIf + 1.6 x 6 kif) = 100.8 k = 100,800 Ib

84in. —22.5in.
84 in.

oV, = ¢2A\/Ebwd = (0.75) [2(1.0)+/4000 psi] (15 in.) (22.5 in.) = 32,018 Ib

V, at a distance d from face of support = < ) (100,800 Ib) = 73,800 Ib

These values are shown in Figure 8.12.
Vy=¢Ve+ oV
Vo=V, —¢V,=73,8001b—-32,0181b =41,782 b

41,782 Ib
sT 075
Maximum spacing of stirrups = d/2 = 11.25 in., since V; is < 4,/f.b,,d = 85,382 Ib. Maximum
theoretical spacing at left end
s Afsd  (2)(0.11 in.) (60,000 psi) (22.5 in.)
Vs (65,709 Ib)

= 55,709 Ib

=5.33in. «




8.10 Shear Design Example Problems

22%1;1.
| l 25 in.
12 in. 12 in. eoeoe |-I L
|<—151n.—-| t
2lin,
2

FIGURE 8.11 Given information for Example 8.3.

100.8k

V, diagram q

/

< 7ft0in.

stirrups needed
for 5.89 ft="71in.

i |
100,800 1b ;~ __ |
I ~

~. _738001b

1
¢t’s =32,0181b stirrups needed to here
' ///// i
Ve concrete ’ﬁr/xes #V.[2 = 16,0009 Ib
grII,

22% in. = 1.875 ft

face of support

FIGURE 8.12 Shear diagram for Example 8.3.
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Maximum spacing to provide minimum A, of stirrups

s e @O, )(eol,ooo .pS') _18s5in
0.75/f,b,,  (0.75+/4000 psi) (15 in.)
s At _ (9(0.11in?)(60,000ps) _ .

50b,, (50) (15 in.)

At what location is s = 9 in. OK?

Af,d
V, = ¢V, + ¢V, = 32,018 Ib + 0.75 [T}

(0.75)(2) (0.11 in.2) (60,000 psi) (22.5 in.)

=32,0181b + -
9in.

= 56,768 Ib
V, =100,800Ib — 14,400x = 56,768 Ib, x = 3.058 ft = 36.69 in.

Results of similar calculations that relate the value of x to stirrup spacing, s, are shown in

the table.
) V,— oV, . Af,d
Distance from Face of Support (ft) V, (Ib) v, = T(Ib) Theoretical s = v (in.)
s

Otod =1.875 73,800 55,709 5.33
2 72,000 53,309 5.57
3 57,600 34,109 8.71
3.058 56,768 33,000 9
4 43,200 14,909 > Maximum of d/2 = 11.25
Spacings selected

1@2in.= 2in.

7@5in.=35in.

4@9in. = 361n.

73 in. Symmetric about centerline

As previously mentioned, it is a good practice to space stirrups at multiples of 3 in. or
4 in. on center. As an illustration, it is quite reasonable to select for Example 8.3 the following
spacings: 1 @ 2 in.,, 7 @ 5 in.,, and 4 @ 9 in. In rounding off the spacings to multiples
of 3 in., it was necessary to exceed the theoretical spacings by a small amount near the end of
the beam. However, the values are quite close to the required ones, and the overall number of
stirrups used in the beam is more than adequate.

In Example 8.4, which follows, the value of V,. for the beam of Example 8.3 is computed
by the alternate method of Section 11.2.2.1 of the code.

Example 8.4

Compute the value of V, at a distance 3 ft from the face of the left support of the beam of
Example 8.3 and Figure 8.11 by using ACI Equation 11-5.

V,d
i )bwd < 3.50/fb,d

u

V, = <1 9r/F, +2500p,,
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SOLUTION

A = 1.0 (normal-weight aggregate)
w, = (1.2) (4 kif) + (1.6) (6 kIf) = 14.4 Kk/ft

Measuring x from the center of the left support, the value of x corresponding to 3 ft from the face
is 3.5 ft.
/ 14.4 k/ft) (15ft
v, = Wy = QAARASY 1o 4 i
2 2
= 57.6 k (at x = 3.5 ft from center of the left support)

wilx  w®  (144KM(I5)@5 )  (14.4 Kt (@35 ft)

uT T 2 = 2 2
— (14.4 K/ft) (100.8 K) — (3 ft) (1.5 ft) (14.4 k/ft) = 289.8 ft-k
5.06in.2
Pw= A5im@2siny — 001%0
Vd _ 676K@25in) _ o

M, — (12)(289.8 ft-K)

u

V, = [1.9(1.0)v/4000 psi + (2500) (0.0150) (0.374)] (15 in.) (22.5 in.)
— 45,290 Ib < (3.5+/4000 psi) (15 in.) (22.5 in.) = 74,709 Ib

For the uniformly loaded beams considered up to this point, it has been assumed that both
dead and live loads extended from end to end of the spans. Although this practice will produce
the maximum V,, at the ends of simple spans, it will not produce maximums at interior points.
For such points, maximum shears will be obtained when the uniform live load is placed from
the point in question to the most distant end support. For Example 8.5, shear is determined at
the beam end (live load running for entire span) and then at the beam centerline (live load to
one side only), and a straight-line relationship is assumed in between. Although the ACI does
not specifically comment on the variable positioning of live load to produce maximum shears,
it certainly is their intent for engineers to position loads so as to maximize design shear forces.

Example 8.5

Select #3 U stirrups for the beam of Example 8.3, assuming the live load is placed to produce
maximum shear at beam end and centerline.

SOLUTION

Maximum V/, at left end = (7 ft) (1.2 x 4 kIf + 1.6 x 6 kIf) = 110.8 k = 100,800 Ib.
For maximum V/, at centerline, the live load is placed as shown in Figure 8.13.

V, at centerline = 50,400 Ib — (7 ft) (1.2 x 4 kif) = 16.8 k = 16,800 Ib
V, = 2(1.0) (+/4000 psi) (15 in.) (22.5 in.) = 42,691 Ib

V, at a distance d from face of support = 78,300 Ib as determined by proportions from
Figure 8.14.

Vu = ¢Vc + ¢Vs
opVy =V, —¢V,=78,300Ib — (0.75) (42,691 Ib) = 46,282 Ib at left end
_ 46,282 Ib
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244 CHAPTER 8 Shear and Diagonal Tension

At what location is s = 9 in. OK?
(0.75)(2) (0.11 in.2) (60,000 psi) (22.5 in.)
9in.

Afd
V, = ¢V, + ¢V, = 32,018 + 0.75 < . ) =32,016 +
= 56,768 Ib

V, = 100,800 — 12,000x = 56,768, x = 3.67 ft = 44.0in.

Results of similar calculations that relate the value of x to stirrup spacing, s, are shown in the
table.

|
1.6 X 6 k/ft

SIS,
i A ) 12 X AR

I~ 7 £t 0 in. - 7 £t 0 in.
50.4 k ¢ 84.0k

FIGURE 8.13 Load arrangement for maximum shear at beam midspan.

» stirrups needed

100,800 Ib to centerline
~ 78,300 Ib

e
S
T~~~
®Ve=32,0181b

2
4 |
16,800 Ib

Ve concrete carries

f PP e _ 160091

d l : 2

M%m;L%ﬁ

©

FIGURE 8.14 Shear diagram for Example 8.5.
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The limiting spacings are the same as in Example 8.3. The theoretical spacings are given
in the following table:

Distance from Face Theoretical Spacing

of Support (ft) v, (Ib) v, = w (Ib) Required s = Av;y' a (in.)
s

Otod =1.875 78,300 61,709 4.81

2 76,800 59,709 4.97

2.638 69,143 49,500 6

3.67 56,768 33,000 9

5 40,800 11,709 > Maximum 11.25

One possible arrangement (#4 stirrups might be better)

1@2in.= 2in.
8@4in. =32in.
2@6in. =12in.
5@9in. =45in.
91in. > 84in. Symmetrical about centerline

Example 8.6

Select spacings for #3 Ui stirrups for a T beam with b, = 10 in. and d = 20 in. for the V,, diagram
shown in Figure 8.15, with fy = 60,000 psi and f;, = 3000 psi, normal-weight concrete.

SOLUTION

(with reference to Figure 8.16)
V, at a distance d from face of support

72in.—20in.

= 44,000 Ib
’ + < 72in

) (68,000 Ib — 44,000 Ib) = 61,333 Ib
A = 1.0 for normal-weight concrete

¢V, =(0.75)[2(1.0)v 3000 psi] (10 in.) (20 in.) = 16,432 Ib

¢V, 164321
3¢ = — 5 — =8216b

24,000 1b — 8216 Ib
24,000 Ib

V, at left end (V, —¢V,)/¢ = (61,333 Ib — 16,432 Ib)/0.75 = 59,868 Ib, which is larger than
4,/f.b,,d = (4+/3000 psi) (10 in.) (20 in.) = 43,818 Ib but less than 8,/f.b,,d. Therefore, the maxi-
mum spacing of stirrups in that range is d/4 =5 in.

Stirrups are needed for a distance = 72 in. + < ) (72in.) =119.5in.
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V,=61.33k
68 k /
44k
24k
d=20in.
24k
44 k
68k
| | | | |
| 6 ft D 6 ft -+ 6 ft I 6 ft |
FIGURE 8.15 Shear diagram for Example 8.6.
1.
9 ft 117 in.
68,000 Ib
P s 8143316 stirrups needed
to here \
44,000 1b
24,0006 ¢V,.=164321b
V
e — 161

2

7

no stirrups
— 5
. needed |
d=20in. . 23 in. 1. 1.
- - 52 in: o 24 — in —w=—24 — in —
| | 2 2
72 in. - 72 in. -

FIGURE 8.16 More detailed shear diagram for Example 8.6.

Maximum spacing of stirrups = d/4 =20/4 =5 in. when V > 4\/Ebwd = (44/3000 psi)
(10in.) (20 in.) = 43,818 Ib. By proportions from the V, column in the table, V; falls to 43,818 Ib
at approximately 4.66 ft, or 56 in., from the left end of the beam.

Maximum spacing permitted to provide minimum A, of stirrups is the smaller of the two

following values of s.

Afy  (2)(0.11in.2)(60,000 psi) 42430

S = =
0.75/f,b,,  (0.75+/3000 psi) (10 in.)

A f . 2 "
_ Al _ ((0.111n?)(60000ps) _
50b,, (50) (10 in.)
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144 in. >

FIGURE 8.17 Detailed shear diagram for Example 8.6.

The theoretical spacings at various points in the beam are computed in the following table:

Theoretical Spacing

Distance from Face Maximum
A ) Af.d N

of Support (ft) v, (Ib) v, = T (Ib) Required s = v (in.) Spacing (in.)

s

Otod =1.667 61,333 59,868 4.41 4.41

3 56,000 52,758 5.00 5.00

6— 44,000 36,757 7.18 5.00

6+ 24,000 10,091 26.16 10.00

A summary of the results of the preceding calculations is shown in Figure 8.17, where the
solid dark line represents the maximum stirrup spacings permitted by the code and the dashed
line represents the calculated theoretical spacings required for V,, — ¢V.

From this information, the authors selected the following spacings:

1@ 3in.= 3in.
17@ 4in. =68 in.
5@10in. =50 in.

121 in. Symmetrical about centerline

8.11 Economical Spacing of Stirrups

When stirrups are required in a reinforced concrete member, the code specifies maximum
permissible spacings varying from d/4 to d/2. However, it is usually thought that stirrup
spacings less than d/4 are rather uneconomical. Many designers use a maximum of three
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TABLE 8.2 Values for 60-ksi Stirrups

s @V for #3 L Stirrups (k) ¢V for #4 L Stirrups (k)
d/2 19.8 36

d/3 29.7 54

d/a 39.6 72

different spacings in a beam. These are d/4, d/3, and d/2. It is easily possible to derive a
value of ¢V, for each size and style of stirrups for each of these spacings.

Note that the number of stirrups is equal to d/s and that if we use spacings of d/4, d/3,
and d/2 we can see that n equals 4, 3, or 2. Then the value of ¢V, can be calculated for any
particular spacing, size, and style of stirrup. For instance, for #3 LI stirrups spaced at d/2 with

¢ =0.75 and f, = 60 ksi,

PV,

B A, fyd _(0.75) (2 x 0.11 in.?) (60 ksi) (d)

=198 k

N

dj2

The values shown in Table 8.2 were computed in this way for 60-ksi stirrups.

For an example using this table, reference is made to the beam and V, diagram of
Example 8.3, which was shown in Figure 8.12 where 60-ksi #3 U stirrups were selected for
a beam with a d of 22% in. For our closest spacing, d/4, we can calculate ¢V, 4+ 39.6 k =
32.018 k 4+ 39.6 k = 71.6 k. Similar calculations are made for d/3 and d/2 spacings, and we
obtain, respectively, 61.7 k and 51.8 k. The shear diagram is repeated in Figure 8.18, and the
preceding values are located on the diagram by proportions or by scaling.

e

100.8 k
73.8k
oV.+39.6k=71.6k
PV, +29.7k=61.7k
PV, +198k=51.8k
PV, =320k
oV
— =160k
2
spacing: 7 .g.i %’,
0.68 ft
2.72 ft i | 2.49 ft
[— stirrups needed for 5.89 ft ~emeememr—

FIGURE 8.18 Application of Table 8.2 to Example 8.3.

8 Neville, B. B., ed., 1984, Simplified Design Reinforced Concrete Buildings of Moderate Size and Height (Skokie, IL: Portland
Cement Association), pp. 3-12 to 3-16.
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From this information, we can see that we can use d/4 for the first 2.72 ft, d/3 for the
next 0.68 ft, and d/2 for the remaining 2.49 ft. Then the spacings are smoothed (preferably to
multiples of 3 in.). Also, for this particular beam, we would probably use the d/4 spacing on
through the 0.68-ft section and then use d/2 the rest of the required distance.

8.12 Shear Friction and Corbels

If a crack occurs in a reinforced concrete member (whether caused by shear, flexure, shrinkage,
etc.) and if the concrete pieces on opposite sides of the crack are prevented from moving apart,
there will be a great deal of resistance to slipping along the crack due to the rough and irregular
concrete surfaces. If reinforcement is provided across the crack to prevent relative displacement
along the crack, shear will be resisted by friction between the faces, by resistance to shearing
off of protruding portions of the concrete, and by dowel action of the reinforcing crossing the
crack. The transfer of shear under these circumstances is called shear friction.

Shear friction failures are most likely to occur in short, deep members subject to high
shears and small bending moments. These are the situations where the most nearly vertical
cracks will occur. If moment and shear are both large, diagonal tension cracks will occur
at rather large angles from the vertical. This situation has been discussed in Sections 8.1
through 8.11.

A short cantilever member having a ratio of clear span to depth (a/d) of 1.0 or less is
often called a bracket or corbel. One such member is shown in Figure 8.19. The shear friction
concept provides a convenient method for designing for cases where diagonal tension design is
not applicable. The most common locations where shear friction design is used are for brackets,
corbels, and precast connections, but it may also be applied to the interfaces between concretes
cast at different times, to the interfaces between concrete and steel sections, and so on.

When brackets or corbels or short, overhanging ends or precast connections support
heavy concentrated loads, they are subject to possible shear friction failures. The dashed lines
in Figure 8.19 show the probable locations of these failures. It will be noted that for the end-
bearing situations, the cracks tend to occur at angles of about 20° from the direction of the
force application.

Space is not taken in this chapter to provide an example of shear friction design, but a
few general remarks are presented. (In Section 12.13 of this text, a numerical shear friction

20°

:‘ —>E\\\7/
~
)

precast section

bracket or corbel

FIGURE 8.19 Possible shear friction failures.
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example is presented in relation to the transfer of horizontal forces at the base of a column
to a footing.) It is first assumed that a crack has occurred, as shown by the dashed lines of
Figure 8.19. As slip begins to occur along the cracked surface, the roughness of the concrete
surfaces tends to cause the opposing faces of the concrete to separate.

As the concrete separates, it is resisted by the tensile reinforcement (A,;) provided across
the crack. It is assumed that this steel is stretched until it yields. (An opening of the crack of
0.01 in. will probably be sufficient to develop the yield strength of the bars.) The clamping
force developed in the bars A,.f, will provide a frictional resistance equal to A,f, u, where p
is the coefficient of friction (values of which are provided for different situations in Section
11.6.4.3 of the code).

Then the design shear strength of the member must at least equal the shear, to be taken
as

¢Vn = Vu = ¢Ayff}:u

The value of f used in this equation cannot exceed 60 ksi, and the shear friction rein-
forcement across or perpendicular to the shear crack may be obtained by

v

u

A,~ =
T ghu

This reinforcing should be appropriately placed along the shear plane. If there is no
calculated bending moment, the bars will be uniformly spaced. If there is a calculated moment,
it will be necessary to distribute the bars in the flexural tension area of the shear plane. The
bars must be anchored sufficiently on both sides of the crack to develop their yield strength
by means of embedment, hooks, headed bars, or other methods. Since space is often limited
in these situations, it is often necessary to weld the bars to special devices, such as crossbars
or steel angles. The bars should be anchored in confined concrete (i.e., column ties or external
concrete or other reinforcing shall be used).

When beams are supported on brackets or corbels, there may be a problem with shrinkage
and expansion of the beams, producing horizontal forces on the bracket or corbel. When such
forces are present, the bearing plate under the concentrated load should be welded down to
the tensile steel. Based on various tests, the ACI Code (11.8.3.4) says that the horizontal force
used must be at least equal to 0.2V, unless special provisions are made to avoid tensile forces.

The presence of direct tension across a cracked surface obviously reduces the shear-
transfer strength. Thus direct compression will increase its strength. As a result, Section 11.6.7
of the code permits the use of a permanent compressive load to increase the shear friction
clamping force. A typical corbel design and its reinforcing are shown in Figure 8.20.

Enough concrete area must also be provided, and Section 11.6.5 of the code gives the
upper limits on the shear force, V, , transferred across a shear-friction failure surface based on
concrete strength and contact area. For normal-weight concrete placed monolithically or placed
against intentionally roughened concrete, V,, cannot exceed the smaller of

V, <02f/A,
< (480 + 0.08f)A,
< 16004,

For all other cases,

V, <02f/A,
< 8004,

where A, is the concrete contact area along the shear-friction failure surface. Units for these
equations are: V, (Ib), f/(Ib/in.?), and A_(in.?).
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bearing plate welded to bars

crossbar welded to
other bars

ties (wrapped around bars)

FIGURE 820 Example of corbel.

8.13 Shear Strength of Members Subjected to Axial Forces

Reinforced concrete members subjected to shear forces can at the same time be loaded with
axial compression or axial tension forces due to wind, earthquake, gravity loads applied to
horizontal or inclined members, shrinkage in restrained members, and so on. These forces
can affect the shear design of our members. Compressive loads tend to prevent cracks from
developing. As a result, they provide members with larger compressive areas and thus greater
shear strengths. Tensile forces exaggerate cracks and reduce shear resistances because they will
decrease compression areas.

When we have appreciable axial compression, the following equation can be used to
compute the shear-carrying capacity of a concrete member:

v.=2(1+ N, AMFlb,d (ACI Equation 11-4)
¢ 20004, Jetw

For a member subjected to a significant axial tensile force, the shear capacity of the
concrete may be determined from the following expression:

v.=2(1+ N AMFlb,d (ACI Equation 11-8)
¢ 5004, Jetw

In this expression, N, the axial load, is minus if the load is tensile. You might note that
if the computed value of N, /A, for use in this equation is 500 psi or more, the concrete will
have lost its capacity to carry shear. (The value of V, used need not be taken as less than zero.)

The SI values for ACI Equations 11-4 and 11-8 are, respectively,

N, NiH
=11 “ <)b,4d
ve <+14Ag>< 6 ) "

Vo= 1_|_0.3Nu AL b d
€@ — Ag 6 w
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252 CHAPTER 8 Shear and Diagonal Tension

Instead of using ACI Equation 11-4 to compute the shear capacity of sections subject to
axial compressive loads, ACI Equation 11-5 may be used. In this equation, a revised moment,
M,,, may be substituted for M, at the section in question, and V,d/M, is not limited to

1.0 as it normally is. For this case, V. may not be larger than the value obtained with ACI
Equation 11-7.

V,d
V.= (1.9)»,/_}? + 2500p,, 1\; ) b,d <3.51/f!b,d (ACI Equation 11-6)
4h —d .
M, =M,—N, 3 (ACI Equation 11-7)

/ N, .
V. may not be > 3.5)L\/ﬁbwd 1+ 5004 (ACI Equation 11-8)
g

In ST units, ACI Equation 11-5 is

V,d\ b,d
vV, = <x\/ff{+ 1200, ) —= 0.3x/f!b,,d

u

[ 03N,
V, =03x/fb,d |1+ A—”
8

Example 8.7, which follows, illustrates the computation of the shear strength of an axially
loaded concrete member.

Example 8.7

For the concrete section shown in Figure 8.21 for which f;, is 3000 psi, normal weight (» = 1.0),

(a) Determine V, if no axial load is present using ACI Equation 11-3.

(b) Compute V, using ACI Equation 11-4 if the member is subjected to an axial compression
load of 12,000 Ib.

(c) Repeat part (b) using revised ACI Equation 11-5. At the section in question, assume
M, =30 ft-k and V,, = 40 k. Use M, in place of M,,.

(d) Compute V, if the 12,000-Ib load is tensile.

Equation 11-7 is

23 in.
26 in.
3#9
[ ] [ ] [ ] I
3in.
2@4in. =8 in.

3in.| | |3 in.
I I
14 in. FIGURE 821 Beam cross section for Example 8.7.
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SOLUTION

(@) V, =2(1.0)v/3000 psi(14in.)(23 in.) = 35,273 Ib

5 [1 20,000 Ib

(b) V. (2000) (14 in.) (26 in.)

c =

} [(1.0)+/3000 psi](14 in.) (23 in.) = 36,242 Ib
< 3.5(1.0)+/3000 psi(14 in.) 23 in.) = 61,728 b

4 x 26 in. — 23 in.

8 ) = 238,500 in-Ib

(€) M, = (12 in/ft)(30,000 ft-Ib) — 12,000 Ib<
VU

40 k) (23 in.
M = ﬁ = 3.857 > 1.00, however, it is not limited to 1.0

) 3.00in.2 ) .
v, = [1.9(1.0) /3000 psi -+ (2500) (7(14 ) @3 in_)> (3-857)} (14in.)(231in)

= 62,437 Ib

o ) 12,000 Ib

But not > 3.5(1.0)+/3000 psi (14 in.) (23 in.) \/ 14 (500 psi) (14 n) @6 )
=63,7311b OK
—12,000 Ib o .
d v, =2 [1 + 500) (141m) 26 in_)} [(1.0)+/3000 psi(14 in.) (23 in.)]

= 32,950 Ib

8.14 Shear Design Provisions for Deep Beams

There are some special shear design provisions given in Section 11.7 of the code for deep
flexural members with £, /d values equal to or less than four that are loaded on one face and
supported on the other face, so that compression struts can develop between the loads and the
supports. Such a member is shown in Figure 8.22(a). Some members falling into this class are
short, deep, heavily loaded beams; wall slabs under vertical loads; shear walls; and perhaps
floor slabs subjected to horizontal loads.

If the loads are applied through the sides or the bottom (as where beams are framing
into its sides or bottom) of the member, as illustrated in Figure 8.22(b) and (c), the usual
shear design provisions described earlier in this chapter are to be followed, whether or not the
member is deep.

222222

]
oty 4

(a) ()] ©

FIGURE 822 Deep beam configurations.
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The angles at which inclined cracks develop in deep flexural members (measured from
the vertical) are usually much smaller than 45°—on some occasions being very nearly vertical.
As a result, web reinforcing when needed has to be more closely spaced than for beams of
regular depths. Furthermore, the web reinforcing needed is in the form of both horizontal and
vertical reinforcing. These almost vertical cracks indicate that the principal tensile forces are
primarily horizontal, and thus horizontal reinforcing is particularly effective in resisting them.

The detailed provisions of the code relating to shear design for deep beams, together
with the applicable ACI Section numbers, are as follows:

1. Deep beams are to be designed using the procedure described in Appendix A of the
code (Appendix C in this textbook) or by using a nonlinear analysis (ACI 11.7.2).

2. The nominal shear strength, V,, for deep beams shall not exceed 10\/]7 b, d (ACI 11.7.3).

3. The area of shear reinforcing, A,, perpendicular to the span must at least equal
0.0025 b,,s, and s may not be greater than d/5 or 12 in. (ACI 11.7.4.1). s is the spacing
of the shear or torsion reinforcing measured in a direction parallel to the logitudinal
reinforcing.

4. The area of shear reinforcing parallel to the span must not be less than 0.00155,,s,, and s,
may not be greater than d/5 or 12 in. (ACI 11.7.4.2). s, is the spacing of shear reinforcing
measured in a direction perpendicular to the beam’s longitudinal reinforcement.

You will note that more vertical than horizontal shear reinforcing is required because
vertical reinforcing has been shown to be more effective than horizontal reinforcing. The
subject of deep beams is continued in Appendix C of this textbook.

8.15 Introductory Comments on Torsion

Until recent years, the safety factors required by design codes for proportioning members for
bending and shear were very large, and the resulting large members could almost always be
depended upon to resist all but the very largest torsional moments. Today, however, with the
smaller members selected using the strength design procedure, this is no longer true, and torsion
needs to be considered much more frequently.

Torsion may be very significant for curved beams, spiral staircases, beams that have large
loads applied laterally off center, and even spandrel beams running between exterior building
columns. These latter beams support the edges of floor slabs, floor beams, curtain walls, and
facades, and they are loaded laterally on one side. Several situations where torsion can be a
problem are shown in Figure 8.23.

When plain concrete members are subjected to pure torsion, they will crack along 45°
spiral lines when the resulting diagonal tension exceeds the design strength of the concrete.
Although these diagonal tension stresses produced by twisting are very similar to those caused
by shear, they will occur on all faces of a member. As a result, they add to the stresses caused
by shear on one side of the beam and subtract from them on the other.

Reinforced concrete members subjected to large torsional forces may fail quite suddenly
if they are not provided with torsional reinforcing. The addition of torsional reinforcing does
not change the magnitude of the torsion that will cause diagonal cracks, but it does prevent
the members from tearing apart. As a result, they will be able to resist substantial torsional
moments without failure. Tests have shown that both longitudinal bars and closed stirrups
or spirals are necessary to intercept the numerous diagonal tension cracks that occur on all
surfaces of beams subject to appreciable torsional forces. There must be a longitudinal bar in
each corner of the stirrups to resist the horizontal components of the diagonal tension caused
by torsion. Chapter 15 of this text is completely devoted to torsion.
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(a) Rectangular beam (b) Inverted T beam supporting
with off-center load beam reactions

(c) Balcony beams

(d) Spandrel beam with torsion caused
by floor beams

FIGURE 8.23 Some situations where torsion stresses may be significant.
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8.16 Sl Example

Example 8.8

Determine required spacing of #10 stirrups at the left end of the beam shown in Figure 8.24
if f, =21 MPa, normal weight, and fy = 420 MPa.

338.4 kN
ISo
I N~ 27495kN

~

Kwﬂ: 171.85 kN

V
¢ZC = 85.92 kN

concrete carries

d= beam
0.750 m V centerline
|
|
| 1.02 m —»‘

stirrups needed for 2.98 m

4.000 m

SOLUTION
V, @left end = (4 m)(84.6 kN/m) = 338.4 kN
V, @ a distance d from left end
750 mm
= 338.4 kN — (W) (84.6 KN/m) = 274.95 kN
oV, = (9) (A 6f°> b,d = (0.75) [w} (400 mm) (750 mm)

=171 847 N=171.85kN

Vi =oVe+ oV
~V, -9V, 27495kN —171.85kN

Vs = 3 = 075 =137.47 kN

Assuming #10 Stirrups

Af.d 2
Theoretical s = —Y* — () (71 mm) (420 MPa) (750 mm) _ 325 mm

V (137.47 kN) (10%)

Maximum s to provide minimum A, for stirrups

. 3Af: @@ x 71 mm?) (420 MPa)
" b, 400 mm

=447 mm (ACI Equation 11-13)



1
V, =137.47 kN < 5\/Ebwar

(From ACI metric Section 11.4.4.3)

’
= 5V/21 MPa(400 mm) (750 mm) = 458,257 N = 458.26 kN OK

. d 700 mm
o Maximums = - = ——— =375 mm <«
2 2
Use s = 325 mm
W = 84.6 kN/m

u

8 m

| & A
7 “
I I

FIGURE 8.24 Given information for Example 8.8.

750 mm
820 mm

70 mm

|<— 400 mm ——|

8.17 Computer Example

8.17 Computer Example

Example 8.9

Repeat Example 8.2(c) using the Excel spreadsheet provided for Chapter 8.

SOLUTION

Open the spreadsheet and enter values in the cells highlighted in yellow (only in the Excel
spreadsheets, not the printed example). These include values for V,,,f,, A, b,,,d,A,, and fyt. The
required stirrup spacing s is shown in cell C19 (s = 7.33 in.). Use good judgment to enter an
actual value for spacing in the cell (choose s). A value of choose s = 7.00 in. is shown. This value
must not exceed the calculated value of s as well as the “Controlling s,,,, "’ listed a few cells. In
the cell labeled “Check ¢V, + ¢V,” is the shear capacity of the section with the actual stirrup
spacing you entered in “choose s.” It will exceed the input value of V,, if the design is OK. In this
case, the capacity is 61,548 Ib, which exceeds V,, of 60,000 Ib. Several warnings will appear if

your ‘“‘choose s =" value is too large.
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Shear Design—Beams
V,= 60,000 | 1b
fi= 3000 | psi
= 1
b, = 14 | in.
d= 24 [ in.
A, = 0.22 | in?
S = 60,000 | psi
= 0.75
= 36,807 | 1b
PV, = 27,605 | b |-
1oV.= 13,803 | b
V,=(V,— oV, )= 43,193 | 1b
[ _
Required ¢V = 32,395 b
| 5= 7.33 | in.
choose s = 7.00 in. |-
Smax = 12 in. | Code Section 11.4.5
Ay min = 0.082 | in? | Code Eq.11-13
Smax = 22.95 in. | also Code Eq. 11-13
Smax = 1886 | in. | Code Eq.11-13 with 50 psi limit
Controlling s, = 12.00 | in.
Actual ¢V, = 33943 | b
Check ¢V, - 9V, = 61,548 | 1b

PROBLEMS

Problem 8.1 The ACI Code provides the following limiting
shear values for members subject only to shear and flexure:
2/f!, 4/f!, and 8,/f. What is the significance of each of these
limits?

Problem 8.2 If the maximum shear force in a member occurs

at a support, the code permits the designer to calculate the shear
at a distance d from the face of the support in the presence of a
certain condition. Describe the situation when this reduced shear
may be used.

Problem 8.3 Why does the code limit the maximum design
yield stress that may be used in the design calculations for shear
reinforcing to 60,000 psi (not including welded wire fabric)?

Problem 8.4 What is shear friction and where is it most likely
to be considered in reinforced concrete design?

Shear Analysis

Problem 8.5 What is the design shear strength of the beam
shown if f/ = 4000 psi and fy = 60,000 psi? No shear
reinforcing is provided. (Ans. theoretical ¢V, = 31,876 Ib,
¢V /2 = 15,938 Ib controls)

24 in.
27 in.

3#8

3in.

14 in.

Problem 8.6 Repeat Problem 8.5 if the total depth of the
beam is 32 in. and f] = 3000 psi.



For Problems 8.7 to 8.9, compute ¢V, for the sections shown if
f,p of stirrups is 60 ksi and f = 4000 psi.

Problem 8.7 (Ans. 79,519 1b)

Problem 8.8

N A

#3 stirrups
@ 8in.

e_o o o
N

27 in.

30 in.

|<—18 in.—>| T

3in.

#3 stirrups 1
@ 10in.

4 in.

21 in.

|<— 12 in.—-I

Problem 8.9 (Ans. 38,331 1b)

Shear Design

Problems 259

[

5in.

#3 stirrups

22 in.

32in.

\J
16 in.

Problem 8.10 If f/ = 3000 psi, V, = 60 k, and b, = %d,
select a rectangular beam section if no web reinforcing is used.
Use sand-lightweight concrete. b, is an integer inch.

For Problems 8.11 to 8.19, for the beams and loads given, select stirrup spacings if f = 4000 psi normal-weight concrete and
f,r = 60,000 psi. The dead loads shown include beam weights. Do not consider movement of live loads unless specifically requested.
Assume #3 U stirrups unless given otherwise.

Problem 8.11

wp =1 k/ft
wy =2 k/ft

(One ans. 1 @ 6 in., 10 @ 12 in.)

A,

L )

28 ft

24 in.
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Problem 8.12 Problem 8.13 Repeat Problem 8.12 if live load positions are

considered to cause maximum end and centerline shear. (One
wp = 2 K/t ans.1 @ 4in., 4 @ 8in.,2 @ 10in., 4 @ 13 in.)
wy =4 K/ft

44#9
I 18 it I LICI

l~—12in.—] !

0 Z 271n. 30 ip,
Va Ve J

3in.
Problem 8.14
P, =20k P, =20k
wp =4 k/ft ]
AN, ///// A 27 8 in,
S #10 \
|<—6ft 6ft—->{ s0o000 |-
[e— 15 in. —| 1?
23 in
Problem 8.15 (One ans.1 @ 6in., 8 @ 12 in.)
P, =30k
wp = 1% in.
D777277,777777777) i |
8 #7 3 in.
—— 121t — 12t sece | Y/
‘ seeo -
24 ft I‘_ . ! T
20 in.— 3i
n

Problem 8.16 Use #4 U stirrups.

3in.

P, =20k

4411
wp =3 kit ﬂ

[ 14 ft
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Problem 8.17 Use #4 U stirrups. (One ans. 1 @ 3 in.,
8@5in.,2 @8in., 5 @ 10 in.)

3in.

wp = 2 k/ft 4410

wy =4 k/ft
i 21in. 24 in

I ‘
| 12 ft

Problem 8.18

wp =1 k/ft I* 60 in. |
wy, =2 k/ft l l

L ///////////////}l} L —

6 #9 ‘ l
' 30 ft | eoo

Problem 8.19 If the beam of Problem 8.14 has a factored axial For Problems 8.21 and 8.22, repeat the problems given using the
compression load of 120 k in addition to other loads, calculate Chapter 8 Excel spreadsheet.

¢V, and redesign the stirrups. (One ans. 3 stirrups, 1 @ 4 in., . )
3@ 10in., 4 @ 12 in) Problem 8.21 If V, = 56,400 Ib at a particular section,

determine the theoretical spacing of #3 Ll stirrups for the beam
Problem 8.20 Repeat Problem 8.19 if the axial load is tensile.  of Problem 8.11. (Ans. Theoretical s = 10.68 in., use

Use #4 U stirrups. maximum = 10 in.)

Problem 8.22 If V, = equals 79,600 Ib at a particular section,
determine the spacing of #4 U stirrups for the beam of Problem
8.12.

Problem 8.23 Prepare a flowchart for the design of stirrups
for rectangular T or I beams.



262 CHAPTER 8 Shear and Diagonal Tension

Problems in Sl Units

For Problems 8.24 to 8.26, for the beams and loads given, select stirrup spacings if f = 21 MPa and f,, = 420 MPa. The dead
loads shown include beam weights. Do not consider movement of live loads. Use #10 LI stirrups.

Problem 8.24

X
wp =24 kN/m
wp = 35 kN/m
AALALSISAASAAAAAD| 750 mm
820 mm
| ] 4 #26
| 8m > eooe |~ |

T

450 mm | 70 mm

Problem 8.25 (One ans. #10 stirrups, 1 @ 100 mm, 13 @ 300 mm)

P; =100 kN
‘ wp = 50 kN/m
/ 600 mm
;V / / Jg/} 740 mm
8 #29 L
3m gl 3m > oo 00 | ——
o000

70 mm

350 mm

Problem 8.26

70 mm
900000 | ——
6 #29
wp =20 kN/m
i wy =36 kN/m 800 mm
) S

4m |

l+— 450 mm —




Introduction to Columns

9.1 General

This chapter presents an introductory discussion of reinforced concrete columns, with particular

emphasis on short, stocky columns subjected to small bending moments. Such columns are

often said to be “axially loaded.” Short, stocky columns with large bending moments are

discussed in Chapter 10, while long or slender columns are considered in Chapter 11.
Concrete columns can be roughly divided into the following three categories:

Short compression blocks or pedestals—If the height of an upright compression member is less
than three times its least lateral dimensions, it may be considered to be a pedestal. The ACI
(2.2 and 10.14) states that a pedestal may be designed with unreinforced or plain concrete
with a maximum design compressive stress equal to 0.85¢f,, where ¢ is 0.65. Should the
total load applied to the member be larger than 0.85¢fL’.Ag, it will be necessary either to
enlarge the cross-sectional area of the pedestal or to design it as a reinforced concrete
column, as described in Section 9.9 of this chapter.

Short reinforced concrete columns—Should a reinforced concrete column fail due to initial
material failure, it is classified as a short column. The load that it can support is controlled by
the dimensions of the cross section and the strength of the materials of which it is constructed.
We think of a short column as being a rather stocky member with little flexibility.

Long or slender reinforced concrete columns—As columns become more slender, bending
deformations will increase, as will the resulting secondary moments. If these moments are
of such magnitude as to significantly reduce the axial load capacities of columns, those
columns are referred to as being long or slender.

When a column is subjected to primary moments (those moments caused by applied
loads, joint rotations, etc.), the axis of the member will deflect laterally, with the result that
additional moments equal to the column load times the lateral deflection will be applied to the
column. These latter moments are called secondary moments or PA moments and are illustrated
in Figure 9.1.

A column that has large secondary moments is said to be a slender column, and it is
necessary to size its cross section for the sum of both the primary and secondary moments.
The ACT’s intent is to permit columns to be designed as short columns if the secondary or
PA effect does not reduce their strength by more than 5%. Effective slenderness ratios are
described and evaluated in Chapter 11 and are used to classify columns as being short or
slender. When the ratios are larger than certain values (depending on whether the columns are
braced or unbraced laterally), they are classified as slender columns.

The effects of slenderness can be neglected in about 40% of all unbraced columns and
about 90% of those braced against sidesway.! These percentages are probably decreasing year
by year, however, due to the increasing use of slenderer columns designed by the strength
method, using stronger materials and with a better understanding of column buckling behavior.

! Portland Cement Association, 20035, Notes on ACI 318-05. Building Code Requirements for Structural Concrete (Skokie, IL),
p. 11-3.

CHAPTER 9
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Introduction to Columns

P1>M

secondary moment = PA

b

P T
FIGURE 9.1 Secondary or PA moment.

9.2 Types of Columns

A plain concrete column can support very little load, but its load-carrying capacity will be
greatly increased if longitudinal bars are added. Further substantial strength increases may
be made by providing lateral restraint for these longitudinal bars. Under compressive loads,
columns tend not only to shorten lengthwise but also to expand laterally due to the Poisson
effect. The capacity of such members can be greatly increased by providing lateral restraint
in the form of closely spaced closed ties or helical spirals wrapped around the longitudinal
reinforcing.

Reinforced concrete columns are referred to as tied or spiral columns, depending on the
method used for laterally bracing or holding the bars in place. If the column has a series of
closed ties, as shown in Figure 9.2(a), it is referred to as a tied column. These ties are effective
in increasing the column strength. They prevent the longitudinal bars from being displaced
during construction, and they resist the tendency of the same bars to buckle outward under
load, which would cause the outer concrete cover to break or spall off. Tied columns are
ordinarily square or rectangular, but they can be octagonal, round, L. shaped, and so forth.

The square and rectangular shapes are commonly used because of the simplicity of
constructing the forms. Sometimes, however, when they are used in open spaces, circular
shapes are very attractive. The forms for round columns are often made from cardboard or
plastic tubes, which are peeled off and discarded once the concrete has sufficiently hardened.

If a continuous helical spiral made from bars or heavy wire is wrapped around the lon-
gitudinal bars, as shown in Figure 9.2(b), the column is referred to as a spiral column. Spirals
are even more effective than ties in increasing a column’s strength. The closely spaced spirals
do a better job of holding the longitudinal bars in place, and they also confine the concrete
inside and greatly increase its resistance to axial compression. As the concrete inside the spi-
ral tends to spread out laterally under the compressive load, the spiral that restrains it is put
into hoop tension, and the column will not fail until the spiral yields or breaks, permitting
the bursting of the concrete inside. Spiral columns are normally round, but they also can be
made into rectangular, octagonal, or other shapes. For such columns, circular arrangements
of the bars are still used. Spirals, though adding to the resilience of columns, appreciably
increase costs. As a result, they are usually used only for large heavily loaded columns
and for columns in seismic areas due to their considerable resistance to earthquake loadings.
(In nonseismic zones, probably more than 9 out of 10 existing reinforced concrete columns
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FIGURE 9.2 Types of columns.
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Courtesy of EFCO Corp.
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are tied.) Spirals very effectively increase the ductility and toughness of columns, but they are
much more expensive than ties.

Composite columns, illustrated in Figure 9.2(c) and (d), are concrete columns that are
reinforced longitudinally by structural steel shapes, which may or may not be surrounded
by structural steel bars, or they may consist of structural steel tubing filled with concrete
(commonly called lally columns).

9.3 Axial Load Capacity of Columns

In actual practice, there are no perfect axially loaded columns, but a discussion of such members
provides an excellent starting point for explaining the theory involved in designing real columns
with their eccentric loads. Several basic ideas can be explained for purely axially loaded
columns, and the strengths obtained provide upper theoretical limits that can be clearly verified
with actual tests.

It has been known for several decades that the stresses in the concrete and the reinforcing
bars of a column supporting a long-term load cannot be calculated with any degree of accuracy.
You might think that such stresses could be determined by multiplying the strains by the
appropriate moduli of elasticity. But this idea does not work too well practically because the
modulus of elasticity of the concrete is changing during loading due to creep and shrinkage.
Thus, the parts of the load carried by the concrete and the steel vary with the magnitude and
duration of the loads. For instance, the larger the percentage of dead loads and the longer they
are applied, the greater the creep in the concrete and the larger the percentage of load carried
by the reinforcement.

Though stresses cannot be predicted in columns in the elastic range with any degree
of accuracy, several decades of testing have shown that the ultimate strength of columns can
be estimated very well. Furthermore, it has been shown that the proportions of live and dead
loads, the length of loading, and other such factors have little effect on the ultimate strength.
It does not even matter whether the concrete or the steel approaches its ultimate strength first.
If one of the two materials is stressed close to its ultimate strength, its large deformations will
cause the stress to increase quicker in the other material.

For these reasons, only the ultimate strength of columns is considered here. At failure, the
theoretical ultimate strength or nominal strength of a short axially loaded column is quite accu-
rately determined by the expression that follows, in which A, is the gross concrete area and A,
is the total cross-sectional area of longitudinal reinforcement, including bars and steel shapes:

P, =0.85(.(A, — Ay) + /Ay

9.4 Failure of Tied and Spiral Columns

Should a short, tied column be loaded until it fails, parts of the shell or covering concrete will
spall off and, unless the ties are quite closely spaced, the longitudinal bars will buckle almost
immediately, as their lateral support (the covering concrete) is gone. Such failures may often
be quite sudden, and apparently they have occurred rather frequently in structures subjected to
earthquake loadings.

When spiral columns are loaded to failure, the situation is quite different. The covering
concrete or shell will spall off, but the core will continue to stand, and if the spiral is closely
spaced, the core will be able to resist an appreciable amount of additional load beyond the load
that causes spalling. The closely spaced loops of the spiral, together with the longitudinal bars,
form a cage that very effectively confines the concrete. As a result, the spalling off of the shell of
a spiral column provides a warning that failure is going to occur if the load is further increased.

American practice is to neglect any excess capacity after the shell spalls off, since it
is felt that once the spalling occurs, the column will no longer be useful—at least from the
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viewpoint of the occupants of the building. For this reason, the spiral is designed so that it is
just a little stronger than the shell that is assumed to spall off. The spalling gives a warning of
impending failure, and then the column will take a little more load before it fails. Designing
the spiral so that it is just a little stronger than the shell does not increase the column’s ultimate
strength much, but it does result in a more gradual or ductile failure.

The strength of the shell is given by the following expression, where A, is the area of
the core, which is considered to have a diameter that extends from out to out of the spiral:

Shell strength = 0.85fL’.(Ag —A)

By considering the estimated hoop tension that is produced in spirals due to the lateral
pressure from the core and by tests, it can be shown that spiral steel is at least twice as effective
in increasing the ultimate column capacity as is longitudinal steel.>> Therefore, the strength
of the spiral can be computed approximately by the following expression, in which p; is the
percentage of spiral steel:

Spiral strength = 2p,A. f,,

Equating these expressions and solving for the required percentage of spiral steel, we
obtain

0.85(L(A, —A.) = 2p,A, f,,

A, —Af! A, !
oy = 0.425u = 0.425( £ _ 1>f—L
A fe

To make the spiral a little stronger than the spalled concrete, the code (10.9.3) specifies
the minimum spiral percentage with the expression to follow, in which f|, is the specified yield
strength of the spiral reinforcement up to 100,000 psi.

c Jyt c

Ay N\ J .
py =045 —1)== (ACI Equation 10-5)
A S
Once the required percentage of spiral steel is determined, the spiral may be selected
with the expression to follow, in which p; is written in terms of the volume of the steel in one
loop:

c

volume of spiral in one loop

Ps = volume of concrete core for a pitch s
_ Vspiral
Vcore
_an(D,.—dy,)  4a,D. —d,)
(wD2/4)s sD?

In this expression, a; is the cross-sectional area of the spiral bar, D, is the diameter of the core
out to out of the spiral, and d,, is the diameter of the spiral bar (see Figure 9.3). The designer
can assume a diameter for the spiral bar and solve for the pitch required. If the results do
not seem reasonable, he or she can try another diameter. The pitch used must be within the
limitations listed in the next section of this chapter. Actually, Table A.14 (see Appendix A),
which is based on this expression, permits the designer to select spirals directly.

2 Park, A., and Paulay, T., 1975, Reinforced Concrete Structures (Hoboken, NJ: John Wiley & Sons), pp. 25, 119-121.
3 Considere, A., 1902, “Compressive Resistance of Concrete Steel and Hooped Concrete, Part 1" Engineering Record,
December 20, pp. 581-583; “Part I,” December 27, pp. 605-606.
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FIGURE 9.3 Drawing showing column spiral terms.

Courtesy of EFCO Corp.

Round spiral columns.
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Courtesy of EFCO Corp.

Columns and hammerhead cap forms for the Gandy Bridge, Tampa, Florida.

9.5 Code Requirements for Cast-in-Place Columns

The ACI Code specifies quite a few limitations on the dimensions, reinforcing, lateral restraint,
and other items pertaining to concrete columns. Some of the most important limitations are as
follows.

1. The percentage of longitudinal reinforcement may not be less than 1% of the gross
cross-sectional area of a column (ACI Code 10.9.1). It is felt that if the amount of steel
is less than 1%, there is a distinct possibility of a sudden nonductile failure, as might
occur in a plain concrete column. The 1% minimum steel value will also lessen creep
and shrinkage and provide some bending strength for the column. Actually, the code
(10.8.4) does permit the use of less than 1% steel if the column has been made larger
than is necessary to carry the loads because of architectural or other reasons. In other
words, a column can be designed with 1% longitudinal steel to support the factored load,
and then more concrete can be added with no increase in reinforcing and no increase
in calculated load-carrying capacity. In actual practice, the steel percentage for such
members is kept to an absolute minimum of 0.005.

2. The maximum percentage of steel may not be greater than 8% of the gross cross-sectional
area of the column (ACI Code 10.9.1). This maximum value is given to prevent too
much crowding of the bars. Practically, it is rather difficult to fit more than 4% or 5%
steel into the forms and still get the concrete down into the forms and around the bars.
When the percentage of steel is high, the chances of having honeycomb in the concrete is
decidedly increased. If this happens, there can be a substantial reduction in the column’s
load-carrying capacity. Usually the percentage of reinforcement should not exceed 4%
when the bars are to be lap spliced. It is to be remembered that if the percentage of steel
is very high, the bars may be bundled.

3. The minimum numbers of longitudinal bars permissible for compression members (ACI
Code 10.9.2) are as follows: four for bars within rectangular or circular ties, three for
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bars within triangular-shaped ties, and six for bars enclosed within spirals. Should there
be fewer than eight bars in a circular arrangement, the orientation of the bars will affect
the moment strength of eccentrically loaded columns. This matter should be considered
in design according to the ACI Commentary (R10.9.2).

4. The code does not directly provide a minimum column cross-sectional area, but it is
obvious that minimum widths or diameters of about 8 in. to 10 in. are necessary to
provide the necessary cover outside of ties or spirals and to provide the necessary
clearance between longitudinal bars from one face of the column to the other. To use
as little rentable floor space as possible, small columns are frequently desirable. In fact,
thin columns may often be enclosed or “hidden” in walls.

5. When tied columns are used, the ties shall not be less than #3, provided that the lon-
gitudinal bars are #10 or smaller. The minimum size is #4 for longitudinal bars larger
than #10 and for bundled bars. Deformed wire or welded wire fabric with an equivalent
area may also be used (ACI 7.10.5.1).

In ST units, ties should not be less than #10 for longitudinal bars #32 or smaller
and #13 for larger longitudinal bars.

The center-to-center spacing of ties shall not be more than 16 times the diameter
of the longitudinal bars, 48 times the diameter of the ties, or the least lateral dimension
of the column. The ties must be arranged so that every corner and alternate longitudinal
bar will have lateral support provided by the corner of a tie having an included angle
not greater than 135°. No bars can be located a greater distance than 6 in. clear* on
either side from such a laterally supported bar. These requirements are given by the
ACI Code in its Section 7.10.5. Figure 9.4 shows tie arrangements for several column
cross sections. Some of the arrangements with interior ties, such as the ones shown in
the bottom two rows of the figure, are rather expensive. Should longitudinal bars be
arranged in a circle, round ties may be placed around them and the bars do not have to
be individually tied or restrained otherwise (7.10.5.3). The ACI also states (7.10.3) that
the requirements for lateral ties may be waived if tests and structural analysis show that
the columns are sufficiently strong without them and that such construction is feasible.

There is little evidence available concerning the behavior of spliced bars and bun-
dled bars. For this reason, Section R7.10.5 of the commentary states that it is advisable
to provide ties at each end of lap spliced bars and presents recommendations concerning
the placing of ties in the region of end-bearing splices and offset bent bars.

Ties should not be placed more than one-half a spacing above the top of a footing
or slab and not more than one-half a spacing below the lowest reinforcing in a slab or
drop panel (to see a drop panel, refer to Figure 16.1 in Chapter 16). Where beams frame
into a column from all four directions, the last tie may be below the lowest reinforcing
in any of the beams.

6. The code (7.10.4) states that spirals may not have diameters less than % in.’] and that
the clear spacing between them may not be less than 1 in. or greater than 3 in.[¢]
Should splices be necessary in spirals, they are to be provided by welding or by lapping
deformed uncoated spiral bars or wires by the larger of 48 diameters or 12 in.”] Other

4150 mm in SL

510 mm in SL

625 mm and 75 mm in SL
7300 mm in SL



9.6 Safety Provisions for Columns

6in. max——I‘-’-”-‘-I 6in. max—r—bl-r-bl
6 in. max

L]

>6in. > 6in. >6in. > 6in. >6in. > 6in.

heine! =
L._ o LL'AJ o

6in. max"T’”"’I in. |—|—H——6 in. max
Py 9

)

.

30

L)

6 in. max

FIGURE 9.4 Typical tie arrangements.

lap splice lengths are also given in ACI Section 7.10.4 for plain uncoated bars and
wires, for epoxy-coated deformed bars and wires, and so on. Special spacer bars may
be used to hold the spirals in place and at the desired pitch until the concrete hardens.
These spacers consist of vertical bars with small hooks. Spirals are supported by the
spacers, not by the longitudinal bars. Section R7.10.4 of the ACI Commentary provides
suggested numbers of spacers required for different-size columns.

7. The ACI 318 Code (Section 7.10.5.4) states that where longitudinal bars are located
around the perimeter of a circle, a complete circular tie is permitted. The ends of the
circular tie must overlap by not less than 6 in. and terminate with standard hooks that
engage a longitudinal column bar. Overlaps at ends of adjacent circular ties shall be stag-
gered around the perimeter enclosing the longitudinal bars. The code commentary for
this provision warns that vertical splitting and loss of tie restraint are possible where the
overlapped ends of adjacent circular ties are anchored at a single longitudinal bar. Adja-
cent circular ties should not engage the same longitudinal bar with end hook anchorages.
While the transverse reinforcement in members with longitudinal bars located around
the periphery of a circle can be either spirals or circular ties, spirals are usually more
effective.

9.6 Safety Provisions for Columns

The values of ¢ to be used for columns as specified in Section 9.3.2 of the code are well below
those used for flexure and shear (0.90 and 0.75, respectively). A value of 0.65 is specified for
tied columns and 0.75 for spiral columns. A slightly larger ¢ is specified for spiral columns
because of their greater toughness.
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272 CHAPTER 9 Introduction to Columns

The failure of a column is generally a more severe matter than is the failure of a beam,
because a column generally supports a larger part of a structure than does a beam. In other
words, if a column fails in a building, a larger part of the building will fall down than if a
beam fails. This is particularly true for a lower-level column in a multistory building. As a
result, lower ¢ values are desirable for columns.

There are other reasons for using lower ¢ values in columns. As an example, it is more
difficult to do as good a job in placing the concrete for a column than it is for a beam. The
reader can readily see the difficulty of getting concrete down into narrow column forms and
between the longitudinal and lateral reinforcing. As a result, the quality of the resulting concrete
columns is probably not as good as that of beams and slabs.

The failure strength of a beam is normally dependent on the yield stress of the tensile
steel—a property that is quite accurately controlled in the steel mills. The failure strength of a
column is closely related to the concrete’s ultimate strength, a value that is quite variable. The
length factors also drastically affect the strength of columns and thus make the use of lower ¢
factors necessary.

It seems impossible for a column to be perfectly axially loaded. Even if loads could
be perfectly centered at one time, they would not stay in place. Furthermore, columns may
be initially crooked or have other flaws, with the result that lateral bending will occur. Wind
and other lateral loads cause columns to bend, and the columns in rigid-frame buildings are
subjected to moments when the frame is supporting gravity loads alone.

9.7 Design Formulas

In the pages that follow, the letter e is used to represent the eccentricity of the load. The reader
may not understand this term because he or she has analyzed a structure and has computed
an axial load, P,, and a bending moment, M, but no specific eccentricity, e, for a particular
column. The term e represents the distance the axial load, P,, would have to be off center of
the column to produce M,,. Thus

P,e=M,
or
MM
e=—
P

Nonetheless, there are many situations where there are no calculated moments for the
columns of a structure. For many years, the code specified that such columns had to be
designed for certain minimum moments even though no calculated moments were present.
This was accomplished by requiring designers to assume certain minimum eccentricities for
their column loads. These minimum values were 1 in. or 0.05h, whichever was larger, for
spiral columns and 1 in. or 0.104 for tied columns. (The term & represents the outside diameter
of round columns or the total depth of square or rectangular columns.) A moment equal to the
axial load times the minimum eccentricity was used for design.

In today’s code, minimum eccentricities are not specified, but the same objective is
accomplished by requiring that theoretical axial load capacities be multiplied by a factor some-
times called «, which is equal to 0.85 for spiral columns and 0.80 for tied columns. Thus, as
shown in Section 10.3.6 of the code, the axial load capacity of columns may not be greater
than the following values:

For spiral columns (¢ = 0.75)

P, (max) = 0.85$[0.85, (A, — A,) +f, A,] (ACT Equation 10-1)
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Destruction of old apartment buildings.

For tied columns (¢ = 0.65)
P, (max) = 0.80¢[0.85f, (A, —Ay) +,A4] (ACI Equation 10-2)

It is to be clearly understood that the preceding expressions are to be used only when the
moment is quite small or when there is no calculated moment.

The equations presented here are applicable only for situations where the moment is
sufficiently small so that e is less than 0.104 for tied columns or less than 0.054 for spiral
columns. Short columns can be completely designed with these expressions as long as the e
values are under the limits described. Should the e values be greater than the limiting values
and/or should the columns be classified as long ones, it will be necessary to use the procedures
described in the next two chapters.

9.8 Comments on Economical Column Design

Reinforcing bars are quite expensive, and thus the percentage of longitudinal reinforcing used
in reinforced concrete columns is a major factor in their total costs. This means that under
normal circumstances, a small percentage of steel should be used (perhaps in the range of
1.5% to 3%). This can be accomplished by using larger column sizes and/or higher-strength
concretes. Furthermore, if the percentage of bars is kept in approximately this range, it will be
found that there will be sufficient room for conveniently placing them in the columns.
Higher-strength concretes can be used more economically in columns than in beams.
Under ordinary loads, only 30% to 40% of a beam cross section is in compression, while the
remaining 60% to 70% is in tension and thus assumed to be cracked. This means that if a
high-strength concrete is used for a beam, 60% to 70% of it is wasted. For the usual column,
however, the situation is quite different because a much larger percentage of its cross section is
in compression. As a result, it is quite economical to use high-strength concretes for columns.
Although some designers have used concretes with ultimate strengths as high as 19,000 psi
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(as at Two Union Square in Seattle) for column design with apparent economy, the use
of 5000-psi to 6000-psi columns is the normal rule when higher strengths are specified for
columns.

Grade 60 reinforcing bars are generally used for best economy in the columns of most
structures. However, Grade 75 bars may provide better economy in high-rise structures, par-
ticularly when they are used in combination with higher-strength concretes.

In general, tied columns are more economical than spiral columns, particularly if square
or rectangular cross sections are to be used. Of course, spiral columns, high-strength concretes,
and high percentages of steel save floor space.

As few different column sizes as possible should be used throughout a building. In this
regard, it is completely uneconomical to vary a column size from floor to floor to satisfy the
different loads it must support. This means that the designer may select a column size for the
top floor of a multistory building (using as small a percentage of steel as possible) and then
continue to use that same size vertically for as many stories as possible, by increasing the steel
percentage floor by floor as required. Furthermore, it is desirable to use the same column size
as much as possible on each floor level. This consistency of sizes will provide appreciable
savings in labor costs.

The usual practice for the columns of multistory reinforced concrete buildings is to
use one-story-length vertical bars tied together in preassembled cages. This is the preferred
procedure when the bars are #1181 or smaller, where all the bars can be spliced at one location
just above the floor line. For columns where staggered splice locations are required (as for
larger-size bars), the number of splices can be reduced by using preassembled two-story cages
of reinforcing.

Unless the least column dimensions or longitudinal bar diameters control tie spacings, the
selection of the largest practical tie sizes will increase their spacings and reduce their number.
This can result in some savings. Money can also be saved by avoiding interior ties, such as
the ones shown in the bottom two rows of columns in Figure 9.4. With no interior ties, the
concrete can be placed more easily and lower slumps used (thus lower-cost concrete).

In fairly short buildings, the floor slabs are often rather thin, and thus deflections may
be a problem. As a result, rather short spans and thus close column spacings may be used. As
buildings become taller, the floor slabs will probably be thicker to help provide lateral stability.
For such buildings, slab deflections will not be as much of a problem, and the columns may
be spaced farther apart.

Even though the columns in tall buildings may be spaced at fairly large intervals, they
still will occupy expensive floor space. For this reason, designers try to place many of their
columns on the building perimeters so they will not use up the valuable interior space. In
addition, the omission of interior columns provides more flexibility for the users for placement
of partitions and also makes large open spaces available.

9.9 Design of Axially Loaded Columns

As a brief introduction to columns, the design of three axially loaded short columns is presented
in this section and the next. Moment and length effects are completely neglected. Examples
9.1 and 9.3 present the design of axially loaded square tied columns, while Example 9.2
illustrates the design of a similarly loaded round spiral column. Table A.15 in Appendix
A provides several properties for circular columns that are particularly useful for designing
round columns.

8 #36 in SL



9.9 Design of Axially Loaded Columns

Example 9.1

Design a square tied column to support an axial dead load D of 130 k and an axial live load L of
180 k. Initially assume that 2% longitudinal steel is desired, f, = 4000 psi, and fy = 60,000 psi.

SOLUTION
P,=(1.2)(130 k) + (1.6) (180 k) = 444 k

Selecting Column Dimensions
oP, = ¢>O.80[0.85f’c(Ag —Ag) + 1Al (ACI Equation 10-2)
444 = (0.65) (0.80) [(0.85) (4 ksi) (Ag — 0.02A,) + (60 ksi) (0.02A,)]

A, =188.401in? Use 14in. x 14 in. (A, = 196 in.%)

Selecting Longitudinal Bars

Substituting into column equation with known Ay and solving for Ay, we obtain from ACI
Equation 10-2,

444 = (0.65)(0.80)[(0.85) (4 ksi) (196 in.2 — A,) + (60 ksi)A,]

A, =3.31in2 Use 6 #7 bars (3.61in.?)

Design of Ties (Assuming #3 Bars)

Spacing:

(@ 48in.x 2in.=18in.

(b) 16in. x & in.=141in. «

(c) Leastdim. = 14 in. < Use #3 ties @ 14 in.

A sketch of the column cross section is shown in Figure 9.5.

#3 ties @ 14 in. 21 in.
6 #7 bars 9in. 14 in.

1 2% in.
2% T 9in—» |e—

14 in.

FIGURE 9.5 Final column cross section for Example 9.1.
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Check Code Requirements

Following are the ACI Code limitations for columns. Space is not taken in future examples to
show all of these essential checks, but they must be made.

(7.6.1) Longitudinal bar clear spacing = 3 in. — & in. = 3.625 in. > 1 in. and d}, of £ in. OK

3.61
(10.9.1) Steel percentage 0.01 < p = m =0.0184 <0.08 OK

(10.9.2) Number of bars = 6> min.no. of 4 OK
(7.10.5.1)  Minimum tie size = #3 for #7 bars OK
(7.10.5.2) Spacing of ties  OK

(7.10.5.3) Arrangement of ties  OK

Example 9.2

Design a round spiral column to support an axial dead load P, of 240 k and an axial live load P,
of 300 k. Initially assume that approximately 2% longitudinal steel is desired, f,, = 4000 psi, and
f, = 60,000 psi.

SOLUTION
P, =(1.2)(240 k) + (1.6) (300 k) = 768 k
Selecting Column Dimensions and Bar Sizes

$P, = $0.85[0.85f,(A, — Ag) +f,Ay] (ACI Equation 10-1)
768 k = (0.75)(0.85) [(0.85) (4 ksi) (A, — 0.02A4,) + (60 ksi) (0.024,)]

Ay =266 in.? Use 18-in. diameter column (255 in.?)

Using a column diameter with a gross area less than the calculated gross area (255 in.? <
266 in.?) results in a higher percentage of steel than originally assumed.

768 k = (0.75)(0.85) [(0.85) (4 ksi) (255 in.2 — A,,) + (60 ksi)A]

A, =5.97in2 Use 6 #9 bars (6.00 in.?)
Check code requirements as in Example 9.1. A sketch of the column cross section is shown in
Figure 9.6.
#3 spiral @ 2 in.
6 #9 bars
14 in. De=15in. 1+ in.

h=18in. FIGURE 9.6 Final design for Example 9.2.



9.10 Sl Example

Design of Spiral

)2

A= M =177in2
A f, 255 in.? 4 ksi
Mini =(045) (-2 -1) £ =045 —— —1)(—— ) =0.0132
inimum pg = ( )<Ac > : ( )(177 — > <60 ksi)
Assume a #3 spiral, d, = 0.375in. and a;, = 0.11 in.2
pe = 4as(Dc — db)
s sD?
(4 (0.11 in.%)(15in. — 0.375 in.)
0.0182 = (s)(15in.)2
s=2171in. Say 2 in.

(Checked with Appendix A, Table A.14.)

9.10 Sl Example

Example 9.3

Design an axially loaded short square tied column for P, = 2600 kN if f, = 28 MPa and
f, = 350 MPa. Initially assume p = 0.02.

SOLUTION

Selecting Column Dimensions
oP, = ¢>O.80[O.85f’c(Ag —Aq) +1,Aql (ACI Equation 10-2)
2600 kN = (0.65) (0.80)[(0.85) (28 MPa) (A, — 0.02A,) + (350 MPa) (0.02A,)]

A, = 164 886 mm?
Use 400 mm x 400 mm (A, = 160 000 mm?)

Selecting Longitudinal Bars
2600 kN = (0.65) (0.80)[(0.85) (28 MPa) (160 000 mm? — Ag) + (350 MPa)A]

A, = 3654 mm?
Use 6 #29 (3870 mm?)

Design of Ties (Assuming #10 Sl Ties)

(@) 16 mm x 28.7 mm = 459.2 mm
(b) 48 mm x 9.5 mm = 456 mm
(c) Least col. dim. = 400 mm < Use #10 ties @ 400 mm

Check code requirements as in Example 9.1. A sketch of the column cross section is shown
in Figure 9.7.

277



278 CHAPTER 9 Introduction to Columns

6 #29 bars

70 mm

#10 tiecs |

260
@ 400 mm o.c. mm 400 mm

70 70
mm mm
260 mm

re———— 400 mm-————>

FIGURE 9.7 Final design for Example 9.3.

9.11 Computer Example

Example 9.4

Using the Excel spreadsheets for Chapters 9 and 10, repeat Example 9.2.

SOLUTION

Open the Circular Column worksheet and enter the material properties (f,, = 4000 psi, fy =
60,000 psi). For y, any value less than one is acceptable for Chapter 8 problems with no moment
or eccentricity. Enter a trial value of h (cell C4) and Ag; (cell C8). The corresponding axial load
capacity will appear in cell D19, which is identified as ¢P,. If this value is greater than or equal
to 768 kips, the design is acceptable. It is a more economical design if the capacity is also close
to the design value of 768 kips. As an example,

start withh = 10in. and A; = 1.00in.2. The value [LefiEIRTTH"S E]
of Py is only 206 kips. Obviously a larger column
is needed. Keep increasing h until the ¢P, value is | Set cel: ’mg
close t.o 7§8 kips, keeping in minq that- the value To yakss: ‘?68 ‘
of A; is still set very low. Several iterations show
that for h — 18 in., $P, — 588 kips. Now begin | B¥ changingeell: | $csal
incrementing Ag; and see its effect on ¢P,. Several
trials lead to A, = 6.00 in.2 with a corresponding I OK l [ Caniel ]

value of pP, = 768 Kips.




It is also possible to use “goal seek” to solve this problem. Input a trial value for h (say,
10 in.). Then highlight cell D19 and select goal seek from the tools on the Excel toolbar. Input
768 in. in the second window and C8 in the bottom one (as shown). Click OK, and a value of
A, = 16.57 in.2 will appear in cell C8. This is way too much steel because the steel percentage
exceeds 8%. Clearly, a larger-diameter column is needed. Repeat this process, increasing h until
an acceptable value of A is obtained. If h = 16 in. is input, goal seek indicates A; = 9.21in.2.
This may not be the best choice, but it shows how the spreadsheet can be used to get different

answers, all of which may be acceptable.

| Circular Column Capacity

= 16 | in.
= 0.7
.= 4,000 | psi
Jy= 60,000 | psi
Ay = 9.21|in.
A, = 201.1 |in.2 h
Pr= 0.0458
= 0.85
€= 0.00207
E = 29,000 | ksi
Chal = 8.05 | in. y
€0.005 = 5.1]in.
P, = (0.85f,A, +A,f,) = 1204.7 kips
oP, =768.0 Kkips ACI Equation 10-1
PROBLEMS
Problem 9.1 Distinguish among tied, spiral, and Problem 9.6
composite columns. e o o
Problem 9.2 What are primary and secondary moments? g:i?
e o o

Problem 9.3 Distinguish between long and short columns.

Problem 9.4 List several design practices that may help make
the construction of reinforced concrete columns more
economical.

Analysis of Axially Loaded Columns

For Problems 9.5 to 9.8, compute the load-bearing capacity, ¢P,,,
of the concentrically loaded short column. f, = 60,000 psi
and f/ = 4000 psi.

Problem 9.5 A 20-in. square column reinforced with eight
#10 bars. (Ans. 1005 k)

Problem 9.7 (Ans.

FIS in.*»‘

_T_

15 in.

|

7

e | 12in.

3

609.2 k)
° °
® 8 #8 bars
) °
| 20 in. |

Problems
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Problem 9.8

6#10 24 in.
bars

a spiral / l

column

Problem 9.9 Determine the load-bearing capacity of the
concentrically loaded short column shown if f, = 60,000 psi
and f = 3000 psi. (Ans. 982.3 k)

} 3in.
° ° Y-
4#11 14in.  20in.
° ° —_
3in. \
3in. 3in.
~——<—24 in.
30 in.

Problems in Sl Units

For Problems 9.16 to 9.18, design columns for axial load only
for the conditions described. Include the design of ties or spi-
rals and a sketch of the cross sections selected, including bar
arrangements. All columns are assumed to be short and not
exposed to the weather. Form sizes are in 50-mm increments.

Problem 9.16 Square tied column: P, = 600 kN,
P, = 800 kN, f. =24 MPa, and f, = 420 MPa. Initially
assume p, = 0.02.

For problems 9.19 to 9.21, use the Chapters 9 and 10 Excel
spreadsheets. Assume d’ = 2.5 in. for each column.

Problem 9.19 Repeat Problem 9.6. (Ans. P, = 574.4 k)
Problem 9.20 Repeat Problem 9.10.

Design of Axially Loaded Columns

For Problems 9.10 to 9.15, design columns for axial load only.
Include the design of ties or spirals and a sketch of the cross
sections selected, including bar arrangements. All columns are
assumed to be short, and form sizes are available in 2-in. incre-
ments.

Problem 9.10 Square tied column: P, = 280k, P, = 500k,
fi =4000 psi, and f; = 60,000 psi. Initially assume Py = 2%.

c

Problem 9.11 Repeat Problem 9.10 if p, is to be 4% initially.
(One ans. 20-in. x 20-in. column with 10 #11 bars)

Problem 9.12 Round spiral column: P, = 300k,
P, = 400k, f/ = 3500 psi, and f; = 60,000 psi. Initially
assume p, = 4%.

Problem 9.13 Round spiral column: P;, = 400k, P, = 250k,
Sl = 4000 psi, f, = 60,000 psi, and p,, initially assumed = 2%.
(One ans. 20-in. diameter column with 6 #9 bars)

Problem 9.14 Smallest possible square tied column:
Py = 200k, P, = 300k, f; = 4000 psi, and f, = 60,000 psi.

Problem 9.15 Design a rectangular tied column with the long
side equal to two times the length of the short side. P;, = 650k,
P; = 400k, f{ = 3000 psi, and f, = 60,000 psi. Initially
assume that p, = 2%. (One ans. 20-in. x 40-in. column with

8 #11 bars)

Problem 9.17 Smallest possible square tied column:

P, = 700 kN, P, = 300 kN, f/ = 28 MPa, and

fy = 300 MPa. (One ans. 250-mm x 250-mm column with
6 #29 bars)

Problem 9.18 Round spiral column: P, = 500 kN,
P, = 650 kN, f/ = 35 MPa, and f, = 420 MPa. Initially
assume p, = 0.03.

Problem 9.21 Repeat Problem 9.12. (One ans. 20-in.-diameter
column with 9 #10 bars for which ¢P, = 1010 k)



Design of Short Columns Subject [aliliil
to Axial Load and Bending

10.1 Axial Load and Bending

All columns are subjected to some bending as well as axial forces, and they need to be
proportioned to resist both. The so-called axial load formulas presented in Chapter 9 do take
into account some moments, because they include the effect of small eccentricities with the
0.80 and 0.85 factors. These values are approximately equivalent to the assumption of actual
eccentricities of 0.104 for tied columns and 0.054 for spiral columns.

Columns will bend under the action of moments, and those moments will tend to produce
compression on one side of the columns and tension on the other. Depending on the relative
magnitudes of the moments and axial loads, there are several ways in which the sections might
fail. Figure 10.1 shows a column supporting a load, P,. In the various parts of the figure, the
load is placed at greater and greater eccentricities (thus producing larger and larger moments)
until finally in part (f) the column is subject to such a large bending moment that the effect of
the axial load is negligible. Each of the six cases shown is briefly discussed in the paragraphs
to follow, where the letters (a) through (f) correspond to those same letters in the figure. The
column is assumed to reach its ultimate capacity when the compressive concrete strain reaches
0.003.

(a) Large axial load with negligible moment—For this situation, failure will occur by the
crushing of the concrete, with all reinforcing bars in the column having reached their
yield stress in compression.

(b) Large axial load and small moment such that the entire cross section is in
compression—When a column is subject to a small bending moment (i.e., when the
eccentricity is small), the entire column will be in compression, but the compression
will be higher on one side than on the other. The maximum compressive stress in the
column will be 0.85f/, and failure will occur by the crushing of the concrete with all
the bars in compression.

(¢) Eccentricity larger than in case (b) such that tension begins to develop on one side of
the column—If the eccentricity is increased somewhat from the preceding case, tension
will begin to develop on one side of the column, and the steel on that side will be in
tension but less than the yield stress. On the other side, the steel will be in compression.
Failure will occur as a result of the crushing of the concrete on the compression side.

(d) A balanced loading condition—As we continue to increase the eccentricity, a condition
will be reached in which the reinforcing bars on the tension side will reach their yield
stress at the same time that the concrete on the opposite side reaches its maximum
compression, 0.85f/. This situation is called the balanced loading condition.

(e) Large moment with small axial load—TIf the eccentricity is further increased, failure
will be initiated by the yielding of the bars on the tensile side of the column prior to
concrete crushing.

(f) Large moment with no appreciable axial load—For this condition, failure will occur as
it does in a beam.
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Pn
| (a) Large axial load causes a crushing failure of
! the concrete with all bars reaching their yield
| points in compression.
Pn
|e
!
(b) Large axial load and small moment but entire
\ cross section in compression. Failure occurs
| by crushing of the concrete, all bars in
compression.
P

Bl

(c) Large axial load, moment larger than in (b).
Bars on far side in tension but have not yielded.
Failure occurs by crushing of the concrete.

L;.l

(d) Balanced loading condition—bars on tensile side
' yield at same time concrete on compression side
| crushes at 0.85 f.

L;’l
‘ ! | (e) Large moment, relatively small axial load—failure

s

initiated by yielding of tensile bars.

‘ i | (f)  Large bending moment—failure occurs as in a beam.

FIGURE 10.1 Column subject to load with larger and larger eccentricities.

10.2 The Plastic Centroid

The eccentricity of a column load is the distance from the load to the plastic centroid of the
column. The plastic centroid represents the location of the resultant force produced by the
steel and the concrete. It is the point in the column cross section through which the resultant
column load must pass to produce uniform strain at failure. For locating the plastic centroid, all
concrete is assumed to be stressed in compression to 0.85f/ and all steel to J/, in compression.
For symmetrical sections, the plastic centroid coincides with the centroid of the column cross
section, while for nonsymmetrical sections, it can be located by taking moments.

Example 10.1 illustrates the calculations involved in locating the plastic centroid for a
nonsymmetrical cross section. The ultimate load, P,, is determined by computing the total

n°
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Courtesy of EFCO Corp.

Pennsylvania Southern Expressway, Philadelphia, Pennsylvania.

compressive forces in the concrete and the steel and adding them together. P, is then assumed
to act downward at the plastic centroid, at a distance X from one side of the column, and
moments are taken on that side of the column of the upward compression forces acting at their
centroids and the downward P,,.

Example 10.1

Determine the plastic centroid of the T-shaped column shown in Figure 10.2 if f;, = 4000 psi and
f, = 60,000 psi.

SOLUTION

The plastic centroid falls on the x-axis, as shown in Figure 10.2, because of symmetry. The
column is divided into two rectangles, the left one being 16 in. x 6 in. and the right one
8in. x 8in. C, is assumed to be the total compression in the left concrete rectangle, C, the total
compression in the right rectangle, and C; the total compression in the reinforcing bars.

C, =(16in.)(6in.) (0.85) (4 ksi) = 326.4 k
C, =(8in.)(81in.)(0.85) (4 ksi) =217.6 k
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2 #9(2.00in.2)

3in.|3in.| 3in.

- o P

| <
FIGURE 10.2 Column cross section for

<6 in—»<—8 in. Example 10.1.

In computing C;, the concrete where the bars are located is subtracted; that is,

C, = (4.00in.?) (60 ksi — 0.85 x 4 ksi) = 226.4 k
Total compression = P, = 326.4 k4 217.6 k+226.4 k=770.4 k

Taking Moments about Left Edge of Column

—(326.4 K)(3in.) — (217.6 k) (10 in.) — (226.4 K) (7 in.) + (770.4 k) (x) = O
X = 6.15in.

10.3 Development of Interaction Diagrams

Should an axial compressive load be applied to a short concrete member, it will be subjected
to a uniform strain or shortening, as is shown in Figure 10.3(a). If a moment with zero axial
load is applied to the same member, the result will be bending about the member’s neutral
axis such that strain is proportional to the distance from the neutral axis. This linear strain
variation is shown in Figure 10.3(b). Should axial load and moment be applied at the same
time, the resulting strain diagram will be a combination of two linear diagrams and will itself
be linear, as illustrated in Figure 10.3(c). As a result of this linearity, we can assume certain
numerical values of strain in one part of a column and determine strains at other locations by
straight-line interpolation.

As the axial load applied to a column is changed, the moment that the column can resist
will change. This section shows how an interaction curve of nominal axial load and moment
values can be developed for a particular column.

Assuming that the concrete on the compression edge of the column will fail at a strain
of 0.003, a strain can be assumed on the far edge of the column, and the values of P, and
M,, can be computed by statics. Holding the compression strain at 0.003 on the far edge, we
can then assume a series of different strains on the other edge and calculate P, and M, for

n
each.! Eventually a sufficient number of values will be obtained to plot an interaction curve

I'Leet, K., 1991, Reinforced Concrete Design, 2nd ed. (New York: McGraw-Hill), pp. 316-317.
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such as the one shown in Figure 10.8. Example 10.2 illustrates the calculation of P, and M,
for a column for one set of assumed strains.

P P

1 S

loading
situation

strains — \] I\I

(a) Axial load (b) Moment (c) Axial load and
moment

FIGURE 10.3 Column strains.

Example 10.2

It is assumed that the tied column of Figure 10.4 has a strain on its compression edge equal to
—0.003 and has a tensile strain of +0.002 on its other edge. Determine the values of P, and M,
that cause this strain distribution if f, = 60 ksi and f = 4 ksi.

SOLUTION

Determine the values of ¢ and of the steel strains ¢, and ¢, by proportions with reference to the
strain diagram shown in Figure 10.5.

0.003 ) )
= <m> (24 in.) =14.40in.
, 11.90 in. .
€ = <m> (0.003) = 0.00248 > 0.00207 .. yields
7.10in. . .
“=\980m (0.002) = 0.00148  does not yield .. ¢ = 0.65 (Section 3.7)
[ J 'y T
® 6 #9 bars o | 14in.
[} ® i
2% in.—— ! 19 in. ! __2% in.
24 in.

FIGURE 104 Column cross section for Example 10.2.
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+0.002
€ r
&
—0.003
2.5 in.— 7.10 in.aejtem—11.9 in. le— 2.5 in.
[—9.60 in.—{+—c = 14.40 in.—
24 in. S
FIGURE 10.5 Strain diagram for Example 10.2.

In the following calculations, C, is the total compression in the concrete, C; is the total
compression in the compression steel, and T is the total tension in the tensile steel. Each of

these values is computed below.
The reader should note that C; is reduced by 0.85f_A; to account for concrete displaced

by the steel in compression.
a =(0.85)(14.40in.) = 12.24 in.
= (0.85)(12.24 in.) (14 in.) (4.0 ksi) = —582.62 k

Cec
— (60 ksi) (3.0 in.2) — (0.85)(3.0 in.) (4.0 ksi) = —169.8 k

Cs
TS

= (0.00148) (29,000 ksi) (3.0 in.2) = +128.76 k
By statics, P, and M,, are determined with reference to Figure 10.6, where the values of

C., C;, and T are shown.

V=0
—P,+169.8 k +582.62 k —128.76 k =0

P, =623.7k
¢P, = (0.65)(623.7 k) = 405.4 k

l M

T,=12876k C,=582.62k C,=169.8k

£
o
°
o
a .
ry= 6.12 in.
5.88 in.
2.50 in. —4 ’A—‘).SO in—s14=9 .50 in,*’ e—2.50 in.
+—12.00 in.—+{+—12.00 in — FIGURE 10.6 Internal column forces for
Example 10.2.
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Y M = 0 about Tensile Steel
(623.7 k) (9.50 in.) + M,, — (582.62 k) (15.38 in.) — (169.8 k) (19.00in.) = 0
M, = 6261.3 in-k = 521.8 ft-k

oM, = (0.65)(6261.3 in-k) = 4069.8 in-k = 339.2 ft-k

In this manner, a series of P, and M, values is determined to correspond with a strain
of —0.003 on the compression edge and varying strains on the far column edge. The resulting
values are plotted on a curve, as shown in Figure 10.8.

A few remarks are made here concerning the extreme points on this curve. One end of
the curve will correspond to the case where P, is at its maximum value and M,, is zero. For

this case, P, is determined as in Chapter 9 for the axially loaded column of Example 10.2.

P, =0.85f/(A, —A,) +A,f,
— (0.85) (4.0 ksi) (14 in. x 24 in. — 6.00 in.2) + (6.00 in.2) (60 ksi)
— 1482 k

On the other end of the curve, M, is determined for the case where P, is zero. This is
the procedure used for a doubly reinforced member as previously described in Chapter 5. For
the column of Example 10.2, M, is equal to 297 ft-k.

A column reaches its ultimate capacity when the concrete reaches a compressive strain
of 0.003. If the steel closest to the extreme tension side of the column reaches yield strain,
or even more when the concrete reaches a strain of 0.003, the column is said to be tension
controlled; otherwise, it is compression controlled. The transition point between these regions

Courtesy of EFCO.Corp.

Washington Redskins Stadium.
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0.00207
T\
2.50) in.— L— \l
0.00300

24 in. I FIGURE 10.7 Strain diagram for
balanced conditions.

is the balance point. In Chapter 3, the term balanced section was used in referring to a section
whose compression concrete strain reached 0.003 at the same time as the tensile steel reached
its yield strain at f,/E,. In a beam, this situation theoretically occurred when the steel percentage
equaled p,. A column can undergo a balanced failure no matter how much steel it has if it has
the right combination of moment and axial load.

For columns, the definition of balanced loading is the same as it was for beams—that
is, a column that has a strain of 0.003 on its compression side at the same time that its tensile
steel on the other side has a strain of f,,/E. Although it is easily possible to prevent a balanced
condition in beams by requiring that tensile steel strains be kept well above f,/E, such is
not the case for columns. Thus, for columns, it is not possible to prevent sudden compression
failures or balanced failures. For every column, there is a balanced loading situation where an
ultimate load, P,,, placed at an eccentricity, e, will produce a moment, M,,, at which time
the balanced strains will be reached simulataneously.

At the balanced condition, we have a strain of —0.003 on the compression edge of the
column and a strain of f,/29 x 10° ksi = 60 ksi/29 x 103 ksi = 0.00207 in the tensile steel.
This information is shown in Figure 10.7. The same procedure used in Example 10.2 is used
to find P, = 504.4 k and M, = 559.7 ft-k.

The curve for P, and M, for a particular column may be extended into the range where
P, becomes a tensile load. We can proceed in exactly the same fashion as we did when P, was
compressive. A set of strains can be assumed, and the usual statics equations can be written
and solved for P, and M,. Several different sets of strains were assumed for the column of
Figure 10.4, and then the values of P, and M, were determined. The results were plotted at
the bottom of Figure 10.8 and were connected with the dashed line labeled “tensile loads.”

P =1482k,M =0
o~ n

compression failure zone

P, =623.7k M, =5218 frk

compressive

loads \

tensile /'Pn =0, M, =297 frk n

loads >7
_ ”~

P, =5044k,M, =559.7ft-k
n bn

b

tension failure zone

axial

tension

- -

P =360k,M =0
n n

FIGURE 10.8 Interaction curve for the column of Figure 10.4.
Notice these are nominal values.
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Courtesy of EFCO Corp.

Round columns.

Because axial tension and bending are not very common for reinforced concrete columns,
the tensile load part of the curves is not shown in subsequent figures in this chapter. You will
note that the largest tensile value of P, will occur when the moment is zero. For that situation,
all of the column steel has yielded, and all of the concrete has cracked. Thus, P, will equal
the total steel area, A, times the yield stress. For the column of Figure 10.4

P, =A,f, = (6.0 in?)(60 ksi) = 360 k

On some occasions, members subject to axial load and bending have unsymmetrical
arrangements of reinforcing. Should this be the case, you must remember that eccentricity is
correctly measured from the plastic centroid of the section.

In this chapter, P, values were obtained only for rectangular tied columns. The same
theory could be used for round columns, but the mathematics would be somewhat complicated
because of the circular layout of the bars, and the calculations of distances would be rather
tedious. Several approximate methods have been developed that greatly simplify the mathe-
matics. Perhaps the best known of these is the one proposed by Charles Whitney, in which
equivalent rectangular columns are used to replace the circular ones.> This method gives results
that correspond quite closely with test results.

In Whitney’s method, the area of the equivalent column is made equal to the area
of the actual circular column, and its depth in the direction of bending is 0.80 times the
outside diameter of the real column. One-half the steel is assumed to be placed on one side
of the equivalent column and one-half on the other. The distance between these two areas
of steel is assumed to equal two-thirds of the diameter (D,) of a circle passing through the
center of the bars in the real column. These values are illustrated in Figure 10.9. Once the
equivalent column is established, the calculations for P, and M, are made as for rectangular
columns.

2 Whitney, Charles S., 1942, “Plastic Theory of Reinforced Concrete Design,” Transactions ASCE, 107, pp. 251-326.
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x e
e
e o o o sy
T 0.80h
2
v 3 Ds
\ i
e o o o
A
- h = L4
| { 0.804
actual circular column equivalent rectangular column

FIGURE 10.9 Replacing a circular column with an equivalent
rectangular one.

10.4 Use of Interaction Diagrams

We have seen that by statics, the values of P, and M, for a given column with a certain set of
strains can easily be determined. Preparing an interaction curve with a hand calculator for just
one column, however, is quite tedious. Imagine the work involved in a design situation where
various sizes, concrete strengths, and steel percentages need to be considered. Consequently,
designers resort almost completely to computer programs, computer-generated interaction
diagrams, or tables for their column calculations. The remainder of this chapter is concerned
primarily with computer-generated interaction diagrams such as the one in Figure 10.10.
As we have seen, such a diagram is drawn for a column as the load changes from one of a
pure axial nature through varying combinations of axial loads and moments and on to a pure
bending situation.

Interaction diagrams are useful for studying the strengths of columns with varying pro-
portions of loads and moments. Any combination of loading that falls inside the curve is
satisfactory, whereas any combination falling outside the curve represents failure.

If a column is loaded to failure with an axial load only, the failure will occur at point A
on the diagram (Figure 10.10). Moving out from point A on the curve, the axial load capacity
decreases as the proportion of bending moment increases. At the very bottom of the curve,
point C represents the bending strength of the member if it is subjected to moment only with
no axial load present. In between the extreme points A and C, the column fails because of
a combination of axial load and bending. Point B is called the balanced point and represents
the balanced loading case, where theoretically a compression failure and tensile yielding occur
simultaneously.

Refer to point D on the curve. The horizontal and vertical dashed lines to this point
indicate a particular combination of axial load and moment at which the column will fail.
Should a radial line be drawn from point O to the interaction curve at any point (as to D in
this case), it will represent a constant eccentricity of load, that is, a constant ratio of moment
to axial load.

You may be somewhat puzzled by the shape of the lower part of the curve from B to
C, where bending predominates. From A to B on the curve, the moment capacity of a section
increases as the axial load decreases, but just the opposite occurs from B to C. A little thought
on this point, however, shows that the result is quite logical after all. The part of the curve
from B to C represents the range of tensile failures. Any axial compressive load in that range
tends to reduce the stresses in the tensile bars, with the result that a larger moment can be
resisted.



100% axial load

compression controls region

——— axial load P,

tension zone
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pure bending strength of member

FIGURE 10.10 Column interaction diagram.
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Reinforced concrete columns.

10.4 Use of Interaction Diagrams
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FIGURE 10.11 Interaction curves for a rectangular
noon column with different sets of reinforcing bars.

In Figure 10.11, an interaction curve is drawn for the 14-in. x 24-in. column with six #9
bars considered in Section 10.3. If eight #9 bars had been used in the same dimension column,
another curve could be generated as shown in the figure; if ten #9 bars were used, still another
curve would result. The shape of the new diagrams would be the same as for the six #9 curve,
but the values of P, and M, would be larger.

10.5 Code Modifications of Column
Interaction Diagrams

If interaction curves for P, and M, values were prepared, they would be of the types shown in
Figures 10.10 and 10.11. To use such curves to obtain design values, they would have to have
three modifications made to them as specified in the code. These modifications are as follows:

(a) ACI Code 9.3.2 specifies strength reduction or ¢ factors (0.65 for tied columns and
0.75 for spiral columns) that must be multiplied by P, values. If a P, curve for a
particular column were multiplied by ¢, the result would be a curve something like the

ones shown in Figure 10.12.

(b) The second modification also refers to ¢ factors. The code specifies values of 0.65
and 0.75 for tied and spiral columns, respectively. Should a column have quite a large

theoretical or nominal curve

design curve = ¢ X nominal curve

FIGURE 10.12 Curves for P, and ¢P, for a
single column.
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moment and a very small axial load so that it falls on the lower part of the curve
between points B and C (see Figure 10.10), the use of these small ¢ values may be
a little unreasonable. For instance, for a member in pure bending (point C on the
same curve), the specified ¢ is 0.90, but if the same member has a very small axial
load added, ¢ would immediately fall to 0.65 or 0.75. Therefore, the code (9.3.2.2)
states that when members subject to axial load and bending have net tensile strains (e,)
between the limits for compression-controlled and tensile-controlled sections, they fall
in the transition zone for ¢. In this zone, it is permissible to increase ¢ linearly from
0.65 or 0.75 to 0.90 as ¢, increases from the compression-controlled limit to 0.005. In
this regard, the reader is again referred to Figure 3.5 in Chapter 3 where the transition
zone and the variation of ¢ values are clearly shown. This topic is continued in Section
10.10.

(¢) As described in Chapter 9, maximum permissible column loads were specified for
columns no matter how small their e values. As a result, the upper part of each design
interaction curve is shown as a horizontal line representing the appropriate value of

P, = QP, 1 for tied columns = 0.804[0.85f(A, — A,,) + f,A]
(ACI Equation 10-2)

P, = @P, 1 for spiral columns = 0.85¢[0.85f. (4, —A,,) + f,A]
(ACI Equation 10-1)

These formulas were developed to be approximately equivalent to loads applied with
eccentricities of 0.104 for tied columns and 0.054 for spiral columns.

Each of the three modifications described here is indicated on the design curve of
Figure 10.13. In Figure 10.13, the solid curved line represents P, and M,, whereas the dashed
curved line is P, and M,. The difference between the two curves is the ¢ factor. The two
curves would have the same shape if the ¢ factor did not vary. Above the radial line labeled

= =P, versus M,
~ = P

max

— P, versus M, ]
~ —&— applied forces P, and M,
axial — +=balanced case
load = === strain of 0.005

T — ~N
N

N
Above this radial line, ¢ = 0.65 N
(0.75 for spiral columns). .= - /

DN
-
,"’
.- - - Y&
AL pud
—

Below this radial line, ¢ = 0.90: — - moment
- =
-—

Between radial lines, ¢ varies from 0.90 to 0.65
(0.75 for spiral columns).

FIGURE 10.13 A column interaction curve adjusted for the three modifications
described in this section (10.5).
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“balanced case,” ¢ = 0.65 (0.75 for spirals). Below the other radial line, labeled “strain of
0.005,” ¢ = 0.9. It varies between the two values in between, and the P, versus M, curve
assumes a different shape.

10.6 Design and Analysis of Eccentrically Loaded
Columns Using Interaction Diagrams

If individual column interaction diagrams were prepared as described in the preceding sections,
it would be necessary to have a diagram for each different column cross section, for each dif-
ferent set of concrete and steel grades, and f