C++

Notes for Professionals

Chapter 47: std::string

ion 47.1 Tokenize

600+ pages

of professional hints and tricks

Disclaimer

Goa l KiCker.COm This is an unofficial free book created for educational purposes and is

. not affiliated with official C++ g_roup(? or company(s).
Free Progrommmg Books All trademarks and registered trademarks are
the property of their respective owners

(c) ketabton.com: The Digital Library

Contents

ADOUL ... bbb b bbb A e b b A bbb e bt b et b st b bbb aee 1
Chapter 1: Getting started With Ca+ ... 2
SYeTenile]a T I il 1] | Fo TRV o T [SRR 2
Y<Terile]a T A o] a a0 o T= 0] £ SR 3
Section 1.3: The standard C++ COMPIlIAtION PrOCESS ..vievuieereesieeiieeiierieesresiteeseesreeseesseesseesseesssesssesssessssesssessssessses 5
SY=Teru o) a1 K2 S ¥ o o [USRS 5
Section 1.5: Visibility of function prototypes and deClaratioNS ...ccceccceeeiceeenriee e erireesree e e esre e ssrne e e svae s srneesaveas 8
SECHON 1.6 PrEPIOCESSOr uuviiiiiieirieeriieessiteesiteessseessrseesssaeessseeesseesssssesssseessssessssssesssseessssessssseesssaeesssssesssesesssesssssessnsees 9
ChAPLEE 2: LILEIQAIS ...ttt sttt bbbt bbbt bbb a bbbt a bbb 11
SY=Tenio] o T2 i o] USRSt 11
NY<Terile]a I A (a1 (=Te 1=T ol 1 (= @ USRS 11
SECHON 2.3 tHUE tutiiiriieiiiet ittt estee sttt e sttt e s et e sbe e e sasaessbbaessstaesstsaesabaeesssaeessbaesnsseesnssaesnsseessseesssessseeensseeesssesensseessssees 12
Y Tenio]a N Sk e | FT= USSRt 13
Y=Terile]a 022 il a1 o) € TP 13
Chapter 3: operator PreCOAGNCE ...ttt bbb a e ae b ae b aeeas 14
Section 3.1: Logical && and || 0perators: SNOIM-CIFCUIL ..iiivivierierierieeeieeeeeeresesesesressessessessesesesseseessesessessessessessenne 14
NY=Terule]a NI A U ale TAUI @] o<1 (o] USSR 15
Section 3.3: ArthMEtIC OPEIATONS .uiiiiiecieicie ettt ettt ete e te e s te e teesbeestbe e teesbeesabe s saessaesasaensaessaeensasssessssessannes 15
Section 3.4: Logical AND aNd OR OPEIATOIS ..uivciiiiieiiieiieesiesiteesteeseessseesseessesssessseessesssesssessssesssessssssssesssesssesssessns 16
Chapter 4: Floating Point ArithmMeEtiC ..ot 17
Section 4.1: Floating Point NUMBDEIS Are WEINA ...cccueeiiciiiecieeeiieeceteeccte e etteestre e see e stee s eteesssteessstaesntessnsaessasaeasnses 17
Chapter 5: Bit OPEIrALOrS ...ttt bbbt b s baes 18
SeCtioN 5.1 | = DITWISE QR ..oitieieeieetecteete ettt et et e te et e s te et e sbe e b e s teetbeebeeabesbeessesbeessesbeessesseessebeessensesseensesssenseeseenes 18
Section 5.2: * - bitwise XOR (EXCIUSIVE OR) ..uiiiiiriiriiieiieiieeieesiesteeseessessseesseesseesseesseessesssessssesssessssssssesssassessses 18
SecCtion 5.3: & - DItWISE AND .uiiiieiiieeciie ettt eceeeste e ee e e estteestte s e beeesbeeesabaeasstaeesstaesseasanseassnsaesansesesssaeenstessnssasenssnssnes 20
Yoo A T Y (=1 Y011 GRS 20
YTt [o T o ol 4 [0 |2 L) 1L U 21
Chapter 6: Bit MANIPUIALION ...ttt bbbt 23
Section 6.1: Remove rghtmMOSt SET DT .uiiiiiiiiiieiciiecccie et rre e ste e e s e e e stbeesste e s baeessaeesnbaeesstaeessseennns 23
Yoo Al W Y=y de | I o USRS 23
SYclerile]aloYe Koo e 11 aTe o Il o] AR 23
NYelerile]alo X R @ al=Tol < 1aTe el o 11 SRR 23
Section 6.5 COUNTING DTS SET uiiiiiiiieiieiieeit ettt ettt e e e be e st e st e e baeesbe e beessseesbe e saessseessaesssesssesssaessseanses 24
Section 6.6: Check if an iNnteger is A POWEE OF 2 ittt e re e e sre e e tre e e stre e sbaeessaeesabaeesnreeesssaean 25
NYelerile]a N WA Y=y 4] e T @ o)1 (RO PRURPPE 25
Section 6.8: CIEANNG G DI iiiiiiiieiieccieree ettt sre s e e s e e st e e s be e saee e beesbaesateesbeessaessseesbeessaesnsessseesseesnseesseennes 25
Section 6.9: Changing the NTH DIt 1O X weivcieeiiiieiiiie et ecee e et e et eere e e rtee e serae e e beeesesaeesaseeesssaeessseessssasensseesnns 25
Section 6.10: Bit Manipulation Application: SMall 10 CAPITAl LETEEE ..iiiiiieiiiieeiiiee ettt srre e erere e svreessanee s 26
ChApter 7: Bit FI@IASo.oooiiee ettt bbbt bbbt bbbt 27
Section 7.1: Declaration N USOGE ..iiicieceeiieiiiieieestesiteesieesteesteestaeseessseessessssesssesssessssssssessssssssesssessssesssesssassssesnses 27
CRAPTLEE 8: AFTQUS ...ttt sttt bbbt bt a bt bbb b s bt b bt b s bbb bt s e bas 28
NYelauile]alts N RY-Nawe [V TaTiulo] 1ido L qle]n USSRt 28
Section 8.2: A fixed size raw array matrix (that is, a 2D rAW ArFAU) .eeeeeeeeecveeeeeiiireeeeeisreeeeesiisseeeessssseseessssssseesnssnes 29
Section 8.3: DYNAMICAIIY SIZEA FAW QITAY tivcveerrierrieiieesireeteesieesresiseesseessseesseesseessseessessssesssesssessssssssessssssssesssessssesssens 29
Section 8.4: Array size: type safe at COMPIIE TIME .uuiiiiieeiiiieciieeccee ettt e e erre e s sbe e e e sbae e sbae e ebeeesnraeeenreeenees 30

Section 8.5: Expanding dynamic size array by USING STAuVECTON civvviveieeeeiieeeeeeeeeeeesiireeeeeeeeeessssssssssrseeseeeeesssssnnns 31

(c) ketabton.com: The Digital Library

Section 8.6: A dynamic size matrix using std:vVector fOr STOrAQE ..iiiiviiiriieiciee et eee et e esre e aae e 32
ChAPLEr 9: ILEIALOIS ...ttt bbb bbb s bbbt bbbt s e 35
SECHON 9.1 OVEIVIEW tiitieiiitieeeiteesiiteesiteeesiteeesteeestaeessseesssteeasssessssesssseessasesssssesesssesssssesssssesssssesssssesesssesssssesssssessnseesnns 35
SECHON 9.2: VECLON IHEIATON tiiiiiiiiieeiiieeiiieeerreessteesstteessteeessteeesbaeesseeessseessssaesssseesssseesssssessssessssasesssseesssasenssaeessseesnns 38
Y=Terulo]a ST i fo | o X (=] e 1o SRR 38
SECHioN 9.4: REVEISE ITEIATOIS uviiiiieiiiieesiireeeieeesiteeesteesstteesstaessssreesbaeessaeesssasesssesssssessssesssseesssssessssesesssessssesensneans 39
SECHON 9.5: SIrEAM HHEIATONS tiutiiiiiieiiieeiiittesitee ettt ssteeesireessteeesbaeesbaesssraessssaessssessssasessssesssseesssseeessseesssseesssseesssneessns 40
Section 9.6: C I1eratOrS (POINTEIS) icvviieiiiciiieeieiiieeesseiiteeeesitreeeesetteessssssaeeesesstesessasssneessssssnsessssssssesssssseeessnssseesessnes 40
Section 9.7: Write your own generator-bACKEd IHEIATON iiiiiiieiieiiieieecieete et be e e e e e s beesae e e 41
Chapter 10: BASIC iNPUL/OULPUL TN CH4 ..o 43
Section 10.1: user input aNd StANAAId OULDUL .uiiiiiiciiiiieciecieesie sttt et sre e s aesteesbeesateebeesbaessseesteessaesnseensaessnenns 43
CRAPLEE T1: LOOPS ..ottt ettt a bbbttt a bt a bt a b b 44
Y<Tenile]a T R R le TaTo ToT o FY=To I e SR 44
SY=te ol I A Tl (ol o OSSR 46
SeCHiON T1.3: WHIIE IOOD cutiiitiiiiiiiecie sttt sttt s e st ste e ste et e e s bae st e e beesbaesate e baesssesaseassaessseanseessaesaseessassseesnsenssennns 48
SeCtion 11.4: DO-WHIIE IO wuiiiiiiieiiieeiieeeitiee sttt e ertte e steeestteeserteesssteesbteeesteessbeeesssaeesssaeasssesesssesesstesanstesenstesssenesssenenne 49
Section 11.5: Loop Control statements : Break and CONTINUEuivcieeiiieeiieiieerreereeieeseeereesieessnesveesssesseessassssessses 50
Section 11.6: Declaration of variables in CONAITIONS ..iiiiiiiiiiciieiiiee et eeteeesrreeeerreeesreeerreeesereeessseeessseessseesnns 51
Section 11.7: RANQGE-fOr OVEr O SUD-FANGE .iiiciiiiiiieiciie st cetee ettt ertte e s ee e s te e e svae s sateesssseessteesnsteesstessnsaeesssassnns 52
CRAPLEE 12: FUl@ 1/ ..ottt sttt st ssassaesesansans 54
Section 12.1: WIHING 10 G FIlE vviiiiiiieieceeteteee ettt et s e et e e ba e s b e sabe e s st e sabe e baesssesnbeesseesnseensennnns 54
Section 12.2: OPENING G TIlE tiiiiiiiciee ettt ettt rree st e erre e esreeestre e e tbeeessbeesasaeesstaeessasesssasesssaeerssesesssasessseesnsseesssseennes 54
NYlaile]al VA I {<ToTo [TaTo Ml a ale | USRS 55
Section 12.4: OPENING MOGES .icuiiirieireeiieeireeiteesreeiteeseesseesseessaesseasseesssessseesssessseessessssessseessessssesssessssssssesssessssesssessses 57
Section 12.5: Reading an ASCII file intO O STAUSIING wueviiieeiiiieiiee et creeerreeesreeertreeestreessreesbeeessaeesasaeesaraeesaseeenes 58
Section 12.6: Writing files with NnoNn-standard 10CAIE SETHNGS .vviiiicvieiiiiiiieeeeecreee et e eerre e e eerabreeeeenaraeeeens 59
Section 12.7: Checking end of file inside a loop condition, bad practice?iiiveecieeniecieeree e 60
Section 12.8: FIUSNING O SEFEOM wiiiiiiiicieeecieeeeieeesteeesteeeetteeestaeeseseeessaeessaeessbesesssaeasssesasssessasseessseesssaeesssseessseeesseeaes 61
Section 12.9: Reading a file iNtO O CONTAINEL ..uviiiiiiiiieeiciee sttt sstee e sre e ssre e svae e ssbae s sbaessabeeesataessteessseesssnesnes 61
Section 12.10: COPUING A FIlE riiiiiiieeiece ettt sttt st e e te e st e e s ae e be e s baesate e beessteesteesbaesssesnseessaesasaesaesseeans 62
SY<Tenilo]a T 1A RN @ oY T o I 1] U 62
Section 12.12: Reading a ‘struct’ from a formatted teXE il ...vviiiiiiiiieee e 63
ChApPter 13: Ca+ STFEAMIS ..ottt bbb bbb bbbt b st b e b aeeas 65
SECHON T3.1: SIINQ SIFEAMS tiiuiiiiiieeiiieeritte sttt e siee e sttt e sbeeesteeessbeesssseessssaesssseesssseesssssesssesesssaeessseessssaesssseesnsassssseesns 65
Section 13.2: Printing collections With IOSTFEAM ..iiiciiiiiiee ettt s e e s be e e e e e e s rbe e st e e e sateesnreesnnes 66
Chapter 14: Stredm MANIPUIALOISccocoviiiceeee ettt b s bs 68
Section 14.1: StredmM MANIPUIGEONS .iiiiiiiieeiie it esee et eseeeeteesteestaesrteesbeesseeeteesbeesseessteessaesasesnsesssaesasesssessssesssesnses 68
Section 14.2: Output StredM MANIPUIGTOIS .iiiiiiiiiicieeiiesieecieeste st esteeseesreesteesaeesteesseesteesseessaesssessseesseessesssessnsenns 73
Section 14.3: INput Stredm MANIPDUIGLONS .uiiiiiieiiieieiiee et e et eerte e ertreestre e s e e e steeestbaesssteeessseesssessnsesesssesssesesnseeesnes 75
Chapter 15: FIOW CONEIOI ...ttt bbbt 77
SECHON T5. 0. CASE tiuttiiiiureeiiieesite e sttt e sieeesteeesbeesssbaeessseesbseessbaeessssaessbaeesstsessssaeasstaeesssessnssesenssessssseesnssesssseeesssenesssneensn 77
SECHON 1520 SWITCN 1ottt ettt ettt sttt s e st e e s be e st e e teesbe e saeesste e beesaeeesbeesseesaseasseesseesasaessaesssessseesseessseensennses 77
Y<Tenilo]a T oY i ol (ol a USSR 77
SECHON 1541 TNIOW ttiitiiiiieitie st ettt ettt e st e e e e e st eeste e beestaeeateesbaesabeeataassaesateensaessaesasaessaesssessseeteesrseessesssaesnsessenss 78
SECHION 15.5: EFAUIT .eiiiieetiece ettt e st e e s be e st e e te e s b aesate e baesbaesateessaesseeenseebaesaseesseesseesnseeseees 79
Y=Tenio]a T oo 0 SR 79
SECHION 15,70 I reeeteeete ettt ettt ettt s e et e e te e st e e te e beesate e teesbaesabeeataesbaesaseeateessaeeasaensaesabeanteesaeenseenteestaeenteetaearaeans 79
SECHON T5.8: EISE cutiieiiieiciee ettt e ettt e ettt e ettt e e ttee e s beeesbeeestbaeertbeeabaaeesseeesbeeesssaeesabasarssesesssaeassesassasessseesnseeeansaeessseeennres 80

Section 15.9: ConditioNAl StrUCTUIES: If, IfLEISE ovviiiiiiieeceteeeeeee e e e e e e e e s s babr b e e e e eeeeeeesssanns 80

(c) ketabton.com: The Digital Library

SY=Tor 1T a1 T [e T 1 o Y USRS 81
Section 15.11: Jump statements : break, continUe, OTO, EXIT ivviiiciiiiiieiiiee et sree e e e sere e ssa e e eeees 81
SECHON T5.02: FEIUIMN tiiiiieiieieeiiiee sttt esteesstteesstreesbeeessbaeesssaesssseessssaesssseesseeesssseesssesesssesesssesesssessssseesssseesssseessseesssseeenssns 84
Chapter 16: MetaProgramMIMUNG ..ottt bbbttt sas s s et s s aens 86
NYelaile]ali [N @e] ol¥] o kilaTe T ot (o TuTe | KSR 86
Section 16.2: Iterating over a PAramMEter PACK ..iiiiiiiiiiieiieeiiieeerieesrreessreessireesseessstaessbeessssaesssseessssessnssessssesssees 88
Section 16.3: Iterating with Std:iiNtEgEr SEQUENCE ...iiiiieciiiriirieeieeste ettt esreese e s tessseessaesbeessaesssessbaessaessseansens 89
NYelauile]alIoXZ 5 Kool B Yo Te (el a1l ale USRS 90
Section 16.5: Detect Whether EXpression iS VAliiiiecieccieeieeciecieesiee e esteesieesteesveesteesreessaesssesseessessssessesssasans 90
SECHION T6.6: [f-TNEN-EISE .uiiriiiciiiiiieieeiteste ettt et st e st e e e st e et e e ba e s s be e beesseeesbeesbaessseasbeeseeasseessaesssessseeseesssesnses 92
Section 16.7: Manual distinction of types when given anU tUPE T coeeeeeciieiciieeciee e ecieeerire e svee e svee e sveeesreeesanee s 92
Section 16.8: Calculating power with C++11 (AN hIGNEE) coviviiiiiriiiirteienteneee et sr e ssestessesbesssenes 93
Section 16.9: Generic Min/Max with varioble arguMENT COUNT ...eivvieeeriieeiicrece ettt et ere e v ens 94
Chapter 17: CONSE KEUWOIA ..ottt bbb bbbt bas 95
Section 17.1: Avoiding duplication of code in const and non-const getter Methodsccccveevcieecceecciee e, 95
Section 17.2: Const MEMDET FUNCHIONS wiiiiiiiiiiiiieiieiteste et esitesteesteesaesteeteessaesbeebeessbessse e saessseessaesssesssaasseesssenseen 96
Section 17.3: CoNSt I0CAI VAIGDIES ..uiiiiiiiieiieeeciie ettt etee e stee s bee e beeestbeeertbesebseessseesabesesssesessbeserssesessreen 97
SECtiON 17.4: CONSE POINTEIS tiiiiutrieiiiiiiteeieiitreeessiireeeesiteeeesssetaeessesstaeeessasseaesessssseesessssaeessssssseesssssssaeessnsseeesssssssesessnns 97
Chapter 18: MULADIE KEUWOIA ...ttt bttt 99
NYterilolalitsi Miaa TV to] o1I=HToTanl oo o OSSP 99
Section 18.2: non-static class MEMBEr MOAITIEr ..iiiiiiiiiiieccee et e e e e tre e sstre e s e e e sbaeesabaeesaraeessraeenes 99
Chapter 19: Friend KEUWOIA ...ttt bbb bbb bbb 101
NY<Tenife]al Ao Rl sl aT=Talo U] aTox 10T [USSR 101
Section 19.2: FrieNd METNOA ..uiiiiiciiciecieecterte ettt st re e s e et e et a e st b e et e e s saeesbeesbaassseessaesseessseessaesseesssennses 102
SYeTenile]a T A Al 4 =T aTe [l [1 SRS 102
Chapter 20: TYUPE KEUWOIAS ..ottt b sttt b s 104
Y=Tenile]a 070 ol Ty TR 104
SECHON 20.20 ENUIML tiiiiiiiiittisieeesreeesteesstteesstseesssseesiseeessseeessseessssessssssssssseesssesesssseesssesesssseesseessssessssessssseessasesssaeessn 105
SY=Tenio]a T2 O TN xRS 106
SECHON 20.4: UNHON cutviiiiiieeiitieeiitieesiteeesiteeesteesssteeessteesssseessssesssseeassesesssesssssesesssssssssesesssesssssesssssesesssessnssessssenessseessssens 106
Chapter 21: BASIC TYUPE KEUWOIAS ..ottt bbbt 108
Y=Teuu o1 N2 N ol Yo oSO RUPURSUPRRPRRINt 108
SY=Tenilo]a 2 Yol a Yo Tt [Y TSRS 108
Y=Terilo]a T2 I H el ale T 7 U PS 108
SECHON 2141 INT iiieciiiieiteeeite ettt sttt ettt e srtte e sttt e sbeeessbaeesateesssbaesssaesssseessseaesssseessseeenssesssseesnssessnsseessssessssseenssseesssaeenns 108
SY=Tenio]a oA oY o1l R 108
Y=t o T Yol o TS (USSP 109
Y=o o I [T | OO SRR 109
YeTenile]a AR e (o TU] o] SRS 109
SY=te o T2A RS loT a T USRS 109
Y=t e u o N2 N [0 Y a T T OO 110
SY=Tenilo]a 71 I I oY T SRR 110
Chapter 22: Variable Declaration KEUWOIS ..ot sssns 111
SECHION 221 AECHUIDE uiieiieciecieectee ettt et ettt e e e s tee s tae s teestaesate e teesbaessseassaesssesnsaesseessseenseassaesstessseesseessseansennes 111
SECHON 22.2: CONSE wrtiiiiiieiieeiiteeeitee sttt e sttt e sreeesibeessateesssbeesbteesssseesabaeesssaeesasaesnssaessssaesssessssseessssessssesenssneesssasensseeens 111
SECHON 22.3: VOIATIIE uviiiiiiiieiie ittt ettt e ettt e ettt eestee e stee e st te e e s atee st tee s beeeeasteeeabasesasaeeasbasassteeeassaesstasenssesssseesnsanesseessnes 112
SECHION 22,41 SIGNEA .uiiiciieeiieeieeit et erteesre et eeste e st eebe e taeetbe e baessseesseassseasseesbeasseassaessaassseenseansaeasseasseessseasseensaesstennses 112
SECHON 22.5: UNSIANEA .uviiiiiiieiiteeiiireeesiteeesireeestreeestteeetreesssaeessteeessasesssesasssssesssaeesssesessssessssessssssesssseesssesesssseessesensses 112

CRAPLEE 23: KEUWONAS ...t e et e et e et et e e et et e e ea et et e e e et eseees et eseseneateseseaeateseeeneaseseneeaseeenens 114

(c) ketabton.com: The Digital Library

SY=Tot 1T a 1072 T4 e 1Y o PR SRN 114
Section 23.2: DIffErent KEUWOIAS .iiiiiiiiiieiiieeiiiee et esttessieeesteessite s ssetesssbaessbaeesssaessssaessssasssssessnssessnssessssesassessnnens 114
SECHON 23.3: TUDENGIMIE tiiuvveiiiieeiiiireesireeenreeesiseesssreessseesssseesssasesssseesssesesssseessssessssessssseessssessssasessssessssasesssaessssasssssesens 118
YeTenilo] T T R =) d o) Lo | (U 119
YcTerile]a I o N T4 =Te) PRSP 119
SECHON 23.6: NOEXCEDT tuvreiriiiieriiieeritteriiteesieeesiteeesreessiteesssteesssseesssaeessssessssesessssessseesssseessssessssseesssseessssessssssesssseesssans 120
Chapter 24: Returning several values from a fUNCLIONcccooooiiiiecceceee e 122
NY<Tenile]a T2 N R U IS TaTe IR o a1 U] o) L= OSSPSR 122
Section 24.2: Structured BINAINGS .vieieeicieeiieesieeieesieesiteeiteesteesteesteesssesseessesssesssseessessssessesssessssesssesssessssesssessssssssesns 123
SECHON 24.3: USING STIUCT .eviiiiiieiiiiieiiieeniiteesiteeesreessteesssseesssseesssseessseesssseessseesssseessssasssssessssssessssessssssesssneesssasssssseens 124
Section 24.4: UsSiNg OUIPUL PAFGMETEIS uviiiiiiciiiee ettt sttt essctree e s sseitee s s e sbvae e s ssaaaeesssnseaessssnseaessssasenesssssssseeesns 125
Section 24.5: Using a FUNCtion ObJeCt CONSUMIET ...iiiiiiiiieiiieiieeieesieesitesteesieesssesssesssesssessessssessessssssssssssessssesses 126
SeCtion 24.6: USING STAUDAIN uiiiiireiieiiesieeiieeseesteesteesseesiseesseessaesseesseesssesssesssessssesssesssesssesssesssessssesssessssesssesssassseans 127
Section 24.7: USING STALAIMAU wiiivieeiiieeeiieeeiieesiteeessteeesteessttesessaeessstesasesesssssesssesesssssesssesssssesssssessssssssssesssssesssssessnsens 127
Section 24.8: USING OUIPUL IEEIATON tiiiiiiiiiiiiiiiieeiiiiieeeesiiteeesssiteeeessireeesesaraeessssssseeesssssseeessssssaessssssssasssssssseesssssnes 127
Section 24.9: USING SEAIVECEON wiiiiiiieiiiieiiiteeecireecrree et e esteeerteeeertaeesbeeesbaeesabeeesssaeesssaessssesesssesssessssesesssasessesesreeans 128
Chapter 25: POIYMOIPRISIN ..ottt 129
Nelailela BN RIBIS ila oW olo) [V]anTe]s o] allellel [0 [T =) - RS 129
Section 25.2: SAfE AOWNCASTING wiivieiiieiieiiieiieste et ereestesrteesteesaeeteestaessesteessaessseesaesssesssesssessssessessseesssesssessseesns 130
Section 25.3: PolymorphiSm & DESIIUCTONS .uuiiiiiiieeiieeeririeeriteeesreeesreeestreesiteeesbeeesesaeessseeessesesssesesssessssssssssseesssseens 131
Chapter 26: REFEIrENCES ...ttt bbbt bbb 133
NYelaile]a W AN REB Y ilal ale Mo A=) (= a=] 0 Lol USRS 133
Chapter 27: Value and Reference SEMANLICS ... 134
Section 27.0: DETINITIONS 1iiiiiciiiieiieecieeste ettt ste et es e e s te e teesteesteeteesbaessteesbeessaeessaassaesssesssaeseesssessteesseesssessseesseenns 134
Section 27.2: Deep copying aNd MOVE SUDDROIT .ueiiiieeiiieeiiieesireeesireeesseeessseeesseeesssseessesesssseesssesssssssesssssssssessnsens 134
Chapter 28: C++ function "call by value” vs. "call by reference”eevceeeecnnenne, 138
NYeTenile]a o2 s N RN @e |1 oTU LYo | U] OSSR 138
Chapter 29: COpYiNg VS ASSIGNMENTc.ccooeiiiieieiee ettt sssns 140
Section 29.1: ASSINMENT OPEIALON .uiiiiiieiiiiterireerieeesiteesieeesreessreesssreesssaeesssseessseeessssessssesssssessssseessssessssssesssseesne 140
Section 29.2: COPY CONSIIUCTON wiiiiiiiiieeeiiiiieeeeeeiteeeeeeiereeseesstreessesstaeeessssseeesessssseesssasseaesassssesessassssessssssensessssssenessns 140
Section 29.3: Copy Constructor Vs Assignment CONSIIUCION ..uuuiiiiiiiiieiiiiieiiiiiiieeeeeeeeeeeeeeecvrrseeeseesseessssesnnssssnens 141
CRAPLEE 30: POINTEIS ...ttt ettt sttt a st ettt s s sast et et es s anantetesnes 143
Section 30.1: POINtEr OPEIATIONS ivviiiicieeirieeiiieessteesieeessieeesireeesireeesseessssessssssesssseessssesssssesssssesssssessssasssssasesssesssssees 143
YeTerile] a0 1A alo) a1 =Tul oY K1 ol OSSPSR 143
NYeleorile]a N6 10 Nl ae]Ta) (=Tl A a1 a0 aT=) 4o USSR 145
Chapter 31: POINters t0 MEMDEIS ...ttt 147
Section 31.1: Pointers to static Member TUNCHIONS ..iiiiiiireeiieeciee e eeree e esreeesreeerreeestreeesssesessseesssessnses 147
Section 31.2: Pointers to member TUNCHIONS iiciiiiiieicieecieeeeiee ettt ectre e cree e s tee e steeesate e e srtaesnteesbeeesnsaeesnsaeennses 147
Section 31.3: Pointers to MemBEr VAMGDIEScciiiiieciieiiiecieeie et et eseeereesteesaeete e saessseeseesseessseeseessseesseenseens 148
Section 31.4: Pointers to static MEMBDEr VANADIESuiiiiiiiieeecciee ettt erreeertreeertaeestre e ebeeesbaessabaeesareeens 148
Chapter 32: The ThiS POINLEI ...ttt sttt 150
YeTenilo]a Ty H d al SN oY 01 =T USSR 150
Section 32.2: Using the this Pointer to ACCess MemMbEr DOt ...cciiiveevieeieeiieeteeseesreereesteesreesteesteesaeesreessnesseens 152
Section 32.3: Using the this Pointer to Differentiate Between Member Data and Parameterscccceeveeennee. 152
Section 32.4: this Pointer CV-QUUAITIEIS ..uiiiiieieiiiiciieeecieeecieeerteeeste e ssteessbeeesstae s sbeessteeesstaesstessnssessseessnsesssnsesennns 153
Section 32.5: this Pointer Ref-QUAITIEIS .iiciiiiiiciiiiiecie ettt ettt et este e s aesteesteesrae e e e sbeesraessteesbaesnsesnsasssnesnsenns 156
Chapter 33: SMArt POINTEIS ...ttt bbb bbb bbb aee 158
Section 33.1: Unique ownership (StAiUNIGUE DTN ciiivcieeiienieeiieereesieesteesieesreesteesaesseesseeseseesseessaesssesnsessssssnsesssns 158

Section 33.2: Sharing ownership (STAZSNAIEA TN oo e e e e e e e e e e s ssbsbbbrereeeeeeeseens 159

(c) ketabton.com: The Digital Library

Section 33.3: Sharing with temporary ownership (StAdiWeaK DI wuviicieeicieeeciee e ecree e erre e esrre e eraeesreee e 161
Section 33.4: Using custom deleters to create a wrapper to a CIinterface ..ovinieiiivee e esieeenn 163
Section 33.5: Unique ownership without move semantics (QULO P coeiicieeceeiieeiecseecte et 164
Section 33.6: Casting std:shared P POINTELS .uiiiiiiieicieeiiiee e e esre e ecre e e rire e e rtre e sbeeesreeessseesrnteesssseesseeesnseeennses 166
Section 33.7: Writing a smMart POINTEI: VAIUE PIE ciiiiiiiieeiiieeiiteessreesieeessieessteeessveesssaesssssessssaessssessssesssssnsesssasanns 166
Section 33.8: Getting a shared ptr referring 10 thiS ..iiciiiiiiiicicecce e s s ee e 168
Chapter 34: CIASSES/SIIUCIUIES ...t 170
SECtION 34.1: CIASS DASICS uvervveerrrerreesieerueriieeseesiuessteesseessesssessseessesssessssessesssessssesssesssessssesssesssessssesssesssassssesssesssesns 170
Section 34.2: FiNAl ClASSES ANA SEFUCES .uviiciiiiieiieeiieeieecteeiteeseeeteesteesttessteestaesssesseessaessseeseessessssesssessssessesssessseenns 170
Section 34.3: ACCESS SPECITIEIS .uiiiiiiiiiiieicieiee ettt ettt ste e s e e st e e beesate e beesbaesateebeesbeesaseabeesseesnseesseesnseans 171
SECHON 34.4: INNEIMTANCE wiiiiiieieiiee et eeite e etee st e e e te e e stte e sbeeeeteeesabaeessteeesssaeesteeasaseeseeesnsasasntasesssasasstesansenssnssessnsens 172
SeCtioN 34.5: FrIENASNID cveiiiiiciiiitieiie et eseeete e steesteesteesteestaeste e beesraesateesbaesraesaseesaesssesssesssaesssessessseesaseesseesseesssennses 174
Section 34.6: VIrtUGI INNEITANCE wiiviiiiiiiciieiierieesieest e st et estesteeste e saaeeteesbeessseebeesseesabeesseessseesseanseesssessseesssesssennsees 175
Section 34.7: Private inheritance: restricting base class iNterfaCe ...iiuviiiiiiiiieeeiiee et 176
Section 34.8: ACCESSING ClASS MEMIDES ..viiiuiieciieiieiieecieesteste et esteesteesteestaesteebeessaessaesseesssesseesseesssesssesssaesnsanns 177
Section 34.9: Member TUPES AN AlIGSES cicviiiiirireerieriieeiteesiesiseeseesseesseesseesseesseessesssesssessssssssessssesssesssesssessssessses 178
Section 34.10: Nested CIASSES/SITUCTUIES ..iiuiirivrierirrerrereeerreeeseereeseeseeseeseeseesessessessessessessessensessessessessessesssssssessessens 182
Section 3411 UNNAMEA SEIUCT/CIASS .viiiiriireerisriirestestesiereseseseeseeseeseeseeseeseeseesessessessessessessessessessensessessessessesseseesenns 186
Section 34.12: StAtiC ClASS MEMIDEIS .iiiiiieiiieecieeciee e eee et eerte e e sreeetreeebaeesbeeesabaeesssesessraesssessssseesnssessnsesensres 187
Section 34.13: MUItIPIE INNEMTANCE .uiiiiiieicieeetee ettt rre e s rtre e sbr e e s bae e sbaeesbaeesabaeessteeesstaesssesesseeessseesnsens 191
Section 34.14: Non-static Member fUNCHIONSiiviiiiiiiieiiecie ettt ettt erve e se e sre e ste e e e s ae e be e sraessaeesbeessnesnnas 192
Chapter 35: FUNCLION OVErlIOAAINGccooviiiiceect ettt bttt 195
Section 35.1: What is FUNCtion OVErOAING? ...vveiiiieeeiieieeiieeecreeerteeesireessrreeesraeeeteeesesaeesssesssssessssesssssesssessnsesennnes 195
Section 35.2: Return Type in FUNCtion OVErOAAING .iiiiieeeicieeeiieeiiieeciieessiteessireesssneesvaeesssnessssesssssnsssssssssssessssenes 196
Section 35.3: Member Function cv-qualifier OVErloadiNg ...ccecceeceeeiesiieerieeseesrieesieeseesreesreesseesseesseesssesssesssessnns 196
Chapter 36: Operator OVErlOAAING ...ttt bbbt b e 199
Section 36.1: ArItNMETIC OPEITIOIS wuiiiiiiieiciieeiieeeceeesteeerreeerre e e ere e s rtreestaeesbeeesteeessbeeestasessseeesseessseesnssessnseeessaes 199
Section 36.2: Array SUDSCIIDT OPEIATON uiiiiciieiiieeesieeesieeeiteeesteesirreesssseeseseessseeesssasssssesesssesssssessssesssssesssssassssseeens 200
Section 36.3: CONVEISION OPEIALOIS ..uiiiriieerrireerrreerieeessiaeesireeesiseesssseessseessaeesssseesssesssssseesssasssssesssssessssessssssssssseesn 201
Section 36.4: Complex NUMDErS REVISITEA ...uiiiiiiiiiiieciiee et ecie e cee st e sre e erte e e tr e e sbte e esbaeessaeesabaeesssaeessteeesnseeens 202
NYelaife]alcTeNoul e Taal=Te Mol o= o (o] TP 206
SECHON 36.6: UNAIY OPEIALONS tiiviieirreeiiieeesiteessiteessteessseeessseeesssseesssessssseeesseesssseesssssesssseesssasessssessssesssssasssssesssssaesss 208
Section 36.7: COMPArISON OPEITTONS icuvreerieiirireeeririreeeseitreeeesasreesessssseesssssssesesssssssessssssssesssssssssesssssasesssssssessssssnees 209
Section 36.8: ASSIGNMENT OPEIALON .uiiiiiiieiiiiieeiireeiieeesieeesiteeesreeesseesssreesssaesssssessssesssssssesssesssssesssssessssseessssessssessnne 210
Section 36.9: FUNCHON COll OPEITLON wiiiiiiiiiiiiiiieeste et et e ste et e st e steesteesbaessteesbeessaessteesbeessseesseessessssesseesseesssesssennns 211
Section 36.10: BitWiSE NOT OPEIAION wiiiiiiiiieeiiiiiiteeeeiiteeeeserteeeessitteeeessrreeesesseneessssssaeesssssssessssssseeesssssssnsesssssssnessns 211
Section 36.11: Bit Shift OPErAtOrs fOr 1/Q ..iiiiiieiiiiierieeiriereereeesress et eses et esseeeseeseereereebessessessessensessessensensessersessens 212
Chapter 37: Function Template Overloading ... 213
Section 37.1: What is a valid function template overloading?cceeeciveerieeerireeerreeerree e srereeereeessraeesreeesreeens 213
Chapter 38: Virtual Member FUNCLIONS ...t 214
Section 38.1: FiNAl VIrtual fUNCHIONS ..uiiiiiiiciieiciee ettt ste s et e e tre e e be e e s atee s ssteesnteesbaeesabaeesnsesesnsassansessnsens 214
Section 38.2: Using override with virtudl in C++11 aNd IGtEE .viiiiiiiieciiecie ettt ettt sve e saeere e 214
Section 38.3: Virtual vs non-virtual Member fUNCHIONS ..iciviiiiieeeieeciie e ccree e erreeesreeerareeertreesraeesseeesraeenans 215
Section 38.4: Behaviour of virtual functions in constructors and deStrUCIOrS ...iiccieevcieeecieeecieeeriee e svee e 216
Section 38.5: PUre VIrtUdl fUNCHIONS .iuiiiciiiiiiciieieecte sttt ettt s et e et e s v e ste e s taesabe e teesasessseansnesssesnseessseenseenses 217
Chapter 39: INliN@ FUNCLIONS ..ot bbb 220
Section 39.1: Non-member inline function definitioN ...cviccveeciieeiiie et e e e e re e esareeesareeessreeenes 220
Section 39.2: Member inliN€ fUNCHIONS .iiuiiiicieiiiieeiiieesiieesiteesiteeestreesbeesssteesssteesbeasesbseessaessssesssssesesssesenssesenssnssnns 220
Section 39.3: What is function iNlINING? ..ceeceeecieieeiie ettt eseesressteesteesteesteesraessreesbeessaessseeseesssessseessessssesnses 220

Section 39.4: Non-member inline fuNCtion deCIOrOTION ...eeeeviviiiiiiiiiiieiiereeeeeeeee e e e e e e e e s e s ssarrrr e eeeeeeeas 221

(c) ketabton.com: The Digital Library

Chapter 40: Special Member FUNCLIONS ...ttt 222
Section 40.1: DEfAUIT CONSIIUCTON wiiiiiiiiiiieiiieeesitee et e ecreeeetteesteeesereeestteeessteeessseessseassseessaeesnseeesssessasseessssesensseesnns 222
SECHON 40.2: DESIIUCTON titiiiiiieieiiree sttt esiteeesiteeestteeessteesssteessbaeestaeessbasesssaeesssesssssesssssessnssessssassssssesassesesssesssssesessseeens 224
Section 40.3: COPY AN SWOD wiiveecreereerieeireeseesiteesseesaesseesseesssssssesssessssesssesssesssesssessssssssesssessssssssesssessssesssesssessssesns 225
Section 40.4: IMPIiCit MOVE AN COPU .rreererreerirreerireeeritreesireeesteeesseesssseesssseesssssesssesesssesesssssesssesssssesssssesssssesssssessssens 227

Chapter 41: Non-Static Member FUNCLIONS ... 228
Section 41.1: Non-static Member FUNCHIONS ..iiiviiiiieiiiieiciee st sstee e e ssveesssvtessveessteesssbasssssesssssessnssessssnessssesnnns 228
Section 41.2: ENCAPSUIGTION wiiviiiieiiiiiiieestesteeiteesiteeiteesteessseesteeseaessseesseesssessseesseesssassseesssesssesssesssssessesssesssseesseessessnses 229
Section 41.3: Name HidiNg & IMPOIMTING wievveeeiieeiiieeeiieeeieeeeiteeesieeesteeessseesesseessseessseeesssesssssesesssesssssessssssssnseesssees 229
Section 41.4: Virtual Member FUNCHIONS .uviiiiiiiiiiiiiiieeiieeesieeesreessireesseseessssessssaesssssessssesesssnsssssesssssnssssssssssssssssaness 231
SECHON 41.5: CONSE COIMECINESS .iiiitiiiriiitiriiteeniiteerireeesteeesteesstbeesssteesssseesssteesssseessaeessssesssseesssseesssseesssseesssseessssessssens 233

Chapter 42: Constant class member fUNCLIONS ... 235
Section 42.1: constant MEMBEr FUNCHION uviiiiiieiiiieccie ettt ere et e e s te e e e be e e st e e e eraeessteesbeeesaseeeensnas 235

Chapter 43: CH++ CONLAINEGIS ..ottt bbb bbbt s s b e 236
Section 43.1: C++ ContaiNers FIOWCNAIT ..uiiiiiiiiiiiieiticie ettt et e e re e ve e s aesbe e beesaeebeesaaessseesbaessnesnseenses 236

Chapter 44: NAMESPACESoccoieviieeiieteiee ettt bbbt bbb s bbb b a et b a e b st s anes 237
Section 44.1: What re NOMESPDUCES? .uiiviiicieiriesieeiieeseesteesieesaessseesseesssessesssessssssssesssesssseessesssessssesssesssesssesssassns 237
Section 44.2: Argument Dependent LOOKUD .iiiciiiiiieeiiiieeeiieeeiieeeitreesteeesteeessteeesasesesssesssssessnsesessesssssesesssesssssasanns 238
Section 44.3: EXteNdiNG NAMESDUCES ...uveecieeieeiiieesieesteeteesteesteesteessaessesssessseesssesssessssesssesssessssssssesssessssesssessssssssesns 239
Section 44.4: USING QIFECHIVE .viiiieiriieiieeiiesitscteeste st e st e siaeeteesteesaeebeesseessseeseesssassbeesseessseasseessesassessseessseensessseesnses 239
Section 44.5: MAKING NAMESPACES .eiiccueeiiiieeeiireeiieeeiieeesteeessteessseeessseessssesesssssesssesesssesesssesssssesesssessnssessssessssssessssens 240
Section 44.6: UNnamed/anoNymoUS NAMESDUCES ..ecvevverrerrersereersersereereereeeesessessessessessessessessessersessessessesessssessesses 241
Section 44.7. Compact Nested NAMESPDACES .ecccvveerirererireeerireeerreeesreeeireeesteeessseeesssesesssesesssesesssssesssesssssessssssesssasanns 241
NYelaile]aR:2: RSN\ oaal=1s] ol lor=Te | Il 1y SRR 241
Section 44.9: INHINE NAMESPUCE ..icuviecieerieesreeiteesreeiteesteesseeseesseessseasseesssesssessseesssessseesseesssesssssssssssseessessssesssesssessnes 242
Section 44.10: AliasSing O lONQ NAMESDUCE ..uveieireeeeireeerireeerreeerireeesreesssseesssesesssaeesssesesssesessssessssesssssssssssessssssesssssesnns 244
Section 44.11: Alias DeClAratioN SCOPE viiiciiiiiieieiiieeerieeeiieeesteesireessteeesteeesssaessssesesssaessssesssssesssesssssesesssesssssessnsens 244

(@gTe] o] (=T - ST m [=1o (o (=] all a1 (== 246
Section 45.1: BASIC EXAMIPIE .uiiiiiiciiiiieiiescieesteeste et esteesteeteestaesteesteesaaesateesbaesssesssaessassssessseessassssesssessssessesssessssenns 246
NYelaile]a Rz re WAl K=Tan] ol lo L (=Tl a Il m [=To o [T all 11 R 247

Chapter 46: UsSing deCIArQtiON ..ottt bbb 248
Section 46.1: Importing names individually from a NAMESPDACE ..ccvuveeeieeiirieeeeiiireeeeerireeeeesrreeeeeeenreeeeesessreeeesssnes 248
Section 46.2: Redeclaring members from a base class to avoid name hiding ...ccecceeveeeieeieeneeccieeeeseeeve e 248
Section 46.3: INNEritiNg CONSIIUCTONS .uviiiiciiiiiieeeiieeeeiee ettt e eetreesetteesteeestaessnbeeessteeessseessseesssseesnsseessesesseessnseeesseen 248

Chapter 47: SEA:STIING ..ottt 250
NYeTerile]a R Nl o) =T a T4 = TSR 250
Section 47.2: Conversion t0 (CONSE) CRAI™ ..ottt et seeste e s e e st e s e e sbeesraeesteesbeesasesssassseesnseans 251
Section 47.3: Using the std:iStriNg . VIEW ClIASS ..uviiiiiiiiiieeeiee ettt ecteeectteeeetteesstaeesteessteessebaessnteesssseessteesssseesseeesnns 251
Section 47.4: Conversion 10 STAIWSTIIING .uiiiiieiiiiieiiieeiiieesireesieeesrtreesieessteessseesssseeessseessssessssssesssessssesssssesesssessnns 252
Section 47.5: LexicographiCOl COMPAISON ..uiicuieiieerririreerieesieeireeseesseesseessseesseesseesseessesssssssseessesssesssesssessssesssessses 253
Section 47.6: Trimming ChAracters at SEAM/ENA ...vcecieeeeeeeeeeeeeeceeeeeee ettt ettt es s eseere e e etesbesbesreerene 254
Section 47.7: StriNG rEPIACEMENT .iiiiiiiiieecieceiee ettt eseeete e e seesteeteeseeste e baesraesateerbeesssesssaesseesssessessseesssessesnsaeanes 255
Section 47.8: ConVerting tO STASIING tivvivcieirieeiieeirieeseesteeseeseesteesteesteesseesteesseessseesseessssesseessessssesssesssesssesssessseesns 256
YeTenile]a T o R Yo][4 T U 257
Section 47.10: ACCESSING A CRAFGCIEE .uiiiiiiiiieeieeieeite et eree e e rteese e st eesbeesraeebe e baessbeesbeessaessseessaesssessseessaesssesnsenses 258
Section 47.11: Checking if a string is d prefix of ANOTNET ...t eane s 258
Section 47.12: Looping through eaCh ChAIACIEr .ttt e st e e e sbae e srae e enbns 259
Section 47.13: Conversion to integers/floating POINT TUDES ..vevvevvierevvereerrereeeeereereeeereereereeressessessessessessessessessenees 259

NY=Tei (o] Al W L o) aTale L= T e AT U 260

(c) ketabton.com: The Digital Library

Section 47.15: Converting between character eENCOAINGS oviirveriierieeniieeieereesieese e e esreeseeseessreesreessseesseesseesnses 261
Section 47.16: Finding character(s) iN Q@ StHNG weeicceeervieeeiieeeiieesireessieeesseeesseesssseesssseesssesessssesssesssssesesssnssnssessssens 262
Chapter 48: SEAUAIMTAY ...ttt bbbt bbbt bbbt aee 263
Section 48.1: INitialiZING AN SEALAIMTAY wuiieieiiieiiieiiieerieeiee et eseesteesteesteesteesteessaesseesseesssessseesseesssesssesssesssesssessseesssenns 263
YeTenile]al s s Il = [=Ta 0 1= a1 de [elal 1o U 264
Section 48.3: Iterating throUgh the AMTAU .iicceeiieiiiec e sre e st sr e e s et e e s sbae e ssaeesbaeesbaeessbasessseeens 266
Section 48.4: Checking SIZ€ Of ThE AMTAU coiiicieiiiieiiecieste ettt et s et e s e e et e e teeseaesbe e saesaseesbaesseessseesseansneas 266
Section 48.5: Changing all array elements Ot ONCE .iivciiieciiieciieecie et eere e serre e e sbre e sree e sbe e e ssbaeeesbeessseeesnseeesans 266
ChApter 49: SEAIIVECLON ... bbb bbbt sntns 267
Section 49.1: ACCESSING EIEMENTS ..iiiiiiiieeieeitiesie et esteeete et esteesteesteestaeste e beessaesstaessaesssesssaesseesssesnseesssesssesnsaesseenns 267
Section 49.2: INitialiZING O STAIVECTON .uiiiiiiiieciiiiiecieeseeste et et e st este et e s te e beesseeebe e beessbesssaesssessseessaesssesnseeseesseees 269
Section 49.3: DEletiNg EIEMENTS ..iiiiiiieiiieeiciieeccite e cteeecteeesteeeette e s sbaeestte e s beeestaeeesbeeesteesasssesstesaseessseessnsesesseesnnes 270
Section 49.4: Iterating OVEr STAIVECTON iiiiiviiciieiiecie ettt ettt e sreste e stee s ae e te e s taesteebeesbaeesteebaessaesaseesseessnesnsennses 272
Section 49.5: vector<bool>: The Exception To So Many, SO MaNyY RUIESccieeiiriieenienieereesreereesiee e ssveesenean 274
NYelarile]a R A NNl [aTY=Ta] aTo l = [=Ta 0 1Y 0 1 AT TR 275
Section 49.7: Using StdiVECTOr S O C OITAU wiiviiieeeieeieesiesiteesteeseeesseesseesraessseessassssessesssessssesssesssesssesssesssesssesses 276
Section 49.8: Finding an Element iN STAIVECTON wiiviiiiiiiieicieeeree ettt ectre et eesreeestree e re e e treesbaeesabeeesaraesesreeesnes 277
Section 49.9: CoNCAENALING VECIOIS .uiviiiiiiiiieiiiiiieeeeerieee s srire e e s ssree e e s s stbaee s sssbaeeesssabaaeessssstaeessssssneessssssanessnsssnees 278
Section 49.10: MatriCeS USING VECIOIS wiiivviiiiiiiriiieiieiiiieeessiiteeessiiteeesssirteeessssraeessssssseessssssseeesssssssesssssssssessssssseessns 279
Section 49.11: Using a Sorted Vector for Fast Element LOOKUD .uiiiiiiiirieeiiieeerieecciie e esreeesreeesireeestneesnneeeannes 280
Section 49.12: Reducing the CapaCity Of O VECIOE wiiiiiiiiiiiiciie ettt ste s stee e s tee e ste e s sate e ssaae e sbae e e sbae e sabaessnseas 281
Section 49.13: Vector Size AN COPACIY civiiviiiiiiiieeiieeieeseesteeiteeseesressteesreessseesseessaeessesssessssesssesssessssesssesssessssesnses 281
Section 49.14: Iterator/Pointer INVAIAGLION ...cccvieveeveeeieeeeeeeeeeteee ettt sttt ste e eeeee e ese e eseeseeseeresresresresresresnes 283
Section 49.15: Find max and min Element and Respective Index in @ VECIOr ..cvivcviveeiieeiiieeciree e esineesine e 284
Section 49.16: Converting dn array tO STAIVECTON .uiiiiiiciiiieeieee ettt ere e e srr e s beebeessbesnbe e saesnsesnseas 284
Section 49.17: Functions ReturNing LArge VECIOIS ouiiieiieiiieeeecciee e s setre e s eetrteesescnveeeessennaeeessenseaeesssnssnessssnsssnessnn 285
ChApPter 50: STAIMAD ..ottt bbbttt a bbb 287
Section 50.1: ACCESSING EIEMENTS ciicuiiiiiiiiiiieeiiteesteesrieeesreesrreesseeesbreesbeeestaeessbaessteesssseesssaessseesseeessseeessseeennes 287
Section 50.2: INSErtiNG EIEMENTS ..iiiiiiiiieicieerie ettt esee st e ste e s e e st e e teesreeeteesbeesate e beesbaessseeseesssesssesssessssesnsesssessssenns 288
Section 50.3: Searching in std:map or in StAXMUIIMAD wivcveiciiniiiieeieenie et seestessreesreesseeesreesns 289
Section 50.4: Initializing a std:mMAp Or StAZMUITIMIAD coveieiieeiiieeiiiee e sieeesrreesreessrteeesseesssreeesssesssnessssnssssnesnnns 290
Section 50.5: Checking NUMDEr Of EIEMENTS ..iiciiiiiiiiiiciesie ettt st e e e sbe e saesteesbaeseaessbeessaesaneens 291
NYelerile]a N 10 o NV o ToT R o Nill N4 (o o1y 291
Section 50.7: DEletiNG EIEMENTS ..iciiiiiicieccieeeie ettt et et e s teeteesteesteebeessaessbeesbaessseebeenseesssessssassessseesaesssennsen 292
Section 50.8: Iterating over std:mMap or STAXMUIIMAD weiviiicieiiienieeieenie e ese e sae e e sreesreesreesbeesssesreenes 293
Section 50.9: Creating std:map with user-defined tUpES AS KEY .iivcvivieriieinieriieniienieeieeneesiesse e sie e e sae e 293
Chapter 51: std:i0PHIONAI ...ttt 295
Section 51.1: Using optionals to represent the absence of d VAIUEceceecieeciieiiecieceee e 295
Section 51.2: 0ptioNAl S FETUIMN VAIUE ..uiiiiiiiieiiieiieecieesite et et e sisesteesteessaesbeessaesssesseesssessseesseesssessseesssesssessseessnens 295
NYeTerile]a oY I HAVZe | UL o USRS 296
SeCtiON 51.4: INTrOAUCTION cuviiiiiieieesiieeieeiieest e et e ste e st e et e e treebe e beestseeabeestaessseesseassessseassaassessseansaesssessseensaessseenseansnens 296
Section 51.5: Using optionals to represent the failure of a fUNCHION ...uviccivviiiieeiieeecree e 297
Chapter 52: std::function: To wrap any element that is callable ..., 299
NYelaile]a Ny A R naT o) [SH U 1Yo o 1= USSR 299
Section 52.2: std:function used with STAEDING .iuiiciiiiiiciceceeee e e sbeeaae s 299
Section 52.3: Binding std:function to a different callable tUDPES ..viiiciiiiirieeeiie ettt sree e e e e ree e 300
Section 52.4: Storing function arguments iN SEAITUDIE civuiiiiiiiiccie e crvre e sre e e srre e sbe e e s te e e snbeeeenes 302
Section 52.5: std:function with lambda and StAibINA ..eeeeeecieeiie et ree e 303
SY<larile]a Ny XN (0] Ter o] a @1V a1=Yo o S 304

Chapter 53: StA:iFOrWANA LISt ...ttt et et et et eeeee et et e seaeeeseeeaeeeseeeaeaeeneaeneaseneees 305

(c) ketabton.com: The Digital Library

SYeTerio]aTe Yo Nt Hl =< o'oY o) [PSR 305
NY=Terile]a e SNl M (=1 aTe T [U UTR 305
ChapPter 54: SEAUIPQAIN ...ttt bbbt bbbt st bbb bbbt et nas 307
Section 54.1: COMPArE OPEIATONS wiivvieiirireeriiieeerreerieeessireessreeesseesssseessssesssseessssessssesssssessssesssssesssssesssseessssesssssessns 307
Section 54.2: Creating a Pair and accessing the €lEMENTS ..cciiiciieiiiie et sree e e srre e esrre e s eree e ebaeeenes 307
Chapter 55: SEtAIIAtOMICS ...ttt bbb 309
SECHION 55.1: ALOMIUC TUDES wiiiiiiiiiiitiiiiittee sttt e e sttt e e e sttt e e ssstbaeeesssbbaeeessssraseeessssaaesssssssaaessssssseeesnssseeessssnsesssssseesens 309
Chapter 56: SEAVANIANT ...t bbb s aee 311
Section 56.1: Create pseudo-Method DOINTEIS .cuiiiiiecieeiieniieieeieesie et e e e s b e e e e ser e e beessaesssessbeesssesnsesnseas 31
Section 56.2: BASIC SEALVANANT USE .uuiiiiciieiciiiectieeiieeeetteeseteesiteeesteessbeeessteesssteesseeeessssesssessssesessseessessssssessseennns 312
Section 56.3: Constructing @ "STAUVAIANT ciiuiiiiiieiiecieciee e cie e e stesteesteeseeeteesteesraesbeesbaeesteebaesseesasessseessaesssennses 313
Chapter 57: StA:IOMANIP ...ttt bbbt bbb bbbt b s bt saes 314
SecCtion 57.1: StAISETPIECISION tiiitierieriieeriesieeieesteeiteeseesseesreesseesseesseesssessseeseesssessseesseesssesseesssessseessessssesseesseesssen 314
YcTerilo] A Y (e oY =1 i | SRR 314
Section 57.3: StAISETIOSTIAGS wiiiiiiiiiiiiiieiiesie st et te et ertre st e eteesteeste e teestaesabeebeessaeestaessaessseenseessaesaseesaesseesnseenseens 314
SECHION 57.4: STAUSEIW wivcveesiiiiitieitieste st este st e st e steerteesteessae e beessaessbeesbeessseesseasseeassaessaasseessseassaessseesseesseessseenseesseesnses 316
ChAPter 58: SEAIIANY ...ttt bbbttt bbbt 317
SECHION 58.1: BASIC USOUE tiiiiiiirreeiiiiiieeeeeiitireeeseitteeeessistreesessssseessasssseeessssseesssssssssssessssssesssssssssssssssseeesssssssesssssssneessnns 317
Chapter 59: std::set and StA:iMUILISEL ... 318
Section 59.1: Changing the default SOrt Of G SET ittt s e e e aaesane s 318
Section 59.2: Deleting VAIUES frOM G SEE wiiiiiiiiireeeiee et ccee et eere e esre e e reeestreesstvesestseesbaesssbaeesssaesesbesesssaeensseesnns 320
Section 59.3: INSErting VAIUES IN G SET ciiuiiiiiieiiiieeeiieeeiteeectieesstteesstre e eteessateeessbeeesatesssssessseeesnsasesnsesssssesssseessssesanns 321
Section 59.4: Inserting VAlUES IN O MIUIISET .ivuiiiiiiciieiiesiecieeieesteeteesie et e esveeseresbeeteessessseesssesssesssaesssessseesseessnens 323
Section 59.5: Searching values in set aNd MUIISE wiovuviiicieeeiiee et e e srre e s re e esre e e ereesnaeeensnas 323
Chapter 60: std::iiNtE@QEr_SEQUENCE ...t bbb 325
Section 60.1: Turn a std:tuple<T...> iNto fUNCHION PAFAMETEIS viiiiciiicciee et rre e et ae s srae e eaaeas 325
Section 60.2: Create a parameter pack consisting Of INTEUEIS ...ivvivvivereiieiireenreeceeere et esreecreenreeereeereens 326
Section 60.3: Turn a sequence of indices into copies Of AN ElEMENT .iiiviiiicieeeiie e e 326
Chapter 61: Using std::UuNOrdere@d_MAP ...ttt 328
Section 61.1: Declaration ANA USAGE ..cciiiiieeirieeiiieeciieesiieeesiteeesveesssteeesssesssssessssssesssssssssesesssssssssesssssesesssessnsesssssens 328
Section 61.2: SOME BASIC FUNCHIONS wiiivviiiiiiiiiiieeiiieesriieesiteesieeesieesssessssseessssessssseessssessssesssssssssssesssssessssssesssssssssens 328
Chapter 62: Standard Library AIgOrithms ... 329
NYeTorile]a Ny RISy (o FaT=) Sl 0116 0 TU1 (0 11 10) [T UNE 329
NYeTerile]ale YIS o e Al =T Lol o NPT 329
Section 62.3: StAUACCUMUIGLE ..iiiiiiiiiiccieeite ettt erte e see e e ste e saae et e e sbaesateebeesbaessseesbaessaeessaessaesssessseessessssesnsenes 330
YeTenilo]a oY A Sy (o iy] T RS 331
NYclarile]al oY ASRES (o Ha a1l aTN=) =10 al=] 0| R TSRS 333
YT ool Y oo o 1] aTe N | PRSP 334
Section 62.7: Using std:nth_element To Find The Median (Or Other QUANtIES) cvvveceeeeiieeecieeecee e 335
SECHION 2.8 SEAICOUNT cutiiiiiiciicieesite et et e st e e rtr e et e e teestee e be e beessbeebe e saeesbeesbeesssessbaesssessseassaessaeesseessaessseensaesaeanss 336
Section 62.9: SEAICOUNT I uiiiiiiiieeiecceese sttt e st e et e e st e e st e e beessseeabe e saessseesseesaessseessaesssesnseensaansaeen 337
Chapter 63: The ISO C++ STANAAIA ..ottt 339
Section 63.1: Current Working DIGFES wiiiciiiiiiieciiecciteecieeesiee et e estte e eete e s stee e staeesateeesateeessteesnsteseseeessssessnseeesnsananns 339
SECHON B3.2: CHAT7 creieiieeiittesite sttt esstee e st e esteesstbeessbaeessbteessbaeessbaeessbaeessbasesssaeessseeesssaeesssessnsseessssessssseeessenessseeesssens 339
SECHON B3.3: CHA1T tivirieeiieeenieeesiieeesreessteessreesiteeessbaeessaesssseesssseesssseesseessssseesssesssssesessesssssessssseesssseesssasssssaeessseesnssees 340
Y cTenio]a T o Yo i G i - USSR 341
SECHON B3.5: CHHI8 oiiiiiieiiiieiiiiteirieesrte e st e ssee e s streesbaeesbaeesabaesssbaeesssaessssessssasssssesesbeeesssseessbesessseeesssesensesesseesnssees 342
SECHON B3.0: CHH03 wiiieiiieiiieerirteesireeesreessteessbeessuteesssseesaseeesssseessesesssessssseessssessssseesssseessssessssseesssesessseeessseessssesssssaes 342

Yot [o) A I Y T A O o A O SRR 343

(c) ketabton.com: The Digital Library

Chapter 64: INlNE VAFIADIES ...ttt ettt bbbt 344
Section 64.1: Defining a static data member in the class definitioncccveeceeeecieeecee e e e 344
Chapter 65: Random NUMbEr geNEIrAtiON ...t 345
Section 65.1: True random VAIUE GENEIATON ..uiiiiviiiiriieeiiieeeiteesireesiteeesteesssesssseeessseessssesssssessssesssssnsssssesssssessssseses 345
Section 65.2: Generating @ PSeudo-raNdOM NUMIDELE ..iccuiiiieiieeiierieeteeseesteereesieesreesreeseaessessseesssessseessaesssesses 345
Section 65.3: Using the generator for multiple diStribUTIONS ...icciieecieeeiiee et e 346
Chapter 66: Date and time using <Chrono> header ..., 347
Section 66.1: Measuring tiMe USING KCAIONO> ..iiiiiiiiciiiiiiiecciee ettt srre e stee e s re e s sbe e s sate s s sbaessbneesbaessabaeenssns 347
Section 66.2: Find number of days between tWo datescciviiiiiiiiiiiececeece e e e 347
ChAPLEr B7: SOFTING ..ottt st bbb bbb bbb e bbb as bbb et s e bas 349
Section 67.1: Sorting aNd SEQUENCE CONTAINELS .ecviieiciieeeiiieeeitreeeireesiteeestreesteeesteeessaeesessesassseessseesssseessssesssesennses 349
Section 67.2: sorting with std:map (ascending aNd deSCENAING) .viecieerieevieerieeeieerreereeeteerreesteesreesreesraeeseesseeens 349
Section 67.3: Sorting sequence contdiners by overloaded |eSS OPEIAtOr ...viiivieeerveeiiieeerree e e eereeeereeenenes 351
Section 67.4: Sorting sequence containers using compPare fUNCLION ..i.cvvceerieriieenienienieesee e sre e e seeeens 352
Section 67.5: Sorting seqguence containers using lambda expressions (C++11) .iivvviieeeceerieenieeerieeree e e esveenns 353
Section 67.6: SOrtiNg DUII=IN GITAUS vviieieieeeiieriiieieesiessieeseestessteesseessessseessaessesssessssssssesssessssesssesssessssssssesssassssesns 354
Section 67.7: Sorting sequence containers with specifed Ordering ...iiuceeceeeccieeeciee e e 354
Chapter 68: ENUMEIALIONcocoooiiieieiieieicec ettt b b nsessnbens 355
Section 68.1: Heration OVEr GN ENUM civiiiicieeiiiireeiieeesieeesteesstreesssaeessssessssseesssssesssesessssssssesssssesssssesssssssssssessssessssens 355
SECHON 68.2: SCOPEA ENUIMS .vveierireeeitreeiitreeeiteeeireeesireeesiseeessesesssesssssesssssesssssesssesesssssesssesesssssssssessssssesssssesssssesssseens 356
Section 68.3: Enum forward declaration iN CHA1T uiiiiieeecieeciieeciire e esieeesteeesitesssteeessrresssbaeesssaesesseessssasssssnesnns 357
Section 68.4: Basic ENUMeration DECIANGION .iiciiiiiccieeiiesiieieeseesteesieeseeesreesseesaeeseesseesssesseessessssesssessssessesssnes 357
Section 68.5: Enumeration in SWItCh STATEMENTS ...viiiciieeeiiie ettt e e re e e tre e sree e ebe e e sarae e beeesaraeenns 358
ChApPter 69: ILEIATION ...t bbbt bbb bbbt n b 359
YcTerile]a N o1 N Hl o =To | USSR 359
SECHON 69.2: CONTINUE 1iiuiiiiiieiiiieeiiieessteessteesstreessteeesbeeesbaeessbaeesssaessssessssaesssseessssessssseessseeesssseesssesesssesessseesssessnsees 359
SYeTenifo]a o1 2 i o TSRS 359
YeTerile]a o1 R RN 11 [U P 359
Section 69.5: raNge-DASE fOr [OOPD .uiiiiiiiiiiiiiiieeieree ettt ettt e ste et este e teesbeesateebeessaessteebeesrsesnseesseesnseans 360
SYeTenio]a T oY K< Al {1 SRR 360
Chapter 70: ReQUIAEr @XPIrESSIONScccciuiieieiiiieieieeese et sss s s sse st sse st ssessaessesans 361
Section 70.1: Basic regex_match and regex_search EXAMPIES ...viiiiiciveieeiiiiieececireeeeeeireeeeeenireeeeenareeeesenneeeeenns 361
Section 70.2: regex_terator EXAMPIE .iiiiiiiiciiiieeieeiieesieeteesieesteesteesteesse e teesssesseesaesssessseesssesssesssessssesseesseessnens 361
SY<Tenilo] T4 N Y a Tl a o o TS 362
Section 70.4: regeX_replace EXAMIPIE iiiiiiiiiiiiieiiieeestee st essiteesriee e sbeeesteessaveesateeesbsesssneessbaeessssessssesesssnsenssessnns 363
Section 70.5: regex_token iterator EXAMPIE ..c.ciciieciieiieiiieiiesresie ettt sreesteesre s e eseaesbe e beesaaessbeesbaesssessseensnens 363
YeTenile]a NAO o R @ I8 e 1ok) 1= 363
Section 70.7: SPIItHING O SENG coviiiieeiieeiieeste et eieesteecteesteesteeeteesteesbeeteestaessteesseesssesssaesesssaesssessseesssesssassseessesnsanes 365
Chapter 71: Implementation-defined behaQvior ..., 366
Section 71.1: Size Of INTEAIAI TUDES .iiiiiiiciieiiisieeieereeste et ese e s e st estee e b e ebeesssesbe e baessseesseesssessseansaesssesnseesaesssennseen 366
Section 71.2: Char might be unsSigned OF SIGNEA ...iiiciiiiiiiieciiecciee ettt e erre e e rre e e rrre e s be e e e bae e sbeeeeateeesasaeesnseas 368
Section 71.3: RANGES Of NUMIEIIC TUDES wiiiiviiiiiieiiiieiiiieesiieeerireesveessieeesreessaseesssseesssseessseeesssnessssesssssesssssessnssesssnnes 368
Section 71.4: Value representation of floating POINT tUPES ..eeveeeciieriiniiieiierieceesee e be e e s ae e 369
Section 71.5: Overflow when converting from integer to SIgNed INTETEr .iivviiiiiieecciee e 369
Section 71.6: Underlying type (and hence Size) of ON ENUM ...iciiiciiiiieciiceecte et sane s 370
Section 71.7: NUMErIC VAIUE Of O POINTEE wiiuiivciiiiiiiiiiitesite st et esieesteeste e st e sreesseessaesbeessaessseeseesssessseesseesssesseessnens 370
NYelauife]alA RS HIN[STaal o1=Tal o) ill o] 14N o I o] L= USRS 371
Chapter 72: EXCEPLIONSccooiiieieiieieeeie ettt st bbb bbb s st se b nsebas 372

Section 72.1: COTCING EXCEPTIONS uvviiiiviiriieiiiiiieeiiiiteeeeeeiareeeessbeeeeessbreeeeesbareesssbseeessssssseesesssbseessssssesesssssresssssnes 372

(c) ketabton.com: The Digital Library

Section 72.2: Rethrow (propagate) EXCEPTION ..uuiiiciieccieeerireeeeieeerreeeireeeiteeeseteeesseeessesessseessssesesssesssssessssesesnsasanns 373
Section 72.3: Best practice: throw by value, catch by const referencCe ...ivviieeciiec s 374
SeCtion 72.4: CUSLOM EXCEPTION wiiiivuieiritieriieeerieeesieeesiteessteesssseesiseessssesssseessssessssseesssseesssesesssseesssesssssessssseesssseesssans 375
NYelaile]aWAZASHES (e HUIaleloTUle | o L =Y (ol=] 0] 4 0] 8 1 N E R 377
Section 72.6: Function Try Block for reqular TUNCHION ..iiviiiiiieiiiiciieeccieccctee ettt cerreeeerreeeneeeevaeesaveeesnns 378
Section 72.7: NeStEd EXCEPTION iiiiiiiicieiieesieecteeseesteseteesteestesrteesbeestessbeesreessteesaessaessseessesssesansaasseesssessseesseesssesnses 378
Section 72.8: Function Try BlOCKS IN CONSEIUCION uiiiiiiiiiiiieeiiieerieeecteeeciteeetreestee e stee e teesesseesnteessaeesnsaessnsasennses 380
Section 72.9: Function Try BIOCKS IN dESIIUCTON iiiiiiiieiiieiiieciie ettt et etee st ete et e sreeteesbaesaeeteesbaesasaeseessneens 381
Chapter 73: LAMBAQAS ...ttt bbb bbb bbb bbb bbbt s 382
Section 73.1: What is 0 |[ambda EXPreSSIONT ...cueiccieecieieeiieiiieeseesieesteeseesteesteesaessseessessseessseessessssesssesssessssesssessses 382
NYelaile]a WA NN ol=leil (01100 Mial-I K=108] 0 TN (0] o 1= PR 384
Section 73.3: CAPIUIE DU VAIUE ..iiuiiciieiiecie ettt ettt estt e s veete e st e s te e teesaaesabeebaessbaensaessaeenseensaessseessaassessseesseensnens 385
Section 73.4: RECUISIVE IAMDAGS .uviiiiieeiiieeiiieeeiireeesireeesreeesreeestaeeestseesssessssesesssesesssesasssesesssesssssesssssesssssessssseesssaees 386
NYelarile]a N No NI B L=] o U] L aele] o} (U] = TS 388
Section 73.6: Class lambdas and capture Of thiS ..icuiiciiiiiiieciecciece et se e s e be e e e 388
Section 73.7: CAPUrE DU FEFEIENCE ..ottt sttt e te et ste e s be e saee s be e baesaeeebeesaeessseenseessaesnsas 390
NYelaile]a MRS HICl=Tal=Ta ol [o]a] o1 o S NS STPRNE 390
Section 73.9: Using lambdas for inline parameter pack UNPACKING .iiccveecieeieeiieeieeneecieesieeseeesreesveesenesveesveeens 391
Section 73.10: GENEraliZEA CAPTUIE .uiiiiiiieeieeeireeceeeeiteeesreeerreeestaeeestbee e baeestaeessbesesseeesssaeasssesssssessnssesssssesnseeesnns 393
Section 73.11: Conversion t0 fUNCHION POINTEE iuiiiiiiiecieecciee et e e stee e ste e s ste s s ssbeeseraeeesbeeesbaesssaeesnsaeanns 394
Section 73.12: Porting lambda functions to C++03 USING fUNCIOISiiviiiiieiiieiiecieceeste et 394
Chapter 74: VAIUE COtEUOIIES ...ttt ettt sttt ae s bans 396
Section 74.1: Value Category MEANINGS .iivivieeiireeeireeeitieesireeesiteeesseeesseeessseesssseesssesesssssesssesesssessssssesssssssssssessssssssens 396
NYeTerile]a Ny L B oY o [V SRR 396
SECHON 74.3: XVAIUE utiiieeitieiieeieeitte st esteesteesteesteestae e teestaesabesateessaessseasteesssessseasseessseanseesseesssesnsessseesssesseesssesseessenans 397
YeTenile] a2 R il oY ie | U= 397
SECHON 74.5: IVAIUE ciiteiiiieeiciee et ectee sttt srt e e s rte e s e e s st e e e st ae e sbteesbaeesataeessbasesasaeessbasessteeestaesnstesesseesnseessnsaessseeesnen 398
SECHON 74.6: QIVAIUE woiitiiiiecieeciteete sttt sttt e e e et e te e s ta e et e e beesas e e be e beessseesteassaeesseessaessseesbeassaessseessaassessseenseansnean 398
ChAPLEr 75: PrEPIOCESSOF ...ttt sttt st bbb bbb e st b b st s e bt b st s snans 399
Y<Tenile]a 4o Rl IaTel (8o [CTU o] K-y 399
Section 75.2: Conditional logic and cross-platform hanNdliNG ...cccveeeeeeiveee et eeebre e e esareeeeen 400
SECHON 75.3: X-TNIACIOS teterureerrrreersureerireeessseeesiseeessesssssesssseesssseesssseesssssesssseesssessssseesssesssssesssssessssseessssesssseesssasssssaeens 401
SECHON 75.4: MUCIOS tiitvieitieeiieeeeiteeeeteeesteeeetteesesteeesseeesbaeaaseeessaeassteeasssassastesassesasteesssesesseessnsesessesssssesesssesssssenn 403
Section 75.5: PredefiNned MOCIOS ..iiiiiciiiiieiieccieecieeete e eseeste e rte e st e stessbe e s taeete e baesraeeatesbaessaesnseasseesssessseesseesssennses 406
Section 75.6: PreproCeSSOr OPEITTONS iviiiiiieirireerrieersreesireessieeesssseesiseesssseessseesssessssesssssessssssesssssssssesssssaessssaesnns 408
NY=Terule]a WA TAE 23] e o TaaTe o] ool PRSP 408
Section 75.8: PreproCESSOr ErFOr MESSAUES wiiivreerrreersseessreeesireessssesesisesssisessssessssssssssessssasssssesssssesssssessssssssssessns 409
Chapter 76: DAtA STrUCTUIrES iN CH+ ..ottt 410
Section 76.1: Linked List implementation iN Ch4 .uivcieceerieiiieenieniiesieeseesseeseessessseesseesssessseesssssssssssessssssssesssesssnes 410
ChApPter 77: TEMPIALES ...ttt bbbt bbbt bbbt naens 413
NYelarile]a W AVA R = Yo 1S [oll @10 I =T a oY o] [0 £ S 413
Section 77.2: FUNCHON TEMPIATES ..iiiiiiiiieieiieeiieeteeseecteesteesteeeteeteestaesteesbaessseesteessaessseesseessaesnsessessssesnsesssessssenns 413
Section 77.3: Variadic template dat STFUCIUIES ...iiviiiciiiiiiiiecieceeses ettt seeste e ste e s eesbe e e ste e sbe e s e e sateebeesaeesnns 415
Section 77.4: Argument FOrWArdING .iicciiiciee et eee st e e stre e s te e s ba e e sbee e sbeeesstaeesssaesnteeesseeesnseessnsees 417
Section 77.5: Partial template SPECIANZATION .iivieciieieeiieeieeseecteeieeseesreerteesteesreesbeesraessseesseesaaesseesseessnesnsesssessnes 418
Section 77.6: Template SPECIAlIZATION ..vviiiirieiiireeeiieeertee et eceeesre e e ree e beeestreesbaeesbeeesssaeessbesesssesessseessseesnsens 420
NY<Terile]a WA N[1o T (=1 0 al o] o L (=S 420
Section 77.8: EXPlICIt INSTANTIATION .uiiiieiieeiiieiieiiieecieesee st esteeseesteeteestaesteesteesasesteessaessseessesssnssssesssesssnessesssessnsenns 420
Section 77.9: Non-type template PAFGMETEE ..uiiiiiiiecieeccieeecree ettt re e s re e e sreeesareeesbreessaeeenbaeesasaeesnsesanres 421

Section 77.10: Declaring non-type template arguments With QUEO ...oiciiiiiiiiciiiieeieiee et 422

(c) ketabton.com: The Digital Library

Section 77.11: Template template PAIAMETIEIS uiiiiiiiieiieecceee e cee st sre e errre e e treesrtre e sbaeessaeesesaeesnseeesasaes 423
Section 77.12: Default template pAramMETEr VAIUE ..ccciiiiciiiccieesiiecciteesteeesieessereeesvreessvaeesbaessavaesssseessssassnssessnsens 424
Chapter 78: EXpPressSion tEMPIALES ...ttt 425
Section 78.1: A basic example illustrating expression tEMPIALES ...iiiiiicieeiieriieeieeree et sre e esreesneens 425
Chapter 79: Curiously Recurring Template Pattern (CRTP)cccoovevveeeeeeeeceeeeeeee s 429
Section 79.1: The Curiously Recurring Template Pattern (CRTP) .uiiiiiieeccieeicieeciieeestreescreeesreeesreeesseeesnseeesnseesnns 429
Section 79.2: CRTP t0 avoid code dUPRICALION ..uviiiciiiiiiieiiieiiieeesieessieesseeeesieeesveeessteesssaessssesssssesssssessnsenssnseessnns 430
Chapter 80: TRrEAAING ..ottt bbbttt b a bbb bbbt s aenas 432
Section 80.1: Creating @ SEAITNIEAA ..iiiiiiieiiececee e st re e s e e s re e sbe e s e e ete e be e saaeesbeenbaesneeenres 432
Section 80.2: Passing d reference t0 A threQd .o tre e e st rbe e e raae e e sbae e srae e s arnas 434
Section 80.3: Using std:async instead of StAithread .ouieceecie et re e re e saaesaneens 434
Section 80.4: BASIC SUNCAIONIZATION .uiiiiiiciiiiiiiiieiieesie et et e st e ste e st e sbeesteestaessbeesbaessseesbeesaesssesnsaesssesssesnseesssesnses 435
Section 80.5: Create d SIMPle threQd DOOI ..uiiiiiieiciiieciee et erre st s e e e sre e e sate e ersteesebteeebeessnbaeesseeesnsaeanns 435
Section 80.6: Ensuring d thread is AlWaAUS JOINEAeicieeiieiieiieeirieriee e erteeseeereesteesaeesteesaesssesseesssesssessaesssesnsens 437
Section 80.7: Operations on the CUrreNt threAdccciiiiieciinie et se e s este e be e s e e steesbaesrneens 438
NYelaile]lal:10RREUISTalo N@eTaleliile]aTNYAe 0] o) [T SRS 439
Section 80.9: TAread OPEITTIONS ..viiciieiieeiteeiteesteeireeseesteesteesaesteesteessaesseesseesssesssaessessssesssessseessesssesssessssesssesssaenns 441
Section 80.10: Thread-lOCAI STOIATE .iiiiiiiiiiireierireeerireeerree ettt e eiteeesetaeesbeeesseeesseeerssesessseesssseessssesssssessesessesesssesanes 441
NelailelaRIONIRIRIo IS o]allalo Rualu=To e Mol o] l=Torr TN USSR 442
Chapter 81: Thread synchronization STrUCLUIES ... 443
Section 81.1: std:condition_variable _any, StAiCV_ SEATUS ..uiiiiiiiiiciieriecie sttt esve e see e sbe e sraesreeseae e 443
Section 81.2: StAUSNAIEA TOCK .iiiiiiieiteeiciee ettt ettt e ectee s re e e te e e stre e e tbeeestaeesbaeesabeeesabaeessbasesssaeesssaeassesenseeesnseeans 443
NYelaife]al s Y HES (o i elo | oY alol=NES (o o] aTet= T i [0 o NN S 443
Section 81.4: Object locking for effiCiEeNt ACCESS ..iiiiiiiiiiieiieceesteee ettt e sbe e s e e s be e e e s abesbeenes 444
Chapter 82: The Rule of Three, Five, ANd ZEroO ... 446
YeTenile]a T s 1A R R U] [@) A=Y o R PR 446
SeCtion 82.2: RUIE OF FIVE wiiiiiiiiiiiiccite ettt ettt sttt st e s te e s et e e st te e s bae e s bae e sabaessstaesssbaeassaeenstesssteesnseeesseassne 447
Section 82.3: RUIE Of TRIFEE .iiiiiiiiiciieciee sttt ettt s e ste et e e s te s teesbaessteesteesbaessseesteesssesssaasseesssesstessseesssesnseessaenns 448
NYelaife]al s RIS} oI (o alnaT=] N ol md €0) =Tox 1) o NS 449
Chapter 83: RAIl: Resource Acquisition Is INitialization ... 451
SECHON B3.1: LOCKING tivtrieireeiiieeeiteesiieesireesitteessaeesssaeesssesssssesssssesssssesssssessssssssnsessssssssssesssssssssssesssssessssssessssessssenss 451
SECHiON 83.2: SCOPESUCCESS (CHH17) sorveirirererireeesreeesiieeesseessaeessiseessseeesssseessseessssesssssessssessssssessssessssasesssseesssasessseeens 452
NYclarife]als FoT6 I Yol o Tt o | I (o ot 74 NP 453
Section 83.4: FINAIU/SCOREEXIT .cvvvveieriierieeritetiieeriereseereseeteseesesseseesessesessesessessssessssessssessssensessssessssessesessssessesssessnes 454
Chapter 84: RTTI: Run-Time Type INformation ... 455
SeCtion 84.1: AUNGIMIC COSE viiiiiiiieiieesee st esteesteeteesteestaessteesseessteeseessaessseasteesssesssessseesssessseessessssesssesssesssesssessseesns 455
NYelarile]al s B Ha oI (] oT=ilo I =101V Lo] e KR 455
SecCtion 84.3: NAME OF G TUDE wiiiiiiiiiiieiiieeiiiee et sttt sstee e stee s sbeesseteessabeessbaeesbaeessbaesssbsessssasasstesesssessnssessnssesensseesnn 456
Section 84.4: When 10 USE WhICh COSTIN CH+4 wiiviirciiiiiieiiieiecsieeste st esteestessteesieesteesteeseaesteessaesssesssesssessssesnsesssaenns 456
CRAPLEE 85: MULEXES ...ttt sttt sttt t s st s sa s sttt nanes 457
SECHION 85.1: MULEX TUES cuvrrreiierirreeesiiitreessiitteesesiseeesessisasessssseseessssssssesssssssesssssssssesssssssssssssssnsessssssnesssssssesssssnnn 457
SECHION 85.2: SEAIIOCK 1uviiiiiiiieiie et ertee sttt erte et e st e ete e s teestteeteesbeesteeabaessaesaseerbaessaesssearbeesssesssaeseessseensesseesntesssesnsaenses 457
Section 85.3: std:uunique lock, std:shared lock, StdiloCK QUAIA ..ceiiveecreereeceeereeciee et cre e ereeereenree e 457
Section 85.4: Strateqies for lock classes: std:try to_lock, std:adopt lock, stdidefer 1ock ...cccvcvveeeiieeicinenns 458
SECHION 85.5: SEAIUMULEX wiiiiiiiiiiiiierieesie et eseeste et e st e s steeteestaeebe e taessseesseaseessseassaessaeasseasseesssessseesaesssesnseessseessennsees 459
Section 85.6: std:SCOPEA TOCK (Tt T7) corrrerireeeiireeerireeeiteeeitreeeitreesireeessseeesseeesasesesssesssssesessssessssesssssesssasesssesessseeens 459
Chapter 86: RECUISIVE MULEX ...ttt bttt 460
NYelarife]al e TN RISy (o R =To1 0] 1 1Y/ =T 0 A TV (= TS 460

CRAPLEE 87: SEIMAPINOIE ...ttt e e et et ettt ee e et et e s ese e et eseseneessaeneaseseseseseneseneasessneneaneens 461

(c) ketabton.com: The Digital Library

SY<Teorile]als WA HINY=Ta ale ol aTe) =T G it I T SRURN 461
Section 87.2: SemMaphore Class IN ACHION wiiviiiiiieiiieeiiieeesieesrteeesteesstreessbeeesstaeesbaesssteesssseessssesssssesssssessssesesssnesnnns 461
Chapter 88: FULUres ANA PrOMUSES ...ttt s st bbb 463
Section 88.1: ASUNC OPEITtION ClASSES .uiirviiirieerieiiieesiiesteesieeseesteesteesaessseesseesssesssesssessssesssesssessssesssesssessssesssesssenns 463
Section 88.2: std:future aNd StAIPIOMISE .uiiiiciiiiiiieccieeeeiee et erre e eere e stre e e tee e sbeeesbeeesabeeesntaeessseessseesseeesseeesnsens 463
Section 88.3: Deferred ASUNC EXAMIPIE ..uiiiiciiiiieiiiiieciiee et e esteesrreessiaeeseteessbaessstaesssseessssasssssessseesssssessssaesssseeess 463
Section 88.4: std:packaged task AN STAUfUTUIE .uiviiiiiiiiicicciccie ettt st sve e st s ste e sraesaneebae e 464
Section 88.5: std:future_error and StAifULUIE EITC uiiiiiii ettt etre et e et e e e e sabe e e nreas 464
Section 88.6: stdifuture AN STALASUNC wiivieiiieiiieiiecie et este sttt e streeteesteestaesteesbaessteebaessaessseentaesssesnsessseesssennsennes 465
Chapter 89: AtOMIC TUPEScocieiieiietectee ettt et bbbt bbbt bbbt bbb ae e 468
Section 89.1: MURI-ThIreQdEAd ACCESS .cuviiiiiriieiieiieste et este st et esre s beesreessbe e beesbaessbe e beessseesseessaessseesseesseesssesssesnses 468
ChapPter 90: TUPE EFGSUIE ...ttt sttt sttt sttt ettt sttt 470
Section 90.1: A Move-0NIyY "StAEfUNCHION" ciiiiiiciee ettt ertte e sree e s ste e e st e e e sate e e ssteeessteessaeeebaeesaseeesnses 470
Section 90.2: Erasing down to a Regular type with manual VEabIecceecveiiiiiieieeceeeece e 472
Section 90.3: BASIC MECNTNISIN wiiiiiiiiiieicieeiee st et esee st esteesaessteesbeesatessteesseessseesteessessssesssessssesssesssesssseessesssassssenns 475
Section 90.4: Erasing down to a contiguous BUFfEr Of T ...t s 476
Section 90.5: Type erasing type erasure With StAIONY .uiiciceeiiecceeee ettt seeeteesteesaesreesreesrseesseessneens 477
Chapter 91: EXpliCit tUPe CONVEISIONS ..ot s 482
Section 911: C-StUIE COSTING vovtireeririeireesiesieesteestessteesteestteesteesseessteeseesseesseesseessessssesssessssesssesssessssesssesssessssesssessseesns 482
Section 91.2: CaStiNg OWAU CONSENESS civuuureeiiiiirreeeiiriireeseiiireesssitreesssiseeesssssseesssssssseessssssasesssssseessssssnsesssssssesssssnns 482
Section 91.3: Base tO deriVed CONVEISION ..iiiiiiiivieeiieeiieeieesieestesiteesseesssesssessseessesssessssssssesssessssssssesssessssesssesssesssesns 482
Section 91.4: Conversion between PoiNter AN INTEOEL ..uiiiiiieiiiiee e et re e erre e erare e e rtreessaeesbeeesaraes 483
Section 91.5: Conversion by explicit constructor or explicit conversion fuNCtioncccccveceeecieeccieeccee e 484
Section 91.6: IMPIICIt CONVEISION ..viiiiiiiieiieite et eseesteesteesteesteesteesteessesteessaessteesaesssessaesseesssesssesssessssesssesssnessenns 484
NY=TeruleTa I o) WA =1 a 18] o alele] 0 1V/=] 6 (o] 0 TSR 484
Section 91.8: Derived to base conversion for pointers to MEMDEISuvvviivciveeiieieee e e 486
SECtioN 91.9: VOIA® 1O TH .eiiiiiiiiecteeie ettt e et s b e e e e s b e s be e s aa e s st e e b e e s st e esbe e baessseesbeeseeasseessaessseanseesseenssesssenses 486
Section 91.10: TYUPE PUNNING CONVEISION wuveeerrerrreeererrreeseiisseeessarssseeessssssesesssssssesssssssssessssssssesssssssssesssssssesssssssneesssns 487
Chapter 92: UNNAMEA TUPESooviviriceeceeecetee ettt sa sttt e sanee 488
Section 92.1 UNNAMEA CIASSES .uiiviviiiirireiriieeesiireesieeesieeesteesssseesssseessssessssesssssssssssesssssssesssesssssesesssesssssessssessssssessssens 488
Section 92.2: AS A tUPE QLIS .iiiciieiieiiiieiieeteeiteeste et esteestte s reesteestseeteesseessseebeessseesseessaessseesseessessseassaesssessseeseessnean 488
Section 92.3: ANONUMOUS MEMIDELS uieiiiiieiiieeiiieeeiteesiteeesteeessteeessseesssseesassessasesesssesesssessssesessssssssssssssseesssessssens 488
Section 92.4: ANONUMOUS UNION ..uuveeiiiiiieeeriniueeeersiseeesssssseessssisseessssssssessssssssssssssssasessssssseessssssssesssssssesssssssseesssssnns 489
Chapter 93: TUPE TRAILSccooiiiece ettt bbbt bbb bbbt bbb ae s aenas 490
SECHON 93.1: TUDE PrOPEITIES wveiivieierieeiiieesiteesitteesiiteesiseeesseessseessssesssssessssseessssessssesssssesssssesssssesssssessssessssseesssaesnss 490
NYelaile]a BN AN (eTale o Txe I VT oTSI Ao 1= SR 491
Section 93.3: Type relations with stdiisS SAMELT, T> ciiiiiiiiieciiiiie et ereeste e s ae e ste e baesraesbeesbaesaseebaens 492
Section 93.4: FUNAAMENTAl TUDE TrAILS wivvieviiiiiieiieeiiesieeiteeste st et esresbeesreesae e beesbaessbeesbaessseesseesseesssaesseesseesnsennses 493
Chapter 94: Return TUPE COVANIANCE ...ttt bbb 495
Section 94.1: Covariant result version of the base example, static type checkingcccceeeveeecieeecieeesieesiee e, 495
Section 94.2: Covariant smart pointer result (automated ClEANUD) ..iiiiiecieeieeiiecieeiee et sreesaee s 495
Chapter 95: LAYOUt Of OBJECE TUPEScooviieeeee ettt 497
SECHION 95.1: CIASS TUDPES weververrerierieriestieeestestestesstessesueessesssessesseessesseessesseessessesssesssensessesnsessesssesseessessesnsessesnsessasses 497
Section 95.2: AMTNMETIC TUDES vviiiciieiiiieieeeeree et et e e et e e ste e e sate e e ette e sste e s beeeebeeesnbaeessteeesssaeanteeeseassseeesnsens 499
SECHION 5.3 AITAUS tiiiectieeeeriiuiteteesittteeesirreeessssreeessssstseessssssseessssssssesssssseeessssseseesssssseeessssssssessssssseeesssssaeessssssseessnss 500
Chapter 96: TUPE INTEIENCE ...ttt bbb bbb 501
SECHON 96.1: DALA TUDPE: AULO cuiiiiiiieiiieeerieeesreessteessiteesieeesseeesabeesssseesssseessssessssseesssseesssesesssesssssasssssesssssesssssessssnes 501
NYelarile]aliolo WAl MelaaleYe [o 1o [1o NSRS 501

SeCtion 96.3: LOODS AN TUTO wuiiiiiiiiiiiiiiiieeeieiiireeeeesteeeeeesareeeessbeeeesesaseresesssbseessessssesssssssssessssssssessssssresesssssssesssnans 501

(c) ketabton.com: The Digital Library

Chapter 97: Typedef and tYPe QIIASES ...ttt 503
Section 97.1: BASIC TUPEAET SUNTAX .veiiicieiiiieeiiieeeiieeeitteesteeesteeestteesssteeessaeessaessasasessesesssesasssesesssesssssesssseeessesssssees 503
Section 97.2: More complex USES Of tUREAET ...vviiiiiiiiece et s s s a e e 503
Section 97.3: Declaring multiple tupes with tTUREAET ..cuiiiiiicieeeceeeee e s 504
Section 97.4: Alias declaration WIth "USING" .i.cueiicieeiiiee ettt e e re e ssare e e sbae e steeesbreessaessnbaeesnsaeesnsasennees 504

Chapter 98: type d@AUCTLION ...ttt bbb 505
Section 98.1: Template parameter deduction fOr CONSTIUCTONS wuuiiiviiiiiiiiiiiieiiiieeeniree et creeeereeesreeeesreeenes 505
Section 98.2: AULO TUPE DEAUCTION wiivuiiiciieiiiiiieeittesiesiteesieestesiseesseesssessseesssessseessassssesssesssssssseessessssesssessseesssesssessses 505
NYelaile]a Rl RN Taalo) (o1 =R NUT o1 B l=To (8 o1 110] SR 506

Chapter 99: Trailing retUIN TUPE ..ottt 508
Section 99.1: Avoid qualifying d Nested tUPE NAMIE ..icciiiiiiiieeiieciece et steeste e sreeete e steesaeste e beesaaeenbeenns 508
Section 99.2: LAMDAG EXPIESSIONS ..viiieerveerrieeseesteerteeseestessseesseessesssesssesssesssesssessssesssessssssssesssessssssssesssessssesssessses 508

Chapter 100: AIGNMENT ...t bbbttt a bbb bt snans 509
NYelaile]a N[00 MA@ e} (o]l [Tale Mo le] T aT=Ta) S 509
Section 100.2: Querying the alignmMent Of G TUDE .uiiiiiiciieiiecieceesee ettt reeste e sreeste e te e sraesteesbnesaneens 509

Chapter 101: Perfect FOrWArdiNg ...ttt bbb 511
Section 101.1: FACTOrY fUNCHIONS .iiiciiiiieiieiieiste st esteeste et estee st e s te e teeseteeste e sbaessteesbaesssessseesbeesssesssesssessnsesnsesssessnseens 511

Chapter 102: AECIUPE ...ttt bbbt bbb bbbt 512
NYeTenile]a T [0) Rl = Yo TS ol = <o Ta a] o] ISR 512
Section 102.2: ANOLNEN EXAMIDIE ..iiiiiiiiiieeieeeee et et e st ereeste e st e eteesteesbeebeessaessbeesssessseeseesseesssesssaasssessseesaesssensseas 512

Chapter 103: SFINAE (Substitution Failure IS NOt AN Error) ... 513
Section 103.1: WAL IS SEINAE ..uviiiiieeeiieeerree ettt e eiteeesreeesreeestseeessseessbaeassasesssssassesesssasesssesessssesssseesssssenssesessesesssens 513
Y<Terilo]a T [0 K307 o 1Te I SO URRS 513
Yool AT 0 KT =T aTe] o) [N USSR 515
Yetenile]a [0 R R i [y (=T or (Lo RS S 516
Section 103.5: Overload resolution with a large number of OPLIONS ..ccvviiciiiccieeceece e 518
Section 103.6: trailing decltype in fuNCion tEMPIALES ..iciiiiiiiiieiiecieceere e s sre e s e be e ra e s ae e 519
Section 103.7: enable_if _all / €NABIE I ANU .eoveeeeeieeeeiereeeeecteeeee ettt ere v sresbestesbesbe st eeennen 520

Chapter 104: Undefined BENAVIOK ...t 522
Section 104.1: Reading or writing through a NUIL POINTEE ..iiiiiieiiiiecciee et sre e srre e sbr e e s bne s ba e e saes 522
Section 104.2: Using an uninitialized 10Cal VANADIE ...icciiiiiiciieiieciecieesee ettt ae et esaesteesbaessneereees 522
Section 104.3: Accessing dn OUt-Of-DOUNAS INAEX c..vvieviieiiieeiiieeeiieeecieeescteeesteeerreeesireessreessseeessaeesseeessseeessseeanns 523
Section 104.4: Deleting a derived object via a pointer to a base class that doesn't have a virtual destructor

... 523
Section 104.5: Extending the "std’ or 'POSIX’ NAMESDUCE .iiivcirieiieeiiieeerieeeiiieesirreesstreesseeessesesssesssssesesssessnseessssees 523
Section 104.6: Invalid pointer ArithMETIC .iiiiiiiiiiieiiecieeceeste et e s b e e te e ses e e beebaesssessse e saesssesnses 524
Section 104.7: No return statement for a function with a Non-void return tUPEcceeeveeeecieeeceeecree e 525
Section 104.8: Accessing a dangliNg FEFEIENCE .iiiiiiiviiiiiiiecire st rre e s be e s s e e e sabe e saaeeesbaessabaessnsens 525
Section 104.9: Integer diVISION DU ZEIO .iicuiiiieiieeiiesieeieesie st eseesre s reestaesbeesteessaessbeesseessseesseesseesssessseesssesssesssessses 526
Section 104.10: Shifting by an invalid nuMber of POSIHIONS ..icvviiiieeecieeecie et e et eeere e ssrae e s sreeeesraeeenns 526
Section 104.11: Incorrect pairing of memory allocation and dedlloCAtION ...uiiicveeeiiieeiieeeiiereeree e 526
Section 104.12: SigNed INTEQEr OVEITIOW .iiiciiiiiiiiiiiiiiiecieerte st et et s e e e e s ae s teesbeesaeesbe e saessbeesbeesssessseesseesssesnses 527
Section 104.13: Multiple non-identical definitions (the One Definition RUIE) ..ccceeecieeicieiccieecee e 527
Section 104.14: Modifying 0 CONST OBJECE .viiiiiiiiiciieciecieeee ettt ettt e te e te e s a e st e e steesrtesteesbaesrteenteessnesnsaans 528
Section 104.15: Returning from a [[NOreturn]] fUNCHION ..iiiiiiiiiciieiiecieciecsreeie e ere e e eve e seae s e e baesaseenne s 529
Section 104.16: Infinite teMPIALE FECUISION .uiiiceiiiiiieeeciieeecie e et e eee e ete e e str e e e teeesateeesbteessteesbeeesseeesnseeesnsaessnseeennses 529
Section 104.17: Overflow during conversion to or from floating POINt TUPE ...cvvveeerveeiireeinreecireecieee e 530
Section 104.18: Modifying O StANG TIEEIAL .uviviieciieiiiiieeieerieeie ettt e s be e e s aee e be e ba e steebeesaaessbeesaeennns 530

Section 104.19: Accessing an object AS the WIONG TUDE .ocviiviiiieeeiiiieeeeeeeee et e e sabbbrr e e e e e e e e s s ssaaaes 530

(c) ketabton.com: The Digital Library

Section 104.20: Invalid derived-to-base conversion for pointers to MEMDErSccccvecieeecieeecieeecee e, 531
Section 104.21: Destroying an object that has already been destroyedocvevvieeviieeciieeceeeceeesiee e e 531
Section 104.22: Access to nonexistent member through pointer to Membercccvvievcievienieeceeeeeeeen 532
Section 104.23: Invalid base-to-derived STAtIC CAST .iiiiiiiiiiiiiriiieiieerieeerie e et e srre e e e streesreeesreeserbeesssseesssseesnsseesnns 532
Section 104.24: FIOQtiNG POINT OVEITIOW .uiiiiiiiiieiiieiiiecieeie et et et e st e eteeteesteebe e taesabe e beesssessbeansaessseenseessesssennses 532
Section 104.25: Calling (Pure) Virtual Members From Constructor Or DeStruCtorueeciveeecreeeriieeenveeenveeennes 532
Section 104.26: Function call through mismatched function PoINter tUPE ..cccveeevieeeciieeciee e 533
Chapter 105: OVEerload reSOIULION ...ttt 534
Section 105.1: Categorization of argument t0 PArAMELEr COSE wiivviiiiiiiiiiiiiiiiiee et e e sreeesbeessreessaseesnns 534
Section 105.2: Arithmetic promotions AN CONVEISIONS ..ccuiecveerveriieeieeseesireeseessessseesseessessseesssessseesseessssssseessaens 534
Section 105.3: Overloading on Forwarding REfErENCEuiiiiiiiiiiie ettt see s ree st e e rae e snae e e reas 535
Section 105.4: EXACT MIOTCN cuiiiiiiiiieciecceesite sttt eteete e s e e steesteestae s teesbaesrbeesteessaessseansaessaesnseanseesssesnsessseessseensenes 536
Section 105.5: Overloading on constNess ANd VOIGLIITY .uveceveeiieeerieeeririeesireeerireeerreeerireeessaeesreeesseeesneeesseeessneees 536
Section 105.6: Name [0okup and aCCESS ChECKING .uviiiiiieiiiieeiieeeiieeeitieessttesstreesteeesateeeseteeseaseesseeesnsaeesnsaeessenens 537
Section 105.7: Overloading wWithin a ClaSS NIEIAICRY ..uiiiicciiiiieiiecieecee ettt rte e staesreste e sbaesareebeesrneens 538
Section 105.8: Steps of OVerload RESOIULION .cuiiiiiiiiicieiiie it sieestee st esteesreesteesteeseesteesbeessaesseesseesasessseesseesssesnses 539
Chapter 106: MOVE SEMANTICSccccooiieiiiiiieee ettt bbb bbbt 541
SecCtion 106.1: MOVE SEMANTICS wuviiiiiiiirreeiiiiieeeeiiiireeeesireeeeesssaeeesesssseeessssssneeesssssesesssssssessssssssseessssssneessssssnsesssssssnesss 541
Section 106.2: Using std:move to reduce complexity from O(N*) 10 O(N) cveveeeriiieriieicesesreseseeste e 541
Section 106.3: MOVE CONSIIUCTON wiiiiiiiieeeeciteeeeeiitreeesecrreeessitreeeesssseeeseesssaeeesaassseeessssraessssssssessssssseeessannsensssessseneenans 544
Section 106.4: Re-USe O MOVEA ODJECT .uviiiiiiiiicieiciieecee et e estre e sre e e ste e s sta e e sate e s sateesssteesesteseseessbeessnsaeesnsaeanns 546
Section 106.5: MOVE OSSIGNMIENT wiiiiiiiiiieiiiieeiiireeesieessteessreessiaeesssseessseesssseeessessssseessssesssssesssssessssseessseessssessssasessens 546
Section 106.6: Using move semanticS ON CONTAINEIS wiiiiviuieeerieirreeeeeiireeeeeiirtreessessreeessssssreesssssseesssssssssessesssesessnnns 547
Chapter 107: PIMPI IAIOM ...ttt st bbbt bbb 549
Section 107.1: BASIC PIMPIIAIOM wiiiiiiieiiieeiiieeiiieeeiieesiteesstteessireesssnesssaeessseesssssssssesssssssssssesssssesssssesssssesssssessssessssens 549
(@9 To] o =T il (0150 e TV € OO 551
Section 108.1: BASIC AULO SAMPIE cuuiiiieeiiieiiieiieeiieeste et esteesteereesteesseesseesssessseesseesssessseesseesssessessssesssesssessssesssesnsnes 551
NYelaile]a RO} WA CT=Tal=Talol lo]nn] oYe o I (G ot L PR 551
Section 108.3: AUTO AN PrOXY ODJECTES .uveiiiieeiiieeiiieesiireesiieeesteeesteeessreeessaeessseeesssassssssessssessssesssssesssssesssasessssessnne 552
Section 108.4: auto and EXPression TEMPIATES ..iiciiiiiiiiiiiieiiecie ettt e sreesteeseesreesteesraesteestaessaesseessaesnsesssesssaenns 552
Section 108.5: auto, CONSt, AN FEFEIENCES ..iiiiiiiiciieeeiree ettt e e rte e e ste e e rrae s s rbee e sbeeesbeeesaseeeesteeesssessssseennns 553
Section 108.6: Trailing FEIUIN TUDE ..iiiiviiiiieeiiieeiiieesiieessteesstteesstaeesseessssesesssasssssesssssesssssesssssesesssessnssessssessssseessssens 553
Chapter 109: COPY ENISION ...ttt bbbt bbb bbb bbb be s 555
Section 109.1: PUrPOSE Of COPY ElISION .iiivuiiiiiiiieiieeste et esieeste st e steestessteesteestessbeessaesaseebeessaessseesseesssessseesseesseesnses 555
Section 109.2: GUAraNteed COPY ElISION .uiiiiiieeiriieeeiieeeiteeeiteeeitreesstreesteeesteeessteeessseesssseesassesssseesseessssesesssessssseennns 556
Section 109.3: PArAMETEr ElISION ..iicuiiiieeiieeiiieeieeiteeseesiteerteestessteesteessseebeessaeesseesaesssesssesssaesssessaesssesssessseesssessennses 557
Section 109.4: RetUIN VAIUE ElISION .uviiiiieierireeiiireeeiteeeiteeeiteeesiteeesreeesseeestsesssssessssssesssssessesesssesessseserssesesssessnssessssens 557
Section 109.5: Named return VAIUE ElISION ..iiiiiieeiieeiiieeeieeesieeesieeseteeestteessteessseeessaeessseeesssesesssesssssessssesessseesssens 557
Section 109.6: Copy iNitialiZAtioN ElISION ..uiccieiieeiieeiiesreereestescteeseesreesteesee s sae e beessaesbeesbeassseesaesssessseesseesseesnsennses 558
Chapter 110: FOIA EXPIrESSIONScooooieiiiieiiecteieie ettt s b bbb bbb ae b besasaebnans 559
Section T10.1: UNGAIY FOIAS wiuiiiiiiiieiieeieeseeste ettt e stesste e steestessteesteesaeaesbeesaeessteebaesraessseesbassssesnseesseesnsessseesseesnsennses 559
Section 110.2: BINAIY FOIAS uuiiiiiiiiiiie ettt ettt etee s e te e e s e e e stte e s ate e e sbteesabaeesnbaeesabaseentaeesstesessessstessnsenesnseessnsens 559
Section 110.3: FOIAING OVEI O COMIMIT uviiiuririieiieeitreereeiseessresseessaesssesseessaesssesssessssesssessssssssesssessssesssesssessssesssesssassses 560
ChApPter 11 UNIONS ...ttt bt bbbt bbbt ae e 561
Section M1 UNdefined BENAVIOE .iiiiiiiiiieeciieeciee e creeescteeesreeerreeestreesetreessbeeessaeesabesesssesessseeerssesessseesnssesssesesssaeesans 561
Section 111.2: BASIC UNION FEATUINES ciiiiiiiiiiiiiiiee ettt s e rtree e s srttee e s ssabaae e s esavbaee s sssabaeeesssssanesssnsssnessssssnaessnsases 561
Section T11.3: TUDICAI USE cuviiiieiiieieieeiieesteeteesttesteesteesaseesbeesbaessseebeasssessbeessaassseassaassaesssesssaassseansessssesssessseesseesssennses 561
Chapter 112: Design pattern implementation in CH+ ... 563

Yo 1[o) a I AN HY-Ye oo} (=)l nae 1 1<) o HRUTUTT PSRRI 563

(c) ketabton.com: The Digital Library

Section 112.2: OBSEIVEL DATIEIN uiiiiiieeeciee et ecte e ettt esete e s e e s e e esateeestteeessteessaeessaeesasaeasssaeesssasestesassseessaeesseeannses 565
NY<Terile]a i 1A Tl e Lo o TuU I Sle | 4 (=10 o OSSP 568
Section 112.4: Builder Pattern With FIUENT APL ..viiiieeiiiieereecieeeeieeeeereeeereeesreeesreeesbeeesssesesssesesssesssssessssssesssssesarens 568
Chapter 113: Singleton Design PALLEIN ... 572
Section 13.1: LAZY INIIALZATION .iiieiireeeiiieeeiieeeiieeesteescteeeteeesteeessteesssteeessseessaessnsasessesesssesesssesessseessssesssseeesnseessnsees 572
Section 113.2: Static deinitialization-safe SINGIETON ..iiiiiiiiieiiiieeeee e sre e esre e e sre s srrbe e ssbaeessbaaesnne 573
Section 113.3: Thread-SAfe SINGETON .iiiiiiiiiciieriecie ettt ste e s s te e sbe e s eeste e beesaeeesteesbaesasesaseesseesssesnsennses 573
SECHON T13.4: SUDCIASSES weiiiuiiieeiieiitieeiite e ettt e s ctte e s eteeesteeestteesssteesateesbaeesasaeassbaeassteeesssaeasteessesesnseeesnseeesnsasanssesanses 573
Chapter 114: User-Defined LIterals ...t 575
Section 114.1: Self-made user-defined literal fOr DINANY .iiciiieeicceee e st sre e 575
Section 114.2: Standard user-defined literals fOr dUratioNuvecceeeciee e esree e erreeestre e ebaeeeraee s 575
Section 114.3: User-defined literals with 1ong dOubIE VAIUES ...cccuueeieiiieciee ettt 576
Section 114.4: Standard user-defined literdls fOr StHNGS .iiiviiiiiiieeieerieeee e e a e e reeaeas 576
Section 114.5: Standard user-defined [iterals fOr COMPIEX .uuiiiiiiiiiiieiiieeeriree e erree e e erreesrereeeraeessraeesbeeesareeens 577
Chapter 115: MemMory MANAGEMIENT ...ttt ettt tet et et etet st et eseseseseseseseseseseseneneseaens 578
Section 115.1: Free Storage (Heap, DUNAMIC AHOCATION) covieeeiiiiiiiieeciieccieeeeieeeeeteeeiteeesaaeesvteesbaessevneesnseeesasaes 578
Section 115.2: PIOCEMENT NMEW. cviiiiiieieeiieeiieciteeseesteeteesteesteeteessaessseesbeesssessteesssesssesssessssesssssssesssesssesssessssesssessseesns 579
SECHON T15.3. SEACK 1uttteeitieeiiteeeiteeeereeerteeerreesrtreeebeeesbeeesabeeessseeesssae e ssesessasessbasesasasesssaserssesassaeasssesssssensasessesersrens 580
Chapter 116: C++11 Me@MOIrY MOAEI ... 581
Section 116.1: Need for MemMOry MOAEI ..iiiiiiiiiiie ettt st e e ette e sette e e sbae e sbaeesbaeessbaeesnseeesssaessnsessnnees 582
Section 116.2: FENCE EXAMPIE ..iiiiiiiiietieieeete et esteeteesteesreebeestaesbe s baessseesbe e baesssessseasssesssaesseesssessseesseessseesessseeanes 584
CRAPLEE T17: SCOPES ...ttt ettt sttt a bbb a bbbt b ae b st b st s aes 585
Yetenile]a NI WA RIClloY o o |V e TiaTo] o] 1= ST 585
Section 117.2: SIMPIE DIOCK SCOPE wuiiiiiiiiiiiicie ettt ertee ettt estte e srte e s stee e sbee e sbeeesataeessteeesstaessteessenessseesssaessseensn 585
Chapter 118: STALIC__ASSEIT ...ttt bbb bbbt b e 587
SECHON T18.1: STATIC. ASSEIT tiivviiiireiiitteriteesiteesieeesreeesteeestaeessbreessbaeesbseessbasesssaesssseesssseesssseessssessssseesssneesssasssssaesnsne 587
ChAPLEr T19: CONSEEXPIE ...ttt ettt bbb bbb bbb ae bbb st s s bt s e bt s e s tns 588
Section 119.1: CONSLEXPE VAIGDIES .o.uiiiiiiieciieecciie e ccee st cteeerre e e re e e tre e e bae e s taeesbaeessteessssaeerssasssssesassesssssesseeesnns 588
Section 119.2: STAIC if STATEMENT .iiiiiiiiiiieiie et see s te e e s e e st e e s sbtee st teessbaeesntaesssbaeesssneesssnesssaesnsens 589
Section 119.3: CONSLEXPE TUNCHIONS ..viiiiiiiiieiiieiiecieecieeste st et e steeteeste e s b e e beestressbeebaessseebeasssesssesssaasssessseensaesssennses 590
Chapter 120: One Definition RUI@ (ODRY) ...ttt 592
Section 120.1: ODR violation via overload reSOIULION ...iiiiiieccieeiiieecieeeecree e esre e esereeesrreesstreesreeesreeesssaessnreesnnes 592
Section 120.2: Multiply defined FUNCHION ..iiiiiiiiiiiecteiiiieesiee et e ssee e srtre s sve e s s te e s sabaessateessssessassessnsneesnsnessnns 592
Section 120.3: INNINE FUNCHIONS c.viiiiieciieiieiieecieeste sttt e stestesste e saesteesbaesrtessbeessaessseesseesssesasaessessssessseessessssessenssaesns 593
Chapter 121: Unspecified BENAVIOL ...ttt 595
Section 121.1: Value of an QUt-Of-raNQE BNUM .eiiiciiiiciiecciee ettt ertre e sree e ste e e stee e sabeesssteeessreessaeeesaeesasaeesnses 595
Section 121.2: Evaluation order of fuNCtion ArgUMENTSuiiciiiiiieiiiiee et sre e sstre e sree s stre e sreessabeeesrreessssessnnes 595
Section 121.3: Result of some reinterpret Cast CONVEISIONS .uviiiieeiiirererireeeireeenreeesireeereeessseeesiseeesssesessesssssesssees 596
Section 121.4: Space occupied DY A FEFEIENCE .iiiviii ittt re e s bae e et e e e s rae s nbeeenees 597
Section 121.5: Moved-from state of most standard lIOrary CIASSESuecceeceeciieeieerie e eae e e s ae e 597
Section 121.6: Result of some pointer COMPANISONS ..iiiciiiieeiieiieeieesteere et e steesreeseeseeebeesreesteesbeesseesssesssesssnennns 598
Section 121.7: Static cast from boguS VOIA* VAIUE ...eiiciiiiciiecciee ettt teeestee e te e s srre e snte e s sbae e sraessbeeesnraeeenns 598
Section 121.8: Order of initialization of globals ACrOSS TU ..cciiciieciiiiecieccieeee et ste e ere e e sreeteesbae e 598
Chapter 122: Argument Dependent NAME LOOKUD ...t 600
Section 122.1: What fUNCHIONS A€ FOUNG .uviiiiiiieciiee sttt ertre e ertre e ertre e e rbreestae s sabeeessbaeesabaeesnsasesssessssens 600
Chapter 123: AtEFDULES ...ttt bbb bbbttt 601
SY<Tenilo]a T 174 SR I e 11 L d aT oYU o | a1 1 USSR 601
Section 123.2: [[NOISCAIAT] viiiiierieerieeieeereeieeseeeteesteeseeeseesseesssesseesssessseesaasssessseassesssesssesssessseesseesssesssessseessnenn 601

Section 123.3: [[deprecated]] and [[depreCated("rEASON")TT vveveeeerrrreeeerreiereeeseirreeeessssreeessssseeesssssseeesssssseesssns 602

(c) ketabton.com: The Digital Library

Section 123.4: [[MAYDE_UNUSEAT] .ieicieriiiririirieiiieeiteestesiteesteessesseesseesssessseesssesssesssessssessesssesssssssseessessssessseesssesssees 602
SeCtioN 123.5: [[TNOFEIUIMNTT witreteereertersteenteriteesseestesseesseesssessseesssesssessseesssessseenseesssessseenseessesnseesssesssesnseesssesnseesssesses 603
Chapter 124: RECUISION N CHd ..ottt st s et sseses 605
Section 124.1: Using tail recursion and Fibonnaci-style recursion to solve the Fibonnaci sequence 605
Section 124.2: Recursion with MEMOIZATION ...iiicviiciiiiieriiriierie sttt st e ssbe e e st e s reesssesbessbaesasesseenseesssees 605
Chapter 125: Arithmitic MetaprogramMmMiNg ... 607
Section 125.1: Calculating pOWEr iN OO N) cuveeveerierrieeriienreereestessreesseestessreesseesseesseesssesseesseesssessseesseesssessseessaens 607
Chapter 126: Callable ODBJECES ..ottt 609
Section 126.1: FUNCHION POINTEIS ..cviiiiieiierierieeiteeste ettt st ettt st et e sbee st e bt e sssesaseesseesaseenseessnesaseeseesssesnseesnens 609
Section 126.2: Classes with 0perator() (FUNCIOIS) ..iiciirieriieirienieriieentestessreesieessessseesssesseesseesssesssessssesssessseessnes 609
Chapter 127: Client SErver @XAMPIES ...ttt ettt ssssssssns 611
Section 127.0: HElIO TCP ClENT .uivcieviirieriirieerienteniestesieseestesieessesseessesseessessesssessesssessasssessesssessesssessesssessesssessesssessassses 611
Section 127.2: HEIO TCP SEIVEL .uticiirieeienteeteriestesteetestesitestesstessesueessesssesbesatessesssessesnsessesasensesssessesssessesssensessensesses 612
Chapter 128: CONSt COMTECLNESScccoiviiiiriiieiei ettt sttt bttt nee 616
SeCtion 128.1: TRE BASICS tveevierieriieeniiesiersieestesiteesteesstesteesseesssessessseesssesssesssessasesssessssesssesssessssesssesssessssesssessseesssesns 616
Section 128.2: Const COrrect ClASS DESIGN .vivverririeeriereerierieerierieesiesieessesaessesesssesieessessasssessesssessasssessasssessasssessasses 616
Section 128.3: Const Correct FUNCHION PAFGMETEIS ...viiiiiiiiiieiieeniteesite et snreessereessireessreesareeessseeesasaesnssessnnees 618
Section 128.4: Const Correctness as DOCUMENTALION ..iivcvervieireeriieriieeneesiessieeseesieesreesseestessieesaeessessseessnessessses 620
Chapter 129: PArameter PACKS ...ttt sse s s s s sse s ssessessessessessessns 624
Section 129.1: A template with @ PArAMETEr PACK .ivciirieriiiriiieneeiereeie ettt sie st sbe b sbeetesbessesbeessesbesnns 624
Section 129.2: Expansion Of A pAramMeEter PACK ...iceecererrierieiiineesiesieesieseeste st esresreeresseesesseessesaeesessesssesseessessesans 624
Chapter 130: BUIlA SUSEEMIS ..ot es 625
Section 130.1: Generating Build Environment With CMAKEuiviiicieinieiienieeniesieesieeseesieesieeseesreesieeseessveesanesns 625
Section 130.2: Compiling With GNU MIAKE ..vivueriieriiriinierienienieneetesestesiesssesteesesiesssesiesssessesssessesssessasssessasnsesasnses 626
Section 130.3: BUIIAING WIth SCONS ...uiiiiiiciiiiiieiiisieeseeste st esteestessteeseeseessteesbeeseeessbeesseesssaesseesssesssessseesssessesssesnses 628
Section 130.4: AULOTOOIS (GINU) .uiiiiiiiiiiiiieiiiesiesieesite st et esitessbeestte s besbaessbesabe e baesssessbeessaesssessaesasesnseessaesssesnseenses 628
SECHON T30.5: NINJA 1eeiiteiiiitieiiiee ittt ettt e st st e st e st e e s bt e e sba e s s a bt e s e bt e s asbeesasbeeeabeeesabaeesabeeesabaesanbeesanseesanseesane 629
Section 130.6: NMAKE (Microsoft Program Maintendnce ULIIITY) ..ecvveerveerreineeniieisieeneesieesieeseeseessieeseeessesssessens 629
Chapter 131: Concurrency With OPENMP ... 630
Section 131.1: OpenMP: PArallel SECHIONS .iiciiiiiieiiriieeiieeeiieeesreesrireeertreestreesbeeesteeessteesssteessssessssaesssesessasssssesennees 630
Section 131.2: OpenMP: PArAllE] SECHIONS .iivevvererriereerierterientesiestestestesseseesseseessesssessesaessesssessessessesssessesssessesaens 630
Section 131.3: OpenMP: PArallel FOI LOOD iiiiiiiiiiieiierieriieeseesiessteessesseesseessesseesseesssesssessssessesssessssesssessseesssesssees 631
Section 131.4: OpenMP: Parallel Gathering / REAUCHION ...c.ivcuivveriireeiieeicrieerieeteerere e eress et sresssvesssnesssvensesenns 631
Chapter 132: ReSoUrce MAaNAGEMIENT ..ottt 633
Section 132.1: Resource Acquisition IS INIHAZATION ..cceecvereriierieiienieiereeieseetene et etestestesreebesbesssessesnsesbesnsens 633
Section 132.2: MUtexes & Tredd SAFEIY civviiriiriiirienie ettt sttt se e ste s sbe e sbe e steesbeesaaesabeesbeesanessbessseessns 634
Chapter 133: Storage class SPECITIEIS ... 636
SECHION T33.1 EXEEIN tuuterieesiieete et et st et e sttt st e e s bt e st e et e e btesube e beesabesabeesbaesssesaseestesaseeabe e sbesaseenseesasesaseensaesaseensaensnens 636
SECHION T133.2: FEGISTEL uvtieieeeiee sttt sttt st st e et e st st e bt e sae e s bt e sbeesabe et eesbeesate e seesaeesaseeseesaeesaseesseesaseenseessnesasenns 637
SECHON T33.3: STATIC vuviveveertieriirsieereesiteestee sttt steestee sttt steesteesaaesbeesbaesaseestaessaesaseensaesssesnsesseesssesnseensasssseensessseesssesssassss 637
SECHION T33.4: AULO teruierieeriieiieeiee st ste et e sttt ste e s bt e st e s beesbeesatesabeesbtesateesbeesatesaseesbaesasesasaensaesasesabeesseesasesseesssesasesnsaenns 638
SECHiON 133.5: MULADIE wiouiiiiieiireetereete sttt ettt sb et e e s b st e s b e st e s besabesbe et esbesasesbeenbesbesabesesasessesasenes 638
Chapter 134: Linkage SPEeCIfiCAtIONS ..o 640
Section 134.1: Signal handler for Unix-like 0perating SUSTEM ...ccccereerirreenineerieree sttt 640
Section 134.2: Making a C library header compatible With CH+ ..vivieeiieiiiiiecieeiecieeeere e 640
Chapter 135: Digit SEPAINALONScccooioieiiirieeee ettt s s enees 642
Section 135.1: DIQIt SEPAITLON ..eircvieiiieriereeree ettt st e e st st e st e s bt e bt e ssee s be e beessse s beesneesnseeseesneesnseesseesnsesreennes 642

Chapter 136: CIiNCOMPALIDIIITIESooo oottt ettt e e e e et et e eee et eseeeeeseaeaene 643

(c) ketabton.com: The Digital Library

Section 136.1: RESEIVEA KEUWOIASiiviirvieiieerieriieeseeseesieeseeseesssesssessseesssesssessssesssesssesssesssesssessssesssesseesssesssessses 643
Section 136.2: WeakIly tUped DOINTEIS ...iivcieiiiiirierieeieesiesieestee st esteesttesteesbeesaaesateesbeesasesaseesseesasesseesseessesssasssnesas 643
Section 136.3: JOTO OF SWITCN .iiviiiiiriieitiriteiereetese ettt ettt et st e b sbe et e sbeesbesbeesbesbessbesbeenbesbaensesseensesseensens 643
Chapter 137: Side by Side Comparisons of classic C++ examples solved via C++ vs C++11
VS CHH14 VS CHHTT ettt saesees 644
Section 137.1: Looping through G CONTAINET ..iicuiiiiiiriiiirieiiesiesseeste st e sieeste e e eseesbeesbeesasesbeesseesssesnseesseesssesssessnes 644
Chapter 138: Compiling ANd BUIlAINGcocoviiriririe sttt sseees 645
Section 138.1: COMPINING WIth GCCuiiiiiiriieiieeieerte ettt et st stteste e bt esttesab e e beessbesabeesstesasesabeesssessseenseesssesseensaens 645
Section 138.2: Compiling with Visual Studio (Graphical Interface) - Hello Worldcocveeiveveeniecceeneeeieeieee 646
Section 138.3: ONINE COMPDIIEIS ..ivveirierreriieerteriteestestesiteesstesssesseesseesssessseesssesssessseesssesssessseesssessseesseessessseesssessseen 651
Section 138.4: Compiling with Visual C++ (COMMANA LINE) ..viiciieiiiieieeiieestieecieesieeseeeteesteesreesteesseesseesseessnesseenes 653
Section 138.5: COMPIlING WIth CIONG .veeeerieriiriiriteniineese sttt st ste st este st estesbeesbesaeetesbesssesueensessesnsessesnsessesnsensens 656
Section 138.6: The C++ COMPIIATION PIrOCESS .vvirversveerirerireeriiestesireeseestessseessessseesseessesssessseesssessseesssesssesssaesssessses 656
Section 138.7: Compiling with Code:Blocks (Graphical interfaCe)iciiiiveeiieeieeieecrecre e 658
Chapter 139: Common compile/linker errors (GCC)cocuirimirnsinnesnsiesssssssssssesssessssesssssssens 661
Section 139.1: undefined referEnCe 10 ™ .. ettt s a e e ste e sbe e sate e teesbeesateeteesraeens 661
Section 139.2: error: " was not declared in thiS SCOPE ..uivviiiriiriiiriierieniece ettt e e e sbe e saeesaee 661
Section 139.3: fatal error: ** N SUCH file OF dIFECIOINY .ivviireriierierierierieneertese st seestesiesresieesesbessesbessseseesnsessenns 663
Chapter 140: More undefined behQviors in CH+ ... 664
Section 140.1: Referring to non-static members in iNItiAliZEr lIStSccvcvvveicierieerieeeerre e saee e 664
Chapter 141: Unit TeStING N CHd oottt sttt nsentns 665
SECHION 1411 GOOQIE TESE utiriiiiriiirieeitierte sttt st et e st e st e e be e st e e s bt e sbeesabesabeesbaesasessbaesssessbeenbeesssesaseenbaesssesstaenssesnseen 665
SECHON T41.2: COLCN tiiieieieeterieeteste ettt ettt s e et st e et e st e st e sbesabesbessbe st e esbesbeesbesbesssesbeesbesbaensesbeensesseensesseensessaensensenn 665
Chapter 142: C++ Debugging and Debug-prevention Tools & Techniquesccccceene.e. 667
Section 142.1: SEALIC ANGAIUSIS viivveiriireiierieeiieecieesee st ssteeseesteesteestaesseesseesstessseessassssesnsesssessssesssesssesssesssessssesnseessassns 667
Section 142.2: Segfault aNAlYSis With GDBcccceeveeriiriieirieentenieesieestesteesteestessreesteesatessbeessaesueesssessseesssesssessseesases 668
SeCtion 142.3: CIEAN COUE .iviiriiriirieeierieeitertesteseestesteessesseetestaessesaeessesssensesssensesseensesssensesseensesssensesssensesssensesssensessaen 669
Chapter 143: OptimiZAtion N CHcocooeiiiie sttt st nee 671
Section 143.1: Introduction t0 PEIrfOIMIANCE ...uiiciiiriiiieeiierie ettt ee s be e eese s e s beesbeesasessbeesseesnsesnses 671
Section 143.2: Empty Base Class OptimMIZAtiONeeceerieriieriieenieniesieestesieesieeseesteesseesaesseesseesasesssessseesssessseesn 671
Section 143.3: Optimizing by eXeCUtING IE€SS COTE .iviiriiriiiririiriirierieetesieetestestestestesresieestesssessesssensesssessesasensessens 672
Section 143.4: Using effiCient CONTAINETSiiviiiiiiiiiiiieinie sttt st steesteeseesteesteeseesteesbaesstessseesseesnsesssessssesnsesssassns 673
Section 143.5: Small Object OPIMIZATION ..vivvveireeriiriieerierieereeste st et e ste st esteestesbeesssessseesseesssesseesseesssessseessnens 674
Chapter 144: OPtIMUZALIONccoooieiiecee ettt s bbb nse e 676
Section 144.1: Inline EXPANSION/ININING veerreirrerieireeesieesteessetesesessessesessesessessssessssessesessesessesessessesessesessesessesessessens 676
Section 144.2: Empty base OptIMIZAtION .iiuiiciiiiiiiiiiienierie ettt se e s re s ste e seaesbeesbaesasesbaesssesssessseensness 676
Chapter 145: ProfiliNg ... 678
Section 145.1: Profiling wWith GCC ANA GPIOT ittt sttt e sbeesatesbeesaaesaneeas 678
Section 145.2: Generating callgraph diagrams with gperf2dotc.coeeierereenenienineereniene st see e see e saeene 678
Section 145.3: Profiling CPU Usage with gcc and Google Perf TOOIS ..ccccveeveerieriieniieeerieneesieeeeneseesie e 679
Chapter 146: Refactoring TEChNIQUEScccoiriiiiniiniee sttt sss st snens 681
SECtiON T46.1: GOTO CIEANUD cuvteruterieerieerieriteesieesteesteesseestessteesstesseesseesssessesssessusessseesssesnsesssessssesssesssessssesssessseesnsesas 681
CFEAIES ... R AR AR A s AR s et ae bttt ees 682

YOU MAY QISO LIKE ...ttt e et e et e et e et e e et eee et eseeeeae e s et es et eeeeseseeseeeeseaeeseaseseaseseaseneeesaeeneaes 690

(c) ketabton.com: The Digital Library

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:
https://goalkicker.com/CPlusPlusBook

This C++ Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end
of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official C++ group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 1: Getting started with C++

Version Standard Release Date
C++98 ISO/IEC 14882:1998 1998-09-01

C++03 ISO/IEC 14882:2003 2003-10-16
C++11 ISO/IEC 14882:2011 2011-09-01
C++14 ISO/IEC 14882:2014 2014-12-15
C++17 TBD 2017-01-01
C++20 TBD 2020-01-01

Section 1.1: Hello World

This program prints Hello World! to the standard output stream:

#include <iostream>

int main()

{
}

std::cout << "Hello World!" << std::endl;

See it live on Coliru.

Analysis

Let's examine each part of this code in detail:

e #include <iostream> is a preprocessor directive that includes the content of the standard C++ header file

iostream.

iostreamis a standard library header file that contains definitions of the standard input and output
streams. These definitions are included in the std namespace, explained below.

The standard input/output (I/0) streams provide ways for programs to get input from and output to an
external system -- usually the terminal.

int main() { ... } defines a new function named main. By convention, the main function is called upon
execution of the program. There must be only one main function in a C++ program, and it must always return
a number of the int type.

Here, the int is what is called the function's return type. The value returned by the main function is an exit
code.

By convention, a program exit code of 8 or EXIT_SUCCESS is interpreted as success by a system that executes
the program. Any other return code is associated with an error.

If no return statement is present, the main function (and thus, the program itself) returns @ by default. In this
example, we don't need to explicitly write return 9;.

All other functions, except those that return the void type, must explicitly return a value according to their
return type, or else must not return at all.

GoalKicker.com - C++ Notes for Professionals 2

(c) ketabton.com: The Digital Library

e std::cout << "Hello World!" << std::endl; prints "Hello World!" to the standard output stream:

o stdis a namespace, and : : is the scope resolution operator that allows look-ups for objects by name
within a namespace.

There are many namespaces. Here, we use : : to show we want to use cout from the std namespace.
For more information refer to Scope Resolution Operator - Microsoft Documentation.

o std: :cout is the standard output stream object, defined in iostream, and it prints to the standard
output (stdout).

o << is, in this context, the stream insertion operator, so called because it inserts an object into the
stream object.

The standard library defines the << operator to perform data insertion for certain data types into
output streams. stream << content inserts content into the stream and returns the same, but
updated stream. This allows stream insertions to be chained: std: :cout << "Foo" << " Bar"; prints
"FooBar" to the console.

o "Hello World!" is a character string literal, or a "text literal." The stream insertion operator for
character string literals is defined in file iostream.

o std::endlis a special I/0 stream manipulator object, also defined in file iostream. Inserting a
manipulator into a stream changes the state of the stream.

The stream manipulator std: :endl does two things: first it inserts the end-of-line character and then it
flushes the stream buffer to force the text to show up on the console. This ensures that the data
inserted into the stream actually appear on your console. (Stream data is usually stored in a buffer and
then "flushed" in batches unless you force a flush immediately.)

An alternate method that avoids the flush is:

std::cout << "Hello World!\n";

where \n is the character escape sequence for the newline character.

o The semicolon (;) notifies the compiler that a statement has ended. All C++ statements and class
definitions require an ending/terminating semicolon.

Section 1.2: Comments

A comment is a way to put arbitrary text inside source code without having the C++ compiler interpret it with any
functional meaning. Comments are used to give insight into the design or method of a program.

There are two types of comments in C++:
Single-Line Comments
The double forward-slash sequence // will mark all text until a newline as a comment:

int main()

{

GoalKicker.com - C++ Notes for Professionals 3

(c) ketabton.com: The Digital Library

// This is a single-line comment.
int a; // this also is a single-line comment
int i; // this is another single-line comment

}
C-Style/Block Comments

The sequence /* is used to declare the start of the comment block and the sequence */ is used to declare the end
of comment. All text between the start and end sequences is interpreted as a comment, even if the text is
otherwise valid C++ syntax. These are sometimes called "C-style" comments, as this comment syntax is inherited
from C++'s predecessor language, C:

int main()

{
/%
*# This is a block comment.
*/
int a;
}

In any block comment, you can write anything you want. When the compiler encounters the symbol */, it
terminates the block comment:

int main()
{
/* A block comment with the symbol /*
Note that the compiler is not affected by the second /*
however, once the end-block-comment symbol is reached,
the comment ends.
*/
int a;

The above example is valid C++ (and C) code. However, having additional /* inside a block comment might result in

a warning on some compilers.

Block comments can also start and end within a single line. For example:

void SomeFunction(/# argument 1 #/ int a, /# argument 2 */ int b);

Importance of Comments

As with all programming languages, comments provide several benefits:

Explicit documentation of code to make it easier to read/maintain

Explanation of the purpose and functionality of code

Details on the history or reasoning behind the code

Placement of copyright/licenses, project notes, special thanks, contributor credits, etc. directly in the source
code.

However, comments also have their downsides:

¢ They must be maintained to reflect any changes in the code
e Excessive comments tend to make the code /ess readable

The need for comments can be reduced by writing clear, self-documenting code. A simple example is the use of
explanatory names for variables, functions, and types. Factoring out logically related tasks into discrete functions
goes hand-in-hand with this.

GoalKicker.com - C++ Notes for Professionals 4

(c) ketabton.com: The Digital Library

Comment markers used to disable code

During development, comments can also be used to quickly disable portions of code without deleting it. This is
often useful for testing or debugging purposes, but is not good style for anything other than temporary edits. This
is often referred to as “commenting out”.

Similarly, keeping old versions of a piece of code in a comment for reference purposes is frowned upon, as it
clutters files while offering little value compared to exploring the code's history via a versioning system.

Section 1.3: The standard C++ compilation process
Executable C++ program code is usually produced by a compiler.

A compiler is a program that translates code from a programming language into another form which is (more)
directly executable for a computer. Using a compiler to translate code is called compilation.

C++ inherits the form of its compilation process from its "parent” language, C. Below is a list showing the four major
steps of compilation in C++:

1. The C++ preprocessor copies the contents of any included header files into the source code file, generates
macro code, and replaces symbolic constants defined using #define with their values.

2. The expanded source code file produced by the C++ preprocessor is compiled into assembly language
appropriate for the platform.

3. The assembler code generated by the compiler is assembled into appropriate object code for the platform.

4. The object code file generated by the assembler is linked together with the object code files for any library
functions used to produce an executable file.

¢ Note: some compiled code is linked together, but not to create a final program. Usually, this "linked" code
can also be packaged into a format that can be used by other programs. This "bundle of packaged, usable
code" is what C++ programmers refer to as a library.

Many C++ compilers may also merge or un-merge certain parts of the compilation process for ease or for additional
analysis. Many C++ programmers will use different tools, but all of the tools will generally follow this generalized
process when they are involved in the production of a program.

The link below extends this discussion and provides a nice graphic to help. [1]:
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

Section 1.4: Function

A function is a unit of code that represents a sequence of statements.

Functions can accept arguments or values and return a single value (or not). To use a function, a function call is
used on argument values and the use of the function call itself is replaced with its return value.

Every function has a type signature -- the types of its arguments and the type of its return type.
Functions are inspired by the concepts of the procedure and the mathematical function.

¢ Note: C++ functions are essentially procedures and do not follow the exact definition or rules of
mathematical functions.

Functions are often meant to perform a specific task. and can be called from other parts of a program. A function
must be declared and defined before it is called elsewhere in a program.

GoalKicker.com - C++ Notes for Professionals 5

(c) ketabton.com: The Digital Library

¢ Note: popular function definitions may be hidden in other included files (often for convenience and reuse
across many files). This is a common use of header files.

Function Declaration

A function declaration is declares the existence of a function with its name and type signature to the compiler.
The syntax is as the following:

int add2(int i); // The function is of the type (int) -> (int)

In the example above, the int add2(int i) function declares the following to the compiler:

e The return type is int.
e The name of the function is add2.
e The number of arguments to the functionis 1:
o The first argument is of the type int.
o The first argument will be referred to in the function's contents by the name i.

The argument name is optional; the declaration for the function could also be the following:

int add2(int); // Omitting the function arguments' name is also permitted.

Per the one-definition rule, a function with a certain type signature can only be declared or defined once in an
entire C++ code base visible to the C++ compiler. In other words, functions with a specific type signature cannot be
re-defined -- they must only be defined once. Thus, the following is not valid C++:

int add2(int i); // The compiler will note that add2 is a function (int) -> int
int add2(int j); // As add2 already has a definition of (int) -> int, the compiler
// will regard this as an error.

If a function returns nothing, its return type is written as void. If it takes no parameters, the parameter list should
be empty.

void do_something(); // The function takes no parameters, and does not return anything.
// Note that it can still affect variables it has access to.

Function Call

A function can be called after it has been declared. For example, the following program calls add2 with the value of
2 within the function of main:

#include <iostream>
int add2(int i); // Declaration of add2

// Note: add2 is still missing a DEFINITION.
// Even though it doesn't appear directly in code,
// add2's definition may be LINKED in from another object file.

int main()

{
std::cout << add2(2) << "\n"; // add2(2) will be evaluated at this point,
// and the result is printed.
return 0;

Here, add2(2) is the syntax for a function call.

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

Function Definition

A function definition* is similar to a declaration, except it also contains the code that is executed when the function
is called within its body.

An example of a function definition for add2 might be:

int add2(int i) // Data that is passed into (int i) will be referred to by the name i
{ // while in the function's curly brackets or "scope."
int j =1+ 2; // Definition of a variable j as the value of i+2.
return j; // Returning or, in essence, substitution of j for a function call to
// add2.
}

Function Overloading

You can create multiple functions with the same name but different parameters.

int add2(int i) // Code contained in this definition will be evaluated

{ // when add2() is called with one parameter.
int j =1 + 2;
return j;

}

int add2(int i, int j) // However, when add2() is called with two parameters, the

{ // code from the initial declaration will be overloaded,
intk =1+ 3 +2; // and the code in this declaration will be evaluated
return k; // instead.

}

Both functions are called by the same name add2, but the actual function that is called depends directly on the
amount and type of the parameters in the call. In most cases, the C++ compiler can compute which function to call.
In some cases, the type must be explicitly stated.

Default Parameters
Default values for function parameters can only be specified in function declarations.

int multiply(int a, int b = 7); // b has default value of 7.
int multiply(int a, int b)
{
return a * b; // If multiply() is called with one parameter, the

} // value will be multiplied by the default, 7.

In this example, multiply() can be called with one or two parameters. If only one parameter is given, b will have
default value of 7. Default arguments must be placed in the latter arguments of the function. For example:

int multiply(int a = 10, int b = 20); // This is legal
int multiply(int a = 10, int b); // This is illegal since int a is in the former

Special Function Calls - Operators

There exist special function calls in C++ which have different syntax than name_of_function(valuel, value2,
value3). The most common example is that of operators.

Certain special character sequences that will be reduced to function calls by the compiler, such as !, +, -, *, %, and
<< and many more. These special characters are normally associated with non-programming usage or are used for

GoalKicker.com - C++ Notes for Professionals 7

(c) ketabton.com: The Digital Library

aesthetics (e.g. the + character is commonly recognized as the addition symbol both within C++ programming as
well as in elementary math).

C++ handles these character sequences with a special syntax; but, in essence, each occurrence of an operator is
reduced to a function call. For example, the following C++ expression:

3+3

is equivalent to the following function call:
operator+(3, 3)

All operator function names start with operator.

While in C++'s immediate predecessor, C, operator function names cannot be assigned different meanings by
providing additional definitions with different type signatures, in C++, this is valid. "Hiding" additional function
definitions under one unique function name is referred to as operator overloading in C++, and is a relatively
common, but not universal, convention in C++.

Section 1.5: Visibility of function prototypes and declarations

In C++, code must be declared or defined before usage. For example, the following produces a compile time error:

int main()
{
foo(2); // error: foo is called, but has not yet been declared
}
void foo(int x) // this later definition is not known in main
{
}

There are two ways to resolve this: putting either the definition or declaration of foo() before its usage in main().
Here is one example:

void foo(int x) {} //Declare the foo function and body first

int main()
{
foo(2); // OK: foo is completely defined beforehand, so it can be called here.

}

However it is also possible to "forward-declare" the function by putting only a "prototype" declaration before its
usage and then defining the function body later:

void foo(int); // Prototype declaration of foo, seen by main
// Must specify return type, name, and argument list types
int main()

{
foo(2); // OK: foo is known, called even though its body is not yet defined
}

void foo(int x) //Must match the prototype

{
// Define body of foo here

}

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

The prototype must specify the return type (void), the name of the function (foo), and the argument list variable
types (int), but the names of the arguments are NOT required.

One common way to integrate this into the organization of source files is to make a header file containing all of the
prototype declarations:

// foo.h
void foo(int); // prototype declaration

and then provide the full definition elsewhere:

// foo.cpp --> foo.o
#include "foo.h" // foo's prototype declaration is "hidden" in here
void foo(int x) { } // foo's body definition

and then, once compiled, link the corresponding object file foo.o into the compiled object file where it is used in
the linking phase, main.o:

// main.cpp --> main.o

#include "foo.h" // foo's prototype declaration is "hidden" in here

int main() { foo(2); } // foo is valid to call because its prototype declaration was beforehand.
// the prototype and body definitions of foo are linked through the object files

An “unresolved external symbol” error occurs when the function prototype and call exist, but the function body is
not defined. These can be trickier to resolve as the compiler won't report the error until the final linking stage, and
it doesn't know which line to jump to in the code to show the error.

Section 1.6: Preprocessor
The preprocessor is an important part of the compiler.
It edits the source code, cutting some bits out, changing others, and adding other things.

In source files, we can include preprocessor directives. These directives tells the preprocessor to perform specific
actions. A directive starts with a # on a new line. Example:

#define ZERO ©
The first preprocessor directive you will meet is probably the
#include <something>

directive. What it does is takes all of something and inserts it in your file where the directive was. The hello world
program starts with the line

#include <iostream>

This line adds the functions and objects that let you use the standard input and output.

The Clanguage, which also uses the preprocessor, does not have as many header files as the C++ language, but in
C++ you can use all the C header files.

The next important directive is probably the

GoalKicker.com - C++ Notes for Professionals 9

(c) ketabton.com: The Digital Library

#define something something_else

directive. This tells the preprocessor that as it goes along the file, it should replace every occurrence of something
with something_else. It can also make things similar to functions, but that probably counts as advanced C++.

The something_else is not needed, but if you define something as nothing, then outside preprocessor directives, all
occurrences of something will vanish.

This actually is useful, because of the #if,#else and #ifdef directives. The format for these would be the following:

#if something==true
//code

#else

//more code

#endif

#ifdef thing_that_you_want_to_know_if_is_defined
//code
#endif

These directives insert the code that is in the true bit, and deletes the false bits. this can be used to have bits of
code that are only included on certain operating systems, without having to rewrite the whole code.

GoalKicker.com - C++ Notes for Professionals 10

(c) ketabton.com: The Digital Library

Chapter 2: Literals

Traditionally, a literal is an expression denoting a constant whose type and value are evident from its spelling. For
example, 42 is a literal, while x is not since one must see its declaration to know its type and read previous lines of
code to know its value.

However, C++11 also added user-defined literals, which are not literals in the traditional sense but can be used as a
shorthand for function calls.

Section 2.1: this

Within a member function of a class, the keyword this is a pointer to the instance of the class on which the
function was called. this cannot be used in a static member function.

struct S {
int x;
S& operator=(const S& other) {
X = other.x;
// return a reference to the object being assigned to
return *this;

b

The type of this depends on the cv-qualification of the member function: if X: : f is const, then the type of this
within f is const X%, so this cannot be used to modify non-static data members from within a const member
function. Likewise, this inherits volatile qualification from the function it appears in.

Version = C++11

this can also be used in a brace-or-equal-initializer for a non-static data member.

struct S;

struct T {
T(const S* s);
//

f

struct S {
/] ...
T t{this};

b

this is an rvalue, so it cannot be assigned to.

Section 2.2: Integer literal
An integer literal is a primary expression of the form
e decimal-literal
It is a non-zero decimal digit (1, 2, 3,4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3,4, 5, 6, 7, 8, 9)
int d = 42;
e octal-literal

It is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3,4, 5, 6, 7)

GoalKicker.com - C++ Notes for Professionals 1

(c) ketabton.com: The Digital Library

int o = 052
¢ hex-literal

It is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3,
4' 5' 6I 7' 8' 9l al AI bl BI CI CI dl DI e! EI fl F)

int x = 0x2a; int X = 0X2A;

¢ binary-literal (since C++14)
It is the character sequence Ob or the character sequence OB followed by one or more binary digits (0, 1)
int b = 6b101010; // C++14

Integer-suffix, if provided, may contain one or both of the following (if both are provided, they may appear in any
order:

¢ unsigned-suffix (the character u or the character U)
unsigned int u_1 = 42u;

¢ long-suffix (the character | or the character L) or the long-long-suffix (the character sequence Il or the
character sequence LL) (since C++11)

The following variables are also initialized to the same value:

18446744073709550592ull; // C++11
18'446'744'073'709'550'59211u; // C++14
1844'6744'0737'0955'0592uLL; // C++14
184467 '440737'0'95505'92LLU; // C++14

unsigned long long 11
unsigned long long 12
unsigned long long 13
unsigned long long 14

Notes

Letters in the integer literals are case-insensitive: 0OxDeAdBaBeU and 0XdeadBABEu represent the same number
(one exception is the long-long-suffix, which is either Il or LL, never IL or LI)

There are no negative integer literals. Expressions such as -1 apply the unary minus operator to the value
represented by the literal, which may involve implicit type conversions.

In C prior to C99 (but not in C++), unsuffixed decimal values that do not fit in long int are allowed to have the type
unsigned long int.

When used in a controlling expression of #if or #elif, all signed integer constants act as if they have type
std::iintmax_t and all unsigned integer constants act as if they have type std::uintmax_t.

Section 2.3: true

A keyword denoting one of the two possible values of type bool.

bool ok = true;

if (IF()) A«
ok = false;
goto end;

}

GoalKicker.com - C++ Notes for Professionals 12

(c) ketabton.com: The Digital Library

Section 2.4: false
A keyword denoting one of the two possible values of type bool.

bool ok = true;

if (Mf()) {
ok = false;
goto end;

}

Section 2.5: nuliptr

Version = C++11

A keyword denoting a null pointer constant. It can be converted to any pointer or pointer-to-member type, yielding

a null pointer of the resulting type.

Widget* p = new Widget();
delete p;
p = nullptr; // set the pointer to null after deletion

Note that nullptr is not itself a pointer. The type of nullptr is a fundamental type known as std: :nullptr_t.

void f(int* p);

template <class T>
void g(T* p);

void h(std::nullptr_t p);

int main() {
f(nullptr); // ok
g(nullptr); // error
h(nullptr); // ok

GoalKicker.com - C++ Notes for Professionals

13

(c) ketabton.com: The Digital Library

Chapter 3: operator precedence

Section 3.1: Logical && and || operators: short-circuit

&& has precedence over | |, this means that parentheses are placed to evaluate what would be evaluated together.

c++ uses short-circuit evaluation in && and | | to not do unnecessary executions.
If the left hand side of | | returns true the right hand side does not need to be evaluated anymore.

#include <iostream>
#include <string>

using namespace std;

bool True(string id){
cout << "True" << id << endl;
return true;

}

bool False(string id){
cout << "False" << id << endl;
return false;

int main(){
bool result;
//let's evaluate 3 booleans with || and && to illustrate operator precedence
//precedence does not mean that && will be evaluated first but rather where
//parentheses would be added
//example 1
result =
False("A") || False("B") && False("C");
// eq. False("A") || (False("B") && False("C"))
//FalseA
//FalseB
//"Short-circuit evaluation skip of C"
//A is false so we have to evaluate the right of ||,
//B being false we do not have to evaluate C to know that the result is false

result =

True("A") || False("B") && False("C");

// eq. True("A") || (False("B") && False("C"))

cout << result << " :=====================" << endl;
//TrueA
//"Short-circuit evaluation skip of B"
//"Short-circuit evaluation skip of C"
//A is true so we do not have to evaluate
// the right of || to know that the result is true
//If || had precedence over && the equivalent evaluation would be:
// (True("A") || False("B")) && False("C")
//What would print
//TrueA
//"Short-circuit evaluation skip of B"
//FalseC
//Because the parentheses are placed differently
//the parts that get evaluated are differently
//which makes that the end result in this case would be False because C is false

GoalKicker.com - C++ Notes for Professionals

14

(c) ketabton.com: The Digital Library

}

Section 3.2: Unary Operators

Unary operators act on the object upon which they are called and have high precedence. (See Remarks)

When used postfix, the action occurs only after the entire operation is evaluated, leading to some interesting

arithmetics:
int a = 1;
++a; // result: 2
a--; // result: 1
int minusa=-a; // result: -1
bool b = true;
Ib: // result: true
a=4;
int ¢ = a++/2; // equal to: (a==4) 4 / 2 result:
cout << a << endl; // prints 5!

int d = ++a/2;

int arr[4] = {1,2,3,4};

// equal to: (a+1) == 6 / 2 result:

2 ('a' incremented postfix)

3

is still 1; ptr1 incremented

// receives the value of arr[@] before it is incremented

int *ptr1 = &arr[0]; // points to arr[@] which is 1

int *ptr2 = ptri++; // ptr2 points to arr[@] which

std::cout << *ptri1++ << std::endl; // prints 2

int e = arr[0]++;

std::cout << e << std::endl; // prints 1

std::cout << *ptr2 << std::endl; // prints arr[@] which is now 2

Section 3.3: Arithmetic operators

Arithmetic operators in C++ have the same precedence as they do in mathematics:

Multiplication and division have left associativity(meaning that they will be evaluated from left to right) and they
have higher precedence than addition and subtraction, which also have left associativity.

We can also force the precedence of expression using parentheses (). Just the same way as you would do that in

normal mathematics.

// volume of a spherical shell = 4 pi R*"3 - 4 pi r*3
double vol = 4.0*pi*R*R*R/3.0 - 4.0*pi*rxr*r/3.0;

//Addition:

int a = 2+4/2; // equal to: 2+(4/2) result: 4
int b = (343)/2; // equal to: (3+3)/2 result: 3
//With Multiplication

int ¢ = 3+4/2%6; // equal to: 3+((4/2)*6) result: 15
int d = 3*(3+6)/9; // equal to: (3%(3+6))/9 result: 3
//Division and Modulo

int g = 3-3%1; // equal to: 3 %1 =06 3 -0 3

int h = 3-(3%1); // equal to: 3 %1 =06 3 -0=3

GoalKicker.com - C++ Notes for Professionals

15

(c) ketabton.com: The Digital Library

int 1 = 3-3/1%3; // equal to: 3 /1=3 3%3=0 3-0=3
int 1 = 3-(3/1)%3; // equal to: 3 /1=3 3%3=0 3-08=3
int m = 3-(3/(1%3)); // equal to: 1 %3 =1 3/1=3 3-3=20

Section 3.4: Logical AND and OR operators
These operators have the usual precedence in C++; AND before OR.

// You can drive with a foreign license for up to 66 days
bool can_drive = has_domestic_license || has_foreign_license && num_days <= 60;

This code is equivalent to the following:

// You can drive with a foreign license for up to 60 days
bool can_drive = has_domestic_license || (has_foreign_license && num_days <= 60);

Adding the parenthesis does not change the behavior, though, it does make it easier to read. By adding these
parentheses, no confusion exist about the intent of the writer.

GoalKicker.com - C++ Notes for Professionals

16

(c) ketabton.com: The Digital Library

Chapter 4: Floating Point Arithmetic

Section 4.1: Floating Point Numbers are Weird

The first mistake that nearly every single programmer makes is presuming that this code will work as intended:

float total = 0;
for(float a = 0; a !=2; a += 0.01f) {
total += a;

}

The novice programmer assumes that this will sum up every single number in the range 8, 8.061, 0.02, 0.03,
., 1.97, 1.98, 1.99, toyield the result 199—the mathematically correct answer.

Two things happen that make this untrue:

1. The program as written never concludes. a never becomes equal to 2, and the loop never terminates.
2. If we rewrite the loop logic to check a < 2 instead, the loop terminates, but the total ends up being
something different from 199. On IEEE754-compliant machines, it will often sum up to about 201 instead.

The reason that this happens is that Floating Point Numbers represent Approximations of their assigned
values.

The classical example is the following computation:

double a .13
double b .2
double c %3
if(a + b == ¢)
//This never prints on IEEE754-compliant machines
std::cout << "This Computer is Magic!" << std::endl;
else

std::cout << "This Computer is pretty normal, all things considered." << std::endl;

1]
o0

’

Though what we the programmer see is three numbers written in base10, what the compiler (and the underlying

hardware) see are binary numbers. Because 0.1, 0.2, and 0.3 require perfect division by 16—which is quite easy in

a base-10 system, but impossible in a base-2 system—these numbers have to be stored in imprecise formats,
similar to how the number 1/3 has to be stored in the imprecise form ©.333333333333333. .. in base-10.

//64-bit floats have 53 digits of precision, including the whole-number-part.

double a = 0011111110111001100110011001100110011001100110011001100110011010; //imperfect
representation of 0.1
double b = 0011111111001001100110011001100110011001100110011001100110011010; //imperfect
representation of 0.2
double ¢ = 0011111111010011001100110011001100110011001100110011001100110011; //imperfect

representation of 0.3

double a + b = 9011111111010011001100110011001100110011001100110011001100110100; //Note that this

is not quite equal to the "canonical" 0.3!

GoalKicker.com - C++ Notes for Professionals

17

(c) ketabton.com: The Digital Library

Chapter 5: Bit Operators
Section 5.1: | - bitwise OR

int a = 5; // 8181b (0x85)

int b = 12; // 1108b (0x6C)

int ¢ = a | b; // 11861b (0x06D)

std::cout << "a = " << a << ", b="<<b<<", c="<<c << std::endl;
Output

Why
A bit wise OR operates on the bit level and uses the following Boolean truth table:

true OR true = true
true OR false = true
false OR false = false

When the binary value for a (8161) and the binary value for b (1100) are OR'ed together we get the binary value of

1101:

inta=061801
int b=112806 0 |
intc=1181

The bit wise OR does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator |=:

int a = 5; // 0101b (0x05)
a |=12; // a =8101b | 1101b

Section 5.2: » - bitwise XOR (exclusive OR)

int a = 5; // 0101b (0x05)

int b = 9; // 1001b (0x09)

int ¢ = a * b; // 1100b (0x0C)

std::cout << "a = " << a << ", b="<<b<<", ¢c="<<c << std::endl;
Output

Why
A bit wise XOR (exclusive or) operates on the bit level and uses the following Boolean truth table:

true OR true = false
true OR false = true
false OR false = false

GoalKicker.com - C++ Notes for Professionals 18

(c) ketabton.com: The Digital Library

Notice that with an XOR operation true OR true = false where as with operations true AND/OR true = true,
hence the exclusive nature of the XOR operation.

Using this, when the binary value for a (6161) and the binary value for b (1801) are XOR'ed together we get the binary
value of 1106:

int a
int b

1
- o

intc=1109029

The bit wise XOR does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator *=:

int a = 5; // 8101b (0x@5)
a r=9; // a = 8101b * 1001b

The bit wise XOR can be utilized in many ways and is often utilized in bit mask operations for encryption and
compression.

Note: The following example is often shown as an example of a nice trick. But should not be used in production
code (there are better ways std: :swap () to achieve the same result).

You can also utilize an XOR operation to swap two variables without a temporary:

int a = 42;

int b = 64;

// XOR swap

a "= b;

b A= a;

a "= b;

std::cout << "a = " << a<< ", b="<<b<< "\n":

To productionalize this you need to add a check to make sure it can be used.

void doXORSwap(int& a, int& b)
{

// Need to add a check to make sure you are not swapping the same
// variable with itself. Otherwise it will zero the value.
if (&a != &b)
{
// XOR swap
a *=b;

So though it looks like a nice trick in isolation it is not useful in real code. xor is not a base logical operation,but a
combination of others: arc=~(a&c)&(a | c)

also in 2015+ compilers variables may be assigned as binary:

int cn=0bB111;

GoalKicker.com - C++ Notes for Professionals 19

(c) ketabton.com: The Digital Library

Section 5.3: & - bitwise AND

int a = 6; // 8118b (0x06)

int b = 19; // 1018b (©x0A)

int ¢ = a & b; // 6016b (0x02)

std::cout << "a = " << a << ", b="<<b<<", c="<<c << std::endl;
Output

Why

A bit wise AND operates on the bit level and uses the following Boolean truth table:

TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND FALSE = FALSE

When the binary value for a (8110) and the binary value for b (1818) are AND'ed together we get the binary value of
0010:

int a
int b

1
-

intc=006129

The bit wise AND does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator &=:

int a = 5; // ©101b (0x85)
a &= 10; // a = 0101b & 1010b

Section 5.4: << - left shift

int a 1; // 0601b
int b = a << 1; // 6616b

std::cout << "a = " << a << ", b =" << b << std::endl;
Output

a=1, b =2

Why

The left bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1), essentially
padding the least significant bits with Q's, so shifting the value of 5 (binary 0660 0101) to the left 4 times (e.g. 5 <<

4) will yield the value of 80 (binary 8101 06600). You might note that shifting a value to the left 1 time is also the same
as multiplying the value by 2, example:

int a = 7;
while (a < 200) {

std::cout << "a = << a << std::endl;

a <<= 1;

GoalKicker.com - C++ Notes for Professionals 20

(c) ketabton.com: The Digital Library

}

a=7;

while (a < 200) {
std::cout << "a = " << a << std::endl;
a *= 2;

}

But it should be noted that the left shift operation will shift all bits to the left, including the sign bit, example:

int a = 2147483647; // 6111 1111 1111 1111 1111 1111 1111 1111
int b = a << 1; // 1111 1111 1111 1111 1111 1111 1111 1110
std::cout << "a = " << a<< ", b =" << b << std::endl;

Possible output: a = 2147483647, b = -2

While some compilers will yield results that seem expected, it should be noted that if you left shift a signed number
so that the sign bit is affected, the result is undefined. It is also undefined if the number of bits you wish to shift by
is @ negative number or is larger than the number of bits the type on the left can hold, example:

int a = 1;
int b = a << -1; // undefined behavior
char ¢ = a << 208; // undefined behavior

The bit wise left shift does not change the value of the original values unless specifically assigned to using the bit
wise assignment compound operator <<=:

int a =5; // 0101b
a <<= 1; // a =a << 1;

Section 5.5: >> - right shift

int a = 2; // 00186b
int b = a >>1; // 0001b

std::cout << "a = " << a << ", b =" << b << std::endl;
Output

a=2,b-=1

Why

The right bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1); it should be
noted that while the operation of a right shift is standard, what happens to the bits of a right shift on a signed
negative number is implementation defined and thus cannot be guaranteed to be portable, example:

int a
int b

_2;
a >> 1; // the value of b will be depend on the compiler

It is also undefined if the number of bits you wish to shift by is a negative number, example:

int a 1;

int b = a >> -1; // undefined behavior

GoalKicker.com - C++ Notes for Professionals 21

(c) ketabton.com: The Digital Library

The bit wise right shift does not change the value of the original values unless specifically assigned to using the bit
wise assignment compound operator >>=:

int a = 2; // 0016b
a >>=1; // a=a>>1;

GoalKicker.com - C++ Notes for Professionals 22

(c) ketabton.com: The Digital Library

Chapter 6: Bit Manipulation

Section 6.1: Remove rightmost set bit

C-style bit-manipulation

template <typename T>
T rightmostSetBitRemoved(T n)
{

// static_assert(std::is_integral<T>::value && !std::is_signed<T>::value, "type should be
unsigned”); // For c++11 and later
return n & (n - 1);

}
Explanation

e if nis zero, we have 8 & 0xFF..FF which is zero
e else n can be written Bbxxxxxx10..08 and n - 1is Bbxxxxxx0811..11,s0n & (n - 1) iS Bbxxxxxx000. .00.

Section 6.2: Set all bits

C-style bit-manipulation
x =-1; // -1 ==1111 1111 ... 1111b

(See here for an explanation of why this works and is actually the best approach.)
Using std::bitset

std::bitset<10> x;
x.set(); // Sets all bits to '1'

Section 6.3: Toggling a bit
C-style bit-manipulation
A bit can be toggled using the XOR operator (*).

// Bit x will be the opposite value of what it is currently
number A= 1LL << x;

Using std::bitset

std::bitset<4> num(std::string("0160"));
num.flip(2); // num is now 0000

num.flip(@); // num is now 0001

num.flip(); // num is now 1110 (flips all bits)

Section 6.4: Checking a bit

C-style bit-manipulation

The value of the bit can be obtained by shifting the number to the right x times and then performing bitwise AND
(& on it:

(number >> x) & 1LL; // 1 if the 'x'th bit of 'number' is set, © otherwise

The right-shift operation may be implemented as either an arithmetic (signed) shift or a logical (unsigned) shift. If

GoalKicker.com - C++ Notes for Professionals 23

(c) ketabton.com: The Digital Library

number in the expression number >> x has a signed type and a negative value, the resulting value is
implementation-defined.

If we need the value of that bit directly in-place, we could instead left shift the mask:

(number & (1LL << x)); // (1 << x) if the 'x'th bit of 'number' is set, @ otherwise

Either can be used as a conditional, since all non-zero values are considered true.

Using std::bitset

std::bitset<4> num(std::string("0010"));
bool bit_val = num.test(1); // bit_val value is set to true;

Section 6.5: Counting bits set

The population count of a bitstring is often needed in cryptography and other applications and the problem has
been widely studied.

The naive way requires one iteration per bit:

unsigned value = 1234;
unsigned bits = @; // accumulates the total number of bits set in 'n°

for (bits = 0; value; value >>= 1)
bits += value & 1;

A nice trick (based on Remove rightmost set bit) is:

unsigned bits = @; // accumulates the total number of bits set in 'n°

for (; value; ++bits)
value &= value - 1;

It goes through as many iterations as there are set bits, so it's good when value is expected to have few nonzero
bits.

The method was first proposed by Peter Wegner (in CACM 3 /322 - 1960) and it's well known since it appears in C

Programming Language by Brian W. Kernighan and Dennis M. Ritchie.

This requires 12 arithmetic operations, one of which is a multication:

unsigned popcount(std::uint64_t x)
{
const std::uint64_t m1
const std::uint64_t m2
const std::uint64_t m4

0x5555555555555555; // binary: 0101...
0x3333333333333333; // binary: 00110011..
oxefefofefefefofef; // binary: 0000111100001111

X -= (x >> 1) &ml; // put count of each 2 bits into those 2 bits
x = (x &m2) + ((x >> 2) & m2); // put count of each 4 bits into those 4 bits
X = (x+ (x> 4)) & m4; // put count of each 8 bits into those 8 bits
return (x * h@1) >> 56; // left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...

This kind of implementation has the best worst-case behavior (see Hamming weight for further details).

Many CPUs have a specific instruction (like x86's popcnt) and the compiler could offer a specific (non standard)

GoalKicker.com - C++ Notes for Professionals

24

(c) ketabton.com: The Digital Library

built in function. E.g. with g++ there is:

int __builtin_popcount (unsigned x);

Section 6.6: Check if an integer is a power of 2

Then & (n - 1) trick (see Remove rightmost set bit) is also useful to determine if an integer is a power of 2:
bool power_of_2 = n & !(n & (n - 1));

Note that without the first part of the check (n &&), @ is incorrectly considered a power of 2.

Section 6.7: Setting a bit

C-style bit manipulation
A bit can be set using the bitwise OR operator ().

// Bit x will be set
number |= 1LL << x;

Using std::bitset
set(x) or set(x, true) - sets bit at position x to 1.

std::bitset<5> num(std::string("01100"));
num.set(0); // num is now 01101
num.set(2); // num is still 01101
num.set(4,true); // num is now 11110

Section 6.8: Clearing a bit
C-style bit-manipulation
A bit can be cleared using the bitwise AND operator (&).

// Bit x will be cleared
number &= ~(1LL << Xx);

Using std::bitset
reset(x) or set(x, false) - clears the bit at position x.

std::bitset<5> num(std::string("01100"));
num.reset(2); // num is now 01000
num.reset(0); // num is still 01000
num.set(3,false); // num is now 00060

Section 6.9: Changing the nth bit to x

C-style bit-manipulation

// Bit n will be set if x is 1 and cleared if x is ©.
number A= (-x * number) & (1LL << n);

Using std::bitset

set(n,val) - sets bit n to the value val.

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

std::bitset<5> num(std::string("006100"));
num.set(@,true); // num is now 00101
num.set(2,false); // num is now 00001

Eection 6.10: Bit Manipulation Application: Small to Capital
etter

One of several applications of bit manipulation is converting a letter from small to capital or vice versa by choosing
a mask and a proper bit operation. For example, the a letter has this binary representation 81(1)00601 while its
capital counterpart has 01(0)06001. They differ solely in the bit in parenthesis. In this case, converting the a letter
from small to capital is basically setting the bit in parenthesis to one. To do so, we do the following:

/**
convert small letter to captial letter.

a: 011000017
mask: 11011111 <-- (8xDF) 11(0)11111

a&mask: 01000001 <-- A letter
***/

The code for converting a letter to A letter is

#include <cstdio>

int main()

{
char op1 = 'a'; // "a" letter (i.e. small case)
int mask = OxDF; // choosing a proper mask
printf("a (AND) mask = A\n");
printf("%c & OxDF = %c\n", op1l, opl & mask);
return 0;

}

The result is

§ g++ main.cpp -o test1

$./test
a (AND) mask = A
a & OxDF = A

GoalKicker.com - C++ Notes for Professionals 26

(c) ketabton.com: The Digital Library

Chapter 7: Bit fields

Bit fields tightly pack C and C++ structures to reduce size. This appears painless: specify the number of bits for
members, and compiler does the work of co-mingling bits. The restriction is inability to take the address of a bit
field member, since it is stored co-mingled. sizeof () is also disallowed.

The cost of bit fields is slower access, as memory must be retrieved and bitwise operations applied to extract or
modify member values. These operations also add to executable size.

Section 7.1: Declaration and Usage

struct FileAttributes

{
unsigned int ReadOnly: 1;

unsigned int Hidden: 1;

b

Here, each of these two fields will occupy 1 bit in memory. It is specified by : 1 expression after the variable names.
Base type of bit field could be any integral type (8-bit int to 64-bit int). Using unsigned type is recommended,
otherwise surprises may come.

If more bits are required, replace "1" with number of bits required. For example:

struct Date

{
unsigned int Year : 13; // 2213 = 8192, enough for "year" representation for long time
unsigned int Month: 4; // 224 = 16, enough to represent 1-12 month values.
unsigned int Day: 5, // 32

b

The whole structure is using just 22 bits, and with normal compiler settings, sizeof this structure would be 4 bytes.

Usage is pretty simple. Just declare the variable, and use it like ordinary structure.

Date d;

d.Year = 2016;

d.Month = 7;

d.Day = 22;

std::cout << "Year:" << d.Year << std::endl <<
"Month:" << d.Month << std::endl <<
"Day:" << d.Day << std::endl;

GoalKicker.com - C++ Notes for Professionals 27

(c) ketabton.com: The Digital Library

Chapter 8: Arrays

Arrays are elements of the same type placed in adjoining memory locations. The elements can be individually
referenced by a unique identifier with an added index.

This allows you to declare multiple variable values of a specific type and access them individually without needing
to declare a variable for each value.

Section 8.1: Array initialization

An array is just a block of sequential memory locations for a specific type of variable. Arrays are allocated the same
way as normal variables, but with square brackets appended to its name [] that contain the number of elements
that fit into the array memory.

The following example of an array uses the typ int, the variable name array0fInts, and the number of elements
[5] that the array has space for:

int arrayOfInts[5];

An array can be declared and initialized at the same time like this
int arrayOfInts[5] = {10, 20, 30, 40, 50};

When initializing an array by listing all of its members, it is not necessary to include the number of elements inside
the square brackets. It will be automatically calculated by the compiler. In the following example, it's 5:

int arrayOfInts[] = {10, 20, 30, 40, 50};

It is also possible to initialize only the first elements while allocating more space. In this case, defining the length in
brackets is mandatory. The following will allocate an array of length 5 with partial initialization, the compiler
initializes all remaining elements with the standard value of the element type, in this case zero.

int arrayOfInts[5] = {10,20}; // means 10, 20, 0, 0, ©
Arrays of other basic data types may be initialized in the same way.

char arrayOfChars[5]; // declare the array and allocate the memory, don't initialize
char arrayOfChars[5] = { 'a', 'b', 'c', 'd', 'e' } ; //declare and initialize

double arrayOfDoubles[5]

{1.14159, 2.14159, 3.14159, 4.14159, 5.14159},;

string arrayOfStrings[5] { "C++", "is", "super", "duper", "great!"};
It is also important to take note that when accessing array elements, the array's element index(or position) starts
from 0.

int array[5] = { 10/#Element no.@%/, 28/*Element no.1+%/, 30, 40, 50/*Element no.4*/};
std::cout << array[4]; //outputs 50
std::cout << array[@]; //outputs 10

GoalKicker.com - C++ Notes for Professionals 28

(c) ketabton.com: The Digital Library

Section 8.2: A fixed size raw array matrix (that is, a 2D raw
array)

// A fixed size raw array matrix (that is, a 2D raw array).
#include <iostream>

#include <iomanip>

using namespace std;

auto main() -> int

{
int const n_rows = 3;
int const n_cols = 7;
int const m[n_rows][n_cols] = // A raw array matrix.
{
{ 1! 2! 3! 4! 5! 6! 7 }I
{ 8, 9, 10, 11, 12, 13, 14 },
{ 15, 16, 17, 18, 19, 20, 21 }
H
for(int y = 0; y < n_rows; ++y)
{
for(int x = @; x < n_cols; ++x)
{
cout << setw(4) << m[y][x]; // Note: do NOT use m[y,x]!
}
cout << '\n';
}
}
Output:

1234567891011121314151617 1819 20 21

C++ doesn't support special syntax for indexing a multi-dimensional array. Instead such an array is viewed as an
array of arrays (possibly of arrays, and so on), and the ordinary single index notation [i] is used for each level. In
the example above m[y] refers to row y of m, where y is a zero-based index. Then this row can be indexed in turn,
e.g. m[y][x], which refers to the xth item — or column — of row y.

l.e. the last index varies fastest, and in the declaration the range of this index, which here is the number of columns
per row, is the last and “innermost” size specified.

Since C++ doesn't provide built-in support for dynamic size arrays, other than dynamic allocation, a dynamic size
matrix is often implemented as a class. Then the raw array matrix indexing notation m[y][x] has some cost, either
by exposing the implementation (so that e.g. a view of a transposed matrix becomes practically impossible) or by
adding some overhead and slight inconvenience when it's done by returning a proxy object from operator[]. And
so the indexing notation for such an abstraction can and will usually be different, both in look-and-feel and in the
order of indices, e.g. m(x,y) orm.at(x,y) orm.item(x,y).

Section 8.3: Dynamically sized raw array

// Example of raw dynamic size array. It's generally better to use std::vector.
#include <algorithm> // std::sort

#include <iostream>

using namespace std;

auto int_from(istream& in) -> int { int x; in >> x; return x; }

GoalKicker.com - C++ Notes for Professionals 29

(c) ketabton.com: The Digital Library

auto main()

-> int
{
cout << "Sorting n integers provided by you.\\n";
cout << "n? ";
int const n = int_from(cin);
intx* = new int[n]; // < Allocation of array of n items.
for(int i = 1; i <= n; ++i)
{
cout << "The #" << i << " number, please: ";
a[i-1] = int_from(cin);
}
sort(a, a+n);
for(int i = 0; i < n; ++i) { cout << af[i] << ' '; }
cout << '"\\n';
delete[] a;
}

A program that declares an array T a[n]; where n is determined a run-time, can compile with certain compilers
that support C99 variadic length arrays (VLAs) as a language extension. But VLAs are not supported by standard C++.
This example shows how to manually allocate a dynamic size array via a new[]-expression,

int* a = new int[n]; // « Allocation of array of n items.

... then use it, and finally deallocate it via a delete[]-expression:

delete[] a;

The array allocated here has indeterminate values, but it can be zero-initialized by just adding an empty
parenthesis (), like this: new int[n](). More generally, for arbitrary item type, this performs a value-initialization.

As part of a function down in a call hierarchy this code would not be exception safe, since an exception before the
delete[] expression (and after the new[]) would cause a memory leak. One way to address that issue is to
automate the cleanup via e.g. a std: :unique_ptr smart pointer. But a generally better way to address it is to just
use a std: :vector: that's what std: :vector is there for.

Section 8.4: Array size: type safe at compile time

#include // size t, ptrdiff t
A R P Machinery:
using Size = ptrdiff_t;

template< class Item, size t n >

constexpr auto n_items(Item (&)[n]) noexcept
-> Size

{ return n; }

#include
using namespace std;
auto main()

GoalKicker.com - C++ Notes for Professionals 30

(c) ketabton.com: The Digital Library

-> int

{

int const all {3, 1, 4, 1, 5, 9, 2, 6, 5, 4};

Size const n n items(a);

int b[n] = {}; // An array of the same size as a.

(void) b;
cout <}

The Cidiom for array size, sizeof(a)/sizeof(a[@]), will accept a pointer as argument and will then generally yield
an incorrect result.
For C++11

using C++11 you can do:
std: :extent<decltype(MyArray)>::value;

Example:

char MyArray[] = { 'X','0",'c"','e" };
const auto n = std::extent<decltype(MyArray)>::value;
std::cout << n << "\n"; // Prints 4

Up till C++17 (forthcoming as of this writing) C++ had no built-in core language or standard library utility to obtain
the size of an array, but this can be implemented by passing the array by reference to a function template, as shown
above. Fine but important point: the template size parameter is a size_t, somewhat inconsistent with the signed
Size function result type, in order to accommodate the g++ compiler which sometimes insists on size_t for
template matching.

With C++17 and later one may instead use std: :size, which is specialized for arrays.

Section 8.5: Expanding dynamic size array by using
std::vector

// Example of std::vector as an expanding dynamic size array.

#include <algorithm> // std::sort
#include <iostream>
#include <vector> // std::vector

using namespace std;
int int_from(std::istream& in) { int x = @; in >> x; return x; }

int main()

{
cout << "Sorting integers provided by you.\n";
cout << "You can indicate EOF via F6 in Windows or Ctrl+D in Unix-land.\n";
vector<int> a; // < Zero size by default.

while(cin)

{

cout << "One number, please, or indicate EOF: ";

int const x = int_from(cin);

if(!cin.fail()) { a.push_back(x); } // Expands as necessary.
}

sort(a.begin(), a.end());

GoalKicker.com - C++ Notes for Professionals 31

(c) ketabton.com: The Digital Library

int const n = a.size();
for(int i = 0; i < n; ++i) { cout << a[i] << ' "; }
cout << '\n';

std: :vector is a standard library class template that provides the notion of a variable size array. It takes care of all
the memory management, and the buffer is contiguous so a pointer to the buffer (e.g. &[0] or v.data()) can be
passed to API functions requiring a raw array. A vector can even be expanded at run time, via e.g. the push_back
member function that appends an item.

The complexity of the sequence of n push_back operations, including the copying or moving involved in the vector
expansions, is amortized O(n). “Amortized”; on average.

Internally this is usually achieved by the vector doubling its buffer size, its capacity, when a larger buffer is needed.
E.g. for a buffer starting out as size 1, and being repeatedly doubled as needed for n=17 push_back calls, this
involves 1 +2 +4 + 8 + 16 = 31 copy operations, which is less than 2xn = 34. And more generally the sum of this
sequence can't exceed 2xn.

Compared to the dynamic size raw array example, this vector-based code does not require the user to supply (and
know) the number of items up front. Instead the vector is just expanded as necessary, for each new item value
specified by the user.

Section 8.6: A dynamic size matrix using std::vector for
storage

Unfortunately as of C++14 there's no dynamic size matrix class in the C++ standard library. Matrix classes that
support dynamic size are however available from a number of 3rd party libraries, including the Boost Matrix library
(a sub-library within the Boost library).

If you don't want a dependency on Boost or some other library, then one poor man's dynamic size matrix in C++ is
just like

vector<vector<int>> m(3, vector<int>(7));

... where vector is std: :vector. The matrix is here created by copying a row vector n times where n is the number
of rows, here 3. It has the advantage of providing the same m[y] [x] indexing notation as for a fixed size raw array
matrix, but it's a bit inefficient because it involves a dynamic allocation for each row, and it's a bit unsafe because
it's possible to inadvertently resize a row.

A more safe and efficient approach is to use a single vector as storage for the matrix, and map the client code's (x, y)
to a corresponding index in that vector:

// A dynamic size matrix using std::vector for storage.

e e Machinery:
#include // std::copy

#include // assert

#include // std::initializer list

#include // std::vector

#include // ptrdiff t

namespace my {

using Size = ptrdiff_t;
using std::initializer list;
using std::vector;

GoalKicker.com - C++ Notes for Professionals 32

(c) ketabton.com: The Digital Library

template< class Item >
class Matrix

{

private:

vector items ;

Size n_cols_;

auto index for(Size const x, Size const y) const
-> Size
{ return y*n cols + x; }

public:
auto n_rows() const -> Size { return items .size()/n _cols ; }
auto n_cols() const -> Size { return n_cols ; }

auto item(Size const x, Size const y)
-> Item&
{ return items [index for(x, y)l; }

auto item(Size const x, Size const y) const
-> Item consté&
{ return items [index for(x, y)Il; }

Matrix(): n cols (0) {}
Matrix(Size const n cols, Size const n rows)

items (n_cols*n_rows)
, h_cols (n _cols)

{}

Matrix(initializer list< initializer list > const& values)
items ()

, n_cols (values.size() == 07? 0 : values.begin()->size())

{

for(auto const& row : values)

{

assert(Size(row.size()) == n _cols_);

items .insert(items_ .end(), row.begin(), row.end());

}

}

}

} // namespace my

using my::Matrix;

auto some matrix()

-> Matrix

{

return

{

{ 1, 2, 3, 4, 5, 6, 71},
{ 8, 9, 10, 11, 12, 13, 14 },
{ 15, 16, 17, 18, 19, 20, 21 }
+

}

#include

#include

using namespace std;
auto main() -> int

{
Matrix const m = some matrix();
assert(m.n_cols() == 7);

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

assert(m.n_rows() == 3);

for(int y = 0, y end m.n_rows(); y <y end; ++y)
{

for(int x = 0, x _end
{

cout << Note: not “m[y][x]!
}

cout <}

}

m.n_cols(); x < x_end; ++x)

Output:

1234567891011121314151617 18 19 20 21

The above code is not industrial grade: it's designed to show the basic principles, and serve the needs of students

learning C++.

For example, one may define operator() overloads to simplify the indexing notation.

GoalKicker.com - C++ Notes for Professionals

34

(c) ketabton.com: The Digital Library

Chapter 9: Iterators

Section 9.1: Overview

Iterators are Positions

Iterators are a means of navigating and operating on a sequence of elements and are a generalized extension of

pointers. Conceptually it is important to remember that iterators are positions, not elements. For example, take the
following sequence:

ABC

The sequence contains three elements and four positions

Elements are things within a sequence. Positions are places where meaningful operations can happen to the
sequence. For example, one inserts into a position, before or after element A, not into an element. Even deletion of
an element (erase(A)) is done by first finding its position, then deleting it.

From Iterators to Values
To convert from a position to a value, an iterator is dereferenced:

auto my_iterator = my_vector.begin(); // position
auto my_value = *my_iterator; // value

One can think of an iterator as dereferencing to the value it refers to in the sequence. This is especially useful in
understanding why you should never dereference the end() iterator in a sequence:

Al B C|] |

e R

1 1

| +-- An iterator here has no value. Do not dereference it!
R An iterator here dereferences to the value A.

In all the sequences and containers found in the C++ standard library, begin() will return an iterator to the first
position, and end () will return an iterator to one past the last position (not the last position!). Consequently, the
names of these iterators in algorithms are oftentimes labelled first and last:

Al B|C|] |
i
1 1

I |

+- first +- last

It is also possible to obtain an iterator to any sequence, because even an empty sequence contains at least one

GoalKicker.com - C++ Notes for Professionals 35

(c) ketabton.com: The Digital Library

position:
+---+
(.
+-- -+

In an empty sequence, begin() and end() will be the same position, and neither can be dereferenced:
+---+

+--—+
t
|

+- empty_sequence.begin()
|

+- empty_sequence.end()

The alternative visualization of iterators is that they mark the positions between elements:

+- first +- last

and dereferencing an iterator returns a reference to the element coming after the iterator. Some situations where
this view is particularly useful are:

e insert operations will insert elements into the position indicated by the iterator,
¢ erase operations will return an iterator corresponding to the same position as the one passed in,
e an iterator and its corresponding reverse iterator are located in the same .position between elements

Invalid Iterators

An iterator becomes invalidated if (say, in the course of an operation) its position is no longer a part of a sequence.
An invalidated iterator cannot be dereferenced until it has been reassigned to a valid position. For example:

std::vector<int>::iterator first;
{

std: :vector<int> foo;

first = foo.begin(); // first is now valid
} // foo falls out of scope and is destroyed
// At this point first is now invalid

The many algorithms and sequence member functions in the C++ standard library have rules governing when
iterators are invalidated. Each algorithm is different in the way they treat (and invalidate) iterators.

Navigating with Iterators

As we know, iterators are for navigating sequences. In order to do that an iterator must migrate its position
throughout the sequence. Iterators can advance forward in the sequence and some can advance backwards:

auto first = my_vector.begin();
++first; // advance the iterator 1 position

GoalKicker.com - C++ Notes for Professionals 36

(c) ketabton.com: The Digital Library

std: :advance(first, 1); // advance the iterator 1 position

first = std::next(first); // returns iterator to the next element
std::advance(first, -1); // advance the iterator 1 position backwards
first = std::next(first, 20); // returns iterator to the element 20 position
forward

first = std::prev(first, 5); // returns iterator to the element 5 position
backward

auto dist = std::distance(my_vector.begin(), first); // returns distance between two iterators.

Note, second argument of std::distance should be reachable from the first one(or, in other words first should be
less or equal than second).

Even though you can perform arithmetic operators with iterators, not all operations are defined for all types of
iterators.a = b + 3; would work for Random Access Iterators, but wouldn't work for Forward or Bidirectional
Iterators, which still can be advanced by 3 position with something likeb = a; ++b; ++b; ++b;.Soitis
recommended to use special functions in case you are not sure what is iterator type (for example, in a template
function accepting iterator).

Iterator Concepts

The C++ standard describes several different iterator concepts. These are grouped according to how they behave in
the sequences they refer to. If you know the concept an iterator models (behaves like), you can be assured of the
behavior of that iterator regardless of the sequence to which it belongs. They are often described in order from the
most to least restrictive (because the next iterator concept is a step better than its predecessor):

e Input Iterators : Can be dereferenced only once per position. Can only advance, and only one position at a
time.

e Forward Iterators : An input iterator that can be dereferenced any number of times.

¢ Bidirectional Iterators : A forward iterator that can also advance backwards one position at a time.

e Random Access Iterators : A bidirectional iterator that can advance forwards or backwards any number of
positions at a time.

e Contiguous Iterators (since C++17) : A random access iterator that guaranties that underlying data is
contiguous in memory.

Algorithms can vary depending on the concept modeled by the iterators they are given. For example, although
random_shuffle can be implemented for forward iterators, a more efficient variant that requires random access
iterators could be provided.

Iterator traits

Iterator traits provide uniform interface to the properties of iterators. They allow you to retrieve value, difference,
pointer, reference types and also category of iterator:

template<class Iter>
Iter find(Iter first, Iter last, typename std::iterator_traits<Iter>::value_type val) {
while (first != last) {
if (*first == val)
return first;
++first;
}

return last;

Category of iterator can be used to specialize algorithms:

template<class BidirIt>

GoalKicker.com - C++ Notes for Professionals 37

(c) ketabton.com: The Digital Library

void test(BidirIt a, std::bidirectional_iterator_tag) {
std::cout << "Bidirectional iterator is used" << std::endl;

}

template<class ForwIt>
void test(ForwIt a, std::forward_iterator_tag) {
std::cout << "Forward iterator is used" << std::endl;

}

template<class Iter>
void test(Iter a) {
test(a, typename std::iterator_traits<Iter>::iterator_category());

}

Categories of iterators are basically iterators concepts, except Contiguous Iterators don't have their own tag, since it
was found to break code.

Section 9.2: Vector Iterator

begin returns an iterator to the first element in the sequence container.
end returns an iterator to the first element past the end.

If the vector object is const, both begin and end return a const_iterator. If you want a const_iterator to be
returned even if your vector is not const, you can use cbegin and cend.

Example:

#include <vector>
#include <iostream>

int main() {
std::vector<int> v = { 1, 2, 3, 4, 5 }; //intialize vector using an initializer_list

for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it) {
std::cout << *it << " ":
}
return 90;
}
Output:
12345

Section 9.3: Map Iterator

An iterator to the first element in the container.

If a map object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator.

// Create a map and insert some values
std: :map<char,int> mymap;

mymap['b"'] = 100;

mymap|['a'] = 200;

mymap['c"'] 300;

GoalKicker.com - C++ Notes for Professionals 38

(c) ketabton.com: The Digital Library

// Iterate over all tuples
for (std::map<char,int>::iterator it = mymap.begin(); it !'= mymap.end(); ++it)
std::cout << it->first << " => " << it->second << '\n';

Output:

a=>200
b=>100
c=>300

Section 9.4: Reverse lterators

If we want to iterate backwards through a list or vector we can use a reverse_iterator. A reverse iterator is made
from a bidirectional, or random access iterator which it keeps as a member which can be accessed through base().

To iterate backwards use rbegin() and rend() as the iterators for the end of the collection, and the start of the
collection respectively.

For instance, to iterate backwards use:

std::vector<int> v{1, 2, 3, 4, 5};
for (std::vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it)
{
cout << *it;
} // prints 54321

A reverse iterator can be converted to a forward iterator via the base () member function. The relationship is that
the reverse iterator references one element past the base() iterator:

std::vector<int>::reverse_iterator r = v.rbegin();

std::vector<int>::iterator i = r.base();

assert(&*r == &+*(i-1)); // always true if r, (i-1) are dereferenceable
// and are not proxy iterators

S
| 1121314715 |
S

t t t T
| | | |
rend() | rbegin() end()
| rbegin() .base()
begin()
rend() .base()

In the visualization where iterators mark positions between elements, the relationship is simpler:

| 31415
e T R e 2
"
I
end()
| rbegin()
begin() rbegin().base()
rend()
rend() .base()

GoalKicker.com - C++ Notes for Professionals 39

(c) ketabton.com: The Digital Library

Section 9.5: Stream Iterators

Stream iterators are useful when we need to read a sequence or print formatted data from a container:

// Data stream. Any number of various whitespace characters will be OK.
std::istringstream istr("1\t 2 34");
std::vector<int> v;

// Constructing stream iterators and copying data from stream into vector.
std: :copy(
// Iterator which will read stream data as integers.
std::istream_iterator<int>(istr),
// Default constructor produces end-of-stream iterator.
std::istream_iterator<int>(),
std::back_inserter(v));

// Print vector contents.

std: :copy(v.begin(), v.end(),
//Will print values to standard output as integers delimeted by " -- "
std::ostream_iterator<int>(std::cout, " -- "));

The example program will print1 -- 2 -- 3 -- 4 --to standard output.

Section 9.6: C lterators (Pointers)

// This creates an array with 5 values.
const int array[] = {1, 2, 3, 4, 5 };

#ifdef BEFORE_CPP11

// You can use ‘sizeof to determine how many elements are in an array.
const int* first = array;
const int* afterLast = first + sizeof(array) / sizeof(array[0]);

// Then you can iterate over the array by incrementing a pointer until
// it reaches past the end of our array.
for (const int* i = first; i < afterlLast; ++i) {

std::cout << *i << std::endl;

}

#else
// With C++11, you can let the STL compute the start and end iterators:
for (auto i = std::begin(array); i !'= std::end(array); ++i) {

std::cout << *i << std::endl;

}

#endif

This code would output the numbers 1 through 5, one on each line like this:

A W N -

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

5

Breaking It Down
const int array[] = {1, 2, 3, 4, 5 };

This line creates a new integer array with 5 values. C arrays are just pointers to memory where each value is stored

together in a contiguous block.

const int* first = array;
const intx afterlLast = first + sizeof(array) / sizeof(array[@]);

These lines create two pointers. The first pointer is given the value of the array pointer, which is the address of the

first element in the array. The sizeof operator when used on a C array returns the size of the array in bytes.
Divided by the size of an element this gives the number of elements in the array. We can use this to find the
address of the block after the array.

for (const int* i = first; i < afterlLast; ++i) {

Here we create a pointer which we will use as an iterator. It is initialized with the address of the first element we
want to iterate over, and we'll continue to iterate as long as i is less than afterLast, which means as long as i is
pointing to an address within array.

std::cout << *i << std::endl;

Finally, within the loop we can access the value our iterator i is pointing to by dereferencing it. Here the
dereference operator * returns the value at the address in i.

Section 9.7: Write your own generator-backed iterator

A common pattern in other languages is having a function that produces a "stream" of objects, and being able to
use loop-code to loop over it.

We can model this in C++ as

template<class T>
struct generator_iterator {
using difference_type=std::ptrdiff_t;
using value_type=T;
using pointer=T*;
using reference=T;
using iterator_category=std::input_iterator_tag;
std::optional<T> state;
std::function< std::optional<T>() > operation;
// we store the current element in "state" if we have one:
T operator*() const {
return #*state;
}
// to advance, we invoke our operation. If it returns a nullopt
// we have reached the end:
generator_iterator& operator++() {
state = operation();
return *this;
}
generator_iterator operator++(int) {
auto r = *this;

GoalKicker.com - C++ Notes for Professionals

1

(c) ketabton.com: The Digital Library

++(*this) ;
return r;
}
// generator iterators are only equal if they are both in the "end" state:
friend bool operator==(generator_iterator const& lhs, generator_iterator const& rhs) {
if (!lhs.state && !rhs.state) return true;
return false;

b

friend bool operator!=(generator_iterator const& lhs, generator_iterator const& rhs) {

return !(lhs==rhs);
}
// We implicitly construct from a std::function with the right signature:
generator_iterator(std::function< std::optional<T>() > f):operation(std::move(f))
{

if (operation)

state = operation();

}
// default all special member functions:
generator_iterator(generator_iterator &&) =default;
generator_iterator(generator_iterator const&) =default;
generator_iterator& operator=(generator_iterator &&) =default;
generator_iterator& operator=(generator_iterator const&) =default;
generator_iterator() =default;

i
live example.
We store the generated element early so we can more easily detect if we are already at the end.

As the function of an end generator iterator is never used, we can create a range of generator iterators by only
copying the std: : function once. A default constructed generator iterator compares equal to itself, and to all other
end-generator-iterators.

GoalKicker.com - C++ Notes for Professionals 42

(c) ketabton.com: The Digital Library

Chapter 10: Basic input/output in c++

Section 10.1: user input and standard output

#include <iostream>

int main()

{
int value;
std::cout << "Enter a value: " << std::endl;
std::cin >> value;
std::cout << "The square of entered value is: " << value * value << std::endl;
return 0;
}

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 11: Loops

A loop statement executes a group of statements repeatedly until a condition is met. There are 3 types of primitive
loops in C++: for, while, and do...while.

Section 11.1: Range-Based For

Version = C++11

for loops can be used to iterate over the elements of a iterator-based range, without using a numeric index or
directly accessing the iterators:

vector<float> v = {0.4f, 12.5f, 16.234f};

for(auto val: v)

{

std::cout << val << c

}

std::cout << std::endl;
This will iterate over every element in v, with val getting the value of the current element. The following statement:
for (for-range-declaration : for-range-initializer) statement

is equivalent to:

{
auto&& __range = for-range-initializer;
auto __begin = begin-expr, __end = end-expr;
for (; __begin != __end; ++__begin) {
for-range-declaration = *__begin;
statement
}
}
Version = C++17
{
auto&& __range = for-range-initializer;
auto __begin = begin-expr;
auto __end = end-expr; // end is allowed to be a different type than begin in C++17
for (; __begin !'= __end; ++__begin) {
for-range-declaration = *__begin;
statement
}
}

This change was introduced for the planned support of Ranges TS in C++20.

In this case, our loop is equivalent to:

{
auto&& __range = v;
auto __begin = v.begin(), __end = v.end();
for (; __begin != __end; ++__begin) {

auto val = *__begin;
std::cout << val <<

GoalKicker.com - C++ Notes for Professionals 44

(c) ketabton.com: The Digital Library

}

Note that auto val declares a value type, which will be a copy of a value stored in the range (we are copy-initializing
it from the iterator as we go). If the values stored in the range are expensive to copy, you may want to use const

auto &val. You are also not required to use auto; you can use an appropriate typename, so long as it is implicitly
convertible from the range's value type.

If you need access to the iterator, range-based for cannot help you (not without some effort, at least).

If you wish to reference it, you may do so:

vector<float> v = {0.4f, 12.5f, 16.234f};

for(float &val: v)
{

std::cout << val << "

b

You could iterate on const reference if you have const container:

const vector<float> v = {0.4f, 12.5f, 16.234f};

for(const float &val: v)
{

std::cout << val << "

}

One would use forwarding references when the sequence iterator returns a proxy object and you need to operate
on that object in a non-const way. Note: it will most likely confuse readers of your code.

vector<bool> v(10);

for(auto&& val: v)
{

val = true;

}

The "range" type provided to range-based for can be one of the following;:

e Language arrays:

float arr[] = {0.4f, 12.5f, 16.234f};

for(auto val: arr)

{

std::cout << val << "

}
Note that allocating a dynamic array does not count:

float *arr = new float[3]{0.4f, 12.5f, 16.234f};

for(auto val: arr) //Compile error.

{

std::cout << val << "

}

GoalKicker.com - C++ Notes for Professionals 45

(c) ketabton.com: The Digital Library

e Any type which has member functions begin() and end(), which return iterators to the elements of the type.
The standard library containers qualify, but user-defined types can be used as well;

struct Rng

{
float arr[3];

// pointers are iterators

const float* begin() const {return &arr[0];}
const float* end() const {return &arr[3];}
float* begin() {return &arr[0];}

float* end() {return &arr[3];}

iE
int main()
{
Rng rng = {{8.4f, 12.5f, 16.234f}};
for(auto val: rng)
{
std::cout << val << " ";
}
}

¢ Any type which has non-member begin(type) and end(type) functions which can found via argument
dependent lookup, based on type. This is useful for creating a range type without having to modify class type
itself:

namespace Mine

{
struct Rng {float arr[3];};
// pointers are iterators
const float* begin(const Rng &rng) {return &rng.arr[0];}
const float* end(const Rng &rng) {return &rng.arr[3];}
float* begin(Rng &rng) {return &rng.arr[0];}
float* end(Rng &rng) {return &rng.arr[3];}
}
int main()
{
Mine::Rng rng = {{0.4f, 12.5f, 16.234f}};
for(auto val: rng)
{
std::cout << val << " ";
}
}

Section 11.2: For loop

A for loop executes statements in the loop body, while the loop condition is true. Before the loop initialization
statement is executed exactly once. After each cycle, the iteration execution partis executed.

A for loop is defined as follows:

for (/*initialization statement#*/; /*condition#*/; /*iteration execution#*/)

GoalKicker.com - C++ Notes for Professionals 46

(c) ketabton.com: The Digital Library

{
// body of the loop

}

Explanation of the placeholder statements:

e initialization statement: This statement gets executed only once, at the beginning of the for loop. You
can enter a declaration of multiple variables of one type, suchasint i = 8, a = 2, b = 3. These variables
are only valid in the scope of the loop. Variables defined before the loop with the same name are hidden
during execution of the loop.

e condition: This statement gets evaluated ahead of each loop body execution, and aborts the loop if it
evaluates to false.

e iteration execution: This statement gets executed after the loop body, ahead of the next condition
evaluation, unless the for loop is aborted in the body (by break, goto, return or an exception being thrown).
You can enter multiple statements in the iteration execution part, such as a++, b+=10, c=b+a.

The rough equivalent of a for loop, rewritten as a while loop is:

/*initialization#*/

while (/*condition#*/)

{
// body of the loop; using 'continue’' will skip to increment part below
/*iteration execution#*/

The most common case for using a for loop is to execute statements a specific number of times. For example,
consider the following:

for(int 1 = 0; i < 10; i++) {
std::cout << i << std::endl;

A

}

Avalid loop is also:

for(int a = @, b = 18, c = 20; (at+b+c < 100); c--, b++, a+=c) {

std::cout << a << " " << b << << ¢ << std::endl;

}

An example of hiding declared variables before a loop is:

int 1 = 99; //1i = 99
for(int 1 = 0; i < 10; i++) { //we declare a new variable i
//some operations, the value of i ranges from @ to 9 during loop execution

}

//after the loop is executed, we can access i with value of 99

But if you want to use the already declared variable and not hide it, then omit the declaration part:

int i = 99; //1i = 99
for(i =0; i < 10; i++) { //we are using already declared variable i
//some operations, the value of i ranges from @ to 9 during loop execution

}

//after the loop is executed, we can access i with value of 10

Notes:

GoalKicker.com - C++ Notes for Professionals 47

(c) ketabton.com: The Digital Library

¢ The initialization and increment statements can perform operations unrelated to the condition statement, or
nothing at all - if you wish to do so. But for readability reasons, it is best practice to only perform operations
directly relevant to the loop.

¢ Avariable declared in the initialization statement is visible only inside the scope of the for loop and is
released upon termination of the loop.

e Don't forget that the variable which was declared in the initialization statement can be modified during
the loop, as well as the variable checked in the condition.

Example of a loop which counts from 0 to 10:

for (int counter = @; counter <= 10; ++counter)

{

std::cout << counter << '\n';

’

}

// counter is not accessible here (had value 11 at the end)

Explanation of the code fragments:

e int counter = @ initializes the variable counter to 0. (This variable can only be used inside of the for loop.)

e counter <= 10 is a Boolean condition that checks whether counter is less than or equal to 10. If it is true,
the loop executes. If it is false, the loop ends.

* ++counter is an increment operation that increments the value of counter by 1 ahead of the next condition
check.

By leaving all statements empty, you can create an infinite loop:
// infinite loop

for (53)
std::cout << "Never ending!\n";

The while loop equivalent of the above is:

// infinite loop
while (true)
std::cout << "Never ending!\n";

However, an infinite loop can still be left by using the statements break, goto, or return or by throwing an
exception.

The next common example of iterating over all elements from an STL collection (e.g., a vector) without using the
<algorithm> header is:

std::vector<std::string> names = {"Albert Einstein", "Stephen Hawking", "Michael Ellis"};
for(std::vector<std::string>::iterator it = names.begin(); it !'= names.end(); ++it) {
std::cout << *it << std::endl;

}

Section 11.3: While loop

A while loop executes statements repeatedly until the given condition evaluates to false. This control statement is
used when it is not known, in advance, how many times a block of code is to be executed.

For example, to print all the numbers from 0 up to 9, the following code can be used:

int i = 9;

GoalKicker.com - C++ Notes for Professionals 48

(c) ketabton.com: The Digital Library

while (i < 10)

{
std::cout << i << " ";
++i; // Increment counter

}
std::cout << std::endl; // End of line; "@ 1 2 3 456 7 8 9" is printed to the console

Version = C++17

Note that since C++17, the first 2 statements can be combined

while (int i = 0; i < 10)
//... The rest is the same

To create an infinite loop, the following construct can be used:

while (true)

{

// Do something forever (however, you can exit the loop by calling 'break’

}

There is another variant of while loops, namely the do. . .while construct. See the do-while loop example for more
information.

Section 11.4: Do-while loop

A do-while loop is very similar to a while loop, except that the condition is checked at the end of each cycle, not at
the start. The loop is therefore guaranteed to execute at least once.

The following code will print @, as the condition will evaluate to false at the end of the first iteration:

int 1 =0;
do
{

std::cout << i;
++i; // Increment counter

}
while (i < 9);
std::cout << std::endl; // End of line; @ is printed to the console

Note: Do not forget the semicolon at the end of while(condition) ;, which is needed in the do-while construct.

In contrast to the do-while loop, the following will not print anything, because the condition evaluates to false at
the beginning of the first iteration:

int i =0;
while (i < 0)
{

std::cout << i;
++i; // Increment counter

¥

std::cout << std::endl; // End of line; nothing is printed to the console

Note: A while loop can be exited without the condition becoming false by using a break, goto, or return statement.

int i = 0;
do
{

GoalKicker.com - C++ Notes for Professionals 49

(c) ketabton.com: The Digital Library

std::cout << i;
++i; // Increment counter

if (i > 5)
{

break;
}

}

while (true);
std::cout << std::endl; // End of line; © 1 2 3 4 5 is printed to the console

A trivial do-while loop is also occasionally used to write macros that require their own scope (in which case the
trailing semicolon is omitted from the macro definition and required to be provided by the user):

#define BAD_MACRO(x) f1(x); f2(x); f3(x);

// Only the call to f1 is protected by the condition here
if (cond) BAD_MACRO(var);

#define GOOD_MACRO(x) do { f1(x); f2(x); f3(x); } while(9)

// All calls are protected here
if (cond) GOOD_MACRO(var);

Section 11.5: Loop Control statements : Break and Continue

Loop control statements are used to change the flow of execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed. The break and continue are
loop control statements.

The break statement terminates a loop without any further consideration.

for (int 1 = 0; 1 < 10; i++)
{
if (i == 4)
break; // this will immediately exit our loop
std::cout << i << '\n';

)

The above code will print out:

The continue statement does not immediately exit the loop, but rather skips the rest of the loop body and goes to
the top of the loop (including checking the condition).

for (int 1 = 0; 1 < 6; i++)

{
if (i % 2 == 8) // evaluates to true if i is even
continue; // this will immediately go back to the start of the loop
/* the next line will only be reached if the above "continue" statement
does not execute */
std::cout << i << " is an odd number\n";
}

The above code will print out:

GoalKicker.com - C++ Notes for Professionals 50

(c) ketabton.com: The Digital Library

1 is an odd number
3 is an odd number
5 is an odd number

Because such control flow changes are sometimes difficult for humans to easily understand, break and continue
are used sparingly. More straightforward implementation are usually easier to read and understand. For example,
the first for loop with the break above might be rewritten as:

for (int i = 0; i < 4; i++)
{
std::cout << i << '\n';

}
The second example with continue might be rewritten as:

for (int i = 0; i < 6; i++)
{
if (1 %2 !'=0) {
std::cout << i <<

is an odd number\n";

}

Section 11.6: Declaration of variables in conditions

In the condition of the for and while loops, it's also permitted to declare an object. This object will be considered to
be in scope until the end of the loop, and will persist through each iteration of the loop:

for (int i = 0; i < 5; ++i) {
do_something(i);

}

// i is no longer in scope.

for (auto& a : some_container) {
a.do_something();

}

// a is no longer in scope.

while(std::shared_ptr<Object> p = get_object()) {
p->do_something();
}

// p is no longer in scope.

However, it is not permitted to do the same with a do. . .while loop; instead, declare the variable before the loop,
and (optionally) enclose both the variable and the loop within a local scope if you want the variable to go out of
scope after the loop ends:

//This doesn't compile
do {

s = do_something();
} while (short s > 0);

// Good
short s;
do {
s = do_something();
} while (s > 0);

GoalKicker.com - C++ Notes for Professionals 51

(c) ketabton.com: The Digital Library

This is because the statement portion of a do. . .while loop (the loop's body) is evaluated before the expression
portion (the while) is reached, and thus, any declaration in the expression will not be visible during the first iteration
of the loop.

Section 11.7: Range-for over a sub-range

Using range-base loops, you can loop over a sub-part of a given container or other range by generating a proxy
object that qualifies for range-based for loops.

template<class Iterator, class Sentinel=Iterator>
struct range_t {
Iterator b;
Sentinel e;
Iterator begin() const { return b; }
Sentinel end() const { return e; }
bool empty() const { return begin()==end(); }
range_t without_front(std::size_t count=1) const {
if (std::is_same< std::random_access_iterator_tag, typename
std::iterator_traits<Iterator>::iterator_category >{}) {
count = (std::min)(std::size_t(std::distance(b,e)), count);
}
return {std::next(b, count), e};
}
range_t without_back(std::size_t count=1) const {
if (std::is_same< std::random_access_iterator_tag, typename
std::iterator_traits<Iterator>::iterator_category >{}) {
count = (std::min)(std::size_t(std::distance(b,e)), count);
}
return {b, std::prev(e, count)};
}
i

template<class Iterator, class Sentinel>

range_t<Iterator, Sentinel> range(Iterator b, Sentinal e) {
return {b,e};

}

template<class Iterable>

auto range(Iterable& r) {
using std::begin; using std::end;
return range(begin(r),end(r));

}

template<class C>

auto except_first(C& ¢) {
auto r = range(c);
if (r.empty()) return r;
return r.without_front();

}

now we can do:

std::vector<int> v = {1,2,3,4};

for (auto i : except_first(v))
std::cout << i << '"\n’;

and print out

GoalKicker.com - C++ Notes for Professionals 52

(c) ketabton.com: The Digital Library

3
4

Be aware that intermediate objects generated in the for(:range_expression) part of the for loop will have
expired by the time the for loop starts.

GoalKicker.com - C++ Notes for Professionals

53

(c) ketabton.com: The Digital Library

Chapter 12: File I/O

C++ file 1/0 is done via streams. The key abstractions are:
std: :istream for reading text.

std: :ostream for writing text.

std: :streambuf for reading or writing characters.
Formatted input uses operator>>.
Formatted output uses operator<<.

Streams use std: :locale, e.g., for details of the formatting and for translation between external encodings and the
internal encoding.

More on streams: <iostream> Library

Section 12.1: Writing to a file

There are several ways to write to a file. The easiest way is to use an output file stream (ofstream) together with the
stream insertion operator (<<):

std::ofstream os("foo.txt");
if(os.is_open()){

os << "Hello World!";
}

Instead of <<, you can also use the output file stream's member function write():

std::ofstream os("foo.txt");
if(os.is_open()){
char data[] = "Foo";

// Writes 3 characters from data -> "Foo".
os.write(data, 3);

After writing to a stream, you should always check if error state flag badbit has been set, as it indicates whether the
operation failed or not. This can be done by calling the output file stream's member function bad():

0s << "Hello Badbit!"; // This operation might fail for any reason.
if (os.bad())
// Failed to write!

Section 12.2: Opening a file
Opening a file is done in the same way for all 3 file streams (ifstream, ofstream, and fstream).

You can open the file directly in the constructor:

std::ifstream ifs("foo.txt"); // ifstream: Opens file "foo.txt" for reading only.

std::ofstream ofs("foo.txt"); // ofstream: Opens file "foo.txt" for writing only.

GoalKicker.com - C++ Notes for Professionals 54

(c) ketabton.com: The Digital Library

std::fstream iofs("foo.txt"); // fstream: Opens file "foo.txt" for reading and writing.

Alternatively, you can use the file stream's member function open():

std::ifstream ifs;
ifs.open("bar.txt"); // ifstream: Opens file "bar.txt" for reading only.

std::ofstream ofs;
ofs.open("bar.txt"); // ofstream: Opens file "bar.txt" for writing only.

std::fstream iofs;
iofs.open("bar.txt"); // fstream: Opens file "bar.txt" for reading and writing.

You should always check if a file has been opened successfully (even when writing). Failures can include: the file
doesn't exist, file hasn't the right access rights, file is already in use, disk errors occurred, drive disconnected ...
Checking can be done as follows:

// Try to read the file 'foo.txt'.
std::ifstream ifs("fooo.txt"); // Note the typo; the file can't be opened.

// Check if the file has been opened successfully.
if (!ifs.is_open()) {

// The file hasn't been opened; take appropriate actions here.
throw CustomException(ifs, "File could not be opened");

When file path contains backslashes (for example, on Windows system) you should properly escape them:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs("c:\\\\folder\\\\foo.txt"); // using escaped backslashes

Version = C++11

or use raw literal:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs(R"(c:\\folder\\foo.txt)"); // using raw literal

or use forward slashes instead:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs("c:/folder/foo.txt");

Version = C++11

If you want to open file with non-ASCIl characters in path on Windows currently you can use non-standard wide
character path argument:

// Open the file 'npumep\\foo.txt' on Windows.
std::ifstream ifs(LR"(npumep\\foo.txt)"); // using wide characters with raw literal

Section 12.3: Reading from a file

There are several ways to read data from a file.

If you know how the data is formatted, you can use the stream extraction operator (>>). Let's assume you have a file
named foo.txt which contains the following data:

GoalKicker.com - C++ Notes for Professionals 55

(c) ketabton.com: The Digital Library

John Doe 25 4 6 1987
Jane Doe 15 5 24 1976

Then you can use the following code to read that data from the file:

// Define variables.
std::ifstream is("foo.txt");
std::string firstname, lastname;
int age, bmonth, bday, byear;

// Extract firstname, lastname, age, bday month, bday day, and bday year in that order.
// Note: '>>' returns false if it reached EOF (end of file) or if the input data doesn't
// correspond to the type of the input variable (for example, the string "foo" can't be
// extracted into an 'int' variable).
while (is >> firstname >> lastname >> age >> bmonth >> bday >> byear)

// Process the data that has been read.

The stream extraction operator >> extracts every character and stops if it finds a character that can't be stored or if
it is a special character:

¢ For string types, the operator stops at a whitespace () or at a newline (\n).
¢ For numbers, the operator stops at a non-number character.

This means that the following version of the file foo.txt will also be successfully read by the previous code:

John
Doe 25
4 6 1987

Jane
Doe
15 5
24

1976

The stream extraction operator >> always returns the stream given to it. Therefore, multiple operators can be
chained together in order to read data consecutively. However, a stream can also be used as a Boolean expression
(as shown in the while loop in the previous code). This is because the stream classes have a conversion operator
for the type bool. This bool() operator will return true as long as the stream has no errors. If a stream goes into an
error state (for example, because no more data can be extracted), then the bool() operator will return false.
Therefore, the while loop in the previous code will be exited after the input file has been read to its end.

If you wish to read an entire file as a string, you may use the following code:

// Opens 'foo.txt'.
std::ifstream is("foo.txt");
std::string whole_file;

// Sets position to the end of the file.
is.seekg(@, std::ios::end);

// Reserves memory for the file.
whole_file.reserve(is.tellg());

// Sets position to the start of the file.
is.seekg(@, std::ios::beg);

GoalKicker.com - C++ Notes for Professionals 56

(c) ketabton.com: The Digital Library

// Sets contents of 'whole_file' to all characters in the file.
whole_file.assign(std: :istreambuf_iterator<char>(is),
std::istreambuf_iterator<char>());

This code reserves space for the string in order to cut down on unneeded memory allocations.
If you want to read a file line by line, you can use the function getline():

std::ifstream is("foo.txt");
// The function getline returns false if there are no more lines.
for (std::string str; std::getline(is, str);) {

// Process the line that has been read.

}

If you want to read a fixed number of characters, you can use the stream's member function read():

std::ifstream is("foo.txt");
char str[4];

// Read 4 characters from the file.
is.read(str, 4);

After executing a read command, you should always check if the error state flag failbit has been set, as it
indicates whether the operation failed or not. This can be done by calling the file stream's member function fail():

is.read(str, 4); // This operation might fail for any reason.

if (is.fail())
// Failed to read!

Section 12.4: Opening modes

When creating a file stream, you can specify an opening mode. An opening mode is basically a setting to control
how the stream opens the file.

(All modes can be found in the std: :ios namespace.)

An opening mode can be provided as second parameter to the constructor of a file stream or to its open() member
function:

std::ofstream os("foo.txt", std::ios::out | std::ios::trunc);

std::ifstream is;
is.open("foo.txt", std::ios::in | std::ios::binary);

It is to be noted that you have to set ios: :in or ios: :out if you want to set other flags as they are not implicitly set
by the iostream members although they have a correct default value.

If you don't specify an opening mode, then the following default modes are used:

e ifstream- in
e ofstream- out
e fstream- in and out

The file opening modes that you may specify by design are:

GoalKicker.com - C++ Notes for Professionals 57

(c) ketabton.com: The Digital Library

Mode Meaning For Description

app append Output Appends data at the end of the file.
binary binary Input/Output Input and output is done in binary.
in input Input Opens the file for reading.

out output Output Opens the file for writing.

trunc truncate Input/Output Removes contents of the file when opening.
ate atend Input Goes to the end of the file when opening.

Note: Setting the binary mode lets the data be read/written exactly as-is; not setting it enables the translation of
the newline "\n' character to/from a platform specific end of line sequence.

For example on Windows the end of line sequence is CRLF ("\r\n").
Write: "\n" => "\r\n"
Read: "\r\n" =>"\n"

Section 12.5: Reading an ASCII file into a std::string

std::ifstream f("file.txt");

if (f)
{

std::stringstream buffer;
buffer << f.rdbuf();
f.close();

// The content of "file.txt" is available in the string ‘buffer.str()’

The rdbuf () method returns a pointer to a streambuf that can be pushed into buffer via the
stringstream: :operator<< member function.

Another possibility (popularized in Effective STL by Scott Meyers) is:

std::ifstream f("file.txt");

if (f)
{

std::string str((std::istreambuf_iterator<char>(f)),
std::istreambuf_iterator<char>());

// Operations on ‘str' ...

}

This is nice because requires little code (and allows reading a file directly into any STL container, not only strings)
but can be slow for big files.

NOTE: the extra parentheses around the first argument to the string constructor are essential to prevent the most
vexing parse problem.

Last but not least:
std::ifstream f("file.txt");
if (f)

{
f.seekg(9, std::ios::end);

GoalKicker.com - C++ Notes for Professionals 58

(c) ketabton.com: The Digital Library

const auto size = f.tellg();

std::string str(size, ' ');
f.seekg(0);

f.read(&str[0], size);
f.close();

// Operations on “str ...

which is probably the fastest option (among the three proposed).

Section 12.6: Writing files with non-standard locale settings

If you need to write a file using different locale settings to the default, you can use std: :1ocale and
std: :basic_ios: :imbue() to do that for a specific file stream:

Guidance for use:

¢ You should always apply a local to a stream before opening the file.
¢ Once the stream has been imbued you should not change the locale.

Reasons for Restrictions: Imbuing a file stream with a locale has undefined behavior if the current locale is not
state independent or not pointing at the beginning of the file.

UTF-8 streams (and others) are not state independent. Also a file stream with a UTF-8 locale may try and read the
BOM marker from the file when it is opened; so just opening the file may read characters from the file and it will
not be at the beginning.

#include <iostream>
#include <fstream>
#include <locale>

int main()
{
std::cout << "User-preferred locale setting is
<< std::locale("").name().c_str() << std::endl;

// Write a floating-point value using the user's preferred locale.
std::ofstream ofs1;

ofs1.imbue(std: :locale(""));

ofs1.open("filel.txt");

ofs1 << 78123.456 << std::endl;

// Use a specific locale (names are system-dependent)
std::ofstream ofs2;

ofs2.imbue(std: :locale("en_US.UTF-8"));
ofs2.open("file2.txt");

ofs2 << 78123.456 << std::endl;

// Switch to the classic "C" locale
std::ofstream ofs3;
ofs3.imbue(std: :locale: :classic());
ofs3.open("file3.txt");

ofs3 << 78123.456 << std::endl;

Explicitly switching to the classic "C" locale is useful if your program uses a different default locale and you want to

GoalKicker.com - C++ Notes for Professionals 59

(c) ketabton.com: The Digital Library

ensure a fixed standard for reading and writing files. With a "C" preferred locale, the example writes

78,123.456
78,123.456
78123 .456

If, for example, the preferred locale is German and hence uses a different number format, the example writes

78 123,456
78,123.456
78123.456

(note the decimal comma in the first line).

Section 12.7: Checking end of file inside a loop condition, bad
practice?

eof returns true only after reading the end of file. It does NOT indicate that the next read will be the end of
stream.

while (!f.eof())

{
// Everything is OK
f >> buffer;

// What if *only* now the eof / fail bit is set?

/* Use ‘buffer’™ */
}

You could correctly write:

while (!f.eof())

{
f >> buffer >> std::ws;
if (f.fail())
break;
/* Use ‘buffer™ */
}
but

while (f >> buffer)

{
/* Use ‘buffer’ */

}

is simpler and less error prone.
Further references:

e std: :ws: discards leading whitespace from an input stream
e std::basic_jos::fail: returns true if an error has occurred on the associated stream

GoalKicker.com - C++ Notes for Professionals

60

(c) ketabton.com: The Digital Library

Section 12.8: Flushing a stream

File streams are buffered by default, as are many other types of streams. This means that writes to the stream may
not cause the underlying file to change immediately. In oder to force all buffered writes to take place immediately,
you can flush the stream. You can do this either directly by invoking the flush() method or through the std: : flush
stream manipulator:

std::ofstream os("foo.txt");
0s << "Hello World!" << std::flush;

char data[3] = "Foo";
os.write(data, 3);
os.flush();

There is a stream manipulator std: :endl that combines writing a newline with flushing the stream:

// Both following lines do the same thing
0s << "Hello World!\n" << std::flush;
0s << "Hello world!" << std::endl;

Buffering can improve the performance of writing to a stream. Therefore, applications that do a lot of writing
should avoid flushing unnecessarily. Contrary, if I/0 is done infrequently, applications should consider flushing
frequently in order to avoid data getting stuck in the stream object.

Section 12.9: Reading a file into a container

In the example below we use std: :string and operator>> to read items from the file.

std::ifstream file("file3.txt");
std::vector<std::string> v;

std::string s;
while(file >> s) // keep reading until we run out

{
v.push_back(s);

}

In the above example we are simply iterating through the file reading one "item" at a time using operator>>. This
same affect can be achieved using the std: :istream_iterator which is an input iterator that reads one "item" at a
time from the stream. Also most containers can be constructed using two iterators so we can simplify the above
code to:

std::ifstream file("file3.txt");

std::vector<std::string> v(std::istream_iterator<std::string>{file},
std::istream_iterator<std::string>{});

We can extend this to read any object types we like by simply specifying the object we want to read as the template
parameter to the std: :istream_iterator. Thus we can simply extend the above to read lines (rather than words)
like this:

// Unfortunately there is no built in type that reads line using >>
// So here we build a simple helper class to do it. That will convert
// back to a string when used in string context.

struct Line

GoalKicker.com - C++ Notes for Professionals 61

(c) ketabton.com: The Digital Library

{

// Store data here

std::string data;

// Convert object to string

operator std::string const&() const {return data;}

// Read a line from a stream.

friend std::istream& operator>>(std::istream& stream, Line& line)

{

return std::getline(stream, line.data);

}

std::ifstream file("file3.txt");

// Read the lines of a file into a container.
std::vector<std::string> v(std::istream_iterator<Line>{file},
std::istream_iterator<Line>{});

Section 12.10: Copying a file

std::ifstream src("source_filename", std::ios::binary);
std::ofstream dst("dest_filename", std::ios::binary);
dst << src.rdbuf();

Version = C++17

With C++17 the standard way to copy a file is including the <filesystem> header and using copy_file:

std::fileystem: :copy_file("source_filename", "dest_filename");

The filesystem library was originally developed as boost.filesystem and finally merged to ISO C++ as of C++17.

Section 12.11: Closing a file

Explicitly closing a file is rarely necessary in C++, as a file stream will automatically close its associated file in its
destructor. However, you should try to limit the lifetime of a file stream object, so that it does not keep the file
handle open longer than necessary. For example, this can be done by putting all file operations into an own scope

({3):

std::string const prepared_data = prepare_data();

{
// Open a file for writing.
std::ofstream output("foo.txt");

// Write data.
output << prepared_data;
} // The ofstream will go out of scope here.
// Its destructor will take care of closing the file properly.

Calling close() explicitly is only necessary if you want to reuse the same fstream object later, but don't want to
keep the file open in between:

// Open the file "foo.txt" for the first time.
std::ofstream output("foo.txt");

// Get some data to write from somewhere.
std::string const prepared_data = prepare_data();

GoalKicker.com - C++ Notes for Professionals 62

(c) ketabton.com: The Digital Library

// Write data to the file "foo.txt".
output << prepared_data;

// Close the file "foo.txt".
output.close();

// Preparing data might take a long time. Therefore, we don't open the output file stream
// before we actually can write some data to it.
std::string const more_prepared_data = prepare_complex_data();

// Open the file "foo.txt" for the second time once we are ready for writing.
output.open("foo.txt");

// Write the data to the file "foo.txt".
output << more_prepared_data;

// Close the file "foo.txt" once again.
output.close();

Section 12.12: Reading a ‘struct” from a formatted text file

Version = C++11

struct info_type

{
std::string name;
int age;
float height;
// we define an overload of operator>> as a friend function which
// gives in privileged access to private data members
friend std::istream& operator>>(std::istream& is, info_type& info)
{
// skip whitespace
is >> std::ws;
std::getline(is, info.name);
is >> info.age;
is >> info.height;
return is;
}
3
void func4()
{
auto file = std::ifstream("file4.txt");
std::vector<info_type> v;
for(info_type info; file >> info;) // keep reading until we run out
{
// we only get here if the read succeeded
v.push_back(info);
}
for(auto const& info: v)
{
std::cout << " name: " << info.name << '\n';
std::cout << " age: " << info.age << " years" << '\n’;
std::cout << "height: " << info.height << "lbs" << '\n';
std::cout << '\n';
}
}

GoalKicker.com - C++ Notes for Professionals

63

(c) ketabton.com: The Digital Library

filed.txt

Wogger Wabbit
2

6.2

Bilbo Baggins
111

81.3

Mary Poppins

29

154.8

Output:

name: Wogger Wabbit
age: 2 years
height: 6.21bs

name: Bilbo Baggins
age: 111 years
height: 81.31bs

name: Mary Poppins
age: 29 years
height: 154.81bs

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

Chapter 13: C++ Streams

Section 13.1: String streams

std: :ostringstreamis a class whose objects look like an output stream (that is, you can write to them via
operator<<), but actually store the writing results, and provide them in the form of a stream.

Consider the following short code:

#include <sstream>
#include <string>

using namespace std;

int main()

{
ostringstream ss;
ss << "the answer to everything is " << 42;
const string result = ss.str();

The line

ostringstream ss;

creates such an object. This object is first manipulated like a regular stream:

ss << "the answer to everything is " << 42;

Following that, though, the resulting stream can be obtained like this:

const string result = ss.str();

(the string result will be equal to "the answer to everything is 42").

This is mainly useful when we have a class for which stream serialization has been defined, and for which we want a
string form. For example, suppose we have some class

class foo

{
// All sort of stuff here.

iE

ostream &operator<<(ostream &os, const foo &f);
To get the string representation of a foo object,

foo f;
we could use

ostringstream ss;
ss << f;
const string result = ss.str();

GoalKicker.com - C++ Notes for Professionals 65

(c) ketabton.com: The Digital Library

Then result contains the string representation of the foo object.

Section 13.2: Printing collections with iostream
Basic printing

std: :ostream_iterator allows to print contents of an STL container to any output stream without explicit loops.
The second argument of std: :ostream_iterator constructor sets the delimiter. For example, the following code:

std::vector<int> v = {1,2,3,4};
std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " ! "));

will print

11213141
Implicit type cast

std: :ostream_iterator allows to cast container's content type implicitly. For example, let's tune std: :cout to print
floating-point values with 3 digits after decimal point:

std::cout << std::setprecision(3);
std::fixed(std::cout);

and instantiate std: :ostream_iterator with float, while the contained values remain int:

std::vector<int> v = {1,2,3,4};
std::copy(v.begin(), v.end(), std::ostream_iterator<float>(std::cout, " ! "));

so the code above yields
1.000 ! 2.000 ! 3.000 ! 4.000 !
despite std: :vector holds ints.

Generation and transformation

std: :generate, std: :generate_n and std: :transform functions provide a very powerful tool for on-the-fly data
manipulation. For example, having a vector:

std::vector<int> v = {1,2,3,4,8,16};
we can easily print boolean value of "x is even" statement for each element:

std::boolalpha(std::cout); // print booleans alphabetically

std::transform(v.begin(), v.end(), std::ostream_iterator<bool>(std::cout, " "),
[1(int val) {

return (val % 2) == 0;
})i

or print the squared element:

std::transform(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " "),
[1(int val) {
return val * val;

GoalKicker.com - C++ Notes for Professionals 66

(c) ketabton.com: The Digital Library
1)

Printing N space-delimited random numbers:

const int N = 10;
std::generate_n(std::ostream_iterator<int>(std::cout, " "), N, std::rand);

Arrays
As in the section about reading text files, almost all these considerations may be applied to native arrays. For
example, let's print squared values from a native array:
int v[] = {1,2,3,4,8,16};
std::transform(v, std::end(v), std::ostream_iterator<int>(std::cout, " "),

[1(int val) {
return val * val;

3

GoalKicker.com - C++ Notes for Professionals

67

(c) ketabton.com: The Digital Library

Chapter 14: Stream manipulators

Manipulators are special helper functions that help controlling input and output streams using operator >> or
operator <<.

They all can be included by #include <iomanip>.

Section 14.1: Stream manipulators

std: :boolalpha and std: :noboolalpha - switch between textual and numeric representation of booleans.

std::cout << std::boolalpha << 1;
// Output: true

std::cout << std::noboolalpha << false;
// Output: ©

bool boolValue;
std::cin >> std::boolalpha >> boolValue;
std::cout << "Value \"" << std::boolalpha << boolValue
<< "\" was parsed as " << std::noboolalpha << boolValue;
// Input: true
// Output: Value "true" was parsed as ©

std: :showbase and std: :noshowbase - control whether prefix indicating numeric base is used.

std: :dec (decimal), std: :hex (hexadecimal) and std: :oct (octal) - are used for changing base for integers.

#include <sstream>

std::cout << std::dec << 29 << -
<< std::hex << 29 << ' - '
<< std::showbase << std::oct << 29 << ' -
<< std::noshowbase << 29 '\n’';
int number;
std::istringstream("3B") >> std::hex >> number;
std::cout << std::dec << 10;
// Output: 22 - 1D - 35 - 835

/7 59

Default values are std: :ios_base: :noshowbase and std: :ios_base: :dec.

If you want to see more about std: :istringstream check out the <sstream> header.

std: :uppercase and std: :nouppercase - control whether uppercase characters are used in floating-point and
hexadecimal integer output. Have no effect on input streams.

std::cout << std::hex << std::showbase
<< "@x2a with nouppercase: " << std::nouppercase << 0x2a << '\n'
<< "1e-10 with uppercase: " << std::uppercase << 1e-10 << '\n'

}

// Output: Ox2a with nouppercase: 0x2a

// 1e-10 with uppercase: 1E-10

GoalKicker.com - C++ Notes for Professionals 68

(c) ketabton.com: The Digital Library

Default is std: :nouppercase

std: :setw(n) - changes the width of the next input/output field to exactly n.
The width property n is resetting to 8 when some functions are called (full list is here).

std::cout << "no setw:" << 51 << '\n'
<< "setw(7): " << std::setw(7) << 51 << '\n'

<< "setw(7), more output: " << 13
<< std::setw(7) << std::setfill('*') << 67 << ' ' << 94 << '\n';
char* input = "Hello, world!";

char arr[10];
std::cin >> std::setw(6) >> arr;
std::cout << "Input from \"Hello, world!\" with setw(6) gave \

<< arr << "\"\n":
// Output: 51

// setw(7): 51

// setw(7), more output: 13*xx**67 94

// Input: Hello, world!
// Output: Input from "Hello, world!" with setw(6) gave "Hello"

Defaultis std: :setw(0).

std::left, std::right and std: :internal - modify the default position of the fill characters by setting

std::ios_base::adjustfieldto std::ios_base::left, std::ios_base::right and std: :ios_base: :internal
correspondingly. std: :1left and std: :right apply to any output, std: :internal - for integer, floating-point and
monetary output. Have no effect on input streams.

#include <locale>

std::cout.imbue(std::locale("en_US.utf8"));

std::cout << std::left << std::showbase << std::setfill('*")
<< "flt: " << std::setw(15) << -9.87 << '\n'
<< "hex: " << std::setw(15) << 41 << '\n'
<< " §: " << std::setw(15) << std::put_money(367, false) << '\n'
(15
(15

<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n'
<< "usd: " << std::setw(15)
<< std::setfill(' ') << std::put_money(367, false) << '\n';

// Output:

/] flt: -9.87* *x*kxkkkk%
/] hex: 4l *xxkkxkkkxk*
// S: 83.67x xkkkkkkkk
// usd: USD *3.67*****%
// usd: $3.67

std::cout << std::internal << std::showbase << std::setfill('*")

<< "flt: " << std::setw(15) << -9.87 << '\n’

<< "hex: " << std::setw(15) << 41 << '\n'

<< " §: " << std::setw(15) << std::put_money(367, false) << '\n'
<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n’
<< "usd: " << std::setw(15)

<< std::setfill(' ') << std::put_money(367, true) << '\n';

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

// Output:

/] flt: -xxkkkkxx%x%9 87
/] hex: *xxk*xxk*kxx*k*%x41]
// S: 83.67k xxkKkkkkkk
// usd: USD ***xx**x3.67
// usd: USD 3.67

std::cout << std::right << std::showbase << std::setfill('x")
<< "flt: " << std::setw(15) << -9.87 << '\n'
<< "hex: " << std::setw(15) << 41 << '\n'
<< " §: " << std::setw(15) << std::put_money(367, false) << '\n'
<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n'
<< "usd: << std::setw(15)
<< std::setfill(' ') << std::put_money(367, true) << '\n';

// Output:

/] flt: ****%x%x*x*x*xx-0 87

// hex: #**x*x*x*x*x*x%41

// S Fkxkkx*x*%*%x$3 .67

// usd: **xx%*USD *3.67

// usd: Usb 3.67

Defaultis std: :left.

std::fixed, std::scientific, std: :hexfloat [C++11]and std: :defaultfloat [C++11] - change formatting for
floating-point input/output.

std::fixed setsthe std::ios_base: :floatfieldto std::jios_base: :fixed,
std::scientific-tostd::ios_base::scientific

std: :hexfloat -to std::ios_base::fixed | std::ios_base::scientific and
std::defaultfloat -to std::ios_base::fmtflags(0).

fmtflags

#include <sstream>

std::cout << '\n'

<< "The number 0.07 in fixed: " << std::fixed << 0.01 << '\n'

<< "The number 0.07 in scientific: " << std::scientific << 0.01 << '\n'

<< "The number 0.07 in hexfloat: " << std::hexfloat << 0.081 << '\n'

<< "The number 0.07 in default: " << std::defaultfloat << 0.01 << '\n';

double f;

std::istringstream is("@x1P-1022");

double f = std::strtod(is.str().c_str(), NULL);

std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';

// Output:

// The number 0.01 in fixed: 0.070000

// The number 0.01 in scientific: 7.000000e-02

// The number 0.01 in hexfloat: 0x1.1eb851eb851ecp-4
// The number 0.01 in default: 0.07

// Parsing Ox1P-1022 as hex gives 2.22507e-308

Defaultis std: :ios_base::fmtflags(9).

There is a bug on some compilers which causes

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

double f;

std::istringstream("0x1P-1022") >> std::hexfloat >> f;
std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';
// Output: Parsing ©x1P-1022 as hex gives ©

std: :showpoint and std: :noshowpoint - control whether decimal point is always included in floating-point
representation. Have no effect on input streams.

std::cout << "7.0 with showpoint: << std::showpoint << 7.0 << '\n'

<< "7.0 with noshowpoint: " << std::noshowpoint << 7.8 << '\n';
// Output: 1.0 with showpoint: 7.00000
// 1.0 with noshowpoint: 7

Default is std: :showpoint

std: :showpos and std: :noshowpos - control displaying of the + sign in non-negative output. Have no effect on input
streams.

std::cout << "With showpos: << std::showpos

<< B << ' ' << -2.718 << " " << 17 << '\n'
<< "Without showpos: " << std::noshowpos
<< B << ' ' << -2.718 << ' ' << 17 << '\n’';

// Output: With showpos: +0 -2.718 +17
// Without showpos: 0 -2.718 17

Default if std: :noshowpos.

std: :unitbuf, std: :nounitbuf - control flushing output stream after every operation. Have no effect on input
stream. std: :unitbuf causes flushing.

std: :setbase(base) - sets the numeric base of the stream.

std: :setbase(8) equals to setting std: :ios_base: :basefield to std::ios_base: :oct,
std: :setbase(16) -to std::ios_base: :hex,
std: :setbase(10) -to std: :ios_base: :dec.

If base is other then 8, 10 or 16 then std: :ios_base: :basefield is setting to std: :ios_base: :fmtflags(9). It
means decimal output and prefix-dependent input.

As default std: :ios_base: :basefield is std::ios_base: :dec then by default std: :setbase(10).

std: :setprecision(n) - changes floating-point precision.

#include <cmath>
#include <limits>

typedef std::numeric_limits<long double> 1d;

GoalKicker.com - C++ Notes for Professionals 71

(c) ketabton.com: The Digital Library

const long double pi = std::acos(-1.L);

std::cout << '"\n'

<< "default precision (6): pi: " << pi << '\n'
<<’ 19pi: " << 10 * pi << '\n'
<< "std::setprecision(4): 10pi: " << std::setprecision(4) << 10 * pi << '\n’
<< " 10000pi: " << 10000 * pi << '\n'
<< "std::fixed: 10000pi: " << std::fixed << 10000 * pi << std::defaultfloat <<
‘\n'
<< "std::setprecision(10): pi: " << std::setprecision(10) << pi << '\n'
<< "max-1 radix precicion: pi: " << std::setprecision(1ld::digits - 1) << pi << '\n'
<< "max+1 radix precision: pi: " << std::setprecision(1ld::digits + 1) << pi << '\n'
<< "significant digits prec: pi: " << std::setprecision(1ld::digits10) << pi << '\n';
// Output:
// default precision (6): pi: 3.14159
// 10pi: 31.4159
// std::setprecision(4): 1@pi: 31.42
// 10000pi: 3.142e+04
// std::fixed: 10000pi: 31415.9265

// std::setprecision(10): pi: 3.141592654

// max-1 radix precicion: pi: 3.14159265358979323851280895940618620443274267017841339111328125
// max+1 radix precision: pi: 3.14159265358979323851280895940618620443274267017841339111328125
// significant digits prec: pi: 3.14159265358979324

Default is std: :setprecision(6).

std: :setiosflags(mask) and std: :resetiosflags(mask) - set and clear flags specified in mask of
std::ios_base: :fmtflags type.

#include <sstream>

std::istringstream in("10 610 10 610 10 010");
int numl1, num2;

in >> std::oct >> numl >> num2;

std::cout << "Parsing \"10 010\" with std::oct gives: " << numl << ' ' << num2 << '\n';
// Output: Parsing "10 010" with std::oct gives: 8 8

in >> std::dec >> numl >> num2;

std::cout << "Parsing \"10 010\" with std::dec gives: " << numl << ' ' << num2 << '\n’;

// Output: Parsing "10 010" with std::oct gives: 10 10

in >> std::resetiosflags(std::ios_base::basefield) >> numl >> num2;
std::cout << "Parsing \"10 ©@10\" with autodetect gives: " << numl <<
// Parsing "10 010" with autodetect gives: 10 8

<< num2 << ‘\n';

std::cout << std::setiosflags(std::ios_base::hex |
std::ios_base: :uppercase |
std::ios_base::showbase) << 42 << '"\n';
// Output: OX2A

std: :skipws and std: :noskipws - control skipping of leading whitespace by the formatted input functions. Have no
effect on output streams.

#include <sstream>

GoalKicker.com - C++ Notes for Professionals 72

(c) ketabton.com: The Digital Library

char c¢1, c¢2, c3;
std::istringstream("a b c¢") >> c1 >> ¢2 >> c3;

std::cout << "Default behavior: <c1 = << ¢l << " 2 ="<<¢2 << " 3 ="<<¢e3 << '\n";

std::istringstream("a b c") >> std::noskipws >> c¢1 >> c2 >> c3;

std::cout << "noskipws behavior: c1 = " << ¢l << " 2 =" << ¢c2 << " 3 =" << ¢3 << '"\n';
// Output: Default behavior: c¢c1 =a c2 =b c3 =c

// noskipws behavior: c¢1 = a c2 = c3 =b

Defaultis std: :ios_base: :skipws.

std: :quoted(s[, delim[, escapell) [C++14]-inserts or extracts quoted strings with embedded spaces.

s - the string to insert or extract.
delim - the character to use as the delimiter, " by default.
escape - the character to use as the escape character, \ by default.

#include <sstream>

std::stringstream ss;
std::string in = "String with spaces, and embedded \"quotes\" too";
std::string out;

ss << std::quoted(in);
std::cout << "read in [" << in << "]\n"
<< "stored as [" << ss.str() << "]\n";

ss >> std::quoted(out);

std::cout << "written out [" << out << "]\n";

// Output:

// read in [String with spaces, and embedded "quotes" too]

// stored as ["String with spaces, and embedded \"quotes\" too"]
// written out [String with spaces, and embedded "quotes" too]

For more information see the link above.

Section 14.2: Output stream manipulators
std: :ends - inserts a null character '\@"' to output stream. More formally this manipulator's declaration looks like

template <class charT, class traits>
std::basic_ostream<charT, traits>& ends(std::basic_ostream<charT, traits>& os);

and this manipulator places character by calling os.put(charT()) when used in an expression
os << std::ends;

std: :endl and std: : flush both flush output stream out by calling out. flush(). It causes immediately producing
output. But std: :endl inserts end of line '\n' symbol before flushing.

std::cout << "First line." << std::endl << "Second line. " << std::flush
<< "Still second line.";

GoalKicker.com - C++ Notes for Professionals 73

(c) ketabton.com: The Digital Library

// Output: First line.
// Second line. Still second line.

std::setfill(c) - changes the fill character to c. Often used with std: :setw.

std::cout << "\nDefault fill: " << std::setw(10) << 79 << '\n'
<< "setfill('#'): " << std::setfill('#")
<< std::setw(10) << 42 << '\n';

// Output:

// Default fill: 79

[/ setfill('#'): ########79

std: :put_money(mon[, intl]) [C++11]. In an expression out << std::put_money(mon, intl), converts the

monetary value mon (of long double or std: :basic_string type)to its character representation as specified by the

std: :money_put facet of the locale currently imbued in out. Use international currency strings if intl is true, use
currency symbols otherwise.

long double money = 123.45;
// or std::string money = "123.45";

std: :cout.imbue(std: :locale("en_US.utf8"));

std::cout << std::showbase << "en_US: " << std::put_money(money)
<< " or " << std::put_money(money, true) << '\n';

// Output: en_US: $1.23 or USD 1.23

std::cout.imbue(std::locale("ru_RU.utf8"));
std::cout << "ru_RU: " << std::put_money(money)

<< " or " << std::put_money(money, true) << '\n';
// Output: ru_RU: 1.23 py6 or 1.23 RUB

std: :cout.imbue(std: :locale("ja_JP.utf8"));
std::cout << "ja_JP: " << std::put_money(money)

<< " or " << std::put_money(money, true) << '\n';
// Output: ja_JP: ¥123 or JPY 123

std::put_time(tmb, fmt) [C++11]- formats and outputs a date/time value to std: :tm according to the specified
format fmt.

tmb - pointer to the calendar time structure const std: :tm* as obtained from localtime() or gmtime().
fmt - pointer to a null-terminated string const CharT* specifying the format of conversion.

#include <ctime>

std::time_t t = std::time(nullptr);
std::tm tm = *std::localtime(&t);

std::cout.imbue(std: :locale("ru_RU.utf8"));

std::cout << "\nru_RU: " << std::put_time(&tm, "%c %Z") << '\n';
// Possible output:

// ru_RU: BT 04 won 2017 15:08:35 UTC

For more information see the link above.

GoalKicker.com - C++ Notes for Professionals

74

(c) ketabton.com: The Digital Library

Section 14.3: Input stream manipulators
std: :ws - consumes leading whitespaces in input stream. It different from std: :skipws.

#include <sstream>

std::string str;

std::istringstream(" \v\n\r\t Wow!There is no whitespaces!") >> std::ws >> str;
std::cout << str;

// Output: Wow!There is no whitespaces!

std: :get_money(mon[, intl]) [C++11].In an expression in >> std::get_money(mon, intl) parses the character
input as a monetary value, as specified by the std: :money_get facet of the locale currently imbued in in, and stores
the value in mon (of long double or std: :basic_string type). Manipulator expects required international currency
strings if intl is true, expects optional currency symbols otherwise.

#include <sstream>
#include <locale>

std::istringstream in("$1,234.56 2.22 USD 3.33");
long double v1, v2;
std::string v3;

in.imbue(std: :locale("en_US.UTF-8"));
in >> std::get_money(v1l) >> std::get_money(v2) >> std::get_money(v3, true);
if (in) {
std::cout << std::quoted(in.str()) << " parsed as: "
<< vl << " " << v3 << '\n';

<< V2 <<

// Output:
// "$1,234.56 2.22 USD 3.33" parsed as: 123456, 222, 333

std::get_time(tmb, fmt) [C++11]- parses a date/time value stored in tmb of specified format fmt.

tmb - valid pointer to the const std: :tmx object where the result will be stored.
fmt - pointer to a null-terminated string const CharT= specifying the conversion format.

#include <sstream>
#include <locale>

std::tm t = {};
std::istringstream ss("2011-Februar-18 23:12:34");

ss.imbue(std::locale("de_DE.utf-8"));
ss >> std::get_time(&t, "%Y-%b-%d %H:%M:%S");
if (ss.fail()) {

std::cout << "Parse failed\n";

}
else {

std::cout << std::put_time(&t, "%c") << '\n';
}

// Possible output:
// Sun Feb 18 23:12:34 2011

GoalKicker.com - C++ Notes for Professionals 75

(c) ketabton.com: The Digital Library

For more information see the link above.

GoalKicker.com - C++ Notes for Professionals

76

(c) ketabton.com: The Digital Library

Chapter 15: Flow Control

Section 15.1: case

Introduces a case label of a switch statement. The operand must be a constant expression and match the switch
condition in type. When the switch statement is executed, it will jump to the case label with operand equal to the
condition, if any.

char ¢ = getchar();
bool confirmed;
switch (c) {
case 'y':
confirmed = true;
break;
case 'n'
confirmed = false;
break;
default:
std::cout << "invalid response!\n";
abort();

Section 15.2:; switch

According to the C++ standard,

The switch statement causes control to be transferred to one of several statements depending on the
value of a condition.

The keyword switch is followed by a parenthesized condition and a block, which may contain case labels and an
optional default label. When the switch statement is executed, control will be transferred either to a case label
with a value matching that of the condition, if any, or to the default label, if any.

The condition must be an expression or a declaration, which has either integer or enumeration type, or a class type
with a conversion function to integer or enumeration type.

char ¢ = getchar();
bool confirmed;
switch (c) {
case 'y':
confirmed
break;
case 'n':
confirmed = false;
break;
default:
std::cout << "invalid response!\n";

abort();

true;

Section 15.3: catch

The catch keyword introduces an exception handler, that is, a block into which control will be transferred when an
exception of compatible type is thrown. The catch keyword is followed by a parenthesized exception declaration,

GoalKicker.com - C++ Notes for Professionals 77

(c) ketabton.com: The Digital Library

which is similar in form to a function parameter declaration: the parameter name may be omitted, and the ellipsis
... is allowed, which matches any type. The exception handler will only handle the exception if its declaration is
compatible with the type of the exception. For more details, see catching exceptions.

try {
std::vector<int> v(N);
// do something
} catch (const std::bad_alloc&) {
std::cout << "failed to allocate memory for vector!" << std::endl;
} catch (const std::runtime_error& e) {
std::cout << "runtime error: " << e.what() << std::endl;
} catch (...) {
std::cout << "unexpected exception!" << std::endl;
throw;

Section 15.4: throw

1. When throw occurs in an expression with an operand, its effect is to throw an exception, which is a copy of
the operand.

void print_asterisks(int count) {
if (count < @) {
throw std::invalid_argument("count cannot be negative!");

}
while (count--) { putchar('*"); }

2. When throw occurs in an expression without an operand, its effect is to rethrow the current exception. If
there is no current exception, std: :terminate is called.

try {
// something risky
} catch (const std::bad_alloc&) {
std::cerr << "out of memory" << std::endl;
} catch (...) {
std::cerr << "unexpected exception" << std::endl;
// hope the caller knows how to handle this exception
throw;

3. When throw occurs in a function declarator, it introduces a dynamic exception specification, which lists the
types of exceptions that the function is allowed to propagate.

// this function might propagate a std::runtime_error,
// but not, say, a std::logic_error

void risky() throw(std::runtime_error);

// this function can't propagate any exceptions

void safe() throw();

Dynamic exception specifications are deprecated as of C++11.

Note that the first two uses of throw listed above constitute expressions rather than statements. (The type of a
throw expression is void.) This makes it possible to nest them within expressions, like so:

GoalKicker.com - C++ Notes for Professionals

78

(c) ketabton.com: The Digital Library

unsigned int predecessor(unsigned int x) {
return (x > @) ? (x - 1) : (throw std::invalid_argument("@® has no predecessor"));

}

Section 15.5: default

In a switch statement, introduces a label that will be jumped to if the condition's value is not equal to any of the
case labels' values.

char ¢ = getchar();
bool confirmed;
switch (c) {
case 'y':
confirmed
break;
case 'n':
confirmed = false;
break;
default:
std::cout << "invalid response!\n";
abort();

true;

}

Version = C++11

Defines a default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move

assignment operator to have its default behaviour.

class Base {
//
// we want to be able to delete derived classes through Basex,
// but have the usual behaviour for Base's destructor.
virtual ~Base() = default;

b

Section 15.6: try

The keyword try is followed by a block, or by a constructor initializer list and then a block (see here). The try block is

followed by one or more catch blocks. If an exception propagates out of the try block, each of the corresponding
catch blocks after the try block has the opportunity to handle the exception, if the types match.

std::vector<int> v(N); // if an exception is thrown here,
// it will not be caught by the following catch block
try {
std::vector<int> v(N); // if an exception is thrown here,
// it will be caught by the following catch block
// do something with v
} catch (const std::bad_alloc&) {
// handle bad_alloc exceptions from the try block

}

Section 15.7: if

Introduces an if statement. The keyword if must be followed by a parenthesized condition, which can be either an

expression or a declaration. If the condition is truthy, the substatement after the condition will be executed.

int x;

GoalKicker.com - C++ Notes for Professionals

(c) ketabton.com: The Digital Library

std::cout << "Please enter a positive number." << std::endl;
std::cin >> x;

if (x <= 0) {
std::cout << "You didn't enter a positive number!" << std::endl;
abort();

}

Section 15.8: else

The first substatement of an if statement may be followed by the keyword else. The substatement after the else
keyword will be executed when the condition is falsey (that is, when the first substatement is not executed).

int x;
std::cin >> x;
if (x%2 == 8) {
std::cout << "The number is even\n";
} else {
std::cout << "The number is odd\n";

}

Section 15.9: Conditional Structures: if, if..else

if and else:

it used to check whether the given expression returns true or false and acts as such:
if (condition) statement

the condition can be any valid C++ expression that returns something that be checked against truth/falsehood for
example:

if (true) { /#* code here */ } // evaluate that true is true and execute the code in the brackets
if (false) { /* code here */ } // always skip the code since false is always false

the condition can be anything, a function, a variable, or a comparison for example

if(istrue()) { } // evaluate the function, if it returns true, the if will execute the code
if(isTrue(var)) { } //evaluate the return of the function after passing the argument var

if(a == b) { } // this will evaluate the return of the experssion (a==b) which will be true if
equal and false if unequal

if(a) {} //if a is a boolean type, it will evaluate for its value, if it's an integer, any non
zero value will be true,

if we want to check for a multiple expressions we can do it in two ways :
using binary operators :

if (a & & b) { } // will be true only if both a and b are true (binary operators are outside the
scope here
if (a || b) { } //true if a or b is true

using if/ifelse/else:

for a simple switch either if or else

if (a== "test") {

GoalKicker.com - C++ Notes for Professionals 80

(c) ketabton.com: The Digital Library

//will execute if a is a string "test"
} else {

// only if the first failed, will execute
}

for multiple choices :

if (a=='a') {

// if a is a char valued 'a’
} else if (a=='b") {

// if a is a char valued 'b'
} else if (a=='c') {

// if a is a char valued 'c'
} else {

//if a is none of the above

}

however it must be noted that you should use 'switch' instead if your code checks for the same variable's value

Section 15.10: goto

Jumps to a labelled statement, which must be located in the current function.

bool f(int arg) {
bool result = false;
hWidget widget = get_widget(arg);
if (fg()) {
// we can't continue, but must do cleanup still
goto end;

}
//
result = true;

end:
release_widget(widget);
return result;

Section 15.11: Jump statements : break, continue, goto, exit
The break instruction:

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite
loop, or to force it to end before its natural end

The syntax is

break;

Example: we often use break in switch cases,ie once a case i switch is satisfied then the code block of that
condition is executed .

switch(conditon){
case 1: block1;

case 2: block2;

case 3: block3;
default: blockdefault;

}

GoalKicker.com - C++ Notes for Professionals

81

(c) ketabton.com: The Digital Library

in this case if case 1 is satisfied then block 1 is executed , what we really want is only the block1 to be processed but
instead once the block1 is processed remaining blocks,block2,block3 and blockdefault are also processed even
though only case 1 was satified.To avoid this we use break at the end of each block like :

switch(condition){
case 1: block1;
break;
case 2: block2;
break;
case 3: block3;
break;
default: blockdefault;
break;

}

so only one block is processed and the control moves out of the switch loop.

break can also be used in other conditional and non conditional loops like if,while,for etc;
example:

if(condition1){

if(condition2){

The continue instruction:

The continue instruction causes the program to skip the rest of the loop in the present iteration as if the end of the
statement block would have been reached, causing it to jump to the following iteration.

The syntax is

continue;

Example consider the following :

for(int i=0;i<10;i++){
if(i%2==0)

continue;

cout<<"\n @"<<i;

}
which produces the output:

@1
@3
@5
@7
@9

i this code whenever the condition i%2==0 is satisfied continue is processed,this causes the compiler to skip all the
remaining code(printing @ and i) and increment/decrement statement of the loop gets executed.

GoalKicker.com - C++ Notes for Professionals 82

(c) ketabton.com: The Digital Library

—far J(initialisation:condition:

continue; —t

The goto instruction:

It allows making an absolute jump to another point in the program. You should use this feature carefully since its

incremant /decremant)

i Continues Loop with
if (True Condition) the Mext Value

execution ignores any type of nesting limitation. The destination point is identified by a label, which is then used as

an argument for the goto instruction. A label is made of a valid identifier followed by a colon (:)

The syntax is

goto label;

label: statement;

Note: Use of goto statement is highly discouraged because it makes difficult to trace the control flow of a program,

making the program hard to understand and hard to modify.

goto label;

|
v
label :

statement 1;

statement 2;
statement 3;

label :

4 statement 1;
statement 2;
statement 3;

goto label;

Forward Reference
Example:

int num = 1;
STEP:
do{

if(num%2==0)
{

num = num + 1;

Backward Reference

GoalKicker.com - C++ Notes for Professionals

83

(c) ketabton.com: The Digital Library

goto STEP;

cout << "value of num : " << num << endl;
num = num + 1;
twhile(num < 10);

output :

value of num :
value of num :
value of num :
value of num :
value of num :

O N oW =

whenever the condition num%2==0 is satisfied the goto sends the execution control to the beginning of the do-while
loop.

The exit function:

exitis a function defined in cstdlib. The purpose of exit is to terminate the running program with an specific exit
code. Its prototype is:

void exit (int exit code);
cstdlib defines the standard exit codes EXIT_SUCCESS and EXIT_FAILURE.

Section 15.12: return

Returns control from a function to its caller.

If return has an operand, the operand is converted to the function's return type, and the converted value is
returned to the caller.

int f() {
return 42;

}

int x =

int g()
return 3.14;

f(); // x is 42
{

}
inty =g(); // yis 3

If return does not have an operand, the function must have void return type. As a special case, a void-returning
function can also return an expression if the expression has type void.

void f(int x) {
if (x < @) return;
std::cout << sqrt(x);

}

int g() { return 42; }

void h() {
return f(); // calls f, then returns
return g(); // ill-formed

}

When main returns, std: :exit is implicitly called with the return value, and the value is thus returned to the

GoalKicker.com - C++ Notes for Professionals 84

(c) ketabton.com: The Digital Library

execution environment. (However, returning from main destroys automatic local variables, while calling std: :exit
directly does not.)

int main(int argc, charxx argv) {
if (argc < 2) {
std::cout << "Missing argument\n";
return EXIT_FAILURE; // equivalent to: exit(EXIT_FAILURE);

GoalKicker.com - C++ Notes for Professionals 85

(c) ketabton.com: The Digital Library

Chapter 16: Metaprogramming

In C++ Metaprogramming refers to the use of macros or templates to generate code at compile-time.
In general, macros are frowned upon in this role and templates are preferred, although they are not as generic.

Template metaprogramming often makes use of compile-time computations, whether via templates or constexpr
functions, to achieve its goals of generating code, however compile-time computations are not metaprogramming
per se.

Section 16.1: Calculating Factorials
Factorials can be computed at compile-time using template metaprogramming techniques.

#include <iostream>

template<unsigned int n>
struct factorial

{
enum
{
value = n * factorial<n - 1>::value
H
s
template<>
struct factorial<@>
{
enum { value =1 };
i
int main()
{
std::cout << factorial<7>::value << std::endl; // prints "5040"
}

factorial is a struct, but in template metaprogramming it is treated as a template metafunction. By convention,
template metafunctions are evaluated by checking a particular member, either : :type for metafunctions that result
in types, or : :value for metafunctions that generate values.

In the above code, we evaluate the factorial metafunction by instantiating the template with the parameters we
want to pass, and using : :value to get the result of the evaluation.

The metafunction itself relies on recursively instantiating the same metafunction with smaller values. The
factorial<@> specialization represents the terminating condition. Template metaprogramming has most of the
restrictions of a functional programming language, so recursion is the primary "looping" construct.

Since template metafunctions execute at compile time, their results can be used in contexts that require compile-
time values. For example:

int my_array[factorial<5>::value];

Automatic arrays must have a compile-time defined size. And the result of a metafunction is a compile-time
constant, so it can be used here.

Limitation: Most of the compilers won't allow recursion depth beyond a limit. For example, g++ compiler by default

GoalKicker.com - C++ Notes for Professionals 86

(c) ketabton.com: The Digital Library

limits recursion depeth to 256 levels. In case of g++, programmer can set recursion depth using -ftemplate-depth-
X option.

Version = C++11

Since C++11, the std: :integral_constant template can be used for this kind of template computation:

#include <iostream>
#include <type_traits>

template<long long n>
struct factorial :
std::integral_constant<long long, n * factorial<n - 1>::value> {};

template<>
struct factorial<®0>
std::integral_constant<long long, 1> {};

int main()
{

std::cout << factorial<7>::value << std::endl; // prints "5040"

}

Additionally, constexpr functions become a cleaner alternative.
#include <iostream>

constexpr long long factorial(long long n)
{
return (n == 8) ? 1 : n * factorial(n - 1);

¥

int main()

{
char test[factorial(3)];
std::cout << factorial(7) << '\n’';

\ ;

The body of factorial() is written as a single statement because in C++11 constexpr functions can only use a
quite limited subset of the language.

Version = C++14

Since C++14, many restrictions for constexpr functions have been dropped and they can now be written much
more conveniently:

constexpr long long factorial(long long n)

{
if (n == 0)
return 1;
else
return n * factorial(n - 1);

Or even:

constexpr long long factorial(int n)
{
long long result = 1;

GoalKicker.com - C++ Notes for Professionals 87

(c) ketabton.com: The Digital Library

for (int i = 1; i <= n; ++i) {
result *= i;

}

return result;
}

Version = C++17

Since c++17 one can use fold expression to calculate factorial:

#include <iostream>
#include <utility>

template <class T, T N, class I = std::make_integer_sequence<T, N>>
struct factorial;

template <class T, T N, T... Is>
struct factorial<T,N,std::index_sequence<T, Is...>> {
static constexpr T value = (static_cast<T>(1) * ... * (Is + 1));

b

int main() {
std::cout << factorial<int, 5>::value << std::endl;

}

Section 16.2: Iterating over a parameter pack

Often, we need to perform an operation over every element in a variadic template parameter pack. There are many
ways to do this, and the solutions get easier to read and write with C++17. Suppose we simply want to print every
element in a pack. The simplest solution is to recurse:

Version = C++11

void print_all(std::ostream& os) {
// base case

}

template <class T, class... Ts>

void print_all(std::ostream& os, T const& first, Ts const&... rest) {
os << first;
print_all(os, rest...);

}

We could instead use the expander trick, to perform all the streaming in a single function. This has the advantage of
not needing a second overload, but has the disadvantage of less than stellar readability:

Version = C++11

template <class... Ts>
void print_all(std::ostream& os, Ts const&... args) {
using expander = int[];
(void)expander{0,
(void(os << args), 0)...

|3

For an explanation of how this works, see T.C's excellent answer.

Version = C++17

With C++17, we get two powerful new tools in our arsenal for solving this problem. The first is a fold-expression:

GoalKicker.com - C++ Notes for Professionals 88

(c) ketabton.com: The Digital Library

template <class... Ts>

void print_all(std::ostream& os, Ts const&... args) {
((os << args), ...);

}

And the second is if constexpr, which allows us to write our original recursive solution in a single function:

template <class T, class... Ts>
void print_all(std::ostream& os, T const& first, Ts const&... rest) {
os << first;

if constexpr (sizeof...(rest) > 0) {
// this line will only be instantiated if there are further
// arguments. if rest... is empty, there will be no call to

// print_all(os).
print_all(os, rest...);

Section 16.3: Iterating with std::integer_sequence
Since C++14, the standard provides the class template

template <class T, T... Ints>
class integer_sequence;

template <std::size_t... Ints>
using index_sequence = std::integer_sequence<std::size_t, Ints...>;

and a generating metafunction for it:

template <class T, T N>
using make_integer_sequence = std::integer_sequence<T, /#* a sequence 0, 1, 2, ..., N-1T %/ >;

template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;

While this comes standard in C++14, this can be implemented using C++11 tools.

We can use this tool to call a function with a std: :tuple of arguments (standardized in C++17 as std: :apply):

namespace detail {
template <class F, class Tuple, std::size_t... Is>
decltype(auto) apply_impl(F&& f, Tuple&& tpl, std::index_sequence<Is...>) {
return std::forward<F>(f)(std::get<Is>(std::forward<Tuple>(tpl))...);
}
}

template <class F, class Tuple>
decltype(auto) apply(F&& f, Tuple&& tpl) {
return detail::apply_impl(std::forward<F>(f),
std::forward<Tuple>(tpl),
std: :make_index_sequence<std: :tuple_size<std::decay_t<Tuple>>::value>{});

// this will print 3
int f(int, char, double);

GoalKicker.com - C++ Notes for Professionals

89

(c) ketabton.com: The Digital Library

auto some_args = std::make_tuple(42, 'x', 3.14);
int r = apply(f, some_args); // calls f(42, 'x', 3.14)

Section 16.4: Tag Dispatching

A simple way of selecting between functions at compile time is to dispatch a function to an overloaded pair of
functions that take a tag as one (usually the last) argument. For example, to implement std: :advance(), we can
dispatch on the iterator category:

namespace details {
template <class RAIter, class Distance>
void advance(RAIter& it, Distance n, std::random_access_iterator_tag) {
it += n;

}

template <class BidirIter, class Distance>
void advance(BidirIter& it, Distance n, std::bidirectional_iterator_tag) {
if (n > 0) {
while (n--) ++it;

}
else {

while (n++) --it;
}

}

template <class InputlIter, class Distance>
void advance(InputIter& it, Distance n, std::input_iterator_tag) {
while (n--) {
++it;

}
}

template <class Iter, class Distance>
void advance(Iter& it, Distance n) {
details::advance(it, n,
typename std::iterator_traits<Iter>::iterator_category{});

The std: :XY_iterator_tag arguments of the overloaded details: :advance functions are unused function
parameters. The actual implementation does not matter (actually it is completely empty). Their only purpose is to
allow the compiler to select an overload based on which tag class details: :advance is called with.

In this example, advance uses the iterator_traits<T>::iterator_category metafunction which returns one of
the iterator_tag classes, depending on the actual type of Iter. A default-constructed object of the
iterator_category<Iter>::type then lets the compiler select one of the different overloads of details: :advance.
(This function parameter is likely to be completely optimized away, as it is a default-constructed object of an empty
struct and never used.)

Tag dispatching can give you code that's much easier to read than the equivalents using SFINAE and enable_if.

Note: while C++17's if constexpr may simplify the implementation of advance in particular, it is not suitable for open
implementations unlike tag dispatching.

Section 16.5: Detect Whether Expression is Valid

It is possible to detect whether an operator or function can be called on a type. To test if a class has an overload of

GoalKicker.com - C++ Notes for Professionals 90

(c) ketabton.com: The Digital Library

std: :hash, one can do this:

#include <functional> // for std::hash
#include <type_traits> // for std::false_type and std::true_type
#include <utility> // for std::declval

template<class, class = void>
struct has_hash

: std::false_type
{3

template<class T>

struct has_hash<T, decltype(std::hash<T>()(std::declval<T>()), void())>
: std::true_type

{}

Version = C++17
Since C++17, std: :void_t can be used to simplify this type of construct

#include <functional> // for std::hash
#include <type_traits> // for std::false_type, std::true_type, std::void_t
#include <utility> // for std::declval

template<class, class = std::void_t<> >
struct has_hash

: std::false_type
e

template<class T>
struct has_hash<T, std::void_t< decltype(std::hash<T>()(std::declval<T>())) > >
: std::true_type

{}:
where std: :void_t is defined as:

template< class... > using void_t = void;

For detecting if an operator, such as operator< is defined, the syntax is almost the same:

template<class, class = void>
struct has_less_than

: std::false_type
{0

template<class T>

struct has_less_than<T, decltype(std::declval<T>() < std::declval<T>(), void())>
: std::true_type

{}

These can be used to use a std: :unordered_map<T> if T has an overload for std: :hash, but otherwise attempt to
use a std: :map<T>:

template <class K, class V>

using hash_invariant_map = std::conditional_t<
has_hash<K>::value,
std: :unordered_map<K, V>,
std: :map<K, V>>;

GoalKicker.com - C++ Notes for Professionals 9

(c) ketabton.com: The Digital Library

Section 16.6: If-then-else

Version = C++11

The type std: :conditional in the standard library header <type_traits> can select one type or the other, based
on a compile-time boolean value:

template<typename T>
struct ValueOrPointer

{
typename std::conditional<(sizeof(T) > sizeof(void*)), T, T>::type vop;

b

This struct contains a pointer to T if T is larger than the size of a pointer, or T itself if it is smaller or equal to a
pointer's size. Therefore sizeof (ValueOrPointer) will always be <= sizeof(voidx).

_?_ection 16.7: Manual distinction of types when given any type

When implementing SFINAE using std: :enable_if, it is often useful to have access to helper templates that
determines if a given type T matches a set of criteria.

To help us with that, the standard already provides two types analog to true and false which are std: :true_type
and std: :false_type.

The following example show how to detect if a type T is a pointer or not, the is_pointer template mimic the
behavior of the standard std: :is_pointer helper:

template <typename T>
struct is_pointer_: std::false_type {};

template <typename T>
struct is_pointer_<T#*>: std::true_type {};

template <typename T>
struct is_pointer: is_pointer_<typename std::remove_cv<T>::type> { }

There are three steps in the above code (sometimes you only need two):

1. The first declaration of is_pointer_ is the default case, and inherits from std: : false_type. The default case
should always inherit from std: : false_type since it is analogous to a "false condition".

2. The second declaration specialize the is_pointer_ template for pointer Tx without caring about what T is
really. This version inherits from std: : true_type.

3. The third declaration (the real one) simply remove any unnecessary information from T (in this case we
remove const and volatile qualifiers) and then fall backs to one of the two previous declarations.

Since is_pointer<T> is a class, to access its value you need to either:

e Use ::value, e.g. is_pointer<int>::value — value is a static class member of type bool inherited from
std::true_type or std::false_type;

¢ Construct an object of this type, e.g. is_pointer<int>{} — This works because std: :is_pointer inherits its
default constructor from std: :true_type or std: :false_type (which have constexpr constructors) and both
std: :true_type and std: :false_type have constexpr conversion operators to bool.

GoalKicker.com - C++ Notes for Professionals 92

(c) ketabton.com: The Digital Library

It is a good habit to provides "helper helper templates" that let you directly access the value:

template <typename T>
constexpr bool is_pointer_v = is_pointer<T>::value;

Version = C++17

In C++17 and above, most helper templates already provide a _v version, e.g.:

template< class T > constexpr bool is_pointer_v = is_pointer<T>::value;
template< class T > constexpr bool is_reference_v = is_reference<T>::value;

Section 16.8: Calculating power with C++11 (and higher)

With C++11 and higher calculations at compile time can be much easier. For example calculating the power of a
given number at compile time will be following:

template <typename T>
constexpr T calculatePower(T value, unsigned power) {
return power == © ? 1 : value * calculatePower(value, power-1);

}

Keyword constexpr is responsible for calculating function in compilation time, then and only then, when all the
requirements for this will be met (see more at constexpr keyword reference) for example all the arguments must
be known at compile time.

Note: In C++11 constexpr function must compose only from one return statement.

Advantages: Comparing this to the standard way of compile time calculation, this method is also useful for runtime
calculations. It means, that if the arguments of the function are not known at the compilation time (e.g. value and
power are given as input via user), then function is run in a compilation time, so there's no need to duplicate a code
(as we would be forced in older standards of C++).

E.g.

void useExample() {
constexpr int compileTimeCalculated = calculatePower(3, 3); // computes at compile time,
// as both arguments are known at compilation time
// and used for a constant expression.
int value;
std::cin >> value;
int runtimeCalculated = calculatePower(value, 3); // runtime calculated,
// because value is known only at runtime.

}

Version = C++17

Another way to calculate power at compile time can make use of fold expression as follows:

#include <iostream>
#include <utility>

template <class T, TV, T N, class I = std::make_integer_sequence<T, N>>
struct power;

template <class T, TV, TN, T... Is>
struct power<T, V, N, std::integer_sequence<T, Is...>> {
static constexpr T value = (static_cast<T>(1) * ... * (V * static_cast<bool>(Is + 1)));

b

GoalKicker.com - C++ Notes for Professionals 93

(c) ketabton.com: The Digital Library

int main() {
std::cout << power<int, 4, 2>::value << std::endl;

}

Section 16.9: Generic Min/Max with variable argument count

Version > C++11

It's possible to write a generic function (for example min) which accepts various numerical types and arbitrary
argument count by template meta-programming. This function declares a min for two arguments and recursively
for more.

template <typename T1, typename T2>
auto min(const T1 &a, const T2 &b)
-> typename std::common_type<const T1&, const T2&>::type

{
return a <b ? a : b;
}
template <typename T1, typename T2, typename ... Args>
auto min(const T1 &a, const T2 &b, const Args& ... args)
-> typename std::common_type<const T1&, const T2&, const Args& ...>::type
{
return min(min(a, b), args...);
}

auto minimum = min(4, 5.8f, 3, 1.8, 3, 1.1, 9);

GoalKicker.com - C++ Notes for Professionals 94

(c) ketabton.com: The Digital Library

Chapter 17: const keyword

Section 17.1: Avoiding duplication of code in const and non-
const getter methods

In C++ methods that differs only by const qualifier can be overloaded. Sometimes there may be a need of two
versions of getter that return a reference to some member.

Let Foo be a class, that has two methods that perform identical operations and returns a reference to an object of

type Bar:
class Foo
{
public:
Bar& GetBar(/* some arguments */)
{
/* some calculations */
return bar;
}
const Bar& GetBar(/* some arguments #/) const
{
/* some calculations */
return bar;
}
//

b

The only difference between them is that one method is non-const and return a non-const reference (that can be
use to modify object) and the second is const and returns const reference.

To avoid the code duplication, there is a temptation to call one method from another. However, we can not call
non-const method from the const one. But we can call const method from non-const one. That will require as to
use 'const_cast' to remove the const qualifier.

The solution is:

struct Foo

{
Bar& GetBar(/#arguments*/)
{
return const_cast<Bar&>(const_cast<const Foo*>(this)->GetBar(/*arguments+*/));
}
const Bar& GetBar(/#arguments#/) const
{
/* some calculations #*/
return foo;
}
iE

In code above, we call const version of GetBar from the non-const GetBar by casting this to const type:
const_cast<const Foo*>(this). Since we call const method from non-const, the object itself is non-const, and
casting away the const is allowed.

GoalKicker.com - C++ Notes for Professionals 95

(c) ketabton.com: The Digital Library

Examine the following more complete example:

#include <iostream>

class Student

{
public:
char& GetScore(bool midterm)
{
return const_cast<char&>(const_cast<const Student*>(this)->GetScore(midterm));
}
const char& GetScore(bool midterm) const
{
if (midterm)
{
return midtermScore;
}
else
{
return finalScore;
}
}
private:
char midtermScore;
char finalScore;
i
int main()
{
// non-const object
Student a;
// We can assign to the reference. Non-const version of GetScore is called
a.GetScore(true) = 'B';
a.GetScore(false) = 'A';
// const object
const Student b(a);
// We still can call GetScore method of const object,
// because we have overloaded const version of GetScore
std::cout << b.GetScore(true) << b.GetScore(false) << '\n';
}

Section 17.2: Const member functions

Member functions of a class can be declared const, which tells the compiler and future readers that this function
will not modify the object:

class MyClass

{

private:

int myInt_;

public:

b

int myInt() const { return myInt_; }
void setMyInt(int myInt) { myInt_ = myInt; }

In a const member function, the this pointer is effectively a const MyClass * instead of a MyClass *. This means
that you cannot change any member variables within the function; the compiler will emit a warning. So setMyInt

GoalKicker.com - C++ Notes for Professionals 96

(c) ketabton.com: The Digital Library

could not be declared const.

You should almost always mark member functions as const when possible. Only const member functions can be
called on a const MyClass.

static methods cannot be declared as const. This is because a static method belongs to a class and is not called
on object; therefore it can never modify object's internal variables. So declaring static methods as const would be
redundant.

Section 17.3: Const local variables

Declaration and usage.

// a is const int, so it can't be changed

const int a = 15;

a=12; // Error: can't assign new value to const variable
a += 1; // Error: can't assign new value to const variable

Binding of references and pointers

int & = a; // Error: can't bind non-const reference to const variable
const int & = a; // OK; c is a const reference
int *d = &a; // Error: can't bind pointer-to-non-const to const variable

const int *e

& // OK; e is a pointer-to-const

int f = 0;
e = &f; // OK; e is a non-const pointer-to-const,
// which means that it can be rebound to new int* or const int*
*e = 1 // Error: e is a pointer-to-const which means that
// the value it points to can't be changed through dereferencing e
int *g = &f;
*g = 1; // OK; this value still can be changed through dereferencing

// a pointer-not-to-const

Section 17.4: Const pointers

inta=0, b=2;
const int* pA = &a; // pointer-to-const. "a’ can't be changed through this
int* const pB = &a; // const pointer. "a’ can be changed, but this pointer can't.

const int* const pC = &a; // const pointer-to-const.

//Error: Cannot assign to a const reference

*pA = b;
pA = &b;
*pB = b;

//Error: Cannot assign to const pointer
pB = &b;

//Error: Cannot assign to a const reference
*pC = b’

GoalKicker.com - C++ Notes for Professionals 97

(c) ketabton.com: The Digital Library

//Error: Cannot assign to const pointer
pC = &b;

GoalKicker.com - C++ Notes for Professionals

98

(c) ketabton.com: The Digital Library

Chapter 18: mutable keyword

Section 18.1: mutable lambdas

By default, the implicit operator () of a lambda is const. This disallows performing non-const operations on the
lambda. In order to allow modifying members, a lambda may be marked mutable, which makes the implicit
operator() non-const:

int a = 0;

auto bad_counter = [a] {
return a++; // error: operator() is const
// cannot modify members

b

auto good_counter = [a]() mutable {
return a++; // OK

}

good_counter(); // ©
good_counter(); // 1
good_counter(); // 2

Section 18.2: non-static class member modifier

mutable modifier in this context is used to indicate that a data field of a const object may be modified without
affecting the externally-visible state of the object.

If you are thinking about caching a result of expensive computation, you should probably use this keyword.

If you have a lock (for example, std: :unique_lock) data field which is locked and unlocked inside a const method,
this keyword is also what you could use.

You should not use this keyword to break logical const-ness of an object.

Example with caching:

class pi_calculator {
public:
double get_pi() const {
if (pi_calculated) {
return pi;
} else {
double new_pi = 0;
for (int i = 0; i < 1000000000; ++i) {
// some calculation to refine new_pi

}
// note: if pi and pi_calculated were not mutable, we would get an error from a
compiler
// because in a const method we can not change a non-mutable field
pi = new_pi;
pi_calculated = true;
return pi;
}
}
private:

mutable bool pi_calculated = false;

GoalKicker.com - C++ Notes for Professionals 99

(c) ketabton.com: The Digital Library

mutable double pi = 0;
i

GoalKicker.com - C++ Notes for Professionals 100

(c) ketabton.com: The Digital Library

Chapter 19: Friend keyword

Well-designed classes encapsulate their functionality, hiding their implementation while providing a clean,
documented interface. This allows redesign or change so long as the interface is unchanged.

In a more complex scenario, multiple classes that rely on each others' implementation details may be required.

Friend classes and functions allow these peers access to each others' details, without compromising the
encapsulation and information hiding of the documented interface.

Section 19.1: Friend function

A class or a structure may declare any function it's friend. If a function is a friend of a class, it may access all it's
protected and private members:

// Forward declaration of functions.
void friend_function();
void non_friend_function();

class PrivateHolder {
public:
PrivateHolder(int val) : private_value(val) {}
private:
int private_value;
// Declare one of the function as a friend.
friend void friend_function();

bé

void non_friend_function() {
PrivateHolder ph(10);
// Compilation error: private_value is private.
std::cout << ph.private_value << std::endl;

}

void friend_function() {
// OK: friends may access private values.
PrivateHolder ph(10);
std::cout << ph.private_value << std::endl;

Access modifiers do not alter friend semantics. Public, protected and private declarations of a friend are equivalent.

Friend declarations are not inherited. For example, if we subclass PrivateHolder:

class PrivateHolderDerived : public PrivateHolder {
public:

PrivateHolderDerived(int val) : PrivateHolder(val) {}
private:

int derived_private_value = 0;

i
and try to access it's members, we'll get the following:

void friend_function() {
PrivateHolderDerived pd(20);
// OK.
std::cout << pd.private_value << std::endl;
// Compilation error: derived_private_value is private.

GoalKicker.com - C++ Notes for Professionals

101

(c) ketabton.com: The Digital Library

std::cout << pd.derived_private_value << std::endl;

Note that PrivateHolderDerived member function cannot access PrivateHolder: :private_value, while friend
function can do it.

Section 19.2: Friend method
Methods may declared as friends as well as functions:

class Accesser {
public:
void private_accesser();

|3

class PrivateHolder {
public:
PrivateHolder(int val) : private_value(val) {}
friend void Accesser::private_accesser();
private:
int private_value;

b

void Accesser::private_accesser()
PrivateHolder ph(10);
// OK: this method is declares as friend.
std::cout << ph.private_value << std::endl;

Section 19.3: Friend class

A whole class may be declared as friend. Friend class declaration means that any member of the friend may access
private and protected members of the declaring class:

class Accesser {

public:
void private_accesseri();
void private_accesser2();

|3

class PrivateHolder {

public:
PrivateHolder(int val) : private_value(val) {}
friend class Accesser;

private:
int private_value;

b

void Accesser::private_accesserl1() {
PrivateHolder ph(10);
// OK.
std::cout << ph.private_value << std::endl;

}

void Accesser::private_accesser2() {
PrivateHolder ph(10);
// OK.
std::cout << ph.private_value + 1 << std::endl;

GoalKicker.com - C++ Notes for Professionals 102

(c) ketabton.com: The Digital Library

}

Friend class declaration is not reflexive. If classes need private access in both directions, both of them need friend

declarations.

class Accesser {
public:
void private_accesseri();
void private_accesser2();
private:
int private_value = 0;

|3

class PrivateHolder {

public:
PrivateHolder(int val) : private_value(val) {}
// Accesser is a friend of PrivateHolder
friend class Accesser;
void reverse_accesse() {

// but PrivateHolder cannot access Accesser's members.

Accesser a;
std::cout << a.private_value;
private:
int private_value;

b

GoalKicker.com - C++ Notes for Professionals

103

(c) ketabton.com: The Digital Library

Chapter 20: Type Keywords

Section 20.1: class

1. Introduces the definition of a class type.

class foo {
int x;
public:
int get_x();
void set_x(int new_x);

b

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a class type. If
the class name has been declared already, it can be found even if hidden by another name. If the class name
has not been declared already, it is forward-declared.

class foo; // elaborated type specifier -> forward declaration
class bar {
public:
bar(foo& f);
i
void baz();
class baz; // another elaborated type specifer; another forward declaration
// note: the class has the same name as the function void baz()
class foo {
bar b;
friend class baz; // elaborated type specifier refers to the class,
// not the function of the same name
public:
foo();
i

3. Introduces a type parameter in the declaration of a template.

template <class T>
const T& min(const T& x, const T& y) {
return b <a ? b : a;

}

4. In the declaration of a template template parameter, the keyword class precedes the name of the
parameter. Since the argument for a template template parameter can only be a class template, the use of
class here is redundant. However, the grammar of C++ requires it.

template <template <class T> class U>

// AAAAA "class" used in this sense here;
// U is a template template parameter
void f() {

U<int>::do_it();
U<double>::do_it();

5. Note that sense 2 and sense 3 may be combined in the same declaration. For example:

template <class T>
class foo {

GoalKicker.com - C++ Notes for Professionals 104

(c) ketabton.com: The Digital Library
3

foo<class bar> x; // <- bar does not have to have previously appeared.

Version = C++11

6. In the declaration or definition of an enum, declares the enum to be a scoped enum.

enum class Format {
TEXT,
PDF,
OTHER,

%

Format f = F::TEXT;

Section 20.2: enum

1. Introduces the definition of an enumeration type.

enum Direction {
upP,
LEFT,
DOWN,
RIGHT
i

Direction d = UP;

Version = C++11

In C++11, enum may optionally be followed by class or struct to define a scoped enum. Furthermore, both scoped

and unscoped enums can have their underlying type explicitly specified by : T following the enum name, where T
refers to an integer type.

enum class Format : char {
TEXT,
PDF,
OTHER

b

Format f = Format::TEXT;

enum Language : int {
ENGLISH,
FRENCH,
OTHER

%

Enumerators in normal enums may also be preceded by the scope operator, although they are still considered to be
in the scope the enum was defined in.

Language 11, 12;

11
12

ENGLISH;
Language: :0THER;

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a previously
declared enum type. (An elaborated type specifier cannot be used to forward-declare an enum type.) An

GoalKicker.com - C++ Notes for Professionals 105

(c) ketabton.com: The Digital Library

enum can be named in this way even if hidden by another name.

enum Foo { FOO };

void Foo() {}

Foo foo = FOO; // ill-formed; Foo refers to the function
enum Foo foo = FOO; // ok; Foo refers to the enum type

Version = C++11

3. Introduces an opaque enum declaration, which declares an enum without defining it. It can either redeclare a
previously declared enum, or forward-declare an enum that has not been previously declared.

An enum first declared as scoped cannot later be declared as unscoped, or vice versa. All declarations of an
enum must agree in underlying type.

When forward-declaring an unscoped enum, the underlying type must be explicitly specified, since it cannot
be inferred until the values of the enumerators are known.

enum class Format; // underlying type is implicitly int
void f(Format f);
enum class Format {

TEXT,
PDF,
OTHER,
i
enum Direction; // ill-formed; must specify underlying type

Section 20.3: struct

Interchangeable with class, except for the following differences:

e If a class type is defined using the keyword struct, then the default accessibility of bases and members is
public rather than private.

e struct cannot be used to declare a template type parameter or template template parameter; only class
can.

Section 20.4: union

1. Introduces the definition of a union type.

// Example is from POSIX
union sigval {
int sival_int;
void *sival_ptr;

b

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a union type. If
the union name has been declared already, it can be found even if hidden by another name. If the union
name has not been declared already, it is forward-declared.

union foo; // elaborated type specifier -> forward declaration
class bar {

GoalKicker.com - C++ Notes for Professionals 106

(c) ketabton.com: The Digital Library

public:
bar(foo& f);
i

void baz();
union baz; // another elaborated type specifer; another forward declaration

// note: the class has the same name as the function void baz()

union foo {
long 1;
union baz* b; // elaborated type specifier refers to the class,
// not the function of the same name

GoalKicker.com - C++ Notes for Professionals 107

(c) ketabton.com: The Digital Library

Chapter 21: Basic Type Keywords

Section 21.1: char

An integer type which is "large enough to store any member of the implementation’s basic character set". It is
implementation-defined whether char is signed (and has a range of at least -127 to +127, inclusive) or unsigned
(and has a range of at least 0 to 255, inclusive).

const char zero = '0';
const char one = zero + 1;
const char newline = '\n';

std::cout << one << newline; // prints 1 followed by a newline

Section 21.2: char16_t

Version = C++11

An unsigned integer type with the same size and alignment as uint_least16_t, which is therefore large enough to
hold a UTF-16 code unit.

const char16_t message[] = u"fR& , 5 \\n"; // Chinese for "hello, world\\n"
std::cout << sizeof(message)/sizeof(char16_t) << "\\n"; // prints 7

Section 21.3: char32_t

Version = C++11

An unsigned integer type with the same size and alignment as uint_least32_t, which is therefore large enough to
hold a UTF-32 code unit.

const char32_t full_house[] = v"'O0QOOOO"; // non-BMP characters
std::cout << sizeof(full_house)/sizeof(char32_t) << "\\n"; // prints 6

Section 21.4: int

Denotes a signed integer type with "the natural size suggested by the architecture of the execution environment",
whose range includes at least -32767 to +32767, inclusive.

int x = 2;
int y = 3;
int z = x + vy,

Can be combined with unsigned, short, long, and long long (g.v.) in order to yield other integer types.

Section 21.5: void

An incomplete type; it is not possible for an object to have type void, nor are there arrays of void or references to
void. It is used as the return type of functions that do not return anything.

Moreover, a function may redundantly be declared with a single parameter of type void; this is equivalent to
declaring a function with no parameters (e.g. int main() and int main(void) declare the same function). This
syntax is allowed for compatibility with C (where function declarations have a different meaning than in C++).

GoalKicker.com - C++ Notes for Professionals 108

(c) ketabton.com: The Digital Library

The type void* ("pointer to void") has the property that any object pointer can be converted to it and back and
result in the same pointer. This feature makes the type void= suitable for certain kinds of (type-unsafe) type-erasing
interfaces, for example for generic contexts in C-style APIs (e.g. gsort, pthread_create).

Any expression may be converted to an expression of type void; this is called a discarded-value expression:
static_cast<void>(std::printf("Hello, %s!\n", name)); // discard return value

This may be useful to signal explicitly that the value of an expression is not of interest and that the expression is to
be evaluated for its side effects only.

Section 21.6: wchar_t

An integer type large enough to represent all characters of the largest supported extended character set, also
known as the wide-character set. (It is not portable to make the assumption that wchar_t uses any particular
encoding, such as UTF-16.)

It is normally used when you need to store characters over ASCIl 255, as it has a greater size than the character
type char.

const wchar_t message_ahmaric[] = L"OOO OOO\\n"; //Ahmaric for "hello, world\\n"
const wchar_t message_chinese[] = L"fR% , & \\n";// Chinese for "hello, world\\n"

const wchar_t message_hebrew[] = L"oby ow\\n"; //Hebrew for "hello, world\\n"
const wchar_t message_russian[] = L"Mpueer mup\\n"; //Russian for "hello, world\\n"
const wchar_t message_tamil[] = L"amew@oor e ewsw®\\n"; //Tamil for "hello, world\\n"

Section 21.7: float

A floating point type. Has the narrowest range out of the three floating point types in C++.

float area(float radius) {
const float pi = 3.14159f;
return pi*radius*radius;

Section 21.8: double

A floating point type. Its range includes that of float. When combined with long, denotes the long double floating
point type, whose range includes that of double.

double area(double radius) {
const double pi = 3.141592653589793;
return pi*radius*radius;

Section 21.9: long

Denotes a signed integer type that is at least as long as int, and whose range includes at least -2147483647 to
+2147483647, inclusive (that is, -(2A31 - 1) to +(2731 - 1)). This type can also be written as long int.

const long approx_seconds_per_year = 60L*60L*24L*365L;

The combination long double denotes a floating point type, which has the widest range out of the three floating

GoalKicker.com - C++ Notes for Professionals 109

(c) ketabton.com: The Digital Library

point types.

long double area(long double radius) {
const long double pi = 3.1415926535897932385L ;
return pi*radius*radius;

}

Version = C++11

When the long specifier occurs twice, as in long long, it denotes a signed integer type that is at least as long as
long, and whose range includes at least -9223372036854775807 to +9223372036854775807, inclusive (that is, -
(2763 - 1) to +(2763 - 1)).

// support files up to 2 TiB
const long long max_file_size = 2LL << 40;

Section 21.10: short

Denotes a signed integer type that is at least as long as char, and whose range includes at least -32767 to +32767,
inclusive. This type can also be written as short int.

// (during the last year)
short hours_worked(short days_worked) {
return 8*days_worked;

}

Section 21.11: bool

An integer type whose value can be either true or false.

bool is_even(int x) {
return x%2 == 0;
}

const bool b = is_even(47); // false

GoalKicker.com - C++ Notes for Professionals 10

(c) ketabton.com: The Digital Library

Chapter 22: Variable Declaration
Keywords

Section 22.1: decltype

Version = C++11
Yields the type of its operand, which is not evaluated.

e If the operand e is a name without any additional parentheses, then decltype(e) is the declared type of e.

int x = 42;
std::vector<decltype(x)> v(100, x); // v is a vector<int>

e If the operand e is a class member access without any additional parentheses, then decltype(e) is the
declared type of the member accessed.

struct S {
int x = 42;
%
const S s;
decltype(s.x) y; // y has type int, even though s.x is const

¢ In all other cases, decltype(e) yields both the type and the value category of the expression e, as follows:

o If eiis an Ivalue of type T, then decltype(e) is T&.
o If eis an xvalue of type T, then decltype(e) is T&&.
o If eis a prvalue of type T, then decltype(e) is T.

This includes the case with extraneous parentheses.

int f() { return 42; }
int& g() { static int x = 42; return x; }

int x = 42;

decltype(f()) a = f(); // a has type int

decltype(g()) b = g(); // b has type int&

decltype((x)) ¢ = x; // ¢ has type int&, since x is an lvalue

Version = C++14

The special form decltype(auto) deduces the type of a variable from its initializer or the return type of a function
from the return statements in its definition, using the type deduction rules of decltype rather than those of auto.

const int x = 123;
auto y = Xx; // y has type int
decltype(auto) z = x; // z has type const int, the declared type of x

Section 22.2: const

A type specifier; when applied to a type, produces the const-qualified version of the type. See const keyword for
details on the meaning of const.

const int x = 123;
X = 456; // error

GoalKicker.com - C++ Notes for Professionals

m

(c) ketabton.com: The Digital Library

int& r = x; // error

struct S {

void f();

void g() const;
b
const S s;
s.f(); // error
s.g(); // OK

Section 22.3: volatile

A type qualifier; when applied to a type, produces the volatile-qualified version of the type. Volatile qualification
plays the same role as const qualification in the type system, but volatile does not prevent objects from being
modified; instead, it forces the compiler to treat all accesses to such objects as side effects.

In the example below, if memory_mapped_port were not volatile, the compiler could optimize the function so that it
performs only the final write, which would be incorrect if sizeof(int) is greater than 1. The volatile qualification
forces it to treat all sizeof (int) writes as different side effects and hence perform all of them (in order).

extern volatile char memory_mapped_port;
void write_to_device(int x) {
const char* p = reinterpret_cast<const char*>(&x);
for (int i = @; i < sizeof(int); i++) {
memory_mapped_port = p[i];

}

Section 22.4: sighed

A keyword that is part of certain integer type names.

When used alone, int is implied, so that signed, signed int, and int are the same type.

When combined with char, yields the type signed char, which is a different type from char, even if char is
also signed. signed char has a range that includes at least -127 to +127, inclusive.

When combined with short, long, or long long, it is redundant, since those types are already signed.

® signed cannot be combined with bool, wchar_t, char16_t, or char32_t.

Example:

signed char celsius_temperature;

std::cin >> celsius_temperature;

if (celsius_temperature < -35) {
std::cout << "cold day, eh?\n";

}

Section 22.5: unsigned

A type specifier that requests the unsigned version of an integer type.

¢ When used alone, int is implied, so unsigned is the same type as unsigned int.

e The type unsigned char is different from the type char, even if char is unsigned. It can hold integers up to at
least 255.

e unsigned can also be combined with short, long, or long long. It cannot be combined with bool, wchar_t,
char16_t, or char32_t

GoalKicker.com - C++ Notes for Professionals 12

(c) ketabton.com: The Digital Library

Example:

char invert_case_table[256] = { ..., 'a', 'b', 'c¢', ..., 'A", 'B', 'C', ... };
char invert_case(char c) {

unsigned char index = c;

return invert_case_table[index];

// note: returning invert_case_table[c] directly does the

// wrong thing on implementations where char is a signed type

GoalKicker.com - C++ Notes for Professionals 13

(c) ketabton.com: The Digital Library

Chapter 23: Keywords

Keywords have fixed meaning defined by the C++ standard and cannot be used as identifiers. It is illegal to redefine
keywords using the preprocessor in any translation unit that includes a standard library header. However,
keywords lose their special meaning inside attributes.

Section 23.1: asm

The asm keyword takes a single operand, which must be a string literal. It has an implementation-defined meaning,
but is typically passed to the implementation's assembler, with the assembler's output being incorporated into the
translation unit.

The asm statement is a definition, not an expression, so it may appear either at block scope or namespace scope
(including global scope). However, since inline assembly cannot be constrained by the rules of the C++ language,
asm may not appear inside a constexpr function.

Example:

[[noreturn]] void halt_system() {
asm("hlt");
}

Section 23.2: Different keywords
void C++

1. When used as a function return type, the void keyword specifies that the function does not return a value.
When used for a function's parameter list, void specifies that the function takes no parameters. When used
in the declaration of a pointer, void specifies that the pointer is "universal."

2. If a pointer's type is void *, the pointer can point to any variable that is not declared with the const or volatile
keyword. A void pointer cannot be dereferenced unless it is cast to another type. A void pointer can be
converted into any other type of data pointer.

3. Avoid pointer can point to a function, but not to a class member in C++.

void vobject; // C2182
void #*pv; // okay
int #*pint; int i;
int main() {
pv = &i;
// Cast optional in C required in C++
pint = (int *)pv;

Volatile C++

1. Atype qualifier that you can use to declare that an object can be modified in the program by the hardware.

volatile declarator ;

GoalKicker.com - C++ Notes for Professionals 14

(c) ketabton.com: The Digital Library

virtual C++

1. The virtual keyword declares a virtual function or a virtual base class.

virtual [type-specifiers] member-function-declarator
virtual [access-specifier] base-class-name

Parameters

1. type-specifiers Specifies the return type of the virtual member function.
2. member-function-declarator Declares a member function.

3. access-specifier Defines the level of access to the base class, public, protected or private. Can appear before
or after the virtual keyword.

4. base-class-name Identifies a previously declared class type

this pointer

1. The this pointer is a pointer accessible only within the nonstatic member functions of a class, struct, or union

type. It points to the object for which the member function is called. Static member functions do not have a
this pointer.

this->member-identifier

An object's this pointer is not part of the object itself; it is not reflected in the result of a sizeof statement on the
object. Instead, when a nonstatic member function is called for an object, the address of the object is passed by the
compiler as a hidden argument to the function. For example, the following function call:

myDate.setMonth(3);

can be interpreted this way:

setMonth(&myDate, 3);

The object's address is available from within the member function as the this pointer. Most uses of this are implicit.
It is legal, though unnecessary, to explicitly use this when referring to members of the class. For example:

void Date::setMonth(int mn)

{
month = mn; // These three statements
this->month = mn; // are equivalent
(*this).month = mn;

}

The expression *this is commonly used to return the current object from a member function: return *this; The this
pointer is also used to guard against self-reference:

if (&0bject != this) {
// do not execute in cases of self-reference

try, throw, and catch Statements (C++)

GoalKicker.com - C++ Notes for Professionals 15

(c) ketabton.com: The Digital Library

1. To implement exception handling in C++, you use try, throw, and catch expressions.

2. First, use a try block to enclose one or more statements that might throw an exception.

3. Athrow expression signals that an exceptional condition—often, an error—has occurred in a try block. You
can use an object of any type as the operand of a throw expression. Typically, this object is used to
communicate information about the error. In most cases, we recommend that you use the std::exception
class or one of the derived classes that are defined in the standard library. If one of those is not appropriate,
we recommend that you derive your own exception class from std::exception.

4. To handle exceptions that may be thrown, implement one or more catch blocks immediately following a try
block. Each catch block specifies the type of exception it can handle.

MyData md;
try {
// Code that could throw an exception
md = GetNetworkResource();
}
catch (const networkIOException& e)
// Code that executes when an exception of type
// networkIOException is thrown in the try block
//
// Log error message in the exception object
cerr << e.what();
}
catch (const myDataFormatException& e) {
// Code that handles another exception type
//
cerr << e.what();

Y

// The following syntax shows a throw expression
MyData GetNetworkResource()
{
//
if (IOSuccess == false)
throw networkIOException("Unable to connect");
//
if (readError)
throw myDataFormatException("Format error");
//

The code after the try clause is the guarded section of code. The throw expression throws—that is,
raises—an exception. The code block after the catch clause is the exception handler. This is the handler
that catches the exception that's thrown if the types in the throw and catch expressions are compatible.

try {
throw CSomeOtherException();
}
catch(...) {
// Catch all exceptions - dangerous!!!
// Respond (perhaps only partially) to the exception, then
// re-throw to pass the exception to some other handler
//
throw;

friend (C++)

GoalKicker.com - C++ Notes for Professionals 16

(c) ketabton.com: The Digital Library

1. In some circumstances, it is more convenient to grant member-level access to functions that are not
members of a class or to all members in a separate class. Only the class implementer can declare who its
friends are. A function or class cannot declare itself as a friend of any class. In a class definition, use the
friend keyword and the name of a non-member function or other class to grant it access to the private and
protected members of your class. In a template definition, a type parameter can be declared as a friend.

2. If you declare a friend function that was not previously declared, that function is exported to the enclosing
nonclass scope.

class friend F

friend F;

class ForwardDeclared;// Class name is known.
class HasFriends

{
friend int ForwardDeclared: :IsAFriend();// C2039 error expected

b

friend functions

1. Afriend function is a function that is not a member of a class but has access to the class's private and
protected members.Friend functions are not considered class members; they are normal external functions
that are given special access privileges.

2. Friends are not in the class's scope, and they are not called using the member-selection operators (. and —>)
unless they are members of another class.

3. Afriend function is declared by the class that is granting access. The friend declaration can be placed
anywhere in the class declaration. It is not affected by the access control keywords.

#include <iostream>

using namespace std;
class Point
{
friend void ChangePrivate(Point &);
public:
Point(void) : m_i(@) {}
void PrintPrivate(void){cout << m_i << endl; }

private:
int m_1i;
i

void ChangePrivate (Point &i) { i.m_i++; }

int main()

{
Point sPoint;
sPoint.PrintPrivate();
ChangePrivate(sPoint);
sPoint.PrintPrivate();
// Output: ©
1
}

GoalKicker.com - C++ Notes for Professionals 17

(c) ketabton.com: The Digital Library

Class members as friends

class B;

class A {
public:
int Func1(B& b);

private:
int Func2(B& b);

bé

class B {

private:

int _b;
// A::Funcl is a friend function to class B
// so A::Funcl1l has access to all members of B
friend int A::Funcl1(B&);

s

int A::Funcl1(B& b) { return b._b; } // OK
int A::Func2(B& b) { return b._b; } // C2248

Section 23.3: typename

1. When followed by a qualified name, typename specifies that it is the name of a type. This is often required in
templates, in particular, when the nested name specifier is a dependent type other than the current
instantiation. In this example, std: :decay<T> depends on the template parameter T, so in order to name the
nested type type, we need to prefix the entire qualified name with typename. For more deatils, see Where
and why do | have to put the "template" and "typename" keywords?

template <class T>
auto decay_copy(T&& r) -> typename std::decay<T>::type;

2. Introduces a type parameter in the declaration of a template. In this context, it is interchangeable with class.

template <typename T>
const T& min(const T& x, const T& y) {
return b <a ? b : a;

}

Version = C++17

3. typename can also be used when declaring a template template parameter, preceding the name of the
parameter, just like class.

template <template <class T> typename U>
void f() {

U<int>::do_it();

U<double>::do_it();

GoalKicker.com - C++ Notes for Professionals 18

(c) ketabton.com: The Digital Library

Section 23.4: explicit

1. When applied to a single-argument constructor, prevents that constructor from being used to perform
implicit conversions.

class MyVector {

public:

explicit MyVector(uint64_t size);

i
MyVector v1(160); // ok
uint64_t len1 = 100;
MyVector v2{len1}; // ok, len1 is uint64_t
int len2 = 100;
MyVector v3{len2}; // ill-formed, implicit conversion from int to uint64_t

Since C++11 introduced initializer lists, in C++11 and later, explicit can be applied to a constructor with any
number of arguments, with the same meaning as in the single-argument case.

struct S {
explicit S(int x, int y);

b

S f() {
return {12, 34}; // ill-formed
return S{12, 34}; // ok

}

Version = C++11

2. When applied to a conversion function, prevents that conversion function from being used to perform
implicit conversions.

class C {

const int x;

public:

C(int x) : x(x) {}

explicit operator int() { return x; }
b
C c(42);
int x = c; // ill-formed
int y = static_cast<int>(c); // ok; explicit conversion

Section 23.5: sizeof

A unary operator that yields the size in bytes of its operand, which may be either an expression or a type. If the
operand is an expression, it is not evaluated. The size is a constant expression of type std: :size_t.

If the operand is a type, it must be parenthesized.

Itis illegal to apply sizeof to a function type.

Itis illegal to apply sizeof to an incomplete type, including void.

If sizeof is applied to a reference type T& or T&&, it is equivalent to sizeof(T).

When sizeof is applied to a class type, it yields the number of bytes in a complete object of that type,
including any padding bytes in the middle or at the end. Therefore, a sizeof expression can never have a
value of 0. See layout of object types for more details.

GoalKicker.com - C++ Notes for Professionals 19

(c) ketabton.com: The Digital Library

e The char, signed char, and unsigned char types have a size of 1. Conversely, a byte is defined to be the
amount of memory required to store a char object. It does not necessarily mean 8 bits, as some systems
have char objects longer than 8 bits.

If expr is an expression, sizeof (expr) is equivalent to sizeof (T) where T is the type of expr.

int a[100];
std::cout << "The number of bytes in ‘a’ is: " << sizeof a;
memset(a, O, sizeof a); // zeroes out the array

Version = C++11

The sizeof. .. operator yields the number of elements in a parameter pack.

template <class... T>
void f(T&&...) {
std::cout << "f was called with " << sizeof...(T) <<

arguments\n”;

}

Section 23.6: noexcept

Version = C++11

1. A unary operator that determines whether the evaluation of its operand can propagate an exception. Note
that the bodies of called functions are not examined, so noexcept can yield false negatives. The operand is
not evaluated.

#include <iostream>
#include <stdexcept>
void foo() { throw std::runtime_error("oops"); }
void bar() {}
struct S {};
int main() {
std::cout << noexcept
std::cout << noexcept
std: :cout << noexcept
std::cout << noexcept

foo()) << '\n'; // prints
bar()) << '\n'; // prints
1+ 1) << '\n'; // prints
S()) << '"\n'; // prints

_ a0 ®®

(
(
(
(

In this example, even though bar () can never throw an exception, noexcept(bar()) is still false because the
fact that bar () cannot propagate an exception has not been explicitly specified.

2. When declaring a function, specifies whether or not the function can propagate an exception. Alone, it
declares that the function cannot propagate an exception. With a parenthesized argument, it declares that
the function can or cannot propagate an exception depending on the truth value of the argument.

void f1() { throw std::runtime_error("oops"); }
void f2() noexcept(false) { throw std::runtime_error("oops"); }
void f3() {}
void f4() noexcept {}
void f5() noexcept(true) {}
void f6() noexcept {
try {
f10);

} catch (const std::runtime_error&) {}

GoalKicker.com - C++ Notes for Professionals 120

(c) ketabton.com: The Digital Library

In this example, we have declared that f4, 5, and f6 cannot propagate exceptions. (Although an exception
can be thrown during execution of 6, it is caught and not allowed to propagate out of the function.) We have
declared that f2 may propagate an exception. When the noexcept specifier is omitted, it is equivalent to
noexcept(false), so we have implicitly declared that f1 and f3 may propagate exceptions, even though
exceptions cannot actually be thrown during the execution of 3.

Version = C++17

Whether or not a function is noexcept is part of the function's type: that is, in the example above, f1, f2, and f3
have different types from f4, f5, and f6. Therefore, noexcept is also significant in function pointers, template
arguments, and so on.

void g1() {}
void g2() noexcept {}
void (*p1)() noexcept

&g1; // ill-formed, since g1 is not noexcept

void (*p2)() noexcept = &g2; // ok; types match
void (*p3)() = &g1; // ok; types match
void (*p4)() = &g2; // ok; implicit conversion

GoalKicker.com - C++ Notes for Professionals 121

(c) ketabton.com: The Digital Library

Chapter 24: Returning several values from
a function

There are many situations where it is useful to return several values from a function: for example, if you want to
input an item and return the price and number in stock, this functionality could be useful. There are many ways to
do this in C++, and most involve the STL. However, if you wish to avoid the STL for some reason, there are still
several ways to do this, including structs/classes and arrays.

Section 24.1: Using std::tuple

Version = C++11

The type std: : tuple can bundle any number of values, potentially including values of different types, into a single
return object:

std::tuple<int, int, int, int> foo(int a, int b) { // or auto (C++14)
return std::make_tuple(a + b, a - b, a * b, a / b);

}

In C++17, a braced initializer list can be used:

Version = C++17

std: :tuple<int, int, int, int> foo(int a, int b) {
return {a + b, a - b, a*xb, a/ b};

}

Retrieving values from the returned tuple can be cumbersome, requiring the use of the std: :get template
function:

auto mrvs = foo(5, 12);

auto add = std::get<@>(mrvs);
auto sub = std::get<1>(mrvs);
auto mul = std::get<2>(mrvs);
auto div = std::get<3>(mrvs);

If the types can be declared before the function returns, then std: : tie can be employed to unpack a tuple into
existing variables:

int add, sub, mul, div;
std::tie(add, sub, mul, div) = foo(5, 12);

If one of the returned values is not needed, std: :ignore can be used:

std::tie(add, sub, std::ignore, div) = foo(5, 12);

Version = C++17

Structured bindings can be used to avoid std: : tie:
auto [add, sub, mul, div] = foo(5,12);

If you want to return a tuple of Ivalue references instead of a tuple of values, use std: :tie in place of
std: :make_tuple

std::tuple<int&, int&> minmax(int& a, int& b) {

GoalKicker.com - C++ Notes for Professionals 122

(c) ketabton.com: The Digital Library

if (b<a)

return std::tie(b,a);
else

return std::tie(a,b);

which permits

void increase_least(int& a, int& b)
std: :get<@>(minmax(a,b))++;

}

In some rare cases you'll use std: : forward_as_tuple instead of std: :tie; be careful if you do so, as temporaries
may not last long enough to be consumed.

Section 24.2: Structured Bindings

Version = C++17

C++17 introduces structured bindings, which makes it even easier to deal with multiple return types, as you do not
need to rely upon std: :tie() or do any manual tuple unpacking:

std: :map<std::string, int> m;

// insert an element into the map and check if insertion succeeded
auto [iterator, success] = m.insert({"Hello", 42});

if (success) {
// your code goes here

}

// iterate over all elements without having to use the cryptic 'first' and 'second’' names
for (auto const& [key, value] : m) {
std::cout << "The value for " << key << " is " << value << '\n';

}

Structured bindings can be used by default with std: :pair, std: :tuple, and any type whose non-static data
members are all either public direct members or members of an unambiguous base class:

struct A { int x; };
struct B : A { int y; };
B foo();

// with structured bindings
const auto [x, y] = foo();

// equivalent code without structured bindings
const auto result = foo();

auto& x = result.x;

auto& y = result.y;

If you make your type "tuple-like" it will also automatically work with your type. A tuple-like is a type with
appropriate tuple_size, tuple_element and get written:

namespace my_ns {
struct my_type {
int x;

GoalKicker.com - C++ Notes for Professionals 123

(c) ketabton.com: The Digital Library

double d;
std::string s;

i

struct my_type_view {
my_type* ptr;

iE
}
namespace std {
template<>
struct tuple_size<my_ns::my_type_view> : std::integral_constant<std::size_t, 3>
{}

template<> struct tuple_element<my_ns::my_type_view, 0>{ using type = int; };
template<> struct tuple_element<my_ns::my_type_view, 1>{ using type = double; };
template<> struct tuple_element<my_ns::my_type_view, 2>{ using type std::string; };

}

namespace my_ns {
template<std::size_t I>
decltype(auto) get(my_type_view const& v) {

if constexpr (I == 0)
return v.ptr->x;

else if constexpr (I == 1)
return v.ptr->d;

else if constexpr (I == 2)

return v.ptr->s;
static_assert(I < 3, "Only 3 elements");

now this works:

my_ns::my_type t{1, 3.14, "hello world"};

my_ns::my_type_view foo() {
return {&t};
}

int main() {
auto[x, d, s] = foo();
std::cout << x << ',' << d << ',' << s << "\n';

Section 24.3: Using struct

A struct can be used to bundle multiple return values:

Version = C++11

struct foo_return_type {
int add;
int sub;
int mul;
int div;

b

foo_return_type foo(int a, int b) {
return {a + b, a - b, a*xb, a/ b};

}

GoalKicker.com - C++ Notes for Professionals 124

(c) ketabton.com: The Digital Library

auto calc = foo(5, 12);

Version < C++11

Instead of assignment to individual fields, a constructor can be used to simplify the constructing of returned values:

struct foo_return_type {
int add;
int sub;
int mul;
int div;
foo_return_type(int add, int sub, int mul, int div)
: add(add), sub(sub), mul(mul), div(div) {}
%

foo_return_type foo(int a, int b) {
return foo_return_type(a + b, a - b, a * b, a / b);

}

foo_return_type calc = foo(5, 12);

The individual results returned by the function foo() can be retrieved by accessing the member variables of the
struct calc:

std::cout << calc.add << ' ' << calc.sub << ' ' << calc.mul << ' ' << calc.div << '\n’';

Output:
17-7600

Note: When using a struct, the returned values are grouped together in a single object and accessible using
meaningful names. This also helps to reduce the number of extraneous variables created in the scope of the
returned values.

Version = C++17

In order to unpack a struct returned from a function, structured bindings can be used. This places the out-
parameters on an even footing with the in-parameters:

int a=5, b=12;
auto[add, sub, mul, div] = foo(a, b);
std::cout << add << ' ' << sub <<

<< mul << << div << '\n’;

The output of this code is identical to that above. The struct is still used to return the values from the function.
This permits you do deal with the fields individually.

Section 24.4: Using Output Parameters

Parameters can be used for returning one or more values; those parameters are required to be non-const pointers
or references.

References:

void calculate(int a, int b, int& c, int& d, int& e, int& f) {
c=a+b;
d =a-b;

GoalKicker.com - C++ Notes for Professionals 125

(c) ketabton.com: The Digital Library

e =a *b;
f=a/b;
}
Pointers:

void calculate(int a, int b, int* c, int* d, int* e, int* f) {
*C = a+ b;
*d = a ;
*e = a
*f = a

’

’

O T T

*
/ b;
Some libraries or frameworks use an empty 'OUT' #define to make it abundantly obvious which parameters are

output parameters in the function signature. This has no functional impact, and will be compiled out, but makes the
function signature a bit clearer;

#define OUT

void calculate(int a, int b, OUT int& c) {
c=a+b,;

}

Section 24.5: Using a Function Object Consumer

We can provide a consumer that will be called with the multiple relevant values:

Version = C++11

template <class F>

void foo(int a, int b, F consumer) {
consumer(a + b, a - b, a*xb, a/b);

}

// use is simple... ignoring some results is possible as well
foo(5, 12, []1(int sum, int , int , int){
std::cout << "sum is " << sum << '\n’';

1)

This is known as "continuation passing style".

You can adapt a function returning a tuple into a continuation passing style function via:

Version = C++17

template<class Tuple>
struct continuation {
Tuple t;
template<class F>
decltype(auto) operator->*(F&& f)&&{
return std::apply(std::forward<F>(f), std::move(t));
}
i

std::tuple<int, int,int, int> foo(int a, int b);
continuation(foo(5,12))->*[](int sum, auto&&...) {

std::cout << "sum is " << sum << '\n';

b

with more complex versions being writable in C++14 or C++11,

GoalKicker.com - C++ Notes for Professionals 126

(c) ketabton.com: The Digital Library
Section 24.6: Using std::pair
The struct template std: :pair can bundle together exactly two return values, of any two types:

#include <utility>
std: :pair<int, int> foo(int a, int b) {
return std::make_pair(a+b, a-b);

}

With C++11 or later, an initializer list can be used instead of std: :make_pair:

Version = C++11

#include <utility>
std::pair<int, int> foo(int a, int b) {
return {a+b, a-b};

}

The individual values of the returned std: :pair can be retrieved by using the pair's first and second member
objects:

std::pair<int, int> mrvs = foo(5, 12);
std::cout << mrvs.first + mrvs.second << std::endl;

Output:

10

Section 24.7: Using std::array

Version = C++11

The container std: :array can bundle together a fixed number of return values. This number has to be known at
compile-time and all return values have to be of the same type:

std::array<int, 4> bar(int a, int b) {
return { a+b, a-b, axb, a/b};

}

This replaces c style arrays of the form int bar[4]. The advantage being that various c++ std functions can now be
used on it. It also provides useful member functions like at which is a safe member access function with bound
checking, and size which allows you to return the size of the array without calculation.

Section 24.8: Using Output Iterator

Several values of the same type can be returned by passing an output iterator to the function. This is particularly
common for generic functions (like the algorithms of the standard library).

Example:

template<typename Incrementable, typename OutputIterator>
void generate_sequence(Incrementable from, Incrementable to, OutputIterator output) {
for (Incrementable k = from; k != to; ++k)
*output++ = k;

GoalKicker.com - C++ Notes for Professionals 127

(c) ketabton.com: The Digital Library

}
Example usage:

std::vector<int> digits;
generate_sequence(0, 10, std::back_inserter(digits));
// digits now contains {@, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Section 24.9: Using std::vector

A std: :vector can be useful for returning a dynamic number of variables of the same type. The following example
uses int as data type, but a std: :vector can hold any type that is trivially copyable:

#include <vector>
#include <iostream>

// the following function returns all integers between and including 'a' and 'b' in a vector
// (the function can return up to std::vector::max_size elements with the vector, given that
// the system's main memory can hold that many items)
std::vector<int> fillVectorFrom(int a, int b) {

std::vector<int> temp;

for (int 1 = a; 1 <= b; i++) {

temp.push_back(i);
}

return temp;

int main() {
// assigns the filled vector created inside the function to the new vector 'v'
std::vector<int> v = fillVectorFrom(1, 10);

// prints "1 2345678910 "
for (int i = 0; i < v.size(); i++) {
std::cout << v[i] << "

)

}
std::cout << std::endl;
return 0;

GoalKicker.com - C++ Notes for Professionals 128

(c) ketabton.com: The Digital Library

Chapter 25: Polymorphism

Section 25.1: Define polymorphic classes

The typical example is an abstract shape class, that can then be derived into squares, circles, and other concrete
shapes.

The parent class:

Let's start with the polymorphic class:

class Shape {
public:
virtual ~Shape() = default;
virtual double get_surface() const = 0;
virtual void describe_object() const { std::cout << "this is a shape" << std::endl; }

double get_doubled_surface() const { return 2 * get_surface(); }

b
How to read this definition ?

¢ You can define polymorphic behavior by introduced member functions with the keyword virtual. Here
get_surface() and describe_object() will obviously be implemented differently for a square than for a
circle. When the function is invoked on an object, function corresponding to the real class of the object will be
determined at runtime.

¢ It makes no sense to define get_surface() for an abstract shape. This is why the function is followed by = @.
This means that the function is pure virtual function.

¢ A polymorphic class should always define a virtual destructor.

¢ You may define non virtual member functions. When these function will be invoked for an object, the
function will be chosen depending on the class used at compile-time. Here get_double_surface() is defined
in this way.

¢ Aclass that contains at least one pure virtual function is an abstract class. Abstract classes cannot be
instantiated. You may only have pointers or references of an abstract class type.

Derived classes
Once a polymorphic base class is defined you can derive it. For example:

class Square : public Shape {
Point top_left;
double side_length;
public:
Square (const Point& top_left, double side)
: top_left(top_left), side_length(side_length) {}

double get_surface() override { return side_length * side_length; }
void describe_object() override {
std::cout << "this is a square starting at " << top_left.x << ", " << top_left.y

<< " with a length of " << side_length << std::endl;

GoalKicker.com - C++ Notes for Professionals 129

(c) ketabton.com: The Digital Library

Some explanations:

¢ You can define or override any of the virtual functions of the parent class. The fact that a function was virtual
in the parent class makes it virtual in the derived class. No need to tell the compiler the keyword virtual
again. But it's recommended to add the keyword override at the end of the function declaration, in order to
prevent subtle bugs caused by unnoticed variations in the function signature.

e If all the pure virtual functions of the parent class are defined you can instantiate objects for this class, else it
will also become an abstract class.

¢ You are not obliged to override all the virtual functions. You can keep the version of the parent if it suits your
need.

Example of instantiation

int main() {
Square square(Point(10.0, 0.8), 6); // we know it's a square, the compiler also
square.describe_object();
std::cout << "Surface: " << square.get_surface() << std::endl;

Circle circle(Point(0.0, 0.8), 5);

Shape #*ps = nullptr; // we don't know yet the real type of the object

ps = &circle; // it's a circle, but it could as well be a square
ps->describe_object();
std::cout << "Surface: " << ps->get_surface() << std::endl;

Section 25.2: Safe downcasting

Suppose that you have a pointer to an object of a polymorphic class:

Shape *ps; // see example on defining a polymorphic class
ps = get_a_new_random_shape(); // if you don't have such a function yet, you
// could just write ps = new Square(0.0,0.0, 5);

a downcast would be to cast from a general polymorphic Shape down to one of its derived and more specific shape
like Square or Circle.

Why to downcast ?

Most of the time, you would not need to know which is the real type of the object, as the virtual functions allow you
to manipulate your object independently of its type:

std::cout << "Surface: " << ps->get_surface() << std::endl;

If you don't need any downcast, your design would be perfect.

However, you may need sometimes to downcast. A typical example is when you want to invoke a non virtual
function that exist only for the child class.

Consider for example circles. Only circles have a diameter. So the class would be defined as :

class Circle: public Shape { // for Shape, see example on defining a polymorphic class
Point center;
double radius;

public:

GoalKicker.com - C++ Notes for Professionals 130

(c) ketabton.com: The Digital Library

Circle (const Point& center, double radius)
: center(center), radius(radius) {}

double get_surface() const override { return r * r * M_PI; }
// this is only for circles. Makes no sense for other shapes
double get_diameter() const { return 2 * r; }

i

The get_diameter () member function only exist for circles. It was not defined for a Shape object:

Shape* ps = get_any_shape();
ps->get_diameter(); // OUCH !!! Compilation error

How to downcast ?

If you'd know for sure that ps points to a circle you could opt for a static_cast:

std::cout << "Diameter: " << static_cast<Circlex*>(ps)->get_diameter() << std::endl;

This will do the trick. But it's very risky: if ps appears to by anything else than a Circle the behavior of your code
will be undefined.

So rather than playing Russian roulette, you should safely use a dynamic_cast. This is specifically for polymorphic
classes:

int main() {
Circle circle(Point(0.0, 0.8), 10);
Shape &shape = circle;
std::cout << "The shape has a surface of " << shape.get_surface() << std::endl;

//shape.get_diameter(); // OUCH !!! Compilation error

Circle *pc = dynamic_cast<Circlex*>(&shape); // will be nullptr if ps wasn't a circle

if (pc)

std::cout << "The shape is a circle of diameter " << pc->get_diameter() << std::endl;
else

std::cout << "The shape isn't a circle !" << std::endl;

Note that dynamic_cast is not possible on a class that is not polymorphic. You'd need at least one virtual function in
the class or its parents to be able to use it.

Section 25.3: Polymorphism & Destructors

If a class is intended to be used polymorphically, with derived instances being stored as base pointers/references,
its base class' destructor should be either virtual or protected. In the former case, this will cause object
destruction to check the vtable, automatically calling the correct destructor based on the dynamic type. In the
latter case, destroying the object through a base class pointer/reference is disabled, and the object can only be
deleted when explicitly treated as its actual type.

struct VirtualDestructor {
virtual ~VirtualDestructor() = default;

|3

struct VirtualDerived : VirtualDestructor {};

GoalKicker.com - C++ Notes for Professionals 131

(c) ketabton.com: The Digital Library

struct ProtectedDestructor
protected:
~ProtectedDestructor() = default;

|3

struct ProtectedDerived : ProtectedDestructor {
~ProtectedDerived() = default;

|3
/]

VirtualDestructor* vd = new VirtualDerived;
delete vd; // Looks up VirtualDestructor::~VirtualDestructor() in vtable, sees it's
// VirtualDerived::~VirtualDerived(), calls that.

ProtectedDestructor* pd = new ProtectedDerived;
delete pd; // Error: ProtectedDestructor::~ProtectedDestructor() is protected.
delete static_cast<ProtectedDerived*>(pd); // Good.

Both of these practices guarantee that the derived class' destructor will always be called on derived class instances,
preventing memory leaks.

GoalKicker.com - C++ Notes for Professionals 132

(c) ketabton.com: The Digital Library

Chapter 26: References

Section 26.1: Defining a reference

References behaves similarly, but not entirely like const pointers. A reference is defined by suffixing an ampersand
& to a type name.

int 1 = 10;
int &refi = i;

Here, refiis a reference bound to i.
References abstracts the semantics of pointers, acting like an alias to the underlying object:

refi = 20; // i = 20;
You can also define multiple references in a single definition:

int i = 10, j = 20;
int &refi = i, &refj = j;

// Common pitfall :

// int& refi =i, k = j;

// refi will be of type int&.

// though, k will be of type int, not int&!

References must be initialized correctly at the time of definition, and cannot be modified afterwards. The following
piece of codes causes a compile error:

int &i; // error: declaration of reference variable 'i' requires an initializer
You also cannot bind directly a reference to nullptr, unlike pointers:

int *const ptri = nullptr;
int &refi = nullptr; // error: non-const lvalue reference to type 'int' cannot bind to a temporary
of type 'nullptr_t'

GoalKicker.com - C++ Notes for Professionals 133

(c) ketabton.com: The Digital Library

Chapter 27: Value and Reference
Semantics

Section 27.1;: Definitions

A type has value semantics if the object's observable state is functionally distinct from all other objects of that type.
This means that if you copy an object, you have a new object, and modifications of the new object will not be in any
way visible from the old object.

Most basic C++ types have value semantics:

int i = 5;
int j = i; //Copied
j += 20;

std::cout << i; //Prints 5; i is unaffected by changes to j.

Most standard-library defined types have value semantics too:

std::vector<int> v1(5, 12); //array of 5 values, 12 in each.
std::vector<int> v2 = v1; //Copies the vector.

v2[3] = 6; v2[4] = 9;

std::cout << v1[3] << " " << v1[4]; //Writes "12 12", since v1 is unchanged.

A type is said to have reference semantics if an instance of that type can share its observable state with another
object (external to it), such that manipulating one object will cause the state to change within another object.

C++ pointers have value semantics with regard to which object they point to, but they have reference semantics
with regard to the state of the object they point to:

int *pi = new int(4);

int *pi2 = pi;

pi = new int(16);

assert(pi2 != pi); //Will always pass.

int *pj = pi;
*pj += 3;
std::cout << *pi; //Writes 9, since 'pi° and "pj° reference the same object.

C++ references have reference semantics as well.

Section 27.2: Deep copying and move support

If a type wishes to have value semantics, and it needs to store objects that are dynamically allocated, then on copy
operations, the type will need to allocate new copies of those objects. It must also do this for copy assignment.

This kind of copying is called a "deep copy". It effectively takes what would have otherwise been reference
semantics and turns it into value semantics:

struct Inner {int i;};

const int NUM_INNER = 5;
class Value

{
private:
Inner *array_; //Normally has reference semantics.

GoalKicker.com - C++ Notes for Professionals 134

(c) ketabton.com: The Digital Library

public:
Value() : array_(new Inner[NUM_INNER]){}

~Value() {delete[] array_;}

Value(const Value &val) : array_(new Inner[NUM_INNER])
{
for(int i

= 0; 1 < NUM_INNER; ++1i)
array_[i] =

val.array_[i];

}

Value &operator=(const Value &val)
{
for(int 1 = @; i < NUM_INNER; ++1i)
array_[i] = val.array_[i];
return *this;
}
b

Version = C++11

Move semantics allow a type like Value to avoid truly copying its referenced data. If the user uses the value in a way
that provokes a move, the "copied" from object can be left empty of the data it referenced:

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
Inner *array_; //Normally has reference semantics.

public:
Value() : array_(new Inner[NUM_INNER]){}

//0K to delete even if nullptr
~Value() {delete[] array_;}

Value(const Value &val) : array_(new Inner[NUM_INNER])
{
for(int i

= 0; 1 < NUM_INNER; ++i)
array_[1i] =

val.array_[i];

}

Value &operator=(const Value &val)
{
for(int 1 = @; i < NUM_INNER; ++1i)
array_[i] = val.array_[i];
return *this;

}

//Movement means no memory allocation.
//Cannot throw exceptions.
Value(Value &&val) noexcept : array_(val.array_)
{
//We've stolen the old value.
val.array_ = nullptr;

}

//Cannot throw exceptions.
Value &operator=(Value &&val) noexcept

{

GoalKicker.com - C++ Notes for Professionals 135

(c) ketabton.com: The Digital Library

//Clever trick. Since “val® is going to be destroyed soon anyway,
//we swap his data with ours. His destructor will destroy our data.
std::swap(array_, val.array_);
}
i

Indeed, we can even make such a type non-copyable, if we want to forbid deep copies while still allowing the object
to be moved around.

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
Inner *array_; //Normally has reference semantics.

public:
Value() : array_(new Inner[NUM_INNER]){}

//0K to delete even if nullptr
~Value() {delete[] array_;}

Value(const Value &val) = delete;
Value &operator=(const Value &val) = delete;

//Movement means no memory allocation.
//Cannot throw exceptions.
Value(Value &&val) noexcept : array_(val.array_)
{
//We've stolen the old value.
val.array_ = nullptr;

}

//Cannot throw exceptions.

Value &operator=(Value &&val) noexcept

{
//Clever trick. Since "val® is going to be destroyed soon anyway,
//we swap his data with ours. His destructor will destroy our data.
std::swap(array_, val.array_);

}

3

We can even apply the Rule of Zero, through the use of unique_ptr:

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
unique_ptr<Inner []>array_; //Move-only type.

public:
Value() : array_(new Inner[NUM_INNER]){}

//No need to explicitly delete. Or even declare.
~Value() = default; {delete[] array_;}

//No need to explicitly delete. Or even declare.
Value(const Value &val) = default;

GoalKicker.com - C++ Notes for Professionals 136

(c) ketabton.com: The Digital Library

Value &operator=(const Value &val) = default;

//Will perform an element-wise move.
Value(Value &&val) noexcept = default;

//Will perform an element-wise move.

Value &operator=(Value &&val) noexcept = default;
i

GoalKicker.com - C++ Notes for Professionals 137

(c) ketabton.com: The Digital Library

ChaFter 28: C++ function "call by value” vs.
"call by reference”

The scope of this section is to explain the differences in theory and implementation for what happens with the
parameters of a function upon calling.

In detail the parameters can be seen as variables before the function call and inside the function, where the visible
behaviour and accessibility to these variables differs with the method used to hand them over.

Additionally, the reusability of variables and their respective values after the function call also is explained by this
topic.

Section 28.1: Call by value

Upon calling a function there are new elements created on the program stack. These include some information
about the function and also space (memory locations) for the parameters and the return value.

When handing over a parameter to a function the value of the used variable (or literal) is copied into the memory
location of the function parameter. This implies that now there a two memory locations with the same value. Inside
of the function we only work on the parameter memory location.

After leaving the function the memory on the program stack is popped (removed) which erases all data of the
function call, including the memory location of the parameters we used inside. Thus, the values changed inside the
function do not affect the outside variables values.

int func(int f, int b) {
//new variables are created and values from the outside copied
//f has a value of ©
//inner_b has a value of 1

f=1;
//f has a value of 1
b =2;

//inner_b has a value of 2
return f+b;

}

int main(void) {
int a = 0;
int b = 1; //outer_b
int c;

¢ = func(a,b);
//the return value is copied to c

//a has a value of ©
//outer_b has a value of 1 <--- outer_b and inner_b are different variables
//c has a value of 3

In this code we create variables inside the main function. These get assigned values. Upon calling the functions
there are two new variables created: f and inner_b where b shares the name with the outer variable it does not
share the memory location. The behaviour of a<->f and b<->b is identical.

The following graphic symbolizes what is happening on the stack and why there is no change in varibale b. The
graphic is not fully accurate but emphazises the example.

GoalKicker.com - C++ Notes for Professionals 138

i

IR {al

b=1
a=0

N

before func

call

e

func

(c) ketabton.com: The Digital Library

push to stack

copy values

N N
b b=1 J=v
f f=0 Joi
returmn return | ||
func-dataj " func-data] i i
c =l
b=1 b=1 |-
a=0 a=0 |}

-

c %
= o
L]

Inm

il

b=2

f=1

return=3

func-data

b=1
a=0

N

returm

i

Y

b=2
f=1
return=3 §
func-data i
c=3 }=
b=1
a=0

N

copy values

-

w TN
Il
[= 3 0 W]

N

after func

It is called "call by value" because we do not hand over the variables but only the values of these variables.

GoalKicker.com - C++ Notes for Professionals

139

(c) ketabton.com: The Digital Library

Chapter 29: Copying vs Assignment

Right Hand Side of the equality for both copy and assignment constructors. For example the

rhs assignment constructor : MyClass operator=(MyClass& rhs);

Placeholder Placeholder

Section 29.1: Assignment Operator

The Assignment Operator is when you replace the data with an already existing(previously initialized) object with
some other object's data. Lets take this as an example:

// Assignment Operator
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Foo
{
public:
Foo(int data)
{
this->data = data;
}
~Foo(){};
Foo& operator=(const Foo& rhs)
{
data = rhs.data;
return *this;
}
int data;

b

int main()

{
Foo foo(2); //Foo(int data) called
Foo fo02(42);
foo = foo2; // Assignment Operator Called
cout << foo.data << endl; //Prints 42

You can see here | call the assignment operator when | already initialized the foo object. Then later | assign foo2 to
foo . All the changes to appear when you call that equal sign operator is defined in your operator= function. You
can see a runnable output here: http://cpp.sh/3gtbm

Section 29.2: Copy Constructor

Copy constructor on the other hand , is the complete opposite of the Assignment Constructor. This time, it is used
to initialize an already nonexistent(or non-previously initialized) object. This means it copies all the data from the
object you are assigning it to, without actually initializing the object that is being copied onto. Now Let's take a look
at the same code as before but modify the assignment constructor to be a copy constructor :

// Copy Constructor
#include <iostream>
#include <string>

GoalKicker.com - C++ Notes for Professionals 140

(c) ketabton.com: The Digital Library

using std::cout;
using std::endl;

class Foo

{
public:
Foo(int data)

{

this->data = data;
}
~Foo(){};

Foo(const Foo& rhs)

{
data = rhs.data;

}

int data;

|3

int main()

{
Foo foo(2); //Foo(int data) called

Foo foo2 = foo; // Copy Constructor called
cout << foo2.data << endl;

You can see here Foo foo2 = foo; in the main function | immediately assign the object before actually initializing it,
which as said before means it's a copy constructor. And notice that | didn't need to pass the parameter int for the
foo2 object since | automatically pulled the previous data from the object foo. Here is an example output :
http://cpp.sh/5iu7

Section 29.3: Copy Constructor Vs Assignment Constructor

Ok we have briefly looked over what the copy constructor and assignment constructor are above and gave
examples of each now let's see both of them in the same code. This code will be similar as above two. Let's take this

// Copy vs Assignment Constructor
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Foo

{
public:
Foo(int data)
{
this->data = data;
}
~Foo(){};

Foo(const Foo& rhs)

{
data = rhs.data;

¥

Foo& operator=(const Foo& rhs)

{

data = rhs.data;

GoalKicker.com - C++ Notes for Professionals 141

(c) ketabton.com: The Digital Library

return *this;

}

int data;

b

int main()

{
Foo foo(2); //Foo(int data) / Normal Constructor called

Foo foo2 = foo; //Copy Constructor Called
cout << foo2.data << endl;

Foo foo3(42);

foo3=foo; //Assignment Constructor Called
cout << foo3.data << endl;

Output:

Here you can see we first call the copy constructor by executing the line Foo foo2 = foo; . Since we didn't initialize
it previously. And then next we call the assignment operator on foo3 since it was already initialized foo3=foo;

GoalKicker.com - C++ Notes for Professionals 142

(c) ketabton.com: The Digital Library

Chapter 30: Pointers

A pointer is an address that refers to a location in memory. They're commonly used to allow functions or data
structures to know of and modify memory without having to copy the memory referred to. Pointers are usable with
both primitive (built-in) or user-defined types.

Pointers make use of the "dereference" *, "address of" &, and "arrow" -> operators. The '*' and '->' operators are
used to access the memory being pointed at, and the & operator is used to get an address in memory.

Section 30.1: Pointer Operations

There are two operators for pointers: Address-of operator (&): Returns the memory address of its operand.
Contents-of (Dereference) operator(*): Returns the value of the variable located at the address specified by its
operator.

int var = 20;
int *ptr;
ptr = &var;

cout << var << endl;
//0utputs 20 (The value of var)

cout << ptr << endl;
//0utputs 0x234f119 (var's memory location)

cout << *ptr << endl;
//Outputs 20(The value of the variable stored in the pointer ptr

The asterisk (*) is used in declaring a pointer for simple purpose of indicating that it is a pointer. Don't confuse this
with the dereference operator, which is used to obtain the value located at the specified address. They are simply
two different things represented with the same sign.

Section 30.2: Pointer basics

Version < C++11

Note: in all the following, the existence of the C++11 constant nullptr is assumed. For earlier versions, replace
nullptr with NULL, the constant that used to play a similar role.

Creating a pointer variable

A pointer variable can be created using the specific * syntax, e.g. int *pointer_to_int;.
When a variable is of a pointer type (int *), it just contains a memory address. The memory address is the location
at which data of the underlying type (int) is stored.

The difference is clear when comparing the size of a variable with the size of a pointer to the same type:

// Declare a struct type "big_struct® that contains
// three long long ints.
typedef struct {
long long int foo1;
long long int foo02;
long long int foo03;
} big_struct;

// Create a variable “bar’ of type "big_struct"

GoalKicker.com - C++ Notes for Professionals 143

(c) ketabton.com: The Digital Library

big_struct bar;

// Create a variable “p_bar® of type “pointer to big_struct'.
// Initialize it to “nullptr® (a null pointer).

big_struct *p_bar@ = nullptr;

// Print the size of “bar"
std::cout << "sizeof(bar) = " << sizeof(bar) << std::endl;
// Print the size of “p_bar’.

std::cout << "sizeof(p_bar@) =

<< sizeof(p_bar@) << std::endl;

/* Produces:
sizeof(bar) = 24
sizeof(p_bar@) = 8

*/

Taking the address of another variable

Pointers can be assigned between each other just as normal variables; in this case, it is the memory address that is
copied from one pointer to another, not the actual data that a pointer points to.

Moreover, they can take the value nullptr which represents a null memory location. A pointer equal to nullptr
contains an invalid memory location and hence it does not refer to valid data.

You can get the memory address of a variable of a given type by prefixing the variable with the address of operator
& The value returned by & is a pointer to the underlying type which contains the memory address of the variable
(which is valid data as long as the variable does not go out of scope).

// Copy ‘p_bar@’ into “p_bar_1".
big_struct *p_bar1 = p_bar@;

// Take the address of ‘“bar’ into “p_bar_2°
big_struct *p_bar2 = &bar;

// p_bar1 is now nullptr, p_bar2 is &bar.
p_bar@ = p_bar2;

// p_bar@ is now &bar.

p_bar2 = nullptr;

// p_bar@ == &bar

// p_bar1 == nullptr
// p_bar2 == nullptr

In contrast with references:

¢ assigning two pointers does not overwrite the memory that the assigned pointer refers to;
¢ pointers can be null.
¢ the address of operator is required explicitly.

Accessing the content of a pointer

As taking an address requires &, as well accessing the content requires the usage of the dereference operator *, as a
prefix. When a pointer is dereferenced, it becomes a variable of the underlying type (actually, a reference to it). It
can then be read and modified, if not const.

(*p_bar@).fool = 5;

// “p_bar@’ points to "bar’'. This prints 5.

GoalKicker.com - C++ Notes for Professionals 144

(c) ketabton.com: The Digital Library

std::cout << "bar.fool = << bar.fool << std::endl;
// Assign the value pointed to by "p_bar®" to "baz'.
big_struct baz;

baz = *p_bar@;

// Now “baz’ contains a copy of the data pointed to by ‘"p_bar@".
// Indeed, it contains a copy of ‘bar’.

// Prints 5 as well
std::cout << "baz.fool = " << baz.fool << std::endl;

The combination of * and the operator . is abbreviated by ->:

std::cout << "bar.fool
std::cout << "bar.fool

<< (*p_bar@).fool << std::endl; // Prints 5
' << p_bar@->fool << std::endl; // Prints 5

Dereferencing invalid pointers

When dereferencing a pointer, you should make sure it points to valid data. Dereferencing an invalid pointer (or a
null pointer) can lead to memory access violation, or to read or write garbage data.

big_struct *never_do_this() {
// This is a local variable. Outside "never_do_this ™ it doesn't exist.
big_struct retval;
retval.fool = 11;
// This returns the address of ‘retval.
return &retval;
// “retval® is destroyed and any code using the value returned
// by “never_do_this"® has a pointer to a memory location that
// contains garbage data (or is inaccessible).

In such scenario, g++ and clang++ correctly issue the warnings:

(Clang) warning: address of stack memory associated with local variable 'retval' returned [-
Wreturn-stack-address]
(Gec) warning: address of local variable ‘retval’ returned [-Wreturn-local-addr]

Hence, care must be taken when pointers are arguments of functions, as they could be null:

void naive_code(big_struct *ptr_big_struct) {
// ... some code which doesn't check if “ptr_big_struct® is valid.
ptr_big_struct->fool = 12;

}

// Segmentation fault.
naive_code(nullptr);

Section 30.3: Pointer Arithmetic
Increment / Decrement

A pointer can be incremented or decremented (prefix and postfix). Incrementing a pointer advances the pointer
value to the element in the array one element past the currently pointed to element. Decrementing a pointer
moves it to the previous element in the array.

GoalKicker.com - C++ Notes for Professionals 145

(c) ketabton.com: The Digital Library

Pointer arithmetic is not permitted if the type that the pointer points to is not complete. void is always an
incomplete type.

0x010

char* str = new char[10]; // str

++str; // str = 8x811 1in this case sizeof(char) = 1 byte
int* arr = new int[10]; // arr = 0x00100
++arr; // arr = 0x00104 if sizeof(int) = 4 bytes

void* ptr = (voidx)new char[10];
++ptr; // void is incomplete.

If a pointer to the end element is incremented, then the pointer points to one element past the end of the array.
Such a pointer cannot be dereferenced, but it can be decremented.

Incrementing a pointer to the one-past-the-end element in the array, or decrementing a pointer to the first element
in an array yields undefined behavior.

A pointer to a non-array object can be treated, for the purposes of pointer arithmetic, as though it were an array of
size 1.

Addition / Subtraction

Integer values can be added to pointers; they act as incrementing, but by a specific number rather than by 1.
Integer values can be subtracted from pointers as well, acting as pointer decrementing. As with
incrementing/decrementing, the pointer must point to a complete type.

char* str = new char[10]; // str = 0x010

str += 2; // str = @x010 + 2 * sizeof(char) = 0x012

int* arr = new int[10]; // arr = 0x100

arr += 2; // arr = 0x100 + 2 * sizeof(int) = Ox108, assuming sizeof(int) == 4.

Pointer Differencing

The difference between two pointers to the same type can be computed. The two pointers must be within the same
array object; otherwise undefined behavior results.

Given two pointers P and Q in the same array, if P is the ith element in the array, and Q is the jth element, then P -
Qshallbei - j.Thetype of theresultis std: :ptrdiff_t, from <cstddefs>.

charx start = new char[10]; // str = 0x010

char* test = &start[5];

std::ptrdiff_t diff = test - start; //Equal to 5.

std::ptrdiff_t diff = start - test; //Equal to -5; ptrdiff_t is signed.

GoalKicker.com - C++ Notes for Professionals 146

(c) ketabton.com: The Digital Library

Chapter 31: Pointers to members

Section 31.1; Pointers to static member functions

A static member function is just like an ordinary C/C++ function, except with scope:

e [tisinside a class, so it needs its name decorated with the class name;
¢ |t has accessibility, with public, protected or private.

So, if you have access to the static member function and decorate it correctly, then you can point to the function
like any normal function outside a class:

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

// Note that MyFn() is of type 'Fn’
int MyFn(int i) { return 2*i; }

class Class {
public:
// Note that Static() is of type 'Fn'
static int Static(int i) { return 3*i; }
}; // Class

int main() {

Fn *fn; // fn is a pointer to a type-of Fn
fn = &MyFn; // Point to one function
fn(3); // Call it
fn = &Class::Static; // Point to the other function
fn(4); // Call it

} // main()

Section 31.2: Pointers to member functions

To access a member function of a class, you need to have a "handle" to the particular instance, as either the
instance itself, or a pointer or reference to it. Given a class instance, you can point to various of its members with a
pointer-to-member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type
as what you are pointing to...

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

class Class {

public:
// Note that A() is of type 'Fn'
int A(int a) { return 2xa; }
// Note that B() is of type 'Fn'
int B(int b) { return 3x%b; }

}; // Class

int main() {

Class c; // Need a Class instance to play with
Class *p = &c; // Need a Class pointer to play with
Fn Class::*fn; // fn is a pointer to a type-of Fn within Class

fn = &Class::A; // fn now points to A within any Class
(c.*fn)(5); // Pass 5 to c's function A (via fn)

GoalKicker.com - C++ Notes for Professionals 147

(c) ketabton.com: The Digital Library

fn = &Class: :B; // fn now points to B within any Class
(p->*fn) (6); // Pass 6 to c's (via p) function B (via fn)
} // main()

Unlike pointers to member variables (in the previous example), the association between the class instance and the
member pointer need to be bound tightly together with parentheses, which looks a little strange (as though the . *
and ->x aren't strange enough!)

Section 31.3: Pointers to member variables

To access a member of a class, you need to have a "handle" to the particular instance, as either the instance itself,
or a pointer or reference to it. Given a class instance, you can point to various of its members with a pointer-to-
member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type as what you
are pointing to...

class Class {
public:
int x, vy, z;
char m, n, o;
}; // Class

int x; // Global variable
int main() {

Class c; // Need a Class instance to play with
Class *p = &c; // Need a Class pointer to play with

int *p_i; // Pointer to an int
p_i = &x; // Now pointing to X
p_i = &c.x; // Now pointing to c's X

int Class::#p_C_1i; // Pointer to an int within Class

p_C_i = &Class::x; // Point to x within any Class
int i = ¢.*p_C_i; // Use p_c_i to fetch x from c's instance
p_C_i = &Class::y; // Point to y within any Class
i=c.*p_C_i; // Use p_c_i to fetch y from c's instance

p_C_i = &Class::m; // ERROR! m is a char, not an int!

char Class::*p_C_c = &Class::m; // That's better...
} // main()

The syntax of pointer-to-member requires some extra syntactic elements:

¢ To define the type of the pointer, you need to mention the base type, as well as the fact that it is inside a
class: int Class: :*ptr;.

¢ If you have a class or reference and want to use it with a pointer-to-member, you need to use the .* operator
(akin to the . operator).

¢ If you have a pointer to a class and want to use it with a pointer-to-member, you need to use the ->*
operator (akin to the -> operator).

Section 31.4: Pointers to static member variables

A static member variable is just like an ordinary C/C++ variable, except with scope:

GoalKicker.com - C++ Notes for Professionals 148

(c) ketabton.com: The Digital Library

¢ [tisinside a class, so it needs its name decorated with the class name;
¢ It has accessibility, with public, protected or private.

So, if you have access to the static member variable and decorate it correctly, then you can point to the variable
like any normal variable outside a class:

class Class {

public:
static int i;
}; // Class

int Class::i = 1; // Define the value of i (and where it's stored!)
int j = 2; // Just another global variable

int main() {
int k = 3; // Local variable

int *p;

p = &k; // Point to k
*p = 2; // Modify it

p = &j; // Point to j

*p = 3; // Modify it

p = &Class::i; // Point to Class::i
* ; // Modify it
} // main()

GoalKicker.com - C++ Notes for Professionals 149

(c) ketabton.com: The Digital Library

Chapter 32: The This Pointer

Section 32.1: this Pointer

All non-static member functions have a hidden parameter, a pointer to an instance of the class, named this; this
parameter is silently inserted at the beginning of the parameter list, and handled entirely by the compiler. When a
member of the class is accessed inside a member function, it is silently accessed through this; this allows the
compiler to use a single non-static member function for all instances, and allows a member function to call other
member functions polymorphically.

struct ThisPointer {
int 1i;

ThisPointer(int ii);
virtual void func();

int get_i() const;
void set_i(int ii);
i
ThisPointer: :ThisPointer(int ii) : i(ii) {}
// Compiler rewrites as:
ThisPointer::ThisPointer(int ii) : this->i(ii) {}
// Constructor is responsible for turning allocated memory into 'this'.
// As the constructor is responsible for creating the object, 'this' will not be "fully"
// valid until the instance is fully constructed.

/* virtual */ void ThisPointer::func() {
if (some_external_condition) {

set_i(182);
} else {
i = 218;

}

// Compiler rewrites as:
/# virtual #/ void ThisPointer::func(ThisPointer* this) {
if (some_external_condition) {
this->set_i(182);
} else {
this->i = 218;
}
}

int ThisPointer::get_i() const { return i; }
// Compiler rewrites as:
int ThisPointer::get_i(const ThisPointer* this) { return this->i; }

void ThisPointer::set_i(int ii) { i = ii; }
// Compiler rewrites as:
void ThisPointer::set_i(ThisPointer* this, int ii) { this->i = ii; }

In a constructor, this can safely be used to (implicitly or explicitly) access any field that has already been initialised,
or any field in a parent class; conversely, (implicitly or explicitly) accessing any fields that haven't yet been initialised,
or any fields in a derived class, is unsafe (due to the derived class not yet being constructed, and thus its fields
neither being initialised nor existing). It is also unsafe to call virtual member functions through this in the
constructor, as any derived class functions will not be considered (due to the derived class not yet being
constructed, and thus its constructor not yet updating the vtable).

GoalKicker.com - C++ Notes for Professionals 150

(c) ketabton.com: The Digital Library

Also note that while in a constructor, the type of the object is the type which that constructor constructs. This holds
true even if the object is declared as a derived type. For example, in the below example, ctd_good and ctd_bad are
type CtorThisBase inside CtorThisBase(), and type CtorThis inside CtorThis(), even though their canonical type
is CtorThisDerived. As the more-derived classes are constructed around the base class, the instance gradually
goes through the class hierarchy until it is a fully-constructed instance of its intended type.

class CtorThisBase {
short s;

public:
CtorThisBase() : s(516) {}
3

class CtorThis : public CtorThisBase {
int i, j, k;

public:
// Good constructor.
CtorThis() : i(s + 42), j(this->i), k(j) {}

// Bad constructor.
CtorThis(int ii) : i(ii), j(this->k), k(b ? 51 : -51) {
virt_func();

}
virtual void virt_func() { i += 2; }
i
class CtorThisDerived : public CtorThis {
bool b;
public:
CtorThisDerived() : b(true) {}

CtorThisDerived(int ii) : CtorThis(ii), b(false) {}

void virt_func() override { k += (2 * i); }

b
//

CtorThisDerived ctd_good;
CtorThisDerived ctd_bad(3);

With these classes and member functions:

¢ In the good constructor, for ctd_good:
o CtorThisBase is fully constructed by the time the CtorThis constructor is entered. Therefore, sisin a
valid state while initialising i, and can thus be accessed.
o iisinitialised before j(this->1) is reached. Therefore, i is in a valid state while initialising j, and can
thus be accessed.
o jisinitialised before k(j) is reached. Therefore, j is in a valid state while initialising k, and can thus be
accessed.
¢ In the bad constructor, for ctd_bad:
o kis initialised after j(this->k) is reached. Therefore, k is in an invalid state while initialising j, and
accessing it causes undefined behaviour.
o CtorThisDerived is not constructed until after CtorThis is constructed. Therefore, b is in an invalid
state while initialising k, and accessing it causes undefined behaviour.
o The object ctd_bad is still a CtorThis until it leaves CtorThis(), and will not be updated to use

GoalKicker.com - C++ Notes for Professionals 151

(c) ketabton.com: The Digital Library

CtorThisDerived's vtable until CtorThisDerived(). Therefore, virt_func() will call
CtorThis::virt_func(), regardless of whether it is intended to call that or
CtorThisDerived: :virt_func().

Section 32.2: Using the this Pointer to Access Member Data

In this context, using the this pointer isn't entirely necessary, but it will make your code clearer to the reader, by
indicating that a given function or variable is a member of the class. An example in this situation:

// Example for this pointer
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Class
{
public:
Class();
~Class();
int getPrivateNumber () const;
private:
int private_number = 42;

|3

Class::Class(){}
Class::~Class(){}

int Class::getPrivateNumber() const

{
return this->private_number;
}
int main()
{
Class class_example;
cout << class_example.getPrivateNumber() << endl;
}

See it in action here.

Section 32.3: Using the this Pointer to Differentiate Between
Member Data and Parameters

This is an actual useful strategy to differentiate member data from parameters... Lets take this example :

// Dog Class Example
#include <iostream>
#include <string>

using std::cout;
using std::endl;

/%

* @class Dog

* @member name

* Dog's name
* @function bark

GoalKicker.com - C++ Notes for Professionals 152

(c) ketabton.com: The Digital Library

* Dog Barks!

* @function getName

* To Get Private

* Name Variable

*/

class Dog

{

public:
Dog(std::string name);
~Dog() ;

void bark() const;

std::string getName() const;
private:

std::string name;

b
Dog: :Dog(std::string name)
{
/*
* this->name is the
* name variable from
* the class dog . and
* name is from the
* parameter of the function
*/
this->name = name;
}

Dog: :~Dog(){}

void Dog::bark() const

{
cout << "BARK" << endl;
}
std::string Dog::getName() const
{
return this->name;
}

int main()

{
Dog dog("Max");
cout << dog.getName() << endl;
dog.bark();

}

You can see here in the constructor we execute the following:
this->name = name;

Here, you can see we are assinging the parameter name to the name of the private variable from the class
Dog(this->name) .

To see the output of above code : http://cpp.sh/75r7

Section 32.4: this Pointer CV-Qualifiers

this can also be cv-qualified, the same as any other pointer. However, due to the this parameter not being listed

GoalKicker.com - C++ Notes for Professionals 153

(c) ketabton.com: The Digital Library

in the parameter list, special syntax is required for this; the cv-qualifiers are listed after the parameter list, but
before the function's body.

struct ThisCvQ {
void no_qualifier
void c_qualifier
void v_qualifier
void cv_qualifier

{} // "this" dis: ThisCVQx*
const {} // "this" is: const ThisCVQx*
volatile {} // "this" is: volatile ThisCVQx*
const volatile {} // "this" is: const volatile ThisCVQx*

A,\AA
~— — — —

s
As this is a parameter, a function can be overloaded based on its this cv-qualifier(s).

struct CVOverload {

int func() { return 3; }
int func() const { return 33; }
int func() volatile { return 333; }
int func() const volatile { return 3333; }

b

When this is const (including const volatile), the function is unable to write to member variables through it,
whether implicitly or explicitly. The sole exception to this is mutable member variables, which can be written
regardless of const-ness. Due to this, const is used to indicate that the member function doesn't change the
object's logical state (the way the object appears to the outside world), even if it does modify the physical state (the
way the object looks under the hood).

Logical state is the way the object appears to outside observers. It isn't directly tied to physical state, and
indeed, might not even be stored as physical state. As long as outside observers can't see any changes,
the logical state is constant, even if you flip every single bit in the object.

Physical state, also known as bitwise state, is how the object is stored in memory. This is the object's nitty-
gritty, the raw 1s and Os that make up its data. An object is only physically constant if its representation in
memory never changes.

Note that C++ bases constness on logical state, not physical state.

class DoSomethingComplexAndOrExpensive {
mutable ResultType cached_result;
mutable bool state_changed;

ResultType calculate_result();
void modify_somehow(const Param& p);

/1

public:
DoSomethingComplexAndOrExpensive(Param p) : state_changed(true) {
modify_somehow(p) ;

}

void change_state(Param p) {
modify_somehow(p) ;
state_changed = true;

GoalKicker.com - C++ Notes for Professionals 154

(c) ketabton.com: The Digital Library

// Return some complex and/or expensive-to-calculate result.
// As this has no reason to modify logical state, it is marked as "const".
ResultType get_result() const;
3
ResultType DoSomethingComplexAndOrExpensive::get_result() const {
// cached_result and state_changed can be modified, even with a const "this" pointer.
// Even though the function doesn't modify logical state, it does modify physical state
// by caching the result, so it doesn't need to be recalculated every time the function
// is called. This is indicated by cached_result and state_changed being mutable.

if (state_changed) {
cached_result = calculate_result();
state_changed = false;

}

return cached_result;

Note that while you technically could use const_cast on this to make it non-cv-qualified, you really, REALLY
shouldn't, and should use mutable instead. A const_cast is liable to invoke undefined behaviour when used on an
object that actually is const, while mutable is designed to be safe to use. It is, however, possible that you may run
into this in extremely old code.

An exception to this rule is defining non-cv-qualified accessors in terms of const accessors; as the object is
guaranteed to not be const if the non-cv-qualified version is called, there's no risk of UB.

class CVAccessor {
int arr[5];

public:
const int& get_arr_element(size_t i) const { return arr[i]; }

int& get_arr_element(size_t i) {
return const_cast<int&>(const_cast<const CVAccessor#*>(this)->get_arr_element(i));
}
}

This prevents unnecessary duplication of code.

As with regular pointers, if this is volatile (including const volatile), itis loaded from memory each time itis
accessed, instead of being cached. This has the same effects on optimisation as declaring any other pointer
volatile would, so care should be taken.

Note that if an instance is cv-qualified, the only member functions it is allowed to access are member functions
whose this pointer is at least as cv-qualified as the instance itself:

¢ Non-cv instances can access any member functions.

e const instances can access const and const volatile functions.
volatile instances can access volatile and const volatile functions.
e const volatile instances can access const volatile functions.

This is one of the key tenets of const correctness.

struct CVAccess {

void func() {}
void func_c() const {}
void func_v() volatile {}

void func_cv() const volatile {}

GoalKicker.com - C++ Notes for Professionals 155

(c) ketabton.com: The Digital Library
3

CVAccess cva;

cva.func(); // Good.
cva.func_c(); // Good.
cva.func_v(); // Good.
cva.func_cv(); // Good.

const CVAccess c_cva;

c_cva.func(); // Error.
c_cva.func_c(); // Good.
c_cva.func_v(); // Error.
c_cva.func_cv(); // Good.

volatile CVAccess v_cva;

v_cva.func(); // Error.
v_cva.func_c(); // Error.
v_cva.func_v(); // Good.
v_cva.func_cv(); // Good.

const volatile CVAccess cv_cva;
cv_cva.func(); // Error.
cv_cva.func_c(); // Error.
cv_cva.func_v(); // Error.
cv_cva.func_cv(); // Good.

Section 32.5: this Pointer Ref-Qualifiers

Version = C++11

Similarly to this cv-qualifiers, we can also apply ref-qualifiers to *this. Ref-qualifiers are used to choose between
normal and rvalue reference semantics, allowing the compiler to use either copy or move semantics depending on
which are more appropriate, and are applied to *this instead of this.

Note that despite ref-qualifiers using reference syntax, this itself is still a pointer. Also note that ref-qualifiers don't
actually change the type of *this; it's just easier to describe and understand their effects by looking at them as if
they did.

struct RefQualifiers {
std::string s;

RefQualifiers(const std::string& ss = "The nameless one.") : s(ss) {}

// Normal version.
void func() & { std::cout << "Accessed on normal instance " << s << std::endl; }
// Rvalue version.

void func() && { std::cout << "Accessed on temporary instance

<< s << std::endl; }
const std::string& still_a_pointer() & { return this->s; }
const std::string& still_a_pointer() && { this->s = "Bob"; return this->s; }

i

//

RefQualifiers rf("Fred");

rf.func(); // Output: Accessed on normal instance Fred
RefQualifiers{}.func(); // Output: Accessed on temporary instance The nameless one

A member function cannot have overloads both with and without ref-qualifiers; the programmer has to choose

GoalKicker.com - C++ Notes for Professionals 156

(c) ketabton.com: The Digital Library

between one or the other. Thankfully, cv-qualifiers can be used in conjunction with ref-qualifiers, allowing const

correctness rules to be followed.

void
void
void
void
void
void
void
void

& {}
&& {}
const& {}
const&& {}
volatile& {}
volatile&& {}

const volatile& {}
const volatile&& {}

GoalKicker.com - C++ Notes for Professionals

157

(c) ketabton.com: The Digital Library

Chapter 33: Smart Pointers

Section 33.1: Unique ownership (std::unique_ptr)

Version = C++11

A std: :unique_ptr is a class template that manages the lifetime of a dynamically stored object. Unlike for
std: :shared_ptr, the dynamic object is owned by only one instance of a std: :unique_ptr at any time,

// Creates a dynamic int with value of 20 owned by a unique pointer
std::unique_ptr<int> ptr = std::make_unique<int>(20);

(Note: std: :unique_ptr is available since C++11 and std: :make_unique since C++14.)

Only the variable ptr holds a pointer to a dynamically allocated int. When a unique pointer that owns an object
goes out of scope, the owned object is deleted, i.e. its destructor is called if the object is of class type, and the
memory for that object is released.

To use std: :unique_ptr and std: :make_unique with array-types, use their array specializations:

// Creates a unique_ptr to an int with value 59
std: :unique_ptr<int> ptr = std::make_unique<int>(59);

// Creates a unique_ptr to an array of 15 ints
std::unique_ptr<int[]> ptr = std::make_unique<int[]>(15);

You can access the std: :unique_ptr just like a raw pointer, because it overloads those operators.

You can transfer ownership of the contents of a smart pointer to another pointer by using std: :move, which will
cause the original smart pointer to point to nullptr.

// 1. std::unique_ptr
std::unique_ptr<int> ptr = std::make_unique<int>();

// Change value to 1
*ptr = 1;

// 2. std::unique_ptr (by moving 'ptr' to 'ptr2', 'ptr' doesn't own the object anymore)

std::unique_ptr<int> ptr2 = std::move(ptr);

int a = *ptr2; // 'a' is 1

int b = #ptr; // undefined behavior! 'ptr' is 'nullptr'’
// (because of the move command above)

Passing unique_ptr to functions as parameter:

void foo(std::unique_ptr<int> ptr)

{

// Your code goes here

}

std::unique_ptr<int> ptr = std::make_unique<int>(59);
foo(std: :move(ptr))

Returning unique_ptr from functions. This is the preferred C++11 way of writing factory functions, as it clearly

GoalKicker.com - C++ Notes for Professionals 158

(c) ketabton.com: The Digital Library

conveys the ownership semantics of the return: the caller owns the resulting unique_ptr and is responsible for it.

std: :unique_ptr<int> foo()

{
std::unique_ptr<int> ptr = std::make_unique<int>(59);
return ptr;

}

std::unique_ptr<int> ptr = foo();
Compare this to:

int* foo_cppB3();

int* p = foo_cpp03(); // do I own p? do I have to delete it at some point?
// it's not readily apparent what the answer is.

Version < C++14
The class template make_unique is provided since C++14. It's easy to add it manually to C++11 code:

template<typename T, typename... Args>

typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args&&... args)

{ return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); }

// Use make_unique for arrays

template<typename T>

typename std::enable_if<std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(size_t n)

{ return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); }

Version = C++11

Unlike the dumb smart pointer (std: :auto_ptr), unique_ptr can also be instantiated with vector allocation (not
std: :vector). Earlier examples were for scalar allocations. For example to have a dynamically allocated integer
array for 10 elements, you would specify int[] as the template type (and not just int):

std::unique_ptr<int[]> arr_ptr = std::make_unique<int[]>(10);
Which can be simplified with:

auto arr_ptr = std::make_unique<int[]>(10);

Now, you use arr_ptr as if itis an array:

arr_ptr[2] = 10; // Modify third element

You need not to worry about de-allocation. This template specialized version calls constructors and destructors
appropriately. Using vectored version of unique_ptr or a vector itself - is a personal choice.

In versions prior to C++11, std: :auto_ptr was available. Unlike unique_ptr it is allowed to copy auto_ptrs, upon
which the source ptr will lose the ownership of the contained pointer and the target receives it.

Section 33.2: Sharing ownership (std::shared_ptr)

The class template std: :shared_ptr defines a shared pointer that is able to share ownership of an object with

GoalKicker.com - C++ Notes for Professionals 159

(c) ketabton.com: The Digital Library

other shared pointers. This contrasts to std: :unique_ptr which represents exclusive ownership.

The sharing behavior is implemented through a technique known as reference counting, where the number of
shared pointers that point to the object is stored alongside it. When this count reaches zero, either through the
destruction or reassignment of the last std: :shared_ptr instance, the object is automatically destroyed.

// Creation: 'firstShared' is a shared pointer for a new instance of 'Foo

std: :shared_ptr<Foo> firstShared = std::make_shared<Foo>(/*args#*/);

To create multiple smart pointers that share the same object, we need to create another shared_ptr that aliases
the first shared pointer. Here are 2 ways of doing it:

std::shared_ptr<Foo> secondShared(firstShared); // 1st way: Copy constructing
std: :shared_ptr<Foo> secondShared;
secondShared = firstShared; // 2nd way: Assigning

Either of the above ways makes secondShared a shared pointer that shares ownership of our instance of Foo with
firstShared.

The smart pointer works just like a raw pointer. This means, you can use * to dereference them. The regular ->
operator works as well:

secondShared->test(); // Calls Foo::test()

Finally, when the last aliased shared_ptr goes out of scope, the destructor of our Foo instance is called.

Warning: Constructing a shared_ptr might throw a bad_alloc exception when extra data for shared ownership
semantics needs to be allocated. If the constructor is passed a regular pointer it assumes to own the object pointed
to and calls the deleter if an exception is thrown. This means shared_ptr<T>(new T(args)) will not leak a T object if
allocation of shared_ptr<T> fails. However, it is advisable to use make_shared<T>(args) or
allocate_shared<T>(alloc, args), which enable the implementation to optimize the memory allocation.

Allocating Arrays([]) using shared_ptr

Version = C++11 Version < C++17

Unfortunately, there is no direct way to allocate Arrays using make_shared<>.

It is possible to create arrays for shared_ptr<> using new and std: :default_delete.

For example, to allocate an array of 10 integers, we can write the code as

shared_ptr<int> sh(new int[10], std::default_delete<int[]>());

Specifying std: :default_delete is mandatory here to make sure that the allocated memory is correctly cleaned up
using deletel].

If we know the size at compile time, we can do it this way:

template<class Arr>

struct shared_array_maker {};

template<class T, std::size_t N>

struct shared_array_maker<T[N]> {
std: :shared_ptr<T> operator()const{

GoalKicker.com - C++ Notes for Professionals 160

(c) ketabton.com: The Digital Library

auto r = std::make_shared<std::array<T,N>>();
if (!'r) return {};
return {r.data(), r};
}
i
template<class Arr>
auto make_shared_array()
-> decltype(shared_array_maker<Arr>{}())
{ return shared_array_maker<Arr>{}(); }

then make_shared_array<int[10]> returns a shared_ptr<int> pointing to 10 ints all default constructed.

Version = C++17

With C++17, shared_ptr gained special support for array types. It is no longer necessary to specify the array-deleter
explicitly, and the shared pointer can be dereferenced using the [] array index operator:

std::shared_ptr<int[]> sh(new int[10]);
sh[0] = 42;

Shared pointers can point to a sub-object of the object it owns:

struct Foo { int x; };
std: :shared_ptr<Foo> p1 = std::make_shared<Foo>();
std::shared_ptr<int> p2(p1, &p1->x);

Both p2 and p1 own the object of type Foo, but p2 points to its int member x. This means that if p1 goes out of
scope or is reassigned, the underlying Foo object will still be alive, ensuring that p2 does not dangle.

Important: A shared_ptr only knows about itself and all other shared_ptr that were created with the alias
constructor. It does not know about any other pointers, including all other shared_ptrs created with a reference to
the same Foo instance:

Foo *foo = new Foo;
std: :shared_ptr<Foo> sharedi1(foo);
std::shared_ptr<Foo> shared2(foo); // don't do this

sharedl.reset(); // this will delete foo, since shared1
// was the only shared_ptr that owned it

shared2->test(); // UNDEFINED BEHAVIOR: shared2's foo has been
// deleted already!!

Ownership Transfer of shared_ptr

By default, shared_ptr increments the reference count and doesn't transfer the ownership. However, it can be
made to transfer the ownership using std: :move:

shared_ptr<int> up = make_shared<int>();

// Transferring the ownership

shared_ptr<int> up2 = move(up);

// At this point, the reference count of up = @ and the

// ownership of the pointer is solely with up2 with reference count = 1

Section 33.3: Sharing with temporary ownership

GoalKicker.com - C++ Notes for Professionals 161

(c) ketabton.com: The Digital Library
(std::weak_ptr)

Instances of std: :weak_ptr can point to objects owned by instances of std: :shared_ptr while only becoming
temporary owners themselves. This means that weak pointers do not alter the object's reference count and
therefore do not prevent an object's deletion if all of the object's shared pointers are reassigned or destroyed.

In the following example instances of std: :weak_ptr are used so that the destruction of a tree object is not
inhibited:

#include <memory>
#include <vector>

struct TreeNode {
std: :weak_ptr<TreeNode> parent;
std::vector< std::shared_ptr<TreeNode> > children;

b

int main() {
// Create a TreeNode to serve as the root/parent.
std: :shared_ptr<TreeNode> root(new TreeNode) ;

// Give the parent 1006 child nodes.

for (size_t i = 90; i < 100; ++1i) {
std::shared_ptr<TreeNode> child(new TreeNode);
root->children.push_back(child);
child->parent = root;

}

// Reset the root shared pointer, destroying the root object, and
// subsequently its child nodes.
root.reset();

As child nodes are added to the root node's children, their std: :weak_ptr member parent is set to the root node.
The member parent is declared as a weak pointer as opposed to a shared pointer such that the root node's
reference count is not incremented. When the root node is reset at the end of main(), the root is destroyed. Since
the only remaining std: :shared_ptr references to the child nodes were contained in the root's collection children,
all child nodes are subsequently destroyed as well.

Due to control block implementation details, shared_ptr allocated memory may not be released until shared_ptr
reference counter and weak_ptr reference counter both reach zero.

#include <memory>
int main()

{
{

std: :weak_ptr<int> wk;

{
// std::make_shared is optimized by allocating only once
// while std::shared_ptr<int>(new int(42)) allocates twice.
// Drawback of std::make_shared is that control block is tied to our integer
std::shared_ptr<int> sh = std::make_shared<int>(42);
wk = sh;
// sh memory should be released at this point...

}

// ... but wk is still alive and needs access to control block

}

// now memory is released (sh and wk)

GoalKicker.com - C++ Notes for Professionals 162

(c) ketabton.com: The Digital Library

}

Since std: :weak_ptr does not keep its referenced object alive, direct data access through a std: :weak_ptr is not
possible. Instead it provides a lock() member function that attempts to retrieve a std: :shared_ptr to the
referenced object:

#include <cassert>
#include <memory>
int main()
{

{

std: :weak_ptr<int> wk;
std::shared_ptr<int> sp;

{
std::shared_ptr<int> sh = std::make_shared<int>(42);
wk = sh;
// calling lock will create a shared_ptr to the object referenced by wk
sp = wk.lock();
// sh will be destroyed after this point, but sp is still alive
}

// sp still keeps the data alive.

// At this point we could even call lock() again

// to retrieve another shared_ptr to the same data from wk
assert(*sp == 42);

assert(!wk.expired());

// resetting sp will delete the data,

// as it is currently the last shared_ptr with ownership
sp.reset();

// attempting to lock wk now will return an empty shared_ptr,
// as the data has already been deleted

sp = wk.lock();

assert(!sp);

assert(wk.expired());

Section 33.4: Using custom deleters to create a wrapper to a
C interface

Many C interfaces such as SDL2 have their own deletion functions. This means that you cannot use smart pointers
directly:

std::unique_ptr<SDL_Surface> a; // won't work, UNSAFE!

Instead, you need to define your own deleter. The examples here use the SDL_Surface structure which should be
freed using the SDL_FreeSurface() function, but they should be adaptable to many other C interfaces.

The deleter must be callable with a pointer argument, and therefore can be e.g. a simple function pointer:

std::unique_ptr<SDL_Surface, void(#*)(SDL_Surfacex)> a(pointer, SDL_FreeSurface);

Any other callable object will work, too, for example a class with an operator():

struct SurfaceDeleter {
void operator()(SDL_Surfacex surf) {
SDL_FreeSurface(surf);
}
i

GoalKicker.com - C++ Notes for Professionals 163

(c) ketabton.com: The Digital Library

std::unique_ptr<SDL_Surface, SurfaceDeleter> a(pointer, SurfaceDeleter{}); // safe
std::unique_ptr<SDL_Surface, SurfaceDeleter> b(pointer); // equivalent to the above
// as the deleter is value-initialized

This not only provides you with safe, zero overhead (if you use unique_ptr) automatic memory management, you
also get exception safety.

Note that the deleter is part of the type for unique_ptr, and the implementation can use the empty base
optimization to avoid any change in size for empty custom deleters. So while std: :unique_ptr<SDL_Surface,
SurfaceDeleter> and std: :unique_ptr<SDL_Surface, void(*)(SDL_Surfacex*)> solve the same problemina
similar way, the former type is still only the size of a pointer while the latter type has to hold two pointers: both the
SDL_Surface* and the function pointer! When having free function custom deleters, it is preferable to wrap the
function in an empty type.

In cases where reference counting is important, one could use a shared_ptr instead of an unique_ptr. The
shared_ptr always stores a deleter, this erases the type of the deleter, which might be useful in APIs. The
disadvantages of using shared_ptr over unique_ptr include a higher memory cost for storing the deleter and a
performance cost for maintaining the reference count.

// deleter required at construction time and is part of the type
std::unique_ptr<SDL_Surface, void(#*)(SDL_Surface*)> a(pointer, SDL_FreeSurface);

// deleter is only required at construction time, not part of the type
std: :shared_ptr<SDL_Surface> b(pointer, SDL_FreeSurface);

Version = C++17
With template auto, we can make it even easier to wrap our custom deleters:

template <auto DeleteFn>
struct FunctionDeleter {
template <class T>
void operator()(T* ptr) {
DeleteFn(ptr);

}
b

template <class T, auto DeleteFn>
using unique_ptr_deleter = std::unique_ptr<T, FunctionDeleter<DeleteFn>>;

With which the above example is simply:

unique_ptr_deleter<SDL_Surface, SDL_FreeSurface> c(pointer);

Here, the purpose of auto is to handle all free functions, whether they return void (e.g. SDL_FreeSurface) or not
(e.g. fclose).

Section 33.5: Unique ownership without move semantics
(auto_ptr)

Version < C++11

NOTE: std: :auto_ptr has been deprecated in C++11 and will be removed in C++17. You should only use this if you
are forced to use C++03 or earlier and are willing to be careful. It is recommended to move to unique_ptr in
combination with std: :move to replace std: :auto_ptr behavior.

GoalKicker.com - C++ Notes for Professionals 164

(c) ketabton.com: The Digital Library

Before we had std: :unique_ptr, before we had move semantics, we had std: :auto_ptr. std: :auto_ptr provides
unique ownership but transfers ownership upon copy.

As with all smart pointers, std: :auto_ptr automatically cleans up resources (see RAII):

std::auto_ptr<int> p(new int(42));
std::cout << #*p;
} // p is deleted here, no memory leaked

but allows only one owner:

std: :auto_ptr<X> px e
std::auto_ptr<X> py = px;
// px 1is now empty

This allows to use std::auto_ptr to keep ownership explicit and unique at the danger of losing ownership
unintended:

void f(std::auto_ptr<X>) {
// assumes ownership of X
// deletes it at end of scope

|3

std::auto_ptr<X> px = ...;

f(px); // f acquires ownership of underlying X
// px 1s now empty

px->foo(); // NPE!

// px.~auto_ptr() does NOT delete

The transfer of ownership happened in the "copy" constructor. auto_ptr's copy constructor and copy assignment
operator take their operands by non-const reference so that they could be modified. An example implementation

might be:

template <typename T>

class auto_ptr {
T* ptr;

public:
auto_ptr(auto_ptr& rhs)
: ptr(rhs.release())

{}

auto_ptr& operator=(auto_ptr& rhs) {
reset(rhs.release());
return *this;

}

T* release() {
T+ tmp = ptr;
ptr = nullptr;
return tmp;

}

void reset(T* tmp = nullptr) {
if (ptr !'= tmp) {
delete ptr;
ptr = tmp;

}

GoalKicker.com - C++ Notes for Professionals 165

(c) ketabton.com: The Digital Library

/* other functions ... */

b

This breaks copy semantics, which require that copying an object leaves you with two equivalent versions of it. For
any copyable type, T, | should be able to write:

Ta=...;
T b(a);
assert(b == a);

But for auto_ptr, this is not the case. As a result, it is not safe to put auto_ptrs in containers.

Section 33.6: Casting std::shared_ptr pointers

It is not possible to directly use static_cast, const_cast, dynamic_cast and reinterpret_cast on

std: :shared_ptr to retrieve a pointer sharing ownership with the pointer being passed as argument. Instead, the
functions std: :static_pointer_cast, std: :const_pointer_cast, std::dynamic_pointer_cast and
std::reinterpret_pointer_cast should be used:

struct Base { virtual ~Base() noexcept {}; };

struct Derived: Base {};

auto derivedPtr(std: :make_shared<Derived>());

auto basePtr(std::static_pointer_cast<Base>(derivedPtr));

auto constBasePtr(std::const_pointer_cast<Base const>(basePtr));

auto constDerivedPtr(std::dynamic_pointer_cast<Derived const>(constBasePtr));

Note that std: :reinterpret_pointer_cast is not available in C++11 and C++14, as it was only proposed by N3920
and adopted into Library Fundamentals TS in February 2014. However, it can be implemented as follows:

template <typename To, typename From>

inline std::shared_ptr<To> reinterpret_pointer_cast(
std::shared_ptr<From> const & ptr) noexcept

{ return std::shared_ptr<To>(ptr, reinterpret_cast<To *>(ptr.get())); }

Section 33.7: Writing a smart pointer: value_ptr

A value_ptr is a smart pointer that behaves like a value. When copied, it copies its contents. When created, it
creates its contents.

// Like std::default_delete:
template<class T>
struct default_copier {
// a copier must handle a null T const* in and return null:
T+ operator()(T const* tin)const {
if (!tin) return nullptr;
return new T(*tin);
}
void operator()(void* dest, T const* tin)const {
if (!tin) return;
return new(dest) T(*tin);
}
b
// tag class to handle empty case:
struct empty_ptr_t {};
constexpr empty_ptr_t empty_ptr{};
// the value pointer type itself:

GoalKicker.com - C++ Notes for Professionals 166

(c) ketabton.com: The Digital Library

template<class T, class Copier=default_copier<T>, class Deleter=std::default_delete<T>,

class Base=std::unique_ptr<T, Deleter>
>
struct value_ptr:Base, private Copier {
using copier_type=Copier;
// also typedefs from unique_ptr

using Base: :Base;

value_ptr(T const& t):
Base(std::make_unique<T>(t)),
Copier()

{}

value_ptr(T && t):
Base(std::make_unique<T>(std::move(t))),
Copier()

{}

// almost-never-empty:

value_ptr():

Base(std::make_unique<T>()),
Copier()

{}

value_ptr(empty_ptr_t) {}

value_ptr(Base b, Copier c={}):
Base(std: :move(b)),
Copier(std::move(c))

{3

Copier const& get_copier() const {
return *this;

}

value_ptr clone() const {
return {

Base(
get_copier()(this->get())
this->get_deleter()

)

get_copier()

3

}
value_ptr(value_ptr&&)=default;

value_ptr& operator=(value_ptr&&)=default;

value_ptr(value_ptr const& o) :value_ptr(o.clone()) {}
value_ptr& operator=(value_ptr const&o) {
if (o && *this) {
// if we are both non-null, assign contents:
**this = *0;
} else {

// otherwise, assign a clone (which could itself be null):

*this = o.clone();

}

return *this;

}
value_ptr& operator=(T const& t) {

if (*this) {

**xthis = t;
} else {

*this = value_ptr(t);
}

GoalKicker.com - C++ Notes for Professionals

167

(c) ketabton.com: The Digital Library

return *this;
}
value_ptr& operator=(T && t) {
if (*this) {
*xthis = std::move(t);
} else {
*this = value_ptr(std::move(t));
}

return *this;

}

T& get() { return *xthis; }

T const& get() const { return **this; }

T* get_pointer() {
if (!*this) return nullptr;
return std::addressof(get());

}

T const* get_pointer() const {
if (!'*this) return nullptr;
return std::addressof(get());

}

// operator-> from unique_ptr
i
template<class T, class...Args>
value_ptr<T> make_value_ptr(Args&&... args) {
return {std::make_unique<T>(std::forward<Args>(args)...)};

}

This particular value_ptr is only empty if you construct it with empty_ptr_t or if you move from it. It exposes the fact
itis a unique_ptr, so explicit operator bool() const worksonit. .get() has been changed to return a
reference (as it is almost never empty), and .get_pointer() returns a pointer instead.

This smart pointer can be useful for pImpl cases, where we want value-semantics but we also don't want to expose
the contents of the pImpl outside of the implementation file.

With a non-default Copier, it can even handle virtual base classes that know how to produce instances of their
derived and turn them into value-types.

Section 33.8: Getting a shared_ptr referring to this

enable_shared_from_this enables you to get a valid shared_ptr instance to this.

By deriving your class from the class template enable_shared_from_this, you inherit a method shared_from_this
that returns a shared_ptr instance to this

Note that the object must be created as a shared_ptr in first place:

#include <memory>

class A: public enable_shared_from_this<A> {

i

A% ap1 =new A();

shared_ptr<A> ap2(ap1); // First prepare a shared pointer to the object and hold it!
// Then get a shared pointer to the object from the object itself

shared_ptr<A> ap3 = apl1->shared_from_this();

int c¢3 =ap3.use_count(); // =2: pointing to the same object

Note(2) you cannot call enable_shared_from_this inside the constructor.

#include <memory> // enable_shared_from_this

GoalKicker.com - C++ Notes for Professionals 168

(c) ketabton.com: The Digital Library

class Widget : public std::enable_shared_from_this< Widget >

{
public:
void DoSomething()
{
std::shared_ptr< Widget > self = shared_from_this();
someEvent -> Register(self);
}
private:
3
int main()
{
auto w = std::make_shared< Widget >();
w -> DoSomething();
}

If you use shared_from_this() on an object not owned by a shared_ptr, such as a local automatic object or a
global object, then the behavior is undefined. Since C++17 it throws std: :bad_alloc instead.

Using shared_from_this() from a constructor is equivalent to using it on an object not owned by a shared_ptr,
because the objects is possessed by the shared_ptr after the constructor returns.

GoalKicker.com - C++ Notes for Professionals 169

(c) ketabton.com: The Digital Library

Chapter 34: Classes/Structures

Section 34.1: Class basics

A class is a user-defined type. A class is introduced with the class, struct or union keyword. In colloquial usage, the
term "class" usually refers only to non-union classes.

A class is a collection of class members, which can be:

e member variables (also called "fields"),

member functions (also called "methods"),

member types or typedefs (e.g. "nested classes"),

member templates (of any kind: variable, function, class or alias template)

The class and struct keywords, called class keys, are largely interchangeable, except that the default access
specifier for members and bases is "private" for a class declared with the class key and "public" for a class declared
with the struct or union key (cf. Access modifiers).

For example, the following code snippets are identical:

struct Vector

{
int x;
int y;
int z;
I

// are equivalent to
class Vector

{

public:
int x;
int y;
int z;

%

By declaring a class™ a new type is added to your program, and it is possible to instantiate objects of that class by
Vector my_vector;
Members of a class are accessed using dot-syntax.

my_vector.x = 10;
my_vector.y = my_vector.x + 1; // my_vector.y
my_vector.z = my_vector.y - 4; // my:vector.z = 7,;

1
—_
—

Section 34.2: Final classes and structs

Version = C++11

Deriving a class may be forbidden with final specifier. Let's declare a final class:

class A final {

b

Now any attempt to subclass it will cause a compilation error:

GoalKicker.com - C++ Notes for Professionals 170

(c) ketabton.com: The Digital Library

// Compilation error: cannot derive from final class:
class B : public A {

i
Final class may appear anywhere in class hierarchy:

class A {
H

// OK.
class B final : public A {
i

// Compilation error: cannot derive from final class B.

class C : public B {
i

Section 34.3: Access specifiers

There are three keywords that act as access specifiers. These limit the access to class members following the
specifier, until another specifier changes the access level again:

Keyword Description
public Everyone has access

protected Only the class itself, derived classes and friends have access
private Only the class itself and friends have access

When the type is defined using the class keyword, the default access specifier is private, but if the type is defined
using the struct keyword, the default access specifier is public:

struct MyStruct { int x; };
class MyClass { int x; };

MyStruct s;
s.x = 9; // well formed, because x is public

MyClass c;
c.x =9; // ill-formed, because x is private

Access specifiers are mostly used to limit access to internal fields and methods, and force the programmer to use a
specific interface, for example to force use of getters and setters instead of referencing a variable directly:

class MyClass {
public: /* Methods: */

int x() const noexcept { return m_x; }
void setX(int const x) noexcept { m_x = x; }

private: /# Fields: */
int m_x;

|3

Using protected is useful for allowing certain functionality of the type to be only accessible to the derived classes,
for example, in the following code, the method calculateValue() is only accessible to classes deriving from the

GoalKicker.com - C++ Notes for Professionals 171

(c) ketabton.com: The Digital Library

base class Plus2Base, such as FortyTwo:

struct Plus2Base {
int value() noexcept { return calculateValue() + 2; }
protected: /# Methods: #*/
virtual int calculateValue() noexcept = 0;
iE
struct FortyTwo: Plus2Base {
protected: /# Methods: #*/
int calculateValue() noexcept final override { return 40; }

b

Note that the friend keyword can be used to add access exceptions to functions or types for accessing protected
and private members.

The public, protected, and private keywords can also be used to grant or limit access to base class subobjects.
See the Inheritance example.

Section 34.4: Inheritance

Classes/structs can have inheritance relations.

If a class/struct B inherits from a class/struct A, this means that B has as a parent A. We say that B is a derived
class/struct from A, and A is the base class/struct.

struct A

{
public:
int p1;
protected:
int p2;
private:
int p3;
i

//Make B inherit publicly (default) from A
struct B : A

{

3

There are 3 forms of inheritance for a class/struct:

e public
® private

® protected

Note that the default inheritance is the same as the default visibility of members: public if you use the struct
keyword, and private for the class keyword.

It's even possible to have a class derive from a struct (or vice versa). In this case, the default inheritance is
controlled by the child, so a struct that derives from a class will default to public inheritance, and a class that
derives from a struct will have private inheritance by default.

public inheritance:

struct B : public A // or just “struct B : A°
{

GoalKicker.com - C++ Notes for Professionals 172

(c) ketabton.com: The Digital Library

void foo()

{
p1 = @; //well formed, p1 is public in B
p2 = 0; //well formed, p2 is protected in B
p3 = 0; //ill formed, p3 is private in A
}
3
B b;
b.p1 = 1; //well formed, p1 is public
b.p2 = 1; //ill formed, p2 is protected
b.p3 = 1; //ill formed, p3 is inaccessible

private inheritance:

struct B : private A

{
void foo()
{
p1 = 0; //well formed, p1 is private in B
p2 = 0; //well formed, p2 is private in B
p3 = 0; //ill formed, p3 is private in A
}
iE
B b;
b.p1 = 1; //ill formed, p1 is private
b.p2 = 1; //ill formed, p2 is private
b.p3 = 1; //ill formed, p3 is inaccessible

protected inheritance:

struct B : protected A

{
void foo()
{
p1 = @0; //well formed, p1 is protected in B
p2 = 0; //well formed, p2 is protected in B
p3 = @; //ill formed, p3 is private in A
}
i
B b;
b.p1 = 1; //ill formed, p1 is protected
b.p2 = 1; //ill formed, p2 is protected
b.p3 = 1; //ill formed, p3 is inaccessible

Note that although protected inheritance is allowed, the actual use of it is rare. One instance of how protected
inheritance is used in application is in partial base class specialization (usually referred to as "controlled
polymorphism").

When OOP was relatively new, (public) inheritance was frequently said to model an "IS-A" relationship. That is,
public inheritance is correct only if an instance of the derived class is also an instance of the base class.

This was later refined into the Liskov Substitution Principle: public inheritance should only be used when/if an
instance of the derived class can be substituted for an instance of the base class under any possible circumstance
(and still make sense).

Private inheritance is typically said to embody a completely different relationship: "is implemented in terms of"

GoalKicker.com - C++ Notes for Professionals 173

(c) ketabton.com: The Digital Library

(sometimes called a "HAS-A" relationship). For example, a Stack class could inherit privately from a Vector class.
Private inheritance bears a much greater similarity to aggregation than to public inheritance.

Protected inheritance is almost never used, and there's no general agreement on what sort of relationship it
embodies.

Section 34.5: Friendship

The friend keyword is used to give other classes and functions access to private and protected members of the
class, even through they are defined outside the class s scope.

class Animal{
private:
double weight;
double height;
public:
friend void printWeight(Animal animal);
friend class AnimalPrinter;
// A common use for a friend function is to overload the operator<< for streaming.
friend std::ostream& operator<<(std::ostream& os, Animal animal);

i
void printWeight(Animal animal)
{
std::cout << animal.weight << "\n";
}
class AnimalPrinter
{
public:
void print(const Animal& animal)
{
// Because of the “friend class AnimalPrinter;" declaration, we are
// allowed to access private members here.
std::cout << animal.weight << ", " << animal.height << std::endl;
}
}
std::ostream& operator<<(std::ostream& os, Animal animal)
{
0s << "Animal height: " << animal.height << "\n";
return os;
}

int main() {
Animal animal = {10, 5};
printWeight(animal);

AnimalPrinter aPrinter;
aPrinter.print(animal);

std::cout << animal;

10
10, 5
Animal height: 5

GoalKicker.com - C++ Notes for Professionals 174

(c) ketabton.com: The Digital Library

Section 34.6: Virtual Inheritance

When using inheritance, you can specify the virtual keyword:

struct A{};
struct B: public virtual A{};

When class B has virtual base A it means that A will reside in most derived class of inheritance tree, and thus that
most derived class is also responsible for initializing that virtual base:

struct A

{
int member;
A(int param)

{
member = param;
}
i
struct B: virtual A
{
B(): A(5){}
i
struct C: B
{
C(): /*A(88)*/ {}
i
void f()
{
C object; //error since C is not initializing it's indirect virtual base A"
}

If we un-comment /#A(88)*/ we won't get any error since C is now initializing it's indirect virtual base A.

Also note that when we're creating variable object, most derived class is C, so C is responsible for creating(calling
constructor of) A and thus value of A: :member is 88, not 5 (as it would be if we were creating object of type B).

It is useful when solving the diamond problem.:

A A A
/\ I I
B C B C
\ / \ /
D D
virtual inheritance normal inheritance

B and C both inherit from A, and D inherits from B and C, so there are 2 instances of A in D! This results in ambiguity
when you're accessing member of A through D, as the compiler has no way of knowing from which class do you
want to access that member (the one which B inherits, or the one that is inherited byC?).

Virtual inheritance solves this problem: Since virtual base resides only in most derived object, there will be only one
instance of Ain D.

struct A

{
void foo() {}

GoalKicker.com - C++ Notes for Professionals 175

(c) ketabton.com: The Digital Library
3

struct B : public /#virtual*/ A {};
struct C : public /#virtual*/ A {};

struct D : public B, public C

{
void bar()
{
foo(); //Error, which foo? B::foo() or C::foo()? - Ambiguous
}
i

Removing the comments resolves the ambiguity.

Section 34.7: Private inheritance: restricting base class
interface

Private inheritance is useful when it is required to restrict the public interface of the class:

class A {
public:
int move();
int turn();

b

class B : private A {
public:
using A::turn;

b

B b;
b.move(); // compile error
b.turn(); // OK

This approach efficiently prevents an access to the A public methods by casting to the A pointer or reference:

B b;
A& a = static_cast<A&>(b); // compile error

In the case of public inheritance such casting will provide access to all the A public methods despite on alternative
ways to prevent this in derived B, like hiding:

class B : public A {
private:
int move();

3
or private using:

class B : public A {
private:
using A::move;

i
then for both cases it is possible:

B b;

GoalKicker.com - C++ Notes for Professionals 176

(c) ketabton.com: The Digital Library

A& a = static_cast<A&>(b); // OK for public inheritance
a.move(); // OK

Section 34.8: Accessing class members

To access member variables and member functions of an object of a class, the . operator is used:

struct SomeStruct {
int a;

int b;

void foo() {}

i

SomeStruct var;

// Accessing member variable a in var.
std::cout << var.a << std::endl;

// Assigning member variable b in var.
var.b = 1;

// Calling a member function.
var.foo();

When accessing the members of a class via a pointer, the -> operator is commonly used. Alternatively, the instance
can be dereferenced and the . operator used, although this is less common:

struct SomeStruct {
int a;

int b;

void foo() {}

b

SomeStruct var;

SomeStruct *p = &var;

// Accessing member variable a in var via pointer.
std::cout << p->a << std::endl;

std::cout << (*p).a << std::endl;

// Assigning member variable b in var via pointer.
p->b = 1;

(*p).b = 1;

// Calling a member function via a pointer.
p->foo();

(*p) .foo();

When accessing static class members, the :: operator is used, but on the name of the class instead of an instance
of it. Alternatively, the static member can be accessed from an instance or a pointer to an instance using the . or ->
operator, respectively, with the same syntax as accessing non-static members.

struct SomeStruct {
int a;
int b;
void foo() {}

static int c;
static void bar() {}
bé

int SomeStruct::c;

SomeStruct var;
SomeStruct* p = &var;
// Assigning static member variable c in struct SomeStruct.

GoalKicker.com - C++ Notes for Professionals 177

(c) ketabton.com: The Digital Library

SomeStruct::c = 5;

// Accessing static member variable c in struct SomeStruct, through var and p.
var.a = var.c;

var.b = p->c;

// Calling a static member function.

SomeStruct: :bar();

var.bar();

p->bar();

Background

The -> operator is needed because the member access operator . has precedence over the dereferencing operator

*,

One would expect that *p.a would dereference p (resulting in a reference to the object p is pointing to) and then
accessing its member a. But in fact, it tries to access the member a of p and then dereference it. l.e. *p.a is
equivalent to *(p.a). In the example above, this would result in a compiler error because of two facts: First, p is a
pointer and does not have a member a. Second, a is an integer and, thus, can't be dereferenced.

The uncommonly used solution to this problem would be to explicitly control the precedence: (*p).a

Instead, the -> operator is almost always used. It is a short-hand for first dereferencing the pointer and then
accessing it. l.e. (*p) .a is exactly the same as p->a.

The :: operator is the scope operator, used in the same manner as accessing a member of a namespace. This is
because a static class member is considered to be in that class' scope, but isn't considered a member of instances
of that class. The use of normal . and -> is also allowed for static members, despite them not being instance
members, for historical reasons; this is of use for writing generic code in templates, as the caller doesn't need to be
concerned with whether a given member function is static or non-static.

Section 34.9: Member Types and Aliases

A class or struct can also define member type aliases, which are type aliases contained within, and treated as
members of, the class itself.

struct IHaveATypedef {
typedef int MyTypedef;

i
struct IHaveATemplateTypedef {
template<typename T>

using MyTemplateTypedef = std::vector<T>;
i

Like static members, these typedefs are accessed using the scope operator, : :.

IHaveATypedef: :MyTypedef i = 5; // i is an int.

IHaveATemplateTypedef: :MyTemplateTypedef<int> v; // v is a std::vector<int>.

As with normal type aliases, each member type alias is allowed to refer to any type defined or aliased before, but
not after, its definition. Likewise, a typedef outside the class definition can refer to any accessible typedefs within
the class definition, provided it comes after the class definition.

template<typename T>
struct Helper {

GoalKicker.com - C++ Notes for Professionals 178

(c) ketabton.com: The Digital Library

T get() const { return static_cast<T>(42); }
i

struct IHaveTypedefs {
// typedef MyTypedef NonLinearTypedef; // Error if uncommented.

typedef int MyTypedef;
typedef Helper<MyTypedef> MyTypedefHelper;

|3

IHaveTypedefs: :MyTypedef i; // x_i is an int.
IHaveTypedefs: :MyTypedefHelper hi; // x_hi is a Helper<int>.

typedef IHaveTypedefs::MyTypedef TypedefBeFree;
TypedefBeFree ii; // ii is an int.

Member type aliases can be declared with any access level, and will respect the appropriate access modifier.

class TypedefAccessLevels {
typedef int PrvInt;

protected:
typedef int Prolnt;

public:
typedef int PubInt;
b

TypedefAccessLevels::PrvInt prv_i; // Error: TypedefAccessLevels::PrvInt is private.
TypedefAccesslLevels: :ProInt pro_i; // Error: TypedefAccesslLevels::ProInt is protected.

TypedefAccesslLevels: :PubInt pub_i; // Good.

class Derived : public TypedefAccesslLevels {
PrvInt prv_i; // Error: TypedefAccesslLevels::PrvInt is private.

ProInt pro_i; // Good.
PubInt pub_i; // Good.

b

This can be used to provide a level of abstraction, allowing a class' designer to change its internal workings without
breaking code that relies on it.

class Something {
friend class SomeComplexType;

short s;
//

public:
typedef SomeComplexType MyHelper;

MyHelper get_helper() const { return MyHelper(8, s, 19.5, "shoe", false); }

//
b

/7

Something s;
Something: :MyHelper hlp = s.get_helper();

In this situation, if the helper class is changed from SomeComplexType to some other type, only the typedef and the

GoalKicker.com - C++ Notes for Professionals 179

(c) ketabton.com: The Digital Library

friend declaration would need to be modified; as long as the helper class provides the same functionality, any code
that uses it as Something: :MyHelper instead of specifying it by name will usually still work without any
modifications. In this manner, we minimise the amount of code that needs to be modified when the underlying
implementation is changed, such that the type name only needs to be changed in one location.

This can also be combined with decltype, if one so desires.

class SomethingElse {
AnotherComplexType<bool, int, SomeThirdClass> helper;

public:
typedef decltype(helper) MyHelper;

private:
InternalVariable<MyHelper> ivh;

/1

public:
MyHelper& get_helper() const { return helper; }

//
b

In this situation, changing the implementation of SomethingElse: :helper will automatically change the typedef for
us, due to decltype. This minimises the number of modifications necessary when we want to change helper, which
minimises the risk of human error.

As with everything, however, this can be taken too far. If the typename is only used once or twice internally and
zero times externally, for example, there's no need to provide an alias for it. If it's used hundreds or thousands of
times throughout a project, or if it has a long enough name, then it can be useful to provide it as a typedef instead
of always using it in absolute terms. One must balance forwards compatibility and convenience with the amount of
unnecessary noise created.

This can also be used with template classes, to provide access to the template parameters from outside the class.

template<typename T>
class SomeClass {
//

public:
typedef T MyParam;
MyParam getParam() { return static_cast<T>(42); }

bé

template<typename T>
typename T::MyParam some_func(T& t)
return t.getParam();

}

SomeClass<int> si;
int i = some_func(si);

This is commonly used with containers, which will usually provide their element type, and other helper types, as
member type aliases. Most of the containers in the C++ standard library, for example, provide the following 12
helper types, along with any other special types they might need.

template<typename T>

GoalKicker.com - C++ Notes for Professionals 180

(c) ketabton.com: The Digital Library

class SomeContainer {
//

public:

// Let's provide the same helper types as most standard containers.

typedef T
typedef std::allocator<value_type>
typedef value_type&
typedef const value_type&
typedef value_typex*
typedef const value_typex*
typedef MyIterator<value_type>
typedef MyConstIterator<value_type>
typedef std::reverse_iterator<iterator>
typedef std::reverse_iterator<const_iterator>
typedef size_t
typedef ptrdiff_t

i

value_type;
allocator_type;
reference;
const_reference;
pointer;
const_pointer;
iterator;
const_iterator;
reverse_iterator;
const_reverse_iterator;
size_type;
difference_type;

Prior to C++11, it was also commonly used to provide a "template typedef" of sorts, as the feature wasn't yet
available; these have become a bit less common with the introduction of alias templates, but are still useful in some
situations (and are combined with alias templates in other situations, which can be very useful for obtaining
individual components of a complex type such as a function pointer). They commonly use the name type for their

type alias.

template<typename T>
struct TemplateTypedef {
typedef T type;

}

TemplateTypedef<int>::type i; // i is an int.

This was often used with types with multiple template parameters, to provide an alias that defines one or more of

the parameters.

template<typename T, size_t SZ, size_t D>
class Array { /* ... */ };

template<typename T, size_t SZ>
struct OneDArray {

typedef Array<T, SZ, 1> type;
i

template<typename T, size_t SZ>
struct TwoDArray {

typedef Array<T, SZ, 2> type;
iE

template<typename T>
struct MonoDisplaylLine {

typedef Array<T, 80, 1> type;
b

OneDArray<int, 3>::type
TwoDArray<short, 5>::type
MonoDisplaylLine<char>: :type

arrli; // arrl1i is an Array<int, 3, 1>.
arr2s; // arr2s is an Array<short, 5, 2>.
arr3c; // arr3c is an Array<char, 80, 1>.

GoalKicker.com - C++ Notes for Professionals

181

(c) ketabton.com: The Digital Library

Section 34.10: Nested Classes/Structures

A class or struct can also contain another class/struct definition inside itself, which is called a "nested class"; in
this situation, the containing class is referred to as the "enclosing class". The nested class definition is considered to
be a member of the enclosing class, but is otherwise separate.

struct OQuter {
struct Inner { };

b

From outside of the enclosing class, nested classes are accessed using the scope operator. From inside the
enclosing class, however, nested classes can be used without qualifiers:

struct Outer {
struct Inner { };

Inner in;
Hs
!/
Outer o;

Outer::Inner i = o0.in;

As with a non-nested class/struct, member functions and static variables can be defined either within a nested
class, or in the enclosing namespace. However, they cannot be defined within the enclosing class, due to it being
considered to be a different class than the nested class.

// Bad.
struct Outer {
struct Inner {
void do_something();

i

void Inner::do_something() {}
iE
// Good.

struct Outer {
struct Inner {
void do_something();

b
b

void OQuter::Inner::do_something() {}

As with non-nested classes, nested classes can be forward declared and defined later, provided they are defined
before being used directly.

class Outer {
class Inneri;
class Inner2;

class Innerl1 {};

Inner1 in1;

GoalKicker.com - C++ Notes for Professionals 182

(c) ketabton.com: The Digital Library

Inner2* in2p;

public:
Outer();
~0Quter();
b

class Outer::Inner2 {};

Outer::Outer() : in1(Inner1()), in2p(new Inner2) {}
Outer::~Outer() {

if (in2p) { delete in2p; }
}

Version < C++11

Prior to C++11, nested classes only had access to type names, static members, and enumerators from the
enclosing class; all other members defined in the enclosing class were off-limits.

Version = C++11

As of C++11, nested classes, and members thereof, are treated as if they were friends of the enclosing class, and
can access all of its members, according to the usual access rules; if members of the nested class require the ability
to evaluate one or more non-static members of the enclosing class, they must therefore be passed an instance:

class Outer {
struct Inner {
int get_sizeof_x() {
return sizeof(x); // Legal (C++11): x is unevaluated, so no instance is required.

}

int get_x() {
return x; // Illegal: Can't access non-static member without an instance.

}

int get_x(Outer& o) {
return o.x; // Legal (C++11): As a member of Outer, Inner can access private members.

Conversely, the enclosing class is not treated as a friend of the nested class, and thus cannot access its private
members without explicitly being granted permission.

class Outer {
class Inner {
// friend class Outer;

int x;

b
Inner in;

public:
int get_x() {
return in.x; // Error: int Outer::Inner::x is private.
// Uncomment "friend" line above to fix.

GoalKicker.com - C++ Notes for Professionals 183

(c) ketabton.com: The Digital Library

|3

Friends of a nested class are not automatically considered friends of the enclosing class; if they need to be friends
of the enclosing class as well, this must be declared separately. Conversely, as the enclosing class is not
automatically considered a friend of the nested class, neither will friends of the enclosing class be considered
friends of the nested class.

class Outer {
friend void barge_out(Outer& out, Inner& in);

class Inner {
friend void barge_in(Outer& out, Inner& in);

int i;

b

int o;

b

void barge_in(Outer& out, Outer::Inner& in) {
int i = in.i; // Good.
int o out.o; // Error: int Outer::o is private.

}

void barge_out(Outer& out, Outer::Inner& in) {
int i in.i; // Error: int Outer::Inner::i is private.
int o = out.o; // Good.

As with all other class members, nested classes can only be named from outside the class if they have public
access. However, you are allowed to access them regardless of access modifier, as long as you don't explicitly name
them.

class Outer {
struct Inner {
void func() { std::cout << "I have no private taboo.\n"; }

¥
public:
static Inner make_Inner() { return Inner(); }
b
//

Outer::Inner oi; // Error: Outer::Inner is private.

auto oi = Outer::make_Inner(); // Good.
oi.func(); // Good.
Outer: :make_Inner().func(); // Good.

You can also create a type alias for a nested class. If a type alias is contained in the enclosing class, the nested type
and the type alias can have different access modifiers. If the type alias is outside the enclosing class, it requires that
either the nested class, or a typedef thereof, be public.

class Outer {
class Inner_ {};

public:
typedef Inner_ Inner;

GoalKicker.com - C++ Notes for Professionals 184

(c) ketabton.com: The Digital Library
3

typedef Outer::Inner ImOut; // Good.
typedef Outer::Inner_ ImBad; // Error.

/1

Outer::Inner oi; // Good.
Outer::Inner_ oi; // Error.
ImOut oi; // Good.

As with other classes, nested classes can both derive from or be derived from by other classes.

struct Base {};

struct Outer {
struct Inner : Base {};

b

struct Derived : Outer::Inner {};

This can be useful in situations where the enclosing class is derived from by another class, by allowing the
programmer to update the nested class as necessary. This can be combined with a typedef to provide a consistent
name for each enclosing class' nested class:

class BaseOuter {
struct BaseInner_ {
virtual void do_something() {}
virtual void do_something_else();
} b_in;

public:
typedef Baselnner_ Inner;

virtual ~BaseOuter() = default;

virtual Inner& getInner() { return b_in; }

iE
void BaseOuter::BaseInner_::do_something_else() {}
Jf ===

class DerivedOuter : public BaseOuter {
// Note the use of the qualified typedef; BaseOuter::Baselnner_ is private.
struct DerivedInner_ : BaseOuter::Inner {
void do_something() override {}
void do_something_else() override;
} d_in;

public:
typedef DerivedInner_ Inner;

BaseOuter::Inner& getInner() override { return d_in; }

b

void DerivedOuter: :DerivedInner_::do_something_else() {}

//

GoalKicker.com - C++ Notes for Professionals 185

(c) ketabton.com: The Digital Library

// Calls BaseOuter::BaseInner_: :do_something();
BaseOuter* b = new BaseQOuter;

BaseOuter::Inner& bin = b->getInner();
bin.do_something();
b->getInner().do_something();

// Calls DerivedOuter::DerivedInner_::do_something();
BaseOuter* d = new DerivedOuter;

BaseOuter: :Inner& din = d->getInner();
din.do_something();

d->getInner().do_something();

In the above case, both BaseOuter and DerivedOuter supply the member type Inner, as BaseInner_ and

DerivedInner_, respectively. This allows nested types to be derived without breaking the enclosing class' interface,

and allows the nested type to be used polymorphically.

Section 34.11: Unnamed struct/class

Unnamed struct is allowed (type has no name)

void foo()
{
struct /* No name */ {
float x;
float y;
} point;

point.x = 42;

or

struct Circle

{
struct /# No name */ {
float x;
float vy;
} center; // but a member name
float radius;
b
and later

Circle circle;
circle.center.x = 42.f;

but NOT anonymous struct (unnamed type and unnamed object)

struct InvalidCircle

{
struct /# No name */ {
float centerX;
float centerY;
}; // No member either.
float radius;
b7

Note: Some compilers allow anonymous struct as extension.

GoalKicker.com - C++ Notes for Professionals

186

(c) ketabton.com: The Digital Library

Version = C++11

¢ lamdba can be seen as a special unnamed struct.

e decltype allows to retrieve the type of unnamed struct:

decltype(circle.point) otherPoint;

e unnamed struct instance can be parameter of template method:

void print_square_coordinates()

{

const struct {float x; float y;} points[] = {
{-1, -1}, {-1, 1}, {1, -1}, {1, 1}
s

// for range relies on “template <class T, std::size_t N> std::begin(T (&)[N])"
for (const auto& point : points) {
std::cout << "{" << point.x << ", " << point.y << "}\n";

}

decltype(points[0]) topRightCorner{1, 1};
auto it = std::find(points, points + 4, topRightCorner);
std::cout << "top right corner is the "

<< 1 + std::distance(points, it) << "th\n";

Section 34.12; Static class members

A class is also allowed to have static members, which can be either variables or functions. These are considered to
be in the class' scope, but aren't treated as normal members; they have static storage duration (they exist from the
start of the program to the end), aren't tied to a particular instance of the class, and only one copy exists for the

entire class.

class Example {

static int num_instances; // Static data member (static member variable).
int 1i; // Non-static member variable.
public:

static std::string static_str; // Static data member (static member variable).
static int static_func(); // Static member function.

// Non-static member functions can modify static member variables.
Example() { ++num_instances; }
void set_str(const std::string& str);

i

int Example: :num_instances;
std::string Example::static_str = "Hello.";
/1

Example one, two, three;

// Each Example has its own "i", such that:

// (&one.i != &two.1)

// (&one.i !'= &three.i)

// (&two.i !'= &three.i).

// All three Examples share "num_instances", such that:

GoalKicker.com - C++ Notes for Professionals 187

(c) ketabton.com: The Digital Library

// (&one.num_instances == &two.num_instances)
// (&one.num_instances == &three.num_instances)
// (&two.num_instances == &three.num_instances)

Static member variables are not considered to be defined inside the class, only declared, and thus have their
definition outside the class definition; the programmer is allowed, but not required, to initialise static variables in
their definition. When defining the member variables, the keyword static is omitted.

class Example {

static int num_instances; // Declaration.
public:
static std::string static_str; // Declaration.
//
b
int Example: :num_instances; // Definition. Zero-initialised.
std::string Example::static_str = "Hello."; // Definition.

Due to this, static variables can be incomplete types (apart from void), as long as they're later defined as a
complete type.

struct ForwardDeclared;

class ExIncomplete {
static ForwardDeclared fd;
static ExIncomplete i_contain_myself;
static int an_array|[];

bé
struct ForwardDeclared {};
ForwardDeclared ExIncomplete::fd;

ExIncomplete ExIncomplete::i_contain_myself;
int ExIncomplete::an_array[5];

Static member functions can be defined inside or outside the class definition, as with normal member functions. As
with static member variables, the keyword static is omitted when defining static member functions outside the
class definition.

// For Example above, either...
class Example {
//

public:
static int static_func() { return num_instances; }

/7

void set_str(const std::string& str) { static_str = str; }

b
// Or...
class Example { /* ... %/ };

int Example::static_func() { return num_instances; }

GoalKicker.com - C++ Notes for Professionals 188

(c) ketabton.com: The Digital Library

void Example::set_str(const std::string& str) { static_str = str; }

If a static member variable is declared const but not volatile, and is of an integral or enumeration type, it can be
initialised at declaration, inside the class definition.

enum E { VAL = 5 };

struct ExConst {

const static int ci = 5; // Good.
static const E ce = VAL; /] Good.
const static double cd = 5; // Error.
static const volatile int cvi = 5; // Error.

const static double good_cd;
static const volatile int good_cvi;

}s

const double ExConst::good_cd = 5; // Good.
const volatile int ExConst::good_cvi = 5; // Good.

Version = C++11

As of C++11, static member variables of LiteralType types (types that can be constructed at compile time,
according to constexpr rules) can also be declared as constexpr; if so, they must be initialised within the class
definition.

struct ExConstexpr {

constexpr static int ci = 5; // Good.
static constexpr double cd = 5; // Good.
constexpr static int carr[] = { 1, 1, 2 }; // Good.
static constexpr ConstexprConstructibleClass c{}; // Good.
constexpr static int bad_ci; /] Error.
E
constexpr int ExConstexpr::bad_ci = 5; // Still an error.

If a const or constexpr static member variable is odr-used (informally, if it has its address taken or is assigned to a
reference), then it must still have a separate definition, outside the class definition. This definition is not allowed to
contain an initialiser.

struct ExODR {
static const int odr_used = 5;
}
// const int ExODR::odr_used;
const int* odr_user = & ExODR::odr_used; // Error; uncomment above line to resolve.
As static members aren't tied to a given instance, they can be accessed using the scope operator, ::.

std::string str = Example::static_str;

They can also be accessed as if they were normal, non-static members. This is of historical significance, but is used
less commonly than the scope operator to prevent confusion over whether a member is static or non-static.

Example ex;
std::string rts = ex.static_str;

GoalKicker.com - C++ Notes for Professionals 189

(c) ketabton.com: The Digital Library

Class members are able to access static members without qualifying their scope, as with non-static class members.

class ExTwo {
static int num_instances;
int my_num;

public:
ExTwo() : my_num(num_instances++) {}

static int get_total_instances() { return num_instances; }
int get_instance_number() const { return my_num; }

int ExTwo::num_instances;

They cannot be mutable, nor would they need to be; as they aren't tied to any given instance, whether an instance
is or isn't const doesn't affect static members.

struct ExDontNeedMutable ({
int immuta;
mutable int muta;

static int 1i;

ExDontNeedMutable() : immuta(-5), muta(-5) {}
b
int ExDontNeedMutable: :i;

//

const ExDontNeedMutable dnm;

dnm.immuta = 5; // Error: Can't modify read-only object.

dnm.muta = 5; // Good. Mutable fields of const objects can be written.

dnm.i = 5; // Good. Static members can be written regardless of an instance's const-ness.

Static members respect access modifiers, just like non-static members.

class ExAccess {
static int prv_int;

protected:
static int pro_int;

public:
static int pub_int;

|3

int ExAccess::prv_int;
int ExAccess::pro_int;
int ExAccess::pub_int;

//

int x1 = ExAccess::prv_int; // Error: int ExAccess::prv_int is private.
int x2 = ExAccess::pro_int; // Error: int ExAccess::pro_int is protected.
int x3 = ExAccess::pub_int; // Good.

As they aren't tied to a given instance, static member functions have no this pointer; due to this, they can't access
non-static member variables unless passed an instance.

GoalKicker.com - C++ Notes for Professionals 190

(c) ketabton.com: The Digital Library

class ExInstanceRequired {
int 1i;

public:
ExInstanceRequired() : i(@) {}

static void bad_mutate() { ++i *= 5; } // Error.
static void good_mutate(ExInstanceRequired& e) { ++e.i *= 5; } // Good.

b

Due to not having a this pointer, their addresses can't be stored in pointers-to-member-functions, and are instead
stored in normal pointers-to-functions.

struct ExPointer {
void nsfunc() {}
static void sfunc() {}

}s

typedef void (ExPointer::x mem_f_ptr)();
typedef void (*f_ptr)();

mem_f_ptr p_sf &ExPointer::sfunc; // Error.
f_ptr p_sf = &ExPointer::sfunc; // Good.

Due to not having a this pointer, they also cannot be const or volatile, nor can they have ref-qualifiers. They also
cannot be virtual.

struct ExCVQualifiersAndVirtual {

static void func() {} // Good.
static void cfunc() const {} // Error.
static void vfunc() volatile {} // Error.
static void cvfunc() const volatile {} // Error.
static void rfunc() & {} // Error.
static void rvfunc() && {} // Error.
virtual static void vsfunc() {} // Error.
static virtual void svfunc() {} // Error.

|3

As they aren't tied to a given instance, static member variables are effectively treated as special global variables;
they're created when the program starts, and destroyed when it exits, regardless of whether any instances of the
class actually exist. Only a single copy of each static member variable exists (unless the variable is declared
thread_local (C++11 or later), in which case there's one copy per thread).

Static member variables have the same linkage as the class, whether the class has external or internal linkage. Local
classes and unnamed classes aren't allowed to have static members.

Section 34.13: Multiple Inheritance

Aside from single inheritance:

class A {};
class B : public A {};

You can also have multiple inheritance:

class A {};

GoalKicker.com - C++ Notes for Professionals 191

(c) ketabton.com: The Digital Library

class B {};
class C : public A, public B {};

C will now have inherit from A and B at the same time.
Note: this can lead to ambiguity if the same names are used in multiple inherited classs or structs. Be careful!
Ambiguity in Multiple Inheritance

Multiple inheritance may be helpful in certain cases but, sometimes odd sort of problem encounters while using
multiple inheritance.

For example: Two base classes have functions with same name which is not overridden in derived class and if you
write code to access that function using object of derived class, compiler shows error because, it cannot determine
which function to call. Here is a code for this type of ambiguity in multiple inheritance.

class basel

{
public:
void funtion()
{ //code for basel function }
i
class base2
{
void function()
{ // code for base2 function }
iE
class derived : public basel, public base2
{
i

int main()

{

derived obj;

// Error because compiler can't figure out which function to call
//either function() of basel or base2 .
obj.function()

But, this problem can be solved using scope resolution function to specify which function to class either base1 or
base2:

int main()

{

obj.basel::function(); // Function of class basel is called.
obj.base2::function(); // Function of class base2 is called.

Section 34.14: Non-static member functions

A class can have non-static member functions, which operate on individual instances of the class.

class CL {
public:
void member_function() {}

GoalKicker.com - C++ Notes for Professionals 192

(c) ketabton.com: The Digital Library

|3
These functions are called on an instance of the class, like so:

CL instance;
instance.member_function();

They can be defined either inside or outside the class definition; if defined outside, they are specified as being in
the class' scope.

struct ST {
void defined_inside() {}
void defined_outside();
H
void ST::defined_outside() {}

They can be CV-qualified and/or ref-qualified, affecting how they see the instance they're called upon; the function
will see the instance as having the specified cv-qualifier(s), if any. Which version is called will be based on the
instance's cv-qualifiers. If there is no version with the same cv-qualifiers as the instance, then a more-cv-qualified
version will be called if available.

struct CVQualifiers {
void func() {} // 1: Instance is non-cv-qualified.
void func() const {} // 2: Instance is const.

void cv_only() const volatile {}

e
CVQualifiers non_cv_instance;
const CVQualifiers c_instance;

non_cv_instance.func(); // Calls #1.
c_instance.func(); // Calls #2.

non_cv_instance.cv_only(); // Calls const volatile version.
c_instance.cv_only(); // Calls const volatile version.

Version = C++11

Member function ref-qualifiers indicate whether or not the function is intended to be called on rvalue instances,
and use the same syntax as function cv-qualifiers.

struct RefQualifiers {
void func() & {} // 1: Called on normal instances.
void func() && {} // 2: Called on rvalue (temporary) instances.

b

RefQualifiers rf;
rf.func(); // Calls #1.
RefQualifiers{}.func(); // Calls #2.

CV-qualifiers and ref-qualifiers can also be combined if necessary.

struct BothCVAndRef {
void func() const& {} // Called on normal instances. Sees instance as const.
void func() && {} // Called on temporary instances.

|3

GoalKicker.com - C++ Notes for Professionals 193

(c) ketabton.com: The Digital Library

They can also be virtual; this is fundamental to polymorphism, and allows a child class(es) to provide the same
interface as the parent class, while supplying their own functionality.

struct Base {

virtual void func() {}
b
struct Derived {

virtual void func() {}

|3

Base* bp = new Base;

Base*x dp = new Derived;

bp.func(); // Calls Base::func().
dp.func(); // Calls Derived::func().

For more information, see here.

GoalKicker.com - C++ Notes for Professionals 194

(c) ketabton.com: The Digital Library

Chapter 35: Function Overloading

See also separate topic on Overload Resolution

Section 35.1: What is Function Overloading?

Function overloading is having multiple functions declared in the same scope with the exact same name exist in the
same place (known as scope) differing only in their signature, meaning the arguments they accept.

Suppose you are writing a series of functions for generalized printing capabilities, beginning with std: :string:

void print(const std::string &str)

{

std::cout << "This is a string: << str << std::endl;

}
This works fine, but suppose you want a function that also accepts an int and prints that too. You could write:

void print_int(int num)
{

std::cout << "This is an int: " << num << std::endl;

}
But because the two functions accept different parameters, you can simply write:

void print(int num)

{

std::cout << "This is an int: << num << std::endl;

}

Now you have 2 functions, both named print, but with different signatures. One accepts std: :string, the other
one an int. Now you can call them without worrying about different names:

print("Hello world!"); //prints "This is a string: Hello world!"
print(1337); //prints "This is an int: 1337"

Instead of:

print("Hello world!");
print_int(1337);

When you have overloaded functions, the compiler infers which of the functions to call from the parameters you
provide it. Care must be taken when writing function overloads. For example, with implicit type conversions:

void print(int num)

{
std::cout << "This is an int: " << num << std::endl;
}
void print(double num)
{
std::cout << "This is a double: " << num << std::endl;
}

Now it's not immediately clear which overload of print is called when you write:

GoalKicker.com - C++ Notes for Professionals 195

(c) ketabton.com: The Digital Library
print(5);
And you might need to give your compiler some clues, like:

print(static_cast<double>(5));
print(static_cast<int>(5));
print(5.0);

Some care also needs to be taken when writing overloads that accept optional parameters:

// WRONG CODE

void print(int num1, int num2 = 0) //num2 defaults to @ if not included
{

std::cout << "These are ints: << numl << " and " << num2 << std::endl;
}
void print(int num)
{

std::cout << "This is an int: " << num << std::endl;
}

Because there's no way for the compiler to tell if a call like print(17) is meant for the first or second function
because of the optional second parameter, this will fail to compile.

Section 35.2: Return Type in Function Overloading

Note that you cannot overload a function based on its return type. For example:

// WRONG CODE
std::string getValue()
{

return "hello";

}

int getValue()
{

return 0;

}

int x = getValue();

This will cause a compilation error as the compiler will not be able to work out which version of getvalue to call,
even though the return type is assigned to an int.

Section 35.3: Member Function cv-qualifier Overloading

Functions within a class can be overloaded for when they are accessed through a cv-qualified reference to that
class; this is most commonly used to overload for const, but can be used to overload for volatile and const
volatile, too. This is because all non-static member functions take this as a hidden parameter, which the cv-
qualifiers are applied to. This is most commonly used to overload for const, but can also be used for volatile and
const volatile

This is necessary because a member function can only be called if it is at least as cv-qualified as the instance it's
called on. While a non-const instance can call both const and non-const members, a const instance can only call
const members. This allows a function to have different behaviour depending on the calling instance's cv-qualifiers,
and allows the programmer to disallow functions for an undesired cv-qualifier(s) by not providing a version with
that qualifier(s).

GoalKicker.com - C++ Notes for Professionals 196

(c) ketabton.com: The Digital Library

A class with some basic print method could be const overloaded like so:

#include <iostream>

class Integer

{
public:
Integer(int i_): i{i_}{}
void print()
{
std::cout << "int: " << i << std::endl;
}
void print() const
{
std::cout << "const int: " << i << std::endl;
}
protected:
int 1i;
I
int main()
{
Integer i{5};
const Integer &ic = 1i;
i.print(); // prints "int: 5"
ic.print(); // prints "const int: 5"
}

This is a key tenet of const correctness: By marking member functions as const, they are allowed to be called on
const instances, which in turn allows functions to take instances as const pointers/references if they don't need to
modify them. This allows code to specify whether it modifies state by taking unmodified parameters as const and
modified parameters without cv-qualifiers, making code both safer and more readable.

class ConstCorrect

{
public:
void good_func() const
{
std::cout << "I care not whether the instance is const." << std::endl;
}
void bad_func()
{
std::cout << "I can only be called on non-const, non-volatile instances." << std::endl;
}
i
void i_change_no_state(const ConstCorrect& cc)
{
std::cout << "I can take either a const or a non-const ConstCorrect." << std::endl;
cc.good_func(); // Good. Can be called from const or non-const instance.
cc.bad_func(); // Error. Can only be called from non-const instance.
}

void const_incorrect_func(ConstCorrect& cc)

{

GoalKicker.com - C++ Notes for Professionals 197

(c) ketabton.com: The Digital Library

cc.good_func(); // Good. Can be called from const or non-const instance.
cc.bad_func(); // Good. Can only be called from non-const instance.

A common usage of this is declaring accessors as const, and mutators as non-const.

No class members can be modified within a const member function. If there is some member that you really need

to modify, such as locking a std: :mutex, you can declare it as mutable:

class Integer

{
public:
Integer(int i_): i{i_}{}
int get() const
{
std::lock_guard<std: :mutex> lock{mut};
return i;
}
void set(int i_)
{
std::lock_guard<std: :mutex> lock{mut};
i=idi_;
}
protected:
int 1i;
mutable std::mutex mut;
iE

GoalKicker.com - C++ Notes for Professionals

198

(c) ketabton.com: The Digital Library

Chapter 36: Operator Overloading

In C++, it is possible to define operators such as + and -> for user-defined types. For example, the <string> header
defines a + operator to concatenate strings. This is done by defining an operator function using the operator
keyword.

Section 36.1: Arithmetic operators

You can overload all basic arithmetic operators:

e +and +=
e -and -=
e % and *=
/and /=
& and &=
| and |=
A and A=
>> and >>=

<< and <<=

Overloading for all operators is the same. Scroll down for explanation

Overloading outside of class/struct:

//operator+ should be implemented in terms of operator+=
T operator+(T lhs, const T& rhs)

{
lhs += rhs;
return lhs;
}
T& operator+=(T& lhs, const T& rhs)
{
//Perform addition
return lhs;
}

Overloading inside of class/struct:

//operator+ should be implemented in terms of operator+=
T operator+(const T& rhs)

{
*this += rhs;
return *this;
}
T& operator+=(const T& rhs)
{
//Perform addition
return *this;
}

Note: operator+ should return by non-const value, as returning a reference wouldn't make sense (it returns a new
object) nor would returning a const value (you should generally not return by const). The first argument is passed

GoalKicker.com - C++ Notes for Professionals 199

(c) ketabton.com: The Digital Library

by value, why? Because

1. You can't modify the original object (Object foobar = foo + bar; shouldn't modify foo after all, it wouldn't
make sense)

2. You can't make it const, because you will have to be able to modify the object (because operator+is
implemented in terms of operator+=, which modifies the object)

Passing by const& would be an option, but then you will have to make a temporary copy of the passed object. By
passing by value, the compiler does it for you.

operator+=returns a reference to the itself, because it is then possible to chain them (don't use the same variable
though, that would be undefined behavior due to sequence points).

The first argument is a reference (we want to modify it), but not const, because then you wouldn't be able to
modify it. The second argument should not be modified, and so for performance reason is passed by const&
(passing by const reference is faster than by value).

Section 36.2: Array subscript operator

You can even overload the array subscript operator [].

You should always (99.98% of the time) implement 2 versions, a const and a not-const version, because if the
object is const, it should not be able to modify the object returned by [].

The arguments are passed by const& instead of by value because passing by reference is faster than by value, and
const so that the operator doesn't change the index accidentally.

The operators return by reference, because by design you can modify the object [] return, i.e:

std::vector<int> v{ 1 };
v[@] = 2; //Changes value of 1 to 2
//wouldn't be possible if not returned by reference

You can only overload inside a class/struct:

//I is the index type, normally an int
T& operator[](const I& index)
{

//Do something

//return something

}

//1 is the index type, normally an int
const T& operator[](const I& index) const

{
//Do something
//return something
}
Multiple subscript operators, [][]. .., can be achieved via proxy objects. The following example of a simple row-

major matrix class demonstrates this:

template<class T>

GoalKicker.com - C++ Notes for Professionals 200

(c) ketabton.com: The Digital Library

class matrix {
// class enabling [][] overload to access matrix elements
template <class C>
class proxy_row_vector {
using reference = decltype(std::declval<C>()[0]);
using const_reference = decltype(std::declval<C const>()[0]);
public:
proxy_row_vector(C& _vec, std::size_t _r_ind, std::size_t _cols)
: vec(_vec), row_index(_r_ind), cols(_cols) {}
const_reference operator[](std::size_t _col_index) const {
return vec|[row_index*cols + _col_index];
}
reference operator[](std::size_t _col_index) {
return vec[row_index*cols + _col_index];
}
private:
C& vec;
std::size_t row_index; // row index to access
std::size_t cols; // number of columns in matrix

b

using const_proxy = proxy_row_vector<const std::vector<T>>;
using proxy = proxy_row_vector<std::vector<T>>;
public:
matrix() : mtx(), rows(®), cols(@) {}
matrix(std::size_t _rows, std::size_t _cols)
: mtx(_rowsx_cols), rows(_rows), cols(_cols) {}

// call operator[] followed by another [] call to access matrix elements

const_proxy operator[](std::size_t _row_index) const {
return const_proxy(mtx, _row_index, cols);

}

proxy operator[](std::size_t _row_index) {
return proxy(mtx, _row_index, cols);
}
private:
std::vector<T> mtx;
std::size_t rows;
std::size_t cols;

|3

Section 36.3: Conversion operators

You can overload type operators, so that your type can be implicitly converted into the specified type.

The conversion operator must be defined in a class/struct:

operator T() const { /* return something #*/ }

Note: the operator is const to allow const objects to be converted.

Example:

struct Text

{
std::string text;

// Now Text can be implicitly converted into a const charx*
/*explicit*/ operator const char*() const { return text.data(); }

GoalKicker.com - C++ Notes for Professionals

201

(c) ketabton.com: The Digital Library

b

// AANAAAAAN

// to disable implicit conversion

Text t;
t.text = "Hello world!";

//0k

const char* copyoftext =

Section 36.4: Complex Numbers Revisited

The code below implements a very simple complex number type for which the underlying field is automatically

t;

promoted, following the language's type promotion rules, under application of the four basic operators (+, -, *, and

/) with a member of a different field (be it another complex<T> or some scalar type).

This is intended to be a holistic example covering operator overloading alongside basic use of templates.

#include <type_traits>

namespace not_std{

using std::decay_t;

template<typename value_t>
struct complex

{

value_t x;
value_t y;

complex &operator +=

{
this->x += x;
return *this;
}

complex &operator +=

{

this->x += other.
this->y += other.

return *this;

}

complex &operator -=

{
this->x -= x;
return *this;

}

complex &operator -=

{

this->x -= other.
this->y -= other.y

return *this;

}

complex &operator *=

{

(const

(const

(const

(const

(const

value_t &x)

complex &other)

value_t &x)

complex &other)

value_t &s)

GoalKicker.com - C++ Notes for Professionals

202

(c) ketabton.com: The Digital Library

this->x *= s;
this->y *= s;
return *this;

}
complex &operator *= (const complex &other)
{
(*this) = (*this) * other;
return *this;
}
complex &operator /= (const value_t &s)
{
this->x /= s;
this->y /= s;
return *this;
}
complex &operator /= (const complex &other)
{
(*this) = (*this) / other;
return *this;
}
complex(const value_t &x, const value_t &y)
:ox{x}
» yiy}
{}

template<typename other_value_t>

explicit complex(const complex<other_value_t> &other)
. x{static_cast<const value_t &>(other.x)}

, y{static_cast<const value_t &>(other.y)}

{}

complex &operator = (const complex &) = default;
complex &operator = (complex &&) = default;
complex(const complex &) = default;
complex(complex &&) = default;
complex() = default;

i

// Absolute value squared
template<typename value_t>

value_t absqr(const complex<value_t> &z)
{ return z.x*z.x + z.y*z.y; }

template<typename value_t>
complex<value_t> operator - (const complex<value_t> &z)
{ return {-z.x, -z.y}; }

template<typename left_t, typename right_t>

auto operator + (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x + b.x)>>

{ return{a.x + b.x, a.y + b.y}; }

GoalKicker.com - C++ Notes for Professionals 203

(c) ketabton.com: The Digital Library

template<typename left_t, typename right_t>

auto operator + (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a + b.x)>>

{ return{a + b.x, b.y}; }

template<typename left_t, typename right_t>

auto operator + (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x + b)>>

{ return{a.x + b, a.y}; }

template<typename left_t, typename right_t>

auto operator - (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x - b.x)>>

{ return{a.x - b.x, a.y - b.y}; }

template<typename left_t, typename right_t>

auto operator - (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a - b.x)>>

{ return{a - b.x, - b.y}; }

template<typename left_t, typename right_t>

auto operator - (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x - b)>>

{ return{a.x - b, a.y}; }

template<typename left_t, typename right_t>
auto operator * (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x * b.x)>>

{
return {
a.x*b.x - a.yxb.y,
a.x*b.y + a.y*b.x
iE
}

template<typename left_t, typename right_t>

auto operator * (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a * b.x)>>

{ return {a * b.x, a * b.y}; }

template<typename left_t, typename right_t>

auto operator * (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x * b)>>

{ return {a.x * b, a.y * b}; }

template<typename left_t, typename right_t>

auto operator / (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x / b.x)>>

{

const auto r = absqr(b);

GoalKicker.com - C++ Notes for Professionals 204

(c) ketabton.com: The Digital Library

return {

(a.x*b.x + a.y*b.y) / r,
(-a.x*b.y + a.y*b.x) / r

|3
}

template<typename left_t, typename right_t>
auto operator / (const left_t &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a / b.x)>>

{
const auto s = a/absqr(b);
return {
b.x * s,
-b.y * s
i
}

template<typename left_t, typename right_t>
auto operator / (const complex<left_t> &a, const right_t &b)

-> complex<decay_t<decltype(a.x / b)>>

{ return {a.x

}// namespace

/ b, a.y / b}; }

not_std

int main(int argc, char **xargv)

{

using namespace not_std;

complex<float> fz{4.0f, 1.0f};

// makes a complex<double>

auto dz =

fz x 1.0;

// still a complex<double>

auto idz

// also a
auto one

1.0f/dz;

complex<double>
dz * idz;

// a complex<double> again
auto one_again = fz * idz;

// Operator tests,

complex<float> a{1.0f, -2.0f};
complex<double> b{3.0, -4.0};

// All of these are complex<double>
auto c@ = a + b;
auto ¢c1 = a - b;
auto c2 = a * b;
auto c3 =a / b;
// All of these are complex<float>
auto do = a + 1;
auto d1 =1 + a;
auto d2 = a 1;
auto d3 =1 - a;
auto d4 = a * 1;
auto d5 = 1 * a;
auto dé = a / 1;

just to make sure everything compiles.

GoalKicker.com - C++ Notes for Professionals

205

(c) ketabton.com: The Digital Library

auto d7 =1 / a;

// All of these are complex<double>
auto e@ = + 1;

auto el = +
auto e2 =
auto e3 =
auto e4 =
auto ed5 =
auto e6 =
auto e7 =

- O =0 =0T =0T

~ O~ ¥ %

return 0;

Section 36.5: Named operators

You can extend C++ with named operators that are "quoted" by standard C++ operators.

First we start with a dozen-line library:

namespace named_operator {
template<class D>struct make_operator{constexpr make_operator(){}};

template<class T, char, class 0> struct half_apply { T&& lhs; };

template<class Lhs, class Op>

half_apply<Lhs, '*', Op> operator*(Lhs&& lhs, make_operator<Op>) {
return {std::forward<Lhs>(1lhs)};

}

template<class Lhs, class Op, class Rhs>
auto operator*(half_apply<Lhs, '*', Op>&& lhs, Rhs&& rhs)
-> decltype(named_invoke(std::forward<Lhs>(1lhs.lhs), Op{}, std::forward<Rhs>(rhs)))
{
return named_invoke(std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs));
}
}

this doesn't do anything yet.

First, appending vectors

namespace my_ns {
struct append_t : named_operator::make_operator<append_t> {};
constexpr append_t append{};

template<class T, class A@, class Al>
std::vector<T, A@> named_invoke(std::vector<T, A@> lhs, append_t, std::vector<T, A1> const& rhs
) A
lhs.insert(lhs.end(), rhs.begin(), rhs.end());
return std::move(lhs);
}
}

using my_ns::append;

std::vector<int> a {1,2,3};
std::vector<int> b {4,5,6};

GoalKicker.com - C++ Notes for Professionals 206

(c) ketabton.com: The Digital Library

auto ¢ = a *append* b;

The core here is that we define an append object of type append_t :named_operator: :make_operator<append_t>.
We then overload named_invoke(Ihs, append_t, rhs) for the types we want on the right and left.

The library overloads 1hs*append_t, returning a temporary half_apply object. It also overloads half_applyxrhs to
call named_invoke(lhs, append_t, rhs).

We simply have to create the proper append_t token and do an ADL-friendly named_invoke of the proper signature,
and everything hooks up and works.

For a more complex example, suppose you want to have element-wise multiplication of elements of a std::array:

template<class=void, std::size_t...Is>
auto indexer(std::index_sequence<Is...>) {

return [](auto&& f) {
return f(std::integral_constant<std::size_t, Is>{}...);
iE
}
template<std::size_t N>
auto indexer() { return indexer(std::make_index_sequence<N>{}); }

namespace my_ns {
struct e_times_t : named_operator::make_operator<e_times_t> {};
constexpr e_times_t e_times{};

template<class L, class R, std::size_t N,
class Out=std::decay_t<decltype(std::declval<L const&>()*std::declval<R const&>())>
>
std::array<0Out, N> named_invoke(std::array<L, N> const& lhs, e_times_t, std::array<R, N> const&
rhs) {
using result_type = std::array<Out, N>;
auto index_over_N = indexer<N>();
return index_over_N([&](auto...is)->result_type {
return {{
(lhs[is] * rhs[is])...
G
i
}
}

live example.

This element-wise array code can be extended to work on tuples or pairs or C-style arrays, or even variable length
containers if you decide what to do if the lengths don't match.

You could also an element-wise operator type and get 1hs *element_wise<'+'>* rhs.
Writing a *dot* and *cross* product operators are also obvious uses.

The use of * can be extended to support other delimiters, like +. The delimeter precidence determines the
precidence of the named operator, which may be important when translating physics equations over to C++ with
minimal use of extra ()s.

With a slight change in the library above, we can support ->xthen* operators and extend std: : function prior to
the standard being updated, or write monadic ->*bind*. It could also have a stateful named operator, where we
carefully pass the 0Op down to the final invoke function, permitting:

GoalKicker.com - C++ Notes for Professionals 207

(c) ketabton.com: The Digital Library

named_operator<'*'> append = [](auto lhs, auto&& rhs) {
using std::begin; using std::end;
lhs.insert(end(lhs), begin(rhs), end(rhs));
return std::move(lhs);

i
generating a named container-appending operator in C++17.

Section 36.6: Unary operators

You can overload the 2 unary operators:

e ++foo and foo++
e --foo and foo--

Overloading is the same for both types (++ and --). Scroll down for explanation

Overloading outside of class/struct:

//Prefix operator ++foo
T& operator++(T& lhs)
{
//Perform addition
return lhs;

}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)
//Should be implemented in terms of ++foo (prefix operator)
T operator++(T& lhs, int)

{
T t(1lhs);
++lhs;
return t;
}

Overloading inside of class/struct:

//Prefix operator ++foo
T& operator++()
{
//Perform addition
return *this;

}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)
//Should be implemented in terms of ++foo (prefix operator)
T operator++(int)

{
T t(*this);
++(*this) ;
return t;

}

Note: The prefix operator returns a reference to itself, so that you can continue operations on it. The first argument
is a reference, as the prefix operator changes the object, that's also the reason why it isn't const (you wouldn't be
able to modify it otherwise).

GoalKicker.com - C++ Notes for Professionals 208

(c) ketabton.com: The Digital Library

The postfix operator returns by value a temporary (the previous value), and so it cannot be a reference, as it would
be a reference to a temporary, which would be garbage value at the end of the function, because the temporary
variable goes out of scope). It also cannot be const, because you should be able to modify it directly.

The first argument is a non-const reference to the "calling" object, because if it were const, you wouldn't be able to
modify it, and if it weren't a reference, you wouldn't change the original value.

It is because of the copying needed in postfix operator overloads that it's better to make it a habit to use prefix ++
instead of postfix ++ in for loops. From the for loop perspective, they're usually functionally equivalent, but there
might be a slight performance advantage to using prefix ++, especially with "fat" classes with a lot of members to
copy. Example of using prefix ++ in a for loop:

for (list<string>::const_iterator it = tokens.begin();
it != tokens.end();
++it) { // Don't use it++

Section 36.7: Comparison operators

You can overload all comparison operators:

e ==3nd !=
e >and <
e >=and <=

The recommended way to overload all those operators is by implementing only 2 operators (== and <) and then
using those to define the rest. Scroll down for explanation

Overloading outside of class/struct:

//0nly implement those 2
bool operator==(const T& lhs, const T& rhs) { /* Compare %/ }
bool operator<(const T& lhs, const T& rhs) { /* Compare */ }

//Now you can define the rest

bool operator!=(const T& lhs, const T& rhs) { return !(lhs == rhs); }
bool operator>(const T& lhs, const T& rhs) { return rhs < lhs; }

bool operator<=(const T& lhs, const T& rhs) { return !(lhs > rhs); }
bool operator>=(const T& lhs, const T& rhs) { return !(lhs < rhs); }

Overloading inside of class/struct:

//Note that the functions are const, because if they are not const, you wouldn't be able
//to call them if the object is const

//0nly implement those 2
bool operator==(const T& rhs) const { /#* Compare */ }
bool operator<(const T& rhs) const { /* Compare */ }

//Now you can define the rest

bool operator!=(const T& rhs) const { return !(*this == rhs); }
bool operator>(const T& rhs) const { return rhs < *this; }

bool operator<=(const T& rhs) const { return !(*this > rhs); }
bool operator>=(const T& rhs) const { return !(*this < rhs); }

GoalKicker.com - C++ Notes for Professionals 209

(c) ketabton.com: The Digital Library

The operators obviously return a bool, indicating true or false for the corresponding operation.

All of the operators take their arguments by constg&, because the only thing that does operators do is compare, so
they shouldn't modify the objects. Passing by & (reference) is faster than by value, and to make sure that the
operators don't modify it, it is a const-reference.

Note that the operators inside the class/struct are defined as const, the reason for this is that without the
functions being const, comparing const objects would not be possible, as the compiler doesn't know that the
operators don't modify anything.

Section 36.8: Assignment operator

The assighment operator is one of the most important operators because it allows you to change the status of a
variable.

If you do not overload the assignment operator for your class/struct, it is automatically generated by the
compiler: the automatically-generated assignment operator performs a "memberwise assignment", ie by invoking
assignment operators on all members, so that one object is copied to the other, a member at time. The assignment
operator should be overloaded when the simple memberwise assignment is not suitable for your class/struct, for
example if you need to perform a deep copy of an object.

Overloading the assignment operator = is easy, but you should follow some simple steps.

1. Test for self-assignment. This check is important for two reasons:

o aself-assignment is a needless copy, so it does not make sense to perform it;
o the next step will not work in the case of a self-assignment.

2. Clean the old data. The old data must be replaced with new ones. Now, you can understand the second
reason of the previous step: if the content of the object was destroyed, a self-assignment will fail to perform
the copy.

3. Copy all members. If you overload the assignment operator for your class or your struct, it is not
automatically generated by the compiler, so you will need to take charge of copying all members from the
other object.

4. Return *this. The operator returns by itself by reference, because it allows chaining (i.e. int b = (a = 6) +
4; //b == 10).

//T is some type
T& operator=(const T& other)

{
//Do something (like copying values)
return *this;

Note: other is passed by constg&, because the object being assigned should not be changed, and passing by
reference is faster than by value, and to make sure than operator= doesn't modify it accidentally, it is const.

The assignment operator can only to be overloaded in the class/struct, because the left value of = is always the
class/struct itself. Defining it as a free function doesn't have this guarantee, and is disallowed because of that.

When you declare it in the class/struct, the left value is implicitly the class/struct itself, so there is no problem
with that

GoalKicker.com - C++ Notes for Professionals 210

(c) ketabton.com: The Digital Library
Section 36.9: Function call operator

You can overload the function call operator ():

Overloading must be done inside of a class/struct:

//R -> Return type
//Types -> any different type
R operator()(Type name, Type2 name2, ...)

{
//Do something

//return something

}

//Use it like this (R is return type, a and b are variables)
R foo = object(a, b, ...);

For example:

struct Sum

{
int operator()(int a, int b)
{
return a + b;
}
}

//Create instance of struct
Sum sum;
int result = sum(1, 1); //result == 2

Section 36.10: Bitwise NOT operator
Overloading the bitwise NOT (~) is fairly simple. Scroll down for explanation

Overloading outside of class/struct:

T operator~(T lhs)
{

//Do operation
return lhs;

Overloading inside of class/struct:

T operator~()

{
T t(*this);
//Do operation
return t;

}

Note: operator~ returns by value, because it has to return a new value (the modified value), and not a reference to
the value (it would be a reference to the temporary object, which would have garbage value in it as soon as the
operator is done). Not const either because the calling code should be able to modify it afterwards (i.e. int a = ~a
+ 1; should be possible).

GoalKicker.com - C++ Notes for Professionals 211

(c) ketabton.com: The Digital Library

Inside the class/struct you have to make a temporary object, because you can't modify this, as it would modify
the original object, which shouldn't be the case.

Section 36.11: Bit shift operators for 1/0

The operators << and >> are commonly used as "write" and "read" operators:

e std::ostream overloads << to write variables to the underlying stream (example: std: :cout)
e std::istream overloads >> to read from the underlying stream to a variable (example: std: :cin)

The way they do this is similar if you wanted to overload them "normally" outside of the class/struct, except that
specifying the arguments are not of the same type:

e Return type is the stream you want to overload from (for example, std: :ostream) passed by reference, to
allow chaining (Chaining: std: :cout << a << b;). Example: std: :ostream&

¢ lhs would be the same as the return type

¢ rhs is the type you want to allow overloading from (i.e. T), passed by const& instead of value for performance
reason (rhs shouldn't be changed anyway). Example: const Vector&.

Example:

//0verload std::ostream operator<< to allow output from Vector's
std::ostream& operator<<(std::ostream& lhs, const Vector& rhs)

{

lhs << "x: << rhs.x << " y: << rhs.y << z: << rhs.z << '\n';
return lhs;

}
Vector v = { 1, 2, 3};

//Now you can do
std::cout << v;

GoalKicker.com - C++ Notes for Professionals 212

(c) ketabton.com: The Digital Library

Chapter 37: Function Template
Overloading

Section 37.1: What is a valid function template overloading?

A function template can be overloaded under the rules for non-template function overloading (same name, but
different parameter types) and in addition to that, the overloading is valid if

e The return type is different, or
e The template parameter list is different, except for the naming of parameters and the presence of default
arguments (they are not part of the signature)

For a normal function, comparing two parameter types is is easy for the compiler, since it has all informat. But a
type within a template may not be determined yet. Therefore, the rule for when two parameter types are equal is
approximative here and says that the non-depependend types and values need to match and the spelling of
dependent types and expressions needs to be the same (more precisely, they need to conform to the so-called
ODR-rules), except that template parameters may be renamed. However, if under such different spellings, two
values within the types are deemed different, but will always instantiate to the same values, the overloading is
invalid, but no diagnostic is required from the compiler.

template<typename T>
void f(T*) { }

template<typename T>
void f(T) { }

This is a valid overload, as "T" and "T*" are different spellings. But the following is invalid, with no diagnostic
required

template<typename T>
void f(T (*x)[sizeof(T) + sizeof(T)]) { }

template<typename T>
void f(T (*x)[2 * sizeof(T)]) { }

GoalKicker.com - C++ Notes for Professionals 213

(c) ketabton.com: The Digital Library

Chapter 38: Virtual Member Functions

Section 38.1: Final virtual functions

C++11 introduced final specifier which forbids method overriding if appeared in method signature:

class Base {
public:
virtual void foo() {
std::cout << "Base::Foo\n";

}
b

class Derived1 : public Base {
public:
// Overriding Base::foo
void foo() final {
std::cout << "Derivedl::Foo\n";

}
|

class Derived2 : public Derivedl {
public:
// Compilation error: cannot override final method
virtual void foo() {
std::cout << "Derived2::Foo\n";

}
b

The specifier final can only be used with virtual' member function and can't be applied to non-virtual member
functions

Like final, there is also an specifier caller 'override' which prevent overriding of virtual functions in the derived
class.

The specifiers override and final may be combined together to have desired effect:

class Derivedl : public Base {
public:
void foo() final override {
std::cout << "Derivedl::Foo\n";

}
|3

Section 38.2: Using override with virtual in C++11 and later

The specifier override has a special meaning in C++11 onwards, if appended at the end of function signature. This
signifies that a function is

¢ Overriding the function present in base class &
¢ The Base class function is virtual

There is no run time significance of this specifier as is mainly meant as an indication for compilers
The example below will demonstrate the change in behaviour with our without using override.

Without override:

GoalKicker.com - C++ Notes for Professionals 214

(c) ketabton.com: The Digital Library
#include <iostream>

struct X {
virtual void f() { std::cout << "X::f()\n"; }
i

struct Y : X {

// Y::f() will not override X::f() because it has a different signature,
// but the compiler will accept the code (and silently ignore Y::f()).
virtual void f(int a) { std::cout << a << "\n"; }

bé
With override:

#include <iostream>

struct X {

virtual void f() { std::cout << "X::f()\n"; }
iE

struct Y : X {

// The compiler will alert you to the fact that Y::f() does not
// actually override anything.

virtual void f(int a) override { std::cout << a << "\n"; }
}

Note that override is not a keyword, but a special identifier which only may appear in function signatures. In all
other contexts override still may be used as an identifier:

void foo() {
int override = 1; // OK.
int virtual = 2; // Compilation error: keywords can't be used as identifiers.

Section 38.3: Virtual vs non-virtual member functions

With virtual member functions:

#include <iostream>

struct X {

virtual void f() { std::cout << "X::f()\n"; }
iE

struct Y : X {
// Specifying virtual again here is optional
// because it can be inferred from X::f().
virtual void f() { std::cout << "Y::f()\n"; }
i

void call(X& a) {
a.f();
}

int main() {
X x;
Yy,
call(x); // outputs "X::f()"
call(y); // outputs "Y::f()"

GoalKicker.com - C++ Notes for Professionals 215

(c) ketabton.com: The Digital Library

}
Without virtual member functions:

#include <iostream>

struct X {
void f() { std::cout << "X::f()\n"; }
i

struct Y : X {
void f() { std::cout << "Y::f()\n"; }
i

void call(X& a) {
a.f();

}

int main() {
X x;
Yy
call(x); // outputs "X::f()"
call(y); // outputs "X::f()"

Section 38.4: Behaviour of virtual functions in constructors
and destructors

The behaviour of virtual functions in constructors and destructors is often confusing when first encountered.

#include <iostream>
using namespace std;

class base {

public:
base() { f("base constructor"); }
~base() { f("base destructor"); }

virtual const charx v() { return "base::v()"; }
void f(const char* caller) {

cout << "When called from " << caller << ", " << v() << " gets called.\n";

}
b

class derived : public base {

public:
derived() { f("derived constructor"); }
~derived() { f("derived destructor"); }
const charx v() override { return "derived::v()"

H
b

int main() {
derived d;

}

Output:

GoalKicker.com - C++ Notes for Professionals 216

(c) ketabton.com: The Digital Library

When called from base constructor, base::v() gets called.
When called from derived constructor, derived::v() gets called.
When called from derived destructor, derived::v() gets called.
When called from base destructor, base::v() gets called.

The reasoning behind this is that the derived class may define additional members which are not yet initialized (in
the constructor case) or already destroyed (in the destructor case), and calling its member functions would be
unsafe. Therefore during construction and destruction of C++ objects, the dynamic type of *this is considered to be
the constructor's or destructor's class and not a more-derived class.

Example:

#include <iostream>
#include <memory>

using namespace std;
class base {

public:
base()
{
std::cout << "foo is " << foo() << std::endl;
}

virtual int foo() { return 42; }
i

class derived : public base {
unique_ptr<int> ptr_;
public:
derived(int i) : ptr_(new int(i*i)) { }
// The following cannot be called before derived::derived due to how C++ behaves,
// if it was possible... Kaboom!
int foo() override { return *ptr_; }

b

int main() {
derived d(4);
}

Section 38.5: Pure virtual functions

We can also specify that a virtual function is pure virtual (abstract), by appending = 0 to the declaration. Classes
with one or more pure virtual functions are considered to be abstract, and cannot be instantiated; only derived
classes which define, or inherit definitions for, all pure virtual functions can be instantiated.

struct Abstract {
virtual void f() = ©;
b

struct Concrete {
void f() override {}

b

Abstract a; // Error.
Concrete c; // Good.

Even if a function is specified as pure virtual, it can be given a default implementation. Despite this, the function will
still be considered abstract, and derived classes will have to define it before they can be instantiated. In this case,

GoalKicker.com - C++ Notes for Professionals 217

(c) ketabton.com: The Digital Library

the derived class' version of the function is even allowed to call the base class' version.

struct DefaultAbstract {
virtual void f() = 0;

b

void DefaultAbstract::f() {}

struct WhyWouldWeDoThis : DefaultAbstract {
void f() override { DefaultAbstract::f(); }
3

There are a couple of reasons why we might want to do this:

¢ If we want to create a class that can't itself be instantiated, but doesn't prevent its derived classes from being
instantiated, we can declare the destructor as pure virtual. Being the destructor, it must be defined anyways,
if we want to be able to deallocate the instance. And as the destructor is most likely already virtual to prevent
memory leaks during polymorphic use, we won't incur an unnecessary performance hit from declaring
another function virtual. This can be useful when making interfaces.

struct Interface {
virtual ~Interface() = 0;
b

Interface: :~Interface() = default;

struct Implementation : Interface {};
// ~Implementation() is automatically defined by the compiler if not explicitly
// specified, meeting the "must be defined before instantiation" requirement.

¢ If most or all implementations of the pure virtual function will contain duplicate code, that code can instead
be moved to the base class version, making the code easier to maintain.

class SharedBase {
State my_state;
std: :unique_ptr<Helper> my_helper;
//

public:
virtual void config(const Context& cont) = 0;
//
iE
/# virtual *#/ void SharedBase::config(const Context& cont) {
my_helper = new Helper(my_state, cont.relevant_field);
do_this();
and_that();
}

class OneImplementation : public SharedBase {
int 1i;
//

public:
void config(const Context& cont) override;
//
3
void OneImplementation::config(const Context& cont) /* override */ {
my_state = { cont.some_field, cont.another_field, i };
SharedBase: :config(cont);
my_unique_setup();

b

GoalKicker.com - C++ Notes for Professionals 218

(c) ketabton.com: The Digital Library

// And so on, for other classes derived from SharedBase.

GoalKicker.com - C++ Notes for Professionals 219

(c) ketabton.com: The Digital Library

Chapter 39: Inline functions

A function defined with the inline specifier is an inline function. An inline function can be multiply defined without
violating the One Definition Rule, and can therefore be defined in a header with external linkage. Declaring a
function inline hints to the compiler that the function should be inlined during code generation, but does not
provide a guarantee.

Section 39.1: Non-member inline function definition

inline int add(int x, int y)
{

return x + vy;

}

Section 39.2: Member inline functions

// header (.hpp)

struct A
{
void i_am_inlined()
{
}
i
struct B
{
void i_am_NOT_inlined();
i

// source (.cpp)

void B::i_am_NOT_inlined()
{

}

Section 39.3: What is function inlining?

inline int add(int x, int y)

{
return x + vy,;
}
int main()
{
inta=1, b =2;
int ¢ = add(a, b);
}

In the above code, when add is inlined, the resulting code would become something like this

int main()
{
int a
int ¢ = a + b;

]
—
(on

]
N

The inline function is nowhere to be seen, its body gets inlined into the caller's body. Had add not been inlined, a

GoalKicker.com - C++ Notes for Professionals 220

(c) ketabton.com: The Digital Library

function would be called. The overhead of calling a function -- such as creating a new stack frame, copying

arguments, making local variables, jump (losing locality of reference and there by cache misses), etc. -- has to be
incurred.

Section 39.4: Non-member inline function declaration

inline int add(int x, int y);

GoalKicker.com - C++ Notes for Professionals 221

(c) ketabton.com: The Digital Library

Chapter 40: Special Member Functions

Section 40.1: Default Constructor

A default constructor is a type of constructor that requires no parameters when called. It is named after the type it
constructs and is a member function of it (as all constructors are).

class C{
int 1i;
public:
// the default constructor definition

c()

: i(0){ // member initializer list -- initialize i to ©
// constructor function body -- can do more complex things here

}
i
C c1; // calls default constructor of C to create object c1
C c2 = C(); // calls default constructor explicitly
C c3(); // ERROR: this intuitive version is not possible due to "most vexing parse"
C c4{}; // but in C++11 {} CAN be used in a similar way

C c5[2]; // calls default constructor for both array elements
C*x c6 = new C[2]; // calls default constructor for both array elements

Another way to satisfy the "no parameters" requirement is for the developer to provide default values for all
parameters:

class D{
int i;
int j;
public:
// also a default constructor (can be called with no parameters)
D(int 1 =0, int j = 42)
ci(1), 3(3)4
}
%

D d; // calls constructor of D with the provided default values for the parameters

Under some circumstances (i.e., the developer provides no constructors and there are no other disqualifying
conditions), the compiler implicitly provides an empty default constructor:

class C{

std::string s; // note: members need to be default constructible themselves
i
C c1; // will succeed -- C has an implicitly defined default constructor

Having some other type of constructor is one of the disqualifying conditions mentioned earlier:

class C{

int 1i;
public:

C(int i) : i(i){}
%

GoalKicker.com - C++ Notes for Professionals 222

(c) ketabton.com: The Digital Library

C c1; // Compile ERROR: C has no (implicitly defined) default constructor

Version < c++11

To prevent implicit default constructor creation, a common technique is to declare it as private (with no definition).
The intention is to cause a compile error when someone tries to use the constructor (this either results in an Access
to private error or a linker error, depending on the compiler).

To be sure a default constructor (functionally similar to the implicit one) is defined, a developer could write an
empty one explicitly.

Version = c++11

In C++11, a developer can also use the delete keyword to prevent the compiler from providing a default
constructor.

class C{
int 1i;

public:
// default constructor is explicitly deleted
C() = delete;

i

C c1; // Compile ERROR: C has its default constructor deleted

Furthermore, a developer may also be explicit about wanting the compiler to provide a default constructor.

class C{
int 1i;

public:
// does have automatically generated default constructor (same as implicit one)
C() = default;

C(int i) : i(i){}
i

C ¢1; // default constructed
C c2(1); // constructed with the int taking constructor

Version = c++14

You can determine whether a type has a default constructor (or is a primitive type) using
std::is_default_constructible from <type_traitss>:

class C1{ };
class C2{ public: C2(){} };
class C3{ public: C3(int){} };

using std::cout; using std::boolalpha; using std::endl;

using std::is_default_constructible;

cout << boolalpha << is_default_constructible<int>() << endl; // prints true
cout << boolalpha << is_default_constructible<C1>() << endl; // prints true
cout << boolalpha << is_default_constructible<C2>() << endl; // prints true
cout << boolalpha << is_default_constructible<C3>() << endl; // prints false

Version = c++11

In C++11, it is still possible to use the non-functor version of std: :is_default_constructible:

cout << boolalpha << is_default_constructible<C1>::value << endl; // prints true

GoalKicker.com - C++ Notes for Professionals 223

(c) ketabton.com: The Digital Library
Section 40.2: Destructor

A destructor is a function without arguments that is called when a user-defined object is about to be destroyed. It is
named after the type it destructs with a ~ prefix.

class C{
int* is;
string s;
public:
cO)
: is(new int[10]){
}

~C(){ // destructor definition
delete[] is;
}
i

class C_child : public C{
string s_ch;
public:
C_child(){}
~C_child(){} // child destructor

b
void f(){
C c1; // calls default constructor
C c2[2]; // calls default constructor for both elements
C*x c3 = new C[2]; // calls default constructor for both array elements
C_child c_ch; // when destructed calls destructor of s_ch and of C base (and in turn s)
delete[] ¢3; // calls destructors on c3[0] and c3[1]
} // automatic variables are destroyed here -- i.e. c¢1, ¢2 and c_ch

Under most circumstances (i.e., a user provides no destructor, and there are no other disqualifying conditions), the
compiler provides a default destructor implicitly:

class C{
int 1i;
string s;

bé

void f(){
Cx ¢c1 = new C;
delete c1; // C has a destructor

class C{

int m;
private:

~C(){} // not public destructor!
i

class C_container{
C c;
2

void f(){

GoalKicker.com - C++ Notes for Professionals 224

(c) ketabton.com: The Digital Library

C_container* c_cont = new C_container;
delete c_cont; // Compile ERROR: C has no accessible destructor

}

Version > c++11
In C++11, a developer can override this behavior by preventing the compiler from providing a default destructor.

class C{

int m;
public:

~C() = delete; // does NOT have implicit destructor
b

void f{
C c1;
} // Compile ERROR: C has no destructor

Furthermore, a developer may also be explicit about wanting the compiler to provide a default destructor.

class C{

int m;
public:

~C() = default; // saying explicitly it does have implicit/empty destructor
i

void f(){
C c1;
} // C has a destructor -- c1 properly destroyed

Version > c++11

You can determine whether a type has a destructor (or is a primitive type) using std: :is_destructible from
<type_traits>

class C1{ };
class C2{ public: ~C2() = delete };
class C3 : public C2{ };

using std::cout; using std::boolalpha; using std::endl;

using std::is_destructible;

cout << boolalpha << is_destructible<int>() << endl; // prints true
cout << boolalpha << is_destructible<C1>() << endl; // prints true

cout << boolalpha << is_destructible<C2>() << endl; // prints false
cout << boolalpha << is_destructible<C3>() << endl; // prints false

Section 40.3: Copy and swap

If you're writing a class that manages resources, you need to implement all the special member functions (see Rule
of Three/Five/Zero). The most direct approach to writing the copy constructor and assignment operator would be:

person(const person &other)
: name(new char[std::strlen(other.name) + 1])
, age(other.age)

{
std: :strcpy(name, other.name);

}

person& operator=(person const& rhs) {
if (this != &other) {
delete [] name;

GoalKicker.com - C++ Notes for Professionals 225

(c) ketabton.com: The Digital Library

name = new char[std::strlen(other.name) + 1];
std: :strcpy(name, other.name);
age = other.age;

}

return *this;

But this approach has some problems. It fails the strong exception guarantee - if new[] throws, we've already
cleared the resources owned by this and cannot recover. We're duplicating a lot of the logic of copy construction in
copy assignment. And we have to remember the self-assignment check, which usually just adds overhead to the
copy operation, but is still critical.

To satisfy the strong exception guarantee and avoid code duplication (double so with the subsequent move
assignment operator), we can use the copy-and-swap idiom:

class person {
char* name;

int age;
public:
/* all the other functions ... */

friend void swap(person& lhs, person& rhs) {
using std::swap; // enable ADL

swap(lhs.name, rhs.name);
swap(lhs.age, rhs.age);

}

person& operator=(person rhs) {
swap(*this, rhs);
return *this;

b

Why does this work? Consider what happens when we have

person pl e
person p2 e

p1 = p2;

First, we copy-construct rhs from p2 (which we didn't have to duplicate here). If that operation throws, we don't do
anything in operator=and p1 remains untouched. Next, we swap the members between *this and rhs, and then
rhs goes out of scope. When operator=, that implicitly cleans the original resources of this (via the destructor,
which we didn't have to duplicate). Self-assignment works too - it's less efficient with copy-and-swap (involves an
extra allocation and deallocation), but if that's the unlikely scenario, we don't slow down the typical use case to
account for it.

Version = C++11
The above formulation works as-is already for move assignment.
p1 = std::move(p2);

Here, we move-construct rhs from p2, and all the rest is just as valid. If a class is movable but not copyable, there is
no need to delete the copy-assignment, since this assignment operator will simply be ill-formed due to the deleted
copy constructor.

GoalKicker.com - C++ Notes for Professionals 226

(c) ketabton.com: The Digital Library

Section 40.4: Implicit Move and Copy

Bear in mind that declaring a destructor inhibits the compiler from generating implicit move constructors and move
assignment operators. If you declare a destructor, remember to also add appropriate definitions for the move
operations.

Furthermore, declaring move operations will suppress the generation of copy operations, so these should also be
added (if the objects of this class are required to have copy semantics).

class Movable {
public:
virtual ~Movable() noexcept = default;

// compiler won't generate these unless we tell it to
/1 because we declared a destructor
Movable(Movable&&) noexcept = default;

Movable& operator=(Movable&&) noexcept = default;

!/ declaring move operations will suppress generation

// of copy operations unless we explicitly re-enable them
Movable(const Movable&) = default;

Movable& operator=(const Movable&) = default;

GoalKicker.com - C++ Notes for Professionals 227

(c) ketabton.com: The Digital Library

Chapter 41: Non-Static Member Functions

Section 41.1: Non-static Member Functions

A class or struct can have member functions as well as member variables. These functions have syntax mostly
similar to standalone functions, and can be defined either inside or outside the class definition; if defined outside
the class definition, the function's name is prefixed with the class' name and the scope (: :) operator.

class CL {
public:
void definedInside() {}
void definedOutside();

iE
void CL::definedOutside() {}

These functions are called on an instance (or reference to an instance) of the class with the dot (.) operator, or a
pointer to an instance with the arrow (->) operator, and each call is tied to the instance the function was called on;
when a member function is called on an instance, it has access to all of that instance's fields (through the this
pointer), but can only access other instances' fields if those instances are supplied as parameters.

struct ST {
ST(const std::string& ss = "Wolf", int ii = 359) : s(ss), i(ii) { }

int get_i() const { return i; }

bool compare_i(const ST& other) const { return (i == other.i); }
private:
std::string s;
int 1i;
hE
ST st1;

ST st2("Species", 8472);

int i
bool b

st1.get_i(); // Can access st1.i, but not st2.i.
st1.compare_i(st2); // Can access st1 & st2.

These functions are allowed to access member variables and/or other member functions, regardless of either the
variable or function's access modifiers. They can also be written out-of-order, accessing member variables and/or
calling member functions declared before them, as the entire class definition must be parsed before the compiler
can begin to compile a class.

class Access {
public:
Access(int i_ = 8088, int j_ = 8086, int k_ = 6502) : i(i_), j(j_), k(k_) {}

int 1i;

int get_k() const { return k; }

bool private_no_more() const { return i_be_private(); }
protected:

int j;

int get_i() const { return i; }
private:

int k;

int get_j() const { return j; }

bool i_be_private() const { return ((i > j) && (k < j)); }

3

GoalKicker.com - C++ Notes for Professionals 228

(c) ketabton.com: The Digital Library

Section 41.2: Encapsulation

A common use of member functions is for encapsulation, using an accessor (commonly known as a getter) and a
mutator (commonly known as a setter) instead of accessing fields directly.

class Encapsulator {
int encapsulated;

public:
int get_encapsulated() const { return encapsulated; }
void set_encapsulated(int e) { encapsulated = e; }

void some_func() {
do_something_with(encapsulated);

}
b

Inside the class, encapsulated can be freely accessed by any non-static member function; outside the class, access
to it is regulated by member functions, using get_encapsulated() to read it and set_encapsulated() to modify it.
This prevents unintentional modifications to the variable, as separate functions are used to read and write it. [There
are many discussions on whether getters and setters provide or break encapsulation, with good arguments for
both claims; such heated debate is outside the scope of this example.]

Section 41.3: Name Hiding & Importing

When a base class provides a set of overloaded functions, and a derived class adds another overload to the set, this
hides all of the overloads provided by the base class.

struct HiddenBase {

void f(int) { std::cout << "int" << std::endl; }

void f(bool) { std::cout << "bool" << std::endl; }

void f(std::string) { std::cout << "std::string" << std::endl; }
iE

struct HidingDerived : HiddenBase {
void f(float) { std::cout << "float" << std::endl; }

b
//
HiddenBase hb;

HidingDerived hd;
std::string s;

hb.f(1); // Output: int
hb.f(true); // Output: bool
hb.f(s); // Output: std::string;

hd.f(1.f); // Output: float

hd.f(3); // Output: float
hd.f(true); // Output: float
hd.f(s); // Error: Can't convert from std::string to float.

This is due to name resolution rules: During name lookup, once the correct name is found, we stop looking, even if
we clearly haven't found the correct version of the entity with that name (such as with hd. f(s)); due to this,
overloading the function in the derived class prevents name lookup from discovering the overloads in the base
class. To avoid this, a using-declaration can be used to "import" names from the base class into the derived class, so

GoalKicker.com - C++ Notes for Professionals 229

(c) ketabton.com: The Digital Library

that they will be available during name lookup.

struct HidingDerived : HiddenBase {
// All members named HiddenBase::f shall be considered members of HidingDerived for lookup.
using HiddenBase: :f;

void f(float) { std::cout << "float" << std::endl; }
b

//
HidingDerived hd;

hd.f(1.f); // Output: float

hd.f(3); // Output: int
hd.f(true); // Output: bool
hd.f(s); // Output: std::string

If a derived class imports names with a using-declaration, but also declares functions with the same signature as
functions in the base class, the base class functions will silently be overridden or hidden.

struct NamesHidden {

virtual void hide_me() {}
virtual void hide_me(float) {}
void hide_me(int) {}
void hide_me(bool) {}

b

struct NameHider : NamesHidden {
using NamesHidden: :hide_me;

void hide_me() {} // Overrides NamesHidden::hide_me().
void hide_me(int) {} // Hides NamesHidden::hide_me(int).
i

A using-declaration can also be used to change access modifiers, provided the imported entity was public or
protected in the base class.

struct ProMem {
protected:
void func() {}

|3

struct BecomesPub : ProMem {
using ProMem: :func;

b
/]

ProMem pm;
BecomesPub bp;

pm.func(); // Error: protected.
bp.func(); // Good.

Similarly, if we explicitly want to call a member function from a specific class in the inheritance hierarchy, we can
qualify the function name when calling the function, specifying that class by name.

struct One {

GoalKicker.com - C++ Notes for Professionals 230

(c) ketabton.com: The Digital Library

virtual void f() { std::cout << "One." << std::endl; }

b

struct Two : One {
void f() override {
One::f(); // this->One::f();

std::cout << "Two." << std::endl;

b

struct Three : Two {
void f() override {
Two::f(); // this->Two::f();

std::cout << "Three." << std::endl;

bé
//
Three t;

t.f(); // Normal syntax.

t.Two::f(); // Calls version of f() defined in Two.
t.One::f(); // Calls version of f() defined in One.

Section 41.4: Virtual Member Functions

Member functions can also be declared virtual. In this case, if called on a pointer or reference to an instance, they
will not be accessed directly; rather, they will look up the function in the virtual function table (a list of pointers-to-
member-functions for virtual functions, more commonly known as the vtable or vftable), and use that to call the

version appropriate for the instance's dynamic (actual) type. If the function is called directly, from a variable of a

class, no lookup is performed.

struct Base {

virtual void func() { std::cout << "In Base."

b

struct Derived : Base {

void func() override { std::cout << "In Derived." << std::endl; }

b

void slicer(Base x) { x.func(); }

//

Base b;

Derived d;

Base *pb = &b, *pd = &d; // Pointers.
Base &rb = b, &rd = d; // References.

b.func(); // Output: In Base.
d.func(); // Output: 1In Derived.

pb->func(); // Output: In Base.
pd->func(); // Output: In Derived.

rb.func(); // Output: In Base.
rd.func(); // Output: In Derived.

<< std::endl;

GoalKicker.com - C++ Notes for Professionals

231

(c) ketabton.com: The Digital Library

slicer(b); // Output: In Base.
slicer(d); // Output: In Base.

Note that while pd is Base*, and rd is a Baseg, calling func() on either of the two calls Derived: : func() instead of
Base: :func(); this is because the vtable for Derived updates the Base: : func() entry to instead point to
Derived: :func(). Conversely, note how passing an instance to slicer () always results in Base: : func() being
called, even when the passed instance is a Derived; this is because of something known as doata slicing, where
passing a Derived instance into a Base parameter by value renders the portion of the Derived instance thatisn't a
Base instance inaccessible.

When a member function is defined as virtual, all derived class member functions with the same signature override
it, regardless of whether the overriding function is specified as virtual or not. This can make derived classes
harder for programmers to parse, however, as there's no indication as to which function(s) is/are virtual.

struct B {
virtual void f() {}

b

struct D : B {
void f() {} // Implicitly virtual, overrides B::f.
// You'd have to check B to know that, though.
i

Note, however, that a derived function only overrides a base function if their signatures match; even if a derived
function is explicitly declared virtual, it will instead create a new virtual function if the signatures are mismatched.

struct BadB {
virtual void f() {}
i

struct BadD : BadB {
virtual void f(int i) {} // Does NOT override BadB::f.
3

Version = C++11

As of C++11, intent to override can be made explicit with the context-sensitive keyword override. This tells the
compiler that the programmer expects it to override a base class function, which causes the compiler to omit an
error if it doesn't override anything.

struct CPP11B {
virtual void f() {}
i

struct CPP11D : CPP11B {
void f() override {}
void f(int i) override {} // Error: Doesn't actually override anything.

}
This also has the benefit of telling programmers that the function is both virtual, and also declared in at least one

base class, which can make complex classes easier to parse.

When a function is declared virtual, and defined outside the class definition, the virtual specifier must be
included in the function declaration, and not repeated in the definition.

Version = C++11

GoalKicker.com - C++ Notes for Professionals 232

(c) ketabton.com: The Digital Library

This also holds true for override.

struct VB {
virtual void f(); // "virtual" goes here.
void g();

i

/* virtual */ void VB::f() {} // Not here.
virtual void VB::g() {} // Error.

If a base class overloads a virtual function, only overloads that are explicitly specified as virtual will be virtual.

struct BOverload {
virtual void func() {}
void func(int) {}

i

struct DOverload : BOverload {
void func() override {}
void func(int) {}

b
//

BOverload* bo = new DOverload;
bo->func(); // Calls DOverload::func().
bo->func(1); // Calls BOverload::func(int).

For more information, see the relevant topic.

Section 41.5: Const Correctness

One of the primary uses for this cv-qualifiers is const correctness. This is the practice of guaranteeing that only
accesses that need to modify an object are able to modify the object, and that any (member or non-member)
function that doesn't need to modify an object doesn't have write access to that object (whether directly or
indirectly). This prevents unintentional modifications, making code less errorprone. It also allows any function that
doesn't need to modify state to be able to take either a const or non-const object, without needing to rewrite or
overload the function.

const correctness, due to its nature, starts at the bottom up: Any class member function that doesn't need to
change state is declared as const, so that it can be called on const instances. This, in turn, allows passed-by-
reference parameters to be declared const when they don't need to be modified, which allows functions to take
either const or non-const objects without complaining, and const-ness can propagate outwards in this manner.
Due to this, getters are frequently const, as are any other functions that don't need to modify logical state.

class ConstIncorrect {

Field fld;
public:
ConstIncorrect(const Field& f) : fld(f) {} // Modifies.
const Field& get_field() { return fld; } // Doesn't modify; should be const.

void set_field(const Field& f) { fld = f; } // Modifies.

void do_something(int i) { // Modifies.
fld.insert_value(i);
}
void do_nothing() {} // Doesn't modify; should be const.

b

GoalKicker.com - C++ Notes for Professionals 233

(c) ketabton.com: The Digital Library

class ConstCorrect {
Field fld;

public:
ConstCorrect(const Field& f) : fld(f) {} /1]

const Field& get_field() const { return fld; } //
void set_field(const Field& f) { fld = f; } //

void do_something(int i) { //
fld.insert_value(i);
}
void do_nothing() const { } //
i
/1

Not const: Modifies.

const: Doesn't modify.

Not const: Modifies.

Not const: Modifies.

const: Doesn't modify.

const ConstIncorrect i_cant_do_anything(make_me_a_field());

// Now, let's read it...
Field f = i_cant_do_anything.get_field();

// Error: Loses cv-qualifiers, get_field() isn't const.

i_cant_do_anything.do_nothing();
// Error: Same as above.
// Qops.

const ConstCorrect but_i_can(make_me_a_field());
// Now, let's read it...

Field f = but_i_can.get_field(); // Good.
but_i_can.do_nothing(); // Good.

As illustrated by the comments on ConstIncorrect and ConstCorrect, properly cv-qualifying functions also serves
as documentation. If a class is const correct, any function that isn't const can safely be assumed to change state,
and any function that is const can safely be assumed not to change state.

GoalKicker.com - C++ Notes for Professionals

234

(c) ketabton.com: The Digital Library

Chapter 42: Constant class member
functions

Section 42.1: constant member function

#include <iostream>
#include <map>
#include <string>

using namespace std;

class A {
public:
map<string, string> * mapOfStrings;
public:
A() A
map0fStrings = new map<string, string>();
}
void insertEntry(string const & key, string const & value) const {
(*map0fStrings)[key] = value; // This works? Yes it does.
delete mapOfStrings; // This also works

mapOfStrings = new map<string, string>(); // This * does * not work

}

void refresh() {
delete mapOfStrings;
mapOfStrings = new map<string, string>(); // Works as refresh is non const function

}

void getEntry(string const & key) const {
cout << mapOfStrings->at(key);
}

int main(int argc, charx argv[]) {

A var;

var.insertEntry("abc", "abcValue");
var.getEntry("abc");

getchar();

return 0;

GoalKicker.com - C++ Notes for Professionals

235

(c) ketabton.com: The Digital Library

Chapter 43: C++ Containers

C++ containers store a collection of elements. Containers include vectors, lists, maps, etc. Using Templates, C++
containers contain collections of primitives (e.g. ints) or custom classes (e.g. MyClass).

Section 43.1: C++ Containers Flowchart

Choosing which C++ Container to use can be tricky, so here's a simple flowchart to help decide which Container is

Opnamic
=T
R
e T Loy [" Loy '™ o e
. Firsiow = ot sor —
3 0 W P
/
i .
"
- e & iy
v
Baasch by L [b
Ve s e
i e — preer
...... = — = _ ri A
ey e
e
]
ey
1 i
s & ‘ we
A [r——
]
Push-poppers | e Sequence Containers
Elmmants: net haskan . Ebamunts not Sashi
) Ordered
3 Eemants: haes codn e Fiemants: st hash:
s diom ™,
froveey el
7 o
o S,
. " »
. P .
) . " e "
i i < e 1 = fi:
| N b b e 2 |
. i Y .
S ™ o e P Ten he |
| |
i e e e E—— - 1 - N — 0 -

This flowchart was based on Mikael Persson's post. This little graphic in the flowchart is from Megan Hopkins

GoalKicker.com - C++ Notes for Professionals 236

(c) ketabton.com: The Digital Library

Chapter 44: Namespaces

Used to prevent name collisions when using multiple libraries, a namespace is a declarative prefix for functions,
classes, types, etc.

Section 44.1: What are namespaces?

A C++ namespace is a collection of C++ entities (functions, classes, variables), whose names are prefixed by the
name of the namespace. When writing code within a namespace, named entities belonging to that namespace
need not be prefixed with the namespace name, but entities outside of it must use the fully qualified name. The
fully qualified name has the format <namespace> : :<entity>. Example:

namespace Example

{

const int test = 5;

const int test2 = test + 12; //Works within “Example’ namespace

}

const int test3

test + 3; //Fails; “test® not found outside of namespace.

const int test3 Example::test + 3; //Works; fully qualified name used.

Namespaces are useful for grouping related definitions together. Take the analogy of a shopping mall. Generally a
shopping mall is split up into several stores, each store selling items from a specific category. One store might sell
electronics, while another store might sell shoes. These logical separations in store types help the shoppers find the
items they're looking for. Namespaces help c++ programmers, like shoppers, find the functions, classes, and
variables they're looking for by organizing them in a logical manner. Example:

namespace Electronics

{
int TotalStock;
class Headphones

{

// Description of a Headphone (color, brand, model number, etc.)
b
class Television

{

// Description of a Television (color, brand, model number, etc.)
b
}

namespace Shoes

{
int TotalStock;
class Sandal

{
// Description of a Sandal (color, brand, model number, etc.)
b
class Slipper
{

// Description of a Slipper (color, brand, model number, etc.)

|3

There is a single namespace predefined, which is the global namespace that has no name, but can be denoted by
;1. Example:

GoalKicker.com - C++ Notes for Professionals 237

(c) ketabton.com: The Digital Library

void bar() {
// defined in global namespace

}

namespace foo {
void bar() {
// defined in namespace foo

}
void barbar() {
bar(); // calls foo::bar()
::bar(); // calls bar() defined in global namespace

Section 44.2: Argument Dependent Lookup

When calling a function without an explicit namespace qualifier, the compiler can choose to call a function within a
namespace if one of the parameter types to that function is also in that namespace. This is called "Argument
Dependent Lookup", or ADL:

namespace Test
{
int call(int 1i);

class SomeClass {...};

int call_too(const SomeClass &data);

}
call(5); //Fails. Not a qualified function name.
Test::SomeClass data;

call_too(data); //Succeeds

call fails because none of its parameter types come from the Test namespace. call_too works because
SomeClass is a member of Test and therefore it qualifies for ADL rules.

When does ADL not occur

ADL does not occur if normal unqualified lookup finds a class member, a function that has been declared at block
scope, or something that is not of function type. For example:

void foo();

namespace N {
struct X {};
void foo(X) { std::cout << "1'; }
void qux(X) { std::cout << '2'; }

}
struct C {
void foo() {}
void bar() {
foo(N::X{}); // error: ADL is disabled and C::foo() takes no arguments
}
i

void bar() {
extern void foo(); // redeclares ::foo
foo(N::X{}); // error: ADL is disabled and ::foo() doesn't take any arguments

GoalKicker.com - C++ Notes for Professionals 238

(c) ketabton.com: The Digital Library
}
int qux;

void baz() {
qux(N::X{}); // error: variable declaration disables ADL for "qux"

}

Section 44.3: Extending namespaces

A useful feature of namespaces is that you can expand them (add members to it).

namespace Foo

{
void bar() {}

}

//some other stuff

namespace Foo

{
void bar2() {}

}

Section 44.4: Using directive
The keyword 'using' has three flavors. Combined with keyword 'namespace' you write a 'using directive'

If you don't want to write Foo: : in front of every stuff in the namespace Foo, you can use using namespace Foo; to
import every single thing out of Foo.

namespace Foo

{
void bar() {}
void baz() {}

}

//Have to use Foo::bar()
Foo::bar();

//Import Foo
using namespace Foo;
bar(); //0K
baz(); //0K

It is also possible to import selected entities in a namespace rather than the whole namespace:

using Foo: :bar;
bar(); //0K, was specifically imported
baz(); // Not OK, was not imported

A word of caution: using namespaces in header files is seen as bad style in most cases. If this is done, the
namespace is imported in every file that includes the header. Since there is no way of "un-using" a namespace, this
can lead to namespace pollution (more or unexpected symbols in the global namespace) or, worse, conflicts. See
this example for an illustration of the problem:

Jx*kk%k fOoO.h ****%/

GoalKicker.com - C++ Notes for Professionals 239

(c) ketabton.com: The Digital Library

namespace Foo

{

class C;

}

Jrrkkk bar.h **kkk/
namespace Bar

{

class C;

}

[***** baz.h ***%%/
#include "foo.h"
using namespace Foo;
/*&kk*% main.cpp *****/
#include "bar.h"
#include "baz.h"

using namespace Bar;
C c; // error: Ambiguity between Bar::C and Foo::C

A using-directive cannot occur at class scope.

Section 44.5: Making namespaces

Creating a namespace is really easy:

//Creates namespace foo
namespace Foo

{

//Declares function bar in namespace foo
void bar() {}

To call bar, you have to specify the namespace first, followed by the scope resolution operator : ::
Foo::bar();
It is allowed to create one namespace in another, for example:

namespace A

{
namespace B
{
namespace C
{
void bar() {}
}
}
}

Version = C++17

The above code could be simplified to the following:

namespace A::B::C
{
void bar() {}

GoalKicker.com - C++ Notes for Professionals 240

(c) ketabton.com: The Digital Library

}

Section 44.6: Unnamed/anonymous namespaces

An unnamed namespace can be used to ensure names have internal linkage (can only be referred to by the current
translation unit). Such a namespace is defined in the same way as any other namespace, but without the name:

namespace {
int foo = 42;
}

foo is only visible in the translation unit in which it appears.

It is recommended to never use unnamed namespaces in header files as this gives a version of the content for
every translation unit it is included in. This is especially important if you define non-const globals.

// foo.h
namespace {
std::string globalString;

}

// 1.cpp
#include "foo.h" //< Generates unnamed_namespace{1.cpp}::globalString ...

globalString = "Initialize";

// 2.cpp
#include "foo.h" //< Generates unnamed_namespace{2.cpp}::globalString

std::cout << globalString; //< Will always print the empty string

Section 44.7: Compact nested namespaces

Version = C++17

namespace a {
namespace b {
template<class T>
struct qualifies : std::false_type {};

}
}

namespace other {
struct bob {};

}

namespace a::b {
template<>
struct qualifies<::other::bob> : std::true_type {};

}

You can enter both the a and b namespaces in one step with namespace a::b starting in C++17.

Section 44.8: Namespace alias

A namespace can be given an alias (i.e., another name for the same namespace) using the namespace identifier =
syntax. Members of the aliased namespace can be accessed by qualifying them with the name of the alias. In the

GoalKicker.com - C++ Notes for Professionals 241

(c) ketabton.com: The Digital Library

following example, the nested namespace AReallyLongName: :AnotherReallylLongName is inconvenient to type, so

the function qux locally declares an alias N. Members of that namespace can then be accessed simply using N: :.

namespace AReallylLongName {

}

namespace AnotherReallylLongName {

int foo();
int bar();
void baz(int x, int y);

}

void qux() {

Section 44.9: Inline namespace

namespace N = AReallylongName: :AnotherReallylLongName;

N::baz(N::foo(), N::bar());

Version = C++11

inline namespace includes the content of the inlined namespace in the enclosing namespace, so

namespace Outer

{

inline namespace Inner

{

void foo();

}

is mostly equivalent to

namespace Outer

{

but element from Outer: :Inner:: and those associated into Outer: : are identical.

namespace Inner

{

void foo();

}

using Inner::foo;

So following is equivalent

Outer::foo();
Outer::Inner::foo();

The alternative using namespace Inner; would not be equivalent for some tricky parts as template specialization:

For

#include <outer.h> // See below

class MyCustomType;
namespace Outer

{

GoalKicker.com - C++ Notes for Professionals

242

(c) ketabton.com: The Digital Library

template <>
void foo<MyCustomType>() { std::cout << "Specialization"; }

¢ The inline namespace allows the specialization of Outer: : foo

// outer.h
// include guard omitted for simplification

namespace Outer

{
inline namespace Inner
{
template <typename T>
void foo() { std::cout << "Generic"; }
}
}

¢ Whereas the using namespace doesn't allow the specialization of Outer:

// outer.h
// include guard omitted for simplification

namespace Outer

{
namespace Inner
{
template <typename T>
void foo() { std::cout << "Generic"; }
}
using namespace Inner;
// Specialization of “Outer::foo" is not possible
// it should be “Outer::Inner::foo".
}

Inline namespace is a way to allow several version to cohabit and defaulting to the inline one

namespace MyNamespace

{
// Inline the last version
inline namespace Version2
{
void foo(); // New version
void bar();
}
namespace Version1 // The old one
{
void foo();
}
}

And with usage

MyNamespace: :Versionl::foo(); // old version
MyNamespace: :Version2::foo(); // new version

MyNamespace: :foo(); // default version : MyNamespace::Versionl::foo();

:foo

GoalKicker.com - C++ Notes for Professionals

243

(c) ketabton.com: The Digital Library

Section 44.10: Aliasing a long namespace

This is usually used for renaming or shortening long namespace references such referring to components of a
library.

namespace boost

{
namespace multiprecision
{
class Number ...
}
}

namespace Namel = boost::multiprecision;

!/ Both Type declarations are equivalent
boost::multiprecision: :Number X // Writing the full namespace path, longer
Name1: :Number Y // using the name alias, shorter

Section 44.11: Alias Declaration scope

Alias Declaration are affected by preceding using statements

namespace boost

{
namespace multiprecision
{
class Number ...
}
}

using namespace boost;

// Both Namespace are equivalent
namespace Namel = boost::multiprecision;
namespace Name2 = multiprecision;

However, it is easier to get confused over which namespace you are aliasing when you have something like this:

namespace boost

{
namespace multiprecision
class Number ...
namespace numeric
namespace multiprecision
{
class Number ...
}

using namespace humeric;
using namespace boost;

GoalKicker.com - C++ Notes for Professionals 244

(c) ketabton.com: The Digital Library

// Not recommended as
// its not explicitly clear whether Namel refers to
!/ numeric::multiprecision or boost::multiprecision

namespace Namel = multiprecision;

// For clarity, its recommended to use absolute paths
// instead

namespace Name2 = numeric::multiprecision;

namespace Name3 = boost::multiprecision;

GoalKicker.com - C++ Notes for Professionals 245

(c) ketabton.com: The Digital Library

Chapter 45: Header Files

Section 45.1: Basic Example

The following example will contain a block of code that is meant to be split into several source files, as denoted by
// filename comments.

Source Files
// my_function.h

/* Note how this header contains only a declaration of a function.
* Header functions usually do not define implementations for declarations
* unless code must be further processed at compile time, as in templates.
*/

/* Also, usually header files include preprocessor guards so that every header
is never included twice.

The guard is implemented by checking if a header-file unique preprocessor
token is defined, and only including the header if it hasn't been included
once before.

% % % % *

*/
#ifndef MY_FUNCTION_H
#define MY_FUNCTION_H

// global_value and my_function() will be

// recognized as the same constructs if this header is included by different files.
const int global_value = 42;

int my_function();

#endif // MY_FUNCTION_H

// my_function.cpp

/* Note how the corresponding source file for the header includes the interface
defined in the header so that the compiler is aware of what the source file is
implementing.

In this case, the source file requires knowledge of the global constant
global_value only defined in my_function.h. Without inclusion of the header
file, this source file would not compile.

* % % ¥ % %

*/
#include "my_function.h" // or #include "my_function.hpp"
int my_function() {
return global_value; // return 42;

¥

Header files are then included by other source files that want to use the functionality defined by the header
interface, but don't require knowledge of its implementation (thus, reducing code coupling). The following program
makes use of the header my_function.h as defined above:

// main.cpp

#include <iostream> // A C++ Standard Library header.
#include "my_function.h" // A personal header

int main(int argc, char*x argv) {
std::cout << my_function() << std::endl;

GoalKicker.com - C++ Notes for Professionals 246

(c) ketabton.com: The Digital Library

return 0;

}

The Compilation Process

Since header files are often part of a compilation process workflow, a typical compilation process making use of the
header/source file convention will usually do the following.

Assuming that the header file and source code file is already in the same directory, a programmer would execute
the following commands:

g++ -c¢ my_function.cpp # Compiles the source file my_function.cpp
--> object file my_function.o

+:

Links the object file containing the
implementation of int my_function()

to the compiled, object version of main.cpp
and then produces the final executable a.out

g++ main.cpp my_function.o

H H HF

Alternatively, if one wishes to compile main.cpp to an object file first, and then link only object files together as the
final step:

g++ -c¢ my_function.cpp
g++ -c main.cpp

g++ main.o my_function.o

Section 45.2: Templates in Header Files

Templates require compile-time generation of code: a templated function, for example, will be effectively turned
into multiple distinct functions once a templated function is parameterized by use in source code.

This means that template function, member function, and class definitions cannot be delegated to a separate
source code file, as any code that will use any templated construct requires knowledge of its definition to generally
generate any derivative code.

Thus, templated code, if put in headers, must also contain its definition. An example of this is below:

// templated_function.h

template <typename T>
T* null_T_pointer() {
T* type_point = NULL; // or, alternatively, nullptr instead of NULL
// for C++11 or later
return type_point;

}

GoalKicker.com - C++ Notes for Professionals 247

(c) ketabton.com: The Digital Library

Chapter 46: Using declaration

A using declaration introduces a single name into the current scope that was previously declared elsewhere.

Section 46.1: Importing names individually from a namespace

Once using is used to introduce the name cout from the namespace std into the scope of the main function, the
std: :cout object can be referred to as cout alone.

#include <iostream>
int main() {
using std::cout;
cout << "Hello, world!\n";

Section 46.2: Redeclaring members from a base class to
avoid name hiding

If a using-declaration occurs at class scope, it is only allowed to redeclare a member of a base class. For example,
using std::cout is not allowed at class scope.

Often, the name redeclared is one that would otherwise be hidden. For example, in the below code, d1.foo only
refers to Derived1::foo(const char*) and a compilation error will occur. The function Base: : foo(int) is hidden
not considered at all. However, d2.foo(42) is fine because the using-declaration brings Base: : foo(int) into the set
of entities named foo in Derived2. Name lookup then finds both foos and overload resolution selects Base: : foo.

struct Base {
void foo(int);

b

struct Derivedl : Base {
void foo(const charx);

b

struct Derived2 : Base {
using Base::foo;
void foo(const charx*);

b

int main() {
Derivedi1 d1i;
d1.foo(42); // error
Derived2 d2;
d2.foo(42); // OK

Section 46.3: Inheriting constructors

Version = C++11

As a special case, a using-declaration at class scope can refer to the constructors of a direct base class. Those
constructors are then inherited by the derived class and can be used to initialize the derived class.

struct Base {
Base(int x, const char* s);
b
struct Derivedl : Base {
Derivedl1(int x, const char* s) : Base(x, s) {}

b

GoalKicker.com - C++ Notes for Professionals 248

(c) ketabton.com: The Digital Library

struct Derived2 : Base {
using Base: :Base;

i

int main() {
Derived1 d1(42, "Hello, world");
Derived2 d2(42, "Hello, world");

In the above code, both Derived1 and Derived2 have constructors that forward the arguments directly to the
corresponding constructor of Base. Derived1 performs the forwarding explicitly, while Derived2, using the C++11
feature of inheriting constructors, does so implicitly.

GoalKicker.com - C++ Notes for Professionals 249

(c) ketabton.com: The Digital Library

Chapter 47: std::string

Strings are objects that represent sequences of characters. The standard string class provides a simple, safe and
versatile alternative to using explicit arrays of chars when dealing with text and other sequences of characters. The
C++ string class is part of the std namespace and was standardized in 1998.

Section 47.1: Tokenize

Listed from least expensive to most expensive at run-time:

1. std::strtok is the cheapest standard provided tokenization method, it also allows the delimiter to be
modified between tokens, but it incurs 3 difficulties with modern C++:

o std::strtok cannot be used on multiple strings at the same time (though some implementations do
extend to support this, such as: strtok_s)

o For the same reason std: :strtok cannot be used on multiple threads simultaneously (this may
however be implementation defined, for example: Visual Studio's implementation is thread safe)

o Calling std: :strtok modifies the std: :string it is operating on, so it cannot be used on const
strings, const charxs, or literal strings, to tokenize any of these with std: :strtok or to operate on a
std: :string who's contents need to be preserved, the input would have to be copied, then the copy
could be operated on

Generally any of these options cost will be hidden in the allocation cost of the tokens, but if the cheapest
algorithm is required and std: :strtok's difficulties are not overcomable consider a hand-spun solution.

// String to tokenize

std::string str{ "The quick brown fox" };
// Vector to store tokens
vector<std::string> tokens;

for (auto i = strtok(&str[@], " "); i != NULL; i = strtok(NULL, " "))
tokens.push_back(1i);

Live Example

2. The std::istream_iterator uses the stream's extraction operator iteratively. If the input std: :string is
white-space delimited this is able to expand on the std: :strtok option by eliminating its difficulties, allowing
inline tokenization thereby supporting the generation of a const vector<string>, and by adding support for
multiple delimiting white-space character:

// String to tokenize

const std::string str("The quick \tbrown \nfox");

std::istringstream is(str);

// Vector to store tokens

const std::vector<std::string> tokens = std::vector<std::string>(
std::istream_iterator<std::string>(is),
std::istream_iterator<std::string>());

Live Example

3. The std: :regex_token_iterator uses a std: :regex to iteratively tokenize. It provides for a more flexible
delimiter definition. For example, non-delimited commas and white-space:

GoalKicker.com - C++ Notes for Professionals 250

(c) ketabton.com: The Digital Library

Version = C++11

// String to tokenize
const std::string str{ "The ,qu\\,ick ,\tbrown, fox" };
const std::regex re{ "\\sx((?:[A\\\\, JI\\\\L)*?2)\\s*(?:,[$)" };
// Vector to store tokens
const std::vector<std::string> tokens{
std: :sregex_token_iterator(str.begin(), str.end(), re, 1),
std: :sregex_token_iterator()

|3

Live Example

See the regex_token_iterator Example for more details.

Section 47.2: Conversion to (const) char*

In order to get const char= access to the data of a std: :string you can use the string's c_str() member function.
Keep in mind that the pointer is only valid as long as the std: :string object is within scope and remains
unchanged, that means that only const methods may be called on the object.

Version = C++17

The data() member function can be used to obtain a modifiable charx, which can be used to manipulate the
std: :string object's data.

Version = C++11

A modifiable char* can also be obtained by taking the address of the first character: &s[0]. Within C++11, this is
guaranteed to yield a well-formed, null-terminated string. Note that &s[0] is well-formed even if s is empty,
whereas &s.front() is undefined if s is empty.

Version = C++11

std::string str("This is a string.");
const charx cstr = str.c_str(); // cstr points to: "This is a string.\@"
const charx data = str.data(); // data points to: "This is a string.\@"

std::string str("This is a string.");

// Copy the contents of str to untie lifetime from the std::string object
std::unique_ptr<char []> cstr = std::make_unique<char[]>(str.size() + 1);

// Alternative to the line above (no exception safety):
// char* cstr_unsafe = new char[str.size() + 1];

std: :copy(str.data(), str.data() + str.size(), cstr);
cstrstr.size()] = '\@'; // A null-terminator needs to be added

// delete[] cstr_unsafe;
std::cout << cstr.get();

Section 47.3: Using the std::string_view class

Version = C++17

C++17 introduces std: :string_view, which is simply a non-owning range of const chars, implementable as either
a pair of pointers or a pointer and a length. It is a superior parameter type for functions that requires non-
modifiable string data. Before C++17, there were three options for this:

void foo(std::string const& s); // pre-C++17, single argument, could incur

GoalKicker.com - C++ Notes for Professionals 251

(c) ketabton.com: The Digital Library

// allocation if caller's data was not in a string
// (e.g. string literal or vector<char>)

void foo(const charx s, size_t len); // pre-C++17, two arguments, have to pass them
// both everywhere

void foo(const char*x s); // pre-C++17, single argument, but need to call
// strlen()

template <class StringT>

void foo(StringT const& s); // pre-C++17, caller can pass arbitrary char data
// provider, but now foo() has to live in a header

All of these can be replaced with:

void foo(std::string_view s); // post-C++17, single argument, tighter coupling
// zero copies regardless of how caller is storing
// the data

Note that std: :string_view cannot modify its underlying data.
string_view is useful when you want to avoid unnecessary copies.

It offers a useful subset of the functionality that std: :string does, although some of the functions behave
differently:

std::string str = "lllloooonnnngggg sssstttrrriiinnnggg"; //A really long string

//Bad way - 'string::substr' returns a new string (expensive if the string is long)
std::cout << str.substr(15, 10) << '\n';

//Good way - No copies are created!
std::string_view view = str;

// string_view: :substr returns a new string_view
std::cout << view.substr(15, 18) << '\n';

Section 47.4: Conversion to std::wstring

In C++, sequences of characters are represented by specializing the std: :basic_string class with a native
character type. The two major collections defined by the standard library are std: :string and std: :wstring:

e std::string is built with elements of type char

e std: :wstring is built with elements of type wchar_t

To convert between the two types, use wstring_convert:

#include <string>
#include <codecvt>
#include <locale>

std::string input_str = "this is a -string-, which is a sequence based on the -char- type.";
std::wstring input_wstr = L"this is a -wide- string, which is based on the -wchar_t- type.";

// conversion
std::wstring str_turned_to_wstr =
std: :wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes(input_str);

GoalKicker.com - C++ Notes for Professionals 252

(c) ketabton.com: The Digital Library

std::string wstr_turned_to_str =
std: :wstring_convert<std::codecvt_utf8<wchar_t>>().to_bytes(input_wstr);

In order to improve usability and/or readability, you can define functions to perform the conversion:

#include <string>
#include <codecvt>
#include <locale>

using convert_t = std::codecvt_utf8<wchar_t>;
std: :wstring_convert<convert_t, wchar_t> strconverter;

std::string to_string(std::wstring wstr)

{

return strconverter.to_bytes(wstr);
}
std::wstring to_wstring(std::string str)
{

return strconverter.from_bytes(str);
}

Sample usage:
std::wstring a_wide_string = to_wstring("Hello World!");

That's certainly more readable than std: :wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes("Hello
World!").

Please note that char and wchar_t do not imply encoding, and gives no indication of size in bytes. For instance,
wchar_t is commonly implemented as a 2-bytes data type and typically contains UTF-16 encoded data under
Windows (or UCS-2 in versions prior to Windows 2000) and as a 4-bytes data type encoded using UTF-32 under
Linux. This is in contrast with the newer types char16_t and char32_t, which were introduced in C++11 and are
guaranteed to be large enough to hold any UTF16 or UTF32 "character" (or more precisely, code point) respectively.

Section 47.5: Lexicographical comparison

Two std: :strings can be compared lexicographically using the operators ==, !=, <, <=, >, and >=:
std::string str1 = "Foo";
std::string str2 = "Bar";

assert(!(str1 < str2));
assert(str > str2);
assert(!(str1 <= str2));
assert(str1l >= str2);
assert(!(str1 == str2));
assert(str1l != str2);

All these functions use the underlying std: :string: :compare() method to perform the comparison, and return for
convenience boolean values. The operation of these functions may be interpreted as follows, regardless of the
actual implementation:

e operator==:

If str1.length() == str2.length() and each character pair matches, then returns true, otherwise returns

GoalKicker.com - C++ Notes for Professionals 253

(c) ketabton.com: The Digital Library

false.

e operator!=:

If str1.length() !'= str2.length() or one character pair doesn't match, returns true, otherwise it returns
false.

e operator< or operators:

Finds the first different character pair, compares them then returns the boolean result.

® operator<= or operator>=:

Finds the first different character pair, compares them then returns the boolean result.

Note: The term character pair means the corresponding characters in both strings of the same positions. For
better understanding, if two example strings are str1 and str2, and their lengths are n and m respectively, then
character pairs of both strings means each str1[i] and str2[i] pairs wherei=0, 1, 2, ..., max(n,m). If for any i
where the corresponding character does not exist, that is, when i is greater than or equal to n or m, it would be
considered as the lowest value.

Here is an example of using <:

std::string stri
std::string str2

"Barr";
"Bar"

assert(str2 < str1);

The steps are as follows:

1. Compare the first characters, 'B' == 'B' - move on.

2. Compare the second characters, 'a' == 'a' - move on.

3. Compare the third characters, 'r' == 'r' - move on.

4. The str2 range is now exhausted, while the str1 range still has characters. Thus, str2 < strf.

Section 47.6: Trimming characters at start/end

This example requires the headers <algorithm>, <locale>, and <utilitys>.

Version = C++11

To trim a sequence or string means to remove all leading and trailing elements (or characters) matching a certain
predicate. We first trim the trailing elements, because it doesn't involve moving any elements, and then trim the
leading elements. Note that the generalizations below work for all types of std: :basic_string (e.g. std: :string
and std: :wstring), and accidentally also for sequence containers (e.g. std: :vector and std: :1ist).

template <typename Sequence, // any basic_string, vector, list etc.
typename Pred> // a predicate on the element (character) type
Sequence& trim(Sequence& seq, Pred pred) {
return trim_start(trim_end(seq, pred), pred);

}

GoalKicker.com - C++ Notes for Professionals 254

(c) ketabton.com: The Digital Library

Trimming the trailing elements involves finding the /ast element not matching the predicate, and erasing from there

on:

template <typename Sequence, typename Pred>
Sequence& trim_end(Sequence& seq, Pred pred) {
auto last = std::find_if_not(seq.rbegin(),
seq.rend(),
pred);
seq.erase(last.base(), seq.end());
return seq;

Trimming the leading elements involves finding the first element not matching the predicate and erasing up to

there:

template <typename Sequence, typename Pred>
Sequence& trim_start(Sequence& seq, Pred pred) {
auto first = std::find_if_not(seq.begin(),
seq.end(),
pred);
seq.erase(seq.begin(), first);
return seq;

To specialize the above for trimming whitespace in a std: :string we can use the std: :isspace() function as a

predicate:

std::string& trim(std::string& str, const std::locale& loc = std::locale()) {
return trim(str, [&loc](const char c){ return std::isspace(c, loc); });

}

std::string& trim_start(std::string& str, const std::locale& loc = std::locale()) {
return trim_start(str, [&loc](const char c){ return std::isspace(c, loc); });

}

std::string& trim_end(std::string& str, const std::locale& loc = std::locale()) {
return trim_end(str, [&loc](const char c){ return std::isspace(c, loc); });

}

Similarly, we can use the std: :iswspace() function for std: :wstring etc.

If you wish to create a new sequence that is a trimmed copy, then you can use a separate function:

template <typename Sequence, typename Pred>

Sequence trim_copy(Sequence seq, Pred pred) { // NOTE: passing seq by value
trim(seq, pred);
return seq;

Section 47.7: String replacement

Replace by position
To replace a portion of a std: :string you can use the method replace from std: :string.

replace has a lot of useful overloads:

GoalKicker.com - C++ Notes for Professionals

255

(c) ketabton.com: The Digital Library

//Define string
std::string str = "Hello foo, bar and world!";
std::string alternate = "Hello foobar";

//1)
str.replace(6, 3, "bar"); //"Hello bar, bar and world!"

/12)
str.replace(str.begin() + 6, str.end(), "nobody!"); //"Hello nobody!"

//3)
str.replace(19, 5, alternate, 6, 6); //"Hello foo, bar and foobar!"

Version = C++14

/14)
str.replace(19, 5, alternate, 6); //"Hello foo, bar and foobar!"

/15)
str.replace(str.begin(), str.begin() + 5, str.begin() + 6, str.begin() + 9);
//"foo foo, bar and world!'"

/16)
str.replace(@, 5, 3, 'z'); //"zzz foo, bar and world!"

/17)
str.replace(str.begin() + 6, str.begin() + 9, 3, 'x'); //"Hello xxx, bar and world!"

Version = C++11

/18)
str.replace(str.begin(), str.begin() + 5, { 'x', 'y', 'z' }); //"xyz foo, bar and world!"

Replace occurrences of a string with another string
Replace only the first occurrence of replace with with in str:

std::string replaceString(std::string str,
const std::string& replace,
const std::string& with){
std::size_t pos = str.find(replace);
if (pos != std::string::npos)
str.replace(pos, replace.length(), with);
return str;

Replace all occurrence of replace with with in str:

std::string replaceStringAll(std::string str,
const std::string& replace,
const std::string& with) {
if(!replace.empty()) {
std::size_t pos = 0;
while ((pos = str.find(replace, pos)) != std::string::npos) {
str.replace(pos, replace.length(), with);
pos += with.length();

}

return str;

Section 47.8: Converting to std::string

std: :ostringstream can be used to convert any streamable type to a string representation, by inserting the object

GoalKicker.com - C++ Notes for Professionals 256

(c) ketabton.com: The Digital Library

into a std: :ostringstream object (with the stream insertion operator <<) and then converting the whole
std::ostringstreamto a std::string.

For int for instance:

#include <sstream>

int main()
{
int val = 4;
std::ostringstream str;
str << val;
std::string converted = str.str();
return 0;

Writing your own conversion function, the simple:

template<class T>
std::string toString(const T& Xx)
{

std::ostringstream ss;
SS << X;
return ss.str();

}

works but isn't suitable for performance critical code.

User-defined classes may implement the stream insertion operator if desired:

std::ostream operator<<(std::ostream& out, const A& a)

{

// write a string representation of a to out
return out;

}

Version = C++11

Aside from streams, since C++11 you can also use the std: :to_string (and std: :to_wstring) function which is
overloaded for all fundamental types and returns the string representation of its parameter.

std::string s = to_string(0x12f3); // after this the string s contains "4851"

Section 47.9: Splitting

Use std: :string: :substr to split a string. There are two variants of this member function.

The first takes a starting position from which the returned substring should begin. The starting position must be
valid in the range (8, str.length()]:

std::string str = "Hello foo, bar and world!";
std::string newstr = str.substr(11); // "bar and world!"

The second takes a starting position and a total length of the new substring. Regardless of the length, the substring
will never go past the end of the source string:

std::string str = "Hello foo, bar and world!";

GoalKicker.com - C++ Notes for Professionals 257

(c) ketabton.com: The Digital Library

std::string newstr = str.substr(15, 3); // "and"

Note that you can also call substr with no arguments, in this case an exact copy of the string is returned

std::string str = "Hello foo, bar and world!";
std::string newstr = str.substr(); // "Hello foo, bar and world!"

Section 47.10: Accessing a character

There are several ways to extract characters from a std: :string and each is subtly different.

std::string str("Hello world!");

operator[](n)
Returns a reference to the character at index n.

std::string::operator[] is not bounds-checked and does not throw an exception. The caller is responsible for
asserting that the index is within the range of the string:

char ¢ = str[6]; // 'w'

at(n)
Returns a reference to the character at index n.

std::string::at is bounds checked, and will throw std: :out_of_range if the index is not within the range of the
string:

char ¢ = str.at(7); // 'o'

Version = C++11

Note: Both of these examples will result in undefined behavior if the string is empty.

front()

Returns a reference to the first character:

char ¢ = str.front(); // 'H'

back()

Returns a reference to the last character:

char ¢ = str.back(); // '!"

Section 47.11: Checking if a string is a prefix of another

Version = C++14

In C++14, this is easily done by std: :mismatch which returns the first mismatching pair from two ranges:

std::string prefix = "foo";

GoalKicker.com - C++ Notes for Professionals 258

(c) ketabton.com: The Digital Library

std::string string = "foobar";

bool isPrefix = std::mismatch(prefix.begin(), prefix.end(),
string.begin(), string.end()).first == prefix.end();

Note that a range-and-a-half version of mismatch() existed prior to C++14, but this is unsafe in the case that the
second string is the shorter of the two.

Version < C++14

We can still use the range-and-a-half version of std: :mismatch(), but we need to first check that the first string is at
most as big as the second:

bool isPrefix = prefix.size() <= string.size() &&
std: :mismatch(prefix.begin(), prefix.end(),
string.begin(), string.end()).first == prefix.end();

Version = C++17

With std: :string_view, we can write the direct comparison we want without having to worry about allocation
overhead or making copies:

bool isPrefix(std::string_view prefix, std::string_view full)

{

return prefix == full.substr (0, prefix.size());

}

Section 47.12: Looping through each character

Version = C++11

std: :string supports iterators, and so you can use a ranged based loop to iterate through each character:

std::string str = "Hello World!";
for (auto c : str)
std::cout << c;

You can use a "traditional" for loop to loop through every character:
std::string str = "Hello World!'";

for (std::size_t i = ©; i < str.length(); ++1i)
std::cout << str[i];

Section 47.13: Conversion to integers/floating point types

A std: :string containing a number can be converted into an integer type, or a floating point type, using
conversion functions.

Note that all of these functions stop parsing the input string as soon as they encounter a non-numeric character, so
"123abc" will be converted into 123.

The std: :ato* family of functions converts C-style strings (character arrays) to integer or floating-point types:

std::string ten = "10";

double numl1 = std::atof(ten.c_str());

GoalKicker.com - C++ Notes for Professionals 259

(c) ketabton.com: The Digital Library

int num2 = std::atoi(ten.c_str());
long num3 = std::atol(ten.c_str());

Version = C++11

long long num4 = std::atoll(ten.c_str());

However, use of these functions is discouraged because they return @ if they fail to parse the string. This is bad
because 8 could also be a valid result, if for example the input string was "0", so it is impossible to determine if the
conversion actually failed.

The newer std: :sto* family of functions convert std: :strings to integer or floating-point types, and throw
exceptions if they could not parse their input. You should use these functions if possible:

Version = C++11

std::string ten = "10";

int numl = std::stoi(ten);
long num2 = std::stol(ten);
long long num3 = std::stoll(ten);

float num4 = std::stof(ten);
double num5 = std::stod(ten);
long double numé6 = std::stold(ten);

Furthermore, these functions also handle octal and hex strings unlike the std: :atox family. The second parameter
is a pointer to the first unconverted character in the input string (not illustrated here), and the third parameter is
the base to use. 8 is automatic detection of octal (starting with 8) and hex (starting with 8x or X), and any other
value is the base to use

std::string ten = "10";
std::string ten_octal = "12";
std::string ten_hex = "OxA";

int numi std::stoi(ten, @, 2); // Returns 2
int num2 = std::stoi(ten_octal, @, 8); // Returns 160

long num3 = std::stol(ten_hex, @, 16); // Returns 10
long num4 = std::stol(ten_hex); // Returns ©
long numb5 = std::stol(ten_hex, @, 8); // Returns 10 as it detects the leading ©x

Section 47.14: Concatenation

You can concatenate std: :strings using the overloaded + and += operators. Using the + operator:

std::string hello "Hello";
std::string world "world";
std::string helloworld = hello + world; // "Helloworld"

Using the += operator:

std::string hello = "Hello";
std::string world = "world";
hello += world; // "Helloworld"

You can also append C strings, including string literals:

std::string hello = "Hello";
std::string world = "world";

GoalKicker.com - C++ Notes for Professionals 260

(c) ketabton.com: The Digital Library

const char *comma = ", ";
std::string newhelloworld = hello + comma + world + "!"; // "Hello, world!"

You can also use push_back () to push back individual chars:

std::string s = "a, b, ";
s.push_back('c'); // "a, b, c"

There is also append(), which is pretty much like +=:

std::string app = "test and ";
app.append("test"); // "test and test"

Section 47.15: Converting between character encodings

Converting between encodings is easy with C++11 and most compilers are able to deal with it in a cross-platform
manner through <codecvt> and <locale> headers.

#include <iostream>
#include <codecvt>
#include <locale>
#include <string>
using namespace std;

int main() {
// converts between wstring and utf8 string
wstring_convert<codecvt_utf8_utfl6<wchar_t>> wchar_to_utf8;
// converts between ul6string and utf8 string
wstring_convert<codecvt_utf8_utfi6<char16_t>, char16_t> utf16_to_utf8;

wstring wstr = L"foobar";
string utf8str = wchar_to_utf8.to_bytes(wstr);
wstring wstr2 = wchar_to_utf8.from_bytes(utf8str);

wcout << wstr << endl;
cout << utf8str << endl;
wcout << wstr2 << endl;

uléstring uléstr = u"foobar";
string utf8str2 = utfl16_to_utf8.to_bytes(uléstr);
uléstring uléstr2 = utf16_to_utf8.from_bytes(utf8str2);

return 0;

Mind that Visual Studio 2015 provides supports for these conversion but a bug in their library implementation
requires to use a different template for wstring_convert when dealing with char16_t:

using utf16_char = unsigned short;
wstring_convert<codecvt_utf8_utf16<utf16_char>, utfl6_char> conv_utf8_utf16;

void strings::utfl16_to_utf8(const std::ul6string& utf16, std::string& utf8)
{

std: :basic_string<utf16_char> tmp;

tmp.resize(utf16.length());

std::copy(utfi16.begin(), utfi6.end(), tmp.begin());

utf8 = conv_utf8_utf16.to_bytes(tmp);

GoalKicker.com - C++ Notes for Professionals 261

(c) ketabton.com: The Digital Library

void strings::utf8_to_utfi6(const std::string& utf8, std::ul6string& utf16)

{
std::basic_string<utfi16_char> tmp = conv_utf8_utf16.from_bytes(utf8);
utfi16.clear();
utf16.resize(tmp.length());
std: :copy(tmp.begin(), tmp.end(), utf16.begin());
}

Section 47.16: Finding character(s) in a string

To find a character or another string, you can use std: :string: :find. It returns the position of the first character
of the first match. If no matches were found, the function returns std: :string: :npos

std::string str = "Curiosity killed the cat";
auto it = str.find("cat");

if (it != std::string::npos)
std::cout << "Found at position:
else
std::cout << "Not found!\n";

<< it << '\n’;

Found at position: 21

The search opportunities are further expanded by the following functions:

find_first_of // Find first occurrence of characters
find_first_not_of // Find first absence of characters
find_last_of // Find last occurrence of characters

find_last_not_of // Find last absence of characters

These functions can allow you to search for characters from the end of the string, as well as find the negative case
(ie. characters that are not in the string). Here is an example:

std::string str = "dog dog cat cat";
std::cout << "Found at position: " << str.find_last_of("gzx") << '\n';

Found at position: 6

Note: Be aware that the above functions do not search for substrings, but rather for characters contained in the
search string. In this case, the last occurrence of 'g' was found at position 6 (the other characters weren't found).

GoalKicker.com - C++ Notes for Professionals 262

(c) ketabton.com: The Digital Library

Chapter 48: std::array

Parameter Definition
class T Specifies the data type of array members

std::size_t N Specifies the number of members in the array

Section 48.1: Initializing an std::array
Initializing std: :array<T, N>, where T is a scalar type and N is the number of elements of type T
If T is a scalar type, std: :array can be initialized in the following ways:

// 1) Using aggregate-initialization
std::array<int, 3> a{ 0, 1, 2 };

// or equivalently

std::array<int, 3> a = {0, 1, 2 };

// 2) Using the copy constructor
std::array<int, 3> a{ 0, 1, 2 };
std::array<int, 3> a2(a);

// or equivalently
std::array<int, 3> a2 = a;

// 3) Using the move constructor
std::array<int, 3> a = std::array<int, 3>{ 0, 1, 2 };

Initializing std: :array<T, N>, where T is a non-scalar type and N is the number of elements of type T
If Tis a non-scalar type std: :array can be initialized in the following ways:

struct A { int values[3]; }; // An aggregate type

// 1) Using aggregate initialization with brace elision
// It works only if T is an aggregate type!
std::array<A, 2> a{ 0, 1, 2, 3, 4, 5 };

// or equivalently

std::array<A, 2> a =4{9, 1, 2, 3, 4, 5 };

// 2) Using aggregate initialization with brace initialization of sub-elements
std::array<A, 2> a{ A{ 9, 1, 2 }, A{ 3, 4, 5} };

// or equivalently

std::array<A, 2> a = { A{ 0, 1, 2 }, A{ 3, 4, 5} };

// 3)

std::array<A, 2> a{{ {0, 1, 2 }, {3, 4, 5} }};

// or equivalently

std::array<A, 2> a =4{{ {9, 1, 2}, {3, 4, 5} }};

// 4) Using the copy constructor
std::array<A, 2> a{ 1, 2, 3 };
std::array<A, 2> a2(a);

// or equivalently

std::array<A, 2> a2 = a;

// 5) Using the move constructor
std::array<A, 2> a = std::array<A, 2>{ 9, 1, 2, 3, 4, 5 };

GoalKicker.com - C++ Notes for Professionals 263

(c) ketabton.com: The Digital Library

Section 48.2: Element access

1. at(pos)

Returns a reference to the element at position pos with bounds checking. If pos is not within the range of the
container, an exception of type std: :out_of_range is thrown.

The complexity is constant O(1).

#include <array>

int main()

{

std::array<int, 3> arr;

// write values
arr.at(e) = 2;
arr.at(1) = 4;

arr.at(2)

// read
int a =
int b =
int ¢ =

Il
[e)}

values

arr.at(@); // a is now 2
arr.at(1); // b is now 4
arr.at(2); // c is now 6

return 0;

2) operator|[pos]

Returns a reference to the element at position pos without bounds checking. If pos is not within the range of the
container, a runtime segmentation violation error can occur. This method provides element access equivalent to
classic arrays and thereof more efficient than at(pos).

The complexity is constant O(1).

#include <array>

int main()

{

std::array<int, 3> arr;

// write values

arr[0]

arr[1] =

arr[2]

// read
int a =
int b =
int ¢ =

values

arr[0]; // a is
arr[1]; // b is
arr[2]; // c is

return 0;

3) std: :get<pos>

This non-member function returns a reference to the element at compile-time constant position pos without

now 2
now 4
now 6

GoalKicker.com - C++ Notes for Professionals

264

(c) ketabton.com: The Digital Library

bounds checking. If pos is not within the range of the container, a runtime segmentation violation error can occur.

The complexity is constant O(1).

#include <array>

int main()

{
std::array<int, 3> arr;
// write values
std::get<@>(arr) = 2;
std::get<1>(arr) = 4;
std::get<2>(arr) = 6;
// read values
int a = std::get<@>(arr); // a is now 2
int b = std::get<1>(arr); // b is now 4
int ¢ = std::get<2>(arr); // c is now 6
return 0;

}

4) front()

Returns a reference to the first element in container. Calling front() on an empty container is undefined.

The complexity is constant O(1).

Note: For a container ¢, the expression c.front() is equivalent to *c.begin().

#include <array>
int main()
{
std::array<int, 3> arr{ 2, 4, 6 };

int a = arr.front(); // a is now 2

return 0;

5) back()

Returns reference to the last element in the container. Calling back () on an empty container is undefined.

The complexity is constant O(1).

#include <array>
int main()
{
std::array<int, 3> arr{ 2, 4, 6 };

int a = arr.back(); // a is now 6

return 0;

GoalKicker.com - C++ Notes for Professionals

265

(c) ketabton.com: The Digital Library

6) data()

Returns pointer to the underlying array serving as element storage. The pointer is such that range [data();
data() + size()) is always a valid range, even if the container is empty (data() is not dereferenceable in that
case).

The complexity is constant O(1).

#include <iostream>
#include <cstring>
#include <array>

int main ()

{ const char* cstr = "Test string";
std::array<char, 12> arr;
std::memcpy(arr.data(), cstr, 12); // copy cstr to arr
std::cout << arr.data(); // outputs: Test string
return 0;

}

Section 48.3: Iterating through the Array

std: :array being a STL container, can use range-based for loop similar to other containers like vector

int main() {
std::array<int, 3> arr = { 1, 2, 3 };
for (auto i : arr)
cout << i << '\n';

Section 48.4: Checking size of the Array

One of the main advantage of std: :array as compared to C style array is that we can check the size of the array
using size() member function

int main() {
std::array<int, 3> arr = { 1, 2, 3 };
cout << arr.size() << endl;

Section 48.5: Changing all array elements at once

The member function fill() can be used on std: :array for changing the values at once post initialization

int main() {

std::array<int, 3> arr = { 1, 2, 3 };
// change all elements of the array to 100
arr.fill(1ee);

GoalKicker.com - C++ Notes for Professionals 266

(c) ketabton.com: The Digital Library

Chapter 49: std::vector

A vector is a dynamic array with automatically handled storage. The elements in a vector can be accessed just as
efficiently as those in an array with the advantage being that vectors can dynamically change in size.

In terms of storage the vector data is (usually) placed in dynamically allocated memory thus requiring some minor
overhead; conversely C-arrays and std: :array use automatic storage relative to the declared location and thus do
not have any overhead.

Section 49.1: Accessing Elements

There are two primary ways of accessing elements in a std: :vector

¢ index-based access
e jterators

Index-based access:
This can be done either with the subscript operator [1, or the member function at().

Both return a reference to the element at the respective position in the std: :vector (unless it's a vector<bool>), so
that it can be read as well as modified (if the vector is not const).

[1and at() differ in that [] is not guaranteed to perform any bounds checking, while at() does. Accessing
elements where index < 0 or index >= size is undefined behavior for [], while at() throws a std: :out_of_range

exception.

Note: The examples below use C++11-style initialization for clarity, but the operators can be used with all versions
(unless marked C++11).

Version = C++11

std::vector<int> v{ 1, 2, 3 };

// using []
int a = v[1]; /] ais 2
v[1] = 4; // v now contains { 1, 4, 3 }

// using at()

int b = v.at(2); // b is 3

v.at(2) = 5; // v now contains { 1, 4, 5}

int ¢ = v.at(3); // throws std::out_of_range exception

N o~ 1

Because the at() method performs bounds checking and can throw exceptions, it is slower than []. This makes []
preferred code where the semantics of the operation guarantee that the index is in bounds. In any case, accesses
to elements of vectors are done in constant time. That means accessing to the first element of the vector has the
same cost (in time) of accessing the second element, the third element and so on.

For example, consider this loop
for (std::size_t i = 0; i < v.size(); ++i) {

v[i] = 1;

}

Here we know that the index variable i is always in bounds, so it would be a waste of CPU cycles to check that i is
in bounds for every call to operator[].

GoalKicker.com - C++ Notes for Professionals 267

(c) ketabton.com: The Digital Library

The front() and back() member functions allow easy reference access to the first and last element of the vector,
respectively. These positions are frequently used, and the special accessors can be more readable than their
alternatives using [1:

std::vector<int> v{ 4, 5, 6 }; // In pre-C++11 this is more verbose

int a = v.front(); // a is 4, v.front() is equivalent to v[0]

v.front() = 3; // v now contains {3, 5, 6}

int b = v.back(); // b is 6, v.back() is equivalent to v[v.size() - 1]
v.back() = 7; // v now contains {3, 5, 7}

Note: It is undefined behavior to invoke front() or back() on an empty vector. You need to check that the
container is not empty using the empty () member function (which checks if the container is empty) before calling
front() or back(). A simple example of the use of 'empty()' to test for an empty vector follows:

int main ()

{
std::vector<int> v;
int sum (0);

for (int i=1;i<=10;i++) v.push_back(i);//create and initialize the vector

while (!v.empty())//loop through until the vector tests to be empty

{

sum += v.back();//keep a running total

v.pop_back();//pop out the element which removes it from the vector
}
std::cout << "total: " << sum << '\n';//output the total to the user
return 0;

The example above creates a vector with a sequence of numbers from 1 to 10. Then it pops the elements of the
vector out until the vector is empty (using 'empty()') to prevent undefined behavior. Then the sum of the numbers
in the vector is calculated and displayed to the user.

Version = C++11

The data() method returns a pointer to the raw memory used by the std: :vector to internally store its elements.
This is most often used when passing the vector data to legacy code that expects a C-style array.

std::vector<int> v{ 1, 2, 3, 4 }; // v contains {1, 2, 3, 4}

int* p = v.data(); // p points to 1
*p = 4; // v now contains {4, 2, 3, 4}
++p; // p points to 2
*p = 3; // v now contains {4, 3, 3, 4}
pl1] = 2; // v now contains {4, 3, 2, 4}
*(p +2) =1; // v now contains {4, 3, 2, 1}

Version < C++11

Before C++11, the data() method can be simulated by calling front() and taking the address of the returned
value:

std::vector<int> v(4);
int* ptr = &(v.front()); // or &v[@]

This works because vectors are always guaranteed to store their elements in contiguous memory locations,

GoalKicker.com - C++ Notes for Professionals 268

(c) ketabton.com: The Digital Library

assuming the contents of the vector doesn't override unary operator&. If it does, you'll have to re-implement
std: :addressof in pre-C++11. It also assumes that the vector isn't empty.

Iterators:

Iterators are explained in more detail in the example "lterating over std: :vector" and the article Iterators. In short,
they act similarly to pointers to the elements of the vector:

Version = C++11

std::vector<int> v{ 4, 5, 6 };

auto it = v.begin();

int i = *it; // 1 is 4
++it;
i = *it; // i is 5
*it = 6; // v contains { 4, 6, 6 }
auto e = v.end(); // e points to the element after the end of v. It can be
// used to check whether an iterator reached the end of the vector:
++it;
it == v.end(); // false, it points to the element at position 2 (with value 6)
++it;
it == v.end(); // true

It is consistent with the standard that a std: :vector<T>'s iterators actually be Txs, but most standard libraries do
not do this. Not doing this both improves error messages, catches non-portable code, and can be used to
instrument the iterators with debugging checks in non-release builds. Then, in release builds, the class wrapping
around the underlying pointer is optimized away.

You can persist a reference or a pointer to an element of a vector for indirect access. These references or pointers

to elements in the vector remain stable and access remains defined unless you add/remove elements at or before
the element in the vector, or you cause the vector capacity to change. This is the same as the rule for invalidating
iterators.

Version = C++11

std::vector<int> v{ 1, 2, 3 };

int* p = v.data() + 1; // p points to 2
v.insert(v.begin(), ©); // p is now invalid, accessing *p is a undefined behavior.
p = v.data() + 1; // p points to 1
v.reserve(10); // p is now invalid, accessing *p is a undefined behavior.
p = v.data() + 1; // p points to 1
v.erase(v.begin()); // p is now invalid, accessing *p is a undefined behavior.

Section 49.2: Initializing a std::vector

A std: :vector can be initialized in several ways while declaring it:

Version = C++11

std::vector<int> v{ 1, 2, 3 }; // v becomes {1, 2, 3}

// Different from std::vector<int> v(3, 6)
std::vector<int> v{ 3, 6 }; // v becomes {3, 6}

// Different from std::vector<int> v{3, 6} in C++11
std::vector<int> v(3, 6); // v becomes {6, 6, 6}

std::vector<int> v(4); // v becomes {06, 0, 0, 0}

A vector can be initialized from another container in several ways:

GoalKicker.com - C++ Notes for Professionals 269

(c) ketabton.com: The Digital Library

Copy construction (from another vector only), which copies data from v2:

std::vector<int> v(v2);
std::vector<int> v = v2;

Version = C++11

Move construction (from another vector only), which moves data from v2:

std::vector<int> v(std::move(v2));
std::vector<int> v = std::move(v2);

Iterator (range) copy-construction, which copies elements into v:

// from another vector
std: :vector<int> v(v2.begin(), v2.begin() + 3); // v becomes {v2[0], v2[1], v2[2]}

// from an array
int z[] = {1, 2, 3, 4 };
std::vector<int> v(z, z + 3); // v becomes {1, 2, 3}

// from a list
std::list<int> 1list1{ 1, 2, 3 };
std::vector<int> v(list1.begin(), list1.end()); // v becomes {1, 2, 3}

Version = C++11

Iterator move-construction, using std: :make_move_iterator, which moves elements into v:

// from another vector
std::vector<int> v(std::make_move_iterator(v2.begin()),
std: :make_move_iterator(v2.end());

// from a list

std::list<int> 1list1{ 1, 2, 3 };

std::vector<int> v(std::make_move_iterator(list1.begin()),
std: :make_move_iterator(list1.end()));

With the help of the assign() member function, a std: :vector can be reinitialized after its construction:

v.assign(4, 100); // v becomes {100, 100, 100, 100}
v.assign(v2.begin(), v2.begin() + 3); // v becomes {v2[@], v2[1], v2[2]}

int z[] = {1, 2, 3, 4 };
v.assign(z + 1, z + 4); // v becomes {2, 3, 4}

Section 49.3: Deleting Elements

Deleting the last element:

std::vector<int> v{ 1, 2, 3 };
v.pop_back(); // v becomes {1, 2}

Deleting all elements:

std::vector<int> v{ 1, 2, 3 };
v.clear(); // v becomes an empty vector

Deleting element by index:

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(v.begin() + 3); // v becomes {1, 2, 3, 5, 6}

GoalKicker.com - C++ Notes for Professionals 270

(c) ketabton.com: The Digital Library

Note: For a vector deleting an element which is not the last element, all elements beyond the deleted element have
to be copied or moved to fill the gap, see the note below and std::list.

Deleting all elements in a range:

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(v.begin() + 1, v.begin() + 5); // v becomes {1, 6}

Note: The above methods do not change the capacity of the vector, only the size. See Vector Size and Capacity.

The erase method, which removes a range of elements, is often used as a part of the erase-remove idiom. That is,
first std: : remove moves some elements to the end of the vector, and then erase chops them off. This is a relatively
inefficient operation for any indices less than the last index of the vector because all elements after the erased
segments must be relocated to new positions. For speed critical applications that require efficient removal of
arbitrary elements in a container, see std::list.

Deleting elements by value:

std::vector<int> v{ 1, 1, 2, 2, 3, 3 };

int value_to_remove = 2;

v.erase(std::remove(v.begin(), v.end(), value_to_remove), v.end()); // v becomes {1, 1, 3, 3}

Deleting elements by condition:

// std::remove_if needs a function, that takes a vector element as argument and returns true,
// if the element shall be removed
bool _predicate(const int& element) {

return (element > 3); // This will cause all elements to be deleted that are larger than 3

}

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(std::remove_if(v.begin(), v.end(), _predicate), v.end()); // v becomes {1, 2, 3}

Deleting elements by lambda, without creating additional predicate function
Version = C++11
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(std::remove_if(v.begin(), v.end(),
[1(auto& element){return element > 3;}), v.end()
Ik
Deleting elements by condition from a loop:
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
std::vector<int>::iterator it = v.begin();
while (it != v.end()) {
if (condition)
it = v.erase(it); // after erasing, 'it' will be set to the next element in v
else
++it; // manually set 'it' to the next element in v

While it is important not to increment it in case of a deletion, you should consider using a different method when
then erasing repeatedly in a loop. Consider remove_if for a more efficient way.

Deleting elements by condition from a reverse loop:
std::vector<int> v{ -1, 0, 1, 2, 3, 4, 5, 6 };
typedef std::vector<int>::reverse_iterator rev_itr;
rev_itr it = v.rbegin();

while (it !'= v.rend()) { // after the loop only '@' will be in v
int value = *it;
if (value) {
++it;

GoalKicker.com - C++ Notes for Professionals 271

(c) ketabton.com: The Digital Library

// See explanation below for the following line.
it = rev_itr(v.erase(it.base()));

} else
++it;

Note some points for the preceding loop:

¢ Given a reverse iterator it pointing to some element, the method base gives the regular (non-reverse)
iterator pointing to the same element.

e vector::erase(iterator) erases the element pointed to by an iterator, and returns an iterator to the
element that followed the given element.

e reverse_iterator::reverse_iterator(iterator) constructs areverse iterator from an iterator.

Put altogether, the line it = rev_itr(v.erase(it.base())) says: take the reverse iterator it, have v erase the
element pointed by its regular iterator; take the resulting iterator, construct a reverse iterator from it, and assign it
to the reverse iterator it.

Deleting all elements using v.clear () does not free up memory (capacity() of the vector remains unchanged). To
reclaim space, use:

std::vector<int>().swap(Vv);

Version = C++11

shrink_to_fit() frees up unused vector capacity:

v.shrink_to_fit();

The shrink_to_fit does not guarantee to really reclaim space, but most current implementations do.

Section 49.4: Ilterating Over std::vector

You can iterate over a std: :vector in several ways. For each of the following sections, v is defined as follows:

std::vector<int> v;

Iterating in the Forward Direction
Version = C++11

// Range based for
for(const auto& value: v) {
std::cout << value << "\n";

}

// Using a for loop with iterator
for(auto it = std::begin(v); it !'= std::end(v); ++it) {
std::cout << *it << "\n";

}

// Using for_each algorithm, using a function or functor:
void fun(int const& value) {
std::cout << value << "\n";

}

std::for_each(std: :begin(v), std::end(v), fun);

GoalKicker.com - C++ Notes for Professionals 272

(c) ketabton.com: The Digital Library

// Using for_each algorithm. Using a lambda:
std::for_each(std: :begin(v), std::end(v), [](int const& value) {
std::cout << value << "\n";

3

Version < C++11

// Using a for loop with iterator
for(std::vector<int>::iterator it = std::begin(v); it != std::end(v); ++it) {
std::cout << *it << "\n";

}

// Using a for loop with index
for(std::size_t i = 0; 1 < v.size(); ++i) {
std::cout << v[i] << "\n";

}

Iterating in the Reverse Direction
Version = C++14

// There is no standard way to use range based for for this.
// See below for alternatives.

// Using for_each algorithm

// Note: Using a lambda for clarity. But a function or functor will work

std::for_each(std::rbegin(v), std::rend(v), [](auto const& value) {
std::cout << value << "\n";

1)

// Using a for loop with iterator
for(auto rit = std::rbegin(v); rit != std::rend(v); ++rit) {
std::cout << *rit << "\n";

}

// Using a for loop with index
for(std::size_t 1 = 0; 1 < v.size(); ++1i) {
std::cout << v[v.size() - 1 - i] << "\n";

}

Though there is no built-in way to use the range based for to reverse iterate; it is relatively simple to fix this. The
range based for uses begin() and end() to get iterators and thus simulating this with a wrapper object can achieve
the results we require.

Version = C++14

template<class C>
struct ReverseRange {
C c; // could be a reference or a copy, if the original was a temporary
ReverseRange(C&& cin): c(std::forward<C>(cin)) {}
ReverseRange (ReverseRange&&)=default;
ReverseRange& operator=(ReverseRange&&)=delete;
auto begin() const {return std::rbegin(c);}
auto end() const {return std::rend(c);}
}
// C is meant to be deduced, and perfect forwarded into
template<class C>
ReverseRange<C> make_ReverseRange(C&& c) {return {std::forward<C>(c)};}

int main() {
std::vector<int> v { 1,2,3,4};
for(auto const& value: make_ReverseRange(v)) {
std::cout << value << "\n";
}
}

Enforcing const elements

GoalKicker.com - C++ Notes for Professionals 273

(c) ketabton.com: The Digital Library

Since C++11 the cbegin() and cend() methods allow you to obtain a constant iterator for a vector, even if the vector
is non-const. A constant iterator allows you to read but not modify the contents of the vector which is useful to
enforce const correctness:

Version = C++11

// forward iteration
for (auto pos = v.cbegin(); pos != v.cend(); ++pos) {
// type of pos is vector<T>::const_iterator
// *pos = 5; // Compile error - can't write via const iterator

}

// reverse iteration
for (auto pos = v.crbegin(); pos != v.crend(); ++pos) {
// type of pos is vector<T>::const_iterator
// *pos = 5; // Compile error - can't write via const iterator

}

// expects Functor::operand()(T&)
for_each(v.begin(), v.end(), Functor());

// expects Functor::operand()(const T&)
for_each(v.cbegin(), v.cend(), Functor())

Version = C++17

as_const extends this to range iteration:

for (auto const& e : std::as_const(v)) {
std::cout << e << '\n';

}

This is easy to implement in earlier versions of C++:

Version = C++14

template <class T>
constexpr std::add_const_t<T>& as_const(T& t) noexcept {
return t;

}
A Note on Efficiency

Since the class std: :vector is basically a class that manages a dynamically allocated contiguous array, the same
principle explained here applies to C++ vectors. Accessing the vector's content by index is much more efficient
when following the row-major order principle. Of course, each access to the vector also puts its management
content into the cache as well, but as has been debated many times (notably here and here), the difference in
performance for iterating over a std: :vector compared to a raw array is negligible. So the same principle of
efficiency for raw arrays in C also applies for C++'s std: :vector.

Section 49.5: vector<bool>: The Exception To So Many, So
Many Rules

The standard (section 23.3.7) specifies that a specialization of vector<bool> is provided, which optimizes space by
packing the bool values, so that each takes up only one bit. Since bits aren't addressable in C++, this means that
several requirements on vector are not placed on vector<bool>:

¢ The data stored is not required to be contiguous, so a vector<bool> can't be passed to a C APl which expects
a bool array.
e at(), operator [], and dereferencing of iterators do not return a reference to bool. Rather they return a

GoalKicker.com - C++ Notes for Professionals 274

(c) ketabton.com: The Digital Library

proxy object that (imperfectly) simulates a reference to a bool by overloading its assignment operators. As an
example, the following code may not be valid for std: :vector<bool>, because dereferencing an iterator
does not return a reference:

Version = C++11

std::vector<bool> v = {true, false};
for (auto &b: v) { } // error

Similarly, functions expecting a bool& argument cannot be used with the result of operator [] or at() applied to
vector<bool>, or with the result of dereferencing its iterator:

void f(bool& b);
f(vlel); // error
f(*v.begin()); /] error

The implementation of std: :vector<bool> is dependent on both the compiler and architecture. The specialisation
is implemented by packing n Booleans into the lowest addressable section of memory. Here, n is the size in bits of
the lowest addressable memory. In most modern systems this is 1 byte or 8 bits. This means that one byte can
store 8 Boolean values. This is an improvement over the traditional implementation where 1 Boolean value is
stored in 1 byte of memory.

Note: The below example shows possible bitwise values of individual bytes in a traditional vs. optimized
vector<bool>. This will not always hold true in all architectures. It is, however, a good way of visualising the
optimization. In the below examples a byte is represented as [x, X, X, X, X, X, X, x].

Traditional std: :vector<char> storing 8 Boolean values:

Version = C++11

std::vector<char> trad_vect = {true, false, false, false, true, false, true, true};

Bitwise representation:

Specialized std: :vector<bool> storing 8 Boolean values:

Version = C++11

std::vector<bool> optimized_vect = {true, false, false, false, true, false, true, true};
Bitwise representation:
[1,0,0,0,1,0,1,1]

Notice in the above example, that in the traditional version of std: :vector<bool>, 8 Boolean values take up 8 bytes
of memory, whereas in the optimized version of std: :vector<bool>, they only use 1 byte of memory. This is a
significant improvement on memory usage. If you need to pass a vector<bool> to an C-style API, you may need to
copy the values to an array, or find a better way to use the API, if memory and performance are at risk.

Section 49.6: Inserting Elements

Appending an element at the end of a vector (by copying/moving):

struct Point {
double x, y;

GoalKicker.com - C++ Notes for Professionals 275

(c) ketabton.com: The Digital Library

Point(double x, double y) : x(x), y(y) {}
bé
std: :vector<Point> v;
Point p(10.8, 2.90);
v.push_back(p); // p is copied into the vector.

Version = C++11

Appending an element at the end of a vector by constructing the element in place:

std: :vector<Point> v;

v.emplace_back(10.0, 2.0); // The arguments are passed to the constructor of the
// given type (here Point). The object is constructed
// in the vector, avoiding a copy.

Note that std: :vector does not have a push_front() member function due to performance reasons. Adding an
element at the beginning causes all existing elements in the vector to be moved. If you want to frequently insert
elements at the beginning of your container, then you might want to use std: :1ist or std: :deque instead.

Inserting an element at any position of a vector:

std::vector<int> v{ 1, 2, 3 };
v.insert(v.begin(), 9); // v now contains {9, 1, 2, 3}

Version = C++11

Inserting an element at any position of a vector by constructing the element in place:

std::vector<int> v{ 1, 2, 3 };
v.emplace(v.begin()+1, 9); // v now contains {1, 9, 2, 3}

Inserting another vector at any position of the vector:

std::vector<int> v(4); // contains: @, @0, 0, ©
std::vector<int> v2(2, 10); // contains: 10, 10
v.insert(v.begin()+2, v2.begin(), v2.end()); // contains: @, @, 10, 10, 0, ©

Inserting an array at any position of a vector:

std::vector<int> v(4); // contains: 0, 0, 0, ©
int a [] = {1, 2, 3}; // contains: 1, 2, 3
v.insert(v.begin()+1, a, atsizeof(a)/sizeof(a[@])); // contains: @, 1, 2, 3, 0, 0, ©

Use reserve() before inserting multiple elements if resulting vector size is known beforehand to avoid multiple
reallocations (see vector size and capacity):

std::vector<int> v;

v.reserve(100);

for(int 1 = 0; 1 < 100; ++i)
v.emplace_back(i);

Be sure to not make the mistake of calling resize() in this case, or you will inadvertently create a vector with 200
elements where only the latter one hundred will have the value you intended.

Section 49.7: Using std::vector as a C array

There are several ways to use a std: :vector as a C array (for example, for compatibility with C libraries). This is
possible because the elements in a vector are stored contiguously.

GoalKicker.com - C++ Notes for Professionals 276

(c) ketabton.com: The Digital Library

Version = C++11

std::vector<int> v{ 1, 2, 3 };
int* p = v.data();

In contrast to solutions based on previous C++ standards (see below), the member function .data() may also be
applied to empty vectors, because it doesn't cause undefined behavior in this case.

Before C++11, you would take the address of the vector's first element to get an equivalent pointer, if the vector
isn't empty, these both methods are interchangeable:

int* p = &v[0]; // combine subscript operator and 0 literal

int* p = &v.front(); // explicitly reference the first element

Note: If the vector is empty, v[@] and v.front() are undefined and cannot be used.

When storing the base address of the vector's data, note that many operations (such as push_back, resize, etc.) can
change the data memory location of the vector, thus invalidating previous data pointers. For example:

std::vector<int> v;
int* p = v.data();
v.resize(42); // internal memory location changed; value of p is now invalid

Section 49.8: Finding an Element in std::vector

The function std: : find, defined in the <algorithm> header, can be used to find an elementin a std: :vector.

std: :find uses the operator==to compare elements for equality. It returns an iterator to the first element in the
range that compares equal to the value.

If the element in question is not found, std: : find returns std: :vector: :end (or std: :vector : :cend if the vector is
const).

Version < C++11

static const int arr[] = {5, 4, 3, 2, 1};
std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[@]));

std::vector<int>::iterator it = std::find(v.begin(), v.end(), 4);
std::vector<int>::difference_type index = std::distance(v.begin(), it);
// “it" points to the second element of the vector, “index” is 1

std::vector<int>::iterator missing = std::find(v.begin(), v.end(), 10);
std::vector<int>::difference_type index_missing = std::distance(v.begin(), missing);
// “missing’ is v.end(), “index_missing" is 5 (ie. size of the vector)

Version = C++11

std::vector<int> v { 5, 4, 3, 2, 1 };

auto it = std::find(v.begin(), v.end(), 4);
auto index = std::distance(v.begin(), it);
// “it® points to the second element of the vector, “index" is 1

auto missing = std::find(v.begin(), v.end(), 10);

auto index_missing = std::distance(v.begin(), missing);
// “missing’ is v.end(), “index_missing’ is 5 (ie. size of the vector)

If you need to perform many searches in a large vector, then you may want to consider sorting the vector first,

GoalKicker.com - C++ Notes for Professionals 277

(c) ketabton.com: The Digital Library

before using the binary_search algorithm.

To find the first element in a vector that satisfies a condition, std: : find_if can be used. In addition to the two
parameters given to std: :find, std: :find_if accepts a third argument which is a function object or function
pointer to a predicate function. The predicate should accept an element from the container as an argument and
return a value convertible to bool, without modifying the container:

Version < C++11

bool isEven(int val) {
return (val % 2 == 0);

¥

struct moreThan {
moreThan(int limit) : _limit(limit) {}

bool operator()(int val) {
return val > _limit;

}

int _limit;

|3

static const int arr[] = {1, 3, 7, 8};
std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[@]));

std::vector<int>::iterator it = std::find_if(v.begin(), v.end(), isEven);
// “it" points to 8, the first even element

std::vector<int>::iterator missing = std::find_if(v.begin(), v.end(), moreThan(10));
// “missing’ is v.end(), as no element is greater than 10

Version = C++11

// find the first value that is even

std::vector<int> v = {1, 3, 7, 8};

auto it = std::find_if(v.begin(), v.end(), [](int val){return val % 2 == 0;});
// “it® points to 8, the first even element

auto missing = std::find_if(v.begin(), v.end(), [](int val){return val > 10;});
// “missing” is v.end(), as no element is greater than 10

Section 49.9: Concatenating Vectors

One std: :vector can be append to another by using the member function insert():

std::vector<int> a

) 2'
std::vector<int> b 7

{e, 1 3, 4},
{5, 6, 7, 8, 9};

a.insert(a.end(), b.begin(), b.end());

However, this solution fails if you try to append a vector to itself, because the standard specifies that iterators given
to insert() must not be from the same range as the receiver object's elements.

Version = c++11

Instead of using the vector's member functions, the functions std: :begin() and std: :end() can be used:
a.insert(std::end(a), std::begin(b), std::end(b));

This is a more general solution, for example, because b can also be an array. However, also this solution doesn't

GoalKicker.com - C++ Notes for Professionals 278

(c) ketabton.com: The Digital Library

allow you to append a vector to itself.

If the order of the elements in the receiving vector doesn't matter, considering the number of elements in each
vector can avoid unnecessary copy operations:

if (b.size() < a.size())
a.insert(a.end(), b.begin(), b.end());
else
b.insert(b.end(), a.begin(), a.end());

Section 49.10: Matrices Using Vectors

Vectors can be used as a 2D matrix by defining them as a vector of vectors.

A matrix with 3 rows and 4 columns with each cell initialised as 0 can be defined as:

std::vector<std::vector<int> > matrix(3, std::vector<int>(4));

Version = C++11

The syntax for initializing them using initialiser lists or otherwise are similar to that of a normal vector.

std::vector<std::vector<int>> matrix = { {0,1,2,3},
{4!5!6!7}1
{8,9,10,11}
I 5
Values in such a vector can be accessed similar to a 2D array
int var = matrix[0][2];

Iterating over the entire matrix is similar to that of a normal vector but with an extra dimension.

for(int i = 0; i < 3; ++i)

{
for(int j = 0; j < 4; ++j)
{
std::cout << matrix[i][j] << std::endl;
}
}

Version = C++11

for(auto& row: matrix)

{
for(auto& col : row)
{
std::cout << col << std::endl;
}
}

A vector of vectors is a convenient way to represent a matrix but it's not the most efficient: individual vectors are
scattered around memory and the data structure isn't cache friendly.

Also, in a proper matrix, the length of every row must be the same (this isn't the case for a vector of vectors). The
additional flexibility can be a source of errors.

GoalKicker.com - C++ Notes for Professionals 279

(c) ketabton.com: The Digital Library
Section 49.11: Using a Sorted Vector for Fast Element Lookup
The <algorithm> header provides a number of useful functions for working with sorted vectors.
An important prerequisite for working with sorted vectors is that the stored values are comparable with <.

An unsorted vector can be sorted by using the function std: :sort():

std::vector<int> v;
// add some code here to fill v with some elements
std::sort(v.begin(), v.end());

Sorted vectors allow efficient element lookup using the function std: :lower_bound(). Unlike std: :find(), this
performs an efficient binary search on the vector. The downside is that it only gives valid results for sorted input
ranges:

// search the vector for the first element with value 42
std::vector<int>::iterator it = std::lower_bound(v.begin(), v.end(), 42);
if (it !'= v.end() && *it == 42) {

// we found the element!

}

Note: If the requested value is not part of the vector, std: : lower_bound() will return an iterator to the first element
that is greater than the requested value. This behavior allows us to insert a new element at its right place in an
already sorted vector:

int const new_element = 33;
v.insert(std::lower_bound(v.begin(), v.end(), new_element), new_element);

If you need to insert a lot of elements at once, it might be more efficient to call push_back() for all them first and
then call std: :sort() once all elements have been inserted. In this case, the increased cost of the sorting can pay
off against the reduced cost of inserting new elements at the end of the vector and not in the middle.

If your vector contains multiple elements of the same value, std: :lower_bound() will try to return an iterator to the
first element of the searched value. However, if you need to insert a new element after the last element of the
searched value, you should use the function std: :upper_bound() as this will cause less shifting around of
elements:

v.insert(std: :upper_bound(v.begin(), v.end(), new_element), new_element);

If you need both the upper bound and the lower bound iterators, you can use the function std: :equal_range() to
retrieve both of them efficiently with one call:

std: :pair<std::vector<int>::iterator,

std::vector<int>::iterator> rg = std::equal_range(v.begin(), v.end(), 42);
std::vector<int>::iterator lower_bound = rg.first;
std::vector<int>::iterator upper_bound = rg.second;

In order to test whether an element exists in a sorted vector (although not specific to vectors), you can use the
function std: :binary_search():

bool exists = std::binary_search(v.begin(), v.end(), value_to_find);

GoalKicker.com - C++ Notes for Professionals 280

(c) ketabton.com: The Digital Library

Section 49.12: Reducing the Capacity of a Vector

A std::vector automatically increases its capacity upon insertion as needed, but it never reduces its capacity after
element removal.

// Initialize a vector with 100 elements
std::vector<int> v(100);

// The vector's capacity is always at least as large as its size
auto const old_capacity = v.capacity();
// old_capacity >= 100

// Remove half of the elements

v.erase(v.begin() + 50, v.end()); // Reduces the size from 100 to 50 (v.size() == 50),
// but not the capacity (v.capacity() == old_capacity)

To reduce its capacity, we can copy the contents of a vector to a new temporary vector. The new vector will have the
minimum capacity that is needed to store all elements of the original vector. If the size reduction of the original
vector was significant, then the capacity reduction for the new vector is likely to be significant. We can then swap
the original vector with the temporary one to retain its minimized capacity:

std::vector<int>(v).swap(Vv);

Version = C++11

In C++11 we can use the shrink_to_fit() member function for a similar effect:
v.shrink_to_fit();

Note: The shrink_to_fit() member function is a request and doesn't guarantee to reduce capacity.

Section 49.13: Vector size and capacity
Vector size is simply the number of elements in the vector:

1. Current vector size is queried by size() member function. Convenience empty () function returns true if size
is O:

vector<int> v = {1, 2, 3 }; // size is 3

const vector<int>::size_type size = v.size();

cout << size << endl; // prints 3

cout << boolalpha << v.empty() << endl; // prints false

2. Default constructed vector starts with a size of 0:

vector<int> v; // size is ©
cout << v.size() << endl; // prints ©

3. Adding N elements to vector increases size by N (e.g. by push_back(), insert() or resize() functions).
4. Removing N elements from vector decreases size by N (e.g. by pop_back(), erase() or clear() functions).
5. Vector has an implementation-specific upper limit on its size, but you are likely to run out of RAM before

reaching it:

vector<int> v;

GoalKicker.com - C++ Notes for Professionals 281

(c) ketabton.com: The Digital Library

const vector<int>::size_type max_size = v.max_size();
cout << max_size << endl; // prints some large number
v.resize(max_size); // probably won't work
v.push_back(1); // definitely won't work

Common mistake: size is not necessarily (or even usually) int:

// '!lbad!!levil!!!

vector<int> v_bad(N, 1); // constructs large N size vector

for(int 1 = @0; i < v_bad.size(); ++i) { // size is not supposed to be int!
do_something(v_bad[i]);

}

Vector capacity differs from size. While size is simply how many elements the vector currently has, capacity is for
how many elements it allocated/reserved memory for. That is useful, because too frequent (re)allocations of too
large sizes can be expensive.

1. Current vector capacity is queried by capacity() member function. Capacity is always greater or equal to
size:

vector<int> v = {1, 2, 3 }; // size is 3, capacity is >= 3
const vector<int>::size_type capacity = v.capacity();
cout << capacity << endl; // prints number >= 3

2. You can manually reserve capacity by reserve(N) function (it changes vector capacity to N):

// '!lbad!!levil!!!
vector<int> v_bad;
for(int 1 = @; i < 10000; ++i) {
v_bad.push_back(i); // possibly lot of reallocations
}

// good
vector<int> v_good;
v_good.reserve(10000); // good! only one allocation
for(int 1 = @; i < 10000; ++i) {
v_good.push_back(i); // no allocations needed anymore

¥

3. You can request for the excess capacity to be released by shrink_to_fit() (but the implementation doesn't
have to obey you). This is useful to conserve used memory:

vector<int> v = {1, 2, 3, 4, 5 }; // size is 5, assume capacity is 6

v.shrink_to_fit(); // capacity is 5 (or possibly still 6)

cout << boolalpha << v.capacity() == v.size() << endl; // prints likely true (but possibly
false)

Vector partly manages capacity automatically, when you add elements it may decide to grow. Implementers like to
use 2 or 1.5 for the grow factor (golden ratio would be the ideal value - but is impractical due to being rational
number). On the other hand vector usually do not automatically shrink. For example:

vector<int> v; // capacity is possibly (but not guaranteed) to be ©
v.push_back(1); // capacity is some starter value, likely 1
v.clear(); // size is @ but capacity is still same as before!

GoalKicker.com - C++ Notes for Professionals 282

(c) ketabton.com: The Digital Library

v=4{1, 2,3, 4%}; // size is 4, and lets assume capacity is 4.

v.push_back(5); // capacity grows - let's assume it grows to 6 (1.5 factor)
v.push_back(6); // no change in capacity

v.push_back(7); // capacity grows - let's assume it grows to 9 (1.5 factor)

// and so on
v.pop_back(); v.pop_back(); v.pop_back(); v.pop_back(); // capacity stays the same

Section 49.14: Iterator/Pointer Invalidation

Iterators and pointers pointing into an std: :vector can become invalid, but only when performing certain
operations. Using invalid iterators/pointers will result in undefined behavior.

Operations which invalidate iterators/pointers include:

¢ Any insertion operation which changes the capacity of the vector will invalidate all iterators/pointers:

vector<int> v(5); // Vector has a size of 5; capacity is unknown.
int *p1 = &v[0];

v.push_back(2); // p1 may have been invalidated, since the capacity was unknown.
v.reserve(20); // Capacity is now at least 20.

int *p2 = &v[0];

v.push_back(4); // p2 is *not* invalidated, since the size of ‘v’ is now 7.

v.insert(v.end(), 30, 9); // Inserts 30 elements at the end. The size exceeds the

// requested capacity of 20, so "p2° is (probably) invalidated.
int *p3 = &v[0];
v.reserve(v.capacity() + 28); // Capacity exceeded, thus "p3° is invalid.

Version = C++11

auto old_cap = v.capacity();
v.shrink_to_fit();
if(old_cap != v.capacity())

// Iterators were invalidated.

¢ Any insertion operation, which does not increase the capacity, will still invalidate iterators/pointers pointing
to elements at the insertion position and past it. This includes the end iterator:

vector<int> v(5);

v.reserve(20); // Capacity is at least 20.

int *p1 = &v[0];

int *p2 = &v[3];

v.insert(v.begin() + 2, 5, 8); // "p2° is invalidated, but since the capacity
// did not change, “p1° remains valid.

int *p3 = &v[v.size() - 1];

v.push_back(10); // The capacity did not change, so 'p3° and "p1° remain valid.

¢ Any removal operation will invalidate iterators/pointers pointing to the removed elements and to any
elements past the removed elements. This includes the end iterator:

vector<int> v(10);

int *p1 = &v[0];

int *p2 = &v[5];

v.erase(v.begin() + 3, v.end()); // "p2° is invalid, but “p1° remains valid.

e operator= (copy, move, or otherwise) and clear () will invalidate all iterators/pointers pointing into the
vector.

GoalKicker.com - C++ Notes for Professionals 283

(c) ketabton.com: The Digital Library

Section 49.15: Find max and min Element and Respective
Index in a Vector

To find the largest or smallest element stored in a vector, you can use the methods std: :max_element and
std: :min_element, respectively. These methods are defined in <algorithm> header. If several elements are
equivalent to the greatest (smallest) element, the methods return the iterator to the first such element. Return

v.end() for empty vectors.

std::vector<int> v = {5, 2, 8, 10, 9};
int maxElementIndex = std::max_element(v.begin(),v.end()) - v.begin();
int maxElement = *std::max_element(v.begin(), v.end());

int minElementIndex = std::min_element(v.begin(),v.end()) - v.begin();
int minElement = *std::min_element(v.begin(), v.end());

std::cout << "maxElementIndex:" << maxElementIndex << ", maxElement:" << maxElement << '\n';
std::cout << "minElementIndex:" << minElementIndex << ", minElement:" << minElement << '\n';

Output:

maxElementindex:3, maxElement:10
minElementindex:1, minElement:2
Version = C++11

The minimum and maximum element in a vector can be retrieved at the same time by using the method
std: :minmax_element, which is also defined in <algorithm> header:

std::vector<int> v = {5, 2, 8, 10, 9};
auto minmax = std::minmax_element(v.begin(), v.end());

std::cout << "minimum element: " << *minmax.first << '\n';
std::cout << "maximum element: " << *minmax.second << '\n';

Output:

minimum element: 2
maximum element: 10

Section 49.16: Converting an array to std::vector

An array can easily be converted into a std: :vector by using std: :begin and std: :end:

Version = C++11

int values[5] = { 1, 2, 3, 4, 5 }; // source array
std::vector<int> v(std::begin(values), std::end(values)); // copy array to new vector
for(auto &x: v)

std::cout << x << c
std::cout << std::endl;

GoalKicker.com - C++ Notes for Professionals

284

(c) ketabton.com: The Digital Library

12345

int main(int argc, charx* argv[]) {
// convert main arguments into a vector of strings.
std::vector<std::string> args(argv, argv + argc);

A C++11 initializer_list<> can also be used to initialize the vector at once

initializer_list<int> arr = { 1,2,3,4,5 };
vector<int> vecl1 {arr};

for (auto & i : vecl)
cout << i << endl;

Section 49.17: Functions Returning Large Vectors

Version = C++11

In C++11, compilers are required to implicitly move from a local variable that is being returned. Moreover, most
compilers can perform copy elision in many cases and elide the move altogether. As a result of this, returning large
objects that can be moved cheaply no longer requires special handling:

#include <vector>
#include <iostream>

// If the compiler is unable to perform named return value optimization (NRVO)
// and elide the move altogether, it is required to move from v into the return value.
std::vector<int> fillVector(int a, int b) {

std: :vector<int> v;

v.reserve(b-a+1);

for (int 1 = a; 1 <= b; i++) {

v.push_back(1i);
}

return v; // implicit move

int main() { // declare and fill vector
std::vector<int> vec = fillVector(1, 10);

// print vector
for (auto value : vec)
std::cout << value << " "; // this will print "1 23 4567 89 10 "

std::cout << std::endl;

return 0;
}

Version < C++11

Before C++11, copy elision was already allowed and implemented by most compilers. However, due to the absence
of move semantics, in legacy code or code that has to be compiled with older compiler versions which don't
implement this optimization, you can find vectors being passed as output arguments to prevent the unneeded
copy:

#include <vector>
#include <iostream>

GoalKicker.com - C++ Notes for Professionals 285

(c) ketabton.com: The Digital Library

// passing a std::vector by reference
void fillVectorFrom_By_Ref(int a, int b, std::vector<int> &v) {
assert(v.empty());
v.reserve(b-a+1);
for (int i = a; i <= b; i++) {
v.push_back(i);
}
}

int main() {// declare vector
std: :vector<int> vec;

// fill vector
fillVectorFrom_By_Ref(1, 10, vec);
// print vector

for (std::vector<int>::const_iterator it = vec.begin(); it != vec.end(); ++it)
std::cout << *it << " "; // this will print "1 23 456789 10 "

std::cout << std::endl;

return 0;

GoalKicker.com - C++ Notes for Professionals 286

(c) ketabton.com: The Digital Library

Chapter 50: std::map

e Touse any of std: :map or std: :multimap the header file <map> should be included.

e std::map and std: :multimap both keep their elements sorted according to the ascending order of keys. In
case of std: :multimap, no sorting occurs for the values of the same key.

¢ The basic difference between std: :map and std: :multimap is that the std: :map one does not allow duplicate
values for the same key where std: :multimap does.

¢ Maps are implemented as binary search trees. So search(), insert(), erase() takes ©(log n) time in
average. For constant time operation use std: :unordered_map.

e size() and empty() functions have ©(1) time complexity, number of nodes is cached to avoid walking
through tree each time these functions are called.

Section 50.1: Accessing elements
An std: :map takes (key, value) pairs as input.
Consider the following example of std: :map initialization:

std::map < std::string, int > ranking { std::make_pair("stackoverflow", 2),
std: :make_pair("docs-beta", 1) };

In an std: :map, elements can be inserted as follows:

ranking["stackoverflow"]=2;
ranking["docs-beta"]=1;

In the above example, if the key stackoverflow is already present, its value will be updated to 2. If it isn't already
present, a new entry will be created.

In an std: :map, elements can be accessed directly by giving the key as an index:

std::cout << ranking["stackoverflow"] << std::endl;

Note that using the operator[] on the map will actually insert a new value with the queried key into the map. This
means that you cannot use it on a const std: :map, even if the key is already stored in the map. To prevent this
insertion, check if the element exists (for example by using find()) or use at() as described below.

Version = C++11

Elements of a std: :map can be accessed with at():

std::cout << ranking.at("stackoverflow") << std::endl;

Note that at () will throw an std: :out_of_range exception if the container does not contain the requested
element.

In both containers std: :map and std: :multimap, elements can be accessed using iterators:

Version = C++11

// Example using begin()

GoalKicker.com - C++ Notes for Professionals 287

(c) ketabton.com: The Digital Library

std::

auto

std::
it++;
std::
it++;
std::

multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),
std: :make_pair(1, "docs-beta")
std: :make_pair(2, "stackexchange") };

it = mmp.begin();

cout << it->first << " : " << it->second << std::endl; // Output: "1 : docs-beta"
cout << jt->first << " : " << it->second << std::endl; // Output: "2 : stackoverflow"
cout << it->first << " : " << it->second << std::endl; // Output: "2 : stackexchange"

// Example using rbegin()

std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),
std: :make_pair(1, "docs-beta"),
std: :make_pair(2, "stackexchange") };
auto it2 = mp.rbegin();
std::cout << it2->first << " : " << it2->second << std::endl; // Output: "2 : stackoverflow"
it2++;
std::cout << it2->first << " : " << it2->second << std::endl; // Output: "1 : docs-beta"

Section 50.2: Inserting elements

An ele

std::

ment can be inserted into a std: :map only if its key is not already present in the map. Given for example:
map< std::string, size_t > fruits_count;

A key-value pair is inserted into a std: :map through the insert() member function. It requires a pair as an
argument:

fruits_count.insert({"grapes", 20});
fruits_count.insert(make_pair("orange", 30));
fruits_count.insert(pair<std::string, size_t>("banana", 40));
fruits_count.insert(map<std::string, size_t>::value_type("cherry", 50));

The insert() function returns a pair consisting of an iterator and a bool value:

o If the insertion was successful, the iterator points to the newly inserted element, and the bool value is
true.

o If there was already an element with the same key, the insertion fails. When that happens, the iterator
points to the element causing the conflict, and the bool is value is false.

The following method can be used to combine insertion and searching operation:

auto success = fruits_count.insert({"grapes", 20});
if (!success.second) { // we already have 'grapes' in the map
success.first->second += 20; // access the iterator to update the value

}

For convenience, the std: :map container provides the subscript operator to access elements in the map and
to insert new ones if they don't exist:

fruits_count["apple"] = 10;

While simpler, it prevents the user from checking if the element already exists. If an element is missing,
std: :map: :operator[] implicitly creates it, initializing it with the default constructor before overwriting it
with the supplied value.

GoalK

icker.com - C++ Notes for Professionals 288

(c) ketabton.com: The Digital Library

e insert() can be used to add several elements at once using a braced list of pairs. This version of insert()
returns void:

fruits_count.insert({{"apricot", 1}, {"jackfruit", 1}, {"lime", 1}, {"mango", 7}});

e insert() can also be used to add elements by using iterators denoting the begin and end of value_type
values:

std::map< std::string, size_t > fruit_list{ {"lemon", 0}, {"olive", 0}, {"plum", 0}};
fruits_count.insert(fruit_list.begin(), fruit_list.end());

Example:

std::map<std::string, size_t> fruits_count;
std::string fruit;
while(std::cin >> fruit){
// insert an element with 'fruit' as key and '1' as value
// (if the key is already stored in fruits_count, insert does nothing)
auto ret = fruits_count.insert({fruit, 1});
if(!ret.second){ // 'fruit' is already in the map
++ret.first->second; // increment the counter

}

Time complexity for an insertion operation is O(log n) because std: :map are implemented as trees.

Version = C++11

A pair can be constructed explicitly using make_pair () and emplace():

std::map< std::string , int > runs;
runs.emplace("Babe Ruth", 714);
runs.insert(make_pair("Barry Bonds", 762));

If we know where the new element will be inserted, then we can use emplace_hint() to specify an iterator hint. If
the new element can be inserted just before hint, then the insertion can be done in constant time. Otherwise it
behaves in the same way as emplace():

std: :map< std::string , int > runs;

auto it = runs.emplace("Barry Bonds", 762); // get iterator to the inserted element
// the next element will be before "Barry Bonds", so it is inserted before 'it'
runs.emplace_hint(it, "Babe Ruth", 714);

Section 50.3: Searching in std::map or in std::multimap

There are several ways to search a key in std: :map orin std: :multimap.

¢ To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key
does not exist.

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
auto it = mmp.find(6);
if(it!=mmp.end())

std::cout << it->first <<
else

<< it->second << std::endl; //prints: 6, 5

GoalKicker.com - C++ Notes for Professionals 289

(c) ketabton.com: The Digital Library

std::cout << "Value does not exist!" << std::endl;

it = mmp.find(66);
if(it!=mmp.end())

std::cout << it->first <<
else

std::cout << "Value does not exist!" << std::endl; // This line would be executed.

<< it->second << std::endl;

¢ Another way to find whether an entry exists in std: :map or in std: :multimap is using the count() function,
which counts how many values are associated with a given key. Since std: :map associates only one value
with each key, its count () function can only return O (if the key is not present) or 1 (if it is). For
std: :multimap, count() can return values greater than 1 since there can be several values associated with
the same key.

std::map< int , int > mp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
if(mp.count(3) > @) // 3 exists as a key in map

std::cout << "The key exists!" << std::endl; // This line would be executed.
else

std::cout << "The key does not exist!" << std::endl;

If you only care whether some element exists, find is strictly better: it documents your intent and, for
multimaps, it can stop once the first matching element has been found.

¢ In the case of std: :multimap, there could be several elements having the same key. To get this range, the
equal_range() function is used which returns std: :pair having iterator lower bound (inclusive) and upper
bound (exclusive) respectively. If the key does not exist, both iterators would point to end().

auto eqr = mmp.equal_range(6);
auto st = eqr.first, en = eqr.second;

for(auto it = st; it != en; ++it){

std::cout << it->first << ", " << it->second << std::endl;
}

// prints: 6, 5

// 6, 7

Section 50.4: Initializing a std::map or std::multimap

std: :map and std: :multimap both can be initialized by providing key-value pairs separated by comma. Key-value
pairs could be provided by either {key, value} or can be explicitly created by std: :make_pair(key, value).As
std: :map does not allow duplicate keys and comma operator performs right to left, the pair on right would be
overwritten with the pair with same key on the left.

std::multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),
std: :make_pair(1, "docs-beta")
std: :make_pair(2, "stackexchange") };
// 1 docs-beta
// 2 stackoverflow
// 2 stackexchange

std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),
std: :make_pair(1, "docs-beta"),
std: :make_pair (2, "stackexchange") };
// 1 docs-beta
// 2 stackoverflow

GoalKicker.com - C++ Notes for Professionals 290

(c) ketabton.com: The Digital Library

Both could be initialized with iterator.

// From std::map or std::multimap iterator
std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {6, 8}, {3, 4},
{6, 7} };
/7 {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 8}, {6, 7}, {8, 9}
auto it = mmp.begin();
std::advance(it,3); //moved cursor on first {6, 5}
std::map< int, int > mp(it, mmp.end()); // {6, 5}, {8, 9}

//From std::pair array
std::pair< int, int > arr[10];
arr[e] = {1, 3};

arr[1] = {1, 5};
arr[2] = {2, 5};
arr[3] = {0, 1};

std::map< int, int > mp(arr,arr+4); //{6 , 1}, {1, 3}, {2, 5}

//From std::vector of std::pair
std::vector< std::pair<int, int> > v{ {1, 5}, {5, 1}, {3, 6}, {3, 2} };
std: :multimap< int, int > mp(v.begin(), v.end());

// {1, 5}, {3, 6}, {3, 2}, {5, 1}

Section 50.5: Checking number of elements

The container std: :map has a member function empty (), which returns true or false, depending on whether the
map is empty or not. The member function size() returns the number of element stored in a std: :map container:

std::map<std::string , int> rank {{"facebook.com", 1} ,{"google.com", 2}, {"youtube.com", 3}};
if(!rank.empty()){

std::cout << "Number of elements in the rank map: " << rank.size() << std::endl;
}
else{

std::cout << "The rank map is empty" << std::endl;
}

Section 50.6: Types of Maps

Regular Map

A map is an associative container, containing key-value pairs.
#include <string>

#include <map>
std: :map<std::string, size_t> fruits_count;

In the above example, std: :string is the key type, and size_t is a value.
The key acts as an index in the map. Each key must be unique, and must be ordered.

¢ If you need mutliple elements with the same key, consider using multimap (explained below)

e If your value type does not specify any ordering, or you want to override the default ordering, you may
provide one:

#include <string>
#include <map>

GoalKicker.com - C++ Notes for Professionals 291

(c) ketabton.com: The Digital Library

#include <cstring>
struct StrLess {
bool operator()(const std::string& a, const std::string& b) {
return strncmp(a.c_str(), b.c_str(), 8)<0;
//compare only up to 8 first characters

}
}

std: :map<std::string, size_t, StrlLess> fruits_count2;

If StrLess comparator returns false for two keys, they are considered the same even if their actual contents
differ.

Multi-Map

Multimap allows multiple key-value pairs with the same key to be stored in the map. Otherwise, its interface and
creation is very similar to the regular map.

#include <string>

#include <map>

std::multimap<std::string, size_t> fruits_count;
std::multimap<std::string, size_t, StrlLess> fruits_count2;

Hash-Map (Unordered Map)

A hash map stores key-value pairs similar to a regular map. It does not order the elements with respect to the key
though. Instead, a hash value for the key is used to quickly access the needed key-value pairs.

#include <string>
#include <unordered_map>
std: :unordered_map<std::string, size_t> fruits_count;

Unordered maps are usually faster, but the elements are not stored in any predictable order. For example, iterating
over all elements in an unordered_map gives the elements in a seemingly random order.

Section 50.7: Deleting elements
Removing all elements:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
mmp.clear(); //empty multimap

Removing element from somewhere with the help of iterator:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
/1 {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}

auto it = mmp.begin();

std::advance(it,3); // moved cursor on first {6, 5}

mmp.erase(it); // {1, 2}, {3, 4}, {3, 4}, {6, 7}, {8, 9}

Removing all elements in a range:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
/7 {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}

auto it = mmp.begin();

auto it2 = it;

GoalKicker.com - C++ Notes for Professionals 292

(c) ketabton.com: The Digital Library

it++; //moved first cursor on first {3, 4}
std::advance(it2,3); //moved second cursor on first {6, 5}
mmp.erase(it,it2); // {1, 2}, {6, 5}, {6, 7}, {8, 9}

Removing all elements having a provided value as key:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
/7 {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}
mmp.erase(6); // {1, 2}, {3, 4}, {3, 4}, {8, 9}

Removing elements that satisfy a predicate pred:

std: :map<int,int> m;
auto it = m.begin();
while (it != m.end())
{
if (pred(*it))
it = m.erase(it);
else
++it;

Section 50.8: Iterating over std::map or std::multimap

std: :map or std: :multimap could be traversed by the following ways:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

//Range based loop - since C++11
for(const auto &x: mmp)
std::cout<< x.first <<":"<< x.second << std::endl;

//Forward iterator for loop: it would loop through first element to last element
//it will be a std::map< int, int >::iterator

for (auto it = mmp.begin(); it != mmp.end(); ++it)

std::cout<< it->first <<":"<< it->second << std::endl; //Do something with iterator

//Backward iterator for loop: it would loop through last element to first element
//it will be a std::map< int, int >::reverse_iterator

for (auto it = mmp.rbegin(); it !'= mmp.rend(); ++it)

std::cout<< it->first <<" "<< it->second << std::endl; //Do something with iterator

While iterating over a std: :map or a std: :multimap, the use of auto is preferred to avoid useless implicit
conversions (see this SO answer for more details).

Eection 50.9: Creating std::map with user-defined types as
ey

In order to be able to use a class as the key in a map, all that is required of the key is that it be copiable and
assignable. The ordering within the map is defined by the third argument to the template (and the argument to
the constructor, if used). This defaults to std: : less<KeyType>, which defaults to the < operator, but there's no
requirement to use the defaults. Just write a comparison operator (preferably as a functional object):

struct CmpMyType

{
bool operator()(MyType const& lhs, MyType const& rhs) const

{

GoalKicker.com - C++ Notes for Professionals 293

(c) ketabton.com: The Digital Library

b

/7

In C++, the "compare" predicate must be a strict weak ordering. In particular, compare (X, X) must return false for
any X. i.e. if CmpMyType() (a, b) returns true, then CmpMyType() (b, a) mustreturn false, and if both return false,
the elements are considered equal (members of the same equivalence class).

Strict Weak Ordering

This is a mathematical term to define a relationship between two objects.
Its definition is:

Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the

irreflexivity invariant) equivalent to itself.

In terms of C++ this means if you have two objects of a given type, you should return the following values when
compared with the operator <.

Condition:

a is
a is
a is
a is

How you define equivalent/less is totally dependent on the type of your object.

equivalent to b:
equivalent to b

less than b
less than b

less than a
less than a

Test:
a<b
b < a

Result
false
false

true
false

false
true

GoalKicker.com - C++ Notes for Professionals

294

(c) ketabton.com: The Digital Library

Chapter 51: std::optional

Selction 51.1: Using optionals to represent the absence of a
value

Before C++17, having pointers with a value of nullptr commonly represented the absence of a value. This is a good
solution for large objects that have been dynamically allocated and are already managed by pointers. However, this
solution does not work well for small or primitive types such as int, which are rarely ever dynamically allocated or
managed by pointers. std: :optional provides a viable solution to this common problem.

In this example, struct Person is defined. It is possible for a person to have a pet, but not necessary. Therefore,
the pet member of Person is declared with an std: :optional wrapper.

#include <iostream>
#include <optional>
#include <string>

struct Animal {
std::string name;

|3

struct Person {
std::string name;
std::optional<Animal> pet;

b

int main() {
Person person;
person.name = "John";

if (person.pet) {
std::cout << person.name << "'s pet's name is " <<
person.pet->name << std::endl;

}
else {

std::cout << person.name << " is alone." << std::endl;
}

Section 51.2: optional as return value

std::optional<float> divide(float a, float b) {
if (b!=0.f) return a/b;
return {};

}

Here we return either the fraction a/b, but if it is not defined (would be infinity) we instead return the empty
optional.

A more complex case:

template<class Range, class Pred>
auto find_if(Range&& r, Pred&& p) {
using std::begin; using std::end;
auto b = begin(r), e = end(r);
auto r = std::find_if(b, e , p);
using iterator = decltype(r);

GoalKicker.com - C++ Notes for Professionals 295

(c) ketabton.com: The Digital Library

if (r==e)
return std::optional<iterator>();
return std::optional<iterator>(r);

}
template<class Range, class T>
auto find(Range&& r, T const& t) {
return find_if(std::forward<Range>(r), [&t](auto&& x){return x==t;});

}

find(some_range, 7) searches the container or range some_range for something equal to the number 7.
find_if does it with a predicate.

It returns either an empty optional if it was not found, or an optional containing an iterator tothe element if it was.
This allows you to do:

if (find(vec, 7)) {
// code
}

or even

if (auto oit = find(vec, 7)) {
vec.erase(*oit);

}

without having to mess around with begin/end iterators and tests.

Section 51.3: value_or

void print_name(std::ostream& os, std::optional<std::string> const& name) {
std::cout "Name is: " << name.value_or("<name missing>") << '\n';

}

value_or either returns the value stored in the optional, or the argument if there is nothing store there.

This lets you take the maybe-null optional and give a default behavior when you actually need a value. By doing it
this way, the "default behavior" decision can be pushed back to the point where it is best made and immediately
needed, instead of generating some default value deep in the guts of some engine.

Section 51.4: Introduction

Optionals (also known as Maybe types) are used to represent a type whose contents may or may not be present.
They are implemented in C++17 as the std: :optional class. For example, an object of type std: :optional<int>
may contain some value of type int, or it may contain no value.

Optionals are commonly used either to represent a value that may not exist or as a return type from a function that
can fail to return a meaningful result.

Other approaches to optional

There are many other approach to solving the problem that std: :optional solves, but none of them are quite
complete: using a pointer, using a sentinel, or using a pair<bool, T>.

Optional vs Pointer

GoalKicker.com - C++ Notes for Professionals 296

(c) ketabton.com: The Digital Library

In some cases, we can provide a pointer to an existing object or nullptr to indicate failure. But this is limited to
those cases where objects already exist - optional, as a value type, can also be used to return new objects without
resorting to memory allocation.

Optional vs Sentinel

A common idiom is to use a special value to indicate that the value is meaningless. This may be 0 or -1 for integral
types, or nullptr for pointers. However, this reduces the space of valid values (you cannot differentiate between a
valid 0 and a meaningless 0) and many types do not have a natural choice for the sentinel value.

Optional vs std: :pair<bool, T>

Another common idiom is to provide a pair, where one of the elements is a bool indicating whether or not the
value is meaningful.

This relies upon the value type being default-constructible in the case of error, which is not possible for some types
and possible but undesirable for others. An optional<T>, in the case of error, does not need to construct anything.

Section 51.5: Using optionals to represent the failure of a
function

Before C++17, a function typically represented failure in one of several ways:

¢ A null pointer was returned.

o e.g. Calling a function Delegate *App::get_delegate() on an App instance that did not have a
delegate would return nullptr.

o This is a good solution for objects that have been dynamically allocated or are large and managed by
pointers, but isn't a good solution for small objects that are typically stack-allocated and passed by
copying.

¢ A specific value of the return type was reserved to indicate failure.

o e.g. Calling a function unsigned shortest_path_distance(Vertex a, Vertex b) on two vertices that

are not connected may return zero to indicate this fact.
¢ The value was paired together with a bool to indicate is the returned value was meaningful.

o e.g. Calling a function std: :pair<int, bool> parse(const std::string &str) with a string

argument that is not an integer would return a pair with an undefined int and a bool set to false.

In this example, John is given two pets, Fluffy and Furball. The function Person: :pet_with_name() is then called to
retrieve John's pet Whiskers. Since John does not have a pet named Whiskers, the function fails and std: :nullopt is
returned instead.

#include <iostream>
#include <optional>
#include <string>
#include <vector>

struct Animal {
std::string name;

b

struct Person {
std::string name;
std::vector<Animal> pets;

std::optional<Animal> pet_with_name(const std::string &name) {
for (const Animal &pet : pets) {

GoalKicker.com - C++ Notes for Professionals 297

(c) ketabton.com: The Digital Library

bé

if (pet.name == name) {

return pet;
}
}

return std::nullopt;

int main() {

Person john;
john.name = "John";

Animal fluffy;
fluffy.name = "Fluffy";
john.pets.push_back(fluffy);

Animal furball;
furball.name = "Furball"”;
john.pets.push_back(furball);

std::optional<Animal> whiskers

if (whiskers) {

john.pet_with_name("Whiskers");

std::cout << "John has a pet named Whiskers." << std::endl;

}

else {

std::cout << "Whiskers must not belong to John." << std::endl;

}

GoalKicker.com - C++ Notes for Professionals

298

(c) ketabton.com: The Digital Library

Chapter 52: std::function: To wrap any
element that is callable

Section 52.1: Simple usage

#include <iostream>

#include <functional>

std::function<void(int , const std::string&)> myFuncObj;
void theFunc(int i, const std::string& s)

{
std::cout << s << ": " << i << std::endl;
}
int main(int argc, char xargv[])
{
myFuncObj = theFunc;
myFuncObj (10, "hello world");
}

Section 52.2: std::function used with std::bind

Think about a situation where we need to callback a function with arguments. std: : function used with std: :bind
gives a very powerful design construct as shown below.

class A

{

public:
std::function<void(int, const std::string&)> m_CbFunc = nullptr;
void foo()

{
if (m_CbFunc)
{
m_CbFunc(168, "event fired");
}
}
i
class B
{
public:
B()
{

auto aFunc = std::bind(&B::eventHandler, this, std::placeholders::_1,
std::placeholders::_2);
anObjA.m_CbFunc = aFunc;

}
void eventHandler(int i, const std::string& s)
{
std::cout << s << ": " << i << std::endl;
}
void DoSomethingOnA()
{
anObjA.foo();
}
A anObjA;

|3

GoalKicker.com - C++ Notes for Professionals 299

(c) ketabton.com: The Digital Library

int main(int argc, char xargv[])
{
B an0bjB;
anObjB.DoSomethingOnA() ;

Section 52.3: Binding std::function to a different callable
types

/%
* This example show some ways of using std::function to call
* a) C-like function
* b) class-member function
* c¢) operator()

* d) lambda function

*

*

*

*

Function call can be made:
a) with right arguments
b) argumens with different order, types and count
*/
#include <iostream>
#include <functional>
#include <iostream>
#include <vector>

using std::cout;
using std::endl;
using namespace std::placeholders;

// simple function to be called
double foo_fn(int x, float y, double z)
{
double res = x +y + z;
std::cout << "foo_fn called with arguments:

<< X << , << y << ,
<< " result is : " << res
<< std::endl;

return res;

}

<< z

// structure with member function to call
struct foo_struct
{

// member function to call

double foo_fn(int x, float y, double z)

{
double res = x +y + z;
std::cout << "foo_struct::foo_fn called with arguments: "
<< x << ", "<y << " "<z
<< " result is : " << res
<< std::endl;
return res;
}

// this member function has different signature - but it can be used too
// please not that argument order is changed too
double foo_fn_4(int x, double z, float y, long xx)
{
double res = x +y + z + XX;
std::cout << "foo_struct::foo_fn_4 called with arguments:

GoalKicker.com - C++ Notes for Professionals 300

(c) ketabton.com: The Digital Library

, << z << " <<y << ", << XX

<< res

<< X <<
<< " result is :
<< std::endl;

return res;

}

// overloaded operator() makes whole object to be callable
double operator()(int x, float y, double Zz)

{
double res = x +y + z;
std::cout << "foo_struct::operator() called with arguments:
<< x << ", " << y << Y, " <<z
<< " result is : " << res
<< std::endl;
return res;
}

b

int main(void)
{
// typedefs
using function_type = std::function<double(int, float, double)>;

// foo_struct instance
foo_struct fs;

// here we will store all binded functions
std: :vector<function_type> bindings;

// var #1 - you can use simple function
function_type varl = foo_fn;

bindings.push_back(var1);

// var #2 - you can use member function

function_type var2 = std::bind(&foo_struct::foo_fn, fs, _1, _2, _3);

bindings.push_back(var2);

// var #3 - you can use member function with different signature
// foo_fn_4 has different count of arguments and types
function_type var3 = std::bind(&foo_struct::foo_fn_4, fs,
bindings.push_back(var3);

// var #4 - you can use object with overloaded operator()
function_type var4 = fs;
bindings.push_back(var4);

// var #5 - you can use lambda function
function_type var5 = [](int x, float y, double z)
{
double res = x +y + z;
std::cout << "lambda called with arguments:

<< x << ", " <<y << " "<z

’
<< " result is : " << res
<< std::endl;

return res;

i
bindings.push_back(var5);

std::cout << "Test stored functions with arguments: x =1, y = 2,
<< std::endl;

for (auto f : bindings)

1, .3, _2, 0l);

GoalKicker.com - C++ Notes for Professionals

301

(c) ketabton.com: The Digital Library

f(1, 2, 3);

Live
Output:

Test stored functions with arguments: x =1, y =2, z = 3

foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn_4 called with arguments: 1, 3, 2, 0 result is : 6
foo_struct::operator() called with arguments: 1, 2, 3 result is : 6
lambda called with arguments: 1, 2, 3 result is : 6

Section 52.4: Storing function arguments in std::tuple

Some programs need so store arguments for future calling of some function.
This example shows how to call any function with arguments stored in std::tuple

#include <iostream>
#include <functional>
#include <tuple>
#include <iostream>

// simple function to be called
double foo_fn(int x, float y, double z)

{
double res = x + vy + z;
std::cout << "foo_fn called. x = " << x << "y =" <<y << " z="%<<72z
<< " res=" << res;
return res;
}

// helpers for tuple unrolling

template<int ...> struct seq {};

template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};
template<int ...S> struct gens<@, S...>{ typedef seq<S...> type; };

// invocation helper
template<typename FN, typename P, int ...S>
double call_fn_internal(const FN& fn, const P& params, const seq<S...>)
{

return fn(std::get<S>(params) ...);
}
// call function with arguments stored in std::tuple
template<typename Ret, typename ...Args>
Ret call_fn(const std::function<Ret(Args...)>& fn,

const std::tuple<Args...>& params)

{

return call_fn_internal(fn, params, typename gens<sizeof...(Args)>::type());

}

int main(void)

{
// arguments
std::tuple<int, float, double> t = std::make_tuple(1, 5, 10);
// function to call

GoalKicker.com - C++ Notes for Professionals 302

(c) ketabton.com: The Digital Library

std: :function<double(int, float, double)> fn = foo_fn;

// invoke a function with stored arguments
call_fn(fn, t);

}

Live

Output:

foo_

fn called. x =1y =52z = 10 res=16

Section 52.5: std::function with lambda and std::bind

#include <iostream>
#include <functional>

using std::placeholders::_1; // to be used in std::bind example

int

{
}
int
int

int

1)

stdf_foobar (int x, std::function<int(int)> moo)

return x + moo(x); // std::function moo called

foo (int x) { return 2+x; }

foo_2 (int x, int y) { return 9*x + y; }
main()

int a = 2;

/* Function pointers #*/
std::cout << stdf_foobar(a, &foo) << std::endl; // 6 (2 + (2+2))
// can also be: stdf_foobar(2, foo)

/* Lambda expressions */
/* An unnamed closure from a lambda expression can be
* stored in a std::function object:
*/
int capture_value = 3;
std::cout << stdf_foobar(a,
[capture_value](int param) -> int { return 7 + capture_value * param;

<< std::endl;
// result: 15 == value + (7 * capture_value * value) == 2 + (7 + 3 * 2)

/* std::bind expressions */

/* The result of a std::bind expression can be passed.

* For example by binding parameters to a function pointer call:
*/

int b = stdf_foobar(a, std::bind(foo_2, _1, 3));

std::cout << b << std::endl;

// b ==23==2+ (9%2 + 3)

int ¢ = stdf_foobar(a, std::bind(foo_2, 5, _1));

std::cout << ¢ << std::endl;

// c == 49 == 2 + (9%5 + 2)

return 0;

GoalKicker.com - C++ Notes for Professionals 303

(c) ketabton.com: The Digital Library
Section 52.6: function’ overhead

std: :function can cause significant overhead. Because std: : function has [value semantics][1], it must copy or
move the given callable into itself. But since it can take callables of an arbitrary type, it will frequently have to
allocate memory dynamically to do this.

Some function implementations have so-called "small object optimization", where small types (like function
pointers, member pointers, or functors with very little state) will be stored directly in the function object. But even
this only works if the type is noexcept move constructible. Furthermore, the C++ standard does not require that all
implementations provide one.

Consider the following:

//Header file
using MyPredicate = std::function<bool(const MyValue &, const MyValue &)>;

void SortMyContainer(MyContainer &C, const MyPredicate &pred);

//Source file
void SortMyContainer(MyContainer &C, const MyPredicate &pred)

{
std::sort(C.begin(), C.end(), pred);

}

A template parameter would be the preferred solution for SortMyContainer, but let us assume that this is not
possible or desirable for whatever reason. SortMyContainer does not need to store pred beyond its own call. And
yet, pred may well allocate memory if the functor given to it is of some non-trivial size.

function allocates memory because it needs something to copy/move into; function takes ownership of the
callable it is given. But SortMyContainer does not need to own the callable; it's just referencing it. So using function
here is overkill; it may be efficient, but it may not.

There is no standard library function type that merely references a callable. So an alternate solution will have to be
found, or you can choose to live with the overhead.

Also, function has no effective means to control where the memory allocations for the object come from. Yes, it
has constructors that take an allocator, but [many implementations do not implement them correctly... or even at
all[2].

Version = C++17

The function constructors that take an allocator no longer are part of the type. Therefore, there is no way to
manage the allocation.

Calling a function is also slower than calling the contents directly. Since any function instance could hold any
callable, the call through a function must be indirect. The overhead of calling function is on the order of a virtual
function call.

GoalKicker.com - C++ Notes for Professionals 304

(c) ketabton.com: The Digital Library

Chapter 53: std::forward_list

std: :forward_list is a container that supports fast insertion and removal of elements from anywhere in the
container. Fast random access is not supported. It is implemented as a singly-linked list and essentially does not
have any overhead compared to its implementation in C. Compared to std: :1ist this container provides more
space efficient storage when bidirectional iteration is not needed.

Section 53.1: Example

#include <forward_list>
#include <string>
#include <iostream>

template<typename T>
std::ostream& operator<<(std::ostream& s, const std::forward_list<T>& v) {
s.put('[");
char comma[3] = {'\@', ' ', "\0'};
for (const auto& e : v) {
S << comma << e;

comma[@] = ', "';
}
return s << ']';
}
int main()
{
// c++11 initializer list syntax:
std::forward_list<std::string> words1 {"the", "frogurt", "is", "also", "cursed"};
std::cout << "words1l: " << wordsl << '\n';
// words2 == words1
std::forward_list<std::string> words2(words1.begin(), wordsl1.end());
std::cout << "words2: " << words2 << '\n';
// words3 == words1
std::forward_list<std::string> words3(words1);
std::cout << "words3: " << words3 << '\n';
// words4 is {"Mo", "Mo", "Mo", "Mo", "Mo"}
std::forward_list<std::string> words4(5, "Mo");
std::cout << "words4: " << words4 << '\n';
}
Output:

words1: [the, frogurt, is, also, cursed]
words2: [the, frogurt, is, also, cursed]
words3: [the, frogurt, is, also, cursed]
words4: [Mo, Mo, Mo, Mo, Mo]

Section 53.2: Methods

Method name Definition
operator= assigns values to the container
assign assigns values to the container

get_allocator returns the associated allocator

GoalKicker.com - C++ Notes for Professionals 305

Element access
front
Iterators
before_begin
chefore_begin
begin

cbegin

end

cend

Capacity
empty
max_size
Modifiers
clear
insert_after
emplace_after
erase_after
push_front
emplace_front
pop_front
resize

swap
Operations
merge
splice_after
remove
remove_if
reverse
unique

sort

(c) ketabton.com: The Digital Library

access the first element

returns an iterator to the element before beginning

returns a constant iterator to the element before beginning

returns an iterator to the beginning
returns a const iterator to the beginning
returns an iterator to the end

returns a iterator to the end

checks whether the container is empty
returns the maximum possible number of elements

clears the contents

inserts elements after an element

constructs elements in-place after an element
erases an element after an element

inserts an element to the beginning

constructs an element in-place at the beginning
removes the first element

changes the number of elements stored

swaps the contents

merges two sorted lists

moves elements from another forward_list
removes elements satisfying specific criteria
removes elements satisfying specific criteria
reverses the order of the elements

removes consecutive duplicate elements
sorts the elements

GoalKicker.com - C++ Notes for Professionals

306

(c) ketabton.com: The Digital Library

Chapter 54: std::pair

Section 54.1: Compare operators

Parameters of these operators are 1lhs and rhs

e operator==tests if both elements on 1lhs and rhs pair are equal. The return value is true if both lhs.first
== rhs.first AND lhs.second == rhs.second, otherwise false

std::pair<int, int> p1 = std::make_pair(1, 2);
std::pair<int, int> p2 = std::make_pair(2, 2);

if (p1 == p2)
std::cout << "equals";

else
std::cout << "not equal"//statement will show this, because they are not identical

e operator!=tests if any elements on 1hs and rhs pair are not equal. The return value is true if either
lhs.first !'= rhs.first OR lhs.second != rhs.second, otherwise return false.

e operator<testsif lhs.first<rhs.first, returns true. Otherwise, if rhs.first<lhs.first returns false
Otherwise, if 1hs.second<rhs.second returns true, otherwise, returns false.

e operator<=returns ! (rhs<lhs)
e operator> returns rhs<lhs

e operator>=returns ! (lhs<rhs)

Another example with containers of pairs. It uses operator< because it needs to sort container.

#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
#include <string>

int main()

{
std::vector<std::pair<int, std::string>> v = { {2, "baz"},
{2, "bar"},
{1, "foo"} };
std::sort(v.begin(), v.end());
for(const auto& p: v) {
std::cout << "(" << p.first << "," << p.second << ") ";
//output: (1,foo) (2,bar) (2,baz)
}
}

Section 54.2: Creating a Pair and accessing the elements

Pair allows us to treat two objects as one object. Pairs can be easily constructed with the help of template function
std: :make_pair.

Alternative way is to create pair and assign its elements (first and second) later.

GoalKicker.com - C++ Notes for Professionals 307

(c) ketabton.com: The Digital Library

#include <iostream>
#include <utility>

int main()
{
std::pair<int,int> p = std::make_pair(1,2); //Creating the pair
std::cout << p.first << " " << p.second << std::endl; //Accessing the elements

//We can also create a pair and assign the elements later
std: :pair<int,int> p1;
pl1.first = 3;

pl.second = 4;

std::cout << pl1.first <<

<< pl.second << std::endl;
//We can also create a pair using a constructor
std::pair<int,int> p2 = std::pair<int,int>(5, 6);

std::cout << p2.first << " " << p2.second << std::endl;

return 0;

GoalKicker.com - C++ Notes for Professionals 308

(c) ketabton.com: The Digital Library

Chapter 55: std::atomics

Section 55.1: atomic types

Each instantiation and full specialization of the std: :atomic template defines an atomic type. If one thread writes
to an atomic object while another thread reads from it, the behavior is well-defined (see memory model for details
on data races)

In addition, accesses to atomic objects may establish inter-thread synchronization and order non-atomic memory
accesses as specified by std: :memory_order.

std::atomic may be instantiated with any TriviallyCopyable type T. std::atomic is neither copyable nor

movable.

The standard library provides specializations of the std::atomic template for the following types:

supports aggregate initialization syntax:

Typedef name Full specialization
std::atomic_bool std::atomic<bool>

2)Full specializations and typedefs for integral types, as follows:

std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:

Typedef name

:atomic_char
:atomic_char
:atomic_schar
:atomic_uchar
:atomic_short
:atomic_ushort
ratomic_int
ratomic_uint
:atomic_long
:atomic_ulong
:atomic_1llong
:atomic_ullong
:atomic_char16_t
:atomic_char32_t
:atomic_wchar_t
ratomic_int8_t
ratomic_uint8_t
ratomic_int16_t
ratomic_uint16_t
ratomic_int32_t
ratomic_uint32_t
ratomic_int64_t
ratomic_uint64_t
:atomic_int_least8_t

:atomic_uint_least8_t

std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:

Full specialization

:atomic<char>
:atomic<char>
:atomic<signed char>
:atomic<unsigned char>
:atomic<short>
:atomic<unsigned short>
:atomic<int>
:atomic<unsigned int>
:atomic<long>
:atomic<unsigned long>
:atomic<long long>
:atomic<unsigned long long>
:atomic<char16_t>
:atomic<char32_t>
:atomic<wchar_t>
:atomic<std::int8_t>
:atomic<std::uint8_t>
:atomic<std::int16_t>
:atomic<std: :uintl16_t>
:atomic<std::int32_t>
;atomic<std::uint32_t>
:atomic<std::int64_t>
:atomic<std::uint64_t>
:atomic<std::int_least8_t>

:atomic<std::uint_least8_t>

1. One full specialization for the type bool and its typedef name is defined that is treated as a non-specialized
std: :atomic<T> except that it has standard layout, trivial default constructor, trivial destructors, and

GoalKicker.com - C++ Notes for Professionals

309

(c) ketabton.com: The Digital Library

std::atomic_int_least16_t
std::atomic_uint_least16_t
std::atomic_int_least32_t
std::atomic_uint_least32_t
std::atomic_int_least64_t
std::atomic_uint_least64_t
std::atomic_int_fast8_t
std::atomic_uint_fast8_t
std::atomic_int_fast16_t
std::atomic_uint_fast16_t
std::atomic_int_fast32_t
std::atomic_uint_fast32_t
std::atomic_int_fast64_t
std::atomic_uint_fast64_t
std::atomic_intptr_t
std::atomic_uintptr_t
std::atomic_size_t
std::atomic_ptrdiff_t
std::atomic_intmax_t

std: :atomic_uintmax_t

std::atomic<std::int_least16_t>
std::atomic<std::uint_least16_t>
std::atomic<std::int_least32_t>
std::atomic<std::uint_least32_t>
std::atomic<std::int_least64_t>
std::atomic<std::uint_least64_t>
std::atomic<std::int_fast8_t>
std::atomic<std::uint_fast8_t>
std::atomic<std::int_fast16_t>
std::atomic<std::uint_fast16_t>
std::atomic<std::int_fast32_t>
std::atomic<std::uint_fast32_t>
std::atomic<std::int_fast64_t>
std::atomic<std::uint_fast64_t>
std::atomic<std::intptr_t>
std::atomic<std: :uintptr_t>
std::atomic<std::size_t>
std::atomic<std: :ptrdiff_t>
std::atomic<std::intmax_t>
std::atomic<std: :uintmax_t>

Simple example of using std::atomic_int

#include <iostream>
#include <atomic>
#include <thread>

std::atomic_int foo (9);

void set_foo(int x) {

foo.store(x,std::memory_order_relaxed);

}

void print_foo() {
int x;
do {

// std::cout

// std::atomic, std::memory_order_relaxed
// std::thread

// set value atomically

x = foo.load(std::memory_order_relaxed); // get value atomically

} while (x==0);

std::cout << "foo: << X << '\n';

int main ()

{

std::thread first (print_foo);
std::thread second (set_foo,10);

first.join();
//second.join();
return 0;

}
//output: foo: 10

GoalKicker.com - C++ Notes for Professionals

310

(c) ketabton.com: The Digital Library

Chapter 56: std::variant

Section 56.1: Create pseudo-method pointers

This is an advanced example.

You can use variant for light weight type erasure.

template<class F>

struct pseudo_method {
F f;
// enable C++17 class type deduction:
pseudo_method(F&& fin):f(std::move(fin)) {}

// Koenig lookup operator->#*, as this is a pseudo-method it is appropriate:
template<class Variant> // maybe add SFINAE test that LHS is actually a variant.
friend decltype(auto) operator->*(Variant&& var, pseudo_method const& method)
// var->*method returns a lambda that perfect forwards a function call,
// behaving like a method pointer basically:
return [&](auto&&...args)->decltype(auto) {
// use visit to get the type of the variant:
return std::visit(
[&] (auto&& self)->decltype(auto) {
// decltype(x)(x) is perfect forwarding in a lambda:
return method.f(decltype(self)(self), decltype(args)(args)...);
o

std: :forward<Var>(var)

this creates a type that overloads operator->* with a Variant on the left hand side.

// C++17 class type deduction to find template argument of “print" here.

// a pseudo-method lambda should take “self’ as its first argument, then

// the rest of the arguments afterwards, and invoke the action:

pseudo_method print = [](auto&& self, auto&&...args)->decltype(auto) {
return decltype(self)(self).print(decltype(args)(args)...);

i

Now if we have 2 types each with a print method:

struct A {
void print(std::ostream& os) const {
os << "A":
}
i
struct B {
void print(std::ostream& os) const {
os << "B";
}
3

note that they are unrelated types. We can:

std::variant<A,B> var = A{};

GoalKicker.com - C++ Notes for Professionals 31

(c) ketabton.com: The Digital Library

(var->*xprint)(std::cout);

and it will dispatch the call directly to A: :print(std: :cout) for us. If we instead initialized the var with B{}, it would
dispatchto B: :print(std: :cout)

If we created a new type C:
struct C {};
then:

std::variant<A,B,C> var = A{};
(var->*print)(std::cout);

will fail to compile, because there isno C.print(std: :cout) method.

Extending the above would permit free function prints to be detected and used, possibly with use of if constexpr
within the print pseudo-method.

live example currently using boost: :variant in place of std: :variant.

Section 56.2: Basic std::variant use

This creates a variant (a tagged union) that can store either an int or a string.
std::variant< int, std::string > var;

We can store one of either type in it:

var = "hello"s;

And we can access the contents via std: :visit:

// Prints "hello\n":
visit([](auto&& e)

std::cout << e << '\n';
}, var);

by passing in a polymorphic lambda or similar function object.
If we are certain we know what type it is, we can get it:

auto str = std::get<std::string>(var);

but this will throw if we get it wrong. get_if:

auto* str = std::get_if<std::string>(&var);

returns nullptr if you guess wrong.

Variants guarantee no dynamic memory allocation (other than which is allocated by their contained types). Only
one of the types in a variant is stored there, and in rare cases (involving exceptions while assigning and no safe way
to back out) the variant can become empty.

Variants let you store multiple value types in one variable safely and efficiently. They are basically smart, type-safe

GoalKicker.com - C++ Notes for Professionals 312

(c) ketabton.com: The Digital Library

unions.

Section 56.3: Constructing a ‘std::variant’

This does not cover allocators.

struct A {};

struct B { B()=default; B(B const&)=default; B(int){}; };

struct C { C()=delete; C(int) {}; C(C const&)=default; };

struct D { D(std::initializer_list<int>) {}; D(D const&)=default; D()=default; };

std::variant<A,B> var_ab@; // contains a A()

std::variant<A,B> var_ab1 = 7; // contains a B(7)

std::variant<A,B> var_ab2 = var_ab1; // contains a B(7)

std: :variant<A,B,C> var_abc@{ std::in_place_type<C>, 7 }; // contains a C(7)
std::variant<C> var_c@; // illegal, no default ctor for C

std::variant<A,D> var_ad@(std::in_place_type<D>, {1,3,3,4}); // contains D{1,3,3,4}
std::variant<A,D> var_ad1(std::in_place_index<@>); // contains A{}

std::variant<A,D> var_ad2(std::in_place_index<1>, {1,3,3,4}); // contains D{1,3,3,4}

GoalKicker.com - C++ Notes for Professionals 313

(c) ketabton.com: The Digital Library

Chapter 57: std::.iomanip

Section 57.1: std::setprecision

When used in an expression out << setprecision(n) or in >> setprecision(n), sets the precision parameter of
the stream out or in to exactly n. Parameter of this function is integer, which is new value for precision.

Example:

#include <iostream>
#include <iomanip>
#include <cmath>
#include <limits>
int main()

{
const long double pi = std::acos(-1.L);
std::cout << "default precision (6): " << pi << '\n'
<< "std::precision(10): " << std::setprecision(10) << pi << '\n'
<< "max precision: !
<< std::setprecision(std::numeric_limits<long double>::digits10 + 1)
<< pi << ‘\n';
}
//Output
//default precision (6): 3.14159
//std::precision(10): 3.141592654
//max precision: 3.141592653589793239

Section 57.2: std::setfill

When used in an expression out << setfill(c) sets the fill character of the stream out to c.
Note: The current fill character may be obtained with std: :ostream: :fill.

Example:

#include <iostream>
#include <iomanip>
int main()
{
std::cout << "default fill: " << std::setw(10) << 42 << '\n'
<< "setfill('*'): " << std::setfill('=*")
<< std::setw(10) << 42 << '\n';
}
//output::
//default fill: 42
[/setfill('*"): *kxkkkxx42

Section 57.3: std::setiosflags

When used in an expression out << setiosflags(mask) or in >> setiosflags(mask), sets all format flags of the
stream out or in as specified by the mask.

List of all std: :i0s_base::fmtflags:

¢ dec - use decimal base for integer 1/0
¢ oct - use octal base for integer 1/0

GoalKicker.com - C++ Notes for Professionals 314

(c) ketabton.com: The Digital Library

¢ hex - use hexadecimal base for integer /0

e basefield - dec|oct|hex|®8 useful for masking operations

e left - left adjustment(add fill characters to the right)

¢ right - right adjustment (adds fill characters to the left)

e internal - internal adjustment (adds fill characters to the internal designated point)

e adjustfield - left|right|internal. Useful for masking operations

e scientific - generate floating point types using scientific notation, or hex notation if combined with fixed

o fixed - generate floating point types using fixed notation, or hex notation if combined with scientific

e floatfield - scientific|fixed| (scientific|fixed) |@. Useful for masking operations

¢ boolalpha - insert and extract bool type in alphanumeric format

¢ showbase - generate a prefix indicating the numeric base for integer output, require the currency indicator in
monetary I/O

¢ showpoint - generate a decimal-point character unconditionally for floating-point number output

¢ showpos - generate a + character for non-negative numeric output

¢ skipws - skip leading whitespace before certain input operations

e unitbuf flush the output after each output operation

e uppercase - replace certain lowercase letters with their uppercase equivalents in certain output output
operations

Example of manipulators:

#include <iostream>

#include <string>

#include<iomanip>

int main()

{
int 1_iTemp = 47;
std::cout<< std::resetiosflags(std::ios_base::basefield);
std::cout<<std::setiosflags(std::ios_base::oct)<<l_iTemp<<std::endl;
//output: 57
std::cout<< std::resetiosflags(std::ios_base::basefield);
std: :cout<<std::setiosflags(std::ios_base::hex)<<l_iTemp<<std::endl;
//output: 2f
std: :cout<<std::setiosflags(std::ios_base: :uppercase)<<l_iTemp<<std::endl;
//output 2F
std::cout<<std::setfill('0"')<<std::setw(12);
std::cout<<std::resetiosflags(std::ios_base: :uppercase);
std::cout<<std::setiosflags(std::ios_base::right)<<l_iTemp<<std::endl;
//output: 00000000002f

std: :cout<<std::resetiosflags(std::ios_base: :basefield|std::ios_base::adjustfield);
std::cout<<std::setfill('.")<<std::setw(10);

std::cout<<std::setiosflags(std::ios_base::left)<<l_iTemp<<std::endl;

//output: 47........

std::cout<<std::resetiosflags(std::ios_base::adjustfield)<<std::setfill('#");
std: :cout<<std::setiosflags(std::ios_base::internal|std::ios_base: :showpos);
std: :cout<<std::setw(10)<<1l_iTemp<<std::endl;

//output +####HH##AT

double 1_dTemp = -1.2;

double pi = 3.14159265359;

std: :cout<<pi<<" "<<]1_dTemp<<std::endl;

//output +3.14159 -1.2

std::cout<<std::setiosflags(std::ios_base: :showpoint)<<l_dTemp<<std::endl;
//output -1.20000

std: :cout<<setiosflags(std::ios_base::scientific)<<pi<<std::endl;
//output: +3.141593e+00

GoalKicker.com - C++ Notes for Professionals 315

(c) ketabton.com: The Digital Library

std: :cout<<std::resetiosflags(std::ios_base::floatfield);

std: :cout<<setiosflags(std::ios_base::fixed)<<pi<<std::endl;

//output: +3.141593

bool b = true;

std::cout<<std::setiosflags(std::ios_base: :unitbuf|std::ios_base: :boolalpha)<<b;
//output: true

return 0;

Section 57.4: std::setw

int val = 10;
// val will be printed to the extreme left end of the output console:
std::cout << val << std::endl;
// val will be printed in an output field of length 10 starting from right end of the field:
std::cout << std::setw(10) << val << std::endl;

This outputs:

10
10
1234567890

(where the last line is there to aid in seeing the character offsets).

Sometimes we need to set the width of the output field, usually when we need to get the output in some structured
and proper layout. That can be done using std: :setw of std::iomanip.

The syntax for std: :setwis:
std: :setw(int n)

where n is the length of the output field to be set

GoalKicker.com - C++ Notes for Professionals 316

(c) ketabton.com: The Digital Library

Chapter 58: std::any

Section 58.1: Basic usage

std::any an_object{ std::string("hello world") };
if (an_object.has_value()) {
std::cout << std::any_cast<std::string>(an_object) << '\n';

}

try {
std::any_cast<int>(an_object);
} catch(std::bad_any_cast&) {
std::cout << "Wrong type\n";

}

std::any_cast<std::string&>(an_object) = "42";
std::cout << std::any_cast<std::string>(an_object) << '\n';

Output

hello world
Wrong type
42

GoalKicker.com - C++ Notes for Professionals 317

(c) ketabton.com: The Digital Library

Chapter 59: std::set and std::multiset

set is a type of container whose elements are sorted and unique. multiset is similar, but, in the case of multiset,
multiple elements can have the same value.

Section 59.1: Changing the default sort of a set
set and multiset have default compare methods, but in some cases you may need to overload them.

Let's imagine we are storing string values in a set, but we know those strings contain only numeric values. By
default the sort will be a lexicographical string comparison, so the order won't match the numerical sort. If you
want to apply a sort equivalent to what you would have with int values, you need a functor to overload the
compare method:

#include <iostream>
#include <set>
#include <stdlib.h>

struct custom_compare final

{
bool operator() (const std::string& left, const std::string& right) const
{
int nLeft = atoi(left.c_str());
int nRight = atoi(right.c_str());
return nLeft < nRight;
}
iE

int main ()

{
std: :set<std::string> sut({"1", "2", "5", "23", "6", "290"});

std::cout << "### Default sort on std::set<std::string> :" << std::endl;
for (auto &&data: sut)
std::cout << data << std::endl;

std::set<std::string, custom_compare> sut_custom({"1", "2", "5", "23", "6", "290"},
custom_compare{}); //< Compare object optional
as its default constructible.

std::cout << std::endl << "### Custom sort on set :" << std::endl;
for (auto &&data : sut_custom)
std::cout << data << std::endl;

auto compare_via_lambda = [](auto &&lhs, auto &&rhs){ return lhs > rhs; };

using set_via_lambda = std::set<std::string, decltype(compare_via_lambda)>;

set_via_lambda sut_reverse_via_lambda({"1", "2", "5", "23", "6", "290"},
compare_via_lambda);

std::cout << std::endl << "### Lambda sort on set :" << std::endl;
for (auto &&data : sut_reverse_via_lambda)

std::cout << data << std::endl;

return 0;

Output will be:

GoalKicker.com - C++ Notes for Professionals 318

(c) ketabton.com: The Digital Library

Default sort on std::set<std::string>
1

2

23

290

5

6

Custom sort on set
1

2

5

6

23

290

Lambda sort on set
6

5

290

23

2

1

In the example above, one can find 3 different ways of adding compare operations to the std: :set, each of them is
useful in its own context.

Default sort

This will use the compare operator of the key (first template argument). Often, the key will already provide a good
default for the std: :1less<T> function. Unless this function is specialized, it uses the operator< of the object. This is
especially useful when other code also tries to use some ordering, as this allows consistency over the whole code
base.

Writing the code this way, will reduce the effort to update your code when the key changes is API, like: a class
containing 2 members which changes to a class containing 3 members. By updating the operator< in the class, all
occurrences will get updated.

As you might expect, using the default sort is a reasonable default.
Custom sort

Adding a custom sort via an object with a compare operator is often used when the default comparison doesn't
comply. In the example above this is because the strings are referring to integers. In other cases, it's often used
when you want to compare (smart) pointers based upon the object they refer to or because you need different
constraints for comparing (example: comparing std: :pair by the value of first).

When creating a compare operator, this should be a stable sorting. If the result of the compare operator changes
after insert, you will have undefined behavior. As a good practice, your compare operator should only use the
constant data (const members, const functions ...).

As in the example above, you will often encounter classes without members as compare operators. This results in
default constructors and copy constructors. The default constructor allows you to omit the instance at construction
time and the copy constructor is required as the set takes a copy of the compare operator.

Lambda sort

Lambdas are a shorter way to write function objects. This allows writing the compare operator on less lines, making

GoalKicker.com - C++ Notes for Professionals 319

(c) ketabton.com: The Digital Library

the overall code more readable.

The disadvantage of the use of lambdas is that each lambda gets a specific type at compile time, so
decltype(lambda) will be different for each compilation of the same compilation unit (cpp file) as over multiple
compilation units (when included via header file). For this reason, its recommended to use function objects as
compare operator when used within header files.

This construction is often encountered when a std: :set is used within the local scope of a function instead, while
the function object is preferred when used as function arguments or class members.

Other sort options

As the compare operator of std: :set is a template argument, all callable objects can be used as compare operator
and the examples above are only specific cases. The only restrictions these callable objects have are:

¢ They must be copy constructable
e They must be callable with 2 arguments of the type of the key. (implicit conversions are allowed, though not
recommended as it can hurt performance)

Section 59.2: Deleting values from a set
The most obvious method, if you just want to reset your set/multiset to an empty one, is to use clear:

std: :set<int> sut;
sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(3);

sut.clear(); //size of sut is ©

Then the erase method can be used. It offers some possibilities looking somewhat equivalent to the insertion:

std::set<int> sut;
std::set<int>::iterator it;

sut.insert(10);
sut.insert(15);
sut.insert(22);
sut.insert(3);

sut.insert(30);
sut.insert(33);
sut.insert(45);

// Basic deletion
sut.erase(3);

// Using iterator
it = sut.find(22);
sut.erase(it);

// Deleting a range of values
it = sut.find(33);
sut.erase(it, sut.end());

std::cout << std::endl << "Set under test contains:" << std::endl;
for (it = sut.begin(); it != sut.end(); ++it)
{

std::cout << *it << std::endl;

GoalKicker.com - C++ Notes for Professionals 320

(c) ketabton.com: The Digital Library

}
Output will be:

Set under test contains:
10
15

30

All those methods also apply to multiset. Please note that if you ask to delete an element from a multiset, and it
is present multiple times, all the equivalent values will be deleted.

Section 59.3: Inserting values in a set

Three different methods of insertion can used with sets.

e First, a simple insert of the value. This method returns a pair allowing the caller to check whether the insert
really occurred.

e Second, an insert by giving a hint of where the value will be inserted. The objective is to optimize the
insertion time in such a case, but knowing where a value should be inserted is not the common case. Be
careful in that case; the way to give a hint differs with compiler versions.

¢ Finally you can insert a range of values by giving a starting and an ending pointer. The starting one will be
included in the insertion, the ending one is excluded.

#include <iostream>
#include <set>

int main ()
{
std::set<int> sut;
std::set<int>::iterator it;
std: :pair<std::set<int>::iterator,bool> ret;

// Basic insert
sut.insert(7);
sut.insert(5);
sut.insert(12);

ret = sut.insert(23);
if (ret.second==true)
std::cout << "# 23 has been inserted!" << std::endl;

ret = sut.insert(23); // since it's a set and 23 is already present in it, this insert should
fail
if (ret.second==false)
std::cout << "# 23 already present in set!" << std::endl;

// Insert with hint for optimization
it = sut.end();
// This case is optimized for C++11 and above

GoalKicker.com - C++ Notes for Professionals 321

(c) ketabton.com: The Digital Library

// For earlier version, point to the element preceding your insertion
sut.insert(it, 30);

// inserting a range of values

std::set<int> sut2;

sut2.insert(20);

sut2.insert(30);

sut2.insert(45);

std: :set<int>::iterator itStart = sut2.begin();

std: :set<int>::iterator itEnd = sut2.end();

sut.insert (itStart, itEnd); // second iterator is excluded from insertion
std::cout << std::endl << "Set under test contains:" << std::endl;
for (it = sut.begin(); it != sut.end(); ++it)

{

std::cout << *it << std::endl;

return 0;

Output will be:

23 has been inserted!

23 already present in set!

Set under test contains:

12

20

23

30

GoalKicker.com - C++ Notes for Professionals 322

(c) ketabton.com: The Digital Library

45

Section 59.4: Inserting values in a multiset

All the insertion methods from sets also apply to multisets. Nevertheless, another possibility exists, which is
providing an initializer_list:

auto il = { 7, 5, 12 };
std::multiset<int> msut;
msut.insert(il);

Section 59.5: Searching values in set and multiset

There are several ways to search a given value in std: :set orin std: :multiset:

To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key does
not exist.

std: :set<int> sut;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(3); // contains 3, 10, 15, 22

auto itS = sut.find(10); // the value is found, so *itS == 10
itS = sut.find(555); // the value is not found, so itS == sut.end()

std::multiset<int> msut;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(15);

sut.insert(3); // contains 3, 10, 15, 15, 22

auto itMS = msut.find(10);

Another way is using the count () function, which counts how many corresponding values have been found in the
set/multiset (in case of a set, the return value can be only 0 or 1). Using the same values as above, we will have:

int result = sut.count(10); // result ==
result = sut.count(555); // result == 0

result = msut.count(18); // result == 1
result = msut.count(15); // result == 2

In the case of std: :multiset, there could be several elements having the same value. To get this range, the
equal_range() function can be used. It returns std: :pair having iterator lower bound (inclusive) and upper bound
(exclusive) respectively. If the key does not exist, both iterators would point to the nearest superior value (based on
compare method used to sort the given multiset).

auto eqr = msut.equal_range(15);
auto st = eqr.first; // point to first element '15'
auto en = eqr.second; // point to element '22'

GoalKicker.com - C++ Notes for Professionals 323

(c) ketabton.com: The Digital Library

eqr = msut.equal_range(9); // both eqr.first and eqr.second point to element '10'

GoalKicker.com - C++ Notes for Professionals 324

(c) ketabton.com: The Digital Library

Chapter 60: std:.integer_sequence

The class template std: :integer_sequence<Type, Values...>represents a sequence of values of type Type where
Type is one of the built-in integer types. These sequences are used when implementing class or function templates

which benefit from positional access. The standard library also contains "factory" types which create ascending

sequences of integer values just from the number of elements.

Section 60.1: Turn a std::tuple<T...> into function parameters

A std::tuple<T...>can be used to pass multiple values around. For example, it could be used to store a sequence

of parameters into some form of a queue. When processing such a tuple its elements need to be turned into

function call arguments:

#include
#include
#include

<array>
<iostream>
<string>

#include <tuple>
#include <utility>

/] == -

// Example functions to be called:
void f(int i, std::string const& s) {
std::cout << "f(" << i << ", " << s << ")\n";
}
void f(int i, double d, std::string const& s) {

StdllCOut << ||_f_-(|| << i << " n << d << n " << § << ||)\n||;

}

void f(char c, int i, double d, std::string const& s) {

std::cout << Ilf(ll << C << n n << i << Il' n << d << II, n << S << Il)\nll;
}
void f(int i, int j, int k) {
std::cout << Ilf(ll << i << n n << j << Il’ n << k << II)\nII;
}
e L EC

// The actual function expanding the tuple:

template <typename Tuple, std::size_t... I>

void process(Tuple const& tuple, std::index_sequence<I...>) {
f(std::get<I>(tuple)...);

}

// The interface to call. Sadly, it needs to dispatch to another function
// to deduce the sequence of indices created from std::make_index_sequence<N>
template <typename Tuple>
void process(Tuple const& tuple) {
process(tuple, std::make_index_sequence<std::tuple_size<Tuple>::value>());

}

/] ==

int main() {
process
process
process
process

std: :make_tuple(1, 3.14, std::string("foo")));

std: :make_tuple('a', 2, 2.71, std::string("bar")));
std: :make_pair(3, std::string("pair")));
std::array<int, 3>{ 1, 2, 3 });

P~~~ o~

As long as a class supports std: :get<I>(object) and std: :tuple_size<T>::value it can be expanded with the
above process() function. The function itself is entirely independent of the number of arguments.

GoalKicker.com - C++ Notes for Professionals

325

(c) ketabton.com: The Digital Library

Section 60.2: Create a parameter pack consisting of integers

std: :integer_sequence itself is about holding a sequence of integers which can be turned into a parameter pack.
Its primary value is the possibility to create "factory" class templates creating these sequences:

#include <iostream>
#include <initializer_list>
#include <utility>

template <typename T, T... I>

void print_sequence(std::integer_sequence<T, I...>) {
std::initializer_list<bool>{ bool(std::cout << I << ' ")... };
std::cout << '\n';

}

template <int Offset, typename T, T... I>
void print_offset_sequence(std::integer_sequence<T, I...>) {
print_sequence(std: :integer_sequence<T, T(I + Offset)...>());

}

int main() {
// explicitly specify sequences:
print_sequence(std::integer_sequence<int, 1, 2, 3>());
print_sequence(std: :integer_sequence<char, 'f', 'o', '0'>());

// generate sequences:

print_sequence(std: :make_index_sequence<10>());

print_sequence(std: :make_integer_sequence<short, 10>());
print_offset_sequence<'A'>(std: :make_integer_sequence<char, 26>());

The print_sequence() function template uses an std: :initializer_list<bool> when expanding the integer
sequence to guarantee the order of evaluation and not creating an unused [array] variable.

Section 60.3: Turn a sequence of indices into copies of an
element

Expanding the parameter pack of indices in a comma expression with a value creates a copy of the value for each of
the indices. Sadly, gcc and clang think the index has no effect and warn about it (gcc can be silenced by casting the
index to void):

#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
#include <string>
#include <utility>

template <typename T, std::size_t... I>
std::array<T, sizeof...(I)> make_array(T const& value, std::index_sequence<I...>) {
return std::array<T, sizeof...(I)>{ (I, value)... };

}

template <int N, typename T>
std::array<T, N> make_array(T const& value) {
return make_array(value, std::make_index_sequence<N>());

}

int main() {

GoalKicker.com - C++ Notes for Professionals 326

(c) ketabton.com: The Digital Library

auto array = make_array<20>(std::string("value"));

std: :copy(array.begin(), array.end(),
std::ostream_iterator<std::string>(std::cout, " "));

std::cout << "\n";

GoalKicker.com - C++ Notes for Professionals 327

(c) ketabton.com: The Digital Library

Chapter 61: Using std::unordered_map

std::unordered_map is just an associative container. It works on keys and their maps. Key as the names goes, helps
to have uniqueness in the map. While the mapped value is just a content that is associated with the key. The data
types of this key and map can be any of the predefined data type or user-defined.

Section 61.1: Declaration and Usage

As already mentioned you can declare an unordered map of any type. Let's have a unordered map named first with
string and integer type.

unordered_map<string, int> first; //declaration of the map
first["One"] 1; // [] operator used to insert the value
first["Two"] = 2;
first["Three"] = 3;
first["Four"] = 4;
first["Five"] = 5;

pair <string,int> bar = make_pair("Nine", 9); //make a pair of same type
first.insert(bar); //can also use insert to feed the values

Section 61.2: Some Basic Functions

unordered_map<data_type, data_type> variable_name; //declaration
variable_name[key_value] = mapped_value; //inserting values
variable_name.find(key_value); //returns iterator to the key value
variable_name.begin(); // iterator to the first element

variable_name.end(); // iterator to the last + 1 element

GoalKicker.com - C++ Notes for Professionals 328

(c) ketabton.com: The Digital Library

Chapter 62: Standard Library Algorithms

Section 62.1: std::next_permutation

template< class Iterator >

bool next_permutation(Iterator first, Iterator last);

template< class Iterator, class Compare >

bool next_permutation(Iterator first, Iterator last, Compare cmpFun);

Effects:
Sift the data sequence of the range [first, last) into the next lexicographically higher permutation. If cmpFun is
provided, the permutation rule is customized.

Parameters:
first- the beginning of the range to be permutated, inclusive
last - the end of the range to be permutated, exclusive

Return Value:
Returns true if such permutation exists.
Otherwise the range is swaped to the lexicographically smallest permutation and return false.

Complexity:
O(n), n is the distance from first to last.

Example:

std::vector< int > v { 1, 2, 3 };

do
{
for(int i = 0; i < v.size(); 1 += 1)
{
std::cout << v[i];
}

std::cout << std::endl;
twhile(std::next_permutation(v.begin(), v.end()));

print all the permutation cases of 1,2,3 in lexicographically-increasing order.
output:

123
162
213
231
312
321

Section 62.2: std::for_each

template<class InputlIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);

Effects:

Applies f to the result of dereferencing every iterator in the range [first, last) starting from first and

GoalKicker.com - C++ Notes for Professionals 329

(c) ketabton.com: The Digital Library

proceeding to last - 1.

Parameters:

first, last-therange to apply f to.

f - callable object which is applied to the result of dereferencing every iterator in the range [first, last).
Return value:

f (until C++11) and std: :move(f) (since C++11).

Complexity:

Applies f exactly last - first times.

Example:

Version = c++11

std::vector<int> v { 1, 2, 4, 8, 16 };
std::for_each(v.begin(), v.end(), [](int elem) { std::cout << elem << " "; });

Applies the given function for every element of the vector v printing this element to stdout.

Section 62.3: std::accumulate

Defined in header <numeric>

template<class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init); // (1)

template<class InputlIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation f); // (2)

Effects:

std::accumulate performs fold operation using f function on range [first, last) starting with init as
accumulator value.

Effectively it's equivalent of:

T acc = init;

for (auto it = first; first != last; ++it)
acc = f(acc, *it);

return acc;

In version (1) operator+ is used in place of f, so accumulate over container is equivalent of sum of container
elements.

Parameters:

first, last -therange to apply f to.
init - initial value of accumulator.
f - binary folding function.

Return value:

GoalKicker.com - C++ Notes for Professionals 330

(c) ketabton.com: The Digital Library
Accumulated value of f applications.
Complexity:
O(nxk), where n is the distance from first to last, O(k) is complexity of f function.
Example:
Simple sum example:
std::vector<int> v { 2, 3, 4 };

auto sum = std::accumulate(v.begin(), v.end(), 1);
std::cout << sum << std::endl;

Output:

10

Convert digits to number:

Version < c++11

class Converter {
public:
int operator()(int a, int d) const { return a * 10 + d; }

b
and later

const int ds[3] = {1, 2, 3};
int n = std::accumulate(ds, ds + 3, @, Converter());
std::cout << n << std::endl;

Version = c++11

const std::vector<int> ds = {1, 2, 3};
int n = std::accumulate(ds.begin(), ds.end(),

0!

[1(int a, int d) { return a * 186 + d; });
std::cout << n << std::endl;

Output:

123

Section 62.4: std::find

template <class Inputlterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& val);

Effects
Finds the first occurrence of val within the range [first, last)
Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range val =>The
value to find within the range

GoalKicker.com - C++ Notes for Professionals 331

(c) ketabton.com: The Digital Library

Return

An iterator that points to the first element within the range that is equal(==) to val, the iterator points to last if val is

not found.
Example

#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;
int main(int argc, const char % argv[]) {

//create a vector
vector<int> intVec {4, 6, 8, 9, 10, 30, 55,100, 45, 2, 4, 7, 9, 43, 48};

//define iterators

vector<int>::iterator itr_9;
vector<int>::iterator itr_43;
vector<int>::iterator itr_50;

//calling find
itr_9 = find(intVec.begin(), intVec.end(), 9); //occurs twice
itr_43 = find(intVec.begin(), intVec.end(), 43); //occurs once

//a value not in the vector

itr_50 = find(intVec.begin(), intVec.end(), 50); //does not occur
cout << "first occurrence of: " << *itr_9 << endl;
cout << "only occurrence of: " << *itr_43 << Lendl;

/%
let's prove that itr_9 is pointing to the first occurrence
of 9 by looking at the element after 9, which should be 160
not 43

*/

cout << "element after first 9:

<< %(itr_9 + 1) << ends;

/*
to avoid dereferencing intVec.end(), lets look at the
element right before the end

*/

cout << "last element: " << *(itr_50@ - 1) << endl;

return 0;

Output

first occurrence of: 9
only occurrence of: 43
element after first 9: 10
last element: 48

GoalKicker.com - C++ Notes for Professionals

332

(c) ketabton.com: The Digital Library
Section 62.5: std::min_element

template <class ForwardIterator>
ForwardIterator min_element (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class Compare>
ForwardIterator min_element (ForwardIterator first, ForwardIterator last,Compare comp);

Effects
Finds the minimum element in a range
Parameters

first - iterator pointing to the beginning of the range

last - iterator pointing to the end of the range comp - a function pointer or function object that takes two
arguments and returns true or false indicating whether argument is less than argument 2. This function should not
modify inputs

Return

Iterator to the minimum element in the range

Complexity

Linear in one less than the number of elements compared.

Example

#include <iostream>

#include <algorithm>

#include <vector>

#include <utility> //to use make_pair

using namespace std;

//function compare two pairs
bool pairLessThanFunction(const pair<string, int> &p1, const pair<string, int> &p2)
{

return pl.second < p2.second;

}
int main(int argc, const char * argv[]) {

vector<int> intVec {30,200,167,56,75,94,10,73,52,6,39,43};

vector<pair<string, int>> pairVector = {make_pair("y", 25), make_pair("b", 2), make_pair("z",
26), make_pair("e", 5) };

// default using < operator

auto minInt = min_element(intVec.begin(), intVec.end());

//Using pairlLessThanFunction
auto minPairFunction = min_element(pairVector.begin(), pairVector.end(), pairLessThanFunction);

//print minimum of intVector
cout << "min int from default:

<< *minInt << endl;

GoalKicker.com - C++ Notes for Professionals 333

(c) ketabton.com: The Digital Library

//print minimum of pairVector
cout << "min pair from PairlLessThanFunction: " << (*minPairFunction).second << endl;

return 0;

}
Output

min int from default: 6
min pair from PairLessThanFunction: 2

Section 62.6: std::find_if

template <class Inputlterator, class UnaryPredicate>
InputIterator find_if (InputIterator first, InputIterator last, UnaryPredicate pred);

Effects
Finds the first element in a range for which the predicate function pred returns true.
Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range pred =>
predicate function(returns true or false)

Return

An iterator that points to the first element within the range the predicate function pred returns true for. The
iterator points to last if val is not found

Example

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

/*
define some functions to use as predicates
*/

//Returns true if x is multiple of 10
bool multOf1@(int x) {
return x % 10 == 0;

}

//returns true if item greater than passed in parameter
class Greater {
int _than;

public:
Greater(int th):_than(th){

¥

bool operator()(int data) const

GoalKicker.com - C++ Notes for Professionals 334

(c) ketabton.com: The Digital Library

{
return data > _than;
}
b

int main()

{
vector<int> myvec {2, 5, 6, 10, 56, 7, 48, 89, 850, 7, 456};

//with a lambda function
vector<int>::iterator gt1@ = find_if(myvec.begin(), myvec.end(), [](int x){return x>10;}); // >=
C++11

//with a function pointer
vector<int>::iterator powl10 = find_if(myvec.begin(), myvec.end(), mult0f10);

//with functor
vector<int>::iterator gt5 = find_if(myvec.begin(), myvec.end(), Greater(5));

//not Found
vector<int>::iterator nf = find_if(myvec.begin(), myvec.end(), Greater(1000)); // nf points to
myvec.end()

//check if pointer points to myvec.end()
if(nf !'= myvec.end()) {
cout << "nf points to:

<< *nf << endl;

}
else {
cout << "item not found" << endl;
}
cout << "First item > 10: " << *gt10 << endl;
cout << "First Item n * 10: " << #*powl10 << endl;
cout << "First Item > 5: " << *gt5 << endl;
return 0;
}
Output

item not found

First item > 10: 56
First Item n * 10: 10
First Item > 5: 6

Section 62.7: Using std::nth_element To Find The Median (Or
Other Quantiles)

The std: :nth_element algorithm takes three iterators: an iterator to the beginning, nth position, and end. Once the
function returns, the nth element (by order) will be the nth smallest element. (The function has more elaborate
overloads, e.g., some taking comparison functors; see the above link for all the variations.)

Note This function is very efficient - it has linear complexity.

GoalKicker.com - C++ Notes for Professionals 335

(c) ketabton.com: The Digital Library

For the sake of this example, let's define the median of a sequence of length n as the element that would be in
position Tn/ 21. For example, the median of a sequence of length 5 is the 3rd smallest element, and so is the
median of a sequence of length 6.

To use this function to find the median, we can use the following. Say we start with
std::vector<int> v{5, 1, 2, 3, 4};

std::vector<int>::iterator b
std::vector<int>::iterator e

1
<

.begin();
.end();

1]
<

std::vector<int>::iterator med = b;
std::advance(med, v.size() / 2);

// This makes the 2nd position hold the median.
std: :nth_element(b, med, e);

// The median is now at v[2].

To find the pth quantile, we would change some of the lines above:
const std::size_t pos = p * std::distance(b, e);

std: :advance(nth, pos);

and look for the quantile at position pos.

Section 62.8: std::count

template <class Inputlterator, class T>
typename iterator_traits<InputIterator>::difference_type
count (InputIterator first, InputIterator last, const T& val);

Effects
Counts the number of elements that are equal to val
Parameters

first => iterator pointing to the beginning of the range
last => iterator pointing to the end of the range
val => The occurrence of this value in the range will be counted

Return
The number of elements in the range that are equal(==) to val.

Example

#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

int main(int argc, const char % argv[]) {

GoalKicker.com - C++ Notes for Professionals 336

(c) ketabton.com:

The Digital Library

//create vector
vector<int> intVec{4,6,8,9,10,30,55,100,45,2,4,7,9,43,48};

//count occurrences of 9, 55, and 101

size_t count_9 = count(intVec.begin(), intVec.end(), 9); //occurs twice
size_t count_55 = count(intVec.begin(), intVec.end(), 55); //occurs once
size_t count_101 = count(intVec.begin(), intVec.end(), 101); //occurs once

//print result
cout << "There are " << count_9 << " 9s"<< endl;
cout << "There is " << count_55 << " 55"<< endl;

cout << "There is " << count_101 << 101"<< ends;

//find the first element == 4 in the vector
vector<int>::iterator itr_4 = find(intVec.begin(), intVec.end(), 4);

//count its occurrences in the vector starting from the first one
size_t count_4 = count(itr_4, intVec.end(), *itr_4); // should be 2

cout << "There are " << count_4 << " " << *itr_4 << endl;
return 0;

}

Output

There are 2 9s

There is 1 55

There is 0 101

There are 2 4

Section 62.9: std::count_if

template <class Inputlterator, class UnaryPredicate>
typename iterator_traits<InputIterator>::difference_type

count_

Effects

if (InputIterator first, InputIterator last, UnaryPredicate red);

Counts the number of elements in a range for which a specified predicate function is true

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range red =>

predicate function(returns true or false)

Return

The number of elements within the specified range for which the predicate function returned true.

Example

#include <iostream>
#include <vector>
#include <algorithm>

using

namespace std;

GoalKicker.com - C++ Notes for Professionals

337

(c) ketabton.com: The Digital Library

/%
Define a few functions to use as predicates
*/

//return true if number is odd
bool isOdd(int i){
return i%2 == 1;

}

//functor that returns true if number is greater than the value of the constructor parameter
provided
class Greater {

int _than;
public:

Greater(int th): _than(th){}

bool operator()(int i){

return i > _than;

}

iE

int main(int argc, const char * argv[]) {

//create a vector
vector<int> myvec = {1,5,8,0,7,6,4,5,2,1,5,0,6,9,7};

//using a lambda function to count even numbers
size_t evenCount = count_if(myvec.begin(), myvec.end(), [](int i){return i % 2 == 0;}); // >=
C++11

//using function pointer to count odd number in the first half of the vector
size_t oddCount = count_if(myvec.begin(), myvec.end()- myvec.size()/2, is0dd);

//using a functor to count numbers greater than 5

size_t greaterCount = count_if(myvec.begin(), myvec.end(), Greater(5));
cout << "vector size: " << myvec.size() << endl;

cout << "even numbers: " << evenCount << " found" << endl;
cout << "odd numbers: " << oddCount << " found" << endl;
cout << "numbers > 5: << greaterCount << " found"<< endl;

return 0;

Output

vector size: 15

even numbers: 7 found
odd numbers: 4 found
numbers > 5: 6 found

GoalKicker.com - C++ Notes for Professionals 338

(c) ketabton.com: The Digital Library

Chapter 63: The ISO C++ Standard

In 1998, the there was a first publication of the standard making C++ an internally standardized language. From
that time, C++ has evolved resulting in different dialects of C++. On this page, you can find an overview of all
different standards and their changes compared to the previous version. The details on how to use these features
is described on more specialized pages.

Section 63.1: Current Working Drafts

All published ISO standards are available for sale from the ISO store (http://www.iso.org). The working drafts of the
C++ standards are publicly available for free though.

The different versions of the standard:

Upcoming (Sometimes referred as C++20 or C++2a): Current working draft (HTML-version)
Proposed (Sometimes referred as C++17 or C++1z): March 2017 working draft N4659.
C++14 (Sometimes referred as C++1y): November 2014 working draft N4296

C++11 (Sometimes referred as C++0x): February 2011 working draft N3242

C++03

C++98

Section 63.2: C++17

The C++17 standard is feature complete and has been proposed for standardization. In compilers with
experimental support for these features, it is usually referred to as C++1z.

Language Extensions

¢ Fold Expressions

¢ declaring non-type template arguments with auto
e Guaranteed copy elision

e Template parameter deduction for constructors

e Structured bindings

e Compact nested namespaces

e New attributes: [[fallthrough]], [[nodiscard]], [[maybe_unused]]
¢ Default message for static_assert

e Initializers in if and switch

e Inline variables

e if constexpr

¢ Order of expression evaluation guarantees

¢ Dynamic memory allocation for over-aligned data

Library Extensions

e std::optional

e std::variant

e std::string_view

e merge() and extract() for associative containers

o A file system library with the <filesystem> header.

o Parallel versions of most of the standard algorithms (in the <algorithm> header).
¢ Addition of mathematical special functions in the <cmath> header.

¢ Moving nodes between map<>, unordered_map<>, set<>, and unordered_set<>

GoalKicker.com - C++ Notes for Professionals 339

(c) ketabton.com: The Digital Library
Section 63.3: C++11

The C++11 standard is a major extension to the C++ standard. Below you can find an overview of the changes as
they have been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions
General Features

® auto

¢ decltype

¢ Range-for statement

e Initializer lists

¢ Uniform initialization syntax and semantics
¢ Rvalue references and move semantics

e Lambdas

* noexcept to prevent exception propagation
e constexpr

e nullptr — a null pointer literal

¢ Copying and rethrowing exceptions

e Inline namespaces

e User-defined literals

Classes

e =default and =delete

¢ Control of default move and copy
¢ Delegating constructors

¢ In-class member initializers

¢ Inherited constructors

¢ Override controls: override

e Override controls: final

¢ Explicit conversion operators

Other Types

e enum class

long long — a longer integer
Extended integer types
Generalized unions
Generalized PODs

Templates

Extern templates

Template aliases

Variadic templates

Local types as template arguments

Concurrency

¢ Concurrency memory model
¢ Dynamic initialization and destruction with concurrency
¢ Thread-local storage

Miscellaneous Language Features

GoalKicker.com - C++ Notes for Professionals 340

(c) ketabton.com: The Digital Library

What is the value of __cplusplus for C++11?

Suffix return type syntax
Preventing narrowing
Right-angle brackets

static_assert compile-time assertions

Raw string literals
Attributes
Alignment

C99 features

Library Extensions
General

unique_ptr
shared_ptr

weak_ptr

Garbage collection ABI
tuple

Type traits

function and bind
Regular Expressions
Time utilities

Random number generation
Scoped allocators

Containers and Algorithms

Algorithms improvements
Container improvements
unordered_* containers
std::array

forward_list

Concurrency

Threads

Mutual exclusion
Locks

Condition variables
Atomics

Futures and promises
async

Abandoning a process

Section 63.4: C++14

The C++14 standard is often referred to as a bugfix for C++11. It contains only a limited list of changes of which
most are extensions to the new features in C++11. Below you can find an overview of the changes as they have
been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions

¢ Generalized return type deduction

Binary literals

GoalKicker.com - C++ Notes for Professionals

341

(c) ketabton.com: The Digital Library

decltype(auto)

Generalized lambda captures
Generic lambdas

Variable templates

Extended constexpr

The [[deprecated]] attribute
e Digit separators

Library Extensions

¢ Shared locking

User-defined literals for std: : types

std: :make_unique

Type transformation _t aliases

Addressing tuples by type (e.g. get<string>(t))

e Transparent Operator Functors (e.g. greater<>(x))
e std: :quoted

Deprecated / Removed

e std: :gets was deprecated in C++11 and removed from C++14
e std::random_shuffle is deprecated

Section 63.5: C++98

C++98 is the first standardized version of C++. As it was developed as an extension to C, many of the features which
set apart C++ from C are added.

Language Extensions (in respect to C89/C90)

¢ Classes, Derived classes, virtual member functions, const member functions

¢ Function overloading, Operator overloading

¢ Single line comments (Has been introduced in the C-languague with C99 standard)
¢ References

¢ new and delete

¢ boolean type (Has been introduced in the C-languague with C99 standard)

e templates

® namespaces

e exceptions

¢ specific casts

Library Extensions

e The Standard Template Library

Section 63.6: C++03

The C++03 standard mainly addresses defect reports of the C++98 standard. Apart from these defects, it only adds
one new feature.

Language Extensions

¢ Value initalization

GoalKicker.com - C++ Notes for Professionals 342

(c) ketabton.com: The Digital Library

Section 63.7: C++20

C++20 is the upcoming standard of C++, currently in development, based upon the C++17 standard. It's progress
can be tracked on the official ISO cpp website.

The following features are simply what has been accepted for the next release of the C++ standard, targeted for
2020.

Language Extensions
No language extensions have been accepted for now.
Library Extensions

No library extensions have been accepted for now.

GoalKicker.com - C++ Notes for Professionals 343

(c) ketabton.com: The Digital Library

Chapter 64: Inline variables

An inline variable is allowed to be defined in multiple translation units without violating the One Definition Rule. If it
is multiply defined, the linker will merge all definitions into a single object in the final program.

Section 64.1: Defining a static data member in the class
definition

A static data member of the class may be fully defined within the class definition if it is declared inline. For
example, the following class may be defined in a header. Prior to C++17, it would have been necessary to provide a
.cpp file to contain the definition of Foo: :num_instances so that it would be defined only once, but in C++17 the
multiple definitions of the inline variable Foo: :num_instances all refer to the same int object.

// warning: not thread-safe...
class Foo {
public:
Foo() { ++num_instances; }
~Foo() { --num_instances; }
inline static int num_instances = 0;

}i
As a special case, a constexpr static data member is implicitly inline.

class MyString {
public:
MyString() { /* ... */ }
//
static constexpr int max_size = INT_MAX / 2;
3
// in C++14, this definition was required in a single translation unit:
// constexpr int MyString::max_size;

GoalKicker.com - C++ Notes for Professionals 344

(c) ketabton.com: The Digital Library

Chapter 65: Random number generation

Section 65.1: True random value generator

To generate true random values that can be used for cryptography std: :random_device has to be used as
generator.

#include <iostream>
#include <random>

int main()

{
std::random_device crypto_random_generator;
std::uniform_int_distribution<int> int_distribution(@,9);
int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};
for(int 1 = 0; i < 10000; i++) {
int result = int_distribution(crypto_random_generator);
actual_distribution[result]++;
}
for(int 1 = 0; 1 < 10; i++) {
std::cout << actual_distribution[i] << " ";
}
return 0;
}

std: :random_device is used in the same way as a pseudo random value generator is used.

However std: :random_device may be implemented in terms of an implementation-defined pseudo-random
number engine if a non-deterministic source (e.g. a hardware device) isn't available to the implementation.

Detecting such implementations should be possible via the entropy member function (which return zero when the
generator is completely deterministic), but many popular libraries (both GCC's libstdc++ and LLVM's libc++) always
return zero, even when they're using high-quality external randomness.

Section 65.2: Generating a pseudo-random number

A pseudo-random number generator generates values that can be guessed based on previously generated values.
In other words: it is deterministic. Do not use a pseudo-random number generator in situations where a true
random number is required.

#include <iostream>
#include <random>

int main()

{
std: :default_random_engine pseudo_random_generator;
std::uniform_int_distribution<int> int_distribution(®, 9);

int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};
for(int 1 = 0; i < 10000; i++) {

int result = int_distribution(pseudo_random_generator);
actual_distribution[result]++;

GoalKicker.com - C++ Notes for Professionals 345

(c) ketabton.com: The Digital Library
}

for(int 1 = 0; i <= 9; i++) {
std::cout << actual_distribution[i] << "

}

return 0;

This code creates a random number generator, and a distribution that generates integers in the range [0,9] with
equal likelihood. It then counts how many times each result was generated.

The template parameter of std: :uniform_int_distribution<T> specifies the type of integer that should be
generated. Use std: :uniform_real_distribution<T> to generate floats or doubles.

Section 65.3: Using the generator for multiple distributions

The random number generator can (and should) be used for multiple distributions.

#include <iostream>
#include <random>

int main()

{
std::default_random_engine pseudo_random_generator;
std::uniform_int_distribution<int> int_distribution(@, 9);
std::uniform_real_distribution<float> float_distribution(©6.0, 1.0);
std::discrete_distribution<int> rigged_dice({1,1,1,1,1,100});

std::cout << int_distribution(pseudo_random_generator) << std::endl;
std::cout << float_distribution(pseudo_random_generator) << std::endl;
std::cout << (rigged_dice(pseudo_random_generator) + 1) << std::endl;

return 0;

In this example, only one generator is defined. It is subsequently used to generate a random value in three
different distributions. The rigged_dice distribution will generate a value between 0 and 5, but almost always
generates a 5, because the chance to generatea 5is 108 / 1865.

GoalKicker.com - C++ Notes for Professionals 346

(c) ketabton.com: The Digital Library

Chapter 66: Date and time using <chrono>
header

Section 66.1: Measuring time using <chrono>

The system_clock can be used to measure the time elapsed during some part of a program's execution.

Version = c++11

#include <iostream>
#include <chrono>
#include <thread>

int main() {
auto start = std::chrono::system_clock::now(); // This and "end"'s type is
std::chrono::time_point
{ // The code to test
std::this_thread::sleep_for(std::chrono::seconds(2));

}

auto end = std::chrono::system_clock: :now();

std::chrono::duration<double> elapsed = end - start;
std::cout << "Elapsed time: "

<< elapsed.count() << "s";

In this example, sleep_for was used to make the active thread sleep for a time period measured in
std: :chrono: :seconds, but the code between braces could be any function call that takes some time to execute.

Section 66.2: Find number of days between two dates

This example shows how to find number of days between two dates. A date is specified by year/month/day of
month, and additionally hour/minute/second.

Program calculates number of days in years since 2000.

#include <iostream>
#include <string>
#include <chrono>
#include <ctime>

VEZ X3
* Creates a std::tm structure from raw date.

\param year (must be 1960 or greater)

\param month months since January - [1, 12]

\param day day of the month — [1, 31]

\param minutes minutes after the hour — [0, 59]

\param seconds seconds after the minute — [8, 61](until C++11) / [@8, 68] (since C++11)

% % X X X X % X

Based on http://en.cppreference.com/w/cpp/chrono/c/tm

*/
std::tm CreateTmStruct(int year, int month, int day, int hour, int minutes, int seconds) {
struct tm tm_ret = {0};

tm_ret.tm_sec = seconds;
tm_ret.tm_min = minutes;
tm_ret.tm_hour hour ;
tm_ret.tm_mday = day;

GoalKicker.com - C++ Notes for Professionals 347

(c) ketabton.com: The Digital Library

int

int

{

tm_ret.tm_mon = month - 1;
tm_ret.tm_year = year - 1900;

return tm_ret;

get_days_in_year (int year) {

using namespace std;
using namespace std::chrono;

// We want results to be in days
typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;

// Create start time span
std::tm tm_start = CreateTmStruct(year, 1, 1, 0, 0, 0);
auto tms = system_clock::from_time_t(std: :mktime(&tm_start));

// Create end time span
std::tm tm_end = CreateTmStruct(year + 1, 1, 1, 0, 0, 0);

auto tme = system_clock::from_time_t(std::mktime(&tm_end));

// Calculate time duration between those two dates
auto diff_in_days = std::chrono::duration_cast<days>(tme - tms);

return diff_in_days.count();

main()

for (int year = 2000; year <= 2016; ++year)
std::cout << "There are " << get_days_in_year(year) << " days in

<< year << "\n";

GoalKicker.com - C++ Notes for Professionals

348

(c) ketabton.com: The Digital Library

Chapter 67: Sorting

Section 67.1: Sorting and sequence containers

std: :sort, found in the standard library header algorithm, is a standard library algorithm for sorting a range of
values, defined by a pair of iterators. std: :sort takes as the last parameter a functor used to compare two values;
this is how it determines the order. Note that std: :sort is not stable.

The comparison function must impose a Strict, Weak Ordering on the elements. A simple less-than (or greater-than)
comparison will suffice.

A container with random-access iterators can be sorted using the std: :sort algorithm:

Version = C++11

#include <vector>
#include <algorithm>

std::vector<int> MyVector = {3, 1, 2}

//Default comparison of <
std: :sort(MyVector.begin(), MyVector.end());

std: :sort requires that its iterators are random access iterators. The sequence containers std: :1ist and
std::forward_list (requiring C++11) do not provide random access iterators, so they cannot be used with

std: :sort. However, they do have sort member functions which implement a sorting algorithm that works with
their own iterator types.

Version = C++11

#include <list>
#include <algorithm>

std::list<int> MyList = {3, 1, 2}

//Default comparison of <
//Whole 1list only.
MyList.sort();

Their member sort functions always sort the entire list, so they cannot sort a sub-range of elements. However,
since list and forward_list have fast splicing operations, you could extract the elements to be sorted from the
list, sort them, then stuff them back where they were quite efficiently like this:

void sort_sublist(std::list<int>& mylist, std::list<int>::const_iterator start,
std::list<int>::const_iterator end) {

//extract and sort half-open sub range denoted by start and end iterator

std::list<int> tmp;

tmp.splice(tmp.begin(), list, start, end);

tmp.sort();

//re-insert range at the point we extracted it from

list.splice(end, tmp);

Section 67.2: sorting with std::map (ascending and
descending)

This example sorts elements in ascending order of a key using a map. You can use any type, including class,

GoalKicker.com - C++ Notes for Professionals 349

(c) ketabton.com: The Digital Library

instead of std: :string, in the example below.

#include <iostream>
#include <utility>

#include <map>

int main()

{
std: :map<double, std::string> sorted_map;
// Sort the names of the planets according to their size
sorted_map.insert(std::make_pair(@0.3829, "Mercury"));
sorted_map.insert(std::make_pair(0.9499, "Venus"));
sorted_map.insert(std::make_pair(1, "Earth"));
sorted_map.insert(std::make_pair(0.532, "Mars"));
sorted_map.insert(std::make_pair(10.97, "Jupiter"));
sorted_map.insert(std::make_pair(9.14, "Saturn"));
sorted_map.insert(std::make_pair(3.981, "Uranus"));
sorted_map.insert(std::make_pair(3.865, "Neptune"));
for (auto const& entry: sorted_map)
{

std::cout << entry.second << " (" << entry.first << " of Earth's radius)" << '\n’;

}

}

Output:

Mercury (0.3829 of Earth's radius)
Mars (0.532 of Earth's radius)
Venus (0.9499 of Earth's radius)
Earth (1 of Earth's radius)
Neptune (3.865 of Earth's radius)
Uranus (3.981 of Earth's radius)
Saturn (9.14 of Earth's radius)
Jupiter (10.97 of Earth's radius)

If entries with equal keys are possible, use multimap instead of map (like in the following example).
To sort elements in descending manner, declare the map with a proper comparison functor (std: :greater<>):

#include <iostream>
#include <utility>
#include <map>

int main()
{
std: :multimap<int, std::string, std::greater<int>> sorted_map;
// Sort the names of animals in descending order of the number of legs
sorted_map.insert(std: :make_pair(6, "bug"));
sorted_map.insert(std::make_pair(4, "cat"));
sorted_map.insert(std::make_pair(100, "centipede"));
sorted_map.insert(std: :make_pair(2, "chicken"));
(
(
(

sorted_map.insert(std: :make_pair (9, “fish"));
sorted_map.insert(std::make_pair(4, "horse"));
sorted_map.insert(std: :make_pair(8, "spider"));

for (auto const& entry: sorted_map)
{

std::cout << entry.second << " (has " << entry.first << " legs)" << '\n';

GoalKicker.com - C++ Notes for Professionals 350

(c) ketabton.com: The Digital Library

}

Output

centipede (has 100 legs)
spider (has 8 legs)

bug (has 6 legs)

cat (has 4 legs)

horse (has 4 legs)
chicken (has 2 legs)
fish (has 0 legs)

Section 67.3: Sorting sequence containers by overloaded less
operator

If no ordering function is passed, std: :sort will order the elements by calling operator< on pairs of elements,
which must return a type contextually convertible to bool (or just bool). Basic types (integers, floats, pointers etc)
have already build in comparison operators.

We can overload this operator to make the default sort call work on user-defined types.

// Include sequence containers
#include <vector>

#include <deque>

#include <list>

// Insert sorting algorithm
#include <algorithm>

class Base {
public:

// Constructor that set variable to the value of v
Base(int v): variable(v) {

}

// Use variable to provide total order operator less
// this® always represents the left-hand side of the compare.
bool operator<(const Base &b) const {

return this->variable < b.variable;

}

int variable;

b

int main() {
std::vector <Base> vector;
std: :deque <Base> deque;
std::list <Base> list;

// Create 2 elements to sort
Base a(10);
Base b(5);

// Insert them into backs of containers
vector.push_back(a);
vector.push_back(b);

GoalKicker.com - C++ Notes for Professionals 351

(c) ketabton.com: The Digital Library

deque.push_back(a);
deque.push_back(b);

list.push_back(a);
list.push_back(b);

// Now sort data using operator<(const Base &b) function
std::sort(vector.begin(), vector.end());

std: :sort(deque.begin(), deque.end());

// List must be sorted differently due to its design
list.sort();

return 0;

Section 67.4: Sorting sequence containers using compare
function

// Include sequence containers
#include <vector>

#include <deque>

#include <list>

// Insert sorting algorithm
#include <algorithm>

class Base {
public:

// Constructor that set variable to the value of v
Base(int v): variable(v) {

}

int variable;

|3

bool compare(const Base &a, const Base &b) {
return a.variable < b.variable;

}

int main() {
std::vector <Base> vector;
std: :deque <Base> deque;
std::list <Base> list;

// Create 2 elements to sort
Base a(10);
Base b(5);

// Insert them into backs of containers
vector.push_back(a);

vector.push_back(b);

deque.push_back(a);
deque.push_back(b);

list.push_back(a);
list.push_back(b);

// Now sort data using comparing function

GoalKicker.com - C++ Notes for Professionals 352

(c) ketabton.com: The Digital Library

Section 67.5: Sorting sequence containers using lambda

std: :sort(vector.begin(), vector.end(), compare);
std::sort(deque.begin(), deque.end(), compare);
list.sort(compare);

return 0;

expressions (C++11)

Version = C++11

// Include sequence containers
#include <vector>

#include <deque>

#include <list>

#include <array>

#include <forward_list>

// Include sorting algorithm
#include <algorithm>

class Base {
public:

b

// Constructor that set variable to the value of v

Base(int v): variable(v) {

}

int variable;

int main() {

// Create 2 elements to sort
Base a(10);
Base b(5);

// We're using C++11, so let's use initializer lists to insert

std::vector <Base> vector = {a, b};
std::deque <Base> deque = {a, b};
std::list <Base> list = {a, b};
std::array <Base, 2> array = {a, b};
std::forward_list<Base> flist = {a, b};

// We can sort data using an inline lambda expression

std::sort(std::begin(vector), std::end(vector),

[1(const Base &a, const Base &b) { return a.variable < b.variable;});

// We can also pass a lambda object as the comparator

// and reuse the lambda multiple times
auto compare = [](const Base &a, const Base &b)

return a.variable < b.variable;};
std::sort(std::begin(deque), std::end(deque), compare);
std::sort(std::begin(array), std::end(array), compare);

list.sort(compare);
flist.sort(compare);

return 0;

items.

GoalKicker.com - C++ Notes for Professionals

353

(c) ketabton.com: The Digital Library

Section 67.6: Sorting built-in arrays

The sort algorithm sorts a sequence defined by two iterators. This is enough to sort a built-in (also known as c-
style) array.

Version = C++11

int arri1[] = {36, 24, 42, 60, 59};

// sort numbers in ascending order
sort(std::begin(arr1), std::end(arrl1));

// sort numbers in descending order
sort(std::begin(arr1), std::end(arr1), std::greater<int>());

Prior to C++11, end of array had to be "calculated" using the size of the array:

Version < C++11

// Use a hard-coded number for array size
sort(arr1l, arrl + 5);

// Alternatively, use an expression
const size_t arri_size = sizeof(arrl1) / sizeof(*arr1);
sort(arrl1, arr1 + arril_size);

Section 67.7: Sorting sequence containers with specifed
ordering

If the values in a container have certain operators already overloaded, std: :sort can be used with specialized
functors to sort in either ascending or descending order:

Version = C++11

#include <vector>
#include <algorithm>
#include <functional>

std::vector<int> v = {5,1,2,4,3};

//sort in ascending order (1,2,3,4,5)
std::sort(v.begin(), v.end(), std::less<int>());

// Or just:
std::sort(v.begin(), v.end());

//sort in descending order (5,4,3,2,1)
std::sort(v.begin(), v.end(), std::greater<int>());

//0r just:
std::sort(v.rbegin(), v.rend());

Version = C++14

In C++14, we don't need to provide the template argument for the comparison function objects and instead let the
object deduce based on what it gets passed in:

std::sort(v.begin(), v.end(), std::less<>()); // ascending order
std::sort(v.begin(), v.end(), std::greater<>()); // descending order

GoalKicker.com - C++ Notes for Professionals 354

(c) ketabton.com: The Digital Library

Chapter 68: Enumeration

Section 68.1: Iteration over an enum

There is no built-in to iterate over enumeration.
But there are several ways

¢ for enum with only consecutive values:

enum E {
Begin,
E1 = Begin,
E2,
//
En,
End
i

for (E e = E::Begin; e != E::End; ++e) {

// Do job with e
}

Version = C++11

with enum class, operator ++ hasto be implemented:

E& operator ++ (E& e)

{
if (e == E::End) {
throw std::out_of_range("for E& operator ++ (E&)");
}
e = E(static_cast<std::underlying_type<E>::type>(e) + 1);
return e;
}

e using a container as std: :vector

enum E {
E1 = 4,
E2 = 8,
/1
En
3
std::vector<E> build_all_E()
{
const E all[] = {E1, E2, /*..#/ En};
return std::vector<E>(all, all + sizeof(all) / sizeof(E));
}

std::vector<E> all_E = build_all_E();

and then

for (std::vector<E>::const_iterator it = all_E.begin(); it != all_E.end(); ++it) {

GoalKicker.com - C++ Notes for Professionals

355

(c) ketabton.com: The Digital Library

E e = %xit;
// Do job with e;

Version = C++11

e or std::initializer_list and a simpler syntax:

enum E {
E1 = 4,
E2 = 8,
//
En

i

constexpr std::initializer_list<E> all_E = {E1, E2, /*..*/ En};
and then

for (auto e : all_E) {
// Do job with e
}

Section 68.2: Scoped enums

C++11 introduces what are known as scoped enums. These are enumerations whose members must be qualified
with enumname : :membername. Scoped enums are declared using the enum class syntax. For example, to store the
colors in a rainbow:

enum class rainbow {

RED,

ORANGE,
YELLOW,
GREEN,
BLUE,

INDIGO,
VIOLET

i
To access a specific color:
rainbow r = rainbow: :INDIGO;

enum classes cannot be implicitly converted to ints without a cast. So int x = rainbow: :RED is invalid.

Scoped enums also allow you to specify the underlying type, which is the type used to represent a member. By
defaultitis int. In a Tic-Tac-Toe game, you may store the piece as

enum class piece : char {
EMPTY = '\@',
X ="X",

0="0",

i

As you may notice, enums can have a trailing comma after the last member.

GoalKicker.com - C++ Notes for Professionals 356

(c) ketabton.com: The Digital Library

Section 68.3: Enum forward declaration in C++11

Scoped enumerations:

enum class Status; // Forward declaration
Status doWork(); // Use the forward declaration

enum class Status { Invalid, Success, Fail };
Status doWork() // Full declaration required for implementation

{

return Status::Success;

}

Unscoped enumerations:

enum Status: int; // Forward declaration, explicit type required
Status doWork(); // Use the forward declaration

enum Status: int{ Invalid=0, Success, Fail }; // Must match forward declare type
static_assert(Success ==);

An in-depth multi-file example can be found here: Blind fruit merchant example

Section 68.4: Basic Enumeration Declaration

Standard enumerations allow users to declare a useful name for a set of integers. The names are collectively
referred to as enumerators. An enumeration and its associated enumerators are defined as follows:

enum myEnum

{
enumName1,
enumName2,

b

An enumeration is a type, one which is distinct from all other types. In this case, the name of this type is myEnum.
Objects of this type are expected to assume the value of an enumerator within the enumeration.

The enumerators declared within the enumeration are constant values of the type of the enumeration. Though the
enumerators are declared within the type, the scope operator : : is not needed to access the name. So the name of
the first enumerator is enumNameT.

Version = C++11
The scope operator can be optionally used to access an enumerator within an enumeration. So enumName1 can also

be spelled myEnum: :enumName1.

Enumerators are assigned integer values starting from 0 and increasing by 1 for each enumerator in an
enumeration. So in the above case, enumName1 has the value 0, while enumName2 has the value 1.

Enumerators can also be assigned a specific value by the user; this value must be an integral constant expression.
Enumerators who's values are not explicitly provided will have their value set to the value of the previous
enumerator + 1.

enum myEnum

GoalKicker.com - C++ Notes for Professionals 357

(c) ketabton.com: The Digital Library

{

enumName1l = 1, // value will be 1

enumName2 = 2, // value will be 2

enumName3, // value will be 3, previous value + 1

enumName4 = 7, // value will be 7

enumName5, // value will be 8

enumName6 = 5, // value will be 5, legal to go backwards

enumName?7 = 3, // value will be 3, legal to reuse numbers

enumName8 = enumName4 + 2, // value will be 9, legal to take prior enums and adjust them
IS

Section 68.5: Enumeration in switch statements

A common use for enumerators is for switch statements and so they commonly appear in state machines. In fact a
useful feature of switch statements with enumerations is that if no default statement is included for the switch, and
not all values of the enum have been utilized, the compiler will issue a warning.

enum State {
start,
middle,
end

|3

switch(myState) {
case start:

case middle:

} // warning: enumeration value 'end' not handled in switch [-Wswitch]

GoalKicker.com - C++ Notes for Professionals 358

(c) ketabton.com: The Digital Library

Chapter 69: Iteration
Section 69.1: break

Jumps out of the nearest enclosing loop or switch statement.

// print the numbers to a file, one per line
for (const int num : num_list) {
errno = 90;
fprintf(file, "%d\n", num);
if (errno == ENOSPC) {
fprintf(stderr,

"no space left on device; output will be truncated\n");
break;

Section 69.2: continue

Jumps to the end of the smallest enclosing loop.

int sum = 0;

for (int i = 0; i < N; i++) {

int x;

std::cin >> x;

if (x < @) continue;

sum += X;

// equivalent to: if (x >= @) sum += Xx;

Section 69.3: do

Introduces a do-while loop.

// Gets the next non-whitespace character from standard input
char read_char() {

char c;
do {
c = getchar();
} while (isspace(c));
return c;

Section 69.4: while
Introduces a while loop.

int i = 0;

// print 10 asterisks

while (i < 10) {
putchar('*");
i++;

GoalKicker.com - C++ Notes for Professionals 359

(c) ketabton.com: The Digital Library
Section 69.5: range-based for loop

std::vector<int> primes = {2, 3, 5, 7, 11, 13};

for(auto prime : primes) {
std::cout << prime << std::endl;

}

Section 69.6: for

Introduces a for loop or, in C++11 and later, a range-based for loop.

// print 10 asterisks
for (int i = 0; i < 10; i++) {
putchar('*");

}

GoalKicker.com - C++ Notes for Professionals 360

(c) ketabton.com: The Digital Library

Chapter 70: Regular expressions

Signature Description

BidirectionallIterator is any character iterator that

provides increment and decrement operators smatch may

Bidirectionallterator last, smatch& sm, const be cmatch or any oth’er’other'variant of match_results that

regex& re, regex_constraints::match_flag_type acceptsthetype(JfBld;rect}onalIteratorthe smatch

flags) argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire
character sequence defined by first and last

bool regex_match(Bidirectionallterator first,

string may be either a const charx or an L-Value string,
the functions accepting an R-Value string are explicitly deleted
bool regex_match(const string& str, smatch& smatch may be cmatch or any other other variant of
sm, const regex reg, match_results that accepts the type of str the smatch
regex_constraints: :match_flag_type flags) argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire
character sequence defined by str

Regular Expressions (sometimes called regexs or regexps) are a textual syntax which represents the patterns which
can be matched in the strings operated upon.

Regular Expressions, introduced in c++11, may optionally support a return array of matched strings or another
textual syntax defining how to replace matched patterns in strings operated upon.

Section 70.1: Basic regex_match and regex_search Examples

const auto input = "Some people, when confronted with a problem, think \"I know, I'll use regular
expressions.\""s;
smatch sm;

cout << input << endl;

// If input ends in a quotation that contains a word that begins with "reg" and another word
beginning with "ex" then capture the preceding portion of input
if (regex_match(input, sm, regex("(.*)\".*\\breg.x\\bex.*\"\\s*$"))) {

const auto capture = sm[1].str();

cout << '\t' << capture << endl; // Outputs: "\tSome people, when confronted with a problem,
think\n"

// Search our capture for "a problem" or "# problems”
if(regex_search(capture, sm, regex("(a|d+)\\s+problems?"))) {

const auto count = sm[1] == "a"s ? 1 : stoi(sm[1]);

cout << '\t' << count << (count > 1 ? " problems\n" : " problem\n"); // Outputs: "\t1
problem\n"

cout << "Now they have " << count + 1 << " problems.\n"; // Outputs: "Now they have 2
problems\n"

}

}
Live Example

Section 70.2: regex_iterator Example

When processing of captures has to be done iteratively a regex_iterator is a good choice. Dereferencing a
regex_iterator returns a match_result. This is great for conditional captures or captures which have

GoalKicker.com - C++ Notes for Professionals 361

(c) ketabton.com: The Digital Library

interdependence. Let's say that we want to tokenize some C++ code. Given:

enum TOKENS {
NUMBER,
ADDITION,
SUBTRACTION,
MULTIPLICATION,
DIVISION,
EQUALITY,
OPEN_PARENTHESIS,
CLOSE_PARENTHESIS
b

We can tokenize this string: const auto input = "42/2 + -8\t=\n(2 + 2) % 2 * 2 -3"swith a regex_iterator
like this:

vector<TOKENS> tokens;
const regex re{ "\\s*(\\(?)\\s*(=2\\s*\\d+)\\s*(\\)?2)\\s*(2: (\\+) | (=) [(*) | (/)| (=))" };

for_each(sregex_iterator(cbegin(input), cend(input), re), sregex_iterator(), [&](const auto& i) {
if(i[1].length() > 0) {
tokens.push_back (OPEN_PARENTHESIS) ;
}

tokens.push_back(i[2].str().front() == '-' ? NEGATIVE_NUMBER : NON_NEGATIVE_NUMBER) ;

if(i[3].1length() > 8) {
tokens.push_back (CLOSE_PARENTHESIS) ;
}

auto it = next(cbegin(i), 4);

for(int result = ADDITION; it != cend(i); ++result, ++it) {
if (it->length() > 6U) {
tokens.push_back(static_cast<TOKENS>(result));
break;

}
P

match_results<string::const_reverse_iterator> sm;
if(regex_search(crbegin(input), crend(input), sm, regex{ tokens.back() == SUBTRACTION ?
ANASHFNNDHNNSH-\\sH(-?) " ¢ "A\\sk\\d+\\s*(-?)" })) {

tokens.push_back(sm[1].1length() == @ ? NON_NEGATIVE_NUMBER : NEGATIVE_NUMBER);
}

Live Example

A notable gotcha with regex iterators is that the regex argument must be an L-value, an R-value will not work: Visual
Studio regex_iterator Bug?

Section 70.3: Anchors

C++ provides only 4 anchors:

¢ * which asserts the start of the string
e $ which asserts the end of the string
¢ \b which asserts a \W character or the beginning or end of the string

GoalKicker.com - C++ Notes for Professionals 362

(c) ketabton.com: The Digital Library

¢ \B which asserts a \w character
Let's say for example we want to capture a number with it's sign:

auto input = "+1--12%123/+1234"s;
smatch sm;

if(regex_search(input, sm, regex{ "(?:A[\\b\\W)([+-]12\\d+)" })) {
do {
cout << sm[1] << endl;

input = sm.suffix().str();
} while(regex_search(input, sm, regex{ "(?:A\\W|\\b\\W)([+-]12\\d+)" }));

Live Example

An important note here is that the anchor does not consume any characters.

Section 70.4: regex_replace Example

This code takes in various brace styles and converts them to One True Brace Style:

const auto input = "if (KnR)\n\tfoo();\nif (spaces) {\n foo();\n}\nif
(allman)\n{\n\tfoo();\n}\nif (horstmann)\n{\tfoo();\n}\nif (pico)\n{\tfoo(); }\nif
(whitesmiths)\n\t{\n\tfoo();\n\t}\n"s;

cout << input << regex_replace(input, regex("(.+?)\\s*\\{?\\s*(.+?;)\\s*\\}?\\sx"), "S$1
{\n\t$2\n}\n") << endl;

Live Example

Section 70.5: regex_token_iterator Example

A std::regex_token_iterator provides a tremendous tool for extracting elements of a Comma Separated Value
file. Aside from the advantages of iteration, this iterator is also able to capture escaped commas where other
methods struggle:

const auto input = "please split, this,csv, ,line,\\,\n"s;

const regex re{ "((?:["\\\\,1|\\\\)+)(?2:,19)" };

const vector<string> m_vecFields{ sregex_token_iterator(cbegin(input), cend(input), re, 1),
sregex_token_iterator() };

cout << input << endl;

copy(cbegin(m_vecFields), cend(m_vecFields), ostream_iterator<string>(cout, "\n"));

Live Example

A notable gotcha with regex iterators is, that the regex argument must be an L-value. An R-value will not work.

Section 70.6: Quantifiers

Let's say that we're given const string input as a phone number to be validated. We could start by requiring a
numeric input with a zero or more quantifier: regex_match(input, regex("\\d*")) or a one or more
quantifier: regex_match(input, regex("\\d+")) But both of those really fall short if input contains an invalid

GoalKicker.com - C++ Notes for Professionals 363

(c) ketabton.com: The Digital Library

numeric string like: "123" Let's use a n or more quantifier to ensure that we're getting at least 7 digits:
regex_match(input, regex("\\d{7,}"))

This will guarantee that we will get at least a phone number of digits, but input could also contain a numeric string
that's too long like: "123456789012". So lets go with a between n and m quantifier so the input is at least 7 digits
but not more than 11:

regex_match(input, regex("\\d{7,11}"));

This gets us closer, but illegal numeric strings that are in the range of [7, 11] are still accepted, like: "123456789" So
let's make the country code optional with a lazy quantifier:

regex_match(input, regex("\\d?\\d{7,10}"))

It's important to note that the lazy quantifier matches as few characters as possible, so the only way this character
will be matched is if there are already 10 characters that have been matched by \d{7, 18}. (To match the first
character greedily we would have had to do: \d{9, 1}.) The lazy quantifier can be appended to any other
quantifier.

Now, how would we make the area code optional and only accept a country code if the area code was present?
regex_match(input, regex("(?:\\d{3,4})?\\d{7}"))
In this final regex, the \d{7} requires 7 digits. These 7 digits are optionally preceded by either 3 or 4 digits.

Note that we did not append the lazy quantifier: \d{3,4}?\d{7}, the \d{3,4}? would have matched either 3 or 4
characters, preferring 3. Instead we're making the non-capturing group match at most once, preferring not to
match. Causing a mismatch if input didn't include the area code like: "1234567".

In conclusion of the quantifier topic, I'd like to mention the other appending quantifier that you can use, the
possessive quantifier. Either the lazy quantifier or the possessive quantifier can be appended to any quantifier.
The possessive quantifier's only function is to assist the regex engine by telling it, greedily take these characters
and don't ever give them up even if it causes the regex to fail. This for example doesn't make much sense:
regex_match(input, regex("\\d{3,4}+\\d{7})) Because an input like: "1234567890" wouldn't be matched as
\d{3, 4}+ will always match 4 characters even if matching 3 would have allowed the regex to succeed.

The possessive quantifier is best used when the quantified token limits the number of matchable characters. For
example:

regex_match(input, regex("(?:.*\\d{3,4}+){3}"))

Can be used to match if input contained any of the following:

123 456 7890
123-456-7890
(123)456-7890
(123) 456 - 7890

But when this regex really shines is when input contains an illegal input:

12345 - 67890

GoalKicker.com - C++ Notes for Professionals 364

(c) ketabton.com: The Digital Library

Without the possessive quantifier the regex engine has to go back and test every combination of . * and either 3 or
4 characters to see if it can find a matchable combination. With the possessive quantifier the regex starts where
the 2nd possessive quantifier left off, the '0' character, and the regex engine tries to adjust the . * to allow \d{3, 4}
to match; when it can't the regex just fails, no back tracking is done to see if earlier .* adjustment could have

allowed a match.

Section 70.7: Splitting a string

std::vector<std::string> split(const std::string &str, std::string regex)

{
std::regex r{ regex };
std: :sregex_token_iterator start{ str.begin(), str.end(), r, -1 }, end;
return std::vector<std::string>(start, end);

}

split("Some string\t with whitespace ", "\\s+"); // "Some", "string", "with",

"whitespace"

GoalKicker.com - C++ Notes for Professionals

365

(c) ketabton.com: The Digital Library

Chapter 71: Implementation-defined
behavior

Section 71.1: Size of integral types
The following types are defined as integral types:

e char

¢ Signed integer types

¢ Unsigned integer types
e char16_t and char32_t
e bool

e wchar_t

With the exception of sizeof(char) / sizeof(signed char) / sizeof(unsigned char), which is split between §
3.9.1.1 [basic.fundamental/1] and § 5.3.3.1 [expr.sizeof], and sizeof (bool), which is entirely implementation-
defined and has no minimum size, the minimum size requirements of these types are given in section § 3.9.1
[basic.fundamental] of the standard, and shall be detailed below.

Size of char

All versions of the C++ standard specify, in § 5.3.3.1, that sizeof yields 1 for unsigned char, signed char, and char
(it is implementation defined whether the char type is signed or unsigned).

Version = C++14
char is large enough to represent 256 different values, to be suitable for storing UTF-8 code units.
Size of signed and unsigned integer types

The standard specifies, in § 3.9.1.2, that in the list of standard signed integer types, consisting of signed char, short
int, int, long int, and long long int, each type will provide at least as much storage as those preceding it in the
list. Furthermore, as specified in § 3.9.1.3, each of these types has a corresponding standard unsigned integer type,
unsigned char, unsigned short int, unsigned int, unsigned long int, and unsigned long long int, which has
the same size and alignment as its corresponding signed type. Additionally, as specified in § 3.9.1.1, char has the
same size and alignment requirements as both signed char and unsigned char.

Version < C++11

Prior to C++11, long long and unsigned long long were not officially part of the C++ standard. However, after
their introduction to C, in C99, many compilers supported long long as an extended signed integer type, and
unsigned long long as an extended unsigned integer type, with the same rules as the C types.

The standard thus guarantees that:

1 == sizeof(char) == sizeof(signed char) == sizeof(unsigned char)
<= sizeof(short) == sizeof(unsigned short)
<= sizeof(int) == gizeof(unsigned int)
<= sizeof(long) == sizeof(unsigned long)
Version = C++11
<= sizeof(long long) == sizeof(unsigned long long)

Specific minimum sizes for each type are not given by the standard. Instead, each type has a minimum range of

GoalKicker.com - C++ Notes for Professionals 366

(c) ketabton.com: The Digital Library

values it can support, which is, as specified in § 3.9.1.3, inherited from the C standard, in §5.2.4.2.1. The minimum
size of each type can be roughly inferred from this range, by determining the minimum number of bits required;
note that for any given platform, any type's actual supported range may be larger than the minimum. Note that for
signed types, ranges correspond to one's complement, not the more commonly used two's complement; this is to
allow a wider range of platforms to comply with the standard.

Type Minimum range Minimum bits required
signed char =127 t0 127 (-(27 - 1) to (27 - 1)) 8
unsigned char 0to255(0to28-1) 8
signed short -32,767 t0 32,767 ((215- 1) to (215 - 1)) 16
unsigned short 0to 65,535(0to 216-1) 16
signed int -32,767 t0 32,767 (-(215- 1) to (215 - 1)) 16
unsigned int 0to 65535(0to216-1) 16
signed long -2,147,483,647 t0 2,147,483,647 (-(231 - 1) to (231 - 1)) 32
unsigned long 0t04,294,967,295 (0 to 232 - 1) 32

Version = C++11
Minimum bits

Type Minimum range required
: -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 (-(263 - 1) to
signed long long 64
(263-1))
unsigned long long 0 to 18,446,744,073,709,551,615 (0 to 264 - 1) 64

As each type is allowed to be greater than its minimum size requirement, types may differ in size between
implementations. The most notable example of this is with the 64-bit data models LP64 and LLP64, where LLP64
systems (such as 64-bit Windows) have 32-bit ints and longs, and LP64 systems (such as 64-bit Linux) have 32-bit
ints and 64-bit longs. Due to this, integer types cannot be assumed to have a fixed width across all platforms.

Version = C++11

If integer types with fixed width are required, use types from the <cstdint> header, but note that the standard
makes it optional for implementations to support the exact-width types int8_t, int16_t, int32_t, int64_t,
intptr_t, uint8_t, uint16_t, uint32_t, uint64_t and uintptr_t.

Version = C++11
Size of char16_t and char32_t

The sizes of char16_t and char32_t are implementation-defined, as specified in § 5.3.3.1, with the stipulations
givenin § 3.9.1.5:

e chari16_t is large enough to represent any UTF-16 code unit, and has the same size, signedness, and
alignment as uint_least16_t; it is thus required to be at least 16 bits in size.

e char32_t is large enough to represent any UTF-32 code unit, and has the same size, signedness, and
alignment as uint_least32_t; it is thus required to be at least 32 bits in size.

Size of bool
The size of bool is implementation defined, and may or may not be 1.
Size of wchar_t

wchar_t, as specified in § 3.9.1.5, is a distinct type, whose range of values can represent every distinct code unit of
the largest extended character set among the supported locales. It has the same size, signedness, and alighment as
one of the other integral types, which is known as its underlying type. This type's size is implementation-defined, as

GoalKicker.com - C++ Notes for Professionals 367

(c) ketabton.com: The Digital Library

specified in § 5.3.3.1, and may be, for example, at least 8, 16, or 32 bits; if a system supports Unicode, for example,
wchar_t is required to be at least 32 bits (an exception to this rule is Windows, where wchar_t is 16 bits for
compatibility purposes). It is inherited from the C90 standard, ISO 9899:1990 § 4.1.5, with only minor rewording.

Depending on the implementation, the size of wchar_t is often, but not always, 8, 16, or 32 bits. The most common
examples of these are:

¢ In Unix and Unix-like systems, wchar_t is 32-bit, and is usually used for UTF-32.
¢ In Windows, wchar_t is 16-bit, and is used for UTF-16.
¢ On a system which only has 8-bit support, wchar_t is 8 bit.

Version = C++11

If Unicode support is desired, it is recommended to use char for UTF-8, char16_t for UTF-16, or char32_t for
UTF-32, instead of using wchar_t.

Data Models

As mentioned above, the widths of integer types can differ between platforms. The most common models are as
follows, with sizes specified in bits:

Model int long pointer
LP32(2/4/4) 16 32 32

ILP32 (4/4/4) 32 32 32
LLP64 (4/4/8) 32 32 64
LP64 (4/8/8) 32 64 64

Out of these models:

16-bit Windows used LP32.

32-bit *nix systems (Unix, Linux, Mac OSX, and other Unix-like OSes) and Windows use ILP32.
64-bit Windows uses LLP64.

64-bit *nix systems use LP64.

Note, however, that these models aren't specifically mentioned in the standard itself.

Section 71.2: Char might be unsigned or signed

The standard doesn't specify if char should be signed or unsigned. Different compilers implement it differently, or
might allow to change it using a command line switch.

Section 71.3: Ranges of numeric types

The ranges of the integer types are implementation-defined. The header <limits> provides the
std::numeric_limits<T> template which provides the minimum and maximum values of all fundamental types.
The values satisfy guarantees provided by the C standard through the <climits> and (>= C++11) <cinttypes>
headers.

e std::numeric_limits<signed char>::min() equals SCHAR_MIN, which is less than or equal to -127.

e std::numeric_limits<signed char>::max() equals SCHAR_MAX, which is greater than or equal to 127.

e std::numeric_limits<unsigned char>::max() equals UCHAR_MAX, which is greater than or equal to 255.
e std::numeric_limits<short>::min() equals SHRT_MIN, which is less than or equal to -32767.

e std::numeric_limits<short>::max() equals SHRT_MAX, which is greater than or equal to 32767.

GoalKicker.com - C++ Notes for Professionals 368

(c) ketabton.com: The Digital Library

e std::numeric_limits<unsigned short>::max() equals USHRT_MAX, which is greater than or equal to 65535.

e std::numeric_limits<int>::min() equals INT_MIN, which is less than or equal to -32767.

e std::numeric_limits<int>::max() equals INT_MAX, which is greater than or equal to 32767.

e std::numeric_limits<unsigned int>::max() equals UINT_MAX, which is greater than or equal to 65535.

e std::numeric_limits<long>::min() equals LONG_MIN, which is less than or equal to -2147483647.

e std::numeric_limits<long>::max() equals LONG_MAX, which is greater than or equal to 2147483647.

e std::numeric_limits<unsigned long>::max() equals ULONG_MAX, which is greater than or equal to
4294967295.

Version = C++11

e std::numeric_limits<long long>::min() equals LLONG_MIN, which is less than or equal to

-9223372036854775807.

e std::numeric_limits<long long>::max() equals LLONG_MAX, which is greater than or equal to
9223372036854775807.

e std::numeric_limits<unsigned long long>::max() equals ULLONG_MAX, which is greater than or equal to
18446744073709551615.

For floating-point types T, max () is the maximum finite value while min() is the minimum positive normalized value.
Additional members are provided for floating-point types, which are also implementation-defined but satisfy
certain guarantees provided by the C standard through the <cfloat> header.

e The member digits16 gives the number of decimal digits of precision.

o std::numeric_limits<float>::digits1@ equals FLT_DIG, which is at least 6.

o std::numeric_limits<double>::digits10 equals DBL_DIG, which is at least 10.

o std::numeric_limits<long double>::digits10 equals LDBL_DIG, which is at least 10.
e The member min_exponent10 is the minimum negative E such that 10 to the power E is normal.

o std::numeric_limits<float>::min_exponent10 equals FLT_MIN_10_EXP, which is at most -37.

o std::numeric_limits<double>::min_exponent1@ equals DBL_MIN_10_EXP, which is at most -37.

std: :numeric_limits<long double>::min_exponent1@ equals LDBL_MIN_10_EXP, which is at most -37.

e The member max_exponent10 is the maximum E such that 10 to the power E is finite.

o std::numeric_limits<float>::max_exponent10 equals FLT_MIN_10_EXP, which is at least 37.

o std::numeric_limits<double>::max_exponent10 equals DBL_MIN_10_EXP, which is at least 37.

o std::numeric_limits<long double>::max_exponent10 equals LDBL_MIN_10_EXP, which is at least 37.
¢ If the member is_iec559 is true, the type conforms to IEC 559 / IEEE 754, and its range is therefore

determined by that standard.

Section 71.4: Value representation of floating point types

The standard requires that long double provides at least as much precision as double, which provides at least as
much precision as float; and that a long double can represent any value that a double can represent, while a
double can represent any value that a float can represent. The details of the representation are, however,
implementation-defined.

For a floating point type T, std: :numeric_limits<T>::radix specifies the radix used by the representation of T.

If std: :numeric_limits<T>::is_iec559 is true, then the representation of T matches one of the formats defined
by IEC 559 / IEEE 754.

Section 71.5: Overflow when converting from integer to
signed integer

When either a signed or unsigned integer is converted to a signed integer type, and its value is not representable in

GoalKicker.com - C++ Notes for Professionals 369

(c) ketabton.com: The Digital Library

the destination type, the value produced is implementation-defined. Example:

// Suppose that on this implementation, the range of signed char is -128 to +127 and
// the range of unsigned char is @ to 255

int x = 12345;

signed char sc = x; // sc has an implementation-defined value

unsigned char uc = x; // uc is initialized to 57 (i.e., 12345 modulo 256)

Section 71.6: Underlying type (and hence size) of an enum

If the underlying type is not explicitly specified for an unscoped enumeration type, it is determined in an
implementation-defined manner.

enum E {
RED,
GREEN,
BLUE,
%

using T = std::underlying_type<E>::type; // implementation-defined

However, the standard does require the underlying type of an enumeration to be no larger than int unless both
int and unsigned int are unable to represent all the values of the enumeration. Therefore, in the above code, T
could be int, unsigned int, or short, but not long long, to give a few examples.

Note that an enum has the same size (as returned by sizeof) as its underlying type.

Section 71.7: Numeric value of a pointer

The result of casting a pointer to an integer using reinterpret_cast is implementation-defined, but "... is intended
to be unsurprising to those who know the addressing structure of the underlying machine."

int x = 42;
int* p = &x;
long addr = reinterpret_cast<long>(p);
std::cout << addr << "\n"; // prints some numeric address,
// probably in the architecture's native address format

Likewise, the pointer obtained by conversion from an integer is also implementation-defined.
The right way to store a pointer as an integer is using the uintptr_t or intptr_t types:

// “uintptr_t° was not in C++@3. It's in C99, in <stdint.h>, as an optional type
#include <stdint.h>

uintptr_t uip;
Version = C++11

// There is an optional “std::uintptr_t = in C++11
#include <cstdint>

std: :uintptr_t uip;

C++11 refers to C99 for the definition uintptr_t (C99 standard, 6.3.2.3):

an unsigned integer type with the property that any valid pointer to void can be converted to this type,
then converted back to pointer to void, and the result will compare equal to the original pointer.

GoalKicker.com - C++ Notes for Professionals 370

(c) ketabton.com: The Digital Library

While, for the majority of modern platforms, you can assume a flat address space and that arithmetic on uintptr_t
is equivalent to arithmetic on char x, it's entirely possible for an implementation to perform any transformation
when casting void *to uintptr_t as long the transformation can be reversed when casting back from uintptr_t
to void =*.

Technicalities

¢ On XSl-conformant (X/Open System Interfaces) systems, intptr_t and uintptr_t types are required,
otherwise they are optional.

¢ Within the meaning of the C standard, functions aren't objects; it isn't guaranteed by the C standard that
uintptr_t can hold a function pointer. Anyway POSIX (2.12.3) conformance requires that:

All function pointer types shall have the same representation as the type pointer to void.
Conversion of a function pointer to void * shall not alter the representation. A void * value
resulting from such a conversion can be converted back to the original function pointer type, using
an explicit cast, without loss of information.

e C99§7.18.1:

When typedef names differing only in the absence or presence of the initial u are defined, they
shall denote corresponding signed and unsigned types as described in 6.2.5; an implementation
providing one of these corresponding types shall also provide the other.

uintptr_t might make sense if you want to do things to the bits of the pointer that you can't do as sensibly
with a signed integer.

Section 71.8: Number of bits in a byte

In C++, a byte is the space occupied by a char object. The number of bits in a byte is given by CHAR_BIT, which is
defined in climits and required to be at least 8. While most modern systems have 8-bit bytes, and POSIX requires
CHAR_BIT to be exactly 8, there are some systems where CHAR_BIT is greater than 8 i.e a single byte may be
comprised of 8, 16, 32 or 64 bits.

GoalKicker.com - C++ Notes for Professionals 371

(c) ketabton.com: The Digital Library

Chapter 72: Exceptions

Section 72.1: Catching exceptions

A try/catch block is used to catch exceptions. The code in the try section is the code that may throw an exception,
and the code in the catch clause(s) handles the exception.

#include <iostream>
#include <string>
#include <stdexcept>

int main() {
std::string str("foo");

try {
str.at(10); // access element, may throw std::out_of_range
} catch (const std::out_of_range& e) {

// what() is inherited from std::exception and contains an explanatory message
std::cout << e.what();

Multiple catch clauses may be used to handle multiple exception types. If multiple catch clauses are present, the
exception handling mechanism tries to match them in order of their appearance in the code:

std::string str("foo");

try {
str.reserve(2); // reserve extra capacity, may throw std::length_error
str.at(10); // access element, may throw std::out_of_range
} catch (const std::length_error& e) {
std::cout << e.what();
} catch (const std::out_of_range& e) {
std::cout << e.what();

}

Exception classes which are derived from a common base class can be caught with a single catch clause for the
common base class. The above example can replace the two catch clauses for std: :length_error and
std: :out_of_range with a single clause for std:exception:

std::string str("foo");

try {
str.reserve(2); // reserve extra capacity, may throw std::length_error
str.at(10); // access element, may throw std::out_of_range

} catch (const std::exception& e)
std::cout << e.what();

}

Because the catch clauses are tried in order, be sure to write more specific catch clauses first, otherwise your
exception handling code might never get called:

try {

/* Code throwing exceptions omitted. #*/
} catch (const std::exception& e)

/* Handle all exceptions of type std::exception. */
} catch (const std::runtime_error& e) {

GoalKicker.com - C++ Notes for Professionals 372

(c) ketabton.com: The Digital Library

/* This block of code will never execute, because std::runtime_error inherits
from std::exception, and all exceptions of type std::exception were already
caught by the previous catch clause. */

Another possibility is the catch-all handler, which will catch any thrown object:

try {
throw 10;
} catch (...) {
std::cout << "caught an exception";

}

Section 72.2: Rethrow (propagate) exception

Sometimes you want to do something with the exception you catch (like write to log or print a warning) and let it
bubble up to the upper scope to be handled. To do so, you can rethrow any exception you catch:

try {
// some code here

} catch (const SomeException& e) {
std::cout << "caught an exception";
throw;

Using throw; without arguments will re-throw the currently caught exception.

Version = C++11

To rethrow a managed std: :exception_ptr, the C++ Standard Library has the rethrow_exception function that
can be used by including the <exception> header in your program.

#include <iostream>
#include <string>

#include <exception>
#include <stdexcept>

void handle_eptr(std::exception_ptr eptr) // passing by value is ok

{
try {
if (eptr) {
std: :rethrow_exception(eptr);
}
} catch(const std::exception& e) {
std::cout << "Caught exception \"" << e.what() << "\"\n";
}
}

int main()
{
std: :exception_ptr eptr;
try {
std::string().at(1); // this generates an std::out_of_range
} catch(...) {
eptr = std::current_exception(); // capture
}
handle_eptr(eptr);
} // destructor for std::out_of_range called here, when the eptr is destructed

GoalKicker.com - C++ Notes for Professionals 373

(c) ketabton.com: The Digital Library

Section 72.3: Best practice: throw by value, catch by const
reference

In general, it is considered good practice to throw by value (rather than by pointer), but catch by (const) reference.

try {
// throw new std::runtime_error("Error!"); // Don't do this!

// This creates an exception object

// on the heap and would require you to catch the
// pointer and manage the memory yourself. This can
// cause memory leaks!

throw std::runtime_error("Error!");
} catch (const std::runtime_error& e) {
std::cout << e.what() << std::endl;

}

One reason why catching by reference is a good practice is that it eliminates the need to reconstruct the object
when being passed to the catch block (or when propagating through to other catch blocks). Catching by reference
also allows the exceptions to be handled polymorphically and avoids object slicing. However, if you are rethrowing
an exception (like throw e;, see example below), you can still get object slicing because the throw e; statement
makes a copy of the exception as whatever type is declared:

#include <iostream>

struct BaseException {
virtual const char* what() const { return "BaseException"; }

b

struct DerivedException : BaseException {
// "virtual" keyword is optional here
virtual const charx what() const { return "DerivedException"; }

}
int main(int argc, charxx argv) {
try {
try {

throw DerivedException();

} catch (const BaseException& e) {
std::cout << "First catch block: " << e.what() << std::endl;
// Output ==> First catch block: DerivedException

throw e; // This changes the exception to BaseException
// instead of the original DerivedException!

}

} catch (const BaseException& e) {
std::cout << "Second catch block: " << e.what() << std::endl;
// Output ==> Second catch block: BaseException

}

return 0;

If you are sure that you are not going to do anything to change the exception (like add information or modify the
message), catching by const reference allows the compiler to make optimizations and can improve performance.
But this can still cause object splicing (as seen in the example above).

Warning: Beware of throwing unintended exceptions in catch blocks, especially related to allocating extra memory
or resources. For example, constructing logic_error, runtime_error or their subclasses might throw bad_alloc

GoalKicker.com - C++ Notes for Professionals 374

(c) ketabton.com: The Digital Library

due to memory running out when copying the exception string, I/0 streams might throw during logging with
respective exception masks set, etc.

Section 72.4: Custom exception

You shouldn't throw raw values as exceptions, instead use one of the standard exception classes or make your
own.

Having your own exception class inherited from std: :exception is a good way to go about it. Here's a custom
exception class which directly inherits from std: :exception:

#include <exception>

class Except: virtual public std::exception {

protected:
int error_number; ///< Error number
int error_offset; ///< Error offset
std::string error_message; ///< Error message
public:

/%% Constructor (C++ STL string, int, int).
@param msg The error message
@param err_num Error number

* @param err_off Error offset

*/

explicit

Except(const std::string& msg, int err_num, int err_off):
error_number (err_num),
error_offset(err_off),
error_message(msg)

{}

/** Destructor.

* Virtual to allow for subclassing.
*/

virtual ~Except() throw () {}

/** Returns a pointer to the (constant) error description.
@return A pointer to a const char#. The underlying memory
* 1s in possession of the Except object. Callers must
* not attempt to free the memory.
*/
virtual const char* what() const throw () {
return error_message.c_str();

}

/** Returns error number.

* @return #error_number

*/

virtual int getErrorNumber() const throw() {
return error_number;

}

/**Returns error offset.

* @return #error_offset

*/

virtual int getErrorOffset() const throw() {

GoalKicker.com - C++ Notes for Professionals 375

(c) ketabton.com: The Digital Library

return error_offset;

i
An example throw catch:

try {
throw(Except("Couldn't do what you were expecting", -12, -34));

} catch (const Except& e) {
std: :cout<<e.what()
<<"\nError number: "<<e.getErrorNumber()
<<"\nError offset: "<<e.getErrorOffset();

As you are not only just throwing a dumb error message, also some other values representing what the error
exactly was, your error handling becomes much more efficient and meaningful.

There's an exception class that let's you handle error messages nicely :std: :runtime_error
You can inherit from this class too:

#include <stdexcept>

class Except: virtual public std::runtime_error {

protected:
int error_number; ///< Error number
int error_offset; ///< Error offset
public:

/#*% Constructor (C++ STL string, int, int).
@param msg The error message
@param err_num Error number
* @param err_off Error offset
*/
explicit
Except(const std::string& msg, int err_num, int err_off):
std::runtime_error(msg)
{
error_number = err_num;
error_offset = err_off;

/** Destructor.

* Virtual to allow for subclassing.
*/

virtual ~Except() throw () {}

/** Returns error number.

* @return #error_number

*/

virtual int getErrorNumber() const throw() {
return error_number;

}

/**Returns error offset.

GoalKicker.com - C++ Notes for Professionals 376

(c) ketabton.com: The Digital Library

* @return #error_offset

*/

virtual int getErrorOffset() const throw() {
return error_offset;

}
b

Note that | haven't overridden the what () function from the base class (std: :runtime_error) i.e we will be using
the base class's version of what (). You can override it if you have further agenda.

Section 72.5: std::uncaught_exceptions

Version = c++17

C++17 introduces int std::uncaught_exceptions() (to replace the limited bool std::uncaught_exception())to
know how many exceptions are currently uncaught. That allows for a class to determine if it is destroyed during a
stack unwinding or not.

#include <exception>
#include <string>
#include <iostream>

// Apply change on destruction:

// Rollback in case of exception (failure)
// Else Commit (success)

class Transaction

{
public:
Transaction(const std::string& s) : message(s) {}
Transaction(const Transaction&) = delete;
Transaction& operator =(const Transaction&) = delete;
void Commit() { std::cout << message << ": Commit\n"; }
void RollBack() noexcept(true) { std::cout << message << ": Rollback\n"; }
/1
~Transaction() {
if (uncaughtExceptionCount == std::uncaught_exceptions()) {
Commit(); // May throw.
} else { // current stack unwinding
RollBack();
}
}
private:
std::string message;
int uncaughtExceptionCount = std::uncaught_exceptions();
i
class Foo
{
public:
~Foo()
try {

Transaction transaction("In ~Foo"); // Commit,
// even if there is an uncaught exception
/...
} catch (const std::exception& e)
std::cerr << "exception/~Foo:" << e.what() << std::endl;

GoalKicker.com - C++ Notes for Professionals 377

(c) ketabton.com: The Digital Library

}
}
i
int main()
{
try {
Transaction transaction("In main"); // RollBack
Foo foo; // ~Foo commit its transaction.
/...
throw std::runtime_error("Error");
} catch (const std::exception& e) {
std::cerr << "exception/main:" << e.what() << std::endl;
}
}
Output:

In ~Foo: Commit
In main: Rollback
exception/main:Error

Section 72.6: Function Try Block for regular function

void function_with_try_block()

try
{
// try block body
}
catch (...)
{
// catch block body
}

Which is equivalent to

void function_with_try_block()

{
try
{
// try block body
}
catch (...)
{
// catch block body
}
}

Note that for constructors and destructors, the behavior is different as the catch block re-throws an exception
anyway (the caught one if there is no other throw in the catch block body).

The function main is allowed to have a function try block like any other function, but main's function try block will
not catch exceptions that occur during the construction of a non-local static variable or the destruction of any static
variable. Instead, std: :terminate is called.

Section 72.7: Nested exception

Version = C++11

GoalKicker.com - C++ Notes for Professionals 378

(c) ketabton.com: The Digital Library

During exception handling there is a common use case when you catch a generic exception from a low-level
function (such as a filesystem error or data transfer error) and throw a more specific high-level exception which

indicates that some high-level operation could not be performed (such as being unable to publish a photo on Web).
This allows exception handling to react to specific problems with high level operations and also allows, having only
error an message, the programmer to find a place in the application where an exception occurred. Downside of this
solution is that exception callstack is truncated and original exception is lost. This forces developers to manually
include text of original exception into a newly created one.

Nested exceptions aim to solve the problem by attaching low-level exception, which describes the cause, to a high
level exception, which describes what it means in this particular case.

std::nested_exception allows to nest exceptions thanks to std: :throw_with_nested:

#include
#include
#include
#include
#include

<stdexcept>
<exception>
<string>
<fstream>
<iostream>

struct MyException

<< e.what() << '\n';

' << e.message <<

{
MyException(const std::string& message) : message(message) {}
std::string message;
i
void print_current_exception(int level)
{
try {
throw;
} catch (const std::exception& e)
std::cerr << std::string(level, ' ') << "exception: "
} catch (const MyException& e) {
std::cerr << std::string(level, ") << "MyException:
} catch (...) {
std::cerr << "Unkown exception\n";
}
}
void print_current_exception_with_nested(int level = 0)
{
try {
throw;
} catch (...) {
print_current_exception(level);
}
try {
throw;
} catch (const std::nested_exception& nested) {
try {
nested.rethrow_nested();
} catch (...) {
print_current_exception_with_nested(level + 1); // recursion
}
} catch (...) {
//Empty // End recursion
}
}

// sample function that catches an exception and wraps it in a nested exception

void open

_file(const std::string& s)

‘"\n';

’

GoalKicker.com - C++ Notes for Professionals

379

(c) ketabton.com: The Digital Library

{
try {
std::ifstream file(s);
file.exceptions(std::ios_base::failbit);
} catch(...) {
std: :throw_with_nested(MyException{"Couldn't open " + s});
}
}

// sample function that catches an exception and wraps it in a nested exception
void run()

{
try {
open_file("nonexistent.file");
} catch(...) {
std::throw_with_nested(std::runtime_error("run() failed"));
}
}

// runs the sample function above and prints the caught exception
int main()

{
try {
run() ;
} catch(...) {
print_current_exception_with_nested();
}
}

Possible output:

exception: run() failed
MyException: Couldn't open nonexistent.file
exception: basic_ios::clear

If you work only with exceptions inherited from std: :exception, code can even be simplified.

Section 72.8: Function Try Blocks In constructor

The only way to catch exception in initializer list:

struct A : public B

{
A() try : B(), foo(1), bar(2)
{
// constructor body
}
catch (...)
{
// exceptions from the initializer list and constructor are caught here
// if no exception is thrown here
// then the caught exception is re-thrown.
}
private:
Foo foo;
Bar bar;
i

GoalKicker.com - C++ Notes for Professionals 380

(c) ketabton.com: The Digital Library

Section 72.9: Function Try Blocks In destructor

struct A
{
~A() noexcept(false) try
{
// destructor body
}
catch (...)
{
// exceptions of destructor body are caught here
// if no exception is thrown here
// then the caught exception is re-thrown.
}

|3

Note that, although this is possible, one needs to be very careful with throwing from destructor, as if a destructor
called during stack unwinding throws an exception, std: :terminate is called.

GoalKicker.com - C++ Notes for Professionals 381

(c) ketabton.com: The Digital Library

Chapter 73: Lambdas

Parameter Details
Specifies how all non-listed variables are captured. Can be = (capture by value) or & (capture by
default-capture reference). If omitted, non-listed variables are inaccessible within the lambda-body. The default-
capture must precede the capture-list.

Specifies how local variables are made accessible within the lambda-body. Variables without
prefix are captured by value. Variables prefixed with & are captured by reference. Within a class
method, this can be used to make all its members accessible by reference. Non-listed variables
are inaccessible, unless the list is preceded by a default-capture.

capture-list

argument-list Specifies the arguments of the lambda function.
(optional) Normally variables captured by value are const. Specifying mutable makes them non-

mutable const. Changes to those variables are retained between calls.
.. .. (optional) Specifies the exception throwing behavior of the lambda function. For example:
throw-specification)
noexcept or throw(std: :exception).
attributes (optional) Any attributes for the lambda function. For example, if the lambda-body always throws

an exception then [[noreturn]] can be used.

(optional) Specifies the return type of the lambda function. Required when the return type

- -
return-type cannot be determined by the compiler.

lambda-body A code block containing the implementation of the lambda function.

Section 73.1: What is a lambda expression?

A lambda expression provides a concise way to create simple function objects. A lambda expression is a prvalue
whose result object is called closure object, which behaves like a function object.

The name 'lambda expression' originates from lambda calculus, which is a mathematical formalism invented in the
1930s by Alonzo Church to investigate questions about logic and computability. Lambda calculus formed the basis
of LISP, a functional programming language. Compared to lambda calculus and LISP, C++ lambda expressions share
the properties of being unnamed, and to capture variables from the surrounding context, but they lack the ability to
operate on and return functions.

A lambda expression is often used as an argument to functions that take a callable object. That can be simpler than
creating a named function, which would be only used when passed as the argument. In such cases, lambda
expressions are generally preferred because they allow defining the function objects inline.

Alambda consists typically of three parts: a capture list [], an optional parameter list () and a body {}, all of which
can be empty:

(1O} // An empty lambda, which does and returns nothing

Capture list

[1 is the capture list. By default, variables of the enclosing scope cannot be accessed by a lambda. Capturing a
variable makes it accessible inside the lambda, either as a copy or as a reference. Captured variables become a part
of the lambda; in contrast to function arguments, they do not have to be passed when calling the lambda.

int a = 0; // Define an integer variable

auto f = [1() { return a%*9; }; // Error: 'a' cannot be accessed

auto f = [a]() { return a*9; }; // OK, 'a' is "captured" by value

auto f = [&a]() { return a++; }; // OK, 'a' is "captured" by reference
// Note: It is the responsibility of the programmer
// to ensure that a is not destroyed before the

GoalKicker.com - C++ Notes for Professionals 382

(c) ketabton.com: The Digital Library

// lambda is called.
auto b = f(); // Call the lambda function. a is taken from the capture list and
not passed here.

Parameter list

() is the parameter list, which is almost the same as in regular functions. If the lambda takes no arguments, these
parentheses can be omitted (except if you need to declare the lambda mutable). These two lambdas are equivalent:

auto call_foo
auto call_foo2

[x]1(){ x.foo(); };
[x]{ x.foo(); };

Version = C++14

The parameter list can use the placeholder type auto instead of actual types. By doing so, this argument behaves
like a template parameter of a function template. Following lambdas are equivalent when you want to sort a vector
in generic code:

auto sort_cppl11 = [](std::vector<T>::const_reference lhs, std::vector<T>::const_reference rhs) {
return lhs < rhs; };
auto sort_cpp14 = [](const auto &lhs, const auto &rhs) { return lhs < rhs; };

Function body
{} is the body, which is the same as in regular functions.
Calling a lambda

A lambda expression's result object is a closure, which can be called using the operator () (as with other function
objects):

int multiplier = 5;
auto timesFive [multiplier](int a) { return a * multiplier; };
std::out << timesFive(2); // Prints 10

multiplier = 15;
std::out << timesFive(2); // Still prints 2*5 == 10

Return Type

By default, the return type of a lambda expression is deduced.
[1(){ return true; };

In this case the return type is bool.

You can also manually specify the return type using the following syntax:
[1() -> bool { return true; };

Mutable Lambda

Objects captured by value in the lambda are by default immutable. This is because the operator () of the generated
closure object is const by default.

auto func = [c = @](){++c; std::cout << c;}; // fails to compile because ++c
// tries to mutate the state of

GoalKicker.com - C++ Notes for Professionals 383

(c) ketabton.com: The Digital Library

// the lambda.
Modifying can be allowed by using the keyword mutable, which make the closer object's operator () non-const:
auto func = [c = @]() mutable {++c; std::cout << c;};
If used together with the return type, mutable comes before it.
auto func = [c = @]() mutable -> int {++c; std::cout << c; return c;};

An example to illustrate the usefulness of lambdas

Before C++11:

Version < C++11

// Generic functor used for comparison
struct islessthan

{
islessthan(int threshold) : _threshold(threshold) {}
bool operator()(int value) const
{
return value < _threshold;
}
private:
int _threshold;
b

// Declare a vector
const int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> vec(arr, arr+5);

// Find a number that's less than a given input (assume this would have been function input)
int threshold = 10;
std::vector<int>::iterator it = std::find_if(vec.begin(), vec.end(), islessthan(threshold));

Since C++11:

Version = C++11

// Declare a vector
std::vector<int> vec{ 1, 2, 3, 4, 5 };

// Find a number that's less than a given input (assume this would have been function input)
int threshold = 10;
auto it = std::find_if(vec.begin(), vec.end(), [threshold](int value) { return value < threshold;

1)

Section 73.2: Specifying the return type

For lambdas with a single return statement, or multiple return statements whose expressions are of the same type,
the compiler can deduce the return type:

// Returns bool, because "value > 10" is a comparison which yields a Boolean result
auto 1 = [](int value) {
return value > 10;

}

For lambdas with multiple return statements of different types, the compiler can't deduce the return type:

GoalKicker.com - C++ Notes for Professionals 384

(c) ketabton.com: The Digital Library

// error: return types must match if lambda has unspecified return type
auto 1 = [](int value) {
if (value < 10) {
return 1;
} else {
return 1.5;
}
i

In this case you have to specify the return type explicitly:

// The return type is specified explicitly as 'double’
auto 1 = [](int value) -> double {
if (value < 10) {
return 1;
} else {
return 1.5;
}
i

The rules for this match the rules for auto type deduction. Lambdas without explicitly specified return types never
return references, so if a reference type is desired it must be explicitly specified as well:

auto copy
auto ref

[1(X& x) { return x; }; // 'copy' returns an X, so copies its input
[1(X& x) -> X& { return x; }; // 'ref' returns an X&, no copy

Section 73.3: Capture by value

If you specify the variable's name in the capture list, the lambda will capture it by value. This means that the
generated closure type for the lambda stores a copy of the variable. This also requires that the variable's type be
copy-constructible:

int a = 9;

[al() {

return a; // Ok, 'a' is captured by value
s
Version < C++14

auto p = std::unique_ptr<T>(...);

[pl() { // Compile error; ‘unique_ptr® is not copy-constructible
return p->createWidget();

b

From C++14 on, it is possible to initialize variables on the spot. This allows move only types to be captured in the
lambda.

Version = C++14

auto p = std::make_unique<T>(...);

[p = std::move(p)]() {
return p->createWidget();

b

Even though a lambda captures variables by value when they are given by their name, such variables cannot be
modified within the lambda body by default. This is because the closure type puts the lambda body in a declaration
of operator() const

GoalKicker.com - C++ Notes for Professionals 385

(c) ketabton.com: The Digital Library

The const applies to accesses to member variables of the closure type, and captured variables that are members of
the closure (all appearances to the contrary):

int a 0;

[al()

a

~~

2; // Illegal, 'a' is accessed via ‘const’

decltype(a) al = 1;
al = 2; // valid: variable

al' is not const

}i
To remove the const, you have to specify the keyword mutable on the lambda:

int a = 0;

[a]() mutable {
a=2; // OK, 'a' can be modified
return a;

b

Because a was captured by value, any modifications done by calling the lambda will not affect a. The value of a was
copied into the lambda when it was constructed, so the lambda's copy of a is separate from the external a variable.

int a = 5 ;
auto plus5val [a] (void) { return a + 5 ; } ;
auto plus5Ref = [&a] (void) {return a + 5 ; } ;

a=7;
std::cout << a << ", value " << plus5Val() << ", reference " << plus5Ref() ;
// The result will be "7, value 10, reference 12"

Section 73.4: Recursive lambdas

Let's say we wish to write Euclid's gcd() as a lambda. As a function, it is:

int ged(int a, int b) {
return b == 8 ? a : gcd(b, a%b);
}

But a lambda cannot be recursive, it has no way to invoke itself. Alambda has no name and using this within the
body of a lambda refers to a captured this (assuming the lambda is created in the body of a member function,
otherwise it is an error). So how do we solve this problem?

Use std: :function

We can have a lambda capture a reference to a not-yet constructed std: : function:

std::function<int(int, int)> gcd = [&](int a, int b){
return b == 8 ? a : gcd(b, a%b);
i

This works, but should be used sparingly. It's slow (we're using type erasure now instead of a direct function call),
it's fragile (copying gcd or returning gcd will break since the lambda refers to the original object), and it won't work
with generic lambdas.

GoalKicker.com - C++ Notes for Professionals 386

(c) ketabton.com: The Digital Library

Using two smart pointers:

auto gcd_self = std::make_shared<std::unique_ptr< std::function<int(int, int)> >>();
*gcd_self = std::make_unique<std::function<int(int, int)>>(
[gcd_self](int a, int b){
return b == 0 ? a : (**gcd_self) (b, a%b);
i
i

This adds a lot of indirection (which is overhead), but it can be copied/returned, and all copies share state. It does
let you return the lambda, and is otherwise less fragile than the above solution.

Use a Y-combinator
With the help of a short utility struct, we can solve all of these problems:

template <class F>
struct y_combinator {
F f; // the lambda will be stored here

// a forwarding operator():
template <class... Args>
decltype(auto) operator()(Args&&... args) const {
// we pass ourselves to f, then the arguments.
// the lambda should take the first argument as “auto&& recurse” or similar.
return f(*this, std::forward<Args>(args)...);
}
}
// helper function that deduces the type of the lambda:
template <class F>
y_combinator<std: :decay_t<F>> make_y_combinator(F&& f) {
return {std::forward<F>(f)};
}

// (Be aware that in C++17 we can do better than a “make_’ function)
we can implement our gcd as:

auto gcd = make_y_combinator (
[1(auto&& gcd, int a, int b){
return b == 8 ? a : gcd(b, a%b);
}
)

The y_combinator is a concept from the lambda calculus that lets you have recursion without being able to name
yourself until you are defined. This is exactly the problem lambdas have.

You create a lambda that takes "recurse" as its first argument. When you want to recurse, you pass the arguments
to recurse.

The y_combinator then returns a function object that calls that function with its arguments, but with a suitable

"recurse" object (hamely the y_combinator itself) as its first argument. It forwards the rest of the arguments you call
the y_combinator with to the lambda as well.

In short:

auto foo = make_y_combinator([&](auto&& recurse, some arguments) {
// write body that processes some arguments
// when you want to recurse, call recurse(some other arguments)

GoalKicker.com - C++ Notes for Professionals 387

(c) ketabton.com: The Digital Library

b
and you have recursion in a lambda with no serious restrictions or significant overhead.

Section 73.5: Default capture

By default, local variables that are not explicitly specified in the capture list, cannot be accessed from within the
lambda body. However, it is possible to implicitly capture variables named by the lambda body:

int a
int b

15
2F;

// Default capture by value
[=]() { return a + b; }; // OK; a and b are captured by value

// Default capture by reference
[&]() { return a + b; }; // OK; a and b are captured by reference

Explicit capturing can still be done alongside implicit default capturing. The explicit capture definition will override
the default capture:

int a = 9;

int b = 1;

[=, &b]() |
a =2; // Illegal; 'a' is capture by value, and lambda is not 'mutable’
b=2; // 0K; 'b' is captured by reference

3

Section 73.6: Class lambdas and capture of this
A lambda expression evaluated in a class' member function is implicitly a friend of that class:

class Foo

{
private:
int 1i;

public:
Foo(int val) : i(val) {}

// definition of a member function
void Test()

{
auto lamb = [](Foo &foo, int val)
{
// modification of a private member variable
foo.i = val;
b
// lamb is allowed to access a private member, because it is a friend of Foo
lamb(*this, 30);
}

3
Such a lambda is not only a friend of that class, it has the same access as the class it is declared within has.

Lambdas can capture the this pointer which represents the object instance the outer function was called on. This

GoalKicker.com - C++ Notes for Professionals 388

(c) ketabton.com: The Digital Library

is done by adding this to the capture list:

class Foo

{
private:
int 1i;

public:
Foo(int val) : i(val) {}

void Test()

{
// capture the this pointer by value
auto lamb = [this](int val)
{
i = val;
iE
lamb(30);
}

b

When this is captured, the lambda can use member names of its containing class as though it were in its
containing class. So an implicit this-> is applied to such members.

Be aware that this is captured by value, but not the value of the type. It is captured by the value of this, which is a
pointer. As such, the lambda does not own this. If the lambda out lives the lifetime of the object that created it, the
lambda can become invalid.

This also means that the lambda can modify this without being declared mutable. It is the pointer which is const,
not the object being pointed to. That is, unless the outer member function was itself a const function.

Also, be aware that the default capture clauses, both [=] and [&], will also capture this implicitly. And they both
capture it by the value of the pointer. Indeed, it is an error to specify this in the capture list when a default is given.

Version = C++17

Lambdas can capture a copy of the this object, created at the time the lambda is created. This is done by adding
xthis to the capture list:

class Foo

{
private:
int 1i;

public:
Foo(int val) : i(val) {}

void Test()

{
// capture a copy of the object given by the this pointer
auto lamb = [*this](int val) mutable
{
i = val;
i
lamb(30); // does not change this->i
}

b

GoalKicker.com - C++ Notes for Professionals 389

(c) ketabton.com: The Digital Library

Section 73.7: Capture by reference

If you precede a local variable's name with an &, then the variable will be captured by reference. Conceptually, this
means that the lambda's closure type will have a reference variable, initialized as a reference to the corresponding
variable from outside of the lambda's scope. Any use of the variable in the lambda body will refer to the original
variable:

// Declare variable 'a’
int a = 0;

// Declare a lambda which captures 'a' by reference
auto set = [&a]()
a=1;

b

set();
assert(a == 1);

The keyword mutable is not needed, because a itself is not const.

Of course, capturing by reference means that the lambda must not escape the scope of the variables it captures.
So you could call functions that take a function, but you must not call a function that will store the lambda beyond
the scope of your references. And you must not return the lambda.

Section 73.8: Generic lambdas

Version = c++14

Lambda functions can take arguments of arbitrary types. This allows a lambda to be more generic:

auto twice = [](auto x){ return x+x; };

int i = twice(2); // i ==
std::string s = twice("hello"); // s == "hellohello"

This is implemented in C++ by making the closure type's operator () overload a template function. The following
type has equivalent behavior to the above lambda closure:

struct _unique_lambda_type

{
template<typename T>

auto operator() (T x) const {return x + X;}

i
Not all parameters in a generic lambda need be generic:
[1(auto x, int y) {return x + y;}

Here, x is deduced based on the first function argument, while y will always be int.

Generic lambdas can take arguments by reference as well, using the usual rules for auto and &. If a generic
parameter is taken as auto&g, this is a forwarding reference to the passed in argument and not an rvalue reference:

auto lamb1 = [](int &&x) {return x + 5;};
auto lamb2 = [](auto &&x) {return x + 5;};
int x = 10;

GoalKicker.com - C++ Notes for Professionals 390

(c) ketabton.com: The Digital Library

lamb1(x); // Illegal; must use 'std::move(x) for 'int&& parameters.
lamb2(x); // Legal; the type of "x° is deduced as “int&".

Lambda functions can be variadic and perfectly forward their arguments:

auto lam [l1(auto&&... args){return f(std::forward<decltype(args)>(args)...);};

or:
auto lam = [](auto&&... args){return f(decltype(args)(args)...);};

which only works "properly" with variables of type auto&&.

A strong reason to use generic lambdas is for visiting syntax.

boost::variant<int, double> value;
apply_visitor(value, [&](auto&& e){
std::cout << e;

)

Here we are visiting in a polymorphic manner; but in other contexts, the names of the type we are passing isn't
interesting:

mutex_wrapped<std::ostream&> os = std::cout;
os.write([&](auto&& os){
0os << "hello world\n";

)

Repeating the type of std: :ostream& is noise here; it would be like having to mention the type of a variable every
time you use it. Here we are creating a visitor, but no a polymorphic one; auto is used for the same reason you
might use auto in a for(:) loop.

Section 73.9: Using lambdas for inline parameter pack
unpacking

Version = C++14

Parameter pack unpacking traditionally requires writing a helper function for each time you want to do it.

In this toy example:

template<std::size_t...Is>
void print_indexes(std::index_sequence<Is...>) {
using discard=int[];
(void)discard{@, ((void) (
std::cout << Is << '\n' // here Is is a compile-time constant.
JolEhle ot
}
template<std::size_t I>
void print_indexes_upto() {
return print_indexes(std::make_index_sequence<I>{});

}

The print_indexes_upto wants to create and unpack a parameter pack of indexes. In order to do so, it must call a
helper function. Every time you want to unpack a parameter pack you created, you end up having to create a

GoalKicker.com - C++ Notes for Professionals 391

(c) ketabton.com: The Digital Library

custom helper function to do it.
This can be avoided with lambdas.
You can unpack parameter packs into a set of invocations of a lambda, like this:

template<std::size_t I>

using index_t = std::integral_constant<std::size_t, I>;
template<std::size_t I>

constexpr index_t<I> index{};

template<class=void, std::size_t...Is>
auto index_over(std::index_sequence<Is...>) {
return [](auto&& f){
using discard=int[];
(void)discard{0, (void(
f(index<Is>)
),0)...};
iE
}

template<std::size_t N>
auto index_over(index_t<N> = {}) {
return index_over(std::make_index_sequence<N>{});

}

Version = C++17

With fold expressions, index_over () can be simplified to:

template<class=void, std::size_t...Is>
auto index_over(std::index_sequence<Is...>) {
return [](auto&& f){
((void) (f(index<Is>)), ...);
3
}

Once you have done that, you can use this to replace having to manually unpack parameter packs with a second
overload in other code, letting you unpack parameter packs "inline":

template<class Tup, class F>
void for_each_tuple_element(Tup&& tup, F&& f) {
using T = std::remove_reference_t<Tup>;
using std::tuple_size;
auto from_zero_to_N = index_over< tuple_size<T>{} >();

from_zero_to_N(
[&](auto 1){
using std::get;
f(get<i>(std::forward<Tup>(tup)));
}
b
}

The auto i passed to the lambda by the index_over isa std::integral_constant<std::size_t, ???>.Thishasa
constexpr conversion to std: :size_t that does not depend on the state of this, so we can use it as a compile-time
constant, such as when we pass it to std: :get<i> above.

To go back to the toy example at the top, rewrite it as:

GoalKicker.com - C++ Notes for Professionals 392

(c) ketabton.com: The Digital Library

template<std::size_t I>
void print_indexes_upto() {
index_over (index<I>)([](auto 1i){
std::cout << i << '\n'; // here i is a compile-time constant

3
}

which is much shorter, and keeps logic in the code that uses it.

Live example to play with.

Section 73.10: Generalized capture

Version = C++14
Lambdas can capture expressions, rather than just variables. This permits lambdas to store move-only types:
auto p = std::make_unique<T>(...);

auto lamb = [p = std::move(p)]() //Overrides capture-by-value of "p’.
{

p->SomeFunc() ;

b

This moves the outer p variable into the lambda capture variable, also called p. 1amb now owns the memory

allocated by make_unique. Because the closure contains a type that is non-copyable, this means that lamb is itself
non-copyable. But it can be moved:

auto lamb_copy = lamb; //Illegal
auto lamb_move = std::move(lamb); //legal.

Now lamb_move owns the memory.

Note that std: : function<> requires that the values stored be copyable. You can write your own move-only-
requiring std: : function, or you could just stuff the lambda into a shared_ptr wrapper:

auto shared_lambda = [](auto&& f){
return [spf = std::make_shared<std: :decay_t<decltype(f)>>(decltype(f)(f))]
(auto&&...args)->decltype(auto) {
return (*spf)(decltype(args)(args)...);
i
i

auto lamb_shared = shared_lambda(std::move(lamb_move));

takes our move-only lambda and stuffs its state into a shared pointer then returns a lambda that can be copied,
and then stored in a std: : function or similar.

Generalized capture uses auto type deduction for the variable's type. It will declare these captures as values by
default, but they can be references as well:

int a = 0;

auto lamb = [&v = a](int add) //Note that "a’ and ‘v have different names
{
v += add; //Modifies "a°

b

GoalKicker.com - C++ Notes for Professionals 393

(c) ketabton.com: The Digital Library

lamb(20); // a" becomes 20.

Generalize capture does not need to capture an external variable at all. It can capture an arbitrary expression:

auto lamb = [p = std::make_unique<T>(...)]()
{

p->SomeFunc() ;

}

This is useful for giving lambdas arbitrary values that they can hold and potentially modify, without having to
declare them externally to the lambda. Of course, that is only useful if you do not intend to access those variables
after the lambda has completed its work.

Section 73.11: Conversion to function pointer

If alambda's capture list is empty, then the lambda has an implicit conversion to a function pointer that takes the
same arguments and returns the same return type:

auto sorter = [](int lhs, int rhs) -> bool {return lhs < rhs;};

using func_ptr = bool(*)(int, int);
func_ptr sorter_func = sorter; // implicit conversion

Such a conversion may also be enforced using unary plus operator:

func_ptr sorter_func2 = +sorter; // enforce implicit conversion

Calling this function pointer behaves exactly like invoking operator () on the lambda. This function pointer is in no
way reliant on the source lambda closure's existence. It therefore may outlive the lambda closure.

This feature is mainly useful for using lambdas with APIs that deal in function pointers, rather than C++ function
objects.

Version = C++14

Conversion to a function pointer is also possible for generic lambdas with an empty capture list. If necessary,
template argument deduction will be used to select the correct specialization.

auto sorter = [](auto lhs, auto rhs) { return lhs < rhs; };
using func_ptr = bool(*)(int, int);

func_ptr sorter_func = sorter; // deduces int, int

// note however that the following is ambiguous

// func_ptr sorter_func2 = +sorter;

Section 73.12: Porting lambda functions to C++03 using
functors

Lambda functions in C++ are syntactic sugar that provide a very concise syntax for writing functors. As such,
equivalent functionality can be obtained in C++03 (albeit much more verbose) by converting the lambda function
into a functor:

// Some dummy types:

struct T1 {int dummy;};
struct T2 {int dummy;};
struct R {int dummy;};

GoalKicker.com - C++ Notes for Professionals 394

(c) ketabton.com: The Digital Library

// Code using a lambda function (requires C++11)
R use_lambda(T1 val, T2 ref) {
// Use auto because the type of the lambda is unknown.
auto lambda = [val, &ref](int argl, int arg2) -> R {
/* lambda-body #*/
return R();
}i
return lambda(12, 27);
}

// The functor class (valid C++83)
// Similar to what the compiler generates for the lambda function.
class Functor {

// Capture list.

T1 val;

T2& ref;

public:
// Constructor
inline Functor(T1 val, T2& ref) : val(val), ref(ref) {}

// Functor body
R operator()(int argl, int arg2) const {
/* lambda-body */
return R();
}
%

// Equivalent to use_lambda, but uses a functor (valid C++@3).
R use_functor(T1 val, T2 ref) {

Functor functor(val, ref);

return functor(12, 27);
}

// Make this a self-contained example.
int main() {
T1 t1;
T2 t2;
use_functor(t1,t2);
use_lambda(t1,t2);
return 0;

If the lambda function is mutable then make the functor's call-operator non-const, i.e.:

R operator()(int argl, int arg2) /#*non-const*/ {
/* lambda-body #*/
return R();

}

GoalKicker.com - C++ Notes for Professionals 395

(c) ketabton.com: The Digital Library

Chapter 74: Value Categories

Section 74.1: Value Category Meanings

Expressions in C++ are assigned a particular value category, based on the result of those expressions. Value
categories for expressions can affect C++ function overload resolution.

Value categories determines two important-but-separate properties about an expression. One property is whether
the expression has identity. An expression has identity if it refers to an object that has a variable name. The variable
name may not be involved in the expression, but the object can still have one.

The other property is whether it is legal to implicitly move from the expression's value. Or more specifically,
whether the expression, when used as a function parameter, will bind to r-value parameter types or not.

C++ defines 3 value categories which represent the useful combination of these properties: lvalue (expressions with
identity but not movable from), xvalue (expressions with identity that are moveable from), and prvalue (expressions
without identity that are moveable from). C++ does not have expressions which have no identity and cannot be
moved from.

C++ defines two other value categories, each based solely on one of these properties: glvalue (expressions with
identity) and rvalue (expressions that can be moved from). These act as useful groupings of the prior categories.

This graph serves as an illustration:

expression

Section 74.2: rvalue

An rvalue expression is any expression which can be implicitly moved from, regardless of whether it has identity.

More precisely, rvalue expressions may be used as the argument to a function that takes a parameter of type T &&
(where T is the type of expr). Only rvalue expressions may be given as arguments to such function parameters; if a
non-rvalue expression is used, then overload resolution will pick any function that does not use an rvalue reference
parameter. And if none exist, then you get an error.

The category of rvalue expressions includes all xvalue and prvalue expressions, and only those expressions.

The standard library function std: :move exists to explicitly transform a non-rvalue expression into an rvalue. More
specifically, it turns the expression into an xvalue, since even if it was an identity-less prvalue expression before, by
passing it as a parameter to std: :move, it gains identity (the function's parameter name) and becomes an xvalue.

GoalKicker.com - C++ Notes for Professionals 396

(c) ketabton.com: The Digital Library

Consider the following:

std::string str("init"); //1
std::string testl1(str); /12
std::string test2(std::move(str)); //3
str = std::string("new value"); /14
std::string &&str_ref = std::move(str); /15
std::string test3(str_ref); /16

std: :string has a constructor which takes a single parameter of type std: :string&&, commonly called a "move
constructor". However, the value category of the expression str is not an rvalue (specifically it is an Ivalue), so it
cannot call that constructor overload. Instead, it calls the const std: :string& overload, the copy constructor.

Line 3 changes things. The return value of std: :move is a T&&, where T is the base type of the parameter passed in.
So std: :move(str) returns std: :string&&. A function call who's return value is an rvalue reference is an rvalue
expression (specifically an xvalue), so it may call the move constructor of std: :string. After line 3, str has been
moved from (who's contents are now undefined).

Line 4 passes a temporary to the assignment operator of std: :string. This has an overload which takes a

std: :string&&. The expression std: :string("new value") is an rvalue expression (specifically a prvalue), so it
may call that overload. Thus, the temporary is moved into str, replacing the undefined contents with specific
contents.

Line 5 creates a named rvalue reference called str_ref that refers to str. This is where value categories get
confusing.

See, while str_ref is an rvalue reference to std: :string, the value category of the expression str_ref is not an
rvalue. It is an Ivalue expression. Yes, really. Because of this, one cannot call the move constructor of std: :string
with the expression str_ref. Line 6 therefore copies the value of str into test3.

To move it, we would have to employ std: :move again.

Section 74.3: xvalue

An xvalue (eXpiring value) expression is an expression which has identity and represents an object which can be
implicitly moved from. The general idea with xvalue expressions is that the object they represent is going to be
destroyed soon (hence the "eXpiring" part), and therefore implicitly moving from them is fine.

Given:

struct X { int n; };
extern X x;

4, // prvalue: does not have an identity

X; // lvalue

X.Nn; // lvalue

std: :move(x); // xvalue

std::forward<X&>(x); // lvalue

X{4}; // prvalue: does not have an identity

X{4}.n; // xvalue: does have an identity and denotes resources

// that can be reused

Section 74.4: prvalue

A prvalue (pure-rvalue) expression is an expression which lacks identity, whose evaluation is typically used to

GoalKicker.com - C++ Notes for Professionals 397

(c) ketabton.com: The Digital Library

initialize an object, and which can be implicitly moved from. These include, but are not limited to:

¢ Expressions that represent temporary objects, such as std: :string("123").
A function call expression that does not return a reference

A literal (except a string literal - those are Ivalues), such has 1, true, 8.5f, or 'a’
A lambda expression

The built-in addressof operator (&) cannot be applied on these expressions.

Section 74.5: lvalue

An lvalue expression is an expression which has identity, but cannot be implicitly moved from. Among these are
expressions that consist of a variable name, function name, expressions that are built-in dereference operator uses
and expressions that refer to Ivalue references.

The typical Ivalue is simply a name, but Ivalues can come in other flavors as well:

struct X { ... };

X X; // x is an lvalue

X* px = &; // px 1is an lvalue

*px = X{}; // *px is also an lvalue, X{} is a prvalue

X* foo_ptr(); // foo_ptr() is a prvalue
X& foo_ref(); // foo_ref() is an lvalue

Additionally, while most literals (e.g. 4, ' x', etc.) are prvalues, string literals are Ivalues.

Section 74.6: glvalue

A glvalue (a "generalized Ivalue") expression is any expression which has identity, regardless of whether it can be
moved from or not. This category includes Ivalues (expressions that have identity but can't be moved from) and
xvalues (expressions that have identity, and can be moved from), but excludes prvalues (expressions without
identity).

If an expression has a name, it's a glvalue:

struct X { int n; };
X foo();

X x;

x; // has a name, so it's a glvalue

std::move(x); // has a name (we're moving from "x"), so it's a glvalue
// can be moved from, so it's an xvalue not an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>