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PREFACE

The third edition of this book differs from the second edition in numerous
ways. To start with, the chapters have been reordered to place the central materia
at the beginning. There is also now more of a focus on the operating system as the
creator of abstractions. Chapter 1, which has been heavily updated, introduces al
the concepts. Chapter 2 is about the abstraction of the CPU into multiple
processes. Chapter 3 is about the abstraction of physica memory into address
spaces (virtual memory). Chapter 4 is about the abstraction of the disk into files.
Together, processes, virtual address spaces, and files are the key concepts that op-
erating systems provide, so these chapters are now placed earlier than they pre-
viously had been.

Chapter 1 has been heavily modified and updated in many places. For exam-
ple, an introduction to the C programming language and the C run-time model is
given for readers familiar only with Java.

In Chapter 2, the discussion of threads has been revised and expanded reflect-
ing their new importance. Among other things, there is now a section on |EEE
standard Pthreads.

Chapter 3, on memory management, has been reorganized to emphasize the
idea that one of the key functions of an operating system is to provide the abstrac-
tion of a virtua address space for each process. Older materid on memory
management in batch systems has been removed, and the material on the imple-
mentation of paging has been updated to focus on the need to make it handle the
larger address spaces now common and also the need for speed.

XXIV

PREFACE XXV

Chapters 4-7 have been updated, with older material removed and some new
material added. The sections on current research in these chapters have been
rewritten from scratch. Many new problems and programming exercises have
been added.

Chapter 8 has been updated, including some material on multicore systems.
A whole new section on virtuaization technology, hypervisors, and virtua
machines, has been added with VMware used as an example.

Chapter 9 has been heavily revised and reorganized, with considerable new
material on exploiting code bugs, malware, and defenses against them.

Chapter 10, on Linux, is a revision of the old Chapter 10 (on UNIX and
Linux). Thefocusis clearly on Linux now, with a great dea of new material.

Chapter 11, on Windows Vista, is a mgor revision of the old Chap. 11 (on
Windows 2000). It brings the treatment of Windows completely up to date.

Chapter 12 is new. | felt that embedded operating systems, such as those
found on cell phones and PDAs, are neglected in most textbooks, despite the fact
that there are more of them out there than there are PCs and notebooks. This edi-
tion remedies this problem, with an extended discussion of Symbian OS, which is
widely used on Smart Phones.

Chapter 13, on operating system design, is largely unchanged from the second
edition.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.prenhall.com/tanenbaum. They include PowerPoint sheets,
software tools for studying operating systems, lab experiments for students, simu-
lators, and more material for use in operating systems courses. Instructors using
this book in a course should definitely take a look.

In addition, instructors should examine GOAL (Gradiance Online Accelerated
Learning), Pearson's premier online homework and assessment system. GOAL is
designed to minimize student frustration while providing an interactive teaching
experience outside the classroom. With GOAL'S immediate feedback, hints, and
pointers that map back to the textbook, students will have a more efficient and
effective learning experience. GOAL delivers immediate assessment and feed-
back via two kinds of assignments: multiple choice Homework exercises and
interactive Lab work.

The multiple-choice homework consists of a set of multiple choice questions
designed to test student knowledge of a solved problem. When answers are graded
as incorrect, students are given a hint and directed back to a specific section in the
course textbook for helpful information.

The interactive Lab Projects in GOAL, unlike syntax checkers and compilers,
check for both syntactic and semantic errors. GOAL determines if the student's
program runs but more importantly, when checked against a hidden data set, veri-
fies that it returns the correct result. By testing the code and providing immediate
feedback, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.
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Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and Modern
Operating Systems, 3e Value Pack (ISBN: 0135013011).

A number of people helped me with this revision. First and foremost | want
to thank my editor, Tracy Dunkelberger. This is my 18th book and | have worn
out alot of editors in the process. Tracy went above and beyond the call of duty
on this one, doing things like finding contributors, arranging numerous reviews,
helping with al the supplements, dealing with contracts, interfacing to PH, coor-
dinating a great deal of paralel processing, generaly making sure things happen-
ed on time, and more. She aso was able to get me to make and keep to a very
tight schedule in order to get this book out in time. And all this while she remain-
ed chipper and cheerful, despite many other demands on her time. Thank you,
Tracy. | appreciate it alot. .

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals,
updated Chap. 10 from one on UNIX (with a focus on FreeBSD) to one more
about Linux, although much of the chapter is still generic to all UNIX systems.
Linux is more popular among students than FreeBSD, so this is a valuable change.

Dave Probert of Microsoft updated Chap. 11 from one on Windows 2000 to
one on Windows Vista. While they have some similarities, they also have signifi-
cant differences. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. The book is much better as a result of his work.

Mike Jipping of Hope College wrote the chapter on Symbian OS. Not having
anything on embedded real-time systems was a serious omission in the book, and
thanks to Mike that problem has been solved. Embedded real-time systems are
becoming increasingly important in the world and this chapter provides an excel-
lent introduction to the subject.

Unlike ~cla, Dave, and Mike, who each focused on one chapter, Shivakant
Mishra of the University of Colorado at Boulder was more like a distributed sys-
tem, reading and commenting on many chapters and also supplying a substantial
number of new exercises and programming problems throughout the book.

Hugh Lauer also gets a special mention. When we asked him for ideas about
how to revise the second edition, we weren't expecting a report of 23 single-
spaced pages, but that is what we got. Many of the changes, such as the new em-
phasis on the abstractions of processes, address spaces, and files are due to his in-
put.

| would also like to thank other people who helped me in many ways, includ-
ing suggesting new topics to cover, reading the manuscript carefully, making sup-
plements, and contributing new exercises. Among them are Steve Armstrong, J&f-
frey Chastine, John Connelly, Mischa Geldermans, Paul Gray, James Griffioen,
Jorrit Herder, Michael Howard, Surgj Kothari, Roger Kraft, Trudy Levine, John
Masiyowski, Shivakant Mishra, Rudy Pait, Xiao Qin, Mark Russinovich, Krishna
Sivalingam, Leendert van Doom, and Ken Wong.

PREFACE XXVii

The people a Prentice Hall have been friendly and helpful as always, espe-
cidly including Irwin Zucker and Scott Disanno in production and David Alick
ReeAnne Davies, and Melinda Haggerty in editorial.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual
each ma unique and special way. And of course, | would like to thank Suzanne
for her love and patience, not to mention al the druiven and kersen, which have
replaced the sinaasappelsap in recent times.

Andrew S. Tanenbaum
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INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, acomplex system. If every application pro-
grammer had to understand how al these things work in detail, no code would
ever get written. Furthermore, managing all these components and using them
optimally is an exceedingly challenging job. For this reason, computers are
equipped with a layer of software caled the operating system, whose job is to
provide user programs with a better, simpler, cleaner, model of the computer and
to handle managing all the resources just mentioned. These systems are the sub-
ject of this book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or Max OS X, but appearances can be deceiving. The
program that users interact with, usually called the shell when it is text based and
the GUI (Graphical User Interface)—which is pronounced "gooey"— when it
uses icons, is actualy not part of the operating system athough it uses the operat-
ing system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system is the most fundamental piece of soft-
ware and runs in kernel mode (also called supervisor mode). Inthismodeit has
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complete access to al the hardware and can execute any instruction the machine
is capable of executing. The rest of the software runs in user mode, in which only
a subset of the machine instructions is available. In particular, those instructions
that affect control of the machine or do I/O (Input/Output) are forbidden to user-
mode programs. We will come back to the difference between kernel mode and
user mode repeatedly throughout this book.

E-rmail fdusic
Web reader player

browser
\ .

User mode
User interface program V Software

Kernel mode{ Operating system

Hardware

Figure 1-1- Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode
software, and allows the user to start other programs, such as a Web browser, e-
mail reader, or music player. These programs, too, make heavy use of the operat-
ing system.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for al the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular e-mail reader, hef is free
to get a different one or write his own if he so chooses; he is not free to write his
own clock interrupt handler, which is part of the operating system and is protected
by hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based operating
systems that use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but which
help the operating system or perform privileged functions. For example, there is
often a program that allows users to change their passwords. This program is not
part of the operating system and does not run in kernel mode, but it clearly carries
out a sensitive function and has to be protected in a special way. In some sys-
tems, this ideais carried to an extreme form, and pieces of what is traditionally

t "He" should be read as "he or she" throughout the book.
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considered to be the operating system (such as the file system) run in user space.
In such systems, it is difficult to draw a clear boundary. Everything running in
kernel mode is clearly part of the operating system, but some programs running
outside it are arguably also part of it, or at least closely associated with it.
Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived.
The source code of an operating system like Linux or Windows is on the order of
five million lines of code. To conceive of what this means, think of printing out
five million lines in book form, with 50 lines per page and 1000 pages per volume
(larger than this book). It would take 100 volumes to list an operating system of
this size—essentially an entire bookcase. Can you imagine getting ajob maintain-
ing an operating system and on the first day having your boss bring you to a book
case with the code and say: "Go learn that." And this is only for the part that runs
in the kernel. User programs like the GUI, libraries, and basic application soft-
ware (things like Windows Explorer) can easily run to 10 or 20 times that amount.

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, they evolve over long periods of time. Windows 95/98/Me was
basically one operating system and Windows NT/2000/XP/Vista is a different
one. They look similar to the users because Microsoft made very sure that the user
interface of Windows 2000/XP was quite similar to the system it was replacing,
mostly Windows 98. Nevertheless, there were very good reasons why Microsoft
got rid of Windows 98 and we will come to these when we study Windows in de-
tail in Chap. 11.

The other main example we will use throughout this book (besides Windows)
is UNIX and its variants and clones. It, too, has evolved over the years, with ver-
sions like System V, Solaris, and FreeBSD being derived from the origind sys-
tem, whereas Linux is afresh code base, athough very closely modeled on UNIX
and highly compatible with it. We will use examples from UNIX throughout this
book and look at Linux in detail in Chap. 10.

In this chapter we will touch on a number of key aspects of operating systems,
briefly, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these impor-
tant topics in later chapters in more detail.

11 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kernel mode—and even that is not aways true. Part of the
problem is that operating systems perform two basically unrelated functions: pro-
viding application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
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hardware resources. Depending on who is doing the talking, you might hear
mostly about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, 1/0O, and bus struc-
ture) of most computers at the machine language level is primitive and awkward
to program, especialy for input/output. To make this point more concrete, con-
sider how floppy disk 1/0 is done using the NEC PD765 compatible controller
chips used on most Intel-based personal computers. (Throughout this book we
will use the terms "floppy disk" and "diskette" interchangesbly.) We use the
floppy disk as an example, because, athough it is obsolete, it is much simpler
than a modern hard disk. The PD765 has 16 commands, each specified by loading
between | and 9 bytes into a device register. These commands are for reading and
writing data, moving the disk arm, and formatting tracks, as well as initializing,
sensing, resetting, and recalibrating the controller and the drives.

The most basic commands are read and write, each of which requires 13 pa-
rameters, packed into 9 bytes. These parameters specify such items as the address
of the disk block to be read, the number of sectors per track, the recording mode
used on the physical medium, the intersector gap spacing, and what to do with a
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not
worry; that is precisely the point—it is rather esoteric. When the operation is com-
pleted, the controller chip returns 23 status and error fields packed into 7 bytes.
As if this were not enough, the floppy disk programmer must also be constantly
aware of whether the motor is on or off. If the motor is off, it must be turned on
(with along startup delay) before data can be read or written. The motor cannot
be left on too long, however, or the floppy disk will wear out. The programmer is
thus forced to deal with the trade-off between long startup delays versus wearing
out floppy disks (and losing the data on them).

Without going into the real details, it should be clear that the average pro-
grammer probably does not want to get too intimately involved with the pro-
gramming of floppy disks (or hard disks, which are worse). Instead, what the pro-
grammer wants is a simple, high-level abstraction to deal with. In the case of
disks, atypica abstraction would be that the disk contains a collection of named
files. Each file can be opened for reading or writing, then read or written, and fi-
nally closed. Details such as whether or not recording should use modified fre-
quency modulation and what the current state of the motor is should not appear in
the abstraction presented to the application programmer.

Abstraction is the key to managing complexity. Good abstractions turn a
nearly impossible task into two manageable ones. The first one of these is defin-
ing and*aglementing the abstractions. The second one is using these abstractions
to SOI"He problem a hand. One abstraction that almost every computer user
understands is the file. It is a useful piece of information, such as a digital photo,
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saved e-mail message, or Web page. Dealing with photos, e-mails, and Web pages
is easier than the details of disks, such as the floppy disk described above. The job
of the operating system is to create good abstractions and then implement and
manage the abstract objects thus created. In this book, we will talk a lot about ab-
stractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With
all due respect to the industrial engineers who designed the Macintosh, hardware
isugly. Rea processors, memories, disks, and other devices are very complicated
and present difficult, awkward, idiosyncratic, and inconsistent interfaces to the
people who have to write software to use them. Sometimes this is due to the need
for backward compatibility with older hardware, sometimes due to a desire to
save money, but sometimes the hardware designers do not realize (or care) how
much trouble they are causing for the software. One of the major tasks of the op-
erating system is to hide the hardware and present programs (and their pro-
grammers) with nice, clean, elegant, consistent, abstractions to work with instead.
Operating systems turn the ugly into the beautiful, as shownin Fig. 1-2.

Application programs

IS

Operating system

& "W A is*

Beautiful interface

= Udly interface

Figure 1-2. Oparding sysems tum ugly hardwere into beeutiful abgtractions.

It should be noted that the operating system's real customers are the applica
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a command-
line shell or a graphical interface. While the abstractions at the user interface may
be similar to the ones provided by the operating system, this is not always the
case. To make this point clearer, consider the normal Windows desktop and the
iine-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying
(text-oriented) X Window System, but the underlying operating system abstrac-
tions are the same in both cases.



(c) ketabton.com: The Digital Library

6 INTRODUCTION CHAP. 1

In this book, we will study the abstractions provided to application programs
in great detail, but say rather little about user interfaces. That is a large and impor-
tant subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resour ce M anager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds
that the operating system is there to manage all the pieces of a complex system.
Modern computers consist of processors, memories, timers, disks, mice, network
interfaces, printers, and a wide variety of other devices. In the aternative view,
the job of the operating system is to provide for an orderly and controlled aloca
tion of the processors, memories, and 1/0O devices among the various programs
competing for them.

Modern operating systems allow multiple programs to run at the same time.
Imagine what would happen if three programs running on some computer al tried
to print their output simultaneously on the same printer. The first few lines of
printout might be from program |, the next few from program 2, then some from
program 3, and so forth. The result would be chaos. The operating system can
bring order to the potential chaos by buffering al the output destined for the print-
er on the disk. When one program is finished, the operating system can then ocopy-
its output from the disk file where it has been stored for the printer, while at the
same time the other program can continue generating more output, oblivious to
the fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and
protecting the memory, 1/O devices, and other resources is even greater, since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first alocates the CPU to one program,
then, after it has run long enough, another one gets to use the CPU, then another,
and then eventually the first one again. Determining how the resource is time mul-
tiplexed—who goes next and for how long—is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.
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The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is
normally divided up among several running programs, so each one can be resident
at the same time (for example, in order to take turns using the CPU). Assuming
there is enough memory to hold multiple programs, it is more efficient to hold
several programs in.memory at once rather than give one of them al of it, espe-
cialy if it only needs a small fraction of the total. Of course, this raises issues of
fairness, protection, and so on, and it is up to the operating system to solve them.
Another resource that is space multiplexed is the (hard) disk. In many systems a
single disk can hold files from many users at the same time. Allocating disk space
and keeping track of who is using which disk blocks is a typical operating system
resource management task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following
sections we will briefly look at a few of the highlights. Since operating systems
have historically been closely tied to the architecture of the computers on which
they run, we will look at successive generations of computers to see what their op-
erating systems were like. This mapping of operating system generations to com-
puter generations is crude, but it does provide some structure where there would
otherwise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dead ends. Takethisas aguide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and for-
tune trying to build his "analytical engine," he never got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Need-
less to say, the andytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world's first
programmer. The programming language Ada® is named &fter her.

1.2.1 The First Generation (1945-55) Vacuum Tubes

After Babbage's unsuccessful efforts, little progress was made in congtructing
digital computers until World War 11, which stimulated an explosion of activity.
Prof. John Atanasoff and his graduate student Clifford Berry built what is now
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regarded as the first functioning digital computer at lowa State University. It used
300 vacuum tubes. At about the same time, Konrad Zuse in Berlin built the Z3
computer out of relays. In 1944, the Colossus was built by a group at Bletchley
Park, England, the Mark | was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but al were very primitive and took seconds to perform even
the simplest calculation.

In these early days, a single group of people (usualy engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
donein absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine's
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on
the wall, then come down to the machine room, insert his or her plugboard into
the computer, and spend the next few hours hoping that none of the 20,000 or so
vacuum tubes would burn out during the run. Virtualy dl the problems were sim-
ple straightforward numerical calculations, such as grinding out tables of sines,
cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them
ininstead of using plugboards; otherwise, the procedure was thesame. .

1.2.2 The Second Generation (1955-65) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and
sold to paying customers with the expectation that they would continue to func-
tion long enough to get some useful work done. For the first time, there was a
clear separation between designers, builders, operators, programmers, and mainte-
nance personnel.

These machines, now called mainframes, were locked away in speciadly air-
conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or mgjor government agencies or universities could afford
the multimillion-dollar price tag. To run ajob (i.e., a program or set of pro-
grams), a programmer would first write the program on paper (in FORTRAN or
assembler), then punch it on cards. He would then bring the card deck down to
the input room and hand it to one of the operators and go drink coffee until the
output was ready.

When the computer finished whatever job it was currently running, an opera-
tor would go over to the printer and tear off the output and carry it over to the out-
put room, so that the programmer could collect it later. Then he would take one of
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the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from afile
cabinet and read it in. Much computer time was wasted while operators were
walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was
the batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at al good at numerical calculations.'
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

Tape System
drive Input tape Qugput

Card

reader [21F 3
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1401
w Q» © (d) © <9

Figure 1-3. An early batch system, (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape, (c) Operator carries input tape to 7094. (d)
7094 does computing, (€) Operator carries output tape to 1401. (f) 1401 prints
output.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted
on a tape drive. The operator then loaded a special program (the ancestor of
today's operating system), which read the first job from tape and ran it. The out-
put was written onto a second tape, instead of being printed. After eachjob fin-
ished, the operating system automatically read the next job from the tape and
began running it. When the whole batch was done, the operator removed the input
and output tapes, replaced the input tape with the next batch, and brought the out-
put tape to a 1401 for printing offline (i.e., not connected to the main computer).

The structure of a typical inputjob is shown in Fig. 1-4. It started out with a
SJIOB card, specifying the maximum run time in minutes, the account number to
be charged, and the programmer's name. Then came a SFORTRAN card, telling
the operating system to load the FORTRAN compiler from the system tape. It
was directly followed by the program to be compiled, and then a $LOAD card, di-
recting the operating system to load the object programjust compiled. (Compiled
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programs were often written on scratch tapes and had to be loaded explicitly.)
Next came the $RUN card, telling the operating system to run the program with
the data following it. Finaly, the SEND card marked the end of the job. These
primitive control cards were the forerunners of modern shells and command-line
interpreters.

$END

-Date for program

$RUN
$LOAD

$FORTRAN
4J0OB, 10,6610802, MARVIN TANENBAUM

Figure 1-4. Srudure of atypicd AMIS job.

Large second-generation computers were used mostly for scientific and en-
gineering calculations, such as solving the partial differential equations that often
occur in physics and engineering. They were largely programmed in FORTRAN
and assembly language. Typical operating systems were FM'S (the Fortran Moni-
tor System) and IBSY'S, IBM's operating system for the 7094.

1.2.3 The Third Generation (1965-1980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand there were the word-oriented, large-scale
scientific computers, such as the 7094, which were used for numerical calcula
tions in science and engineering. On the other hand, there were the character-
oriented, commercial computers, such as the 1401, which were widely used for
tape sorting and printing by banks and insurance companies.

With the introduction of the IBM System/360, whjtased ICs (Integrated Cir-
cuits), IBM combined these two machine types in fI1—|pe series of compatible
machines. The linea descendant of the 360, the zSeif” is still widdly used for
high-end server applications with massive data bases. One Of the many
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innovations on the 360 was multiprogramming, the ability to have severa pro-
grams in memory at once, each inits own memory partition, as shown in Fig. 1-5.
While one job was waiting for I/0 to complete, another job could be using the
CPU. Specia hardware kept one program from interfering with another.

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memary.

Another mgjor feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system
could load a new job from the disk into the now-empty partition and run it. This
technique is called spooling (from Simultaneous Peripheral Operation On Line)
and was also used for output. With spooling, the 1401s were no longer needed,
and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scien-
tific calculations and massive commercial data processing runs, they were still
basically batch systems with turnaround times of an hour. Programming is diffi-
cult if amisplaced comma wastes an hour. This desire of many programmers for
quick response time paved the way for timesharing, a variant of multiprogram-
ming, in which each user has an online terminal. In a timesharing system, if 20
users are logged in and 17 of them are thinking or talking or drinking coffee, the
CPU can be dlocated in turn to the three jobs that want service. Since people
debugging programs usually issue short commands (e.g., compile a five-page pro-
ceduref) rather than long ones (e.g., sort a million-record file), the computer can
provide fast, interactive service to a number of users and perhaps also work on big
batch jobs in the background when the CPU is otherwise idle. The first serious
timesharing system, CTSS (Compatible Time Sharing System), was developed
at M.I.T. on aspecially modified 7094 (Corbatd et al., 1962). However, timeshar-
ing did not really become popular until the necessary protection hardware became
widespread during the third generation.

After the success of the CTSS system, M.I.T., Bell Labs, and General Electric
(then a major computer manufacturer) decided to embark on the development of a
"computer utility," a machine that would support some hundreds of simultaneous

tWewill usethe terms " procedure” "subroutine," and "function” interchangegbly in thisbook.
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timesharing users. It was caled MULTICS (MULTiplexed Information and
Computing Service), and was a mixed success.

To make a long story short, MULTICS introduced many semina idess into
the computer literature, but only about 80 customers. However, MULTICS users,
including General Motors, Ford, and the U.S. National Security Agency, were
fiercely loyd, shutting down their MULTICS systems in the late 1990s, a 30-year
run.

For the moment, the concept of a computer utility has fizzled out, but it may
well come back in the form of massive centralized Internet servers to which rela-
tively dumb user machines are attached, with most of the work happening on the
big servers. Web services isastep in this direction.

Despite its lack of commercial success, MULTICS had a huge influence on
subsequent operating systems.lt is described in several papers and a book (Cor-
bato et at, 1972; Corbato" and Vyssotsky, 1965; Daley and Dennis, 1968; Organ-
ick, 1972; and Saltzer, 1974). It also has a dtill-active Website, located at
www.multicians.org, with a great deal of information about the system, its de-
signers, and its users.

Another mgjor development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had
only 4K of 18-bit words, but at $120,000 per machine (less than 5 percent of the
price of a 7094), it sold like hotcakes. It was quickly followed by a series of other
PDPs culminating in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MUL-
TICS project, Ken Thompson, subsequently found a small PDP-7 minicomputer
that no one was using and set out to write a stripped-down, one-user version of
MULTICS. This work later developed into the UNIX® operating system, which
became popular in the academic world, with government agencies, and with many
companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that
story will begivenin Chap. 10. For now, suffice it to say, that because the source
code was widely available, various organizations developed their own (incompati-
ble) versions, which led to chaos. Two mgjor versions developed, System V, from
AT&T, and BSD (Berkeley Software Distribution) from the University of Califor-
nia at Berkeley. These had minor variants as well. To make it possible to write
programs that could run on any UNIX system, |IEEE developed a standard for
UNIX, cdled POSIX, that most versions of UNIX now support. POSIX defines a
minimal system cdll interface that conformant UNIX systems must support. In
fact, some other operating systems now also support the POSIX interface.

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionaly, MINIX is
very similar to UNIX, including POSIX support. Since that time, the original ver-
sion has evolved into MINIX 3, which is highly modular and focused on very high
reliability. It has the ability to detect and replace faulty or even crashed modules
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(such as /O device drivers) on the fly without a reboot and without disturbing
running programs. A book describing its internal operation and listing the source
code in an appendix is also available (Tanenbaum and Woodhull, 2006). The
MINIX 3 system is available for free (including al the source code) over the Inter-
net af WWw.minix3.0rg.

The desire for afree production (as opposed to educational) version of MINIX
led a Finnish student, Linus Torvalds, to write Linux. This system was directly
inspired by and developed on MINIX and originally supported various MINIX fea
tures (e.g., the MINIX file system). It has since been extended in many ways but
still retains some of underlying structure common to MINIX and to UNIX.
Readers interested in a detailed history of Linux and the open source movement
might want to read Glyn Moody's (2001) book. Most of what will be said about
UNIX in this book thus applies .to System V, MINIX, Linux, and other versions and
clones of UNIX aswell.

1.2.4 The Fourth Generation (1980-Present) Personal Computers

With the development of LSl (Large Scale Integration) circuits, chips con-
taining thousands of transistors on a sguare centimeter of silicon, the age of the
personal computer dawned. In terms of architecture, personal computers (initially
caled microcomputers) were not al that different from minicomputers of the
PDP-11 class, but in terms of price they certainly were different. Where the
minicomputer made it possible for a department in a company or university to
have its own computer, the microprocessor chip made it possible for a single indi-
vidua to have his or her own personal computer.

In 1974, when Intel came out with the 8080, the first general-purpose 8-bit
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel
asked one of its consultants, Gary Kildal, to write one. Kildall and afriend first
built a controller for the newly released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer
with a disk. Kildall then wrote a disk-based operating system called CP/M (Con-
trol Program for Microcomputers) for it. Since Intel did not think that disk-
based microcomputers had much of a future, when Kildall asked for the rights to
CP/M, Intel granted his request. Kildall then formed a company, Digital Research,
to further develop and sell CP/M.

In 1977, Digital Research rewrote CP/M to make it suitable for running on the
many microcomputers using the 8080, Zilog 280, and other CPU chips. Many ap-
plication programs were written to run on CP/M, allowing it to completely dom-
inate the world of microcomputing for about 5 years.

In the early 1980s, IBM designed the IBM PC and looked around for software
to run on it. People from IBM contacted Bill Gates to license his BASIC inter-
preter. They also asked him if he knew of an operating system to run on the PC.
Gates suggested that IBM contact Digita Research, then the world's dominant
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operating systems company. Making what was surely the worst business decision
in recorded history, Kildall refused to meet with IBM, sending a subordinate in-
stead. To make matters worse, his lawyer even refused to sign IBM's nondisclo-
sure agreement covering the not-yet-announced PC. Consequently, IBM went
back to Gates asking if he could provide them with an operating system.

When IBM came back, Gates redlized that a local computer manufacturer,
Seattle Computer Products, had a suitable operating system, DOS (Disk Oper at-
ing System). He approached them and asked to buy it (alegedly for $75,000),
which they readily accepted. Gates then offered IBM a DOS/BASIC package,
which IBM accepted. 1BM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Paterson, as an employee of Gates' fledgling company,
Microsoft, to make them. The revised system was renamed MS-DOS (MicroSoft
Disk Operating System) and quickly came to dominate the IBM PC market. A
key factor here was Gates' (in retrospect, extremely wise) decision to sell MS
DOS to computer companies for bundling with their hardware, compared to
KildalPs attempt to sell CP/M to end users one at atime (at least initially). After
al this transpired, Kildall died suddenly and unexpectedly from causes that have
not been fully disclosed.

By the time the successor to the IBM PC, the IBM PC/AT, came out in 1983
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the
initial version of MSDOS was fairly primitive, subsequent versions included more
advanced features, including many taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the
company's early years.)

CP/M, MS-DOS, and other operating systems for early microcomputers were
all based on users typing in commands from the keyboard. That eventually chang-
ed due to research done by Doug Engelbart at Stanford Research Institute in the
1960s. Engelbart invented the GUI Graphical User Interface, complete with
windows, icons, menus, and mouse. These ideas were adopted by researchers at
Xerox PARC and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage,
visited PARC, saw a GUI, and instantly realized its potential value, something
Xerox management famoudy did not. This strategic blunder o|g™rgantuan pro-
portions led to a book entitled Fumbling the Future (Smith and Alexander, 1988).
Jobs then embarked on building an Apple with a GUI. This project led to the
Lisa, which was too expensive and failed commercially. Jobs' second attempt, the
Apple Macintosh, was a huge success, not only because it was much cheaper than
the Lisa, but also because it was user friendly, meaning that it was intended for
users who not only knew nothing about computers but furthermore had absolutely
no intention whatsoever of learning. In the creative world of graphic design, pro-
fessional digital photography, and professional digital video production, Macin-
toshes are very widely used and their users are very enthusiastic about them.
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When Microsoft decided to build a successor to MS-DOS, it was strongly
influenced by the success of the Macintosh. It produced a GUI-based system call-
ed Windows, which originaly ran on top of MS-DOS (i.e., it was more like a shell
than a true operating system). For about 10 years, from 1985 to 1995, Windows
wasjust agraphical environment on top of MS-DOS. However, starting in 1995 a
freestanding version of Windows, Windows 95, was released that incorporated
many operating system features into it, using the underlying MSDOS system only
for booting and running old MSDOS programs. In 1998, a dightly modified ver-
sion of this system, called Windows 98 was released. Nevertheless, both Windows
95 and Windows 98 still contained a large amount of 16-bit Intel assembly lan-
guage.

Another Microsoft operating system is Windows NT (NT stands for New
Technology), which is compatible with Windows 95 at a certain level, but a com-
plete rewrite from scratch internally. It is afull 32-bit system. The lead designer
for Windows NT was David Cutler, who was also one of the designers of the
VAX VMS operating system, so some ideas from VMS are present in NT. In
fact, so many ideas from VMS were present in it that the owner of VMS, DEC,
sued Microsoft. The case was settled out of court for an amount of money requir-
ing many digits to express. Microsoft expected that the first version of NT would
kill off MSDOS and dl other versions of Windows since it was a vastly superior
system, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big
way, especially on corporate networks. Version 5 of Windows NT was renamed
Windows 2000 in early 1999. It was intended to be the successor to both Win-
dows 98 and Windows NT 4.0.

That did not quite work out either, so Microsoft came out with yet another
version of Windows 98 called Windows Me (Millennium edition). In 2001, a
slightly upgraded version of Windows 2000, called Windows XP was released.
That version had a much longer run (6 years), basically replacing all previous ver-
sions of Windows. Then in January 2007, Microsoft finally released the successor
to Windows XP, caled Vista. It came with a new graphical interface, Aero, and
many new or upgraded user programs. Microsoft hopes it will replace Windows
XP completely, but this process could take the better part of a decade.

The other major contender in the persona computer world is UNIX (and its
various derivatives). UNIX is strongest on network and enterprise servers, but is
also increasingly present on desktop computers, especially in rapidly developing
countries such as India and China. On Pentium-based computers, Linux is
becoming a popular aternative to Windows for students and increasingly many
corporate users. As an aside, throughout this book we will use the term "Pen-
tium" to mean the Pentium I, II, 111, and 4 as well as its successors such as Core 2
Duo. The term x86 is also sometimes used to indicate the entire range of Intel
CPUs going back to the 8086, whereas "Pentium" will be used to mean al CPUs
from the Pentium | onwards. Admittedly, this term is not perfect, but no better one
isavailable. One has to wonder which marketing genius at Intel threw out a brand
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name (Pentium) that half the world knew well and respected and replaced it with
terms like "Core 2 duo” which very few people understand—quick, what does the
"2" mean and what does the "duo” mean? Maybe "Pentium 5" (or "Pentium 5
dual core," etc.) was just too hard to remember. FreeBSD is also a popular UNIX
derivative, originating from the BSD project a Berkeley. AH modern Macintosh
computers run amodified version of FreeBSD. UNIX is also standard on worksta-
tions powered by high-performance RISC chips, such as those sold by Hewlett-
Packard and Sun Microsystems.

Many UNIX users, especially experienced programmers, prefer a command-
based interface to a GUI, so nearly al UNIX systems support a windowing system
caled the X Window System (also known as XI1) produced at M.I.T. This sys-
tem handles the basic window management, allowing users to create, delete,
move, and resize windows using a mouse. Often a complete GUI, such as Gnome
or KDE is available to run on top of X 11 giving UNIX alook and fed something
like the Macintosh or Microsoft Windows, for those UNIX users who want such a
thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2007). In
a network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to an-
other. Each machine runs its own local operating system and has its own local
user (or users).

Network operating systems are not fundamentally different from single-proc-
essor operating systems. They obviousy need a network interface controller and
some low-level software to drive it, as well as programs to achieve remote login
and remote file access, but these additions do not change the essential structure of
the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run
or where their files are located; that should al be handled automatically and effi-
ciently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems
differ in certain critical ways. Distributed systems, for example, often allow appli-
cations to run on several processors at the same time, thus requiring more com-
plex processor scheduling algorithms in order to optimize the amount of paralr
lelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information.
This situation is radically different from a single-processor system in which the
operating system has complete information about the system state.
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1.3 COMPUTER HARDWARE REVIEW

An operating system is intimately tied to the hardware of the computer it runs
on. It extends the computer's instruction set and manages its resources. To work,
it must know a great deal about the hardware, at least about how the hardware
appears to the programmer. For this reason, let us briefly review computer hard-
ware as found in modern personal computers. After that, we can start getting into
the details of what operating systems do and how they work.

Conceptually, a simple personal computer can be abstracted to a model
resembling that of Fig. 1-6. The CPU, memory, and 1/O devices are al connected
by a system bus and communicate with one another over it. Modern personal
computers have a more complicated structure, involving multiple buses, which we
will look at later. For the time being, this model will be sufficient. In the follow-
ing sections, we will briefly review these components and examine some of the
hardware issues that are of concern to operating system designers. Needless to
say, this will be a very compact summary. Many books have been written on the
subject of computer hardware and computer organization Two well-known ones
are by Tanenbaum (2006) and Patterson and Hennessy (2004).

Monitor
. Hard
Keyboard USB printer disk drive

. Hard
Video Keyboard usB ;
CPU Memory disk
o controller controller controller controller
Bus

Figure 1-6. Some of the components of a simple personal computer.

1.3.1 Processors

The "brain" of the computer is the CPU. It fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands, execute it, and then
fetch, decode, and execute subsequent instructions. The cycle is repeated until the
program finishes. In thisway, programs are carried out.
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Each CPU has a specific set of instructions that it can execute. Thus a Pen-
tium cannot execute SPARC programs and a SPARC cannot execute Pentium pro-
grams. Because accessing memory to get an instruction or data word takes much
longer than executing an instruction, al CPUs contain some registers inside to
hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from regis-
ters, memory, or both into aresult, such as adding two words and storing the re-
sult in aregister or in memory.

In addition to the genera registers used to hold variables and temporary re-
sults, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory ad-
dress of the next instruction to be fetched. After that instruction has been fetched,
the program counter is updated to point to its successor.

Another register is the stack pointer, which points to the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure's stack frame holds those input parame-
ters, local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits, which are set by comparison instructions, the CPU
priority, the mode (user or kernel), and various other control bits. User programs
may normally read the entire PSW but typically may write only some of its fields.
The PSW plays an important role in system calls and |/O.

The operating system must be aware of dl the registers. When time multi-
plexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time it stops a running program, the operating system
must save dl the registers so they can be restored when the program runs later.

To improve performance, CPU designers have long abandoned the simple
model of fetching, decoding, and executing one instruction at a time. Many mod-
ern CPUs have facilities for executing more than one instruction at the same time.
For example, a CPU might have separate fetch, decode, and execute units, so that
while it was executing instruction n, it could also be decoding instruction n + 1
and fetching instruction n + 2. Such an organization is called a pipeline and isiil-
lustrated in Fig. 1 -7(a) for a pipeline with three stages. Longer pipelines are com-
mon. In most pipeline designs, once an instruction has been fetched into the pipe-
line, it must be executed, even if the preceding instruction was a conditional
branch that was taken. Pipelines cause compiler writers and operating system
writers great headaches because they expose the complexities of the underlying
machine to them.

Even more advanced than a pipeline design is a superscalar CPU, shown in
Fig. 1 -7(b). In this design, multiple execution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Boolean oper-
ations. Two or more instructions are fetched at once, decoded, and dumped into a
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Figure 1-7. (a) A three-stage pipeline, (b) A superscalar CPU.

holding buffer until they can be executed. As soon as an execution unit is free, it
looks in the holding buffer to see if there is an instruction it can handle, and if so,
it removes the instruction from the buffer and executes it. An implication of this
design is that program instructions are often executed out of order. For the most
part, it is up to the hardware to make sure the result produced is the same one a
sequential implementation would have produced, but an annoying amount of the
complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in embedded systems,.have two
modes, kerned mode and user mode, as mentioned earlier. Usualy, a bit in the
PSW controls the mode. When running in kernel mode, the CPU can execute
every instruction in its instruction set and use every festure of the hardware. The
operating system runs in kernel mode, giving it access to the complete hardware.

In contrast, user programs run in user mode, which permits only a subset of
the instructions to be executed and a subset of the features to be accessed. Gener-
aly, al instructions involving 1/0O and memory protection are disallowed in user
mode. Setting the PSW mode hit to enter kernel mode is also forbidden, of course.

To obtain services from the operating system, a user program must make a
system call, which traps into the kernel and invokes the operating system. The
TRAP instruction switches from user mode to kernel mode and starts the operating
system. When the work has been completed, control is returned to the user pro-
gram at the instruction following the system call. We will explain the details of
the system call mechanism later in this chapter but for the time being, think of it
as a specid kind of procedure call instruction that has the additional property of
switching from user mode to kernel mode. As a note on typography, we will use
the lower case Helvetica font to indicate system calls in running text, like this:
read.

It is worth noting that computers have traps other than the instruction for exe-
cuting a system call. Most of the other traps are caused by the hardware to warn of
an exceptional situation such as an attempt to divide by O or a floating-point
underflow. In all cases the operating system gets control and must decide what to
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do. Sometimes the program must be terminated with an error. Other times the
error can be ignored (an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

Multithreaded and Multicore Chips

Moore's law states that the number of transistors on a chip doubles every 18
months. This "law" is not some kind of law of physics, like conservation of mo-
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc-
ess engineers at the semiconductor companies are able to shrink their transistors.
Moore's law has held for three decades now and is expected to hold for at least
one more.

The abundance of transistors is leading to a problem: what to do with all of
them? We saw one approach above: superscalar architectures, with multiple func-
tiona units. But as the number of transistors increases, even more is possible.
One obvious thing to do is put bigger caches on the CPU chip and that is defin-
itely happening, but eventually the point of diminishing returns is reached.

The obvious next step is to replicate not only the functiona units, but aso
some of the control logic. The Pentium 4 and some other CPU chips have this
property, caled multithreading or hyperthreading (Intel's name for it). To a
first approximation, what it does is alow the CPU to hold the state of two dif-
ferent threads and then switch back and forth on a nanosecond time scale. (A
thread is a kind of lightweight process, which, in turn, is a running program; we
will get into the details in Chap. 2.) For example, if one of the processes needs to
read a word from memory (which takes many clock cycles), a multithreaded CPU
can just switch to ancther thread. Multithreading does not offer true parallelism.
Only one process at a time is running, but thread switching time is reduced to the
order of a nanosecond.

Multithreading has implications for the operating system because each thread
appears to the operating system as a separate CPU. Consider a system with two
actua CPUs, each with two threads. The operating system will see this as four
CPUs. If thereis only enough work to keep two CPUs busy at a certain point in
time, it may inadvertently schedule two threads on the same CPU, with the other
CPU completely idle. This choice is far less efficient than using one thread on
each CPU. The successor to the Pentium 4, the Core (also Core 2) architecture
does not have hyperthreading, but Intel has announced that the Core's successor
will have it again.

Beyond multithreading, we have CPU chips with two or four or more com-
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively
carry four minichips on them, each with its own independent CPU. (The caches
will be explained below.) Making use of such amulticore chip will definitely re-
quire a multiprocessor operating system.
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Figure 1-8. (a) A quad-core chip with a shared L2 cache, (b) A quad-core chip
with separate L 2 caches.

132 Memory

The second major component in any computer is the memory. Idealy, a mem-
ory should be extremely fast (faster than executing an instruction so the CPU is
not held up by the memory), abundantly large, and dirt cheap. No current tech-
nology satisfies all of these goals, so a different approach is taken. The memory
system is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top lay-
ers have higher speed, smaller capacity, and greater cost per bit than the lower
ones, often by factors of a billion or more.

Typical accesstime Typical capacity
1 nsec Registers <1 KB
2 nsec Cache 4MB
10 nsec Main memory 512-2048MB
10 msec Magnetic disk 200-1000GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

The top layer consists of the registers interna to the CPU. They are made of
the same materia as the CPU and are thusjust as fast as the CPU. Consequently,
there is no delay in accessing them. The storage capacity available in them is typi-
caly 32 x 32-hits on a 32-bit CPU and 64 x 64-bits on a 64-bit CPU. Lessthan 1
KB in both cases. Programs must manage the registers (i.e., decide what to keep
in them) themselves, in software.
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Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typicaly 64 bytes, with addresses 0
to 63 in cache line 0, addresses 64 to 127 in cache line 1, and so on. The most
heavily used cache lines are kept in a high-speed cache located inside or very
close to the CPU. When the program needs to read a memory word, the cache
hardware checks to see if the line needed is in the cache. If itis, caled a cache
hit, the request is satisfied from the cache and no memory request is sent over the
bus to the main memory. Cache hits normally take about two clock cycles. Cache
misses have to go to memory, with a substantial time penalty. Cache memory is
limited in size due to its high cost. Some machines have two or even three levels
of cache, each one slower and bigger than the one before it.

Caching plays a major role in many areas of computer science, notjust cach-
ing lines of RAM. Whenever there is a large resource that can be divided into
pieces, some of which are used much more heavily than others, caching is often
invoked to improve performance. Operating systems use it dl the time. For ex-
ample, most operating systems keep (pieces of) heavily used files in main memo-
ry to avoid having to fetch them from the disk repeatedly. Similarly, the results of
converting long path names like

/home/ast/projects/minix3/src/kemel/clock.c

into the disk address where the file is located can be cached to avoid repeated
lookups. Finally, when an address of a Web page (URL) is converted to a network
address (IP address), the result can be cached for future use. Many other uses
exist.

In any caching system, severa questions come up fairly soon, including:

1. When to put a new item into the cache.

2. Which cache line to put the new item in.

3. Which item to remove from the cache when aslot is needed.
4

. Where to put a newly evicted item in the larger memory.

Not every question is relevant to every caching situation. For caching lines of
main memory in the CPU cache, a new item will generaly be entered on every
cache miss. The cache line to use is generally computed by using some of the
high-order bits of the memory address referenced. For example, with 4096 cache
lines of 64 bytes and 32 bit addresses, bits 6 through 17 might be used to specify
the cache line, with bits 0 to 5 the byte within the cache line. In this case, the
item to remove is the same one as the new data goes into, but in other systems it
might not be. Finally, when a cache line is rewritten to main memory (if it has
been modified since it was cached), the place in memory to rewrite it to is
uniquely determined by the address in question.
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Caches are such a good idea that modern CPU's have two of them. The first
level or L1 cache is aways inside the CPU and usually feeds decoded instructions
into the CPUs execution engine. Most chips have a second LI cache for very
heavily used data words. The LI caches are typically 16 KB each. In addition,
there is often a second cache, called the L2 cache, that holds severa megabytes
of recently used memory words. The difference between the LI and L2 caches
liesinthetiming. Accessto the LI cacheis done without any delay, whereas ac-
cess to the L2 cache involves adelay of one or two clock cycles.

On multicore chips, the designers have to decide where to place the caches.
In Fig. 1-8(a), there is asingle L2 cache shared by all thecores. This approach is
used in Intel multicore chips. In contrast, in Fig. 1-8(b), each core has its own L2
cache. This approach is used by AMD. Each strategy has its pros and cons. For
example, the Intel shared L2 cache requires a more complicated cache controller
but the AMD way makes keeping the L2 caches consistent more difficult.

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse
of the memory system. Main memory is usually called RAM (Random Access
Memory). Old-timers sometimes call it core memory, because computers in the
1950s and 1960s used tiny magnetizable ferrite cores for main memory. Currently,
memories are hundreds of megabytes to severa gigabytes and growing rapidly.
All CPU requests that cannot be satisfied out of the cache go to main memory.

In addition to the main memory, many computers have a smal amount of
nonvolatile random access memory. Unlike RAM, nonvolatile memory does not
lose its contents when the power is switched off. ROM (Read Only Memory) is
programmed at the factory and cannot be changed afterward. It is fast and inex-
pensive. On some computers, the bootstrap loader used to start the computer is
contained in ROM. Also, some I/O cards come with ROM for handling low-level
device control.

EEPROM (Electrically Erasable PROM) and flash memory are also non-
volatile, but in contrast to ROM can be erased and rewritten. However, writing
them takes orders of magnitude more time than writing RAM, so they are used in
the same way ROM s, only with the additional feature that it is now possible to
correct bugs in programs they hold by rewriting them in the field.

Flash memory is also commonly used as the storage medium in portable elec-
tronic devices. It serves asfilmin digital cameras and as the disk in portable mu-
sic players, to namejust two uses. Flash memory isintermediate in speed between
RAM and disk. Also, unlike disk memory, if itis erased too many times, it wears
out.

Y et another kind of memory is CMOS, which is volatile. Many computers use
CMOS memory to hold the current time and date. The CMOS memory and the
clock circuit that increments the time in it are powered by a small battery, so the
time is correctly updated, even when the computer is unplugged. The CMOS
memory can also hold the configuration parameters, such as which disk to boot
from. CMOS is used because it draws so little power that the original factory-
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installed battery often lasts for severa years. However, when it begins to fail, the
computer can appear to have Alzheimer's disease, forgetting things that it has
known for years, like which hard disk to boot from.

1.3.3 Disks

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close to
three orders of magnitude slower. This low speed is due to the fact that adisk is a
mechanical device, as shown in Fig. 1-10.

Read/write head (1 per surface}

Surface ¥ =

Surface 6 =

Surface 5 =

Surface 4 e

Surface 3 = -~

Direction of arm motien

Surface 2 =

Surface 1 =

Suiface ¢ E—

Figure 1-10, Structure of a disk drive.

A disk consists of one or more metal platters that rotate at 5400, 7200, or
10,800 rpm A mechanical arm pivots over the platters from the comer, similar to
the pickup arm on an old 33 rpm phonograph for playing vinyl records. Infor-
mation is written onto the disk in a series of concentric circles. At any given arm
position, each of the heads can read an annular region called a track. Together,
al the tracks for a given arm position form a cylinder.

Each track is divided into some number of sectors, typically 512 bytes per
sector. On modem disks, the outer cylinders contain more sectors than the inner
ones. Moving the arm from one cylinder to the next one takes about 1 msec.
Moving it to arandom cylinder typically takes 5 msec to 10 msec, depending on
the drive. Once the arm is on the correct track, the drive must wait for the needed
sector to rotate under the head, an additional delay of 5 msec to 10 msec, depend-
ing on the drive's rpm. Once the sector is under the head, reading or writing oc-
curs at arate of 50 MB/sec on low-end disks to 160 MB/sec on faster ones.

Many computers support a scheme known as virtual memory, which we will
discuss at some length in Chap. 3. This scheme makes it possible to run programs
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larger than physical memory by placing them on the disk and using main memory
as a kind of cache for the most heavily executed parts. This scheme requires re-
mapping memory addresses on the fly to convert the address the program gen-
erated to the physical address in RAM where the word is located. This mapping is
done by a part of the CPU caled the MMU (Memory Management Unit), as
shown in Fig. 1-6.

The presence of caching and the MMU can have a maor impact on per-
formance. In a multiprogramming system, when switching from one program to
another, sometimes called a context switch, it may be necessary to flush al modi-
fied blocks from the cache and change the mapping registers in the MMU. Both
of these are expensive operations and programmers try hard to avoid them. We
will see some of the implications of their tactics later.

134 Tapes

The find layer in the memory hierarchy is magnetic tape. This medium is
often used as a backup for disk storage and for holding very large data sets. To
access a tape, it must first be put into a tape reader, either by a person or a robot
(automated tape handling is common at installations with huge databases). Then
the tape may have to be spooled forward to get to the requested block. All in all,
this could take minutes. The big plus of tape is that it is exceedingly cheap per bit
and removable, which is important for backup tapes that must be stored off-site in
order to survive fires, floods, earthquakes, and other disasters.

The memory hierarchy we have discussed is typical, but some installations do
not have al the layers or have a few different ones (such as optical disk). Still, in
al of them, as one goes on down the hierarchy, the random access time increases
dramatically, the capacity increases equally dramaticaly, and the cost per bit
drops enormously. Consequently, it is likely that memory hierarchies will be
around for years to come.

1.3.5 1I/O Devices

The CPU and memory are not the only resources that the operating system
must manage. /0 devices also interact heavily with the operating system. As we
saw in Fig. 1-6, 1/O devices generally consist of two parts. a controller and the de-
vice itsdf. The controller is a chip or a set of chips that physically controls the de-
vice. It accepts commands from the operating system, for example, to read data
from the device, and carries them out.

In many cases, the actual control of the device is very complicated and de-
tailed, so it is thejob of the controller to present a simpler interface to the operat-
ing system (but till very complex). For example, a disk controller might accept a
command to read sector 11,206 from disk 2. The controller then has to convert
this linear sector number to a cylinder, sector, and head. This conversion may be
complicated by the fact that outer cylinders have more sectors than inner ones and
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that some bad sectors have been remapped onto other ones. Then the controller
has to determine which cylinder the disk arm is on and give it a sequence of
pulses to move in or out the requisite number of cylinders. It has to wait until the
proper sector has rotated under the head and then start reading and storing the bits
as they come off the drive, removing the preamble and computing the checksum.
Finaly, it has to assemble the incoming bits into words and store them in memo-
ry. To do dl this work, controllers often contain small embedded computers .that
are programmed to do their work.

The other piece is the actua device itsef. Devices have farly smple inter-
faces, both because they cannot do much and to make them standard. The latter is
needed so that any IDE disk controller can handle any IDE disk, for example.
IDE stands for Integrated Drive Electronics and is the standard type of disk on
many computers. Since the actual device interface is hidden behind the controller,
al that the operating system sees is the interface to the controller, which may be
quite different from the interface to the device.

Because each type of controller is different, different software is needed to
control each one. The software that talks to a controller, giving it commands and
accepting responses, is called a device driver. Each controller manufacturer has
to supply adriver for each operating system it supports. Thus a scanner may come
with drivers for Windows 2000, Windows XP, Vista, and Linux, for example.

To be used, the driver has to be put into the operating system so it can run in
kernel mode. Drivers can actualy run outside the kernel, but only a few current
systems support this possibility because it requires the ability to alow a user-
space driver to be able to access the device in a controlled way, a feature rarely
supported. There are three ways the driver can be put into the kernel. The first
way isto relink the kernel with the new driver and then reboot the system. Many
older UNIX systems work like this. The second way is to make an entry in an op-
erating system filetelling it that it needs the driver and then reboot the system. At
boot time, the operating system goes and finds the drivers it needs and loads them.
Windows works this way. The third way is for the operating system to be able to
accept new drivers while running and install them on the fly without the need to
reboot. This way used to be rare but is becoming much more common now. Hot
pluggable devices, such as USB and |IEEE 1394 devices (discussed below) always
need dynamically loaded drivers.

Every controller has asmall number of registers that are used to communicate
with it. For example, aminimal disk controller might have registers for specifying
the disk address, memory address, sector count, and direction (read or write). To
activate the controller, the driver gets a command from the operating system, then
translates it into the appropriate values to write into the device registers. The col-
lection of al the device registers forms the 1/0 port space, a subject we will
come back to in Chap. 5.

On some computers, the device registers are mapped into the operating sys-
tem's address space (the addresses it can use), so they can be read and written like
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ordinary memory words. On such computers, no specia /O instructions are re-
quired and user programs can be kept away from the hardware by not putting
these memory addresses within their reach (e.g., by using base and limit regis-
ters). On other computers, the device registers are put in a special 1/0 port space,
with each register having a port address. On these machines, special iN and OUT
instructions are available in kernel mode to alow drivers to read and write the
registers. The former scheme eliminates the need for specia 1/0 instructions but
uses up some of the address space. The latter uses no address space but requires
specia instructions. Both systems are widely used.

Input and output can be donein three different ways. In the simplest method,
auser program issues a system call, which the kernel then translates into a proce-
dure call to the appropriate driver. The driver then starts the I/O and sits in atight
loop continuously polling the device to see if it is done (usualy there is some bit
that indicates that the device is still busy). When the 1/0 has completed, the driv-
er puts the data (if any) where they are needed and returns. The operating system
then returns control to the caller. This method is called busy waiting and has the
disadvantage of tying up the CPU polling the device until itis finished.

The second method is for the driver to start the device and ask it to give an in-
terrupt when it isfinished. At that point the driver returns. The operating system
then blocks the caller if need be and looks for other work to do. When the con-
troller detects the end of the transfer, it generates an interrupt to signa comple-
tion.

Interrupts are very important in operating systems, so let us examine the idea
more closely. In Fig. 1-11(a) we see a three-step process for 1/0. In step 1, the
driver tells the controller what to do by writing into its device registers. The con-
troller then starts the device. When the controller has finished reading or writing
the number of bytes it has been told to transfer, it signals the interrupt controller
chip using certain bus lines in step 2. I the interrupt controller is prepared to ac-
cept the interrupt (which it may not be if it is busy with a higher-priority one), it
asserts a pin on the CPU chip informing it, in step 3. In step 4, the interrupt con-
troller puts the number of the device on the bus so the CPU can read it and know
which device hasjust finished (many devices may be running at the same time).

Once the CPU has decided to take the interrupt, the program counter and
PSW are typically then pushed onto the current stack and the CPU switched into
kernel mode. The device number may be used as an index into part of memory to
find the address of the interrupt handler for this device. This pat of memory is
caled the interrupt vector. Once the interrupt handler (part of the driver for the
interrupting device) has started, it removes the stacked program counter and PSW
and saves them, then queries the device to learn its status. When the handler is all
finished, it returns to the previously running user program to the first instruction
that was not yet executed. These steps are shown in Fig. 1-11(b).

The third method for doing 1/0 makes use of specia hardware: a DMA
(Direct Memory Access) chip that can control the flow of bits between memory
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Figure 1-11. (a) The steps in starting an 1/O device and getting an interrupt, (b)
Interrupt processing involves taking the interrupt, running the interrupt handler,
and returning to the user program.

and some controller without constant CPU intervention. The CPU sets up the
DMA chip, telling it how many bytes to transfer, the device and memory ad-
dresses involved, and the direction, and lets it go. When the DMA chip is done, it
causes an interrupt, which is handled as described above. DMA and 1/O hardware
in general will be discussed in more detail in Chap. 5.

Interrupts can often happen at highly inconvenient moments, for example,
while another interrupt handler is running. For this reason, the CPU has a way to
disable interrupts and then reenable them later. While interrupts are disabled, any
devices that finish continue to assert their interrupt signals, but the CPU is not in-
terrupted until interrupts arc enabled again. If multiple devices finish while inter-
rupts are disabled, the interrupt controller decides which one to let through first,
usualy based on static priorities assigned to each device. The highest-priority de-
vice wins.

1.3.6 Buses

The organization of Fig. 1-6 was used on minicomputers for years and also on
theorigina IBM PC. However, as processors and memories got faster, the ability
of a single bus (and certainly the IBM PC bus) to handle al the traffic was
strained to the breaking point. Something had to give. As a result, additional
buses were added, both for faster 1/0 devices and for CPU-to-memory traffic. As
a consequence of this evolution, a large Pentium system currently looks some-
thing like Fig. 1-12.

This system has eight buses (cache, local, memory, PCl, SCSI, USB, IDE,
and 1SA), each with a different transfer rate and function. The operating system
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Figure 1-12. The sructure of a large Pentium system

must be aware of dl of them for configuration and management. The two main
buses are the original IBM PC ISA (Industry Standard Architecture) bus and
its successor, the PCI (Peripheral Component Interconnect) bus. The ISA bus,
which was originally the B3V PC/AT bus, runs at 8.33 MHz and can transfer 2
bytes at once, for amaximum speed of 16.67 MB/sec. It is included for backward
compatibility with old and slow 1/O cards. Modern systems frequently leave it out
and it is dying off. The PCI bus was invented by Intel as a successor to the ISA
bus. It can run a 66 MHz and transfer 8 bytes at a time, for a data rate of 528
MB/sec. Most high-speed 1/0 devices use the PCI bus now. Even some non-Intel
computers use the PCI bus due to the large number of I/O cards available for it.
New computers are being brought out with an updated version of the PCI bus call-
ed PCI Express.

In this configuration, the CPU talks to the PCI bridge chip over the local bus,
and the PCI bridge chip talks to the memory over a dedicated memory bus, often
running a 100 MHz. Pentium systems have a level-1 cache on chip and a much
larger level-2 cache off chip, connected to the CPU by the cache bus.

In addition, this system contains three specialized buses: IDE, USB, and
SCSI. The IDE bus is for attaching peripheral devices such as disks and CD-
ROMs to the system. The IDE bus is an outgrowth of the disk controller interface
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on the PC/AT and is now standard on nearly al Pentium-based systems for the
hard disk and often the CD-ROM.

The USB (Universal Serial Bus) was invented to attach al the slow 1/0 de-
vices, such as the keyboard and mouse, to the computer. It uses asmall four-wire
connector, two of which supply electrical power to the USB devices. USB is a
centralized busin which aroot device pollsthe 1/O devices every 1 msec to seeif
they have any traffic. USB 10 could handle an aggregate load of 15 MB/sec but
the newer USB 2.0 bus can handle 60 MB/sec. All the USB devices share asingle
USB device driver, making it unnecessary to install a new driver for each new
USB device. Consequently, USB devices can be added to the computer without
the nead to reboot.

The SCSI (Small Computer System Interface) bus is a high-performance
bus intended for fast disks, scanners, and other devices needing considerable
bandwidth. 1t can run at up to 160 MB/sec. It has been present on Macintosh sys-
tems since they were invented and is also popular on UNIX and some Intel-based
systems.

Y et another bus (not shown in Fig. 1-12) is|EEE 1394. Sometimes it is call-
ed FireWire, athough gtrictly speaking, FireWire is the name Apple uses for its
implementation of 1394. Like USB, IEEE 13% is bit serial but is designed for
packet transfers at speeds up to 100 MB/sec, making it useful for connecting digi-
tal camcorders and similar multimedia devices to a computer. Unlike USB, |EEE
1394 does not have a central controller.

Towork in an environment such as that of Fig. 1-12, the operating system has
to know what peripheral devices are connected to the computer and configure
them. This requirement led Intel and Microsoft to design a PC system called plug
and play, based on a similar concept first implemented in the Apple Macintosh.
Before plug and play, each 1/0O card had a fixed interrupt request level and fixed-
addresses for its 1/O registers. For example, the keyboard was interrupt 1 and used
1/0O addresses 0x60 to 0x64, the floppy disk controller was interrupt 6 and used
1/0 addresses Ox3FO to 0x3F7, and the printer was interrupt 7 and used 1/O ad-
dresses 0x378 to 0x37A, and so on.

So far, so good. The trouble came when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every 1/0O card and instruct the user to please set them to select an interrupt level
and 1/0 device addresses that did not conflict with any others in the user's system.
Teenagers who devoted their lives to the intricacies of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the I/O devices, centrally assign interrupt levels and 1/0 addresses, and then
tell each card what its numbers are. This work is closely related to booting the
computer, S0 let us look &t that. It isnot completely trivial.
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1.3.7 Booting the Computer

Very briefly, the Pentium boot process is as follows. Every Pentium contains
a parentboard (formerly called a motherboard before political correctness hit the
computer industry). On the parentboard is a program called the system BIOS
(Bask Input Output System). The BIOS contains low-level 1/0 software, in-
cluding procedures to read the keyboard, write to the screen, and do disk /O,
among other things. Nowadays, it is held in aflash RAM, which is nonvolatile but
which can be updated by the operating system when bugs are found in the BIOS.

When the computer is booted, the BIOS is started. It first checks to see how
much RAM is installed and whether the keyboard and other basic devices are in-
stalled and responding correctly. It starts out by scanning the ISA and PCI buses
to detect al the devices attached to them. Some of these devices are typically
legacy (i.e., designed before plug and play was invented) and have fixed interrupt
levels and /O addresses (possibly set by switches or jumpers on the 1/O card, but
not modifiable by the operating system). These devices are recorded. The plug
and play devices are also recorded. [f the devices present are different from when
the system was last booted, the new devices are configured.

The BIOS then determines the boot device by trying alist of devices stored in
the CMOS memory. The user can change this list by entering a BIOS configura-
tion program just after booting. Typically, an attempt is made to boot'from the
floppy disk, if one is present. If that fails the CD-ROM driveis queried to see if a
bootable CD-ROM is present. If neither a floppy nor a CD-ROM is present, the
system is booted from the hard disk. The first sector from the boot device is read
into memory and executed. This sector contains a program that normally exam-
ines the partition table at the end of the boot sector to determine which partition is
active. Then a secondary boot loader is read in from that partition. This loader
reads in the operating system from the active partition and starts it.

The operating system then queries the BIOS to get the configuration infor-
mation. For each device, it checks to seeif it has the device driver. If not, it asks
the user to insert a CD-ROM containing the driver (supplied by the device's
manufacturer). Once it has al the device drivers, the operating system loads them
into the kernel. Then it initializes its tables, creates whatever background proc-
esses are needed, and starts up a login program or GUI.

14 THE OPERATING SYSTEM ZOO

Operating systems have been around now for over hdf a century. During this
time, quite a variety of them have been developed, not al of them widely known.
In this section we will briefly touch upon nine of them. We will come back to
some of these different kinds of systems later in the book.
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1.4.1 Mainframe Operating Systems

At the high end are the operating systems for the mainframes, those room-
sized computers till found in major corporate data centers. These computers dif-
fer from personal computers in terms of their 1/0 capacity. A mainframe with
1000 disks and millions of gigabytes of data is not unusual; a personal computer
with these specifications would be the envy of its friends. Mainframes are also
making something of a comeback as high-end Web servers, servers for large-scale
electronic commerce sites, and servers for business-to-business transactions.

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of I/0. They typically
offer three kinds of services: batch, transaction processing, and timesharing. A
batch system is one that processes routine jobs without any interactive user pres-
ent. Claims processing in an insurance company or sales reporting for a chain of
stores is typicaly done in batch mode. Transaction processing systems handle
large numbers of small requests, for example, check processing at a bank or air-
line reservations. Each unit of work is small, but the system must handle hundreds
or thousands per second. Timesharing systems alow multiple remote users to run
jobs on the computer at once, such as querying a big database. These functions are
closdly related; mainframe operating systems often perform al of them. An ex-
ample mainframe operating system is OS/390, a descendant of OS/360. However,
mainframe operating systems are gradually being replaced by UNIX variants such
asLinux.

1.4.2 Server Operating Systems

One level down are the server operating systems. They run on servers, which
are either very large personal computers, workstations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and software resources. Servers can provide print service, file service, or Web ser-
vice. Internet providers run many server machines to support their customers and
Websites use servers to store the Web pages and handle the incoming requests.
Typica server operating systems are Solaris, FreeBSD, Linux and Windows Ser-
ver 200x.

1.4.3 Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to con-
nect multiple CPUs into a single system. Depending on precisely how they are
connected and what is shared, these systems are caled parale computers,
multicomputers, or multiprocessors. They need special operating systems, but
often these are variations on the server operating systems, with specia features
for communication, connectivity, and consistency.
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With the recent advent of multicore chips for personal computers, even con-
ventional desktop and notebook operating systems are starting to deal with at least
small-scale multiprocessors and the number of cores is likely to grow over time.
Fortunately, quite a hit is known about multiprocessor operating systems from
years of previous research, so using this knowledge in multicore systems should
not be hard. The hard part will be having applications make use of al this comput-
ing power. Many popular operating systems, including Windows and Linux, run
on multiprocessors.

1.4.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Modem ones all
support multiprogramming, often with dozens of programs started up at boot time.
Their job is to provide good support to asingle user. They are widely used for
word processing, spreadsheets, and Internet access. Common examples are Linux,
FreeBSD, Windows Vista, and the Macintosh operating system. Persona com-
puter operating systems are so widely known that probably little introduction is
needed. In fact, many people are not even aware that other kinds exist.

1.45 Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to handheld
computers. A handheld computer or PDA (Personal Digital Assistant) is a small
computer that fits in a shirt pocket and performs a small number of functions,
such as an electronic address book and memo pad. Furthermore, many mobile
phones are hardly any different from PDAs except for the keyboard and screen.
In effect, PDAs and mobile phones have essentially merged, differing mostly in
size, weight, and user interface. Almost all of them are based on 32-bit CPUs with
protected mode and run a sophisticated operating system.

The operating systems that run on these handhelds are increasingly sophisti-
cated, with the ability to handle telephony, digita photography, and other func-
tions. Many of them also run third-party applications. In fact, some of them are
beginning to resemble the personal computer operating systems of a decade ago.
One magjor difference between handhelds and PCs is that the former do not have
multigigabyte hard disks, which changes alot. Two of the most popular operating
systems for handhelds are Symbian OS and Palm OS.

1.4.6 Embedded Operating Systems.

Embedded systems run on the computers that control devices that are not gen-
erally thought of as computers and which do not accept user-installed software.
Typica examples are microwave ovens, TV sets, cars, DVD recorders, cell
phones, MP3 players. The main property which distinguishes embedded systems
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from handhelds is the certainty that no untrusted software will ever run on it. You
cannot download new applications to your microwave oven—all the software isin
ROM. This means that there is no need for protection between applications, lead-
ing to some simplification. Systems such as QNX and VxWorks are popular in
this domain.

14.7 Sensor Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes.
These nodes are tiny computers that communicate with each other and with a base
dation using wireless communication. These sensor networks are used to protect
the perimeters of buildings, guard national borders, detect fires in forests, measure
temperature and precipitation for weather forecasting, glean information about
enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They
have limited power and must work for long periods of time unattended outdoors,
frequently in environmentally harsh conditions. The network must be robust
enough to tolerate failures of individual nodes, which happen with ever increasing
frequency as the batteries begin to run down.

Each sensor node is areal computer, with a CPU, RAM, ROM, and one or
more environmental sensors. It runs a small,, but real operating system, usualy
one tha is event driven, responding to external events or making measurements
periodically based on an internd clock. The operating system has to be small and
simple because the nodes have little RAM and battery lifetime is a mgor issue.
Also, as with embedded systems, all the programs are loaded in advance; users do
not suddenly start programs they downloaded from the Internet, which makes the
design much simpler. TinyOS is a well-known operating system for a sensor node.

1.4.8 Real-Time Operating Systems

Another type of operating system is the rea-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard dead-
lines that must be met. For example, if a car is moving down an assembly line,
certain actions must take place at certain instants of time. If a welding robot
welds too early or too late, the car will be ruined. If the action absolutely must
occur at a certain moment (or within a certain range), we have a hard real-time
system. Many of these are found in industrial process control, avionics, military,
and similar application areas. These systems must provide absolute guarantees
that a certain action will occur by a certain time.

Another kind of real-time system is a soft real-time system, in which missing
an occasional deadline, while not desirable, is acceptable and does not cause any
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permanent damage. Digital audio or multimedia systems fal in this category.
Digital telephones are also oft real-time systems.

Since meeting strict deadlines is crucial in real-time systems, sometimes the
operating system is simply a library linked in with the application programs, with
everything tightly coupled and no protection between parts of the system. An ex-
ample of this type of real-time system is e-Cos.

The categories of handhelds, embedded systems, and real-time systems over-
lap considerably. Nearly dl of them have at least some soft real-time aspects.
The embedded and real-time systems run only software put in by the system de-
signers; users cannot add their own software, which makes protection easier. The
handhelds and embedded systems are intended for consumers, whereas real-time
systems are more for industrial usage. Nevertheless, they have a certain amount in
common.

149 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit card-
sized devices containing a CPU chip. They have very severe processing power
and memory constraints. Some are powered by contacts in the reader into which
they are inserted, but contactless smart cards are inductively powered, which
greatly limits what they can do. Some of them can handle only a single function,
such as electronic payments, but others can handle multiple functions on the same
smart card. Often these are proprietary systems.

Some smart cards are Java oriented. What this means is that the ROM on the
smart card holds an interpreter for the Java Virtua Machine (JVM). Java applets
(small programs) are downloaded to the card and are interpreted by the JVM in-
terpreter. Some of these cards can handle multiple Java applets at the same time,
leading to multiprogramming and the need to schedule them. Resource man-
agement and protection also become an issue when two or more applets are pres-
ent at the same time. These issues must be handled by the (usualy extremely
primitive) operating system present on the card.

15 OPERATING SYSTEM CONCEPTS

Most operating systems provide certain basic concepts and abstractions such
as processes, address spaces, and files that are central to understanding them. In
the following sections, we will look a some of these basic concepts ever so
briefly, as an introduction. We will come back to each of them in great detail
later in this book. To illustrate these concepts we will use examples from time to
time, generaly drawn from UNIX. Similar examples typicaly exist in other sys-
tems as well, however, and we will study Windows Vigta in detail in Chap. 11.
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1.5.1 Processes

A key concept in al operating systems is the process. A process is basically
a program in execution. Associated with each process is its address space, a list
of memory locations from 0 to some maximum, which the process can read and
write. The address space contains die executable program, the program'’s data, and
its stack. Also associated with each process is a set of resources, commonly in-
cluding registers (including the program counter and stack pointer), a list of open
files, outstanding alarms, lists of related processes, and al the other information
needed to run the program. A process is fundamentally a container that holds all
the information needed to run a program.

We will come back to the process concept in much more detail in Chap. 2, but
for the time being, the easiest way to get a good intuitive fed for a process is to
think about a multiprogramming system. The user may have a stalled a video edit-
ing program and instructed it to convert a one-hour video to a certain format
(something that can take hours) and then gone off to surf the Web. Meanwhile, a
background process that wakes up periodically to check for incoming e-mail may
have started running. Thus we have (at least) three active processes. the video edi-
tor, the Web browser, and the e-mail receiver. Periodically, the operating system
decides to stop running one process and start running another; for example, be-
cause the first one has used up more than its share of CPU time in the past second
or two.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have severa files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read cal executed after the process is
restarted will read the proper data. In many operating systems, dl the information
about each process, other than the contents of its own address space, is stored in
an operating system table caled the process table, which is an array (or linked
list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usualy called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains the contents of its registers and many other
items needed to restart the process later.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typica example. A process called the
command interpreter or shell reads commands from a termina. The user has
just typed a command requesting that a program be compiled. The shell must
now create a new process that will run the compiler. When that process has fin-
ished the compilation, it executes a system call to terminate itsalf.
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If a process can create one or more other processes (referred to as child
processes) and these processes in turn can create child processes, we quickly
arrive at the process tree structure of Fig. 1-13. Related processes that are cooper-
ating to get some job done often need to communicate with one another and syn-
chronize their activities. This communication is called interprocess communica-
tion, and will be addressed in detail in Chap. 2.

Figure 1-13. A process free. Process A created two child processes, B and C.
Process B created three child processes, £, £, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that
is not sitting around waiting for this information. For example, a process that is
communicating with another process on a different computer does so by sending
messages to the remote process over a computer network. To guard against the
possibility that a message or its reply is lost, the sender may request that its own
operating system notify it after a specified number of seconds, so that it can
retransmit the message if no acknowledgement has been received yet. After set-
ting this timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system
sends an alarm signal to the process. The signa causes the process to temporarily
suspend whatever it was doing, save its registers on the stack, and start running a
speciad signd handling procedure, for example, to retransmit a presumably lost
message. When the signal handler is done, the running process is restarted in the
state it was in just before the signal. Signals are the software analog of hardware
interrupts and can be generated by a variety of causes in addition to timers expir-
ing. Many traps detected by hardware, such as executing an illegal Instruction or
using an invalid address, are also converted into signals to the guilty process.

Each person authorized to use a system is assigned a UID (User IDentifica-
tion) by the system administrator. Every process started has the UID of the person
who started it. A child process has the same UID as its parent. Users can be
members of groups, each of which has a GID (Group |Dentification).

One UID, caled the super-user (in UNIX), has special power and may violate
many of the protection rules. In large installations, only the system administrator
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knows the password needed to become superuser, but many of the ordinary users
(especidly students) devote considerable effort to trying to find flaws in the sys-
tem that allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in
Chap. 2.

1.5.2 Address Spaces

Every computer has some main memory that it uses to hold executing pro-
grams. In avery simple operating system, only one program a atime is in memo-
ry. Torun asecond program, the first one has to be removed and the second one
placed in memory.

More sophisticated operating systems allow multiple programs to be in mem-
ory at the same time. To keep them from interfering with one another (and with
the operating system), some kind of protection mechanism is needed. While this
mechanism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the com-
puter's main memory. A different, but equally important memory-related issue, is
managing the address space of the processes. Normally, each process has some set
of addresses it can use, typically running from O up to some maximum. In the
smplest case, the maximum amount of address space a process has is less than the
main memory. In this way, a process can fill up its address space and there will
be enough room in main memory to hold it all.

However, on many computers addresses are 32 or 64 bits, giving an address
space of 2°* or | bytes, respectively. What happens if a process has more ad-
dress space than the computer has main memory and the process wants to use it
al? In the first computers, such a process wasjust out of luck. Nowadays, a tech-
nique caled virtual memory exists, as mentioned earlier, in which the operating
system keeps part of the address space in main memory and part on disk and shut-
tles pieces back and forth between them as needed. In essence, the operating sys-
tem creates the abstraction of an address space as the set of addresses a process
may reference. The address space is decoupled from the machine's physical mem-
ory, and may be either larger or smaller than the physical memory. Management
of address spaces and physical memory form an important part of what an operat-
ing system does, so dl of Chap. 3 is devoted to this topic.

153 Files

Another key concept supported by virtually al operating systems is the file
system. As noted before, a mgjor function of the operating system is to hide the
peculiarities of the disks and other 1/O devices and present the programmer with a
nice, clean abstract model of device-independent files. System calls are obviously
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needed to create files, remove files, read files, and write files. Before a file can be
read, it must be located on the disk and opened, and &fter it has been read it should
be closed, so calls are provided to do these things.

To provide a place to keep files, most operating systems have the concept of a
directory as a way of grouping files together. A student, for example, might have
one directory for each course he or sheis taking (for the programs needed for that
course), ancther directory for his electronic mail, and still another directory for his
World Wide Web home page. System calls are then needed to create and remove
directories. Calls are aso provided to put an existing file in a directory, and to re-
move a file from a directory. Directory entries may be either files or other direc-
tories. This modd also gives rise to a hierarchy—the file system—as shown in
Fig. 1-14.
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Figure 1-14. A file system for a university department.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels
is unusual), wheress file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typicaly short-lived, generally minutes at most,
wheress the directory hierarchy may exist for years. Ownership and protection
also differ for processes and files. Typically, only a parent process may control or
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even access a child process, but mechanisms nearly aways exist to alow files and
directories to be read by a wider group thanjust the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 1-14,
the path for file CS101 is/Faculty/Prof.Brown/Courses/CS0I. The leading slash
indicates that the path is absolute, that is, starting at the root directory. As an
aside, in MSDOS and Windows, the backslash 0) character is used as the separa-
tor instead of the dash (/) character, so the file path given above would be written
as XFaculty\Prof.Brown\Courses\CS OIl. Throughout this book we will generally
use the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a dash are looked for. As an example, in Fig. 1-14, if
[Faculty/Prof Brown were the working directory, then use of the path name
Courses/CH0I would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Before afile can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small inte-
ger called afile descriptor to use in subsequent operations. If the access is prohi-
bited, an error code is returned.

Another important concept in UNIX is the mounted file system. Nearly dl per-
sonal computers have one or more optical drives into which CD-ROMs and DVDs
can be inserted. They amost always have USB ports, into which USB memory
sticks (redly, solid state disk drives) can be plugged, and some computers have
floppy disks or external hard disks. To provide an elegant way to dea with these
removable media UNIX alows the file system on a CD-ROM or DVD to be
attached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount
call, the root file system, on the hard disk, and a second file system, on a CD-
ROM, are separate and unrelated.

However, the file system on the CD-ROM cannot be used, because thereis no
way to specify path names on it. UNIX does not dlow path names to be prefixed
by adrive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system cdl alows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM has been
mounted on directory b, thus alowing access to files fb/x and /bly. If directory b
had contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of the CD-ROM. (Not being
able to access these files is not as serious as it at first seems: file systems are
nearly always mounted on empty directories.) If a system contains multiple hard
disks, they can all be mounted into asingle tree as well.
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Figure 1-15. (&) Before mounting, the files an the CD-ROM are not aoccessible,
(b) After mounting, they arejrart of thefile hierarchy.

Another important concept in UNIX is the special file. Specia files are pro-
vided in order to make /O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of specia files exist: block special files and character special files. Block
specia files are used to model devices that consist of a collection of randomly ad-
dressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device*, without
regard to the structure of the file system contained on it. Similarly, character spe-
cid files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special files are kept in the/dev direc-
tory. For example, /dev/lp might be the printer (once called the line printer).

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con-
nect two processes, as shown in Fig. 1-16. If processes A and B wish to talk using
apipe, they must set it up in advance. When process A wants to send data to proc-
ess B, it writes on the pipe as though it were an output file. In fact, the imple-
mentation of a pipe is very much like that of a file. Process B can read the data by
reading from the pipe as though it were an input file. Thus, communication be-
tween processes in UNIX looks very much like ordinary file reads and writes.
Stronger yet, the only way a process can discover that the output file it is writing
onis not redly afile, but apipe, is by making a specia system call. File systems
are very important. We will have much more to say about them in Chap. 4 and
asoin Chaps. 10and 11.

1.5.4 Input/Output

All computers have physical devices for acquiring input and producing output.
After all, what good would a computer be if the users could not tell it what to do
and could not get the results after it did the work requested? Many kinds of input
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Process Process
(=)

Figure 1-16. Two processes connected by a pipe.

and output devices exist, including keyboards, monitors, printers, and so on. It is
up to the operating system to manage these devices.

Consequently, every operating system has an 1/0 subsystem for managing its
I/0O devices. Some of the I/O software is device independent, that is, applies to
many or al 1/0 devices equally well. Other parts of it, such as device drivers, are
specific to particular 1/0O devices. In Chap. 5 we will have alook at 1/0 software.

155 Protection

Computers contain large amounts of information that users often want to pro-
tect and keep confidential. This information may include e-mail, business plans,
tax returns, and much more. It is up to the operating system to manage the system
security so thet files, for example, are only accessible to authorized users.

As asimple example, just to get an idea of how security can work, consider
UNIX. Filesin UNIX are protected by assigning each one a 9-bit binary protection
code. The protection code consists of three 3-hit fields, one for the owner, one for
other members of the owner's group (users are divided into groups by the system
adminigtrator), and one for everyone else. Each field has a bit for read access, a
hit for write access, and a bit for execute access. These 3 bhits are known as the
rwx bits. For example, the protection code rwxr-X-x means that the owner can
read, write, or execute the file, other group members can read or execute (but not
write) the file, and everyone else can execute (but not read or write) the file. For a
directory, x indicates search permission. A dash means that the corresponding
permission is absent.

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both human and nonhuman (e.g., viruses) is
one of them. We will look at various security issues in Chap. 9.

156 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, and command interpreters definitely are not part of
the operating system, even though they are important and useful. At the risk of
confusing things somewhat, in this section we will look briefly at the UNIX com-
mand interpreter, called the shell. Although it is not part of the operating system,
it makes heavy use of many operating system features and thus serves as a good
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example of how the system calls can be used. It is also the primary interface be-
tween a user sitting at his termina and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sh, csh, ksh, and
bash. All of them support the functionality described below, which derives from
the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as stan-
dard input and standard output. [t starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date

for example, the shell creates a child process and runs the date program as the
child. While the child process is running, the shell waits for it to terminate. When
the child finishes, the shell types the prompt again and tries to read the next input
line.
The user can specify that standard output be redirected to a file, for example,
date >file
Similarly, standard input can be redirected, asin
sort <fiiel >file2

which invokes the sort program with input taken from ftlel and output sent to
file2.

The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat fild file2 file3 | sort >/dev/Ip

invokes the cat program to concatenate three files and send the output to son to
arrange al the lines in alphabetical order. The output of sort is redirected to the
file/dev/lp, typicaly the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat fild file2 file3 | sort >/devilp &

starts up the sort as a background job, allowing the user to continue working nor-
maly while the sort is going on. The shell has a number of other interesting fea
tures, which we do not have space to discuss here. Most books on UNIX discuss
the shell a some length (e.g., Kernighan and Pike, 1984; Kochan and Wood,
1990; Medinets, 1999; Newham and Rosenblatt, 1998; and Robbins, 1999).

Many personal computers use aGUI these days. In fact, the GUI isjust a pro-
gram running on top of the operating system, like a shell. In Linux systems, this
fact is made obvious because the user has achoice of (at least) two GUIs: Ghome
and KDE or noneat al (using a terminal window on X11). In Windows, it is aso
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possible to replace the standard GUI desktop (Windows Explorer) with a different
program by changing some values in the registry, athough few people do this.

1.5.7 Ontogeny Recapitulates Phylogeny

After Charles Darwin's book On the Origin of the Species was published, the
German zoologist Ernst Haeckel stated that "ontogeny recapitulates phylogeny."
By this he meant that the development of an embryo (ontogeny) repeats (i.e.,
recapitulates) the evolution of the species (phylogeny). In other words, after fer-
tilization, a human egg goes through stages of being afish, apig, and so on before
turning into a human baby. Modern biologists regard this as a gross simplification,
but it still has akernel of truth in it.

Something vaguely analogous has happened in the computer industry. Each
new species (mainframe, minicomputer, personal computer, handheld, embedded
computer, smart card, etc.) seems to go through the development that its ancestors
did, both in hardware and in software. We often forget that much of what hap-
pens in the computer business and a lot of other fields is technology driven. The
reason the ancient Romans lacked cars is not that they liked walking so much. It
is because they did not know how to build cars. Personal computers exist not be-
cause millions of people have a centuries-old pent-up desire to own a computer,
but because it is now possible to manufacture them cheaply. We often forget how
much technology affects our view of systems and it is worth reflecting on this
point from time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especialy true when the change has to do with the
relative performance of different parts of the system. For instance, when CPUs
became much faster than memories, caches became important to speed up the
"slow" memory. If new memory technology someday makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is for-
ever, but in computer science, it is sometimes only for afew years.

As a consequence of this impermanence, in this book we will from time to
time look at "obsolete" concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the so-
caled "obsolete concepts." For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back
again.

To make this point clearer, et us consider a simple example. Early computers
had hardwired instruction sets. The instructions were executed directly by hard-
ware and could not be changed. Then came microprogramming (first introduced
on alarge scale with the IBM 360), in which an underlying interpreter carried out
the "hardware instructions" in software. Hardwired execution became obsolete.
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Not flexible enough. Then RISC computers were invented, and microprogram-
ming (i.e., interpreted execution) became obsolete because direct execution was
faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Internet and interpreted upon arrival. Execution
speed is not always crucia because network delays are so great that they tend to
dominate. Thus the. pendulum has already swung several cycles between direct
execution and interpretation and may yet swing again in the future.

Large Memories

Let us now examine some historical developments in hardware and how they
have affected software repeatedly. The first mainframes had limited memory. A
fully loaded IBM 7090 or 7094; which played king of the mountain from late 1959
until 1964, had just over 128 KB of memory. It was mostly programmed in as-
sembly language and its operating system was written in assembly language to
save precious memory.

As time went on, compilers for languages like FORTRAN and COBOL got
good enough that assembly language was pronounced dead. But when the first
commercia minicomputer (the PDP-1) was released, it had only 4096 18-bit
words of memory, and assembly language made a surprise comeback. Eventually,
minicomputers acquired more memory and high-level languages became pre-
vaent on them.

When microcomputers hit in the early 1980s, the first ones had 4-KB mem-
ories and assembly language programming rose from the dead. Embedded com-
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and
later 8086s) and were also programmed in assembler initially. Now their descen-
dants, the personal computers, have lots of memory and are programmed in C,
C++, Java, and other high-level languages. Smart cards are undergoing a similar
development, athough beyond a certain size, the smart cards often have a Java
interpreter and execute Java programs interpretively, rather than having.Java
being compiled to the smart card's machine language.

Protection Hardware

Early mainframes, like the IBM 7090/7094, had no protection hardware, so
they just ran one program at atime. A buggy program could wipe out the operat-
ing system and easily crash the machine. With the introduction of the IBM 360, a
primitive form of hardware protection became available and these machines could
then hold several programs in memory at the same time and let them take turns
running (multiprogramming). Monoprogramming was declared obsolete.

At least until the first minicomputer showed up—without protection hard-
ware—so multiprogramming was not possible. Although the PDP-1 and PDP-8
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had no protection hardware, eventualy the PDP-11 did, and this feature led to
multiprogramming and eventually to UNIX.

When the first microcomputers were built, they used the Intel 8080 CPU chip,
which had no hardware protection, so we were back to monoprogramming. It
wasn't until the Intel 80286 that protection hardware was added and multipro-
gramming became possible. Until this day, many embedded systems have no pro-
tection hardware and run just a single program.

Now let us look at operating systems. The firg mainframes initialy had no
protection hardware and no support for multiprogramming, so they ran simple op-
erating systems that handled one manually loaded program at a time. Later they
acquired the hardware and operating system support to handle multiple programs
at once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manually loaded program at a time, even though multiprogramming was
wet established in the mainframe world by then. Gradually, they acquired protec-
tion hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but
later acquired the ability to multiprogram. Handheld computers and smart cards
went the same route.

In dl cases, the software development was dictated by technology. The first
microcomputers, for example, had something like 4 KB of memory and no protec-
tion hardware. High-levei languages and multiprogramming were simply too
much for such atiny system to handle. As the microcomputers evolved into mod-
em personal computers, they acquired the necessary hardware and then the neces-
say software to handle more advanced features. It is likely that this development
will continue for years to come. Other fields may also have this wheel of reincar-
nation, but in the computer industry it seems to spin faster.

Disks

Ealy mainframes were largely magnetic-tape based. They would read in a
program from tape, compile it, run it, and write the results back to another tape.
There were no disks and no concept of a file system. That began to change when
IBM introduced the first hard disk—the RAMAC (RAndoM ACcess) in 1956. It
occupied about 4 square meters of floor space and could store 5 million 7-hit char-
acters, enough for one medium-resolution digital photo. But with an annua rental
fee of $35,000, assembling enough of them to store the equivalent of a roll of film
got pricey quite fast. But eventually prices came down and primitive file systems
were developed.

Typical of these new developments was the CDC 6600, introduced in 1964
and for years by far the fastest computer in the world. Users could create so-called
"permanent files' by giving them names and hoping that no other user had aso
decided that, say, "data" was a suitable name for a file. This was a single-level
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directory. Eventualy, mainframes developed complex hierarchical file systems,
perhaps culminating in the MULTICS file system.

As minicomputers came into use, they eventualy aso had hard disks. The
standard disk on the PDP-11 when it was introduced in 1970 was the RK05 disk,
with a capacity of 2.5 MB, about half of the IBM RAMAC, but it was only about
40 cm in diameter and 5 cm high. But it, too, had a single-level directory initially.
When microcomputers came out, CP/M was initially the dominant operating sys-
tem, and it, too, supported just one directory on the (floppy) disk.

Virtual Memory

Virtual memory (discussed in Chap. 3), gives the ability to run programs larg-
er than the machine's physical .memory by moving pieces back and forth between
RAM and disk. It underwent a similar development, first appearing on main-
frames, then moving to the minis and the micros. Virtua memory also enabled the
ability to have a program dynamically link in alibrary at run time instead of hav-
ing it compiled in. MULTICS was the first system to alow this. Eventudly, the
idea propagated down the line and is now widely used on most UNIX and Win-
dows systems.

In dl these developments, we see ideas that are invented in one context and
later thrown out when the context changes (assembly language programming,
monoprogramming, single-level directories, etc.) only to reappear in a different
context often a decade later. For this reason in this book we will sometimes ook
at ideas and algorithms that may seem dated on today's gigabyte PCs, but which
may soon come back on embedded computers and smart cards.

16 SYSTEM CALLS

We have seen that operating systems have two man functions. providing
abstractions to user programs and managing the computer's resources. For the
mogt part, the interaction between user programs and the operating system deals
with the former; for example, creating, writing, reading, and deleting files. The re-
source management part is largely transparent to the users and done automat-
ically. Thus the interface between user programs and the operating system is pri-
marily about dealing with the abstractions. To really understand what operating
systems do, we must examine this interface closely. The system calls available in
the interface vary from operating system to operating system (athough the under-
lying concepts tend to be similar).

We are thus forced to make a choice between (I) vague generalities ("operat-
ing systems have system cals for reading files') and (2) some specific system
("UNIX has aread system cal with three parameters: one to specify the file, one
to tell where the data are to be put, and one to tell how many bytes to read").
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We have chosen the latter approach. It's more work that way, but it gives
more insight into what operating systems really do. Although this discussion spe-
cificaly refers to POSIX (International Standard 9945-1), hence aso to UNIX,
System V, BSD, Linux, MINIX 3, and so on, most other modern operating systems
have system calls that perform the. same functions, even if the details differ. Since
the actual mechanics of issuing a system call are highly machine dependent and
often must be expressed in assembly code, aprocedure library is provided to make
it possible to make system calls from C programs and often from other languages
aswell.

It is useful to keep the following in mind. Any single-CPU computer can exe-
cute only one instruction at atime. If a process is running a user program in user
mode and needs a system service, such as reading data from afile, it has to exe-
cute a trap instruction to transfer control to the operating system. The operating
system then figures out what the calling process wants by inspecting the parame-
ters. Then it carries out the system call and returns control to the instruction fol-
lowing the system call. In a sense, making a system call is like making a special
kind of procedure call, only system calls enter the kernel and procedure calls do
not.

To make the system call mechanism clearer, let us take a quick look at the
read system call. Asmentioned above, it has three parameters: the first one speci-
fying the file, the second one pointing to the buffer, and the third one giving the
number of bytes to read. Like nearly al system calls, it is invoked from C pro-
grams by calling alibrary procedure with the same name as the system call: read.
A call from a C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normaly the same as nbytes, but may be smaller, if,
for example, end-of-file is encountered while reading.

If the system call cannot be carried out, either due to an invalid parameter or a
disk error, count is set to —1, and the error number is put in a global variable,
errno. Programs should always check the results of a system call to see if an error
occurred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for calling the read
library procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3in Fig. 1-17.

C and C++ compilers push the parameters onto the stack in reverse order for
historical reasons (having to do with making the first parameter to printf, the for-
mat string, appear on top of the stack). The first and third parameters are called
by value, but the second parameter is passed by reference, meaning that the ad-
dress of the buffer (indicated by &) is passed, not the contents of the buffer. Then
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Address

OXFFFFFFFF
Return to caller Library
Trap tothe kernd « procedure

S Put codefor read in register read
User space <

Increment SP 11
Cdl read
Push fd User program
Push &buffer calling read
Push nbytes

Kernel space
{Operating system)

Figure 1-17. The 11 steps in making the system call read{fd, buffer, nbytes).

comes the actual call to the library procedure (step 4). This instruction is the nor-
mal procedure call instruction used to call al procedures.

The library procedure, possibly written in assembly language, typicaly puts
the system call number in a place where the operating system expects it, such as a
register (step 5). Then it executes aTRAP instruction to switch from user mode to
kernel mode and start execution at afixed address within the kernel (step 6). The
TRAP ingtruction is actualy fairly similar to the procedure call instruction in the
sense that the instruction following it is taken from a distant location and the re-
turn address is saved on the stack for use later.

Nevertheless, the TRAP instruction aso differs from the procedure call in-
struction in two fundamental ways. First, as a side effect, it switches into kernel
mode. The procedure call instruction does not change the mode. Second, rather
than giving arelative or absolute address where the procedure is located, the TRAP
instruction cannot jump to an arbitrary address. Depending on the architecture, it
either jumps to a single fixed location, there is an 8-bit field in the instruction giv-
ing the index into a table in memory containing jump addresses, or equivalent.

Thekernel codethat starts following the TRAP examines the system call num-
ber and then dispatches to the correct system call handler, usualy via a table of
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pointers to system call handlers indexed on system call number (step 7). At that
point the system call handler runs (step 8). Once the system call handler has com-
pleted its work, control may be returned to the user-space library procedure at the
ingtruction following the TRAP instruction (step 9). This procedure then returns to
the user program in the usua way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure cal (step 11). Assuming the stack grows downward, as it often
does, the compiled code increments the stack pointer exactly enough to remove
the parameters pushed before the call to read. The program is now free to do
whatever it wantsto do next.

In step 9 above, we said "may be returned to the user-space library proce-
dure" for good reason. The system call may block the caler, preventing it from
continuing. For example, if it is trying to read from the keyboard and nothing has
been typed yet, the caller has to be blocked. In this case, the operating system
will look around to see if some other process can be run next. Later, when the
desired input is available, this process will get the attention of the system and
steps 9-11 will oceur.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
system calls. POSIX has about 100 procedure calls. Some of the most important
ones are liged in Fig. 1-18, grouped for convenience in four categories. In the
text we will briefly examine each call to see what it does.

To alarge extent, the services offered by these calls determine most of what
the operating system has to do, since the resource management on personal com-
puters is minima (a least compared to big machines with multiple users). The
services include things like creating and terminating processes, creating, deleting,
reading, and writing files, managing directories, and performing input and output.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformant sysem must supply, but it does not specify
whether they are system calls, library calls, or something else. If aprocedure can
be carried out without invoking a system call (i.e., without trapping to the kernel),
it will usudly be done in user space for reasons of performance. However, most of
the POSIX procedures do invoke system calls, usualy with one procedure map-
ping directly onto one system call. In afew cases, especialy where severa re-
quired procedures are only minor variations of one another, one system call hand-
les more than one library call.

1.6.1 System Callsfor Process Management

The first group of calls in Fig. 1-18 deals with process management. Fork isa
good place to start the discussion. Fork is the only way to create a new process in
POSIX. It creates an exact duplicate of the original process, including al the file
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Process management
Call Description
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, & statloc, options)

Waif for a child to terminate

s = execve(name, argv, environp)

Replace a process' core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(fife, how,...)

Open afile for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(narne, &buf)

Get a fife's status information

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(namel, name2)

Create a new entry, name2, pointing to namel

unlink(name)

S

Remove a directory entry

s = mount(speciaf, name, flag)

Mount a file system

umount(special)

S

Unmount a file system

M

scellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file's protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(& seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls. The return code s is -1 if
an error has occurred. The return codes are as follows: pidis a process \dfd is a
file descriptor, n is a byte count, position is an offset within the file, and seconds
isthe elapsed time. The parameters are explained in the text.
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descriptors, registers—everything. After the fork, the original process and the
copy (the parent and child) go their separate ways. All the variables have identical
values at the time of the fork, but since the parent's data are copied to create the
child, subsequent changes in one of them do not affect the other one. (The pro-
gram text, which is unchangeable, is shared between parent and child.) The fork
cal returns a value, which is zero in the child and equal to the child's process
identifier or PID in the parent. Using the returned PID, the two processes can see
which one is the parent process and which one is the child process.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to fin-
ish, the parent executes a waitpid system call, which just waits until the child ter-
minates (any child if more than one exists). Waitpid can wait for a specific child,
or for any old child by setting the first parameter to - 1. When waitpid completes,
the address pointed to by the second parameter, statloc, will be set to the child's
exit status (normal or abnormal termination and exit value). Various options are
also provided, specified by the third parameter.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actualy, the system call it-
sf is exec, but several library procedures call it with different parameters and
dightly different names. We will treat these as system calls here.)) A highly sim-
plified shell illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19.

#define TRUE 1

while (TRUE) { I* repeat forever */
type_prompt(); * display prompt onthe screen*/
read_command(command, parameters); * read input from termind */
if (fork() 1= 0) { I* fork off child process */

/* Parent code. */

waitpid(-1, & status, 0);
}else{

/* Child code. */

execve(command, parameters, 0); /* execute command */

/* wait for child to exit */

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to
be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment
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array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to alow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by al of these.

Let us consider the case of acommand such as

cp fild file2

used to copy filel to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is apointer to an array. Element i of that array is
a pointer to the i-th string on the command line. In our example, argv¥{0] would
point to the string "cp", arg¥{\\ would point to the string "filel" and argv[2]
would point to the string "file2".

The third parameter of main, envp, is a pointer to the environment, gi array of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to programs. There are library
procedures that programs can call to get the environment variables, which are
often used to customize how a user wants to peform certain tasks (e.g., the
default printer to use). In Fig. 1-19, no environment is passed to the child, so the
third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of al the POSIX system calls. All the other ones are much simpler. As an
example of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (0 to 255), which is re-
turned to the parent via statloc in the waitpid system call.

Processes in UNIX have their memory divided up into three segments: the text
segment (i.e., the program code), the data segment (i.e., the variables), and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however, is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was
not thought to be a suitable subject for standardization since few programmers use
it directly and it is doubtful that anyone even notices that brk is not in POSIX.
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Address (hex)
FFFF

Stack 1

.

Data !

Text

0000

Figure 1-20- Processes have three segments: text, data, and stack.

1.6.2 System Callsfor File Management

Many system calls relate to the file system. In this section we will look at
calls that operate on individua files; in the next one we will examine those that
involve directories or the file system as a whole.

To read or write a file, the file must first be opened using open. This call
specifies the file name to be opened, either as an absolute path name or relative to
the working directory, and a code of O"RDONLY, O"WRONLY, or O-RDWR,
meaning open for reading, writing, or both. To create a new file, the O-CRBAT
parameter is used. The file descriptor returned can then be used for reading or
writing. Afterward, the file can be closed by close, which makes the file descrip-
tor available for reuse on a subsequent open.

The most heavily used calls are undoubtedly read and write. We saw read
earlier. Write has the same parameters.

Although most programs read and write files sequentialy, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When read-
ing (writing) sequentially, it normally points to the next byte to be read (written).
The Iseek call changes the value of the position pointer, so that subsequent calls to
read or write can begin anywhere in the file.

Lseek has three parameters: the first is the file descriptor for the file, the sec-
ond is afile position, and the third tells whether the file position is relative to the
beginning of the file, the current position, or the end of the file. The value re-
turned by Iseek is the absolute position in the file (in bytes) after changing the
pointer.

For each file, UNIX keeps track of the file mode (regular file, specid file, di-
rectory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information isto be put. Thefstat calls does the same thing for an open file.
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1.6.3 System Calls for Directory Management

In this section we will look at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Its purpose isto alow the same file to appear
under two or more names, often in different directories. A typica useis to alow
several members of the same programming team to share a common file, with
each of them having the file appear in his own directory, possibly under different
names. Sharing afile is not the same as giving every team member a private copy;
having a shared file means that changes that any member of the team makes are
instantly visible to the other members—there is only one file. When copies are
made of afile, subsequent changes made to one copy do not affect the others.

To see how link works, consider the situation of Fig. 1-21(a). Here are two
users, ast andjim, each having his own directory with some files. If ast now exe-
cutes aprogram containing the system call

| ink(7usr/jim/mema”, 7usr/ast/note™);

the file memo in jim's directory is now entered into asfs directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file. As an
aside, whether user directories are kept m/usr, /user, /home, or somewhere else is
simply a decision made by the local system administrator.

Figure 1-21. (a) Two directories before Jinking /usr/jiin/memo to ast's directory,
(b) The same directories after linking.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This i-
number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply afile containing a set
of (i-number, ASCII name) pairs. In the first versions of UNIX, each directory
entry was 16 bytes—2 bytes for the i-number and 14 bytes for the name. Now a
more complicated structure is needed to support long file names, but conceptually
adirectory is still aset of (i-number, ASCII name) pairs. InFig. 1-21, mail hasi-
number 16, and so on. What link does is simply create a new directory entry with a
(possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two
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entries have the same i-number (70) and thus refer to the same file. If either one
is later removed, using the unlink system call, the other one remains. If both are
removed, UNIX OOsess that no entries to the file exist (a field in the i-node keeps
track of the number of directory entries pointing to the file), so the file is removed
from the disk.

As we have mentioned earlier, the mount system call alows two file systems
to be merged into one. A common situation is to have the root file system con-
taining the binary (executable) versions of the common commands and other
heavily used files, on a hard disk. The user can then insert a CD-ROM disk with
files to be read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached
to the root file system, as shown in Fig. 1-22. A typica statement in C to perform
the mount is

mount(7dev/fd0", Vmnt", 0);

where the first parameter is the name of a block specid file for drive 0, the second
parameter is the place in the tree where it is to be mounted, and the third parame-
ter tells whether the file system is to be mounted read-write or read-only.

bin  dev b mnt usr bi%

2] usr
@ ®
Figure 1-22. (a) File system before the mount, (b) File system after the mount.

After the mount call, a file on drive 0 can be accessed by just using its path
from the root directory or the working directory, without regard to which drive it
ison. In fact, second, third, and fourth drives can also be mounted anywhere in
the tree. The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which device a file
is on. Although this example involves CD-ROMSs, portions of hard disks (often
caled partitions or minor devices) can also be mounted this way, as well as ex-

ternal hard disks and USB sticks. When a file system is no longer needed, it can
be unmounted with the umount system call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir("/usr/ast/test");
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an open on the file xyz will open /usr/ast/test/xyz. The concept of a working di-
rectory eliminates the need for typing (long) absolute path names dl the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes it possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner, one could execute

chmod(“file, 0644);

The kill system call is the way users and user processes send signals. If a
process is prepared to catch a particular signal, then when it arrives, asignal hand-
ler isrun. If the process is not prepared to handle asignal, then its arrival kills the
process (hence the name of the call).

POSIX defines several procedures for dealing with time. For example, time
just returns the current time in seconds, with 0 corresponding to Jan. 1, 1970 at
midnight (just as the day was starting, not ending). On computers using 32-bit
words, the maximum value time can return is 2°* - 1 seconds (assuming an un-
signed integer is used). This value corresponds to a little over 136 years. Thusin
the year 2106, 32-hit UNIX systems will go berserk, not unlike the famous Y 2K
problem that would have wreaked havoc with the world's computers in 2000,
were it not for the massive effort the IT industry put into fixing the problem. If
you currently have a 32-bit UNIX system, you are advised to trade it in for a 64-hit
one sometime before the year 2106.

165 The Windows Win32 API

So far we have focused primarily on UNIX. Now itis time to look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective
programming models. A UNIX program consists of code that does something or
other, making system calls to have certain services performed. In contrast, aWin-
dows program is normally event driven. The main program waits for some event
to happen, then calls a procedure to handle it. Typica events are keys being
struck, the mouse being moved, a mouse button being pushed, or a CD-ROM
inserted. Handlers are then called to process the event, update the screen and
update the internal program state. All in all, this leads to a somewhat different
style of programming than with UNIX, but since the focus of this book is on oper-
ating system function and structure, these different programming models will not
concern us much more.

Of course, Windows also has system calls. With UNIX, there is amost a one-
to-one relationship between the system cals (e.g., read) and the library proce-
dures (e.g., read) used to invoke the system calls. In other words, for each system
cal, there isroughly one library procedure that is caled to invoke it, as indicated
inFig. 1-17. Furthermore, POSIX has only about 100 procedure calls.
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With Windows, the situation is radicaly different. To start with, the library
cdls and the actual system calls are highly decoupled. Microsoft has defined a set
of procedures called the Win32 API (Application Program Interface) that pro-
grammers are expected to use to get operating system services. This interface is
(partially) supported on al versions of Windows since Windows 95. By decou-
pling the interface from the actual system calls, Microsoft retains the ability to
change the actua system cdls in time (even from release to release) without
invaidating existing programs. What actually constitutes Win32 is dso dightly
ambiguous because Windows 2000, Windows XP, and Windows Vista have many
new cdls that were not previoudy available. In this section, Win32 means the in-
terface supported by al versions of Windows.

The number of Win32 APl cals is extremely large, numbering in the
thousands. Furthermore, while many of them do invoke system calls, a substantial
number are carried out entirely in user space. As aconsequence, with Windows it
is impossible to see what is a system call (i.e., performed by the kernel) and what
is amply a user-space library call. In fact, what is a system call in one version of
Windows may be done in user space in a different version, and vice versa. When
we discuss the Windows system calls in this book, we will use the Win32 proce-
dures (where appropriate) since Microsoft guarantees that these will be stable
over time. But it is worth remembering that not dl of them are true system calls
(i.e, trapsto the kernel).

The Win32 API has a huge number of calls for managing windows, geometric
figures, text, fonts, scrollbars, dialog boxes, menus, and other features of the GUI.
To the extent that the graphics subsystem runs in the kernel (true on some ver-
sions of Windows but not on al), these are system calls; otherwise they arejust li-
brary cdls. Should we discuss these calls in this book or not? Since they are not
redly related to the function of an operating system, we have decided not to, even
though they may be carried out by the kernel. Readers interested in the Win32
AP should consult one of the many books on the subject (e.g., Hart, 1997; Rector
and Newcomer, 1997; and Simon, 1997).

Even introducing al the Win32 APl calls here is out of the question, so we
will restrict ourselves to those calls that roughly correspond to the functionaity of
the UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Let us now briefly go through the list of Fig. 1-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specifying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent proc-
ess and a child process. After a process is created, the creator and crestee are
equals. WaitForSingleObject is used to wait for an event. Many possible events
can be waited for. If the parameter specifies a process, then the caler waits for
the specified process to exit, which is done using ExitProcess.

The next six calls operate on files and are functionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be
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UNIX Win32 Description

fork CreateProcess Create a new process

waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve

exit ExitProcess Terminate execution

Gpen CreateFile Create afile or open an existing file
close CloseHandle Close afile

read ReadFile Read data from afile

write WriteFile Write data to a file

| seek SetFilePointer Move the file pointer

stat GetFileAttributesEx | Get variousfile attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDi rectory Remove an empty directory

link (none) Win32 does not support links

unlink DeleteFile Destroy an existing file

mount (none) Win32 does not support mount

umount | (none) Win32 does not support mount

crtdir SetCurrentDirectory | Change the current working directory

chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals

time GetLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond to the UNIX calls of
Fig. 1-18.

opened, closed, read, and written pretty much asin UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.

Windows has directories and they are created with CreateDirectory and Re-
moveDirectory APl calls, respectively. There is also a notion of a current direc-
tory, set by SetCurrentDirectory. The current time of day is acquired using GetLo-
caTime.

The Win32 interface does not have links to files, mounted file systems, secu-
rity, or signals, so the calls corresponding to the UNIX ones do not exist. Of
course, Win32 has a huge number of other calls that UNIX does not have, espe-
cidly for managing the GUI. And Windows Vista has an'elaborate security sys-
tem and aso supports file links.

One last note about Win32 is perhaps worth making. Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be back-
ward compatible with the previous 16-bit interface used in Windows 3.x.
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1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e.,
the programmer's interface), it is time to take a look inside. In the following sec-
tions, we will examine six different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The sSx designs
are monolithic systems, layered systems, microkernels, client-server systems, vir-
tual machines, and exokernels.

1.7.1 Monolithic Systems

By far the most common organization, in this approach the entire operating
system runs as a single program in kernel mode. The operating system is written
as a collection of procedures, linked together into a single large executable binary
program. When this technique is used, each procedure in the system is free to call
any other one, if the latter provides some useful computation that the former
needs. Having thousands of procedures that can call each other without restriction
often leads to an unwieldy and difficult to understand system.

To construct the actua object program of the operating system when this ap-
proach is used, one first compiles al the individua procedures (or the files con-
taining the procedures) and then binds them all together into a single executable
file using the system linker. In terms of information hiding, there is essentially
none—every procedure is visible to every other procedure (as opposed to a struc-
ture containing modules or packages, in which much of the information is hidden
away inside modules, and only the officially designated entry points can be called
from outside the module€).

Even in monolithic systems, however, it is possible to have some structure.
The services (system calls) provided by the operating system are requested by put-
ting the parameters in a well-defined place (e.g., on the stack) and then executing
atrap instruction. This instruction switches the machine from user mode to kernel
mode and transfers control to the operating system, shown as step 6 in Fig. 1-17.
The operating system then fetches the parameters and determines which system
cal is to be carried out. After that, it indexes into a table that contains in slot k a
pointer to the procedure that carries out system cdl k (step 7 in Fig. 1-17).

This organization suggests a basic structure for the operating system:
1. A main program that invokes the requested service procedure.
2. A st of service procedures that carry out the system calls.

3. A st of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care
of it and executes it. The utility procedures do things that are needed by severa
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service procedures, such as fetching data from user programs. This division of the
procedures into three layers is shown in Fig. 1-24.

Main
procedure

Service
procedures

Figure 1-24. A straple structoring model for a monolithic system.

In addition to the core operating system that is loaded when the computer is
booted, many operating systems support loadable extensions, such as 1/0 device
drivers and file systems. These components are loaded on demand.

»

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built a the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu-
dents. The THE system was a simple batch system for a Dutch computer, the
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had six layers, as shown in Fig. 1-25. Layer O dealt with aloca
tion of the processor, switching between processes when interrupts occurred or
timers expired. Above layer O, the system consisted of sequential processes, each
of which could be programmed without having to worry about the fact that multi-
ple processes were running on a single processor. In other words, layer O pro-
vided the basic multiprogramming of the CPU.

Layer 1 did the memory management. It allocated space for processes in
man memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1, processes
did not have to worry about whether they were in memory or on the drum; the lay-
er 1 software took care of making sure pages were brought into memory whenever
they were needed.

Layer 2 handled communication between each process and the operator con-
sole (that is, the user). On top of this layer each process effectively had its own
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Layer Function

5 The operator

User programs

Input/output management

Operator -process communication

Memory and drum management

Processor allocation and multiprogramming

O [ (N W |

Figure 1-25. Structure of the THE operating system.

operator console. Layer 3 took care of managing the 1/0 devices and buffering
the information streams to and from them. Above layer 3 each process could ded
with abstract 1/0 devices with nice properties, instead of real devices with many
peculiarities. Layer 4 was where the user programs were found. They did not
have to worry about process, memory, console, or 1/O management. The system
operator process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concen-
tric rings, with the inner ones being more privileged than the outer ones (which is
effectively the same thing). When a procedure in an outer ring wanted to call a
procedure in an inner ring, it had to make the equivalent of asystem call, that is, a
TRAP instruction whose parameters were carefully checked for validity before al-
lowing the call to proceed. Although the entire operating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments, actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was realy only a design aid, because al
the parts of the system were ultimately linked together into a single executable
program, in MULTICS, the ring mechanism was very much present at run time
and enforced by the hardware. The advantage of the ring mechanism is that it can
easily be extended to structure user subsystems. For example, a professor could
write a program to test and grade student programs and run this program in ring n,
with the student programs running in ring n + | so that they could not change their
grades.

1.7.3 Microkernels

With the layered approach, the designers have a choice where to draw the
kernel-user boundary. Traditionally, al the layers went in the kernel, but that is
not necessary. In fact, a strong case can be made for putting as little as possible in
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kernel mode because bugs in the kernel can bring down the system instantly. In
contrast, user processes can be set up to have less power so that a bug there may
not be fatal.

Various researchers have studied the number of bugs per 1000 lines of code
(e.g., Baslli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug density
depends on module size, module age, and more, but a ballpark figure for serious
industria systems is ten bugs per thousand lines of code. This means that a mono-
lithic operating system of five million lines of code is likely to contain something
like 50,000 kernel bugs. Not all of these are fatal, of course, since some bugs may
be things like issuing an incorrect error message in a situation that rarely occurs.
Nevertheless, operating systems are sufficiently buggy that computer manufact-
urers put reset buttons on them (often on the front panel), something the manu-
facturers of TV sets, stereos, and cars do not do, despite the large amount of soft-
ware in these devices.

The basic idea behind the microkernel design isto achieve high reliability by
splitting the operating system up into small, well-defined modules, only one of
which—the microkernel—runs in kernel mode and the rest run as relatively pow-
erless ordinary user processes. In particular, by running each device driver and
file system as a separate user process, a bug in one of these can crash that com-
ponent, but cannot crash the entire system. Thus a bug in the audio driver will
cause the sound to be garbled or stop, but will not crash the computer. In contrast,
in a monolithic system with all the drivers in the kernel, a buggy audio driver can
easily reference an invalid memory address and bring the system to agrinding halt
instantly.

Many microkernels have been implemented and deployed (Accetta et al.,
1986; Haertig et a., 1997; Heiser et al., 2006; Herder et al., 2006; Hildebrand,
1992; Kirsch et al, 2005; Liedtke, 1993, 1995, 1996; Pike et al., 1992; and Zuberi
et a., 1999). They are especially common in real-time, industria, avionics, and
military applications that are mission critical and have very high reliability re-
quirements. A few of the better-known microkernels are Integrity, K42, L4,
PikeOS, QNX, Symbian, and MINIX 3. We will now give a brief overview of
MINIX 3, which has taken the idea of modularity to the limit, breaking most of the
operating system up into a number of independent user-mode processes. MINIX 3
is a POSIX conformant, open-source system fredy available at www.minix3.org
(Herder et al., 2006a; Herder et al., 2006b).

The MINIX 3 microkerndl is only about 3200 lines of C and 800 lines of
assembler for very low-level functions such as catching interrupts and switching
processes. The C code manages and schedules processes,, handles interprocess
communication (by passing messages between processes), and offers a set of
about 35 kernel calls to dlow the rest of the operating system to do its work.
These calls perform functions like hooking handlers to interrupts, moving data be-
tween address spaces, and installing new memory maps for newly created proc-
esses. The process structure of MINIX 3 is shown in Fig. 1-26, with the kernel call
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handlers labeled Sys. -The device driver for the clock is aso in the kernel because
the scheduler interacts closely with it. All the other device drivers run as separate
USer processes.

__—aProcess

'8 o - J
(Erel @ / User progs.
User e z e /
mode @ Prac. @ (Other Servers
; £

Drivers

Figure 1-26. Structure of the MINIX 3 system.

Outside the kernel, the system is structured as three layers of processes all
running in user mode. The lowest layer contains the device drivers. Since they
run in user mode, they do not have physical access to the I/O port space and can-
not issue 1/0 commands directly. Instead, to program an /O device, the driver
builds a structure telling which values to write to which I/O ports and makes a
kernel call telling the kernel to do the write. This approach means that the kernel
can check to see that the driver is writing (or reading) from 1/O it is authorized to
use. Consequendy, (and unlike a monoalithic design), a buggy audio driver cannot
accidentally write on the disk.

Above the drivers is another user-mode layer containing the servers, which do
most of the work of the operating system. One or more file servers manage the
file system(s), the process manager creates, destroys, and manages processes, and
so on. User programs obtain operating system services by sending short messages
to the servers asking for the POSIX system calls. For example, a process needing
to do a read sends a message to one of the file servers telling it what to read.

One interesting server is the reincarnation server, whose job is to check if
the other servers and drivers are functioning correctly. In the event that a faulty
one is detected, it is automatically replaced without any user intervention. In this
way the system is sdlf healing and can achieve high reliability.

The system has many restrictions limiting the power of each process. As
mentioned, drivers can only touch authorized /O ports, but access to kernel calls
is aso controlled on aper process basis, as is the ability to send messages to other
processes. Processes can aso grant limited permission for other processes to have
the kernel access their address spaces. As an example, a file system can grant
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permission for the disk driver to let the kernel put a newly read in disk block at a
specific address within the file system's address space. The sum total of al these
restrictions is that each driver and server has exactly the power to do its work and
nothing more, thus greatly limiting the damage a buggy component can do.

An idea somewhat related to having a minimal kernel is to put the mechan-
ism for doing something in the kernel but not the policy. To make this point bet-
ter, consider the scheduling of processes. A relatively simple scheduling algo-
rithm is to assign a priority to every process and then have the kernel run the
highest-priority process that is runnable. The mechanism—in the kernel—is to
look for the highest-priority process and run it. The policy—assigning priorities
to processes—can be done by user-mode processes. In this way policy and mech-
anism can be decoupled and the kernel can be made smaller.

1.7.4 Client-Server Model

A dight variation of the microkernel idea is to distinguish two classes of proc-
esses, the servers, each of which provides some service, and the clients, which
use these services. This model is known as the client-server model. Often the
lowest layer is amicrokernel, but that is not required. The essence is the presence
of client processes and server processes.

Communication between clients and servers is often by message passing. To
obtain a service, a client process constructs a message saying what it wants and
sends it to the appropriate service. The service then does the work and sends back
the answer. If the client and server run on the same machine, certain optimiza-
tions are possible, but conceptually, we are talking about message passing here.

An obvious generalization of this idea is to have the clients and servers run on
different computers, connected by a local or wide-area network, as depicted in
Fig. 1-27. Since clients communicate with servers by sending messages, the cli-
ents need not know whether the messages are handled locally on their own ma-
chines, or whether they are sent across a network to servers on a remote machine.
As far as the client is concerned, the same thing happens in both cases: requests
are sent and replies come back. Thus the client-server model is an abstraction that
can be used for a single machine or for a network of machines.

Increasingly many systems involve users at their home PCs as clients and
large machines elsewhere running as servers. In fact, much of the Web operates
this way. A PC sends a request for a Web page to the server and the Web page
comes back. Thisis atypica use of the client-server model in a network.

1.7.5 Virtual Machines
Theinitial releases of OS/360 were strictly batch systems. Nevertheless, many

360 users wanted to be able to work interactively at a terminal, so various groups,
both inside and outside IBM, decided to write timesharing systems for it. The
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Client File server Process server Termina server
Kernel Kernel Kernel Kernel
Network
M essage from

client to server

Figure 1-27. Theclient-server model over a network.

officia IBM timesharing system, TSS/360, was delivered late, and when it finaly
arrived it was so big and dow that few sites converted to it. It was eventualy
abandoned &fter its development had consumed some $50 million (Graham,
1970). But agroup at IBM's Scientific Center in Cambridge, Massachusetts, pro-
duced aradically different system that IBM eventually accepted as a product. A
linear descendant of it, called z/VM, is now widely used on IBM's current main-
frames, the zSeries, which are heavily used in large corporate data centers, for ex-
ample, as e-commerce servers that handle hundreds or thousands of transactions
per second and use databases whose sizes run to millions of gigabytes.

VM7370

This system, originally called CRICMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on an astute observation: a timesharing system
provides (1) multiprogramming and (2) an extended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but severd vir-
tual machines to the next layer up, as shown in Fig. 1-28. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware,
including kernel/user mode, 1/O, interrupts, and everything else the real machine
hes.

Because each virtua machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different
virtual machines can, and frequently do, run different operating systems. On the
original VM/370 system, some ran OS/360 or one of the other large batch or
transaction processing operating systems, while other ones ran a single-user,
interactive system called CM S (Conversational Monitor System) for interactive
timesharing users. The latter was popular with programmers.
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Virtua 370s

- System calls here
/O instructionshere —|»-j CMS CMS CMS - Trap here
Traphere' —|-Mm VM/370

370 Bare hardware

Figure 1-28. The gructure of ViM/370 with CMS.

When a CMS program executed a system call, the call was trapped to the op-

erating system in its own virtual machine, not to VM/370, just as it would" if it
wererunning on areal machine instead of avirtual one. CM S then issued the nor-
mal hardware 1/O instructions for reading its virtual disk or whatever was needed
to carry out the call. These I/O instructions were trapped by VM/370, which then
performed them as part of its simulation of the real hardware. By completely sep-
arating the functions of multiprogramming and providing an extended machine,
each of the pieces could be much simpler, more flexible, and much easier to main-
tain.

In its modern incarnation, z/VM is usually used to run multiple complete op-
erating systems rather than stripped-down single-user systems like CMS. For ex-
ample, the zSeries is capable of running one or more Linux virtual machines
along with traditional IBM operating systems.

Virtual Machines Rediscovered

While IBM has had a virtual machine product available for four decades, and
a few other companies, including Sun Microsystems and Hewlett-Packard, have
recently added virtual machine support to their high-end enterprise servers, the
idea of virtualization has largely been ignored in the PC world until recendy. But
in the past few years, a combination of new needs, new software, and new techno-
logies have combined to make it a hot topic.

First the needs. Many companies have traditionally run their mail servers,
Web servers, FTP servers, and other servers on separate computers, sometimes
with different operating systems. They see virtualization as a way to run them all
on the same machine without having a crash of one server bring down the rest.

Virtualization is also popular in the Web hosting world. Without it, Web host-
ing customers are forced to choose between shared hosting (which just gives
them a login account on a Web server, but no control over the server software)
and dedicated hosting (which gives them their own machine, which is very flexi-
ble but not cost effective for small to medium Websites). When a Web hosting
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company offers virtual machines for rent, a single physical machine can run many
virtual machines, each of which appears to be a complete machine. Customers
who rent a virtual machine can run whatever operating system and software they
want to, but at afraction of the cost of a dedicated server (because the same phys-
ica machine supports many virtual machines at the same time).

Another use of virtualization is for end users who want to be able to run two
or more operating systems at the same time, say Windows and Linux, because
some of their favorite application packages run on one and some am on the other.
This situation is illustrated in Fig. 1-29(a), where the term "virtual machine moni-
tor" has been renamed type 1 hypervisor in recent years.

Guest OS process

Exce Word Mplayer Apollon

» Host OS
| $ | *O3p. 80S process

P i e ]

Guest OS

O
O

£a

Windows ?‘g : Type 2 hypervisor 6 (@]
Type 1 hypervisor Host operating system
(=) (b

Figure 1-29. (a) A type 1 hypervisor. (b) A type 2 hypervisor.

Now the software. While no one disputes the attractiveness of virtua ma
chines, the problem was implementation. In order to run virtual machine software
on a computer, its CPU must be virtualizable (Popek and Goldberg, 1974). In a
nutshell, here is the problem. When an operating system running on a virtual ma-
chine (in user mode) executes a privileged instruction), such as modifying the
PSW or doing 1/O, it is essentid that the hardware trap to the virtual machine
monitor so the instruction can be emulated in software. On some CPUs—notably
the Pentium, its predecessors, and its clones—attempts to execute privileged in-
structions in user mode are just ignored. This property made it impossible to have
virtual machines on this hardware, which explains the lack of interest in the PC
world. Of course, there were interpreters for the Pentium that ran on the Pentium,
but with a performance loss of typicaly 5-10x, they were not useful for serious
work.

This situation changed as a result of several academic research projects in the
1990s, notably Disco at Stanford (Bugnion et a., 1997), which led to commercial
products (e.g., VMware Workstation) and a revival of interest in virtual machines.
VMware Workstation is a type 2 hypervisor, which is shown in Fig. 1-29(b). In
contrast to type 1 hypervisors, which run on the bare metal, type 2 hypervisors run
as application programs on top of Windows, Linux, or some other operating sys-
tem, known as the host operating system. After a type 2 hypervisor is started, it
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reads the instalation CD-ROM for the chosen guest operating system and
installs on a virtual disk, which isjust a big file in the host operating system's file
system.

When the guest operating system is booted, it does the same thing it does on
the actual hardware, typicaly starting up some background processes and then a
GUI. Some hypervisors translate the binary programs of the guest operating sys-
tem block by block, replacing certain control instructions with hypervisor calls.
The trandated blocks are then executed and cached for subsequent use.

A different approach to handling control instructions is to modify the operat-
ing system to remove them. This approach is not true virtualization, but paravir-
tualization. We will discuss virtualization in more detail in Chap. 8.

The Java Virtual Machine

Another area where virtual machines are used, but in a somewhat different
way, is for running lava programs. When Sun Microsystems invented the Java
programming language, it aso invented a virtual machine (i.e., a computer archi-
tecture) caled the JVM (Java Virtual Machine). The Java compiler produces
code for VM, which then typically is executed by a software VM interpreter.
The advantage of this approach is that the VM code can be shipped over the In-
ternet to any computer that has a VM interpreter and run there. If the'compiler
had produced SPARC or Pentium binary programs, for example, they could not
have been shipped and run anywhere as easily. (Of course, Sun could have pro-
duced a compiler that produced SPARC binaries and then distributed a SPARC
interpreter, but VM is a much simpler architecture to interpret.) Another advan-
tage of using JVM s that if the interpreter is implemented properly, which is not
completely trivial, incoming VM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.

1.7.6 Exokernels

Rather than cloning the actual machine, as is done with virtual machines, an-
other strategy is partitioning it, in other words, giving each user a subset of the re-
sources. Thus one virtual machine might get disk blocks 0 to 1023, the next one
might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exoker -
nel (Engler et al., 1995). Itsjob is to alocate resources to virtual machines and
then check attempts to use them to make sure no machine is trying to use some-
body else's resources. Each user-level virtual machine can run its own operating
system, as on VM/370 and the Pentium virtual 8086s, except that each one is res-
tricted to using only the resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In
the other designs, each virtual machine thinks it has its own disk, with blocks
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running from O to some maximum, so the virtual machine monitor must maintain
tables to remap disk addresses (and al other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual ma-
chine has been assigned which resource. This method gtill has the advantage of
separating the multiprogramming (in the exokernel) from the user operating sys-
tem code (in user space), but with less overhead, since al the exokernel has to do
is keep the virtual machines out of each other's hair.

18 THE WORLD ACCORDING TO C

Operating systems are normally large C (or sometimes C++) programs con-
sisting of many pieces written by many programmers. The environment used for
developing operating systems is very different from what individuals (such as stu-
dents) are used to when writing small Java programs. This section is an attempt to
give a very brief introduction to the world of writing an operating system for
small-time Java programmers.

1.8.1 The C Language

This is not a guide to C, but a short summary of some of the key differences
between C and Java. Javais based on C, so there are many similarities between
the two. Both are imperative languages with data types, variables, and control
statements, for example. The primitive data types in C are integers (including
short and long ones), characters, and floating-point numbers. Composite data
types can be constructed using arrays, structures, and unions. The control state-
ments in C are similar to those in Java, including if, switch, for, and while state-
ments. Functions and parameters are roughly the same in both languages.

One feature that C has that Java does not is explicit pointers. A pointer is a
variable that points to (i.e., contains the address of) a variable or data structure.
Consider the statements

charcl, c2, *p;
d =%,
p=&cy,
c2="*p;

which declare cl and c2 to be character variables and p to be a variable that points
to (i.e., contains the address of) a character. The first assignment stores the ASCII
code for the character 'c' in the variable cl. The second one assigns the address
of cl to the pointer variable p. The third one assigns the contents of the variable
pointed to by p to the variable c2, so after these statements are executed, c2 aso
contains the ASCII code for 'c'. In theory, pointers are typed, so you are not sup-
posed to assign the address of a floating-point number to a character pointer, but
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in practice compilers accept such assignments, albeit sometimes with a warning.
Pointers are a very powerful construct, but also a great source of errors when used
carelesdly.

Some things that C does not have include built-in strings, threads, packages,
classes, objects, type safety, and garbage collection. The last one is a show stop-
per for operating systems. All storage in C is either static or explicitly alocated
and released by the programmer, usualy with the library function malloc and. free.
It is the latter property—total programmer control over memory—along with
explicit pointers that makes C attractive for writing operating systems. Operating
systems are basically real-time systems to some extent, even genera purpose
ones. When an interrupt occurs, the operating system may have only a few
microseconds to perform some action or lose critical information. Having the gar-
bage collector kick in at an arbitrary moment is intolerable.

1.8.2 Header Files

An operating system project generally consists of some number of directories,
each containing many .c files containing the code for some part of the system,
aong with some .h header files that contain declarations and definitions used by
one or more code files. Header files can also include simple macros, suctt as

#define BUFFEFLSIZE 4096

which allows the programmer to name constants, so that when BUFFER_S1ZE is
used in the code, it is replaced during compilation by the number 4096. Good C
programming practice is to name every constant except 0, 1, and - 1, and some-
times even them. Macros can have parameters, such as

#define max(a, b) (a>b?a:b)
which allows the programmer to write
i = max(j, k+1)
and get
i=( >k+1 ?j :k+1)

to store the larger of j and k+1 in i. Headers can also contain conditional compi-
lation, for example

#ifdef PENTIUM
intelJnt_ack();
#endif

which compiles into acall to the function inteUnt_ock if the macro PENTIUM is
defined and nothing otherwise. Conditional compilation is heavily used to isolate
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architecture-dependent code so that certain code is inserted only when the system
is compiled on the Pentium, other code is inserted only when the system is com-
piled on a SPARC, and so on. A .c file can bodily include zero or more header
files using the ffinclude directive. There are also many header fdes that are com-
mon to nearly every .c and are stored in a central directory.

1.8.3 Large Programming Projects

To build the operating system, each .c is compiled into an object file by the C
compiler. Object files, which have the suffix .0, contain binary instructions for the
target machine. They will later be directly executed by the CPU. There is nothing
like Java byte codein the C world.

The first pass of the C compiler is caled the C preprocessor. As it reads
each .cfile, every time it hits a include directive, it goes and gets the header file
named in it and processes it, expanding macros, handling conditional compilation
(and certain other things) and passing the results to the next pass of the compiler
as if they were physically included.

Since operating systems are very large (five million lines of code is not un-
usual), having to recompile the entire thing every time one file is changed would
be unbearable. On the other hand, changing a key header file that is included in
thousands of other files does require recompiling those files. Keeping track of
which object files depend on which header files is completely unmanageable
without help.

Fortunately, computers are very good at precisely this sort of thing. On UNIX
systems, there is a program called make (with numerous variants such as gmake,
pmake, etc.) that reads the Makefde, which tells it which files are dependent on
which other files. What make does is see which object files are needed to build the
operating system binary needed right now and for each one, check to see if any of
the files it depends on (the code and headers) have been modified subsequent to
the last time the object file was created. If so, that object file has to be recom-
piled. When make has determined which .c files have to recompiled, it invokes
the C compiler to recompile them, thus reducing the number of compilations to
the bare minimum. In large projects, creating the Makefile is error prone, so there
are tools that do it automatically.

Once al the .o files are ready, they are passed to a program called the linker
to combine al of them into a single executable binary file. Any library functions
caled are dso included at this point, interfunction references are resolved, and
machine address are relocated as need be. When the linker is finished, the result is
an executable program, traditionally called a.out on UNIX systems. The various
components of this process are illustrated in Fig. 1-30 for a program with three C
files and two header files. Although we have been discussing operating system
development here, all of this applies to developing any large program.
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Figure 1-30. The process of compiling C and header files to make an executable.

1.84 The Model of Run Time

Once the operating system binary has been linked, the computer can be
rebooted and the new operating system started. Once running, it may dynamically
load pieces that were not statically included in the binary such as device drivers
and file systems. At run time the operating system may consist of multiple seg-
ments, for the text (the program code), the data, and the stack. The text segment is
normally immutable, not changing during execution. The data segment starts out
a acertain size and initialized with certain values, but it can change and grow as
need be. The stack is initially empty but grows and shrinks as functions are caled
and returned from. Often the text segment is placed near the bottom of memory,
the data segment just above it, with the ability to grow upward, and the stack seg-
ment at a high virtual address, with the ability to grow downward, but different
systems work differently.

In all cases, the operating system code is directly executed by the hardware,
with no interpreter and no just-in-time compilation, as is normal with Java.
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19 RESEARCH ON OPERATING SYSTEMS

Computer science is a rapidly advancing field and it is hard to predict where it
is going. Researchers at universities and industrial research labs are constantly
thinking up new ideas, some of which go nowhere but some of which become the
cornerstone of future products and have massive impact on the industry and users.
Telling which is which turns out to be easier to do in hindsight than in real time.
Separating the wheat from the chaff is especially difficult because it often takes
20 to 30 years from idea to impact.

For example, when President Eisenhower set up the Dept. of Defense's Ad-
vanced Research Projects Agency (ARPA) in 1958, he was trying to keep the
Army from killing the Navy and the Air Force over the Pentagon's research bud-
get. He was not trying to invent the Internet. But one of the things ARPA did
was fund some university research on the then-obscure concept of packet switch-
ing, which led to the first experimental packet-switched network, the ARPANET.
It went live in 1969. Before long, other ARPA-funded research networks were
connected to the ARPANET, and the Internet was born. The Internet was then
happily used by academic researchers for sending e-mail to each other for 20
years. Inthe early 1990s, Tim Berners-Lee invented the World Wide Web at the
CERN research lab in Geneva and Marc Andreesen wrote a graphical browser for
it at the University of Illinois. All of a sudden the Internet was full of chatting
teenagers. President Eisenhower is probably rolling over in his grave.

Research in operating systems has also led to dramatic changes in practical
systems. As we discussed earlier, the first commercial computer systems were all
batch systems, until M.I.T. invented interactive timesharing in the early 1960s.
Computers were all text-based until Doug Engelbart invented the mouse and the
graphical user interface at Stanford Research Institute in the late 1960s. Who
knows what will come next?

In this section and in comparable sections throughout the book, we will take a
brief look at some of the research in operating systems that has taken place during
the past 5 to 10 years, just to give a flavor of what might be on the horizon. This
introduction is certainly not comprehensive and is based largely on papers that
have been published in the top research journals and conferences because these
ideas have a least survived a rigorous peer review process in order to get pub-
lished. Most of the papers cited in the research sections were published by either
ACM, the |IEEE Computer Society, or USENIX and are available over the Inter-
net to (student) members of these organizations. For more information about these
organizations and their digital libraries, see

ACM http://wvvw.acm.org
IEEE Computer Society http://www.computer.org
USENIX http://www.usenix.org
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Virtually all operating systems researchers realize that current operating sys
tems are massive, inflexible, unreliable, insecure, and loaded with bugs, certain
ones more than others (names withheld here to protect the guilty). Consequently,
there is a lot of research on how to build better operating systems. Work has
recently been published about new operating systems (Krieger et al., 2006), oper-
aing system structure (Fassino et al., 2002), operating system correctness
(Elphinstone et a., 2007; Kumar and Li, 2002; and Yang et a., 2006), operating
system reliability (Swift et al., 2006; and LeVasseur et al., 2004), virtual ma-
chines (Barham et al., 2003; Garfinkel et a., 2003; King et al., 2003; and Whi-
taker et al., 2002), viruses and worms (Costa et al., 2005; Portokalidis et al., 2006;
Tucek et al., 2007; and Vrable et a., 2005), bugs and debugging (Chou et a.,
2001; and King et a., 2005), hyperthreading and multithreading (Fedorova, 2005;
and Bulpin and Pratt, 2005), and user behavior (Yu et a., 2006), among many
other topics.

110 OUTLINE OF THE REST OF THISBOOK

We have now completed our introduction and bird's-eye view of the operating
system. It is time to get down to the details. As mentioned aready, from the pro-
grammer's point of view, the primary purpose of an operating system is to provide
some key abstractions, the most important of which are processes and threads, ad-
dress spaces, and files. Accordingly the next three chapters are devoted to these
critical topics.

Chapter 2 is about processes and threads. It discusses their properties and
how they communicate with one another. It also gives a number of detailed ex-
amples of how interprocess communication works and how to avoid some of the
pitfalls.

In Chap. 3 we will study address spaces and their adjunct, memory man-
agement, in detail. The important topic of virtual memory will be examined, along
with closely related concepts such as paging and segmentation.

Then, in Chap. 4, we come to the all-important topic of file systems. To a
considerable extent, what the user sees is largely the file system. We will look at
both the file system interface and the file system implementation.

Input/Output is covered in Chap. 5. The concepts of device independence and
device dependence will be looked at. Several important devices, including disks,
keyboards, and displays, will be used as examples.

Chapter 6 is about deadlocks. We briefly showed what deadlocks are in this
chapter, but there is much more to say. Ways to prevent or avoid them are dis-
cussed.

At this point we will have completed our study of the basic principles of sin-
gle-CPU operating systems. However, there is more to say, especialy about ad-
vanced topics. In Chap. 7, we examine multimedia systems, which have a number
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of properties and requirements that differ from conventional operating systems.
Among other items, scheduling and the file system are affected by the nature of
multimedia. Another advanced topic is multiple processor systems, including mul-
tiprocessors, parallel computers, and distributed systems. These subjects are
covered in Chap. 8.

A hugely important subject is operating system security, which is covered in
Chap 9. Among the topics discussed in this chapter are threats (e.g., viruses and
worms), protection mechanisms, and security models.

Next we have some case studies of real operating systems. These are Linux
(Chap. 10), Windows Vista (Chap. 11), and Symbian (Chap. 12). The book con-
cludes with some wisdom and thoughts about operating system design in Chap.
13.

111 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-31. The prefixes are typicaly abbreviated by their first letters, with the
units greater than 1 capitalized. Thus a I-TB database occupies 10* bytes of stor-
age and a 100 psec (or 100 ps) clock ticks every 10""* seconds. Since milli and
micro both begin with the letter "m," a choice had to be made. Normally, "m" is
for milli and "p." (the Greek letter mu) is for micro.

Exp. Explicit Prefix | Exp. Explicit Prefix
10" | 0.001 milli 10 1,000 | Kilo
10"* | 0.000001 micro | 10° 1,000,000 | Mega
10" O0000QC0L nano 10° 1,000,000,000 | Giga
io-"* | 0.000000000001 pico 10" 1,000.000.000.000 | Tera
io- 0.000000000000001 femlo | 10" 1,000,000,000,000,000 | Peta
io- 0.0000000000000000001 atto 10" 1,000,000,000,000,000,000 | Exa
jo-* | 0.0000000000000000000001 zepto | 10* 1,000,000,000,000,000,000,000 | Zetta
jo-** | 0.0000000000000000000000001 | yocto | 10* | 1,000,000,000,000,000,000,000,000 | Yoita

Figure 1-3L The prindipal metric prefixes

It is also worth pointing out that for measuring memory sizes, in common
industry practice, the units have dightly different meanings. There Kilo means 2*°
(1024) rather than 10° (1000) because memories are always a power of two. Thus
a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-MB memory
contains 2°° (1,048,576) bytes and a 1-GB memory contains 2°° (1,073,741,824)
bytes. However, a 1-Kbps communication line transmits 1000 bits per second and
a 10-Mbps LAN runs at 10,000,000 hits/sec because these speeds are not powers
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of two. Unfortunately, many people tend to mix up these two systems, especially
for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB,
MB, and GB for 2, 2*°, and 2°° bytes respectively, and the symbols Kbps,
Mbps, and Gbps for 10°,10° and 10° bits/sec, respectively.

112 SUMMARY

Operating systems can be viewed from two viewpoints. resource managers
and extended machines. In the resource manager view, the operating system'sjob
is to manage the different parts of the system efficiently. In the extended machine
view, thejob of the system is to provide the users with abstractions that are more
convenient to use than the actua machine. These include processes, address
spaces, and files.

Operating systems have a long history, starting from the days when they
replaced the operator, to modern multiprogramming systems. Highlights include
early batch systems, multiprogramming systems, and personal computer systems.

Since operating systems interact closely with the hardware, some knowledge
of computer hardware is useful to understanding them. Computers are built up of
processors, memories, and 1/O devices. These parts are connected by buses.

The basic concepts on which all operating systems are built are processes,
memory management, 1/0O management, the file system, and security. Each of
these will be treated in a subsequent chapter.

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For UNIX, we have looked at
four groups of system calls. The first group of system calls relates to process crea
tion and termination. The second group is for reading and writing files. The third
group is for directory management. The fourth group contains miscellaneous
cals.

Operating systems can be structured in several ways. The most common ones
are as a monoalithic system, ahierarchy of layers, microkernel, client-server, virtu-
a machine, or exokemel.

PROBLEMS

1. Whet are the tv/o main functions of an operating system?
2. Wha is the difference between timesharing and multiprogramming sysems?

3. On early computers, every byte of data reed or written was handled by the CPU (i.e,,
there was no DMA). What implications does this have for multiprogramming?

4. Why weas timesharing not widespread on second-generation computers?
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5. The family of computers idea wes introduced in the 1960s with the IBM System/360
manframes Isthisidea now dead as adoornal or does it live on?

6. Ore reason GUIs were initidly dow to be adopted was the cost of the hardware need-
ed to support them. How much video RAM is needed to support a 25 line x 80 row
character monochrome text screen? How much for a 1024 x 768 pixd 24-bit color
bitmap? What was the cogt of this RAM a 1980 prices ($5/KB)? How much is it
now?

7. There are severa design gods in building an operating system, for example, resource
utilization, timeliness, robustness, and so on. Give an example of two design goals that
may contradict one another.

8. What is the difference between kernd and user mode? Explain how having two dis-
tinct modes aidsin designing an operating system.

9. Which of the fallowing instructions should be dlowed only in kernd mode?

(@ Dissble dl interrupts

(b) Reed the time-of-day clock.
(©) S the time-of-day clock.
(d) Chenge the mamary map.

10. Condder a sysem that hes two CPUs and each CPU has two threads (hyperthreading).
Suppose three programs, PO, P, and P2, are darted with run times of 5, 10 and 20
mses, respectively. How long will it take to complete the execution of these programs?
Asume that dl three programs are 100% CPU bound, do not block during execution,
and do nat change CPUs once assigned.

11. Lis some differences between persond computer operating systems and mainframe
operdting systems.

12. Condder a computer system that has cache memory, main memory (RAM) and disk,
ad the operating sysem uses virtud memory. It takes 2 usee to access a word from
the cache, 10 ngec to access aword from the RAM, and 10 ms to access aword from
the disk. If the cache hit rate is 95% and main memory hit rate (after a cache miss) is
9%, what is the average time to access aword?

13. When a user program miakes a system call to reed or write a disk file, it provides an
indication of which file it wants, a pointer to the data buffer, and the count. Contral is
then trandfared to the operating system, which cdls the appropriate driver. Suppose
that the driver starts the disk and terminates until an interrupt occurs. In the case of
reading fram the disk, obvioudy the caler will have to be blocked (because there are
no data for it). Whet about the case of writing to the disk? Need the caller be block-
ing awating completion of the disk transfer?

14. Whet is atrep ingruction? Explain its use in operating systems.
15. What is the key difference between atrap and an interrupt?

16. Why is the process table needed in atimesharing system? Is it also nesded in persond
computer systems in which only one process exists, that process teking over the entire
mechine until it is finished?
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17. |s there any resson why you might want to mount a file sysem on anonempty direc-
tory? If so, what isit?

18 What is the purpose of asysem cdl in an operaing system?

19. For each of the fdlowing system calls, give a condition that causes it to fail: fark,
exec, and unlink.

20. A file whose file descriptor is fd contains the following sequence of bytes: 3, 1,4, 1,5,
9,2,6,5, 3, 5. Thefdlowing sysem cdls are made:

lseek(fd, 3, SEEK_SET);
reedi(fd, & buffer, 4);

where the Iseek cal makes a seek to byte 3 of the file. What does bufferr contain after
the read has completed?

21. ¥Yha is the essentid difference between a block specid file and a character specid
ile?

22. In the example given in Fig. 1-17, the library procedure is called read and the sysem
cdl itdf is caled read. Is it essentid that both of these have the same name? If nat,
which one is more important?

23. The client-server modd is popular in distributed systems. Can it dso beusad in asin-
gle-computer system?

24. To aprogrammer, a system cdl looks like any other cdl to alibrary procedure. |s it
important that a programmer know which library procedures result in system cals?
Under what circumstances and why?

25. Fgure 1-23 shows that a number of UNIX system cdlls have no Win32 APl equiva
lents. For each of the calls liged as having no Win32 equivaent, what are the conse-
quences for a programmer of converting aUNIX program to run under Windows?

26. A portable operating sysem is one thet can be ported from one system architecture to
another without any modification. Explain why it is infeasible to build an operating
system that is completdly portable. Describe two high-level layers that you will have
in designing an operating sysem that is highly portable.

27. Explan how separation of policy and mechaniam aids in building microkernel-based
operating systems.

28. Here are some questions for practicing unit conversions.

(@ How long is a microyear in seconds?
(b) Micrometers are often called microns. How long is agigamicron?

(c) How many bytes are therein a I-TB memory?
(d) The mass of the earth is 6000 yottagrams. What is that in kilograms?

29. Write a shdl that is smilar to Fig. 1-19 but contains enough code thet it actudly
works 0 you can test it. You might aso add some features such as redirection of input
and output, pipes, and background jobs.

30. If you have a persond UNIX-like sygem (Linux, MINIX, Free BSD, etc)) available
thet you cen sy crash and reboot, write a shell script thet attempts to create an
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unlimited number of child processes and observe what happens. Before running the
experiment, type sync to the shell to flush the file system buffers to disk to avoid ruin-
ing the file syslem. Note: Do not try this on a shared system without first getting per-
misson from the sysem adminigtrator. The consequences will be ingantly obvious so
you are likdly to be caught and sanctions may follow.

Examine and try to interpret the contents of a UNIX-like or Windows directory with a
tool like the UNIX od program or the MSDOS DEBUG program. Hint: How you do
this will depend upon what the OS alows. One trick that may work is to create a di-
rectory on a floppy disk with one operating sysem and then reed the raw disk data
usng adifferent operating sysem that adlows such access.

PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are
designed and constructed. The most central concept in any operating system is the
process. an abstraction of a running program. Everything else hinges on this con-
cept, and it is important that the operating system designer (and student) have a
thorough understanding of what aprocess is as early as possible.

Processes are one of the oldest and most important abstractions that operating
systems provide. They support the ability to have (pseudo) concurrent operation
even when there is only one CPU available. They turn a single CPU into multiple
virtua CPUs. Without the process abstraction, modem computing could not exist.
In this chapter we will go into considerable detail about processes and their first
cousins, threads.

21 PROCESSES

All modern computers often do several things at the same time. People used
to working with personal computers may not be fully aware of this fact, so a few
examples may make the point clearer. First consider a Web server. Reguests
come in from all over asking for Web pages. When a request comes in, the server
checks to see if the page needed isin the cache. If itis, it is sent back; if it is not,
a disk request is started to fetch it. However, from the CPU's perspective, disk re-
quests take eternity. While waiting for the disk request to complete, many more
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requests may come in. If there are multiple disks present, some or al of them
may be fired off to other disks long before the first request is satisfied. Clearly
some way is needed to model and control this concurrency. Processes (and espe-
cidly threads) can help here.

Now consider a user PC. When the system is booted, many processes are
secretly started, often unknown to the user. For example, a process may be started
up to wait for incoming e-mail. Another process may run on behdf of the anti-
virus program to check periodicaly if any new virus definitions are available. In
addition, explicit user processes may be running, printing files and burning a CD-
ROM, dl while the user is surfing the Web. All this activity has to be managed,
and a multiprogramming system supporting multiple processes comes in very
handy here.

In any multiprogramming system, the CPU switches from process to process
quickly, running each for tens or hundreds of milliseconds. While, strictly speak-
ing, a any instant of time, the CPU is running only one process, in the course of 1
second, it may work on several of them, giving the illusion of parallelism. Some-
times people spesk of pseudoparallelism in this context, to contrast it with the
true hardware parallelism of multiprocessor systems (which have two or more
CPUs sharing the same physical memory). Keeping track of multiple, parallel
activities is hard for people to do. Therefore, operating system designers over the
years have evolved a conceptual model (sequential processes) that makes paral -
Idlism easier to ded with. That model, its uses, and some of its consequences form
the subject of this chapter.

2.1.1 The Process Model

In thismodd, dl the runnable software on the computer, sometimes including
the operating system, is organized into a number of sequential processes, or just
processes for short. A process isjust an instance of an executing program, in-
cluding the current values of the program counter, registers, and variables. Con-
ceptudly, each process has its own virtual CPU. In reality, of course, the real
CPU switches back and forth from process to process, but to understand the sys-
tem, it is much easier to think about a collection of processes running in (pseudo)
pardld then to try to keep track of how the CPU switches from program to pro-
gram. This rapid switching back and forth is called multiprogramming, as we
saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memo-
ry. InFig. 2-1(b) we see four processes, each with its own flow of control (i.e., its
own logical program counter), and each one running independently of the other
ones. Of course, there is only one physical program counter, so when each proc-
€ss runs, its logica program counter is loaded into the real program counter.
When it is finished (for the time being), the physical program counter is saved in
the process gtored logical program counter in memory. In Fig. 2-1(c) we see that
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viewed over a long enough time interval, all the processes have made progress,
but at any given instant only one process is actually running.

One program counter
Four program counters

Process
switch
B : § 0
* 8
A

Time -

@ (b) ©

Figure 2-1. (a) Multiprogramming of four programs, (b) Conceptual model of
four independent, sequential processes, (c) Only one program isactive at once.

In this chapter, we will assume there is only one CPU. Increasingly, however,
that assumption is not true, since new chips are often multicore, with two, four, or
more CPUs. We will look at multicore chips and multiprocessors in genera in
Chap. 8, but for the time being, it is simpler just to think of one CPU at atime. So
when we say that a CPU can really only run one process at atime, if there are two
cores (or CPUs) each one of them can run only one process at a time.

With the CPU switching rapidly back and forth among the processes, the rate
at which a process performs its computation will not be uniform and probably not
even reproducible if the same processes are run again. Thus, processes must not
be programmed with built-in assumptions about timing. Consider, for example,
an 1/0 process that starts a streamer tape to restore backed-up files, executes an
idle loop 10,000 times to let it get up to speed, and then issues a command to read
the first record. If the CPU decides to switch to another process during the idle
loop, the tape process might not run again until after the first record was aready
past the read head. When a process has critical real-time requirements like this,
that is, particular events must occur within a specified number of milliseconds,
special measures must be taken to ensure that they do occur. Normally, however,
most processes are not affected by the underlying multiprogramming of the CPU
or the relative speeds of different processes.

The difference between a process and a program is subtle, but crucial. An
anadlogy may help here. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a
kitchen well stocked with dl the input: flour, eggs, sugar, extract of vanilla, and
so on. In this analogy, the recipe is the program (i.e., an agorithm expressed in
some suitable notation), the computer scientist is the processor (CPU), and the
cake ingredients are the input data. The process is the activity consisting of our
baker reading the recipe, fetching the ingredients, and baking the cake.
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Now imagine that the computer scientist's son comes running in screaming
his head off, saying that he has been stung by a bee. The computer scientist re-
cords where he was in the recipe (the state of the current process is saved), gets
out a first aid book, and begins following the directions in it. Here we see the
processor being switched from one process (baking) to a higher-priority process
(administering medica care), each having a different program (recipe versus first
aid book). When the bee sting has been taken care of, the computer scientist goes
back to his cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being used to determine when to stop
work on one process and service adifferent one.

It is worth noting that if a program is running twice, it counts as two proc-
esses. For example, it is often possible to start a word processor twice or print two
files at the same time if two printers are available. The fact that two running proc-
esses happen to be running the same program does not matter; they are distinct
processes. The operating system may be able to share the code between them so
only one copy isin memory, but that is atechnical detail that does not change the
conceptual situation of two processes running.

2.1.2 Process Creation

Operating systems need some way to create processes. In very simple sys-
tems, or in systems designed for running only a single application (e.g., the con-
troller in a microwave oven), it may be possible to have al the processes that will
ever be needed be present when the system comes up. In genera-purpose sys-
tems, however, some way is needed to create and terminate processes as needed
during operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:
1. System initialization.
2. Execution of a process creation system call by arunning process.
3. A user request to create a new process.
4, |Initiation of a batch job.

When an operating system is booted, typically several processes are created.
Some of these are foreground processes, that is, processes that interact with
(human) users and perform work for them. Others are background processes,
which are not associated with particular users, but instead have some specific
function. For example, one background process may be designed to accept incom-
ing e-mail, sleeping most of the day but suddenly springing to life when incoming
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e-mail arrives. Another background process may be designed to accept incoming
requests for Web pages hosted on that machine, waking up when arequest arrives
to service the request. Processes that stay in the background to handle some
activity such as e-mail, Web pages, news, printing, and so on are called daemons.
Large systems commonly have dozens of them. In UNIX, the ps program can be
used to list the running processes. In Windows, the task manager can be used.

In addition to the processes created at boot time, new processes can be created
afterward as well. Often a running process will issue system calls to create one or
more new processes to help it do itsjob. Creating new processes is particularly
useful when the work to be done can easily be formulated in terms of several re-
lated, but otherwise independent interacting processes. For example, if a large
amount of data is being fetched over a network for subsequent processing, it may
be convenient to create one process to fetch the data and put them in a shared buf-
fer while a second process removes the data items and processes them. On a mul-
tiprocessor, alowing each process to run on a different CPU may also make the
job go faster.

In interactive systems, users can start a program by typing a command or
(double) clicking an icon. Taking either of these actions starts a new process and
runs the selected program in it. In command-based UNIX systems running X, the
new process takes over the window in which it was started. In Microsoft Win-
dows, when a process is started it does not have a window, but it can create one
(or more) and most do. In both systems, users may have multiple windows open
at once, each running some process. Using the mouse, the user can select a win-
dow and interact with the process, for example, providing input when needed.

The last situation in which processes are created applies only to the batch sys-
tems found on large mainframes. Here users can submit batch jobs to the system
(possibly remotely). When the operating system decides that it has the resources
to run another job, it creates a new process and runs the next job from the input
queue in it.

Technically, in all these cases, a new process is created by having an existing
process execute a process creation system call. That process may be a running
user process, a system process invoked from the keyboard or mouse, or a batch
manager process. What that process does is execute a system cdl to creste the
new process. This system call tells the operating system to create a new process
and indicates, directly or indirectly, which program to runinit.

In UNIX, thereis only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment strings,
and the same open files. That is al thereis. Usualy, the child process then exe-
cutes execve or asimilar system call to change its memory image and run a new
program. For example, when a user types a command, say, sort, to the shell, the
shell forks off a child process and the child executes sort. The reason for this
two-step process is to allow the child to manipulate its file descriptors after the
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fork but before the execve in order to accomplish redirection of standard input,
standard output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess, hand-
les both process creation and loading the correct program into the new process.
This cal has 10 parameters, which include the program to be executed, the com-
mand-line parameters to feed that program, various security attributes, bits that
control whether open files are inherited, priority information, a specification of
the window to be created for the process (if any), and a pointer to a structure in
which information about the newly created process is returned to the caller. In ad-
dition to CreateProcess, Win32 has about 100 other functions for managing and
synchronizing processes and related topics.

In both UNIX and Windows, after a process is created, the parent and child
have their own distinct address spaces. If either process changes aword in its ad-
dress space, the changeis not visible to the other process. In UNIX, the child's in-
itial address space is a copy of the parent's, but there are definitely two distinct
address spaces involved;, no writable memory is shared (some UNIX imple-
mentations share the program text between the two since that cannot be modified).
It is, however, possible for a newly created process to share some of its creator's
other resources, such as open files. In Windows, the parent's and child's address
spaces are different from the start.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever itsjob is.
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, usually due to one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).

3. Fata error (involuntary).

4. Killed by another process (involuntary).

Mogt processes terminate because they have done their work. When a compi-
ler has compiled the program given to it, the compiler executes a system call to
tell the operating system that it is finished. This call is exit in UNIX and ExitProc-
ess in Windows. Screen-oriented programs also support voluntary termination.
Word processors, Internet browsers and similar programs always have an icon or
menu item that the user can click to tell the process to remove any temporary files
it has open and then terminate.

The second reason for termination is that the process discovers a fata error.
For example, if a user types the command

cc foo.c
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to compile the program foo.c and no such file exists, the compiler smply exits.
Screen-oriented interactive processes generally do not exit when given bad pa-
rameters. Instead they pop up a dialog box and ask the user to try again.

The third reason for termination is an error caused by the process, often due to
a program bug. Examples include executing an illega instruction, referencing
nonexistent memory, or dividing by zero. In some systems (e.g., UNIX), a process
can tell the operating system that it wishes to handle certain errors itsdlf, in which
case the process is signded (interrupted) instead of terminated when one of the er-
rors occurs.

The fourth reason a process might terminate is that the process executes a sys-
tem call telling the operating system to kill some other process. In UNIX this call
is kill. The corresponding Win32 function is TerminateProcess. In both cases, the
killer must have the necessary .authorization to do in the killee. In some systems,
when a process terminates, either voluntarily or otherwise, all processes it created
are immediately killed as well. Neither UNIX nor Windows works this way, how-
ever.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent process
and child process continue to be associated in certain ways. The child process can
itself create more processes, forming a process hierarchy. Note that unlike plants
and animals that use sexua reproduction, a process has only one parent (but zero,
one, two, or more children).

In UNIX, a process and dl of its children and further descendants together
form a process group. When a user sends a signal from the keyboard, the signal is
delivered to al members of the process group currently associated with the key-
board (usualy ail active processes that were created in the current window). Indi-
vidually, each process can catch the signal, ignore the signal, or take the default
action, which is to bekilled by the signal.

As another example of where the process hierarchy plays arole, let us look at
how UNIX initializes itself when it is started. A specid process, called init, is
present in the boot image. When it starts running, it reads a file telling how many
terminals there are. Then it forks off one new process per terminal. These proc-
wait for someone to log in. If alogin is successful, the login process exe-
cutes a shell to accept commands. These commands may start up more processes,
and so forth. Thus, al the processes in the whole system belong to a single tree,
with init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are
equal. The only hint of a process hierarchy is that when a process is created, the
parent is given a specia token (caled a handle) that it can use to control the
child. However, it is free to pass this token to some other process, thus invalidat-
ing the hierarchy. Processes in UNIX cannot disinherit their children.
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2.1.5 Process States

Although each process is an independent entity, with its own program counter
and internal state, processes often need to interact with other processes. One proc-
€ss may generate some output that another process uses as input. In the shell
command

cat chapterl chapter2 chapters | grep tree

the fird process, running cat, concatenates and outputs three files. The second
process, running grep, selects al lines containing the word "tree." Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may hap-
pen that grep is ready to run, but there is no input waiting for it. It must then
block until some input is available.

When a process blocks, it does so because logicaly it cannot continue, typi-
cally because it is waiting for input that is not yet available. It is aso possible for
a process that is conceptually ready and able to run to be stopped because the op-
erating sysem has decided to allocate the CPU to another process for a while.
These two conditions are completely different. In the first case, the suspension is
inherent in the problem (you cannot process the user's command line until it has
been typed). In the second case, it is a technicality of the system (not enough
CPUs to give each process its own private processor). In Fig. 2-2 we see a state
diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).
2. Ready (runnable; temporarily stopped to let another process run).
3. Blocked (unable to run until some external event happens).

Logicdly, the first two states are similar. In both cases the process is willing to
run, only in the second one, thereis temporarily no CPU available for it. The third
sate is different from the first two in that the process cannot run, even if the CPU
has nothing el se to do.

Running
1. Process blocks for input
1 3 2 2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Fgure 2-2. A process can be in running, blodked, or reedy dae. Trangtions
bewen these dates are ss shown.

Four transitions are possible among these three states, as shown. Transition 1
occurs when the operating system discovers that a process cannot continue right
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now. In some systems the process can execute a system call, such as pause, to
get into blocked state. In other systems, including UNDC, when a process reads
from a pipe or specia file (e.g., a terminal) and there is no input available, the
process is automatically blocked.

Transitions 2 and 3 are caused by the process scheduler, a part of the operat-
ing system, without.the process even knowing about them. Transition 2 occurs
when the scheduler decides that the running process has run long enough, and it is
time to let another process have some CPU time. Transition 3 occurs when al the
other processes have had their fair share and it is time for the first process to get
the CPU to run again. The subject of scheduling, that is, deciding which process
should run when and for how long, is an important one; we will look at it later in
this chapter. Many agorithms have been devised to try to balance the competing
demands of efficiency for the system as a whole and fairness to individua proc-
esses. We will study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(such as the arrival of some input) happens. If no other process is running at that
instant, transition 3 will be triggered and the process will start running. Otherwise
it may have to wait in ready state for a little while until the CPU is available and
its turn comes.

Using the process model, it becomes much easier to think about what is going
on inside the system. Some of the processes run programs that carry «out com-
mands typed in by a user. Other processes are part of the system and handle tasks
such as carrying out requests for file services or managing the details of running a
disk or atape drive. When adisk interrupt occurs, the system makes a decision to
stop running the current process and run the disk process, which was blocked
waiting for that interrupt. Thus, instead of thinking about interrupts, we can think
about user processes, disk processes, terminal processes, and so on, which block
when they are waiting for something to happen. When the disk has been read or
the character typed, the process waiting for it is unblocked and is €eligible to run
again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of
the operating system is the scheduler, with a variety of processes on top of it. All
the interrupt handling and details of actually starting and stopping processes are
hidden away in what is here called the scheduler, which is actualy not much
code. The rest of the operating system is nicely structured in process form. Few
real systems are as nicely structured as this, however.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process control blocks.) This entry contains important
information about the process' state, including its program counter, stack pointer,
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Processes
0 1 n-2 |n-1
Scheduler

Figure 2-3. The lowest layer of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

memory alocation, the status of its open files, its accounting and scheduling in-
formation, and everything else about the process that must be saved when the
process is switched from running to ready or blocked state so that it can be restart-
ed later asif it had never been stopped.

Figure 2-4 shows some of the key fields in a typical system. The fidds in the
firgt column relate to process management. The other two relate to memory man-
agement and file management, respectively. It should be noted that precisely
which fields the process table has is highly system dependent, but this figure gives
a generd idea of the kinds of information needed.

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program statusword Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters
ProcessID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.

Now that we have looked at the process table, it is possible to explain a little
more about how the illusion of multiple sequential processes is maintained on one
(or each) CPU. Associated with each 1/0 class is a location (typically at a fixed
location near the bottom of memory) called the interrupt vector. It contains the
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address of the interrupt service procedure. Suppose that user process 3 is running
when a disk interrupt happens. User process 3's program counter, program status
word, and sometimes one or more registers are pushed onto the (current) stack by
the interrupt hardware. The computer then jumps to the address specified in the
interrupt vector. That is al the hardware does. From here on, it is up to the soft-
ware, in particular, the interrupt service procedure.

All interrupts start by saving the registers, often in the process table entry for
the current process. Then the information pushed onto the stack by the interrupt is
removed and the stack pointer is set to point to a temporary stack used by the
process handler. Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C, so they are per-
formed by a small assembly language routine, usualy the same one for dl inter-
rupts since the work of saving the registers is identical, no matter what the cause
of the interrupt is.

When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type. (We assume the operating system is written in C,
the usual choice for al real operating systems.) When it has done itsjob, possibly
making some process now ready, the scheduler is caled to see who to run next.
After that, control is passed back to the assembly language code to load up the
registers and memory map for the now-current process and start it running. Inter-
rupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that
the details vary somewhat from system to system.

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedur e saves registers.

4. Assembly language procedure sets up new stack.

5. Cinterrupt service runs {typically reads and buffers input).

6. Scheduler decideswhich processisto run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating system does
when an interrupt occurs.

When the process finishes, the operating system displays a prompt character and
waits for a new command. When it receives the command, it loads a new program
into memory, overwriting the first one.

2.1.7 Modeling Multiprogramming
When multiprogramming is used, the CPU utilization can be improved.

Crudely put, if the average process computes only 20% of the time it is sitting in
memory, with five processes in memory at once, the CPU should be busy dl the
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time. This modd is unredistically optimistic, however, since it tacitly assumes
that all five processes will never be waiting for 1/0 at the sametime.

A better mode! is to look at CPU usage from a probabilistic viewpoint. Sup-
pose that a process spends a fraction p of its time waiting for [/0 to complete.
With n processes in memory at once, the probability that al n processes are wait-
ing for I/O (in which case the CPU will beidle) isp". The CPU utilization is then
given by the formula

CPU tilization ~\-p"

Figure 2-6 shows the CPU utilization as a function of n, which is caled the
degree of multiprogramming.

20% /O wait
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Figure 2-6. CPU utilization as a function of the number of processes in memory.

From the figure it is clear that if processes spend 80% of their time waiting for
1/0, at least 10 processes must be in memory at once to get the CPU waste below
10%. When you redlize that an interactive process waiting for auser to type some-
thing at a terminal is in I/O wait state, it should be clear that I/O wait times of
80% and more are not unusual. But even on servers, processes doing alot of disk
1/0 will often have this percentage or more.

For the sake of complete accuracy, it should be pointed out that the proba-
bilistic mode just described is only an approximation. It implicitly assumes that
al n processes are independent, meaning that it is quite acceptable for a system
with five processes in memory to have three running and two waiting. But with a
single CPU, we cannot have three processes running at once, so a process becom-
ing ready while the CPU is busy will have to wait. Thus the processes are not in-
dependent. A more accurate model can be constructed using queueing theory, but
the point we are making—multiprogramming lets processes use the CPU when it
would otherwise become idle—is, of course, till valid, even if the true curves of
Fig. 2-6 are dightly different from those shown in the figure.
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Even though the model of Fig. 2-6 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance.
Suppose, for example, that a computer has 512 MB of memory, with the operating
system taking up 128 MB and each user program also taking up 128 MB. These
sizes alow three user programs to be in memory at once. With an 80% average
I/O wait, we have a CPU utilization (ignoring operating system overhead) of
1 -0.8° or about 49%. Adding another 512 MB of memory alows the system to
go from three-way multiprogramming to seven-way multiprogramming, thus rais-
ing the CPU utilization to 79%. In other words, the additional 512 MB will raise
the throughput by 30%.

Adding yet another 512 MB would only increase CPU utilization from 79% to
91%, thus raising the throughput by only another 12%. Using this model the com-
puter's owner might decide that the first addition is a good investment but that the
second is not.

2.2 THREADS

In traditional operating systems, each process has an address space and a sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less, there are frequently situations in which it is desirable to have, multiple
threads of control in the same address space running in quasi-parallel, as though
they were (almost) separate processes (except for die shared address space). In
the following sections we will discuss these situations and their implications.

2.2.1 Thread Usage

Why would anyone want to have akind of process within a process? It turns
out there are several reasons for having these miniprocesses, called threads. Let
us now examine some of them. The main reason for having threads is that in many
applications, multiple activities are going on at once. Some of these may block
from time to time. By decomposing such an application into multiple sequential
threads that run in quasi-parallel, the programming model becomes simpler.

We have seen this argument before. It is precisely the argument for having
processes. Instead of thinking about interrupts, timers, and context switches, we
can think about parallel processes. Only now with threads we add a new element:
the ability for the parallel entities to share an address space and al of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they are lighter weight
than processes, they are easier (i.e., faster) to create and destroy than processes.
In many systems, creating a thread goes 10-100 times faster than creating a proc-
ess. When the number of threads needed changes dynamically and rapidly, this
property is useful to have.
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A third reason for having threads is also a performance argument. Threads
yield no peformance gain when al of them are CPU bound, but when there is
substantial computing and also substantial 1/0, having threads allows these activi-
ties to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where rea paral-
Ielism is possible. We will come back to thisissue in Chap. 8.

It is easiest to see why threads are useful by looking at some concrete ex-
amples. As afirst example, consider a word processor. Word processors usually
display the document being created on the screen formatted exactly as it will
appear on the printed page. In particular, dl the line breaks and page breaks are
in their correct and find positions, so that the user can inspect them and change
the document if need be (e.g., to eliminate widows and orphans—incomplete top
and bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author's point of view, itis
easiest to keep the entire book as a single file to make it easier to search for to-
pics, perform global substitutions, and so on. Alternatively, each chapter might be
a separate file. However, having every section and subsection as a separate file is
area nuisance when globa changes have to be made to the entire book, since
then hundreds of files have to be individualy edited. For example, if proposed
standard xxxx is approved just before the book goes to press, dl occurrences of
"Draft Standard xxxx" have to be changed to "Standard xxxx" at the last minute.
If the entire book is one file, typically a single command can do al the substitu-
tions. In contragt, if the book is spread over 300 files, each one must be edited
separately.

Now consider what happens when the user suddenly deletes one sentence
from page 1 of an 800-page document. After checking the changed page for cor-
rectness, he now wants to make another change on page 600 and types in a com-
mand telling the word processor to go to that page (possibly by searching for a
phrase occurring only there). The word processor is now forced to reformat the
entire book up to page 600 on the spot because it does not know what the first line
of page 600 will be until it has processed al the previous pages. There may be a
substantial delay before page 600 can be displayed, leading to an unhappy user.

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
matting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book. Mean-
while, the interactive thread continues to listen to the keyboard and mouse and
responds to simple commands like scrolling page 1 while the other thread is com-
puting madly in the background. With a little luck, the reformatting will be com-
pleted before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user againgt losing a day's work in the event of a program crash, system crash,
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or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-7.

Kernel

S _J Drisk

Figure2-7. A word processor with three threads.

Keyhoard

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
finished. The user would surely perceive this as sluggish performance. Alterna
tively, keyboard and mouse events could interrupt the disk backup, allowing good
performance but leading to a complex interrupt-driven programming model. With
three threads, the programming model is much simpler. The first thread just
interacts with the user. The second thread reformats the document when told to.
The third thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here
because al three threads need to operate on the document. By having three
threads instead of three processes, they share a common memory and thus al have
access to the document being edited.

An analogous situation exists with many other interactive programs. For ex-
ample, an electronic spreadsheet is a program that allows a user to maintain a ma-
trix, some of whose elements are data provided by the user. Other elements are
computed based on the input data using potentially complex formulas. When a
user changes one element, many other elements may have to be recomputed. By
having a background thread do the recomputation, the interactive thread can alow
the user to make additional changes while the computation is going on. Similarly,
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a

World Wide Web site. Requests for pages come in and the requested page is sent
back to the client. At most Web sites, some pages are more commonly accessed
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than other pages. For example, Sony's home page is accessed far more than a
page deep in the tree containing the technical specifications of any particular cam-
corder. Web servers use this fact to improve performance by maintaining a collec-
tion of heavily used pages in main memory to eliminate the need to go to disk to
get them. Such acollection is called a cache and is used in many other contexts as
well. We saw CPU caches in Chap. 1, for example.

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After exa
mining the request, it chooses an idle (i.e., blocked) worker thread and hands it
the request, possibly by writing a pointer to the message into a special word asso-
ciated with each thread. The dispatcher then wakes up the seeping worker, mov-
ing it from blocked state to ready state.

Web server process

Dispatcher |hread

—\ ) \Worker thread User

space

\-*f- Web page cache
Kernd
Kernd space
Network

connection

Figure 2-8. A multithreaded Web server.

When the worker wakes up, it checks to see if the request can be satisfied
from the Web page cache, to which al threads have access. If nat, it starts a read
operation to get the page from the disk and blocks until the disk operation com-
pletes. When the thread blocks on the disk operation, another thread is chosen to
run, possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

This model alows the server to be written as a collection of sequentia
threads. The dispatcher's program consists of an infinite loop for getting a work
request and handing it off to a worker. Each worker's code consists of an infinite
loop consisting of accepting a request from the dispatcher and checking the Web
cache to seeif the page is present. If so, it isreturned to the client, and the worker
blocks waiting for a new request. If not, it gets the page from the disk, returns it
to the client, and blocks waiting for a new request.

SEC. 2.2 THREADS 97

A rough outline of the code is given in Fig. 2-9. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, bufmd page are structures
appropriate for holding awork request and a Web page, respectively.

while (TRUE) { while (TRUE) {

get_next_request(& buf); wait_for_work(& buf)

handoff_work(& buf); look_for_page_in_cache(& buf, Spage);
} if (page_not_in_cache(& page))

read_page_from_disk(& buf, & page);
return_page(Spage);

@ m

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher thread, (b)
Worker thread.

Consider how the Web server could be written in the absence of threads. One
possihility is to have it operate as a single thread. The main loop of the Web ser-
ver gets a request, examines it, and carries it out to completion before getting the
next one. While waiting for the disk, the server is idle and does not process any
other incoming requests. If the Web server is running on a dedicated machine, as
is commonly the case, the CPU is smply idle while the Web server is Waiti