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This preface presents the sixth edition of our remote sensing text. During the interval 
that has elapsed since our fifth edition, the pace of remote sensing has increased in sev-
eral respects, expanding the scope of our text and presenting new content. The advanced 
capabilities of satellite systems, thermal imagery, and drones have made essential contri-
butions to our efforts to address the significant challenges of our time, including wild-
fires, floods, and coastal erosion. Few could have anticipated the development of ana-
lytical tools and techniques that are now available for analysis of remotely sensed data, 
the explosion of new sensor systems, or the multiplicity of remote sensing’s applications 
throughout society. Such developments alone present challenges for any text on this sub-
ject.

Our sixth edition benefits from the addition of a new author, Dr. Valerie Thomas, an 
experienced faculty member at Virginia Tech, who now joins Dr. Randolph Wynne and 
Dr. James Campbell. Dr. Thomas brings new knowledge and perspectives to the text that 
will benefit users at all levels.

Changes in our field have also been reflected in the new four-color design throughout, 
with hundreds of new photos and figures, including original drawings by Susmita Sen. 
In addition, there are three new chapters on remote sensing platforms, agriculture, and 
forestry. Technological advances and cutting- edge applications are presented throughout 
this volume, including (1) discussions of Landsat 8 and Sentinel-2, (2) the growth of 

  Preface
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unmanned aerial systems, (3) mobile data collection, (4) current directions in climate 
change detection, (5) fire monitoring, (6) disaster response, and many other timely topics.

With the use of varied local and global examples and case studies, this sixth edition 
will provide readers with an understanding of the latest tools and principles of collecting 
remote images, analyzing and interpreting the images, and applying them to land and 
water use. It shows how remote sensing data are used in multiple fields, including plant 
sciences, agriculture, forestry, earth sciences, hydrology, and land-use analysis.

WHO THIS BOOK IS FOR

We wrote this text as a two-in-one book that will provide students with an accessible 
introduction to remote sensing, which can also serve as a foundational reference book. 
For students who intend to specialize in remote sensing, this text forms not only an intro-
duction but also a framework for subjects to be studied in greater detail. Students who do 
plan specialization in remote sensing should consult their instructors to plan a compre-
hensive course of study based on work in several disciplines, as discussed in Chapter 1. 
This approach is presented in the text itself, introducing students to the principal topics of 
significance for remote sensing, but acknowledging that students will require additional 
depth in their chosen fields of specialization.

For those students who do not intend to pursue remote sensing beyond the introduc-
tory level, our text serves as an overview and introduction, so that they can understand 
remote sensing, its applications in varied disciplines, and its significance in today’s world. 
For many, the primary emphasis will likely be on study of the chapters and methods of 
greatest significance in the student’s major field of study.

SPECIAL FEATURES TO AID READERS

The chapters now open with a list of the chapter’s major topics, and, as mentioned ear-
lier, new case examples, such as Washington State’s Oso River debris flow, illustrate each 
chapter’s concepts. Chapters conclude with end-of- chapter review questions on the chap-
ter’s content. And, for many chapters, we have added a short list of teaching and learning 
resources— principally a selection of online tutorials or short videos, such as those found 
on YouTube; these videos provide depth or breadth to the content presented in the chap-
ter or simply illustrate content. They have been selected for their brevity (most are less 
than 3–4 minutes or so in length) and for their effectiveness in explaining or illustrating 
content relative to the chapter in question. For the most part, we have excluded videos 
that focus on promotional content. Those videos that do serve a promotional purpose 
have been selected for their effectiveness in presenting technical content rather than as an 
endorsement of a particular product or service.

ORGANIZATION

We have retained the popular short- chapter format used in previous editions that can 
be taught in any order to meet the specific needs of each instructor. Numbered sections 
within chapters form smaller units that instructors can select and combine with other 
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content as preferred. Our content provides organization at several levels to encourage 
instructors to select specific structures for their courses. At the broadest level, the rough 
division into four units offers a progression in the knowledge presented, with occasional 
concessions to practicality (such as placing the “Image Interpretation” chapter in Part 
II under “Image Acquisition” rather than in its logical position in Part III, “Analysis”). 
Here, we present each division as consisting of three or more chapters organized as fol-
lows:

Part I. Foundations
Chapter 1. Introducing Remote Sensing Basics
Chapter 2. Electromagnetic Radiation
Chapter 3. Remote Sensing Platforms

Part II. Image Acquisition
Chapter 4. Digital Mapping Cameras
Chapter 5. Digital Imagery
Chapter 6. Image Interpretation
Chapter 7. Land Observation Satellites
Chapter 8. Active Microwave
Chapter 9. Lidar
Chapter 10. Thermal Imagery

Part III. Analysis
Chapter 11. Statistics and Preprocessing
Chapter 12. Image Classification
Chapter 13. Accuracy Assessment
Chapter 14. Hyperspectral Remote Sensing
Chapter 15. Change Detection

Part IV. Applications
Chapter 16. Plant Science Fundamentals
Chapter 17. Agricultural Remote Sensing
Chapter 18. Forestry
Chapter 19. Earth Sciences
Chapter 20. Coastal Processes and Landforms
Chapter 21. Land Use and Land Cover

NEW TO THIS EDITION

Now in full color with over 400 figures, hundreds of which are new to this edition, 
this sixth edition includes the latest technological advances and cutting- edge applications 
throughout. Three new chapters have been added, and they cover remote sensing plat-
forms, agriculture, and forestry. Additional updates by chapter include:

Chapter 1. Introducing Remote Sensing Basics: A new section introduces both 
workers who contributed to the basics of aviation and those who have advanced 
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worldwide achievements. This chapter also includes updated coverage of Open 
Landsat data policy, unmanned aerial vehicles (UAVs), and thermal infrared sen-
sors (TIRS) thermal imaging.

Chapter 3. Remote Sensing Platforms: This new chapter introduces readers to fun-
damental aspects of remote sensing, including aerial cameras, Landsat imagery, 
unmanned aerial systems (UASs), tethered balloons used in the monitoring of 
wildlife, satellite systems (including geofencing), and mobile collection of field 
data (such as cell phones).

Chapter 7. Land Observation Satellites: This chapter describes the most recent 
Landsat system, Sentinel-2A and 2B, from the European Space Agency, and 
SPOT 7 (a French satellite), which provides information for land management, 
disaster response, and security programs.

Chapter 9. Lidar: Lidar (light detection and ranging) systems record the intensity 
and timing of returns from a pulsed laser. Airborne laser scanning systems often 
use near- infrared lasers to map the elevation of land surfaces in fine detail. New 
coverage includes lidar pulse densities, the normalized point cloud, lidar profiles, 
point clouds derived using digital aerial photogrammetry, heights extracted from 
waveforms, and lidar data collected from the International Space Station (ISS).

Chapter 10. Thermal Imagery: This chapter provides new examples of aerial images 
depicting thermal features, such as the heating of urban landscapes or forest fires 
(such as those within the Shasta- Trinity Forest); thermal images of residential 
structures; urban heat islands; and daytime/nighttime satellite imagery.

Chapter 11. Statistics and Preprocessing: In the context of digital analysis of 
remotely sensed data, preprocessing refers to those operations that are prelimi-
nary to the principal analysis. Thus, preprocessing forms a preparatory phase 
that, in principle, improves image quality as the basis for later analyses that will 
extract information from the image. New content includes expanded coverage of 
principal components analysis (PCA), image statistics, and conversion to top- or 
bottom- of- atmosphere reflectance.

Chapter 12. Image Classification: This chapter has been almost completely rewrit-
ten to include modern machine learning approaches that have largely supplanted 
Bayesian maximum likelihood. These include k-nearest neighbor, classification 
trees, and random forests.

Chapter 13. Accuracy Assessment: This chapter now reflects current best practices, 
including guiding the user step-by-step through probabilistic sampling design, 
computing and reporting area proportions in the area matrix, and using the area 
proportions in summary statistics like the overall accuracy, user’s accuracy, and 
producer’s accuracy.

Chapter 14. Hyperspectral Remote Sensing: This chapter now includes common 
processing protocols like the spectral hourglass and their component steps (e.g., 
locating and identifying endmembers and spectral unmixing).

Chapter 15. Change Detection: This chapter has been updated to include a typol-
ogy of multitemporal change detection techniques and details of common algo-
rithms such as exponentially weighted moving average change detection and con-
tinuous change detection and classification. Change attribution is also explicitly 
addressed.
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Chapter 16. Plant Science Fundamentals: Expanded discussion of leaf or canopy 
water content has been added, along with indices appropriate for their estima-
tion. The land surface phenology section has been updated and expanded. Meth-
ods for the remote estimation of chlorophyll and solar- induced fluorescence have 
been detailed.

Chapter 17. Agricultural Remote Sensing: This new chapter shows how remote 
sensing’s aerial perspective provides significant insights into agricultural land-
scapes. It includes coverage of analytical strategies for agricultural analysis of sat-
ellite imagery, irrigated agriculture, crop calendars, storm- damaged crops, tillage 
status, agricultural management, and the USDA cropland data layer.

Chapter 18. Forestry: Forestry’s wide- ranging management objectives— including 
timber, forest products, water quality, carbon, sequestration, biodiversity, and 
wildlife conservation— are explored in this new chapter. Other topics include 
the assessment of competing vegetation, species identification, forest photogram-
metry, airborne laser scanning, fire fuel loading, and forest measurements and 
monitoring.

Chapter 19. Earth Sciences: This chapter examines terrain, physiography, and geo-
morphic systems in an Earth systems context, with new coverage of major land-
slides (Oso, Washington, and Grand Mesa, Colorado); examples of stream diver-
sion (northwestern Virginia); soil mapping; and soil scientists.

Chapter 20. Coastal Processes and Landforms: New topics include multispectral 
bathymetry, wave generation, swash and backwash, beach profiles (Virginia’s 
barrier islands), coastal classification (Texas Point), storm damage (Mantoloking, 
New Jersey), and renewal (Miami Beach).
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MAJOR TOPICS TO UNDERSTAND

Definitions

Milestones in the History of Remote Sensing

1.1 INTRODUCTION

The field of remote sensing is devoted to analysis of a special class of images that employ 
an overhead perspective (e.g., maps, aerial photographs, and similar images), including 
many that are based on radiation not visible to the human eye. These images have special 
properties that offer unique advantages for the study of the Earth’s surface: we can see 
patterns instead of isolated points and see relationships between features that other-
wise seem independent. They are especially powerful because they permit us to moni-
tor changes over time; to measure sizes, areas, depths, and heights; and, in general, to 
acquire information that is very difficult to acquire by other means. However, our abil-
ity to extract this kind of information is not innate; we must work hard to develop the 
knowledge and skills that allow us to use images.

 1 Introducing Remote 
Sensing Basics



4 I. FOUNDATIONS

Foundations of remote sensing rely on the partnership of aerial photography with 
the airplane. Photography began in the early 1800s; the airplane was used for aerial pho-
tography in 1908. Aerial photography began at an early date (using balloons and kites), 
requiring many years of experimentation before the camera became a practical means for 
aerial photography. Use of the aircraft for photography requires a feasible match between 
the elements of remote sensing, including some of its many practical applications. Here in 
Chapter 1 we consider a few topics to outline remote sensing’s content, origins, and scope 
as a foundation for the more specialized chapters that follow.

1.2 DEFINITIONS

The field of remote sensing has been defined many times (Table 1.1). Examination of 
common elements in these varied definitions permits identification of the topics’ most 
important themes. From a cursory look at these definitions, it is easy to identify a central 
concept: the gathering of information at a distance. This excessively broad definition, 
however, must be refined if it is to guide us in studying a body of knowledge that can be 
approached in a single course of study.

The practice of remote sensing is devoted to observation of the Earth’s land and 
water surfaces by means of reflected or emitted electromagnetic energy. This more 
focused definition excludes applications that could be reasonably included in broader 
definitions, such as sensing the Earth’s magnetic field or atmosphere or the temperature 
of the human body. For our purposes, the definition can be a modification of concepts 
given in Table 1.1:

Remote sensing is the practice of deriving information about the Earth’s land and 
water surfaces using images acquired from an overhead perspective, using elec-
tromagnetic radiation in one or more regions of the electromagnetic spectrum, 
reflected or emitted from the Earth’s surface.

This definition serves as a concise expression of the scope of this volume. It is not, how-
ever, universally applicable, and it is not intended to be so because practical constraints 
limit the scope of this volume. So, although this book must omit many interesting topics 
(e.g., meteorological or extraterrestrial remote sensing), it can review knowledge and 
perspectives necessary for pursuit of topics that cannot be covered in full here.

1.3 MILESTONES IN THE HISTORY OF REMOTE SENSING

We begin by outlining some of the noteworthy events and developments that introduce 
the field of remote sensing. By necessity, we abbreviate our account to present concise 
highlights of some key developments. More complete accounts are given by Fischer 
(1975), Simonett (1983), and others. For some of our initial discussion, our thread fol-
lows the trajectory mainly as recorded by U.S., British, and French records. Readers 
should, however, be aware that aviation, aerial photography, and photointerpretation all 
have rich histories in Germany, Switzerland, Italy, Canada, Australia, Russia, and many 
other nations. This chapter traces the evolution of this field to outline significant trends 
and key innovations.
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Early Photography (1839–1909)

Because the practice of remote sensing focuses on the examination of images of the 
Earth’s surface, remote origins lie in the beginnings of the practice of photography. Early 
attempts to form photographic images date from the early 1800s, when a number of 
scientists, now largely forgotten, conducted experiments with photosensitive chemicals.

In 1839, Louis Daguerre (1789–1851), well recognized as one of the early photogra-
phers, publicly reported results of his experiments with photographic chemicals. This date 
forms a convenient, though arbitrary, milestone for the birth of photography. History has 
generally credited acquisition of the first aerial photograph to Gaspard- Félix Tournachon 
(1829–1910) (known also by his pseudonym, Nadar). In 1858, he acquired an aerial photo 
using a tethered balloon. Nadar’s aerial photographs have been lost, although other early 

 TABLE 1.1 Remote Sensing: Some Definitions

Remote sensing has been variously defined but basically it is the art or science of telling something 
about an object without touching it. (Fischer, Hemphill, and Kover, 1976, p. 34)

Remote sensing is the acquisition of physical data of an object without touch or contact. (Lintz and 
Simonett, 1976, p. 1)

Imagery is acquired with a sensor other than (or in addition to) a conventional camera through which a 
scene is recorded, such as by electronic scanning, using radiations outside the normal visual range of 
the film and camera—microwave, radar, thermal, infrared, ultraviolet, as well as multispectral, special 
techniques are applied to process and interpret remote sensing imagery for the purpose of producing 
conventional maps, thematic maps, resources surveys, etc., in the fields of agriculture, archaeology, 
forestry, geography, geology, and others. (American Society of Photogrammetry)

Remote sensing is the observation of a target by a device separated from it by some distance. (Barrett 
and Curtis, 1976, p. 3)

The term remote sensing in its broadest sense merely means “reconnaissance at a distance.” (Colwell, 
1966, p. 71)

Remote sensing, though not precisely defined, includes all methods of obtaining pictures or other forms 
of electromagnetic records of the Earth’s surface from a distance, and the treatment and processing 
of the picture data. . . . Remote sensing then in the widest sense is concerned with detecting and 
recording electromagnetic radiation from the target areas in the field of view of the sensor instrument. 
This radiation may have originated directly from separate components of the target area; it may be solar 
energy reflected from them; or it may be reflections of energy transmitted to the target area from the 
sensor itself. (White, 1977, pp. 1–2)

“Remote sensing” is the term currently used by a number of scientists for the study of remote objects 
(earth, lunar, and planetary surfaces and atmospheres, stellar and galactic phenomena, etc.) from great 
distances. Broadly defined . . . , remote sensing denotes the joint effects of employing modern sensors, 
data-processing equipment, information theory and processing methodology, communications theory 
and devices, space and airborne vehicles, and large-systems theory and practice for the purposes of 
carrying out aerial or space surveys of the earth’s surface. (National Academy of Sciences, 1970, p. 1)

Remote sensing is the science of deriving information about an object from measurements made at a 
distance from the object, i.e., without actually coming in contact with it. The quantity most frequently 
measured in present-day remote sensing systems is the electromagnetic energy emanating from objects 
of interest, and although there are other possibilities (e.g., seismic waves, sonic waves, and gravitational 
force), our attention . . . is focused upon systems which measure electromagnetic energy. (D. A. 
Landgrebe, quoted in Swain and Davis, 1978, p. 1)
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balloon photographs survive. In succeeding years, numerous improvements were made in 
photographic technologies and methods of acquiring photographs of the Earth from bal-
loons and kites. Early photography employed slow exposures, so the subjects in photos 
of the day often appear stiff and contrived because any movement would create blurred 
images. Photography from hills and mountainous terrain were of interest because of their 
scenic character and distant vistas. Thus, even before there were aerial cameras, there 
were aerial vistas from high buildings and mountainous terrain that engaged popular 
interest. Aerial images of the Earth are among the first to fit our definition of remote 
sensing, although many of these images must be regarded as curiosities rather than as 
foundations for the field of remote sensing.

The Camera and the Airplane

The use of powered aircraft as platforms for aerial photography formed the next mile-
stone. In 1909, Wilbur Wright piloted the plane that acquired motion pictures of the 
Italian landscape near the town of Centocelli; these are said to be the first aerial photo-
graphs taken from an airplane. The maneuverability of the airplane provided the capa-
bility of controlling the speed, altitude, and direction required for systematic use of 
the airborne camera. Although there were many attempts to blend the camera with the 
airplane, the initial efforts were clearly not effective for systematic use with each other 
(Figure 1.1).

 FIGURE 1.1  Early aerial photography by the U.S. Navy, 1914. This photograph illustrates the dif-

ficulties encountered in early efforts to match the camera with the airplane. At that time, neither device 

was well suited for use with the other. From U.S. Navy, National Archives and Records Administration, 

ARC 295605.
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World War I (1914–1918)

World War I (1914–1918) marked the beginning of the acquisition of aerial photography 
on a systematic basis. The earliest efforts for aerial reconnaissance relied upon notes 
and sketches recorded by aerial observers in the rear cockpit. Soon, pilots and observers 
were using their own cameras, which were subsequently replaced by early aerial cameras 
specifically designed for aerial observation. Such cameras, typically handheld, required 
manual transfer of glass or metal plates. (Although, by that time, film cameras had been 
in use for many years, they were not routinely used for military applications until late in 
the conflict; Figure 1.2.)

Although cameras used for aerial photography during World War I were intended 
for use with the airplane, the match between the two instruments was still rudimentary 
(Figure 1.3). The value of aerial photography for military reconnaissance and surveil-
lance became increasingly clear as the war continued, and aerial photography became 
increasingly sophisticated (see Campbell, 2008). By the conclusion of the conflict, aerial 
photography’s role in military operations was valued, especially among pilots, observers, 
and aviation leadership, although senior military leadership remained skeptical. (In due 
course, the value of military aviation, including aerial observation, was recognized by the 
formation of the U.S. Army Air Corps in 1926, and eventually, in 1947, of the U.S. Air 
Force.)

 FIGURE 1.2  Early aerial photography, World War I (ca. 1917–1918). By the time of World War I, 

attempts to match the camera and the airplane had progressed only to a modest extent, as illustrated 

by this example. This photographer, using a Graflex camera (here, likely posed for a publicity photo-

graph), designed by the U.S. Army Signal Corps, aims the camera over the edge of the fuselage. The 

wooden camera body, with leather jacket, and focal plane shutter, required use of glass plates (likely 

4  5 in.). Photographers operated within the cold slip- stream, manually changing plates in flight. From 

U.S. Army.
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Interwar Years (1919–1939)

Numerous improvements followed from these beginnings. Camera designs were improved 
and tailored specifically for use in aircraft. The science of photogrammetry—the prac-
tice of making accurate measurements from photographs— applied specifically to aerial 
photography, with the development of instruments specifically designed for analysis of 
aerial images. Military applications of aerial photography drove rapid innovations of 
photographic technologies. During the postwar years, military budgets were tight, so 
much of the aviation effort was devoted to refining civil applications of aerial imagery. 
After the conclusion of the war, cameras and aircraft formed the basics for photogram-
metric engineering. Although the fundamentals of photogrammetry had been previously 
defined, the field developed toward its modern form in the 1920s, with the development 
of specialized photogrammetric instruments.

During this period, the well- illustrated volume by Willis T. Lee (1922), The Face of 
the Earth as Seen from the Air, surveyed a range of civil applications of aerial photogra-
phy. About 12 years after the end of World War I, Lee presented examples (Figure 1.4) of 
practical civil applications for aerial photography and of advanced aerial cameras. Many 
of his examples introduced applications beyond those developed during the war, includ-
ing vertical aerial photographs and applications of panchromatic film. Lee used panchro-
matic films, developed by Kodak in 1913 for color imagery and, later (1918), for main-
taining balanced tones to capture shades of gray recorded by the imagery. (Pan chromatic 

 FIGURE 1.3  Aircraft showing later designs (relative to those in Figures 1.1 and 1.2) for both the 

biplane and the aerial camera. Here, the aerial camera has a lateral port (the square shape near the 

photographer, designed for oblique photography to allow the photographer to aim the camera through 

the port from within the fuselage, to avoid the disadvantages of leaning over edges of the cockpit. The 

photographer wears a chest- mounted microphone for communication with the pilot, shown here hold-

ing a supply of extra plates for the camera. From U.S. National Archives and Records Administration, 

Still Pictures, E-4156.
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films provide black-and-white photographic emulsions sensitive to wavelengths of the 
visible spectrum. These films also provide balanced shades of gray that convey the tones 
observed in nature.)

Photogrammetric technologies, initially devised and perfected largely in Switzerland 
and Germany, provided the basis for broad-scale aerial mapping. These technologies were 
brought to the United States, initially by the U.S. Geological Survey and the Tennessee 
Valley Authority, then later, more generally by other organizations. From these origins, 
more or less routine applications of aerial mapping became significant for government 
programs and private industry, initially for topographic mapping, but later for soil sur-
vey, geologic mapping, forest surveys, highways, dams, and agricultural statistics.

Many innovations during this era were led by visionary pioneers who established suc-
cessful niches in private industry to develop civil applications of aerial mapping.  Sherman 
Fairchild (1896–1971) founded numerous companies, including Fairchild Aerial Surveys 
and Fairchild Camera and Instruments, which became leaders in aviation and in aerial 
camera design. Talbert Abrams (1895–1990) led many innovations in aerial survey, avia-
tion, camera design, training, and worldwide commercial operations.

Although applications that Lee envisioned matured at a slow pace, expression of 
governmental interest ensured continuity in the scientific development of aerial photogra-
phy and the training of many in uses of aerial photography. Nonetheless, the acceptance 
of aerial photography in governmental and scientific activities developed slowly because 
of resistance among traditionalists, imperfections in equipment and technique, and genu-
ine uncertainties regarding the proper role of aerial photography in scientific inquiry and 
practical applications.

The worldwide economic depression of 1929–1939 was not only an economic and 
financial crisis but also, for many nations, an environmental crisis. National concerns 
about the social and economic impacts of rural economic development, widespread soil 
erosion, reliability of water supplies, and similar issues led to some of the early gov-

 FIGURE 1.4  Aerial image acquired by the K-2 

Eastman mapping camera, illustrating post–World 

War I aerial cameras with fuselage- mounted aerial 

cameras designed for vertical aerial photography. 

Here, the white plate positioned at the top of the 

image frame provides real-time records of altitude, 

date, time of day, and orientation of the lens. From 

Lee (1922).
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ernmental applications of aerial surveys to record and monitor rural economic develop-
ment. In the United States, the U.S. Department of Agriculture and the Tennessee Valley 
Authority led efforts to apply aerial photography to guide environmental planning and 
economic development. Such efforts made an important contribution to the institution-
alization of the use of aerial photography in government and to the creation of a body of 
practical experience in applications of aerial photography (Figure 1.5).

World War II (1939–1945)

World War II (1939–1945) marks the next milestone in our history. During the war years, 
use of the electromagnetic spectrum extended from almost exclusive emphasis on the 
visible spectrum to other regions, most notably the infrared and microwave regions (far 
beyond the range of human vision). Knowledge of these regions of the spectrum had been 
developed in both basic and applied sciences during the preceding 150 years. However, 
during the war years, application and further development of this knowledge acceler-
ated, as did dissemination of the means to apply it. Although research scientists had 
long understood the potential of the nonvisible spectrum, the equipment, materials, and 

 FIGURE 1.5  Progress in applications of aerial photography, 1919–1939. During the interval 

between World War I and World War II (1919–1939), integration of the camera and the airplane pro-

gressed, as did institutionalization of aerial photography in government and industry. By June 1943 

(the date of this photograph), progress on both fronts was obvious. Here, an employee of the U.S. 

Geological Survey (USGS) uses a specialized instrument, the Oblique Sketchmaster, to match detail 

on an aerial photograph to an accurate map. By the time of this photograph, aerial photography 

formed an integral component of USGS operations. From USGS and U.S. Library of Congress, digital 

ID fsa.8d38549.
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experience necessary to apply it to practical problems were not at hand. Wartime research 
and operational experience provided both the theoretical and the practical knowledge 
required for everyday use of the nonvisible spectrum in remote sensing.

Furthermore, the wartime training and experience of large numbers of pilots, camera 
operators, and photointerpreters created a large pool of experienced personnel who were 
able to transfer their skills and experience into civilian occupations after the war. Many 
of these people assumed leadership positions in the efforts of business, scientific, and 
governmental programs to apply aerial photography and remote sensing to a broad range 
of problems. Whereas photointerpreters of the World War I era focused on identification 
and examination of military equipment and fortifications, their counterparts in World 
War II also examined topography, vegetation, trafficability, and other terrain features, 
thereby expanding the scope and knowledge base and the practice of photointerpretation.

The Cold War (1946–1989)

The successes of strategic photointerpretation during World War II set the stage for 
continued interest in aerial surveillance during the cold war era. Initially, technological 
trends established during the war were continued and improved. However, as the nature 
of the cold war became more clearly defined, strategic photointerpretation formed one of 
the few means of acquiring reliable information from within the closed societies (Figure 
1.6). Perhaps the best known contribution of photoreconnaissance within the cold war 

 FIGURE 1.6  A U.S. Air Force intelligence officer using a stereoscope to examine aerial photog-

raphy, Korean conflict, July 1951. From U.S. Air Force, National Archives and Records Administration, 

ARC 542288.
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era came during the Cuban Missile Crisis. In 1962, U.S. photointerpreters were able 
to detect with confidence the early stages of the Soviet Union’s introduction of missiles 
into Cuba, far earlier than Soviet strategists had anticipated, thereby setting the stage 
for initiating one of the most serious incidents of the cold war era (see Brugioni, 1991). 
Such events created an environment for further development of advanced reconnaissance 
techniques. As newer, more sophisticated instruments were developed, the superseded 
technologies were released for wider, nondefense applications in the civilian economy 
(Figures 1.7 and 1.8).

Robert Colwell’s Research

Among the most significant developments in the civilian sphere were the works of Robert 
N. Colwell (see Colwell, 1956, 1966, 1983; Figure 1.9), who applied color infrared film 
(then popularly known as “camouflage detection film,” originally developed for use in 
World War II) to advance its applications for practice of aerial agriculture and forestry. 
During the war, Colwell served as an officer in the U.S. Naval Reserve, with exper-
tise in applications of aerial photography for analysis of terrain, vegetation, and coastal 
environments. Later, Colwell joined the faculty of the University of California– Berkeley 
School of Forestry, where he developed applications of photographic interpretation to the 
practice of forestry. His research expanded to examine applications of the near- infrared 
spectrum to monitor vegetation health in the context of forestry and agricultural crops as 
well (Figure 1.10). Colwell’s research defined the practice of multispectral remote sensing 
that today forms the basis for much of modern aerial imaging.

 FIGURE 1.7  A 1950s forester exam-

ining aerial photography to delineate land-

scape units. By the 1950s, aerial photog-

raphy and related forms of imagery had 

become integrated into the day-to-day 

operations of a multitude of businesses and 

industries throughout the world. From For-

est History Society, Durham, North Carolina. 

Used by permission.
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 FIGURE 1.8  A Twinplex stereoscopic plotting instrument designed to prepare topographic 

maps to derive accurate elevation data from aerial photography (1957). During much of the twentieth 

century, photogrammetric analyses depended on optical– mechanical instruments such as shown 

here, designed to extract information by controlling the physical orientation of the photograph and 

optical projection of the image. By the end of the century, such processes were conducted in the 

digital domain using electronic instruments. From Photographic Library, USGS. Photograph by E. F. 

 Patterson, no. 223.

 FIGURE 1.9  Robert Colwell, as photographed in 1956, Berkeley, California. Professor Colwell 

(1918–2005) served much of his career as a faculty member at the University of California–Berkeley, 

where his research defined key concepts in the practice of remote sensing, especially practical appli-

cations in forestry and agriculture. He is recognized internationally for his leadership in pioneering 

technological advances in the field of remote sensing of Earth resources. Here, Professor Colwell 

holds an aerial image depicting northeastern San Francisco. From University of California–Berkeley 

Library (Carol Ness, Berkeley News editor, U.C. Berkeley News), April 13, 2016. Used by permission.
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Civil Applications of Aerial Imagery

During the 1950s, government and civil society accepted aerial photography as an impor-
tant resource for applications in agriculture, forestry, and broad-scale resource inventory 
and as a source of cartographic information (Figures 1.7 and 1.8). During this period, some 
remote sensing capabilities were available for civilian use as superseded military applica-
tions were released for civil applications. For example, some instruments extended the 
reach of aerial observation outside the visible spectrum into the infrared and microwave 
regions; over subsequent decades, these instruments, including imaging radars, multispec-
tral imaging, and related instruments, developed into especially effective sensor systems.

Remote Sensing

It was in this context that analysts began to accept the term remote sensing as the com-
mon vocabulary to describe the family of nonphotographic sensors. Evelyn Pruitt (1918–
2000) (Figure 1.11), a scientist working for the U.S. Navy’s Office of Naval Research 
(ONR), coined this term when she recognized that the term aerial photography no longer 
accurately described the many forms of imagery collected using radiation outside the 
visible spectrum. Pruitt studied geography at the University of California– Los Angeles, 
but also had interests in geology, meteorology, and related disciplines (Walker, 2006). In 
1943, she began employment with the U.S. Coast and Geodetic Survey (C&GS) in Wash-
ington, D.C., and then worked for the newly formed ONR, which had been organized 
to conduct research to improve scientific knowledge of coastal environments. Her initial 
work for ONR focused on arctic studies but soon included broadly based research in 
coastal systems and processes in coastal regions worldwide.

As Pruitt worked with her colleagues to develop new photointerpretation techniques, 
she realized that continued use of phrases such as photointerpretation to describe imag-
ery from nonphotographic sensors was off the mark. Thus, Pruitt has been credited with 

 FIGURE 1.10  Robert Colwell’s aerial photo-

graphs of experimental plots as seen from differing 

altitudes. From Colwell (1956). Copyright © 1956 

Regents of the University of California. Used by per-

mission.
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initial use of the term remote sensing (Larson, 2004, in Walker, 2006) for this family of 
instruments. ONR, as one of the few organizations regularly engaged in use of multiple 
sensor systems, provided the context for this contribution.

Early in the 1960s, the U.S. National Aeronautics and Space Administration (NASA) 
established a research program in remote sensing— a program that, during the next 
decade, was to support remote sensing research at institutions throughout the United 
States. During this same period, a committee of the U.S. National Academy of Sciences 
(NAS) studied opportunities for application of remote sensing in the fields of agriculture 
and forestry. In 1970, the NAS reported the results of their work in a document that 
outlined many of the opportunities offered by this emerging field of inquiry (National 
Academy of Sciences, 1970).

Figures 1.12 and 1.13 show the manual interpretation of aerial imagery using tech-
niques that would later be superseded by automated technologies.

Satellite Remote Sensing

In 1972, the launch of Landsat 1 (initially named the Earth Resources Technology Satel-
lite [ERTS]), the first of many Earth- orbiting satellites specifically designed for observa-
tion of the Earth’s land areas, provided another advancement of remote sensing technolo-
gies. Landsat provided, for the first time, systematic, repetitive observation of the Earth’s 
land areas. Each Landsat image depicted large areas of the Earth’s surface in several 
regions of the electromagnetic spectrum and yet provided modest levels of detail suffi-
cient for practical applications in many fields.

The Landsat program evolved from the vision, skills, and engineering insight of 
several organizations, especially NASA’s technical program and the U.S. Geological Sur-
vey (USGS), to anticipate the value of capturing images of the Earth’s surface. William 
Pecora, chief geologist and later director of the USGS, made many notable contributions 
to the Landsat vision. His contributions addressed tasks of national scope, especially 
for his advocacy of satellite systems capable of observing Earth’s surface— not only for 
mineral resources, but also for monitoring broad-scale views of the Earth’s surface. His 
advocacy of such programs, supported also by other institutions, led to the formation of 
the Landsat satellite program.

Although it is difficult to recognize Landsat’s full significance, it is possible to rec-
ognize three of its most important contributions. First, routine availability of multispec-

 FIGURE 1.11  Evelyn Pruitt (1918–2000) in about 1973, probably 

at the time of her retirement from ONR. She is praised for her research 

in applying remote sensing analysis to study coastal environments. 

During her long career for ONR, she recognized that the term photoin-

terpretation poorly described imagery from nonphotographic sensors 

used by ONR. She has been credited with use of the term remote 

sensing to describe this broader family of aerial imagery. From ONR.
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 FIGURE 1.12  A USGS cartographic technician using an airbrush to depict relief, as interpreted 

from aerial photographs, 1961. Within a few decades, computer cartography and GIS would routinely 

create this effect by applying hill- shading algorithms to create digital elevation models. From Photo-

graphic Library, USGS. Photograph by E. F. Patterson, no. 1024.

 FIGURE 1.13  U.S. Navy Intelligence Specialist 3rd Class John Yanc using a binocular stereo-

scope to examine a strip of aerial photographs positioned on a light table on board the U.S. Navy’s 

nuclear- powered aircraft carrier USS George Washington (CVN 73) (2010). From U.S. Navy.
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tral data for large regions of the Earth’s surface greatly expanded the ability of analysts 
of all varieties to acquire multispectral satellite imagery. Such data, though previously 
available, were largely confined to specialized research laboratories. The broad reach 
of Landsat’s data, ease of access, and its open availability have greatly expanded the 
population of analysts who can acquire multispectral satellite data at varied dates and 
locations.

A second pivotal contribution of the Landsat program was the creation of an incen-
tive for the rapid and broad expansion of digital analysis for remote sensing (Figure 1.14). 
Prior to Landsat, image analyses were largely completed by visual examination of prints 
and transparencies of aerial images. Analyses of digital images by computer were possible 
mainly in specialized research institutions; personal computers and the variety of image 
analysis programs that we now regard as commonplace, were not routinely available for 
most analyses. Routine availability of digital data in a standard format created the con-
text that spurred growth of digital analyses and set the stage for developing image analy-
sis software that is now commonplace. A third contribution of the Landsat program was 
its role as a model for developing other land observation satellites designed and operated 
by diverse organizations throughout the world.

Virginia Norwood

Finally, we note the value of satellite sensor systems, which, generally speaking, provide 
reliable observations of the Earth’s surface. Many of us recognize the U.S. Landsat sys-
tem as one of the oldest, most reliable, and established satellite observation systems. First, 

 FIGURE 1.14  NASA– Goddard staff working with Landsat/TIRS thermal imaging, March 13, 2012. 

Landsat’s thermal instruments can record landscape temperatures from satellite altitudes to monitor 

water usage and water resources. Data from these instruments have provided reliable information doc-

umenting the availability of water resources for southwestern agriculture. From NASA– Goddard.



18 I. FOUNDATIONS

we recognize Virginia Norwood (Figure 1.15) for her significant contributions to the 
early Landsat systems. As a Hughes Aerospace engineer, she proposed using digital scan-
ning technology for the first Landsat mission (launched in 1972). Her insight led to use 
of the Multispectral Scanner System (MSS), which, although intended as an experimental 
instrument, became the primary sensor for Landsat 1 when the primary sensor failed to 
perform as planned. The MSS’s reliability and high- quality imagery formed a model for 
later Landsat instruments. This instrument therefore made a little- known contribution to 
the success of the Landsat system.

Free and Open Landsat Data Policy

Although U.S. policy long allowed distribution of satellite imagery to the public without 
cost, Landsat data formed an exception. For many years, individual Landsat data were 
distributed at costs varying from $600 to several thousand dollars, depending on vari-
ous policies in effect during the period from 1973 to 2008. However, in 2008, the U.S. 
federal government implemented a policy that now distributes Landsat data without cost 
to the customer. This change in policy has greatly increased the number of downloads 
of Landsat imagery, creating a rapid expansion of scientific and operational applica-
tions, serving government, private sector, and civil society. Within U.S. governmental 
programs, the availability of imagery has greatly expanded and accelerated the scope 
of analyses. The Landsat Program is a model for other nations and space agencies (e.g., 
the European Copernicus Program), demonstrating the value of open access for Earth 
observation data, and has motivated other nations to implement similar policies (Zhu et 
al., 2016).

Unmanned Aerial Vehicles

Unmanned aerial vehicle (UAV) technologies and applications are a rapidly evolving area 
of remote sensing. UAVs, also known as “drones,” are aircraft guided remotely by human 
pilots or by onboard programming (Figure 1.16). Hobbyists have a long history of inter-
est in recreational aircraft, typically radio- controlled fixed-wing aircraft. Likely begin-
ning in the 1990s, improvised UAV designs were created using miniaturized technologies 
derived from some of the technologies originally designed for mobile phones and similar 

 FIGURE 1.15  Virginia Norwood, a Hughes 

Aerospace engineer, whose insight and initiative 

formed the foundations for satellite observation. Pho-

tograph by Steve Covington of Aerospace Corp.
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instruments, including GPS, inertial measurement units (IMUs), infrared cameras, lasers, 
and remote control.

Although they vary widely, the principal UAV components include:

Overall body (or frame)
Power supply
Computing
Software
Sensors
Flight control
Remote networking

UAV systems can include additional capabilities and can have a copter or fixed-
wing design. Sizes and capabilities vary greatly according to purpose. For our discus-
sions here, we think of UAVs of rather modest sizes (perhaps dimensions up to a meter), 
modest costs, modest capabilities, and limited range. These characteristics are especially 
practical for many civilian applications (Table 1.2). Because they can be rapidly deployed 
and are flexible in their acquisition parameters, UAV applications tend to focus on high- 
resolution acquisitions, particularly on- demand survey or monitoring tasks that may also 
complement more routine broader- scale remote sensing operations.

 FIGURE 1.16  A systems analyst examining data and video transmitted by a U.S. Navy UAV to 

acquire intelligence, conduct surveillance, and collect reconnaissance data. From U.S. Marine Corps. 

Photograph by Cpl. Michael P. Snody.
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1.4 SUMMARY

This chapter has introduced the basics of remote sensing, in part by reviewing technologi-
cal changes over time as innovations provide new capabilities and resources for assessing 
and recording the status of the Earth’s surface. Broadly stated, remote sensing monitors 
a landscape, city, or region by recording reflected or emitted radiation using one or more 
of the varied instruments that record radiation emitted from the Earth’s surface. This 
chapter illustrates key historic contributions through innovation, insight, and experimen-
tation.

We provide insight into how remote sensing technologies have matured from rough 
improvisations into systems that support collection of data, detect changes, assess land-
scapes, and maintain counts (vehicles, numbers of soldiers, and such, if we take the early 
days of World War I as an example). Postconflict developments saw remote sensing appli-
cations tailored to civic applications (forestry, agriculture, urban systems, and coastlines, 
for example) by applying approaches to a wider range of tasks supporting the broader 
needs of society.

As we progress through this book, we will explore the common tools, strategies 
and applications that form basic principles for the practice of remote sensing. We orga-
nize this discussion through chapters on common themes related to image acquisition, 
analysis, analytical techniques, and the use of remote sensing for several environmental 
applications.

REVIEW QUESTIONS

1. Satellite observation of the Earth provides many advantages over aircraft- borne sensors. 
Consider fields such as agronomy, forestry, or hydrology. For one such field of study, list 
as many of the advantages as you can. Can you suggest some disadvantages?

2. Much (but not all) information derived from remotely sensed data comes from spectral 
information. To understand how spectral data may not always be as reliable as one 
might first think, briefly describe the spectral properties of a maple tree and a cornfield. 
How might these properties change over the period of a year? Or a day?

3. All remotely sensed images observe the Earth from above. Can you list some advan-
tages of the overhead view (as opposed to ground- level views) that make remote sens-
ing images inherently advantageous for many purposes? List some disadvantages of the 
overhead view.

4. Remotely sensed images show the combined effects of many landscape elements, 
including vegetation, topography, illumination, soils, and drainage. In your view, is this 
diverse combination an advantage or a disadvantage? Explain.

 TABLE 1.2 Example UAV Applications

Aerial mapping

Aerial photography

Weather survey

Search and rescue

Precision agriculture

Forestry

Irrigation

Wildlife counts

Mapping and surveying

Bridge and infrastructure monitoring

Land cover mapping

Disaster management
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5. List ways in which remotely sensed images differ from maps. Also, list the advantages 
and disadvantages of each. List some of the tasks for which each might be more useful.

6. This chapter emphasizes how the field of remote sensing is formed by knowledge 
and perspectives derived from many different disciplines. Examine the undergraduate 
catalog for your college or university and prepare a comprehensive program of study in 
remote sensing from courses listed. Identify gaps— courses or subjects that would be 
desirable but are not offered.

7. Inspect library copies of some of the remote sensing texts and journals listed in the 
references for this chapter. Examine the tables of contents, selected chapters, and lists 
of references. Many of these volumes may form useful references for future study or 
research in the field of remote sensing.
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MAJOR TOPICS TO UNDERSTAND

The Electromagnetic Spectrum

Major Divisions of the Electromagnetic Spectrum

Radiation Laws

Interactions with the Atmosphere

Interactions with Surfaces

2.1 INTRODUCTION

With the exception of objects at absolute zero, all objects emit electromagnetic radiation. 
Objects also reflect radiation that has been emitted by other objects. By recording emit-
ted or reflected radiation and applying knowledge of its behavior as it passes through the 
Earth’s atmosphere and interacts with objects, remote sensing analysts develop knowl-
edge of the character of features such as vegetation, structures, soils, rock, or water 
bodies on the Earth’s surface. Interpretation of remote sensing imagery depends on a 
sound understanding of electromagnetic radiation and its interaction with surfaces and 
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the atmosphere. The discussion of electromagnetic radiation in this chapter builds a foun-
dation that will permit development in subsequent chapters of the many other important 
topics within the field of remote sensing.

The most familiar form of electromagnetic radiation is visible light, which forms 
only a small (but very important) portion of the full electromagnetic spectrum. The large 
segments of this spectrum that lie outside the range of human vision require our special 
attention because they may behave in ways that are quite foreign to our everyday experi-
ence with visible radiation.

2.2 THE ELECTROMAGNETIC SPECTRUM

Electromagnetic energy is generated by several mechanisms, including changes in the 
energy levels of electrons, acceleration of electrical charges, decay of radioactive sub-
stances, and the thermal motion of atoms and molecules. Nuclear reactions within the 
Sun produce a full spectrum of electromagnetic radiation, which is transmitted through 
space without experiencing major changes. As this radiation approaches the Earth, it 
passes through the atmosphere before reaching the Earth’s surface. Some is reflected 
upward from the Earth’s surface; it is this radiation that forms the basis for photographs 
and similar images. Other solar radiation is absorbed at the surface of the Earth and is 
then reradiated as thermal energy. This thermal energy can also be used to form remotely 
sensed images, although they differ greatly from the aerial photographs formed from 
reflected energy. Finally, human-made radiation, such as that generated by imaging 
radars, is also used for remote sensing.

Electromagnetic radiation consists of an electrical field (E) that varies in magnitude 
in a direction perpendicular to the direction of propagation (Figure 2.1). In addition, a 
magnetic field (H) oriented at right angles to the electrical field is propagated in phase 
with the electrical field.

SOURCE

H

E

DISTANCE

 FIGURE 2.1  Electric (E) and magnetic (H) components of electromagnetic radiation. The elec-

tric and magnetic components are oriented at right angles to one another and vary along an axis 

perpendicular to the axis of propagation. Image by Susmita Sen.
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Electromagnetic energy can be characterized by several properties (Figure 2.2):

1. Wavelength is the distance from one wave crest to the next. Wavelength can 
be measured in everyday units of length, although very short wavelengths have 
such small distances between wave crests that extremely short (and therefore less 
familiar) measurement units are required (Table 2.1).

2. Frequency is measured as the number of crests passing a fixed point in a given 
period of time. Frequency is often measured in hertz, each of which is equivalent 
to one cycle per second (Table 2.2), and multiples of hertz.

3. Amplitude is equivalent to the height of each peak (see Figure 2.2). Ampli-
tude is often measured as energy levels (formally known as spectral irradiance), 
expressed as watts per square meter per micrometer (i.e., as energy level per wave-
length interval).

4. In addition, the phase of a waveform specifies the extent to which the peaks of 
one waveform align with those of another. Phase is measured in angular units, 
such as degrees or radians. If two waves are aligned, they oscillate together and 
are said to be “in phase” (a phase shift of 0 degrees). However, if a pair of waves 
is aligned such that the crests match with the troughs, they are said to be “out of 
phase” (a phase shift of 180 degrees) (see Figure 2.2).

 FIGURE 2.2  Amplitude, frequency, and wavelength. The second diagram represents high fre-

quency, short wavelength; the third, low frequency, long wavelength. The bottom diagram illustrates 

two waveforms that are out of phase. Image by Susmita Sen.
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The speed of electromagnetic energy (c) is constant at 299,792 kilometers (km) per 
second. Frequency (v) and wavelength ( ) are related:

 c  v (EQ. 2.1)

Therefore, characteristics of electromagnetic energy can be specified using either fre-
quency or wavelength. Varied disciplines and varied applications follow different con-
ventions for describing electromagnetic radiation, using either wavelength (measured in 
Ångström units [Å], microns/micrometers, nanometers, millimeters, etc., as appropriate) 
or frequency (using hertz, kilohertz, megahertz, etc., as appropriate). Although there is 
no authoritative standard, a common practice in the field of remote sensing is to define 
regions of the spectrum on the basis of wavelength, often using micrometers (each equal 
to one one- millionth of a meter, symbolized as μm), millimeters (mm), and meters (m) 
as units of length. Departures from this practice are common; for example, electrical 
engineers who work with microwave radiation traditionally use frequency to designate 
subdivisions of the spectrum. In this book, we usually employ wavelength designations. 
The student should, however, be prepared to encounter different usages in scientific jour-
nals and in references.

 TABLE 2.1 Units of Length Used in Remote Sensing

Unit Distance

Kilometer (km) 1,000 m

Meter (m) 1.0 m

Centimeter (cm) 0.01 m = 10–2 m

Millimeter (mm) 0.001 m = 10–3 m

Micrometer (μm)a 0.000001 m = 10–6 m

Nanometer (nm)   10–9 m

Ångström unit (Å)   10–10 m

aFormerly called the micron (μ); the term micrometer is now used by agreement of the General Conference on 
Weights and Measures.

 TABLE 2.2 Frequencies Used in Remote Sensing

Unit Frequency (cycles per second)

Hertz (Hz) 1

Kilohertz (kHz) 103 (= 1,000)

Megahertz (MHz) 106 (= 1,000,000)

Gigahertz (GHz) 109 (= 1,000,000,000)



28 I. FOUNDATIONS

2.3 MAJOR DIVISIONS OF THE ELECTROMAGNETIC SPECTRUM

Major divisions of the electromagnetic spectrum (Table 2.3) are, in essence, arbitrarily 
defined. In a full spectrum of solar energy there are no sharp breaks at the divisions, as 
indicated graphically in Figure 2.3. Subdivisions are established for convenience and by 
traditions within different disciplines, so do not be surprised to find different definitions 
in other sources or in references pertaining to other disciplines.

Table 2.3 does not show two important categories: the optical and reflective spec-
tra. The optical spectrum, from 0.30 to 15 μm, defines those wavelengths that can be 
reflected and refracted with lenses and mirrors. The reflective spectrum extends from 
about 0.38 to 3.0 μm and defines that portion of the solar spectrum used directly for 
remote sensing. As an introduction, Figure 2.3 presents subdivisions for the electromag-
netic spectrum, as often defined within the field of remote sensing; specifics are discussed 
in subsequent chapters.

Visible: The short range of wavelengths is defined by the sensitivity of the human 
visual system for films, sensors, and imagery.
NIR (near- infrared region): The NIR (about 0.7 μm–1.4 μm), outside the visible 
spectrum, is valuable mainly because it is not subject to atmospheric scattering 
and because of its effectiveness in detecting and monitoring living vegetation.
VNIR (visible and near- infrared region): The VNIR (0.4–1.4 μm) is defined by 
the full visible spectrum, extended to include the adjacent region of the infrared 
spectrum.
SWIR (shortwave infrared region): The SWIR (sometimes defined as 0.9–1.7 μm 
or as 0.7–2.5 μm) is effective because it is not subject to atmospheric scattering, 
and yet it is effective for the mapping of minerals, fires, crop health, and surface 
moisture.
Thermal: Thermal radiation, designated here by its broad range of wavelengths 
within the 8 μm–14 μm atmospheric window, conveys temperature information. 

 TABLE 2.3 Principal Divisions of the Electromagnetic Spectrum

Division Limits

Gamma rays < 0.03 nm

X-rays 0.03–300 nm

Ultraviolet radiation 0.30–0.38 μm

Visible light 0.38–0.72 μm

Infrared radiation 
 Near infrared 0.72–1.30 μm
 Mid infrared 1.30–3.00 μm
 Far infrared 7.0–1,000 μm (1 mm)

Microwave radiation 1 mm–30 cm

Radio  30 cm
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(Technically, thermal radiation covers a wide range of wavelengths, but as a prac-
tical matter, it is defined here more narrowly to focus wavelengths that are largely 
free of atmospheric scattering.)
Microwave: Microwave radiation is often defined as 1.0 μm–1.0 m. Shorter wave-
lengths of the microwave region can convey thermal information, although the 
microwave region is especially significant for active remote sensing (using imaging 
radars; see Chapter 8) and both aircraft and satellite sensors.

The Ultraviolet Spectrum

For practical purposes, radiation of significance for remote sensing can be said to begin 
with the ultraviolet region, a zone of short- wavelength radiation that lies between the 
X-ray region and the limit of human vision. Often, the ultraviolet region is subdivided 
into the near ultraviolet (sometimes known as UV-A; 0.32–0.40 μm), the far ultraviolet 
(UV-B; 0.28–0.32 μm), and the extreme ultraviolet (UV-C; below 0.28 μm). The ultra-
violet region was discovered in 1801 by the German scientist Johann Wilhelm Ritter 
(1776–1810). Literally, ultraviolet means “beyond the violet,” designating it as the region 
just outside the violet region, the shortest wavelengths visible to humans. Near- ultraviolet 
radiation is known for its ability to induce fluorescence (emission of visible radiation) in 
some materials; it has significance for a specialized form of remote sensing (see Section 
2.6). However, ultraviolet radiation is easily scattered by the Earth’s atmosphere, so it is 
not generally used for remote sensing of Earth materials.

The Visible Spectrum

Although the visible spectrum constitutes a very small portion of the spectrum, it has 
obvious significance in remote sensing. Colors of features depend on the physical char-
acteristics of objects and the circumstances of their perception. For example, color can 
be defined by the nature of light from surfaces, usually depending on the spectrum of 

 FIGURE 2.3  Some important features of the electromagnetic spectrum, labeled to identify key 

aspects for the practice of remote sensing (not presented at scale). VNIR = visible and near- infrared 

portion of the electromagnetic spectrum; SWIR = shortwave and near- infrared region. Image by 

 Susmita Sen.
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incident radiation, and viewing and illumination angles. Perceived colors are associated 
with wavelets as reflected from objects and their physical properties such as light absorp-
tion and emission spectra.

Limits of the visible spectrum are defined by the sensitivity of the human visual 
system. Optical properties of visible radiation were first investigated by Isaac Newton 
(1641–1727), who, during 1665 and 1666, conducted experiments revealing that visible 
light can be divided (using prisms, or, in our time, diffraction gratings) into three seg-
ments. Today we know these segments as the additive primaries, defined approximately 
from 0.4 to 0.5 μm (blue), 0.5 to 0.6 μm (green), and 0.6 to 0.7 μm (red) (Figure 2.4). 
Primary colors are defined such that no single primary can be formed from a mixture of 
the other two and that all other colors can be formed by mixing the three primaries in 
appropriate proportions. Equal proportions of the three additive primaries combine to 
form white light.

The color of an object is defined by the color of the light that it reflects (Figure 2.4). 
Thus, a “blue” object is “blue” because it reflects blue light. Intermediate colors are 
formed when an object reflects two or more of the additive primaries, which combine to 
create the sensation of “yellow” (red and green), “purple” (red and blue), or other colors. 
The additive primaries are significant whenever we consider the colors of light, as, for 
example, in the exposure of photographic films.

In contrast, representations of colors in films, paintings, and similar images are 
formed by combinations of the three subtractive primaries that define the colors of pig-
ments and dyes. Each of the three subtractive primaries absorbs a third of the visible 
spectrum (Figure 2.4). Yellow absorbs blue light (and reflects red and green), cyan (a 
greenish- blue) absorbs red light (and reflects blue and green), and magenta (a bluish red) 
absorbs green light (and reflects red and blue light). A mixture of equal proportions 
of pigments of the three subtractive primaries yields black (complete absorption of the 

 FIGURE 2.4  Color in the visible spectrum. Color is characterized by behavior of light within the 

visible spectrum, defined by behavior of the additive primaries (top row; colors of light, as reflected 

from objects), and the subtractive primaries (bottom row; colors of pigments and dyes as they reflect 

light). Image by Susmita Sen.
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visible spectrum). The additive primaries are of interest in matters concerning radiant 
energy, whereas the subtractive primaries specify colors of the pigments and dyes used in 
reproducing colors on films, photographic prints, and other images.

The Infrared Spectrum

Wavelengths longer than the red portion of the visible spectrum are designated as the 
infrared region, discovered in 1800 by the British astronomer William Herschel (1738–
1822). This segment of the spectrum is very large relative to the visible region, as it 
extends from 0.72 to 15 μm, making it more than 40 times as wide as the visible light 
spectrum. Because of its broad range, it encompasses radiation with varied properties. 
Two important categories can be recognized here. The first consists of near- infrared and 
mid- infrared radiation, defined as those regions of the infrared spectrum closest to the 
visible. Radiation in the near- infrared region behaves, with respect to optical systems, 
in a manner analogous to radiation in the visible spectrum. Therefore, remote sensing in 
the near- infrared region can use films, filters, and cameras with designs similar to those 
intended for use with visible light.

The second category of infrared radiation is the far- infrared region, consisting of 
wavelengths well beyond the visible, extending into regions that border the microwave 
region (Table 2.3). This radiation is fundamentally different from that in the visible and 
the near- infrared regions. Whereas near- infrared radiation is essentially solar radiation 
reflected from the Earth’s surface, far- infrared radiation is emitted by the Earth. In every-
day language, the far infrared consists of “heat,” or “thermal energy.” Sometimes this 
portion of the spectrum is referred to as the emitted infrared.

Microwave Energy

The longest wavelengths commonly used in remote sensing are those from about 1 mm to 
1 μm in wavelength. The shortest wavelengths in this range have much in common with 
the thermal energy of the far infrared. The longer wavelengths of the microwave region 
merge into the radio wavelengths used for commercial broadcasts. Our knowledge of the 
microwave region originates from the work of the Scottish physicist James Clerk Max-
well (1831–1879) and the German physicist Heinrich Hertz (1857–1894).

2.4 RADIATION LAWS

The propagation of electromagnetic energy follows certain physical laws. In the interest 
of conciseness, some of these laws are outlined in abbreviated form because our interest 
here is the basic relationships they express rather than the formal derivations that are 
available to the student in more comprehensive sources.

Isaac Newton was among the first to recognize the dual nature of light (and, by 
extension, all forms of electromagnetic radiation), which simultaneously displays behav-
iors associated with both discrete and continuous phenomena. Newton maintained that 
light is a stream of minuscule particles (“corpuscles”) that travel in straight lines. This 
notion is consistent with the modern theories of Max Planck (1858–1947) and Albert 
Einstein (1879–1955). Planck discovered that electromagnetic energy is absorbed and 
emitted in discrete units called quanta, or photons. The size of each unit is directly 
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proportional to the frequency of the energy’s radiation. Planck defined a constant (h) to 
relate frequency (v) to radiant energy (Q):

 Q = hv (EQ. 2.2)

His model explains the photoelectric effect, the generation of electric currents by the 
exposure of certain substances to light, as the effect of the impact of these discrete units 
of energy (quanta) on surfaces of certain metals, causing the emission of electrons.

Newton knew of other phenomena, such as the refraction of light by prisms, that are 
best explained by assuming that electromagnetic energy travels in a wave-like manner. 
James Clerk Maxwell was the first to formally define the wave model of electromag-
netic radiation. His mathematical definitions of the behavior of electromagnetic energy 
are based on the assumption from classical (mechanical) physics that light and other 
forms of electromagnetic energy propagate as a series of waves. The wave model best 
explains some aspects of the observed behavior of electromagnetic energy (e.g., refraction 
by lenses and prisms and diffraction), whereas quantum theory provides explanations of 
other phenomena (notably, the photoelectric effect).

The rate at which photons (quanta) strike a surface is the radiant flux ( e), measured 
in watts (W); this measure specifies energy delivered to a surface in a unit of time. We 
also need to specify a unit of area; the irradiance (Ee) is defined as radiant flux per unit 
area (usually measured as watts per square meter). Irradiance measures radiation that 
strikes a surface, whereas the term radiant exitance (Me) defines the rate at which radia-
tion is emitted from a unit area (also measured in watts per square meter).

All objects with temperatures above absolute zero have temperature and emit energy. 
The amount of energy and the wavelengths at which it is emitted depend on the tempera-
ture of the object. As the temperature of an object increases, the total amount of energy 
emitted also increases, and the wavelength of maximum (peak) emission becomes shorter. 
These relationships can be expressed formally using the concept of the blackbody. A 
blackbody is a hypothetical source of energy that behaves in an idealized manner. It 
absorbs all incident radiation; none is reflected. A blackbody emits energy with perfect 
efficiency; its effectiveness as a radiator of energy varies only as temperature varies.

The blackbody is a hypothetical entity because in nature all objects reflect at least a 
small proportion of the radiation that strikes them and thus do not act as perfect reradia-
tors of absorbed energy. Although truly perfect blackbodies cannot exist, their behavior 
can be approximated using laboratory instruments. Such instruments have formed the 
basis for the scientific research that has defined relationships between the temperatures 
of objects and the radiation they emit. Kirchhoff’s law states that the ratio of emitted 
radiation to absorbed radiation flux is the same for all blackbodies at the same tempera-
ture. This law forms the basis for the definition of emissivity ( ), the ratio between the 
emittance of a given object (M) and that of a blackbody at the same temperature (Mb):

 = M/Mb (EQ. 2.3)

The emissivity of a true blackbody is 1, and that of a perfect reflector (a whitebody) 
would be 0. Blackbodies and whitebodies are hypothetical concepts, approximated in 
the laboratory under contrived conditions. In nature, all objects have emissivities that 
fall between these extremes (graybodies). For these objects, emissivity is a useful measure 
of their effectiveness as radiators of electromagnetic energy. Those objects that tend to 
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absorb high proportions of incident radiation and then reradiate this energy will have 
high emissivities. Those that are less effective as absorbers and radiators of energy have 
low emissivities (i.e., they return much more of the energy that reaches them). (In Chapter 
10, further discussion of emissivity explains that emissivity of an object can vary with its 
temperature.)

The Stefan– Boltzmann law defines the relationship between the total emitted radia-
tion (W) (often expressed in watts · cm–2) and temperature (T) (absolute temperature, K):

 W = T 4 (EQ. 2.4)

Total radiation emitted from a blackbody is proportional to the fourth power of its 
absolute temperature. The constant ( ) is the Stefan– Boltzmann constant (5.6697  
10–8) (watts · m–2 · K–4), which defines unit time and unit area. In essence, the Stefan– 
Boltzmann law states that hot blackbodies emit more energy per unit area than do cool 
blackbodies.

Wien’s displacement law specifies the relationship between the wavelength of radiation 
emitted and the temperature of a blackbody:

  = 2,897.8/T (EQ. 2.5)

where  is the wavelength at which radiance is at a maximum and T is the absolute 
temperature (K). As blackbodies become hotter, the wavelength of maximum emittance 
shifts to shorter wavelengths (Figure 2.5).

All three of these radiation laws are important for understanding electromagnetic 
radiation. They have special significance later in discussions of detection of radiation in 
the far- infrared spectrum (Chapter 10).

 FIGURE 2.5  Wien’s displacement law. For blackbodies at high temperatures, maximum radia-

tion emission occurs at short wavelengths. Blackbodies at low temperatures emit maximum radiation 

at longer wavelengths. Image by Susmita Sen.
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2.5 INTERACTIONS WITH THE ATMOSPHERE

All radiation used for remote sensing must pass through the Earth’s atmosphere. If the 
sensor is carried by a low- flying aircraft, the effects of the atmosphere on image qual-
ity may be negligible. In contrast, energy that reaches sensors carried by Earth satellites 
(Chapter 7) must pass through the entire depth of the Earth’s atmosphere. Under these 
conditions, atmospheric effects may have substantial impact on the quality of images and 
data that the sensors generate. Therefore, the practice of remote sensing requires knowl-
edge of interactions of electromagnetic energy with the atmosphere.

In cities we are often acutely aware of the visual effects of dust, smoke, haze, and 
other atmospheric impurities due to their high concentrations. We easily appreciate their 
effects on brightnesses and colors we see. But even in clear air, the visual effects of the 
atmosphere are numerous, though so commonplace that we may not recognize their sig-
nificance. In both settings, as solar energy passes through the Earth’s atmosphere, it is 
subject to modification by several physical processes, including (1) scattering, (2) refrac-
tion, and (3) absorption.

 FIGURE 2.6  Scattering behaviors of three classes of atmospheric particles. (a) Atmospheric 

dust and smoke form rather large, irregular particles that create a strong forward- scattering peak, with 

a smaller degree of backscattering. (b) Atmospheric molecules are more nearly symmetric in shape, 

creating a pattern characterized by preferential forward- and backscattering, but without the pro-

nounced peaks observed in the first example. (c) Large water droplets create a pronounced forward- 

scattering peak, with smaller backscattering peaks. From Lynch and Livingston (1995). Used by per-

mission of Cambridge University Press.

(a)

(b)
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Scattering

Scattering is the redirection of electromagnetic energy by particles suspended in the 
atmosphere or by large molecules of atmospheric gases (Figure 2.6). The amount of scat-
tering that occurs depends on the sizes of these particles, their abundance, the wavelength 
of the radiation, and the depth of the atmosphere through which the energy is traveling. 
The effect of scattering is to redirect radiation so that a portion of the incoming solar 
beam is directed back toward space, as well as toward the Earth’s surface.

A common form of scattering was discovered by the British scientist Lord J. W. S. 
Rayleigh (1824–1919) in the late 1890s. He demonstrated that a perfectly clean atmo-
sphere, consisting only of atmospheric gases, causes scattering of light in a manner such 
that the amount of scattering increases greatly as the wavelength becomes shorter. Ray-
leigh scattering occurs when atmospheric particles have diameters that are very small 
relative to the wavelength of the radiation. Typically, such particles could be very small 
specks of dust or some of the larger molecules of atmospheric gases, such as nitrogen (N2) 
and oxygen (O2). These particles have diameters that are much smaller than the wave-
length ( ) of visible and near- infrared radiation (on the order of diameters less than ).

Because Rayleigh scattering can occur in the absence of atmospheric impurities, it 
is sometimes referred to as clear atmosphere scattering. It is the dominant scattering 
process high in the atmosphere, up to altitudes of 9–10 km, which is the upper limit for 
atmospheric scattering. Rayleigh scattering is wavelength- dependent, meaning that the 
amount of scattering changes greatly as one examines different regions of the spectrum 
(Figure 2.7). Blue light is scattered about four times as much as is red light, and ultra-
violet light is scattered almost 16 times as much as is red light. Rayleigh’s law states 
that this form of scattering is in proportion to the inverse of the fourth power of the 
wavelength.

 FIGURE 2.7  Rayleigh scattering. The effect of Rayleigh scattering is much higher at shorter 

wavelengths. Image by  Susmita Sen.
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Rayleigh scattering is the cause of both the blue color of the sky and the brilliant red 
and orange colors often seen at sunset. At midday, when the Sun is high in the sky, the 
atmospheric path of the solar beam is relatively short and direct, so an observer at the 
Earth’s surface sees mainly the blue light preferentially redirected by Rayleigh scatter. At 
sunset, observers on the Earth’s surface see only those wavelengths that pass through the 
longer atmospheric path caused by the low solar elevation; because only the longer wave-
lengths penetrate this distance without attenuation by scattering, we see only the reddish 
component of the solar beam. Variations of concentrations of fine atmospheric dust or of 
tiny water droplets in the atmosphere may contribute to variations in atmospheric clarity 
and therefore to variations in the colors of sunsets.

Although Rayleigh scattering forms an important component of our understand-
ing of atmospheric effects on transmission of radiation in and near the visible spectrum, 
it applies only to a rather specific class of atmospheric interactions. In 1906, the Ger-
man physicist Gustav Mie (1868–1957) published an analysis that describes atmospheric 
scattering involving a broader range of atmospheric particles. Mie scattering is caused 
by large atmospheric particles, including dust, pollen, smoke, and water droplets. Such 
particles may seem to be very small by the standards of everyday experience, but they 
are many times larger than those responsible for Rayleigh scattering. Those particles 
that cause Mie scattering have diameters that are roughly equivalent to the wavelength 
of the scattered radiation. Mie scattering can influence a broad range of wavelengths in 
and near the visible spectrum; Mie’s analysis accounts for variations in the size, shape, 
and composition of such particles. Mie scattering is wavelength- dependent, but not in the 
simple manner of Rayleigh scattering; it tends to be greatest in the lower atmosphere (0 
to 5 km), where larger particles are abundant.

Nonselective scattering is caused by particles that are much larger than the wave-
length of the scattered radiation. For radiation in and near the visible spectrum, such 
particles might be larger water droplets or large particles of airborne dust. “Nonselec-
tive” means that scattering is not wavelength- dependent, so we observe it as a whitish or 
grayish haze; all visible wavelengths are scattered equally.

Effects of Scattering

Scattering causes the atmosphere to have a brightness of its own. In the visible portion of 
the spectrum, shadows are not jet black (as they would be in the absence of scattering) 
but are merely dark; we can see objects in shadows because of light redirected by particles 
in the path of the solar beam. The effects of scattering are also easily observed in vistas 
of landscapes; the colors and brightnesses of objects are altered as they are positioned at 
locations more distant from the observer. Landscape artists take advantage of this effect, 
called atmospheric perspective, to create the illusion of depth by painting more distant 
features in subdued colors and those in the foreground in brighter, more vivid colors.

Scattering has several important consequences for remote sensing (Figure 2.8). 
Because of the wavelength dependency of Rayleigh scattering, radiation in the blue and 
ultraviolet regions of the spectrum (which are most strongly affected by scattering) is 
usually not considered useful for remote sensing. Images that record these portions of 
the spectrum tend to record the brightness of the atmosphere rather than the brightness 
of the scene itself. For this reason, remote sensing instruments often exclude short-wave 
radiation (blue and ultraviolet wavelengths) by use of filters or by decreasing the sensi-
tivities of films to these wavelengths. (However, some specialized applications of remote 
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sensing, not discussed here, do use ultraviolet radiation.) Scattering also directs energy 
from outside the sensor’s field of view toward the sensor’s aperture, thereby decreasing 
the spatial detail recorded by the sensor. Furthermore, scattering tends to make dark 
objects appear brighter than they would otherwise be, and bright objects appear darker, 
thereby decreasing the contrast recorded by a sensor (Chapter 4). Because “good” images 
preserve the range of brightnesses present in a scene, scattering degrades the quality of 
an image.

Some of these effects are also illustrated in Figure 2.9. Observed radiance at the 
sensor, I, is the sum of IS, radiance reflected from the Earth’s surface, conveying informa-
tion about surface reflectance; IO, radiation scattered from the solar beam directly to the 
sensor without reaching the Earth’s surface; and ID, diffuse radiation, directed first to the 
ground, then to the atmosphere, before reaching the sensor.

The effects of these components are additive within a given spectral band (Kaufman, 
1984):

 I = IS + IO + ID (EQ. 2.6)

IS varies with differing surface materials, topographic slopes and orientation, and angles 
of illumination and observation. IO is often assumed to be more or less constant over 
large areas, although most satellite images represent areas large enough to encompass 
atmospheric differences sufficient to create variations in IO. Diffuse radiation, ID, is 
expected to be small relative to other factors, but it varies from one land surface type to 
another, so in practice it would be difficult to estimate. We should note the special case 
presented by shadows in which IS = 0, because the surface receives no direct solar radia-
tion. However, shadows have their own brightness, derived from ID, and their own spec-
tral patterns, derived from the influence of local land cover on diffuse radiation. Remote 
sensing is devoted to the examination of IS at different wavelengths to derive information 
about the Earth’s surface. Figure 2.10 illustrates how ID, IS, and IO vary with wavelength 
for surfaces of differing brightness.

 FIGURE 2.8  Effects of atmospheric scattering. Image by Susmita Sen.
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 FIGURE 2.10  Changes in reflected, diffuse, scattered, and observed radiation over wavelength 

for dark (left) and bright (right) surfaces. The diagram shows the magnitude of the components illus-

trated in Figure 2.9. Atmospheric effects constitute a larger proportion of observed brightness for dark 

objects than for bright objects, especially at short wavelengths. (Here, radiance has been normalized. 

Note also the differences in scaling of the vertical axes for the two diagrams.) Adapted from Kaufman 

(1984). Image by Susmita Sen. Used by permission of the author and the Society of Photo- Optical 

Instrumentation Engineers.
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Refraction

Refraction is the bending of light rays at the contact area between two media that trans-
mit light. Familiar examples of refraction are the lenses of cameras or magnifying glasses 
(Chapter 4), which bend light rays to project or enlarge images, and the apparent dis-
placement of objects submerged in clear water. Refraction also occurs in the atmosphere 
as light passes through atmospheric layers of varied clarity, humidity, and temperature. 
These variations influence the density of atmospheric layers, which in turn causes a bend-
ing of light rays as they pass from one layer to another. An everyday example is the shim-
mering appearance on hot summer days of objects viewed in the distance as light passes 
through hot air near the surface of heated highways, runways, and parking lots. The 
index of refraction (n) is defined as the ratio between the velocity of light in a vacuum (c) 
to its velocity in the medium (cn):

 n = c/cn (EQ. 2.7)

Assuming uniform media, as the light passes into a denser medium, it is deflected toward 
the surface normal, a line perpendicular to the surface at the point at which the light ray 
enters the denser medium, as represented by the solid line in Figure 2.11. The angle that 
defines the path of the refracted ray is given by Snell’s law:

 n sin  = n  sin  (EQ. 2.8)

where n and n  are the indices of refraction of the first and second media, respectively, 
and  and  are angles measured with respect to the surface normal, as defined in Figure 
2.11.

 FIGURE 2.11  Refraction. This diagram represents the 

path of a ray of light as it passes from one medium (air) to 

another (glass) and again as it passes back to the first. Differ-

ing densities of the atmosphere and the glass deflect the path 

of light rays. Image by Susmita Sen.
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Absorption

Absorption of radiation occurs when the atmosphere prevents, or strongly attenuates, 
transmission of radiation or its energy through the atmosphere. (Energy acquired by the 
atmosphere is subsequently reradiated at longer wavelengths.) Three gases are responsible 
for most absorption of solar radiation. Ozone (O3) is formed by the interaction of high- 
energy ultraviolet radiation with oxygen molecules (O2) high in the atmosphere (maxi-
mum concentrations of ozone are found at altitudes of about 20–30 km in the strato-
sphere). Although naturally occurring concentrations of ozone are quite low (perhaps 
0.07 parts per million at ground level, 0.1 to 0.2 parts per million in the stratosphere), 
ozone plays an important role in the Earth’s energy balance. Absorption of the high- 
energy, short- wavelength portions of the ultraviolet spectrum (mainly less than 0.24 μm) 
prevents transmission of this radiation to the lower atmosphere.

Carbon dioxide (CO2) also occurs in low concentrations (about 0.03% by volume of 
a dry atmosphere), mainly in the lower atmosphere. Aside from local variations caused 
by volcanic eruptions and human activities, the distribution of CO2 in the lower atmo-
sphere is probably relatively uniform (although human activities that burn fossil fuels 
have apparently contributed to increases during the past 100 years or so). Carbon dioxide 
is important in remote sensing because it is effective in absorbing radiation in the mid- 
and far- infrared regions of the spectrum. Its strongest absorption occurs in the region 
from about 13 to 17.5 μm in the mid infrared.

Finally, water vapor (H2O) is commonly present in the lower atmosphere (below 
about 100 km) in amounts that vary from 0 to about 3% by volume. (Note the distinc-
tion between water vapor, discussed here, and droplets of liquid water, mentioned pre-
viously.) From everyday experience we know that the abundance of water vapor varies 
greatly from time to time and from place to place. Consequently, the role of atmospheric 
water vapor, unlike those of ozone and carbon dioxide, varies greatly with time and loca-
tion. It may be almost insignificant in a desert setting or in a dry air mass, but it may be 
highly significant in humid climates and in moist air masses. Furthermore, water vapor 
is several times more effective in absorbing radiation than are all other atmospheric gases 
combined. Two of the most important regions of absorption are in several bands between 
5.5 and 7.0 μm and above 27.0 μm; absorption in these regions can exceed 80% if the 
atmosphere contains appreciable amounts of water vapor.

Atmospheric Windows

Thus, the Earth’s atmosphere is by no means completely transparent to electromagnetic 
radiation because these gases together form important barriers to transmission of elec-
tromagnetic radiation through the atmosphere. It selectively transmits energy of certain 
wavelengths; those wavelengths that are relatively easily transmitted through the atmo-
sphere are referred to as atmospheric windows (Figure 2.12). Positions, extents, and 
effectiveness of atmospheric windows are determined by the absorption spectra of atmo-
spheric gases.

Atmospheric windows are of obvious significance for remote sensing; they define 
those wavelengths that can be used for forming images. Energy at other wavelengths, not 
within the windows, is severely attenuated by the atmosphere and therefore cannot be 
effective for remote sensing. In the far- infrared region, the two most important windows 
extend from 3.5 to 4.1 μm and from 10.5 to 12.5 μm. The latter is especially important 
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because it corresponds approximately to wavelengths of peak emission from the Earth’s 
surface. A few of the most important atmospheric windows are given in Table 2.4; other, 
smaller windows are not given here but are listed in reference books.

Overview of Energy Interactions in the Atmosphere

Remote sensing is conducted in the context of all the atmospheric processes discussed 
thus far, so it is useful to summarize some of the most important points by outlining a 
perspective that integrates much of the preceding material. Figure 2.13 is an idealized 
diagram of the Earth’s energy balance created by NASA from data produced by satel-
lite measurements (NASA Langley Research Center, 2021). The energy balance quanti-

 FIGURE 2.12  Atmospheric windows. This schematic representation illustrates the most promi-

nent windows (i.e., transparent regions of the atmosphere that permit radiation to pass through the 

atmosphere). The shaded regions represent wavelengths regions clear to transmit radiation, espe-

cially at the 8 to 14 micrometer region (8–14 μm), and for much of the 0.2–5.5 μm (visible– mid- infrared) 

region. From U.S. Navy.
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 TABLE 2.4 Major Atmospheric Windows

Ultraviolet and visible 0.30–0.75 μm
0.77–0.91 μm

Near infrared 1.55–1.75 μm
2.05–2.4 μm

Thermal infrared 8.0–9.2 μm
10.2–12.4 μm

Microwave 7.5–11.5 mm
20.0+ mm

Note: Data from Fraser and Curran (1976, p. 35). Used by permission of Addison-Wesley Publishing Co., Inc.
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fies the way energy moves to the Earth from the Sun and away from the Earth through 
reflectance and emission. The yellow portion of the diagram represents the behavior of 
“shortwave” radiation (defined loosely here to include radiation with wavelengths less 
than 4.0 μm), which is the primary energy that reaches Earth from the Sun. It is true that 
the Sun emits a broad spectrum of radiation, but the maximum intensity is emitted at 
approximately 0.5 μm within this region, and little solar radiation at longer wavelengths 
reaches the ground surface.

In the balance presented in Figure 2.13, of the 340 W/m2 average shortwave radia-
tion that reaches the outer edge of the Earth’s atmosphere, roughly half is either absorbed 
by the atmosphere or reflected from the atmosphere and Earth’s surface back into space. 
For remote sensing in the visible spectrum, it is the portion reflected from the Earth’s 
surface that is of primary interest (see Figure 2.3), although knowledge of the quantity 
scattered is also important. The other half (roughly) of the incoming radiation is ulti-
mately absorbed and then reradiated at the Earth’s surface. From Wien’s displacement 
law (Equation 2.5), we know that the Earth, being much cooler than the Sun, must emit 
radiation at much longer wavelengths than does the Sun. The Sun, at 6,000 K, has its 
maximum intensity at 0.5 μm (in the green portion of the visible spectrum); the Earth, at 
300 K, emits with maximum intensity near 10 μm, in the far- infrared spectrum.

 FIGURE 2.13  Earth’s energy budget. A depiction of average incoming and outgoing radiation 

from Earth, created by NASA and many scientists using satellite measurements. From NASA.
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Terrestrial radiation, with wavelengths longer than 10 μm, is represented in Figure 
2.13 by the orange arrows. The bulk of emitted energy is absorbed by the atmosphere 
and either emitted into space as infrared radiation or reradiated back to Earth. A smaller 
portion of energy (about 40 W/m2) is emitted directly into space at wavelengths that 
correspond to atmospheric windows (chiefly 8–13 μm). For meteorology, it is reradi-
ated energy that is the primary interest because it is the source of energy for heating the 
Earth’s atmosphere. For remote sensing, the energy that passes through the atmospheric 
windows is also of significance, as it is this radiation that conveys information concern-
ing the radiometric properties of features on the Earth’s surface.

2.6 INTERACTIONS WITH SURFACES

As electromagnetic energy reaches the Earth’s surface, it must be reflected, absorbed, or 
transmitted. The proportions accounted for by each process depend on the nature of the 
surface, the wavelength of the energy, and the angle of illumination.

Reflection

Reflection occurs when a ray of light is redirected as it strikes a nontransparent sur-
face. The nature of the reflection depends on sizes of surface irregularities (roughness or 
smoothness) in relation to the wavelength of the radiation considered. If the surface is 
smooth relative to wavelength, specular reflection occurs (Figure 2.14a). Specular reflec-
tion redirects all, or almost all, of the incident radiation in a single direction. For such 
surfaces, the angle of incidence is equal to the angle of reflection (i.e., in Equation 2.8, 
the two media are identical, so n = n , and therefore  = ). For visible radiation, specular 
reflection can occur with surfaces such as a mirror, smooth metal, or a calm water body.

If a surface is rough relative to wavelength, it acts as a diffuse, or isotropic, reflector. 
Energy is scattered more or less equally in all directions. For visible radiation, many natu-
ral surfaces might behave as diffuse reflectors, including, for example, uniform grassy 
surfaces. A perfectly diffuse reflector (known as a Lambertian surface) would have equal 
brightnesses when observed from any angle (Figure 2.14b).

The idealized concept of a perfectly diffuse reflecting surface is derived from the 
work of Johann H. Lambert (1728–1777), who conducted many experiments designed to 

 FIGURE 2.14  Specular (a) and diffuse (b) reflection. Specular reflection occurs when a smooth 

surface tends to direct incident radiation in a single direction (mirror- like reflection). Diffuse reflection 

occurs when a rough surface tends to scatter energy more or less equally in all directions.
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describe the behavior of light. One of Lambert’s laws of illumination states that the per-
ceived brightness (radiance) of a perfectly diffuse surface does not change with the angle 
of view. This is Lambert’s cosine law, which states that the observed brightness (I) of such 
a surface is proportional to the cosine of the incidence angle ( ), where I is the brightness 
of the incident radiation as observed at zero incidence:

 I  = I/cos  (EQ. 2.9)

This relationship is often combined with the equally important inverse square law, which 
states that observed brightness decreases according to the square of the distance from the 
observer to the source:

 I  = (I/D2) (cos ) (EQ. 2.10)

Both the cosine law and the inverse square law are depicted in Figure 2.15.

Bidirectional Reflectance Distribution Function

Because of its simplicity and directness, the concept of a Lambertian surface is frequently 
used as an approximation of the optical behavior of objects observed in remote sensing. 
However, the Lambertian model does not hold precisely for many, if not most, natural 
surfaces. Actual surfaces exhibit complex patterns of reflection determined by details of 
surface geometry (e.g., the sizes, shapes, and orientations of plant leaves). Some surfaces 
may approximate Lambertian behavior at some incidence angles but exhibit clearly non- 
Lambertian properties at other angles.

Reflection characteristics of a surface are described by the bidirectional reflectance 
distribution function (BRDF). The BRDF is a mathematical description of the optical 
behavior of a surface with respect to angles of illumination and observation, given that it 
has been illuminated with a parallel beam of light at a specified azimuth and elevation. 
(The function is “bidirectional” in the sense that it accounts for both the angle of illumi-
nation and the angle of observation.) The BRDF for a Lambertian surface has the shape 
depicted in Figure 2.14b, with even brightnesses as the surface is observed from any 
angle. Actual surfaces have more complex behavior. Descriptions of BRDFs for actual, 
rather than idealized, surfaces permit assessment of the degrees to which they approach 
the ideals of specular and diffuse surfaces (Figure 2.16).

 FIGURE 2.15  Inverse square law and 

Lambert’s cosine law. Image by Susmita Sen.
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Transmission

Transmission of radiation occurs when radiation passes through a substance without sig-
nificant attenuation (Figure 2.17). From a given thickness, or depth, of a substance, the 
ability of a medium to transmit energy is measured as the transmittance (t):

t = Transmitted radiation (EQ. 2.11)
Incident radiation

In the field of remote sensing, the transmittance of films and filters is often important. 
With respect to naturally occurring materials, we often think only of water bodies as 
capable of transmitting significant amounts of radiation. However, the transmittance of 
many materials varies greatly with wavelengths, so our direct observations in the visible 
spectrum do not transfer to other parts of the spectrum. For example, plant leaves are 
generally opaque to visible radiation but transmit significant amounts of radiation in the 
infrared.

 FIGURE 2.16  BRDFs for two surfaces. The varied shading represents the effects of differing 

angles of illumination as indicated in the annotations (calculated by Pierre Villeneuve). Image by Sus-

mita Sen.
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Fluorescence

Fluorescence occurs when an object illuminated with radiation of one wavelength emits 
radiation at a different wavelength. The most familiar examples are some sulfide min-
erals, which emit visible radiation when illuminated with ultraviolet radiation. Other 
objects also fluoresce, although observation of fluorescence requires very accurate and 
detailed measurements that are not now routinely available for most applications. Chlo-
rophyll fluorescence is an important phenomenon to examine with remote sensing for 
vegetation, as it is an indication of photosynthetic activity and has been shown through 
spectroscopy to reveal differences between healthy and stressed leaves.

Polarization

The polarization of electromagnetic radiation denotes the orientation of the oscillations 
within the electric field of electromagnetic energy (Figure 2.18). A light wave’s electric 
field (traveling in a vacuum) is typically oriented perpendicular to the wave’s direction of 
travel (i.e., the energy propagates as a transverse wave); the field may have a preferred ori-
entation, or it may rotate as the wave travels. Although polarization of electromagnetic 
radiation is too complex for a full discussion here, it is possible to introduce some of the 
basics and highlight its significance.

 FIGURE 2.18  Schematic representation of horizontally and vertically polarized radiation. The 

arrows signify the orientations of the electric fields. Image by Susmita Sen.
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An everyday example of the effect of polarized light is offered by polarizing sun-
glasses, which are specifically designed to reduce glare. Typically, sunlight within the 
atmosphere has a mixture of polarizations; when it illuminates surfaces at steep angles 
(i.e., when the Sun is high in the sky), the reflected radiation tends to also have a mixture 
of polarizations. However, when the Sun illuminates a surface at low angles (i.e., the Sun 
is near the horizon), many surfaces tend to preferentially reflect the horizontally polarized 
component of solar radiation. The polarizing sunglasses are manufactured with lenses 
that include molecules that can preferentially absorb the horizontally polarized bright 
radiation, thereby reducing glare. Polarization has broader significance in the practice of 
remote sensing. Within the atmosphere, polarization of light is related to the nature and 
abundance of atmospheric aerosols and atmospheric clarity. Chapter 8 introduces the use 
of polarized radiation in the design of active microwave sensors.

Reflectance

For many applications of remote sensing, the brightness of a surface is best represented 
not as irradiance but rather as reflectance. Reflectance (Rrs) is expressed as the relative 
brightness of a surface as measured for a specific wavelength interval:

Reflectance = Observed brightness (EQ. 2.12)
Irradiance

As a ratio, it is a dimensionless number (between 0 and 1), but it is commonly expressed 
as a percentage. In the usual practice of remote sensing, Rrs is not directly measurable 
because normally we can observe only the observed brightness and must estimate irradi-
ance. Strategies devised for estimation of reflectance are discussed in Chapter 11.

Spectral Properties of Objects

Remote sensing consists of the study of radiation emitted and reflected from features at 
the Earth’s surface. In the instance of emitted (far- infrared) radiation, the object itself is 
the immediate source of radiation. For reflected radiation, the source may be the Sun, the 
atmosphere (by means of scattering of solar radiation), or human-made radiation (chiefly 
imaging radars).

A fundamental premise in remote sensing is that we can learn about objects and 
features on the Earth’s surface by studying the radiation reflected and/or emitted by 
these features. Using cameras and other remote sensing instruments, we can observe the 
brightnesses of objects over a range of wavelengths, so that there are numerous points of 
comparison between the brightnesses of separate objects. A set of such observations or 
measurements constitutes a spectral response pattern, sometimes called the spectral sig-
nature of an object (Figure 2.19). In the ideal, detailed knowledge of a spectral response 
pattern might permit identification of features of interest, such as separate kinds of crops, 
forests, or minerals. This idea has been expressed as follows:

Everything in nature has its own unique distribution of reflected, emitted, and absorbed 
radiation. These spectral characteristics can—if ingeniously exploited— be used to dis-
tinguish one thing from another or to obtain information about shape, size, and other 
physical and chemical properties. (Parker and Wolff, 1965, p. 21)
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This statement expresses the fundamental concept of the spectral signature, the notion 
that features display unique spectral responses that permit clear identification, from spec-
tral information alone, of individual crops, soils, and so on from remotely sensed images. 
In practice, it is now recognized that spectra of features change both over time (e.g., as 
a cornfield grows during a season) and over distance (e.g., as proportions of specific tree 
species in a forest change from place to place).

Nonetheless, study of the spectral properties of objects forms an important part of 
remote sensing. Some research has been focused on examination of the spectral proper-
ties of different classes of features. Thus, although it may be difficult to define unique 
signatures for specific kinds of vegetation, we can recognize distinctive spectral patterns 
for vegetated and nonvegetated areas and for certain classes of vegetation, and we can 
sometimes detect the existence of diseased or stressed vegetation. In other instances, we 
may be able to define spectral patterns that are useful within restricted geographic and 
temporal limits as a means of studying the distributions of certain plant and soil charac-
teristics. Chapter 14 describes how detailed spectral measurements permit application of 
some aspects of the concept of the spectral signature.

 FIGURE 2.19  Spectral response curves for vegetation and water. These curves represent con-

trasting relationships between brightness (vertical axis) and wavelength (horizontal axis) for two com-

mon surfaces: living vegetation and open water. The sketches represent schematic views of a cross 

section of a living leaf (left) and a pond with clear, calm water (right). The large arrows represent 

incident radiation from the Sun; the small lateral arrows represent absorbed radiation; the downward 

arrows represent transmitted energy; and the upward arrows represent energy directed upward to 

the sensor (known as reflectance) that form the spectral response patterns illustrated at the top of the 

diagram. Fuller discussions of both topics are presented in later chapters. Image by Susmita Sen.
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2.7 SUMMARY

Remote sensing typically takes one of three basic forms, depending on the wavelengths 
of energy detected and the purposes of the study. In the simplest form, one records the 
reflection of solar radiation from the Earth’s surface (Figure 2.20). This is the kind of 
remote sensing that is most nearly similar to everyday experience. For example, film in 
a camera records radiation from the Sun after it is reflected from the objects of inter-
est, regardless of whether one uses a simple handheld camera to photograph a family 
scene or a complex aerial camera to photograph a large area of the Earth’s surface. This 
form of remote sensing mainly uses energy in the visible and near- infrared portions of 
the spectrum. Key variables include atmospheric clarity, spectral properties of objects, 
angle and intensity of the solar beam, choices of films and filters, and others explained 
in Chapter 4.

A second strategy for remote sensing is to record radiation emitted (rather than 
reflected) from the Earth’s surface. Because emitted energy is strongest in the far- infrared 
spectrum, this kind of remote sensing requires special instruments designed to record 
these wavelengths. (There is no direct analog to everyday experience for this kind of 
remote sensing.) Emitted energy from the Earth’s surface is mainly derived from short-
wave energy from the Sun that has been absorbed, then reradiated at longer wavelengths 
(Figure 2.21).

Emitted radiation from the Earth’s surface reveals information concerning the ther-
mal properties of materials, which can be interpreted to suggest patterns of moisture, 
vegetation, surface materials, and human-made structures. Other sources of emitted 
radiation (of secondary significance here, but often of primary significance elsewhere) 
include geothermal energy and heat from steam pipes, power plants, buildings, and forest 
fires. This example also represents “passive” remote sensing because it employs instru-
ments designed to sense energy emitted by the Earth, not energy generated by a sensor.

 FIGURE 2.20  Remote sensing using reflected solar radiation. The sensor detects solar radiation 

that has been reflected from features at the Earth’s surface. Image by Susmita Sen.
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 FIGURE 2.22  Active remote sensing. The airborne radar system illuminates terrain with micro-

wave energy and then receives and records the reflected energy as it has been reflected by the 

Earth’s surface. Image by Susmita Sen.

Finally, sensors belonging to a third class of remote sensing instruments generate 
their own energy, then record the reflection of that energy from the Earth’s surface (Fig-
ure 2.22). These are “active” sensors—“active” in the sense that they provide their own 
energy, so they are independent of solar and terrestrial radiation. As an everyday anal-
ogy, a camera with a flash attachment can be considered to be an active sensor. In prac-
tice, active sensors are best represented by imaging radars and lidars (Chapters 8 and 
9), which transmit energy toward the Earth’s surface from an aircraft or satellite, then 
receive the reflected energy to form an image. Because they sense energy provided directly 
by the sensor itself, such instruments have the capability to operate at night and during 
cloudy weather.

 FIGURE 2.21  Remote sensing using emitted terrestrial radiation. The sensor records solar radi-

ation that has been absorbed at the Earth’s surface and is then reemitted as thermal infrared radiation. 

(See also Figure 2.13.) Image by Susmita Sen.
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 SOME TEACHING AND LEARNING RESOURCES

Quantum Mechanics
www.youtube.com/watch?v=l_t8dn4c6_g

XNA Atmospheric Scattering
www.youtube.com/watch?v=W0ocgQd_huU

Atmospheric Rayleigh Scattering in 3D with Unity 3D
www.youtube.com/watch?v=PNBnfqUycto

How a Sunset Works
www.youtube.com/watch?v=BdNQ1xB34QI&feature=related

Tour of the EMS 04—Infrared Waves
www.youtube.com/watch?v=i8caGm9Fmh0

IR Reflection
www.youtube.com/watch?v=h2n9WQCH1ds&feature=related

Emissivity Makes a Temperature Difference: Blackbody Calibrator
www.youtube.com/watch?v=JElKE-ADXr8&feature=related

REVIEW QUESTIONS

1. Using books provided by your instructor or available through your library, examine 
reproductions of landscape paintings to identify artistic use of atmospheric perspective. 
Perhaps some of your own photographs of landscapes illustrate the optical effects of 
atmospheric haze.

2. Some streetlights are deliberately manufactured to provide illumination with a reddish 
color. From material presented in this chapter, can you suggest why?

3. Although this chapter has largely dismissed ultraviolet radiation as an important aspect 
of remote sensing, there may well be instances in which it might be effective, despite the 
problems associated with its use. Under what conditions might it prove practical to use 
ultraviolet radiation for remote sensing?

4. The human visual system is most nearly similar to which model of remote sensing?

5. Can you identify analogs from the animal kingdom for each of the models for remote 
sensing discussed in Section 2.7?

6. Examine Figure 2.13, which shows the radiation balance of the Earth’s atmosphere. 
Explain how it can be that there are more units of radiation emitted from the ground than 
enter through the incoming solar radiation.

7. Examine Figure 2.13 again. Discuss how the values in this figure might change in 
 different environments, including (a) desert, (b) the Arctic, and (c) an equatorial climate. 
How might these differences influence our ability to conduct remote sensing in each 
region?

8. Spectral signatures can be illustrated using values indicating the brightness in several 
spectral regions.
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UV Blue Green Red NIR

Forest 28 29 36 27 56

Water 22 23 19 13  8

Corn 53 58 59 60 71

Pasture 40 39 42 32 62

 Assume for now that these signatures are influenced by effects of the atmosphere. Can 
all categories be reliably separated, based on these spectral values? Which bands are 
most useful for distinguishing between these classes?

9. Describe ideal atmospheric conditions for remote sensing.
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MAJOR TOPICS TO UNDERSTAND

Platforms

Fixed-Wing Aircraft

Helicopters

Satellite Systems

Unmanned Aerial Systems

Tethered Balloons

Mobile Collection of Field Data

3.1 INTRODUCTION

This chapter introduces an important dimension to the practice of remote sensing—plat-
forms—remote sensing’s generic name for the aerial (sometimes orbital) vehicles used to 
place sensors in appropriate positions to acquire imagery to satisfy a specific need. These 
vehicles cover a wide range of technologies and applications. Remote sensing systems 
acquire information about the Earth’s surface and landscape features as observed from 

 3 Remote Sensing Platforms
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aerial perspectives at varied altitudes, without contact with objects. Remote sensing plat-
forms presented here illustrate capabilities such as ecology, land survey, geology, geogra-
phy, cities, agriculture, and forest fires. Active remote sensing emits energy from surfaces 
or sensors that scan features detecting and measuring radiation reflected from the Earth’s 
surface. In contrast, passive remote sensing collects radiation emitted or reflected from 
a landscape surface. Aside from sunlight, the most common sources of radiation are fea-
tures such as infrared radiation, photography, and other features characterized by passive 
sensors.

3.2 PLATFORMS

Remote sensing platforms refer to the various vehicles that carry sensor systems that 
collect electromagnetic radiation we use to form images of the Earth’s surface. They 
provide the overhead perspective for the map-like views of the Earth’s surface we see in 
remotely sensed imagery. Platforms include vehicles such as fixed-wing aircraft, helicop-
ters, unmanned aerial systems (UAS), satellites, and balloons— vehicles that provide the 
means to control the altitude, orientation, trajectory, and timing necessary to acquire 
useful imagery. Although the choice of platform may seem to be a secondary concern 
for the practice of remote sensing, even cursory consideration reveals that it is central to 
the practice of remote sensing. Often, the choice of sensor for a remotely sensed image is 
closely connected to the choice of platform; the unavailability of a suitable platform may 
change the entire design strategy for a remote sensing project. Thus, matching a sensor to 
an appropriate platform forms a key aspect of any remote sensing mission.

Platforms vary greatly with respect to size, range, maneuverability, expense, and 
altitudinal range. Here, we briefly consider the most commonly used platforms, includ-
ing fixed-wing aircraft, rotorcraft (chiefly helicopters), unmanned aerial systems (UASs), 
satellites, and tethered balloons. Each provides its own distinct advantages and disadvan-
tages and has its own niche in the practice of remote sensing.

3.3 FIXED-WING AIRCRAFT

Fixed-wing aircraft are what we usually picture when we think of an airplane— a cylin-
drical fuselage with rigid wings, powered by propeller, jet engines, or turbo-props. Fixed-
wing aircraft have many distinctive capabilities for remote sensing, including long flight 
range, precise navigation, ability to accommodate varied sensor systems, and the ability 
to lift heavy loads to support a variety of alternative remote sensing missions. Aerial sur-
vey firms will carefully select aircraft models to meet specific operational requirements 
for their business models with respect to supporting sensors, flight range, sensors, and 
fuel economy. Although some aircraft were designed specifically for aerial survey and 
observation, current systems are based mainly on specialized models of general- purpose 
aircraft tailored for the aerial survey mission.

Fixed-wing aircraft have disadvantages of high costs for purchase, maintenance, and 
operation. They can incur costs for weather delays and for expenses incurred for transit 
from one project site to another. In addition, they require supporting staff for mainte-
nance, flight planning, IT support, navigation, and sensor operation and maintenance.
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Small Aircraft

Figure 3.1 illustrates the Cessna 172, as an example of the smaller fixed-wing aerial 
platform— a single- engine aircraft, small in size, capacity, and range relative to other 
systems. It features four seats and a high-wing design (favoring oblique photography, as 
it provides a largely unobstructed lateral view). Because of their widespread availability, 
such aircraft are often used for handheld photography, news photography or videos, and 
aerial photography for real estate advertising. The pod illustrated in Figure 3.2 modifies 
the aircraft to provide a capability for vertical aerial photography, and for use of other 
sensors.

 FIGURE 3.1  The Cessna 172, an example of a small aircraft with capabilities for aerial photogra-

phy. It is one of the most widely used general aviation aircraft, employed also as a trainer by the U.S. 

Air Force, the U.S. Army, and federal agencies for aerial search and patrol. From NOAA.

 FIGURE 3.2  The camera pod, visible as the dark capsule positioned below the fuselage just 

below the wing strut, is approved for use on the Cessna 172 and other aircraft. This detachable pod is 

suitable for small- and medium- format camera systems, as well as compact lidar systems and thermal 

sensors. From Airborne Scientific. Used by permission.
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Midsized Aircraft

Larger aircraft, perhaps turbo-prop or jet- powered, offer an increased capability for pay-
load and for crew and passengers. They have higher purchase and operating costs but 
provide the advantages of longer flight range and larger payload capacity, and they are 
available in models that support aerial survey and remote sensing equipment. Figures 3.3 
and 3.4 illustrate the DeHavilland Twin Otter (DHC-6) and the Beechcraft King Air 90, 
both larger aircraft used by the U.S. National Oceanic and Atmospheric Administration 
(NOAA) to support their remote sensing and aerial survey missions.

Aerial survey firms use midsized aircraft for a variety of tasks, staffed by crews with 
expertise for navigation, extended flights, and instrument operations. Such aircraft and 
their instrument payloads are supported by additional staff for ground support, including 
IT services, maintenance, flight planning, and image analysis and interpretation. Busi-
nesses must operate not only to acquire imagery locally, but also to cover costs for transit 
of aircraft and crew from one project site to another, and for weather delays. Collection 
of aerial imagery is usually guided by a statement of work (SOW), which is basically a 
contract between the customer and the aerial survey firm, with precise specifications as 
to the nature of the imagery, its quality, date, time of day, and season (leaf-off/leaf-on). 
Aerial survey firms acquire imagery to support a wide variety of projects, including high-
way and building construction, urban planning, coastal management, and agricultural 
management.

Large Fixed-Wing Aircraft

Less frequently, much larger aircraft are configured for remote sensing missions, which 
are often those requiring the use of experimental sensors, larger crews, multisensor sys-
tems, longer missions, or operations at higher altitudes. An example is the Douglas DC-8 
design, which is a four- engine, long-range, narrow- body jet airliner that was manufac-
tured from 1958 to 1972, initially used in passenger and cargo service. Later, many of the 
DC-8s were reconfigured for special- purpose missions, such as NASA’s remote sensing 
programs. The DC-8 can operate at an altitude of 41,000 ft, with a range of 5,000 mi. 

 FIGURE 3.3  The DeHavil-

land Twin Otter (DHC-6) mid-

size aircraft, used by NOAA for 

aerial survey missions because 

of its maneuverability, versatility, 

and ability to accommodate var-

ied remote sensing instruments. 

From NOAA, Northeast Fisheries 

Science Center. Photograph by 

Christin Khan.
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Figures 3.5 and 3.6 show the AIRSAR DC-8–72, with synthetic aperture radar (SAR)  
antennae installed in the aft fuselage, with a special port to accommodate radar anten-
nae. (Note: Specifics of radar systems are presented in Chapter 8.)

One example use of the DC-8 is the NASA AIRSAR, which has been employed 
since 1988 as the NASA DC-8 Airborne Laboratory Program (NASA/Ames Research 
Center, CA, http://airsar.jpl.nasa.gov/documents/genairsar/overview.html) to support 
airborne science research. AIRSAR is configured to accommodate imaging radars (spe-
cifically SARs, described in Chapter 8), with the flexibility to operate a wide variety of 
other instruments and sensors. This flexibility provides a platform for a wide range of 
experiments, supporting many disciplines for NASA, federal, state, academic, and for-
eign investigators. As an example, the AIRSAR serves as a testbed for NASA’s evaluation 
of new radar technologies, processing techniques, and exploration of new application 
missions.

3.4 HELICOPTERS

Helicopters are rotary- wing aircraft with rotor blades functioning as wings to provide 
lift. They are the best-known examples of the class of aerial vehicles labeled as rotor-
craft (aircraft characterized by horizontally oriented blades). Helicopters provide specific 
capabilities to support remote sensing activities, including a unique ability to hover, fly 
laterally, and operate in confined surroundings, and they have the maneuverability to 
navigate complex flight plans. They are expensive to operate and maintain, and gener-

 FIGURE 3.4  The Beechcraft King Air 90 midsize aircraft, available in a version (model 200T) 

designed specifically to support remote sensing and aerial observation missions. Modifications sup-

port imaging radars and provide dome- shaped windows in the rear fuselage that allow vertical obser-

vation directly below the aircraft path. From NOAA.
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ally have shorter ranges than fixed-wing aircraft. Helicopter designs vary greatly in size, 
range, and cargo capacity.

Helicopters can accommodate a wide range of remote sensing instruments. Larger 
models can be flown with cargo doors open to allow unobstructed visibility to the sides, 
and they can also accommodate bulky equipment and instruments within the cabin. 
Smaller models can be transported by trailer to project sites, and for longer distances, 
they can be transported in cargo aircraft. They are well suited for a wide variety of 
remote sensing missions because of their versatility and maneuverability, ability to oper-

 FIGURE 3.6  A closer view of the radar 

antenna port in the DC-8 fuselage, showing 

antenna panels that transmit microwave pulses 

from the imaging radar system. From NASA.

 FIGURE 3.5  NASA’s DC-8 large aircraft, 

configured mainly for testing and developmen-

tal missions. The port for the imaging radar 

antenna is visible at the aft fuselage, just aft of 

the left wing. From NASA.
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ate in confined circumstances, such as forested regions, uneven terrain, or other set-
tings unsuitable for fixed-wing aircraft. Disadvantages include high purchase prices and 
operating expenses, and shorter ranges of operation, which may restrict helicopters to 
smaller, specialized, remote sensing projects. Helicopters can operate at low flight speeds 
relative to other aircraft, so they can be effective for observing sites from multiple per-
spectives and for tracking wildlife.

Aerial photography and videography (provided that they are protected from vibra-
tion associated with helicopters) are effectively supported by helicopters, often for TV 
news, documentary films, and scientific studies. Helicopters are often used when maneu-
verability is important or low flight speeds are advantageous. Examples include their 
use in rugged terrain for wildlife mapping/monitoring and environmental disasters, or 
in airspace where fixed-wing flight operations are impractical (see Figures 3.7 and 3.8).

3.5 SATELLITE SYSTEMS

Today artificial Earth satellites (i.e., human-built) are so commonplace that it can be dif-
ficult to recognize how significant they are for observing the Earth, acquiring environ-
mental data, and functioning in communications and data systems. Here, we will refer 
specifically to artificial Earth satellites designed for Earth observation.

With the launch of the first U.S. Landsat satellite in 1972, civil remote sensing began 
to use satellites as platforms to observe the Earth’s surface. (At that time, previous satel-
lite systems had been used for specialized, unpublicized, strategic reconnaissance pho-
tography and for meteorological observations.) Land observation satellite systems are 

 FIGURE 3.7  The Bell 412 helicopter, often identified as the NOAA Ocean Explorer. Designed for 

transport, aerial survey, and other capabilities, it is often used for remote sensing applications. The 

original version of the Bell 412 was designed in the 1970s, with subsequent versions developed as 

late as 2013. From NOAA.
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unique in their focus on land observation— systematic collection of imagery that records 
site- specific data about the Earth’s land areas, including, for example, agriculture, water 
bodies, urban systems, forests, and rangelands.

From this beginning, today numerous corporations and national governments oper-
ate satellite remote sensing systems that are specifically designed for observation of the 
Earth’s surface. Campbell and Salomonson (2010) list nations that are now operating 
land observation satellites that collect data in the optical region, and others that oper-
ate their own radar imaging satellites. Such satellite platforms offer unique capabilities, 
including an ability to provide synoptic perspective (observation of large areas in a single 
image), fine detail, and systematic, repetitive coverage. These capabilities are well suited 
to maintaining an up-to-date, worldwide, cartographic infrastructure, and for monitor-
ing changes in the many broad-scale environmental issues that the world faces today.

Satellite systems contribute important capabilities to the overall remote sensing mis-
sion by doing the following:

Providing systematic collection on established, repetitive, schedules
Using consistent data formats
Depending on specifics, providing a capability for worldwide coverage
Archiving data to provide resources for change detection
Offering a revisit capability (ability to observe the same region on a repetitive 
basis)
Providing a broad customer base for remote sensing
Allowing the routine image acquisition of remote, hazardous, or inaccessible sites

Remote sensing satellite systems also have shortcomings, including:

 FIGURE 3.8  The Huey rescue helicopter (Bell UH-1, nicknamed the “Huey”) in flight. The Huey 

family of helicopters have both military and civil applications, including rescue, reconnaissance, medi-

cal evacuation, crop dusting, cargo lifting, and aerial firefighting. Photograph by Alan Radecki.
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Substantial costs for development, manufacturing, and operations
Requirement of long lead times to develop the systems
Difficulties in recovering from system or equipment failures
Difficulty in responding to unexpected or fast- moving events for which imagery 
may be desired because of the systematic coverage cycles

The Basic Satellite Platform

A remote sensing satellite is a specialized version of a standard instruments platform that 
provides support services for the remote sensing payload. The satellite’s overall frame, 
often known as the bus, provides a structure to hold and organize a collection of devices 
necessary to support the satellite mission. The power supply is composed of solar panels 
that accumulate energy on the sunlit side of the orbit, and batteries that retain energy 
for use as the satellite passes through the Earth’s shadow. A thermal control subsystem 
balances the effects of solar heating and the heat generated from the satellite. A com-
puter subsystem coordinates the satellite’s varied systems and monitors system status. An 
attitude control subsystem tracks the course of the satellite and ensures that it is aimed 
correctly. Finally, a propulsion system adjusts the satellite’s orientation and makes minor 
course corrections (once in orbit, the satellite does not require propulsion to maintain its 
motion, but it does require energy to periodically adjust its orbital track). These compo-
nents, though differing in specifics, form a standard inventory of key components of the 
satellite bus.

A remote sensing satellite system acquires its distinctive identity through its design, 
sensors, and specific orbit, which together define its unique capabilities. Another unique 
feature of a satellite remote sensing satellite system is its ground component, which pro-
vides a specialized capability for monitoring and guiding satellite operations and for 
archiving, processing, and distributing specialized products tailored to support specific 
scientific and business applications.

Satellite Orbits

A key characteristic of any remote sensing satellite system is its orbit—its repetitive tra-
jectory in space. Each satellite orbit can be uniquely described by six properties, known 
as Classical Orbital Elements (COEs). While all six of these elements are important to 
spacecraft design and operation, for our present purposes, two orbital parameters are 
sufficient: (1) inclination and (2) altitude.

An important characteristic of a satellite orbit is inclination, which specifies an 
orbit’s angle with respect to the equator (Figure 3.9). For example, an inclination of 0 
degrees would specify a perfectly equatorial orbit, while an orbit with an inclination of 
90 degrees would pass directly over the North and South Poles. Orbits with inclinations 
greater than 90 degrees are said to be retrograde because the satellite orbits counter to 
the Earth’s rotation, while orbits with inclinations between 0 and 90 degrees are said to 
be prograde because they travel in the direction of the Earth’s rotation.

Each satellite orbit is designed for an inclination that will best support its mission. 
For example, the Tropical Rainfall Measuring Mission (TRMM) satellite, designed 
to monitor tropical rainfall, is placed in an orbit with a relatively low inclination (35 
degrees), permitting frequent observation of equatorial regions. Other orbits likewise 
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provide specific capabilities matched to satellite missions. For example, polar orbits pass 
close to both poles on each revolution (inclinations at or close to 90°). Sometimes the 
designation near-polar orbit signifies remote sensing satellites positioned within a few 
degrees of truly polar. Such satellites, positioned in near-polar orbits, indicate that the 
satellite initially progresses northward as it approaches on one side of the Earth, then 
southward as it passes to the opposite side.

Orbital altitude is the second important parameter for describing orbits. Satellites 
orbit at all altitudes, and by Newton’s Laws, the speed of a satellite is a direct function 
of its altitude. It is noteworthy that orbital altitude is traditionally considered in orbital 
mechanics textbooks as the semi-major axis.

Not all orbits are useful for remote sensing purposes. Many factors are considered 
when selecting an orbit for a remote sensing mission, including, but not limited to, the 
required spatial resolution, field of view, and the illumination angle of features on the 
surface. A relatively small set of orbital categories suffice to describe orbits for remote 
sensing satellites (see Figure 3.10 for some examples).

 FIGURE 3.10  Several distinctive orbital units, including the International Space Station, the geo-

stationary transfer orbit, and the sun- synchronous orbit, together contributing to our understanding of 

orbital systems.

Geostationary transfer orbit (GTO)

Medium Earth orbit (MEO)

Low Earth orbit (LEO)

Geostationary orbit (GEO)

International Space Station (ISS)

Sun-synchronous orbit (SSO)

 FIGURE 3.9  Orbital inclination. From NASA.

Orbital
inclination

Earth’s rotation

Satellite orbit
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1. Low Earth orbit (LEO): LEOs operate within the region closest to Earth, roughly 
described as starting at the top of the atmosphere, extending to about 2,000 km alti-
tude— a region above most of the Earth’s atmosphere and below 2,000 km. This zone 
favors economical launch and maintenance of satellite orbits. LEO is used often for scien-
tific satellites, including remote sensing satellites, and for many weather satellites, which 
are often placed in nearly circular LEOs. For imaging systems, the LEO’s low altitudes 
favor capture of high- resolution imagery.

2. Sun- synchronous orbit (SSO): The SSO is a special type of LEO orbit inclined at 
or near 98 degrees. Not all LEO satellites are sun- synchronous, but all sun- synchronous 
satellites operate in LEO. Of course, the sun- synchronous satellites are important enough 
to merit individual discussion. The defining property of a sun- synchronous orbit is that, 
due to its slightly off-polar inclination, it passes over locations on the ground at the 
same solar time every day, owing to a property called orbital precession. This charac-
terization is a particularly useful feature for missions that use passive sensors to gather 
reflected sunlight, since it reduces discrepancies due to illumination differences between 
consecutive imaging passes. The list of satellites operating in SSO is quite extensive as it 
is perhaps the most popular orbit for scientific remote sensing satellites. Some particu-
larly well-known examples of SSO satellites include Landsat, Polar Operational Environ-
mental Satellite (with the Advanced Very-High- Resolution Radiometer [AVHRR] instru-
ments), and TIROS Operational Vertical Sounder (TOVS).

3. Medium Earth orbit (MEO): While MEO can sometimes be used to describe 
the broad region between LEO and GEO (geosynchronous Earth orbit), spanning the 
altitude ranges of 2,000 km to 35,780 km, it is almost always used to refer to a much 
narrower band of particularly useful orbits: the semisynchronous orbits. These orbits are 
characterized by an orbital period of approximately 12 hours (hence the name because 
they orbit the Earth twice for every rotation) and fall close to 20,200 km altitude. These 
MEO orbits are used almost exclusively for Global Navigation Satellite Systems (GNSS), 
including the United States’ Global Positioning System (GPS), Russia’s GLONASS, Chi-
na’s Compass, and the European Union’s Galileo systems. From our geospatial perspec-
tive, the principal satellites of interest in MEO are navigation satellites; the GPS is com-
posed of 24 satellites that orbit at an altitude of 20,000 km above the Earth. Differences 
in time delay for signals received from four of the satellites form the basis for assessing 
the precise locations of a GPS receiver on the Earth’s surface.

4. Geosynchronous Earth orbit (GEO): At an altitude of 35,786 km and an inclina-
tion at or near 0 degrees, GEO orbits are very popular. Satellites in this orbit have the 
useful property of orbiting at the same angular rate as the Earth rotates, so they appear 
to be stationary with respect to the surface of the Earth. While the GEO is highly valued 
as a location for communication satellites, it is also used extensively for remote sensing 
missions. Such orbits are valuable because a satellite in such an orbit can view the same 
location. For example, communication satellites are positioned to provide telecommuni-
cation links and television signals, and to gather meteorological data. Weather satellites 
in geosynchronous orbits are especially valuable for their ability to provide views of the 
progress of weather systems for an entire hemisphere.

Weather satellites such as the U.S. Geostationary Operational Environmental Satel-
lite (GOES) and the European Meteosat satellites operate from GEO. GEO is also unique 
in that it consists exclusively of equatorial (i.e., 0-degree- inclination) orbits. A satellite at 



 3. Remote Sensing Platforms 65

the GEO altitude of 35,786 km but at any other inclination would drift relative to Earth. 
Occasionally, this effect happens to GEO satellites as a result of perturbations, but it is 
not a desirable situation and may even result in the early termination of a mission. The 
ability to remain stationary over a fixed location on the equator is the most important 
feature of this category of orbits. The main disadvantage of GEO orbits from a remote 
sensing perspective is that they are quite far from the Earth. The trade-off comes in the 
form of resolution for field of view. A satellite in GEO can observe almost an entire hemi-
sphere but at the cost of relatively low resolution, while a satellite in LEO can image at a 
comparatively high resolution but has a much smaller field of view.

Many other types of orbits exist aside from those discussed above, but they generally 
are not of significance for remote sensing applications.

Image Footprint

In operation, satellite sensors view a strip of land centered on the system’s ground track 
(Figures 3.11 and 3.12), forming the system’s swath width. The swath is typically sub-
divided into quadrilaterals (Figure 3.12) that form scenes, the basic image units for a 
specific remote sensing system. Scenes are typically identified by unique scene IDs that 
identify dates, times, and locations of images. Sizes of scenes vary with the specific satel-
lite system, ranging from a few kilometers on a side for high- resolution commercial satel-
lite systems to much larger dimensions for broad-scale systems. Each scene is composed 
of picture elements (“pixels”—the uniform cells that systematically subdivide the image) 

 FIGURE 3.11  Composite of Landsat image tracks for the 48 U.S. states, illustrating the NE–SW 

orientation of the satellite track and its sun- synchronous orbit (on its descending track), and width of 

the image coverage track, known as swath width. From NASA.
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forming the image’s basic informational units. Small- footprint satellite systems might 
have fine- resolution pixels of a few meters or less. Systems with much larger footprints 
use larger pixels, providing much coarser spatial detail.

Satellite Constellations

When a group of satellites work in concert, they are referred to as a satellite constellation. 
In some cases, constellations allow for more complete and continuous coverage of areas 
on the Earth as the satellites travel along their orbits. There are common examples of these 
constellations that are relevant for remote sensing applications, including the well-known 
GPS constellation mentioned earlier. These are essentially multiple instances of the same 
or similar satellites, operating as part of the same system. In other cases, satellites with 
different but complementary systems may closely follow each other along the same orbit 
path. Each satellite is independent, but the constellation allows acquisition of data from 
different sensors that are collected within very close timing over the same location on 
Earth. An example of this type of configuration is the international afternoon constella-
tion, which consists of a series of satellites that collect information on the atmosphere and 
Earth’s surface (e.g., water, aerosols, temperature, clouds, wind). This information can be 
used synergistically to better understand atmospheric dynamics (see https://atrain.nasa.
gov for additional information). Finally, constellations are also used for CubeSats. These 
are miniaturized satellites (typically 10-cm cubes) that are much cheaper than other sys-
tems, and they often use off-the-shelf components. They are usually deployed in clusters 
and are frequently launched as a secondary payload off a launch vehicle for a different 
mission (or, in some cases, they may be launched from the International Space Station).

3.6 UNMANNED AERIAL SYSTEMS

An unmanned aerial system (UAS) is a powered aerial vehicle, using aerodynamic lift, 
which is remotely or autonomously piloted. Although their long history is rooted mainly 
in military applications, current uses reach deep into a broad range of civil applications, 
including science, meteorology, agriculture, and operations in environments that are 

 FIGURE 3.12  A single Landsat image 

footprint (the yellow outline), central California 

(San Francisco, and its region). The Landsat 

image footprint is about 185  185 km (115  

115 mi.) in size. From U.S. Geological Survey.
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dangerous for humans. These systems have other designations such as unmanned aerial 
vehicles (UAVs) or drones. The usage UAS has been officially adopted by the U.S. Fed-
eral Aviation Administration, Department of Defense, and similar organizations in other 
nations and will be used henceforth in this book.

Fixed-Wing UAS

For many decades, the civil interest in UAS resided in dedicated hobbyists; often, they 
were members of local clubs who specialized in gasoline- powered, fixed-wing, aerial 
vehicles, often built or modified by the operators for their specific avocations (Figure 
3.13). These systems can be relatively large, awkward to handle, and difficult to operate, 
often requiring skill and experience both to construct and to operate. These UASs were 
usually piloted from the ground by radio link. In recent decades, technological advances 
(chiefly, improvements in batteries, miniaturization of inertial navigation systems, navi-
gation components, and software) have permitted manufacturers to design the large vari-
ety of inexpensive, compact, battery- powered UASs now in wide use (Figure 3.14). These 
systems can be smaller, lighter vehicles, some of Styrofoam construction, which is feasible 
because of the availability of lighter battery and sensor technologies (Figures 3.14 and 
3.15). In this form, the UAS is inexpensive, compact, and flexible, widely used for both 
practical applications and recreational activities.

Rotorcraft/Helicopters

The conventional helicopter design has been used for UAS, and often for larger UASs 
designed for military applications. A popular UAS design is the quadcopter, a version 
of the helicopter design powered by two pairs of rotors, positioned at the extremities of 
four arms (Figure 3.16). Quadcopters are characterized by their compact size, maneuver-
ability, and ability to operate in confined spaces, leading to their role as a favored design 
for a large proportion of UAS systems in operation. The four rotary blades (two rotors 
rotating clockwise and two counterclockwise) favor effective lift, stability, safety, and 
maneuverability. Such characteristics are feasible because of technological advances in 
the designs of inexpensive, lightweight flight controllers, accelerometers (IMU), global 

 FIGURE 3.13  Flight prepara-

tion for gasoline- powered, fixed-wing 

drone/UAS.
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positioning systems, and compact sensors. The quadcopter system independently var-
ies speeds of each rotor to control the vertical and lateral orientation and motion of the 
vehicle. This design results in stability and ability to launch vertically, permitting use 
in confined spaces (e.g., forested zones) without the clear horizontal track required for 
launch of fixed-wing vehicles.

UAS Sensors

The UASs described here can accommodate sensors comparable to those carried by other 
platforms, in sizes comparable to cell phone cameras, capturing imagery in the visible 
(blue, green, and near infrared). UASs can also carry specialized sensors, thermal infra-
red, and multispectral (i.e., beyond visible region). Although miniaturized versions of 
hyperspectral, lidar, and SARs have been developed for UASs (these sensors are described 
in subsequent chapters), their effectiveness is still being tested for many applications, and 
thus they have not yet been widely adopted for commercial purposes.

 FIGURE 3.16  Trimble ZX5 quadcopter 

UAS, illustrating a more expensive design, but 

one with increased capabilities. From Trimble 

Navigation Limited. Used by permission.

 FIGURE 3.14  Flight check for battery- 

powered fixed-wing SenseFly eBee UAS 

prior to launch.

 FIGURE 3.15  Trimble UX5 fixed wing 

UAS. This style of fixed-wing UAS is relatively 

inexpensive but has limited range, and it can 

be subject to loss in trees, construction sites, 

and the like. From Trimble Navigation Limited. 

Used by permission.
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UAS Flight Planning and Operations

Current UAS systems provide the ability to program detailed flight plans (autonomous 
flight planning) by delineating an area of interest, setting the flight altitude, and outlin-
ing the specifics of coverage. The analyst can program flight lines to follow a predeter-
mined strategy or can set the program to optimize coverage through orientation of flight 
lines (Figure 3.17). A UAS flight plan can set a geofence. In the context of UAS, geofenc-
ing is a software program that establishes a virtual barrier for an in- flight UAS, using 
GPS to define geographic boundaries within the flight plan (Figure 3.17). The geofence 
prevents an in- flight UAS from leaving a predetermined region, preventing encroachment 
into approaching prohibited/undesired areas or entering restricted airspace. Commonly, 
flight programming detects when battery power declines to unacceptably low levels and 
directs the UAS to return to the launch point to prevent loss of the vehicle due to battery 
failure. UAS battery life is one of the main limitations for UAS applications and must be 
carefully planned for.

Applications

Although a list of current UAS applications would be far too long, some of the most fre-
quently reported uses indicate that UAS technology is flexible and may apply to a broad 
range of applications:

Agriculture— inspect and monitor fields and rangeland
Precision agriculture— provide detailed maps of within- field soil and moisture 
patterns
Forestry— monitor forest growth, occurrence of disease, and insect infestations
Emergency response— floods, fire, extreme weather, transportation accidents, 
industrial accidents
Infrastructure monitoring and maintenance— monitoring pipelines, powerlines, 
towers, etc.
Mobile collection of field data (described in Section 3.8)

 FIGURE 3.17  Left: UAS flight plan, showing geofence (thick circular outline) boundary and flight 

paths. Right: UAS flight plan, highlighting curved tracks positioned outside the coverage zone to align 

successive paths to build systematic photographic coverage.
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Most people are usually quick to realize the advantages that UASs offer for economi-
cal acquisition of imagery with fine spatial detail, but they are often slower to recognize 
their value for quick responses to record details of events such as floods, tornado damage, 
fire, or coastal erosion, when critical details of the events may vanish within a few hours.

UASs contribute to a trend in the practice of remote sensing that has seen remote 
sensing move from a field requiring specialized knowledge and software that could be 
mastered only by people willing to devote considerable effort to learning specialized tech-
niques to one that is increasingly accessible for a wide variety of applications.

3.7 TETHERED BALLOONS

Tethered balloons are unusual remote sensing platforms, but they are practical for spe-
cialized applications. The technical but infrequently used term aerostat designates a teth-
ered balloon of strong construction, typically using helium for buoyancy, without its own 
means of propulsion. The tether is usually a strong cable, or set of cables, controlled by a 
winch, to anchor the balloon in fixed position.

Tethered balloons have a long history in remote sensing (Vierling et al., 2006), 
initially in military service, but now include increasing numbers of civil applications. 
Although various types of balloons were used as platforms for early aerial photography, 
their systematic use began in World War I for military use. Prior to the common use of 
aircraft, tethered balloons were used for artillery observation and, to a lesser extent, 
for aerial photography (Campbell, 2008). Once the airplane came into routine use, the 
balloon was vulnerable to attack by hostile aircraft, so use of balloons as photographic 
platforms declined. Later, especially during World War II, balloons were used in anti-
submarine warfare because of their ability to linger over designated areas to observe the 
same region for extended intervals.

Tethered balloons are currently in use to support research, offering, as Vierling et 
al. (2006) have noted, opportunities for continuous service over weeks, as well as the 
advantages of precise control over altitude and ease of use in remote regions, when air-
craft use is restricted or difficult. They offer benefits of low costs and freedom from the 
low- frequency vibration that can create problems for other platforms, especially helicop-
ters. As remote sensing platforms, tethered balloons can lift heavy equipment (including 
cameras and other sensors). The balloon described by Vierling et al. (2006) measures, 
when in service, 12 m in length and 4.3 m in width, with sensors controlled remotely by 
wireless communications, powered by batteries (Figure 3.18).

In remote sensing contexts, tethered balloons have been used in numerous appli-
cations, including monitoring wildlife (Nosal et al., 2013) and collecting hyperspectral 
data (Chen and Vierling, 2006). Perhaps the longest established use of tethered balloons 
for aerial observation has been in the field of archaeology (Verhoeven, 2009). The abil-
ity to fix the position of the balloon permits archaeologists to monitor the progress of 
an archaeological excavation using sequential photography that provides day-by-day (or 
perhaps hour-by hour) records of an excavation’s progress. Thus, in archaeology, the bal-
loon provides the ability to measure locations and configurations of excavated objects. 
Under development now are much larger balloons designed for use as either fixed-point 
or mobile units for surveillance of very large areas, such as border zones, traffic patterns, 
oil fields, or wildlife (Laskas, 2016).
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3.8 MOBILE COLLECTION OF FIELD DATA

Mobile data collection refers to the use of devices (usually mobile phones or tablets) that 
enable the analyst to collect in situ data in real time (i.e., data can be collected in the 
field as they are observed— locations, time, measurement, characterization) without the 
intermediate steps of transcribing based on use of portable devices.

The current availability of mobile technologies provides opportunities to use devices 
such as smartphones (Android or IOS) with GPS capabilities to record location, time, and 
date. Many different mobile apps are available for download to a mobile phone or tablet. 
Often, they include a menu to code identifying information (e.g., tree species, crop types, 
forests, or geology) or the analyst’s notes. Such information can be posted to a layer 
within a geographic information system (GIS) to support geospatial analysis. Examples 
include collection of data for accuracy assessment, training data for image classification, 
and validation data collected directly in the field. Other examples include labeling point 
features, updating databases, and recording time- sensitive data. Such applications bypass 
the usual steps that require separate operations for recording, transporting, recoding, 
and manual data entry. Mobile data collection apps enable analysts to update data in 
the field, integrate field observations with other data, and immediately share with other 
analysts. Although there are many more apps, four common mobile field data collection 
apps are briefly described next (Figure 3.19).

Collector for ArcGIS App (http://doc.arcgis.com/en/collector) is a recent intro-
duction to the Environmental Systems Research Institute’s suite of ArcGIS products. Col-
lector enables real-time collection of point, line, and polygon features, together with 
immediate entry to ArcGIS Online.

Nature’s Notebook App (https://usanpn.org/natures_notebook) is designed for 
entry of phenological data, as observed on-site. Its use with a mobile phone can record 
geographical locations, as well as dates and times that match to field observations, build-
ing a phenological record in time and space.

 FIGURE 3.18  Tethered balloon: (a) Inflating a balloon in preparation for launch. (b) Tethered bal-

loon (on the left) deployed for flight, anchored by a cable, with the instrument platform visible on the 

right. (c) Closer view of the instrument platform during flight preparation, with a selection of sensors 

visible near the upper portion of the platform. Photographs by Lee Vierling. Used by permission.

(a) (b) (c)
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Avenza Maps (www.avenza.com) permits users to enter field data, using mobile 
phones or tablets, on digital maps prepared in advance by the user or selected from a col-
lection available online. The maps form the framework for entering field information, as 
observed in the field. Because other workers can simultaneously use the same template, 
the PDF map system is effective for team efforts. At any time, the maps can be observed 
to evaluate the overall data collection effort (Figure 3.20).

The Fulcrum App (http://fulcrumapp.com) is an Android app that permits mobile 
collection of field data. It provides options for several application themes (including agri-
culture, archaeology, construction, and environment). For each template, alternative collec-
tion schemes (e.g., for environmental surveys, invasive species, and land cover survey) are 

 FIGURE 3.20  Sample screen display for 

Avenza Maps on the IOS platform. Users can place 

and label markers.

 FIGURE 3.19  Examples of four 

mobile apps for collecting data field in 

situ. Clockwise from upper left: Avenza 

Maps logo, ESRI Collector app, Nature’s 

Notebook app, Fulcrum app.
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available. The app registers data as a point, but it can include photographs to document the 
landscape. Data can be exported to a .kml file to use with other GIS software (Figure 3.21).

3.9 SUMMARY

This chapter briefly reviewed the common platforms on which remote sensing instru-
ments are mounted, within the contexts of the types of remote sensing described in this 
book. Of course, the platforms mentioned can be explored in much greater detail within 
their own specific disciplines. The fields of aeronautics, geodetics, and orbital mechan-
ics have all made significant contributions to the practical utility of remote sensing, but 
they are well beyond the scope of this book. For our purposes, the concepts of revisit 
(systematic or otherwise), altitude, and swath/coverage have major impacts on the type, 
resolution, timing, characteristics, and utility of the remote sensing imagery that are used 
for applications described in later chapters.

REVIEW QUESTIONS

1. This chapter discusses numerous platforms that can be used for remote sensing. How 
would you decide which type of platform is most suitable for a given application?

2. CubeSats were described as miniaturized, low-cost satellites that are often launched in 
clusters. Under what circumstances might CubeSats be desired over the larger, more 
complex satellites typically run by space agencies or companies?

3. What type of platform is best suited to track a large weather system, such as a hurri-
cane, and why? What type of platform would be most useful to monitor forest fires in the 
Amazon and why? For each of these applications, what are some trade-offs that must 
be considered if only the platform could be chosen?

 FIGURE 3.21  Data points labeled using the Fulcrum mobile app (Android).
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4. UASs have become increasingly popular in recent years. What are some new remote 
sensing applications that have emerged with them, that might not be possible with other 
types of remote sensing platforms?

5. Mobile field data collection platforms allow for the immediate integration of field data with 
other data, including remote sensing data. What are some applications for which this 
would be a major advantage of the more time- consuming methods previously available 
to us?
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MAJOR TOPICS TO UNDERSTAND

Fundamentals of the Aerial Photograph

Geometry of the Vertical Aerial Photograph

Digital Aerial Cameras

Digital Scanning of Analog Images

Spectral Sensitivity

Band Combinations: Optical Imagery

Coverage by Multiple Photographs

Photogrammetry

Sources of Aerial Photography

Your Own Infrared Photographs

Your Own 3D Photographs

Your Own Kite Photography

4.1 INTRODUCTION

This chapter introduces sensors used for acquiring aerial photographs. Although cam-
eras are the oldest form of remote sensing instrument, they have changed dramatically 

 4 Digital Mapping Cameras
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in recent decades, yet nonetheless exhibit continuity with respect to their fundamental 
purposes. Cameras designed for aerial use capture imagery that provides high positional 
accuracy and fine spatial detail. Despite the many other forms of remotely sensed imagery 
in use today, aerial photography remains a widely used form of aerial imagery, employed 
for a wide variety of tasks by local and state governments, private businesses, and federal 
agencies to gather information to support planning, environmental studies, construc-
tion, transportation studies, routing of utilities, and many other tasks. The versatility of 
these images accounts for a large part of their enduring utility over the decades, even as 
fundamental technological shifts have transformed the means by which these images are 
acquired and analyzed. It is noteworthy that, especially in the United States, there is a 
large archive of aerial photographs acquired over the decades that form an increasingly 
valuable record of landscape changes since the 1930s.

During recent decades, the cameras, films, and related components that long formed 
the basis for traditional photographic systems (known as analog technologies) are rapidly 
being replaced by digital instruments that provide imagery with comparable characteris-
tics that is acquired using electronic technologies. Here we introduce basic concepts that 
apply to these sensors, characterized by their use of aircraft as a platform and of the vis-
ible and near- infrared spectrum, and by their ability to produce imagery with fine detail 
and robust geometry. Although the majority of this chapter presents broad, generally 
applicable concepts without reference to specific instruments, it does introduce a selec-
tion of specific systems now used for acquiring aerial imagery.

The transition from analog- to- digital aerial cameras has been under way for several 
decades and is now maturing with respect to collection of imagery, for analysis, and 
storage. Yet, digital systems are still evolving, with a variety of systems in use and under 
development, with uncertain standards, and with discussion of relative merits of alterna-
tive systems. The following sections, therefore, present a snapshot of the transition from 
analog- to- digital technologies.

4.2 FUNDAMENTALS OF THE AERIAL PHOTOGRAPH

Systems for acquiring aerial images rely on the basic components common to the familiar 
handheld cameras we all have used for everyday photography: (1) a lens to gather light to 
form an image; (2) a light- sensitive surface to record the image; (3) a shutter that controls 
entry of light; and (4) a camera body—a light-tight enclosure that holds the components 
together in their correct positions (Figure 4.1). Aerial cameras include these components 
in a structure that differs from that encountered in our everyday experience with cam-
eras: (1) a film magazine, (2) a drive mechanism, and (3) a lens cone (Figure 4.1). This 
structure characterizes the typical design for the analog aerial camera that has been used 
(in its many variations) for aerial photography starting in the early 1900s. Although 
alternative versions of analog cameras were tailored to optimize specific capabilities, for 
our discussion, it is the metric, or cartographic, camera that has the greatest significance. 
Whereas other cameras may have been designed to acquire images (for example) of very 
large areas or under unfavorable operational conditions, the design of the metric camera 
is optimized to acquire high- quality imagery of high positional fidelity; it is the metric 
camera that forms the current standard for aerial photography.

For most of the history of remote sensing, aerial images were recorded as photo-
graphs or photograph- like images. A photograph forms a physical record— paper or film 
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with chemical coatings that portray the patterns of the images. Such images are referred 
to as analog images because the brightness of a photograph is proportional (i.e., analo-
gous) to the brightness in a scene. Although photographic media have value for recording 
images, in the context of remote sensing, their disadvantages, including difficulties of 
storage, transmission, searching, and analysis, set the stage for replacement by digital 
media. Digital technologies, in contrast, record image data as arrays of individual values 
that convey the pattern of brightness within an image.

Although a digital aerial camera shares many of the components and characteristics 
outlined above, in detail its design differs significantly from that of the analog camera. 
Because the image is captured by digital technology, digital cameras do not require the 
film and the complex mechanisms for manipulating the film. Furthermore, digital cam-
eras often include many capabilities that were not fully developed during the analog era, 
including links to positional and navigational systems and elaborate systems for annotat-
ing images.

The Lens

The lens gathers reflected light and focuses it on the focal plane to form an image. In 
its simplest form, a lens is a glass disk carefully ground into a shape with nonparallel 
curved surfaces (Figure 4.2). The change in optical densities as light rays pass from the 
atmosphere to the lens and back to the atmosphere causes refraction of light rays; the 
sizes, shapes, arrangements, and compositions of camera lenses are carefully designed to 
control refraction of light to maintain color balance and to minimize optical distortions. 
Optical characteristics of lenses are determined largely by the refractive index of the glass 
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 FIGURE 4.1  Schematic diagram of an aerial framing camera, cross- sectional view. Image by 

Susmita Sen.
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(Chapter 2) and the degree of curvature. The quality of a lens is determined by the quality 
of its glass, the precision with which that glass is shaped, and the accuracy with which it 
is positioned within a camera. Imperfections in lens shape contribute to spherical aberra-
tion, a source of error that distorts images and causes loss of image clarity. For modern 
aerial photography, spherical aberration is usually not a severe problem because most 
modern aerial cameras use lenses of very high quality. Figure 4.2a shows the simplest of 
all lenses: a simple positive lens. Such a lens is formed from a glass disk with equal curva-
ture on both sides; light rays are refracted at both edges to form an image.

Most aerial cameras use compound lenses, formed from many separate lenses of 
varied sizes, shapes, and optical properties. These components are designed to correct 
for errors that may be present in any single component, so the whole unit is much more 
accurate than any single element. For present purposes, consideration of a simple lens will 

 FIGURE 4.2  (a) Cross- sectional view of a simple lens as formed by a (b) chromatic aberration. 

Light of differing wavelengths is brought to focus at differing distances from the lens. The more com-

plex lenses designed for aerial cameras can bring the differing wavelengths to a common focal point. 

Image by Susmita Sen.
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be sufficient to define the most important features of lenses, even though a simple lens 
differs greatly from those actually used in modern aerial cameras. The optical axis joins 
the centers of curvature of the two sides of the lens. Although refraction occurs through-
out a lens, a plane passing through the center of the lens, known as the image principal 
plane, is considered to be the center of refraction within the lens (Figure 4.2a). The image 
principal plane intersects the optical axis at the nodal point.

Parallel light rays reflected from an object at a great distance (at an “infinite” dis-
tance) pass through the lens and are brought to focus at the principal focal point—the 
point at which the lens forms an image of the distant object. The chief ray passes through 
the nodal point without changing direction; the paths of all other rays are deflected by 
the lens. A plane passing through the focal point parallel to the image principal plane is 
known as the focal plane. For handheld cameras, the distance from the lens to the object 
is important because the image is brought into focus at distances that increase as the 
object is positioned closer to the lens. For such cameras, it is important to use lenses that 
can be adjusted to bring each object to a correct focus as the distance from the camera 
to the object changes. For aerial cameras, the scene to be photographed is always at such 
large distances from the camera that the focus can be fixed at infinity, with no need to 
change the focus of the lens.

In a simple positive lens, the focal length is defined as the distance from the center 
of the lens to the focal point and is usually measured in inches or millimeters. (For a 
compound lens, the definition is more complex.) For a given lens, the focal length is not 
identical for all wavelengths. Blue light is brought to a focal point at a shorter distance 
than are red or infrared wavelengths (Figure 4.2b). This effect is the source of chromatic 
aberration. Unless corrected by lens design, chromatic aberration would cause the indi-
vidual colors of an image to be out of focus. In high- quality aerial cameras, chromatic 
aberration is corrected to ensure that radiation used to form the image is brought to a 
common focal point.

A lens’s field of view can be controlled by a field stop, a mask positioned just in front 
of the focal plane. An aperture stop is usually positioned near the center of a compound 
lens; it consists of a mask with a circular opening of adjustable diameter (Figure 4.3). An 
aperture stop can control the intensity of light at the focal plane but does not influence 
the field of view or the size of the image. Manipulation of the aperture stop controls only 
the brightness of the image without changing its size. Usually, aperture size is measured 
as the diameter of the adjustable opening that admits light to the camera.

Relative aperture is defined as:

f = Focal length (EQ. 4.1)
Aperture size

where focal length and aperture are measured in the same units of length and f is the f 
number, the relative aperture. A large f number means that the aperture opening is small 
relative to focal length; a small f number means that the opening is large relative to focal 
length.

Why use f numbers rather than direct measurements of aperture? One reason is that 
standardization of aperture with respect to focal length permits specification of aperture 
sizes using a value that is independent of camera size. Specification of an aperture as “23 
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mm” has no practical meaning unless we also know the size (focal length) of the camera. 
Specification of an aperture as “f 4” has meaning for cameras of all sizes; we know that 
it is one- fourth of the focal length for any size camera.

The standard sequence of apertures is: f 1, f 1.4, f 2, f 2.8, f 4, f 5.6, f 8, f 11, f 16, 
f 22, f 32, f 64 (and so forth). This sequence is designed to change the amount of light by 
a factor of 2 as the f stop is changed by one position. For example, a change from f 2 to 
f 2.8 halves the amount of light entering the camera; a change from f 11 to f 8 doubles the 
amount of light. A given lens, of course, is capable of using only a portion of the range of 
apertures mentioned above.

Lenses for aerial cameras typically have rather wide fields of view. As a result, light 
reaching the focal plane from the edges of the field of view is typically dimmer than light 
reflected from objects positioned near the center of the field of view. This effect creates 
a dark rim around the center of the aerial photograph— an effect known as vignetting. 
It is possible to employ an antivignetting filter, darker at the center and clearer at the 
periphery, which can be partially effective in evening brightness across the photograph. 
Digital systems can also employ image processing algorithms, rather than physical filters, 
to compensate for vignetting.

The Shutter

The shutter controls the length of time that the film is exposed to light. The simplest shut-
ters are often metal blades positioned between elements of the lens, forming “intralens,” 

 FIGURE 4.3  Diaphragm aperture stop. (a) Perspective view; (b) narrow aperture; (c) wide aper-

ture. f stops are represented in the lower portion of the diagram.



 4. Digital Mapping Cameras 83

or “between- the-lens,” shutters. An alternative form of shutter is the focal plane shutter, 
consisting of a metal or fabric curtain positioned just in front of the detector array, near 
the focal plane. The curtain is constructed with a number of slits; the choice of shutter 
speed by the operator selects the opening that produces the desired exposure. Although 
some analog aerial cameras once used focal plane shutters, the between- the-lens shut-
ter is preferred for most aerial cameras. The between- the-lens shutter subjects the entire 
focal plane to illumination simultaneously and presents a clearly defined perspective that 
permits use of the image as the basis for precise measurements.

Image Motion Compensation

High- quality aerial cameras usually include a capability known as image motion com-
pensation (or forward motion compensation) to acquire high- quality images. Depending 
on the sensitivity of the recording media (either analog or digital), the forward motion of 
the aircraft can subject the image to blur when the aircraft is operated at low altitudes 
and/or high speeds. In the context of analog cameras, image motion compensation is 
achieved by mechanically moving the film focal plane at a speed that compensates for the 
apparent motion of the image in the focal plane. In the context of digital systems, image 
motion compensation is achieved electronically. Use of image motion compensation wid-
ens the range of conditions (e.g., lower altitudes and faster flight speeds) that can be used, 
while preserving the detail and clarity of the image.

4.3 GEOMETRY OF THE VERTICAL AERIAL PHOTOGRAPH

This section presents the basic geometry of a vertical aerial photograph as acquired by 
a classic framing camera. Not all portions of this discussion apply directly to digital 
cameras, but the concepts and terminology presented here do apply to a broad range of 
optical systems used for remote sensing instruments described both in this chapter and in 
later sections of this book.

Aerial photographs can be classified according to the orientation of the camera in 
relation to the ground at the time of exposure (Figure 4.4). Oblique aerial photographs 
have been acquired by cameras oriented toward the side of the aircraft. High oblique 
photographs (Figure 4.4a and Figure 4.5, left) show the horizon; low oblique photo-
graphs (Figure 4.4b and Figure 4.5, right) are acquired with the camera aimed more 
directly toward the ground surface and do not show the horizon. Oblique photographs 
have the advantage of showing very large areas in a single image. Often those features in 
the foreground are easily recognized, as the view in an oblique photograph may resemble 
that from a tall building or mountain peak. However, oblique photographs are not widely 
used for analytic purposes, primarily because the drastic changes in scale that occur 
from foreground to background prevent convenient measurement of distances, areas, and 
elevations.

Vertical photographs are acquired by a camera aimed directly at the ground surface 
from above (Figures 4.4c and 4.6). Although objects and features are often difficult to 
recognize from their representations on vertical photographs, the map-like view of the 
Earth and the predictable geometric properties of vertical photographs provide practical 
advantages. It should be noted that few, if any, aerial photographs are truly vertical; most 
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have some small degree of tilt due to aircraft motion and other factors. The term verti-
cal photograph is commonly used to designate aerial photographs that are within a few 
degrees of a corresponding (hypothetical) truly vertical aerial photograph.

Because the geometric properties of vertical and nearly vertical aerial photographs 
are well understood and can be applied to many practical problems, they form the basis 
for making accurate measurements using aerial photographs. The science of making 
accurate measurements from aerial photographs (or from any photograph) is known as 
photogrammetry. The following paragraphs outline some of the most basic elements of 
introductory photogrammetry; the reader should consult a photogrammetry text (e.g., 
Wolf, 1983) for complete discussion of this subject.

 FIGURE 4.5  Oblique aerial photographs, as acquired from a helicopter and light aircraft. Left: 

High oblique aerial photography; view to east from Denver, Colorado. Right: Low oblique aerial pho-

tograph, Blacksburg, Virginia.

 FIGURE 4.4  Oblique and vertical aerial photographs. Oblique orientations (a and b) provide 

intuitive perspectives but present large variations in image scale. Vertical photography (c) provides a 

more consistent scale but provides an unfamiliar view of the landscape. Image by Susmita Sen.

(a) HIGH OBLIQUE (b) LOW OBLIQUE (c) VERTICAL
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Analog aerial cameras are manufactured to include adjustable index marks attached 
rigidly to the camera so that the positions of the index marks are recorded on the photo-
graph during exposure. These fiducial marks (usually four or eight in number) appear as 
silhouettes at the edges and/or corners of the photograph (Figure 4.7). Lines that connect 
opposite pairs of fiducial marks intersect to identify the principal point, defined as the 
intersection of the optical axis with the focal plane, which forms the optical center of the 
image.

The ground nadir is defined as the point on the ground vertically beneath the center 
of the camera lens at the time the photograph was taken (Figure 4.8). The photographic 
nadir is defined by the intersection with the photograph of the vertical line that intersects 
the ground nadir and the center of the lens (i.e., the image of the ground nadir). Accu-
rate evaluation of these features depends on systematic and regular calibration of aerial 
cameras; the camera’s internal optics and positioning of fiducial marks are assessed and 
adjusted to ensure the optical and positional accuracy of imagery for photogrammetric 
applications. Calibration can be achieved by using the cameras to photograph a standard-
ized target designed to evaluate the quality of the imagery, as well as by internal measure-
ments of the camera’s internal geometry (Clarke and Fryer, 1998).

The isocenter can be defined informally as the focus of tilt. Imagine a truly vertical 
photograph that was taken at the same instant as the real, almost vertical, image. The 
almost vertical image would intersect with the (hypothetical) perfect image along a line 

 FIGURE 4.6  Vertical aerial photography, Tampa, Florida, October 1987. From U.S. Geological 

Survey (USGS).
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 FIGURE 4.8  Schematic representation of key geometric features of a vertical aerial photograph 

as acquired by a framing camera. Image by Susmita Sen.
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 FIGURE 4.7  Fiducial marks and principal point, vertical aerial photography as acquired by a 

film camera.
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that would form a “hinge”; the isocenter is a point on this hinge. On a truly vertical 
photograph, the isocenter, the principal point, and the photographic nadir coincide. The 
most important positional errors in the vertical aerial photograph can be summarized as 
follows.

1. Optical distortions are errors caused by an inferior camera lens, camera malfunc-
tion, or similar problems. These distortions are probably of minor significance in most 
modern photography by professional aerial survey firms.

2. Tilt is caused by displacement of the focal plane from a truly horizontal position 
by aircraft motion (Figure 4.8). The focus of tilt, the isocenter, is located at or near the 
principal point. Image areas on the upper side of the tilt are displaced farther away from 
the ground than is the isocenter; these areas are therefore depicted at scales smaller than 
the nominal scale. Image areas on the lower side of the tilt are displaced down; these 
areas are depicted at scales larger than the nominal scale. Therefore, because all photo-
graphs have some degree of tilt, measurements confined to one portion of the image run 
the risk of including systematic error caused by tilt (i.e., measurements may be consis-
tently too large or too small). To avoid this effect, it is a good practice to select distances 
used for scale measurements (Chapter 6) as lines that pass close to the principal point; 
then errors caused by the upward tilt compensate for errors caused by the downward tilt. 
The resulting value for image scale is not, of course, precisely accurate for either portion 
of the image, but it will not include the large errors that can arise in areas located farther 
from the principal point.

3. Because of routine use of high- quality cameras and careful inspection of photog-
raphy to monitor image quality, today the most important source of positional error in 
vertical aerial photography is probably relief displacement (Figure 4.9). Objects posi-
tioned directly beneath the center of the camera lens will be photographed so that only 
the top of the object is visible (e.g., object A in Figure 4.9). All other objects are posi-
tioned such that both their tops and their sides are visible from the position of the lens. 
That is, these objects appear to lean outward from the central perspective of the camera 
lens. Correct planimetric positioning of these features would represent only the top view, 
yet the photograph shows both the top and sides of the object. For tall features, it is intui-
tively clear that the base and the top cannot both be in their correct planimetric positions.

This difference in apparent location is due to the height (relief) of the object and 
forms an important source of positional error in vertical aerial photographs. The direc-
tion of relief displacement is radial from the nadir; the amount of displacement depends 
on (1) the height of the object and (2) the distance of the object from the nadir. Relief 
displacement increases with increasing heights of features and with increasing distances 
from the nadir. (It also depends on focal length and flight altitude, but these may be 
regarded as constant for a selection of sequential photographs.) Relief displacement can 
form the basis of measurements of heights of objects, but its greatest significance is its 
role as a source of positional error. Uneven terrain can create significant relief displace-
ment, so all measurements made directly from uncorrected aerial photographs are sus-
pect. We should note that this is a source of positional error, but it is not the kind of error 
that can be corrected by selection of better equipment or more careful operation; it is an 
error that is caused by the central perspective of the lens and so is inherent to the choice 
of basic technology.
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4.4 DIGITAL AERIAL CAMERAS

Digital imagery is acquired using a family of instruments that can systematically view 
portions of the Earth’s surface, recording photons reflected or emitted from individual 
patches of ground, known as pixels, that together compose the array of discrete bright-
ness values that form an image. Thus, a digital image is composed of a matrix of many 
thousands of pixels, each too small to be individually resolved by the human eye. Each 
pixel represents the brightness of a small region on the Earth’s surface, recorded digitally 
as a numeric value, often with separate values for each of several regions of the electro-
magnetic spectrum (Figure 4.10).

Although the lens of any camera projects an image onto the focal plane, the mere 
formation of the image does not create a durable image that can be put to practical use. 
To record the image, it is necessary to position a light- sensitive material at the focal 
plane. Analog cameras record images using the photosensitive chemicals that coated the 
surfaces of photographic films, as previously described. In contrast, digital cameras use 
an array of detectors positioned at the focal plane to capture an electronic record of the 
image. Detectors are light- sensitive substances that generate minute electrical currents 

 FIGURE 4.9  Relief displacement. The diagram displays a vertical aerial photograph of an ideal-

ized flat terrain with towers of equal height located at different positions with respect to the principal 

point. Images of the tops of towers are displaced away from the principal point along lines that radiate 

outward from the nadir. Image by Susmita Sen.

PLANIMETRICALLY
CORRECT
POSITIONS

A
FIDUCIAL MARKS
POSITIONED TO
MARK THE PHOTOGRAPHIC
NADIR



 4. Digital Mapping Cameras 89

when they intercept photons from the lens, thereby creating an image from the matrix of 
brightness values that is proportional to the strengths of the electrical charges that reach 
the focal plane. Detectors in digital aerial cameras apply either of two alternative designs: 
charge- coupled devices (CCDs) or complementary metal oxide semiconductor (CMOS) 
chips (described below). Each strategy offers its own advantages and disadvantages.

A CCD (Figure 4.11) is formed from light- sensitive material embedded in a sili-
con chip. The potential well receives photons from the scene through an optical system 
designed to collect, filter, and focus radiation. The sensitive components of CCDs can 
be manufactured to be very small, perhaps as small as 1 μm in diameter, and sensitive 
to selected regions within the visible and near- infrared spectra. These elements can be 
connected to each other using microcircuitry to form arrays. Detectors arranged in a 
single line form a linear array; detectors arranged in multiple rows and columns form 
two- dimensional arrays. Individual detectors are so small that a linear array shorter than 
2 cm in length might include several thousand separate detectors. Each detector within 
a CCD collects photons that strike its surface and accumulates a charge proportional 
to the intensity of the radiation it receives. At a specified interval, charges accumulated 
at each detector pass through a transfer gate, which controls the flow of data from the 

 FIGURE 4.10  Pixels. A complete view of 

an image is represented in the inset; the larger 

image shows an enlargement of a small sec-

tion to illustrate pixels that convey variations in 

brightness.

 FIGURE 4.11  Schematic representation of a CCD. A CCD is a sensor for recording digital 

images, consisting of an integrated circuit containing an array of linked (coupled) capacitors serving 

as many small pixels. Light accumulating on each pixel is converted to charged pulse, which is then 

transmitted, measured by CCD electronics, and represented as a digital number. Image by Susmita 

Sen.
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detectors. Microcircuits connect detectors within an array to form shift registers. Shift 
registers permit charges received at each detector to be passed to adjacent elements (in 
a manner analogous to a bucket brigade), temporarily recording the information until it 
is convenient to transfer it to another portion of the instrument. Through this process, 
information read from the shift register is read sequentially.

A CCD, therefore, scans electronically without the need for mechanical motion. 
Moreover, relative to other sensors, CCDs are compact and efficient in detecting pho-
tons (CCDs are especially effective when intensities are dim), and they respond linearly 
to brightness. As a result, CCD-based linear arrays have been used for remote sensing 
instruments that acquire imagery line by line as the motion of the aircraft or satellite 
carries the field of view forward along the flight track (Figure 4.12). As a result, over 
the past several decades, CCD technology has established a robust, reliable track record 
for scientific imaging. Disadvantages include (1) manufacturing expense, (2) high power 
consumption, and (3) analog- to- digital (A-to-D) conversion (Chapter 5), which requires 
an external design element.

An alternative imaging technology, CMOS, has a history of use for mobile phones 
and cameras and related consumer products. Early designs were characterized by low 
sensitivity and unfavorable signal- to-noise ratios. However, current CMOS-based instru-
ments are recognized for their wide dynamic range, fast readout time, low power require-
ments, and ability to provide fine detail at low costs and at low power requirements. 
Some aerial cameras are now designed using CMOS technology (Neumann et al., 2016), 
a trend that will likely continue and increase.

 FIGURE 4.12  Schematic representation of a linear array. The satellite system uses an optical 

system that directs light to a linear array composed of CCDs (Figure 4.10), or similar devices, to 

capture light reflected from the Earth’s surface. As the satellite’s CCD scans the landscape along the 

orbital track, it forms a strip-like image of a region of the Earth (Chapter 7). Image by Susmita Sen.
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Digital Camera Designs

In the digital realm, there are several alternative strategies for acquiring images, each 
representing a different strategy for forming digital images that are roughly equivalent 
to the 9 in.  9 in. size of analog aerial photographs that became a commonly accepted 
standard in the United States after the 1930s. Although this physical size offers certain 
advantages with respect to convenience and standardization during the analog era, there 
is no technical reason to continue use of this format in the digital era. Indeed, some digi-
tal cameras use slightly different sizes. In due course, a new standard or set of standards 
may well develop as digital systems mature to establish their own conventions.

Practical constraints of forming the large arrays of detectors necessary to approxi-
mate this standard size have led to camera designs that differ significantly from those 
of analog cameras described earlier. Analog cameras captured images frame by frame, 
meaning that each image was acquired as a single image corresponding to the single 
image projected into the focal plane at the time the shutter closed. This area, known 
as the camera format, varied in size and shape depending on the design of the camera, 
although, as mentioned above, a common standard for mapping photography used the 9 
in.  9 in. standard, now defined by its metric equivalent, 230 mm  230 mm. This pho-
tographic frame, acquired at a single instant, forms the fundamental unit for the image; 
every such image is a frame, a portion of a frame, or a composite of several frames. Such 
cameras are therefore designated as framing cameras, or as frame array cameras, which 
have formed the standard for analog aerial camera designs.

However, the framing camera design does not transfer cleanly into the digital domain. 
A principal reason for alternative designs for digital cameras is that the use of the tradi-
tional 230-mm  230-mm film format for mapping cameras would require a nearly 660 
megapixel array—a size that, currently, is much too large (i.e., too expensive) for most 
civilian applications. This situation requires some creative solutions for large- format digi-
tal cameras. One solution is to use multiple- area CCDs (and thus multiple lens systems) to 
acquire images of separate quadrants within the frame, and then to digitally stitch the four 
quadrants together to form a single image. Such composites provide an image that is visu-
ally equivalent to that of an analog mapping camera but that will have its own distinctive 
geometric properties. For example, such an image will have a nadir for each lens that might 
be used, and its brightness values will be altered when the images are processed to form the 
composite. Another design solution for a digital aerial camera is to employ linear rather 
than area arrays. One such design employs a camera with separate lens systems to view (1) 
the nadir, (2) the forward- looking, and (3) the aft- looking position. At any given instant, 
the camera views only a few lines at the nadir, at the forward- looking position, and at the 
aft- viewing position. However, as the aircraft moves forward along its flight track, each 
lens accumulates a separate set of imagery. These separate images can be digitally assem-
bled to provide complete coverage from several perspectives in a single pass of the aircraft.

The following paragraphs highlight several state-of-the-art examples of digital cam-
era designs, including the large-format frame-based digital modular camera (DMC) from 
Intergraph, the Vexcel UltraCamX, and the line sensor-based Hexagon/Leica Geosys-
tems ADS100, to illustrate general concepts. By necessity, these descriptions can outline 
only basic design strategies; readers who require detailed specifications should refer to 
the manufacturers’ complete design specifications to see both the full details of the many 
design variations and the up-to-date information describing the latest models, which 
offer many specific applications of the basic strategies outlined here.
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Area Arrays: The Intergraph Digital Modular Camera

The Intergraph Digital Modular Camera (DMC; Figure 4.13) is a large- format- frame 
digital camera. It uses four high- resolution panchromatic camera heads (focal length = 
120 mm) in the center and four multispectral camera heads (focal length 25 mm) on the 
periphery. The panchromatic CCD arrays are 7,000  4,000 pixels, resulting in a resolu-
tion of 3,824 pixels across track and 7,680 pixels along track (Boland et al., 2004). The 
multispectral arrays are 3,000  2,000 pixels, with wavelength ranges as follows: blue 
(0.40–0.58 μm), green (0.50–0.65 μm), red (0.59–0.675 μm), and near infrared (0.675–
0.85 or 0.74–0.85 μm).

Images from the two camera modules are merged into a single frame, without the 
need for postprocessing, to provide a single- color-image, geometrically and radiometri-
cally correct frame suitable for both photogrammetric and orthophoto applications.

Area Arrays: The Vexcel UltraCamX

The Vexcel UltraCamX employs multiple lens systems and CCDs positioned in the same 
plane, but with timing of the exposures to offset exposures slightly such that the scene 
is viewed from the same perspective center. Together, they form a system of eight CCDs: 
four panchromatic CCDs at fine resolution (which are combined to form a master image) 
and four multispectral CCDs at coarser resolution to image each frame. The master 
image provides the spatial framework for a mosaic of the coarser resolution multispec-
tral images. The resulting single multispectral image is rectangular, with the long axis 
oriented in the across- track dimension. This is different from analog framing cameras, 
as the multiple lens systems and interpolation of the mosaic affects the optical and radio-
metric properties (Figure 4.14).

 FIGURE 4.13  DiMAC area array. A single composite image is composed of two separate images 

acquired by independent lens systems with overlapping fields of view. From Intergraph. Used by per-

mission of DiMAC.
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Linear Arrays

The Leica ADS100 captures several linear arrays, each oriented to collect imagery line 
by line, from three orientations: forward- looking, nadir, and aft- looking. Multispectral 
arrays acquire data in the blue, green, red, and near- infrared regions. Thus, in one pass 
of the aircraft, using one instrument, it is possible to acquire, for a given region, multi-
spectral imagery from several perspectives. One distinctive feature of this configuration 
is that the nadir for imagery collected by this system is, in effect, the line connecting the 
nadirs of each linear array, rather than the center of the image, as is the case for an image 
collected by a framing camera. Therefore, each image displays relief displacement along 
track as a function only of object height, whereas in the across- track dimension relief dis-
placement resembles that of a framing camera (i.e., relief displacement is lateral from the 
nadir). This instrument, like many others, requires high- quality positioning data, and, to 
date, data from this instrument require processing by software provided by the manufac-
turer. We can summarize by saying that this linear array solution is elegant and robust 
and is now used by photogrammetric mapping organizations throughout the world.

4.5 DIGITAL SCANNING OF ANALOG IMAGES

The value of the digital format for digital analysis has led to the scanning of images 
originally acquired in analog form to create digital versions, which offer advantages for 
storage, transmission, and analysis. Although the usual scanners designed for office use 
provide, for casual use, reasonable positional accuracy and preserve much of the detail 
visible in the original, they are not satisfactory for scientific or photogrammetric applica-
tions. Such applications require scanning of original positives or transparencies to pre-
serve the positional accuracy of images and to accurately capture colors and original spa-
tial detail using specialized high- quality flatbed scanners, which provide large scanning 
surfaces, large CCD arrays, and sophisticated software to preserve information recorded 
in the original. Although there are obvious merits to scanning archived imagery, scan-
ning of imagery for current applications must be regarded as an improvisation relative to 
original collection of data in a digital format.

1

1

2 23

 FIGURE 4.14  Schematic representation of a compos-

ite aerial image formed from images collected independently 

from separate areal arrays. Image by Susmita Sen.
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4.6 SPECTRAL SENSITIVITY

Just as analog cameras used color films to capture the spectral character of a scene, so 
can detectors be configured to record separate regions of the spectrum as separate bands, 
or channels. CCDs and CMOS arrays have sensitivities determined by the physical prop-
erties of the materials used to construct sensor chips and the details of their manufacture. 
The usual digital sensors have spectral sensitivities that encompass the visible spectrum 
(with a maximum in the green region) and extend into the near infrared. Although arrays 
used for consumer electronics specifically filter to exclude the near- infrared region (NIR), 
aerial cameras can use this sensitivity to good advantage.

Color films use emulsions that are sensitive over a range of wavelengths, so even 
if their maximum sensitivity lies in the red, green, or blue regions, they are sensitive to 
radiation beyond the desired limits. In contrast, digital sensors can be designed to have 
spectral sensitivities cleanly focused in a narrow range of wavelengths and to provide 
high precision in measurement of color brightness. Therefore, digital sensors provide 
better records of the spectral characteristics of a scene—a quality that is highly valued 
by some users of aerial imagery. If the sensor chip is designed as separate arrays for each 
region of the spectrum, it acquires color images as separate planar arrays for each region 
of the spectrum. Although such designs would be desirable, they are not practical for 
current aerial cameras. Such large-array sizes are extremely expensive and difficult to 
manufacture to the required specifications, and they may require long readout times to 
retrieve the image data. In due course, these costs will decline, and the manufacturing 
and technical issues will improve. In the meantime, aerial cameras use alternative strate-
gies for simulating the effect of planar color data.

One alternative strategy uses a single array to acquire data in the three primaries 
using a specialized filter, known as a Bayer filter, to select the wavelengths that reach 
each pixel. A Bayer filter is specifically designed to allocate 50% of the pixels in an 
array to receive the green primary and 25% each to the red and blue primaries (Figure 
4.15). (The rationale is that the human visual system has higher sensitivity in the green 
region, and, as mentioned in Chapter 2, peak radiation in the visible region lies in the 
green region.) In effect, this pattern samples the distribution of colors within the image, 
and then the CCD chip processes pixel values to extrapolate, or interpolate, to estimate 
the missing values for the omitted pixels for each color. For example, the complete blue 
layer is formed by using the blue pixels to estimate the blue brightness values omitted 
in the array, and similarly for the red and green primaries. This basic strategy has been 

 FIGURE 4.15  Bayer filter. Posi-

tioned at the focal plane of an imaging 

system, the blue, green, and red colors 

each signify pixels with blue, green, and 

red filters. Pixels for each primary are sep-

arately interpolated to produce individual 

layers for each primary, which then permit 

formation of digital color imagery. Image 

by Susmita Sen.
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implemented in several variations of the Bayer filter that have been optimized for various 
applications, and variations on the approach have been used to design cameras sensitive 
to the near- infrared region.

This strategy, widely used in consumer electronics, produces an image that is satis-
factory for visual examination because of the high density of detectors relative to the pat-
terns recorded in most images and the short distances of the interpolation. However, this 
approach is less satisfactory for scientific applications and for aerial imagery— contexts 
in which the sharpness and integrity of each pixel may be paramount and artifacts of 
the interpolation process may be significant. Furthermore, the Bayer filter has the disad-
vantages that the color filters reduce the amount of energy reaching the sensor and that 
interpolation required to construct the several bands reduces image sharpness.

An alternative strategy—Foveon technology—avoids these difficulties by exploit-
ing the differential ability of the sensor’s silicon construction to absorb light. Foveon 
detectors (patented as the X3 CMOS design) are designed as three separate detector 
layers encased in silicon: blue- sensitive detectors at the surface, green- sensitive below, 
and red- sensitive detectors below the green. As light strikes the surface of the detector, 
blue light is absorbed near the chip’s surface, green penetrates below the surface, and 
red radiation below the green. Thus, each pixel can be represented by a single point that 
portrays all three primaries without the use of filters. This design has been employed for 
consumer cameras and may well find a role in aerial systems. At present, however, there 
are concerns that colors captured deeper in the chip may receive weaker intensities of the 
radiation and may have higher noise levels.

4.7 BAND COMBINATIONS: OPTICAL IMAGERY

Effective display of an image is critical for effective practice of remote sensing. Band com-
binations is the term that remote sensing practitioners use to refer to the assignment of 
colors to represent brightness values in different regions of the spectrum. Although there 
are many ways to assign colors to represent different regions of the spectrum, experience 
shows that some are proven to be more useful than others. A key constraint for the dis-
play of any multispectral image is that human vision is sensitive only to the three additive 
primaries: blue, green, and red. Because our eyes can distinguish between brightness 
values in these spectral regions, we can distinguish not only between blue, green, and red 
surfaces but also between intermediate mixtures of the primaries, such as yellow, orange, 
and purple. Color films and digital displays portray the effect of color by displaying pix-
els that vary the mixtures of the blue, green, and red primaries. Although photographic 
films must employ a single, fixed strategy for portraying colors, image processing sys-
tems and digital displays offer the flexibility to use any of many alternative strategies for 
assigning colors to represent different regions of the spectrum. These alternative choices 
define the band selection task; that is, they show how to decide which primary colors to 
select to best portray on the display screen specific features represented on imagery.

If the imagery at hand is limited to three spectral regions (as is the case for normal 
everyday color imagery), then the band selection task is simple: that is, display radia-
tion from blue objects in nature as blue on the screen, green as green, and red as red. 
However, once we have bands available from outside the visible spectrum, as is common 
for remotely sensed imagery, then the choice of color assignment must have an arbitrary 
dimension. For example, there can be no logical choice for the primary we might use to 
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display energy from the near- infrared region. The common choices for the band selection 
problem, then, are established in part by conventions that have been defined by accepted 
use over the decades and in part by practice that has demonstrated that certain combina-
tions are effective for certain purposes.

In the following sections, we introduce the band combinations most common for 
optical aerial imagery.

Black-and-White Infrared Imagery

Imagery acquired in the near- infrared region, because it is largely free of the effects of 
atmospheric scattering, shows vegetated regions and land–water distinctions. It is one of 
the most valuable regions of the spectrum (Figure 4.16; see also Figure 4.20, later). An 
image representing the near infrared is formed using an optical sensor that has filtered 
the visible portion of the spectrum, so the image is prepared using only the brightness 
values of the near- infrared region (Figure 4.16). Examples are presented in Figures 4.18 
(right) and later in Figure 4.20 (right).

Panchromatic Imagery

Panchromatic means “across the colors,” indicating that the visible spectrum is repre-
sented as a single channel (without distinguishing between the three primary colors). A 
panchromatic view provides a black-and-white image that records the brightness values 
using radiation from the visible region but without separating the different colors (Figure 
4.17; Figure 4.18, left). (This model is sometimes designated by the abbreviation PAN.) 
Digital remote sensing systems often employ a panchromatic band that substitutes spatial 
detail for a color representation; that is, the instrument is designed to capture a detailed 
version of the scene using the data capacity that might have been devoted to recording the 
three primaries. That is, a decision has been made that the added detail provides more 
valuable information than would a color representation.

Because the easily scattered blue radiation will degrade the quality of an aerial 
image, some instruments are designed to capture radiation across the green, red, and 
near- infrared regions of the spectrum, thereby providing a sharper, clearer image than 
would otherwise be the case. Therefore, even though the traditional definition of a pan-
chromatic image is restricted to those based only on visible radiation, the term has a long 
history of use within the field of remote sensing to designate a broader region extending 
into the near infrared. If the single band encompasses the entire visible and the NIR, it 

 FIGURE 4.16  Diagram representing black-

and-white infrared imagery. Visible radiation is 

filtered to isolate the near- infrared imagery use to 

form the image. Image by Susmita Sen.
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can sometimes be designated as VNIR, signifying the use of visible radiation and the 
NIR region together. Other versions of this approach use only the green, red, and NIR, 
as illustrated in Figure 4.17 (right). For many applications, panchromatic aerial imagery 
is completely satisfactory, especially for imagery of urban regions in which color informa-
tion may not be essential and added spatial detail is especially valuable.

Natural-Color Model

In everyday experience, our visual system applies band combinations in what seems to be 
a totally obvious manner: we see blue as blue, green as green, and red as red. The usual 
color films, color displays, and television screens apply this same strategy for assigning 
colors, often known as the natural- color assignment model (Figure 4.19), or sometimes 

BLUE

B & W B & W

NIRREDGREEN BLUE NIRREDGREEN

PANCHROMATIC I PANCHROMATIC II

SCENE

DISPLAY
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DISPLAY

 FIGURE 4.17  Two forms of panchromatic imagery that provide an image using a single band 

spanning the visible spectrum. Left: Use of full visible spectrum. Right: An alternative strategy using 

red, green, and NIR, omitting the blue region, thereby screening out effects of atmospheric scattering 

in the blue region. Image by Susmita Sen.

 FIGURE 4.18  Panchromatic (left) and black-and-white infrared imagery (right). Notice the effect 

of black-and-white infrared imagery (right) in depicting the water surface as a jet-black surface, with 

a sharply defined edge at the shoreline, and its clear separation of deciduous and evergreen forest 

canopies. Panchromatic imagery reveals the sediment transport in coastal waters and is effective in 

delineating street patterns. From USGS, Earth Resources Observation and Science Center.
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as the RGB (i.e., red–green–blue) model. Although natural- color imagery has value for 
its familiar representation of a scene, it suffers from a disadvantage (outlined in Chap-
ter 2) that the blue region of the spectrum is subject to atmospheric scattering, thereby 
limiting the utility of natural- color images acquired at high altitudes compared to other 
wavelengths (Figure 4.20).

Although remote sensing instruments collect radiation across many regions of the 
spectrum, outside the visible region we are limited by our visual system to perceive only 
the blue, green, and red primaries. Because our visual system is sensitive only in the vis-
ible region and can use only the three primaries in remote sensing, we must make color 
assignments that depart from the natural- color model. These create false-color images— 
false in the sense that the colors on the image do not match their true colors in nature. 
Analysts select specific combinations of three channels to represent those patterns on 
the imagery needed to attain specific objectives. When some students first encounter this 
concept, it often seems nonsensical to represent an object using any color other than its 
natural color. Because the field of remote sensing uses radiation outside the visible spec-
trum, use of the false-color model is a necessary task in displaying remote sensed imag-
ery. The assignment of colors in this context is arbitrary, as there can be no correct way to 
represent the appearance of radiation outside the visible spectrum but simply a collection 
of practices that have proven to be effective for certain purposes.

 FIGURE 4.19  Natural- color model for color assignment. The camera captures the three prima-

ries but does not record radiation outside the visible spectrum. Image by Susmita Sen.
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 FIGURE 4.20  Aerial views—color (left) and infrared (right)—of landscapes. Left: Normal color 

aerial photograph of western Virginia ridges and valleys, with far horizon obscured by atmospheric 

haze. Right: The same region photographed, at the same time, as a black-and-white infrared image, 

with the far horizon viewed clearly, illustrating the ability of infrared radiation to pass through the atmo-

sphere with minimal attenuation.
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Color-Infrared Model

One of the most valuable regions of the spectrum is the NIR region, characterized by 
wavelengths that are just longer than the longest region of the visible spectrum. This 
region carries important information about vegetation and is not subject to atmospheric 
scattering, so it is a valuable adjunct to the visible region. Use of the NIR region adds a 
fourth spectral channel to the natural- color model. Because we can recognize only three 
primaries, adding an NIR channel requires omission of one of the visible bands.

The color- infrared (CIR) model (Figures 4.21 and 4.22) creates a three-band color 
image by discarding the blue band from the visible spectrum and adding a channel in 
the NIR. This widely used model was implemented in color- infrared films that were 
initially developed in World War II as camouflage detection film (i.e., designed to use 
NIR radiation to detect differences between actual vegetation and surfaces painted to 
resemble vegetation to the eye), and were later developed as CIR film, now commonly 
used for displays of digital imagery. It shows living vegetation and water bodies very 
clearly and greatly reduces atmospheric effects compared with the natural- color model. 
It is therefore very useful for high- altitude aerial photography, which otherwise is subject 
to atmospheric effects that degrade the image. This band combination is important for 
studies in agriculture, forestry, and water resources, to list only a few of many subjects.

Later chapters extend this discussion of band selection beyond those bands that 
apply primarily to aerial photography to include spectral channels acquired by other sen-
sors.

4.8 COVERAGE BY MULTIPLE PHOTOGRAPHS

A flight plan usually calls for acquisition of vertical aerial photographs by flying a series of 
parallel flight lines that together build up complete coverage of a specific region. For fram-
ing cameras, each flight line consists of individual frames, usually numbered in sequence 
(Figure 4.23). The camera operator can view the area to be photographed through a 
viewfinder and can manually trigger the shutter as aircraft motion brings predesignated 
landmarks into the field of view, or the operator can set controls to automatically acquire 
photographs at intervals tailored to provide the desired coverage. Individual frames form 

 FIGURE 4.21  Color infrared (CIR) model for color assignment. Blue light (subject to high levels 

of scattering) is blocked from the image. Green and red radiation are recorded on the image but 

assigned to their adjacent colors (i.e., green radiation is displayed as blue; red light is displayed as 

green). NIR, outside the visible spectrum, is displayed as red. NIR is largely free of scattering and so is 

valued for its clarity, its sensitivity to living vegetation cover, and its ability to clearly define the edges of 

water bodies. See Figure 4.22 for a comparison between a natural- color image and the same scene 

as a CIR image. Image by Susmita Sen.
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ordered strips, as shown in Figure 4.23a. If the plane’s course is deflected by a crosswind, 
the positions of ground areas shown by successive photographs form the pattern shown in 
Figure 4.23b, known as drift. Crab (Figure 4.23c) is caused by correction of the flight 
path to compensate for drift without a change in the orientation of the camera.

Usually, flight plans call for a certain amount of forward overlap (Figure 4.24) in 
order to duplicate coverage by successive frames in a flight line, usually by about 50–60% 
of each frame. If forward overlap is 50% or more, then the image of the principal point 
of one photograph is visible on the next photograph in the flight line. These are known as 
conjugate principal points (Figure 4.24). When it is necessary to photograph large areas, 
coverage is built up by means of several parallel strips of photography; each strip is called 
a flight line. Sidelap between adjacent flight lines may vary from about 5 to 15%, in an 
effort to prevent gaps in coverage of adjacent flight lines.

However, as pilots collect complete photographic coverage of a region, there may 
still be gaps (known as holidays) in coverage due to equipment malfunction, navigation 
errors, or cloud cover. Sometimes photography acquired later to cover holidays differs 
noticeably from adjacent images with respect to Sun angle, vegetative cover, and other 

 FIGURE 4.22  Color and CIR aerial photographs. Top: Torch Lake, Michigan, landscape imaged 

as a natural- color aerial photograph. Bottom: CIR aerial photograph of the same region. From U.S. 

Environmental Protection Agency.
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qualities. For planning flight lines, the number of photographs required for each line can 
be estimated using the relationship:

Number of photos = Length of flight line (EQ. 4.2)
(gd of photo)  (1 – overlap)

where gd is the ground distance represented on a single frame, measured in the same units 
as the length of the planned flight line. For example, if a flight line is planned to be 33 
mi in length, if each photograph is planned to represent 3.4 mi on a side, and if forward 
overlap is to be 0.60, then 33/ [3.4  (1 – .60)] = 33/(1.36) = 24.26; about 25 photographs 
are required. (Chapter 6 shows how to calculate the coverage of a photograph for a given 
negative size, focal length, and flying altitude.)

Stereoscopic Parallax

If we have two photographs of the same area taken from different perspectives (i.e., from 
different camera positions), we observe a displacement of images of objects from one 
image to the other (to be discussed further in Chapter 6). The reader can observe this 
effect now by simple observation of nearby objects. Look up from this book at nearby 
objects. Close one eye, then open it and close the other. As you do this, you observe a 
change in the appearance of objects from one eye to the next. Nearby objects are slightly 
different in appearance because one eye tends to see, for example, only the front of an 
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 FIGURE 4.23  Aerial photographic coverage for framing cameras. (a) Forward overlap (offset 

to illustrate overlap), successive frames deliberately offset to ensure continuity, or to acquire stereo 

images (see Chapter 6). (b) Drift, aircraft flight path altered by transverse wind without correction by 

pilot). (c) Crab, indicating that the pilot has adjusted the aircraft flight path for a crosswind, but the 

camera operator has not adjusted the orientation of the camera to compensate for the change in ori-

entation. Image by Susmita Sen.
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object, whereas the other, because of its position about 2.5 in. from the other, sees the 
front and some of the side of the same object. This difference in the appearance of objects 
due to change in perspective is known as stereoscopic parallax. The amount of parallax 
decreases as objects increase in distance from the observer (Figure 4.25). If you repeat 
the experiment looking out the window at a landscape, you can confirm this effect by 
noting that distant objects display little or no observable parallax.

Stereoscopic parallax can therefore be used as a basis for measuring distance or 
height. Overlapping aerial photographs record parallax due to the shift in position of 
the camera as aircraft motion carries the camera forward between successive exposures. 
If forward overlap is 50% or more, then the entire ground area shown on a given frame 
can be viewed in stereo using three adjacent frames (a stereo triplet). Forward overlap 
of 50–60% is common. This amount of overlap doubles the number of photographs 
required but ensures that the entire area can be viewed in stereo because each point on 
the ground will appear on two successive photographs in a flight line.

Displacement due to stereo parallax is always parallel to the flight line. Tops of tall 
objects nearer to the camera show more displacement than do shorter objects, which are 
more distant from the camera. Measurement of parallax therefore provides a means of 
estimating the heights of objects. Manual measurement of parallax can be accomplished 
as follows. Tape photographs of a stereo pair to a work table so that the axis of the flight 
line is oriented from right to left (Figure 4.26). For demonstration purposes, distances 
can be measured with an engineer’s scale.

1. Measure the distance between two principal points (X).
2. Measure the distance between separate images of the base of the object as repre-

sented on the two images (Y). Subtract this distance from that found in (1) to get 
P.

3. Measure top-to-top distances (B) and base-to-base distances (A), then subtract to 
find dp.

   CONJUGATE 
PRINCIPAL POINT

PRINCIPAL POINT

 FIGURE 4.24  Forward overlap and conjugate principal points. Forward overlap means that a 

photograph is acquired to duplicate coverage of the previous photograph, usually by about 60%. 

Overlap ensures that there are no gaps between adjacent frames and provides the capability for ste-

reoscopic analysis. A conjugate principal point is the plot of a previous principal point to the adjacent 

image. Conjugate principal points facilitate the alignment of photos in a flight line and detection of 

errors in planned flight lines. Image by Susmita Sen.
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 FIGURE 4.25  Stereoscopic parallax. These two photographs of the same scene were taken 

from slightly different positions. Note the difference in the appearance of objects due to differences 

caused by differences in perspectives. Note also that differences are greatest for objects nearest to 

the camera and least for the object in the distance.

 FIGURE 4.26  Measurement of stereoscopic parallax. Distance “X” is the distance between 

principal points of two overlapping vertical aerial photos. “A” and “B” measure distances between 

bases and the tops (of an idealized tower).
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In practice, parallax measurements can be made more conveniently using devices that 
permit accurate measurement of small amounts of parallax.

Orthophotos and Orthophotomaps

Aerial photographs are not planimetric maps because they have geometric errors, most 
notably the effects of tilts and relief displacement, in the representations of the features 
they show. That is, objects are not represented in their correct planimetric positions, and 
as a result the images cannot be used as the basis for accurate measurements.

Stereoscopic photographs and terrain data can be used to generate a corrected form 
of an aerial photograph known as an orthophoto that shows photographic detail without 
the errors caused by tilt and relief displacement. During the 1970s, an optical– mechanical 
instrument known as an orthophotoscope was developed to optically project a corrected 
version of a very small portion of an aerial photograph. An orthophotoscope, instead of 
exposing an entire image from a central perspective (i.e., through a single lens), systemati-
cally exposes a small section of an image individually in a manner that corrects for the 
elevation of that small section. The result is an image that has orthographic properties 
rather than those of the central perspective of the original aerial photograph. Digital 
versions of the orthophotoscope, developed in the mid-1980s, are capable of scanning 
an entire image piece by piece to generate a corrected version of that image. The result 
is an image that shows the same detail as the original aerial photograph but without the 
geometric errors introduced by tilt and relief displacement. Orthophotos form the basis 
for orthophotomaps, which show the image in its correct planimetric form, together with 
place names, symbols, and geographic coordinates. Thus, they form digital map products 
that can be used in GIS as well as traditional maps because they show correct planimetric 
position and preserve consistent scale throughout the image.

Orthophotomaps are valuable because they show the fine detail of an aerial photo-
graph without the geometric errors that are normally present and because they can be 
compiled much more quickly and cheaply than the usual topographic maps. Therefore, 
they can be useful as map substitutes in instances in which topographic maps are not 
available or as map supplements when maps are available, but the analyst requires the 
finer detail and more recent information provided by an image. Because of their digital 
format, fine detail, and adherence to national map accuracy standards, orthophotomaps 
are routinely used in GIS.

Digital Orthophoto Quadrangles

Digital orthophoto quadrangles (DOQs) are orthophotos prepared in a digital format 
designed to correspond to the 7.5-minute quadrangles of the U.S. Geological Survey 
(USGS). DOQs are presented either as black-and-white or color images that have been 
processed to attain the geometric properties of a planimetric map.

DOQs are prepared from National Aerial Photography Program (NAPP) photogra-
phy (high- altitude photography described in Section 4.10) at scales of 1:40,000, supple-
mented by other aerial photography as needed. The rectification process is based on 
the use of digital elevation models (DEMs) to represent variations in terrain elevation. 
The final product is presented (as either panchromatic or CIR imagery) to correspond 
to the matching USGS 7.5-minute quadrangle, with a supplementary border of imag-
ery representing 50–300 m beyond the limits of the quadrangle, to facilitate matching 
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and mosaicking with adjacent sheets. A related product, the digital orthophoto quarter- 
quadrangle (DOQQ), formatted to provide a more convenient unit, represents one- fourth 
of the area of a DOQ at a finer level of detail and is available for some areas (Figure 
4.27). DOQs provide image detail equivalent to 2 m or so when presented in the quad-
rangle format and finer detail (about 1 m) for DOQQs. The USGS has responsibility for 
leading the U.S. federal government’s effort to prepare and disseminate digital carto-
graphic data. The USGS has a program to prepare DOQs for many regions of the United 
States, especially urbanized regions, and the U.S. Department of Agriculture supports 
preparation of DOQs for agricultural regions (Section 4.10).

For more information on DOQs, visit the USGS website at:

www.usgs.gov/centers/eros

4.9 PHOTOGRAMMETRY

Photogrammetry is the science of making accurate measurements from photographs. 
Photogrammetry applies the principles of optics and knowledge of the interior geometry 
of the camera and its orientation to reconstruct dimensions and positions of objects rep-
resented in photographs. Therefore, its practice requires detailed knowledge of specific 
cameras and the circumstances under which they were used, as well as accurate measure-
ments of features in photographs. Photographs used for analog photogrammetry have 
traditionally been prepared on glass plates or other dimensionally stable materials (i.e., 
materials that do not change in size as temperature and humidity change).

Photogrammetry can be applied to any photograph, provided the necessary sup-
porting information is at hand to reconstruct the optical geometry of the image. How-
ever, by far the most frequent application of photogrammetry is the analysis of stereo 
aerial photography to derive estimates of topographic elevation for topographic map-
ping. With the aid of accurate locational information describing key features within 
a scene (ground control), photogrammetrists estimate topographic relief using stereo 
parallax for an array of points within a region. Although stereo parallax can be mea-

 FIGURE 4.27  Digital orthophoto quarter 

quad, Platte River, Nebraska. From USGS.
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sured manually, it is far more practical to employ specialized instruments designed for 
stereoscopic analysis.

Initially, such instruments, known as analytical stereoplotters, first designed in the 
1920s, reconstruct the orientations of photographs at the time they were taken using 
optical and mechanical instruments to reconstruct the geometry of the images at the time 
they were acquired (see Figure 1.8 for an example of an optical– mechanical photogram-
metric instrument). Operators could then view the image in stereo; by maintaining con-
stant parallax visually, they could trace lines of uniform elevation. The quality of infor-
mation derived from such instruments depends on the quality of the photography, the 
accuracy of the data, and the operator’s skill in setting up the stereo model and tracing 
lines of uniform parallax. As the design of instruments improved, it eventually became 
possible to automatically match corresponding points on stereo pairs and thereby identify 
lines of uniform parallax, with limited assistance from the operator.

With further advances in instrumentation, it became possible to extend automation 
of the photogrammetric process to conduct the stereo analysis completely within the 
digital domain. With the use of GPS (airborne global positioning systems [AGPS]) to 
acquire accurate, real-time positional information and the use of data recorded from the 
aircraft’s navigational system (inertial navigational systems [INS]) to record orientations 
of photographs, it then became feasible to reconstruct the geometry of the image using 
precise positional and orientation data gathered as the image was acquired. This process 
forms the basis for softcopy photogrammetry, so named because it does not require the 
physical (hardcopy) form of the photograph necessary for traditional photogrammetry. 
Instead, the digital (softcopy) version of the image is used as input for a series of math-
ematical models that reconstruct the orientation of each image to create planimetrically 
correct representations. This process requires specialized computer software installed 
in workstations (see Figure 6.19) that analyzes digital data specifically acquired for the 
purpose of photogrammetric analysis. Softcopy photogrammetry, now the standard for 
photogrammetric production, offers the advantages of speed and accuracy and gener-
ates output data that are easily integrated into other production and analytical systems, 
including GIS.

The application of photogrammetric principles to imagery collected by digital cam-
eras described above differs from that tailored for the traditional analog framing camera. 
Because each manufacturer has specific designs, each applying a different strategy for 
collecting and processing imagery, the current photogrammetric analyses are matched 
to the differing cameras. One characteristic common to many of these imaging systems 
is the considerable redundancy within imagery they collect. That is, each pixel on the 
ground can be viewed many times, each from a separate perspective. Because these sys-
tems each collect so many independent views of the same features (due to the use of 
several lenses, or several linear arrays, as outlined previously), it is possible to apply mul-
tiray photogrammetry, which can exploit these redundancies to extract highly detailed 
positional and elevation data beyond that which was possible using analog photography. 
Because, in the digital domain, these additional views do not incur significant additional 
costs, photogrammetric firms can provide high detail and a wide range of image products 
without the increased costs of acquiring additional data.
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4.10 SOURCES OF AERIAL PHOTOGRAPHY

Aerial photography can be (1) acquired by the user or (2) purchased from organizations 
that serve as repositories for imagery flown by others (archival imagery). In the first 
instance, aerial photography can be acquired by contract with firms that specialize in 
high- quality aerial photography. Such firms are listed in the business sections of most 
metropolitan phone directories. Customers may be individuals, governmental agencies, 
or other businesses that use aerial photography. Such photography is, of course, custom-
ized to meet the specific needs of customers with respect to date, scale, film, and cover-
age. As a result, costs may be prohibitive for many noncommercial uses.

Thus, for pragmatic reasons, many users of aerial photography turn to archival pho-
tography to acquire the images they need. Although such photographs may not exactly 
match users’ specifications with respect to scale or date, the inexpensive costs and ease of 
access may compensate for any shortcomings. For some tasks that require reconstruction 
of conditions at earlier dates (such as the Environmental Protection Agency’s search for 
abandoned toxic waste dumps), the archival images may form the only source of informa-
tion (e.g., Erb et al., 1981; Lyon, 1987).

It is feasible to take “do-it- yourself” aerial photographs. Many handheld cameras are 
suitable for aerial photography. Often, the costs of local air charter services for an hour 
or so of flight time are relatively low. Small- format cameras, such as the usual 35-mm 
cameras, can be used for aerial photography if the photographer avoids the effects of 
aircraft vibration. (Do not rest the camera against the aircraft!) A high-wing aircraft 
offers the photographer a clear view of the landscape, although some low-wing aircraft 
are satisfactory. The most favorable lighting occurs when the camera is aimed away from 
the Sun. Photographs acquired in this manner (e.g., Figure 4.5) may be useful for illustra-
tive purposes, although for scientific or professional work the large- format, high- quality 
work of a specialist or an aerial survey firm may be required.

EROS Data Center

The EROS Data Center (EDC) in Sioux Falls, South Dakota, is operated by the USGS as 
a repository for aerial photographs and satellite images acquired by NASA, the USGS, 
and many other federal agencies. A computerized database at EDC provides an indexing 
system for information pertaining to aerial photographs and satellite images. For more 
information contact:

Customer Services
U.S. Geological Survey
Earth Resources Observation and Science (EROS)
47914 252nd Street
Sioux Falls, SD 57198–0001
Tel: 800–252–4547
E-mail: custserv@usgs.gov
Website: www.usgs.gov/centers/eros
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Earth Science Information Centers

The Earth Science Information Centers (ESIC) are operated by the USGS as a central 
source for information pertaining to maps and aerial photographs. ESIC has a special 
interest in information pertaining to federal programs and agencies but also collects data 
pertaining to maps and photographs held by state and local governments. The ESIC 
headquarters is located at Reston, Virginia, but ESIC also maintains seven other offices 
throughout the United States, and other federal agencies have affiliated offices. ESIC 
can provide information to the public concerning the availability of maps and remotely 
sensed images. The following sections describe two programs administered by ESIC that 
can provide access to archival aerial photography.

National Aerial Photography Program

NAPP acquires aerial photography for the coterminous United States, according to a 
systematic plan that ensures uniform standards. This program was initiated in 1987 by 
the USGS as a replacement for the National High- Altitude Aerial Photography Program 
(NHAP), which began in 1980 to consolidate the many federal programs that use aerial 
photography. The USGS manages NAPP, but it is funded by the federal agencies that are 
the primary users of its photography. Program oversight is provided by a committee of rep-
resentatives from the USGS, the Bureau of Land Management, the National Agricultural 
Statistics Service, the National Resources Conservation Service (NRCS; previously known 
as the Soil Conservation Service), the Farm Services Agency (previously known as the Agri-
cultural Stabilization and Conservation Service), the U.S. Forest Service, and the Tennessee 
Valley Authority. Light (1993) and Plasker and TeSelle (1988) provide further details.

Under NHAP, photography was acquired under a plan first to obtain complete cov-
erage of the coterminous 48 states and then to update coverage as necessary to keep pace 
with requirements for current photography. Current plans call for updates at intervals 
of 5 years, although the actual schedules are determined in coordination with budget-
ary constraints. NHAP flight lines were oriented north–south, centered on each of four 
quadrants systematically positioned within USGS 7.5-minute quadrangles, with full ste-
reoscopic coverage at 60% forward overlap and sidelap of at least 27%. Two camera sys-
tems were used to acquire simultaneous coverage: black-and-white coverage was acquired 
at scales of about 1:80,000, using cameras with focal lengths of 6 in. Color infrared 
coverage was acquired at 1:58,000, using a focal length of 8.25 in. Figure 4.27 shows 
a high- altitude CIR image illustrating the broad-scale coverage provided by this format.

Dates of NHAP photography varied according to geographic region. Flights were 
timed to provide optimum atmospheric conditions for photography and to meet speci-
fications for Sun angle, snow cover, and shadowing, with preference for autumn and 
winter seasons to provide images that show the landscape without the cover of deciduous 
vegetation.

Specifications for NAPP photographs differ from those of NHAP. NAPP photo-
graphs are acquired at 20,000-ft altitude using a 6-in. focal length lens. Flight lines 
are centered on quarter quads (1:24,000-scale USGS quadrangles). NAPP photographs 
are planned for 1:40,000, black-and-white or color infrared film, depending on specific 
requirements for each area.

Photographs are available to all who may have an interest in their use. Their detail 
and quality permit use for land cover surveys and assessment of agricultural, mineral, 
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and forest resources, as well as examination of patterns of soil erosion and water quality. 
Further information is available at:

www.usgs.gov/centers/eros/science/usgs-eros- archive- aerial- photography- 
national- aerial- photography- program- napp

National Agricultural Imagery Program

The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the 
agricultural growing seasons in the continental United States. The NAIP program focuses 
on providing digital orthophotography freely to governmental agencies and the public, 
usually as color or CIR imagery at about 1-m resolution. The DOQQ format means 
that the images are provided in a ready-to-use format (i.e., digital and georeferenced). 
An important difference between NAIP imagery and other programs (such as NHAP) is 
that NAIP imagery is acquired during the growing season (i.e., “leaf-on”), so it forms a 
valuable resource not only for agricultural applications but also for broader planning and 
resources assessment efforts. Further information is available at:

www.fsa.usda.gov/programs- and- services/aerial- photography/imagery- programs/
naip- imagery

Two other important sources of archival aerial photography include the U.S. Department 
of Agriculture (USDA) Aerial Photography Field Office:

www.fsa.usda.gov/programs- and- services/aerial- photography

and the U.S. National Archives and Records Administration:

www.archives.gov

4.11 SUMMARY

Aerial photography offers a simple, reliable, flexible, and inexpensive means of acquiring 
remotely sensed images. The transition from the analog systems that formed the founda-
tion for aerial survey in the 20th century to digital systems is now basically complete, 
although the nature of the digital systems that will form the basis for the field in the 
21st century is not yet clear. The migration to digital formats has reconstituted, even 
rejuvenated aerial imagery’s role in providing imagery for state and local applications. 
Although aerial photography is useful mainly in the visible and near- infrared portions 
of the spectrum, it applies optical and photogrammetric principles that are important 
throughout the field of remote sensing.

Aerial photographs form the primary source of information for compilation of large-
scale maps, especially large-scale topographic maps. Vertical aerial photographs are valu-
able as map substitutes or as map supplements. Geometric errors in the representation of 
location prevent direct use of aerial photographs as the basis for measurement of distance 
or area. But as these errors are known and are well understood, it is possible for photo-
grammetrists to use photographs as the basis for reconstruction of correct positional rela-
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tionships and the derivation of accurate measurements. Aerial photographs record com-
plex detail of the varied patterns that constitute any landscape. Each image interpreter 
must develop the skills and knowledge necessary to resolve these patterns by disciplined 
examination of aerial images.

 SOME TEACHING AND LEARNING RESOURCES

Additive Color vs Subtractive Color
www.youtube.com/watch?v=ygUchcpRNyk&feature=related

What Are CMYK and RGB Color Modes?
www.youtube.com/watch?v=0K8fqf2XBaY&feature=related

Evolution of Analog- to- Digital Mapping
www.youtube.com/watch?v=4jABMysbNbc

Aerial Survey Photography Loch Ness Scotland G-BKVT
www.youtube.com/watch?v=-YsDflbXMHk

Video of the Day; Aerial Photography
www.youtube.com/watch?v=VwtSTvF_Q2Q&NR=1

How a Pixel Gets Its Color; Bayer Sensor; Digital Image
www.youtube.com/watch?v=2-stCNB8jT8

Photography Equipment and Info: Explanation of Camera Lens Magnification
www.youtube.com/watch?v=YEG93Hp3y4w&feature=fvst

Digital Camera Tips: How a Compact Digital Camera Works
www.youtube.com/watch?v=eyyMu8UEAVc&NR=1

Aero Triangulation
www.youtube.com/watch?v=88KFAU6I_jg

REVIEW QUESTIONS

 1. List several reasons why time of day might be very important in flight planning for aerial 
imagery.

 2. Outline the advantages and disadvantages of high- altitude photography. Explain why 
routine high- altitude aerial photography was not practical before infrared imagery was 
available.

 3. List several problems that you would encounter in acquiring and interpreting large-
scale aerial imagery of a mountainous region.

 4. Speculate on the likely progress of aerial photography since 1890 if George Eastman 
had not been successful in popularizing the practice of photography among the general 
public.

 5. Should an aerial photograph be considered a “map”? Explain.

 6. Assume you have recently accepted a position as an employee of an aerial survey 
company; your responsibilities include preparation of flight plans for the company’s 
customers. What factors must you consider as you plan each mission?
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 7. List some of the factors you would consider in selection of band combinations 
described in this chapter.

 8. Suggest circumstances in which oblique aerial photography might be more useful than 
vertical photographs.

 9. It might seem that large-scale aerial images might always be more useful than small-
scale aerial photographs, yet larger scale images are not always the most useful. What 
are the disadvantages of using large-scale images?

10. A particular object will not always appear the same when imaged by an aerial camera. 
List some of the factors that can cause the appearance of an object to change from 
one photograph to the next.
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APPENDIX 4.1 YOUR OWN INFRARED PHOTOGRAPHS

Anyone with even modest experience with amateur photography can practice infrared pho-
tography, given the necessary materials (see Figure 4.28). Although 35-mm film cameras, 
the necessary filters, and infrared- sensitive films are still available for the dedicated amateur, 
many will prefer to use digital cameras that have been specially modified to acquire only radi-
ation in the near- infrared region. Infrared films are essentially similar to the usual films, but 
they should be refrigerated prior to use and exposed promptly, as the emulsions deteriorate 
much more rapidly than do those of normal films. Black-and-white infrared films should be 
used with a deep red filter to exclude most of the visible spectrum. Black-and-white infrared 
film can be developed using normal processing for black-and-white emulsions, as specified by 
the manufacturer. Digital cameras that have been modified for infrared photography do not 
require use of an external filter.

CIR films are also available in 35-mm format. They should be used with a yellow filter, 
as specified by the manufacturer. Processing of CIR film will require the services of a pho-
tographic laboratory that specializes in customized work, rather than the laboratories that 
handle only the more usual films. Before purchasing the film, it is best to inquire concerning 
the availability and costs of processing. There are few digital cameras currently available 
that have been modified for color infrared photography. Models formerly available may be 
available in the used camera market, although expense may be high even for secondhand 
cameras.

Results are usually best with bright illumination. For most scenes, the photographer 
should take special care to face away from the Sun while taking photographs. Because of 
differences in the reflectances of objects in the visible and the NIR spectra, the photogra-
pher should anticipate the nature of the scene as it will appear in the infrared region of the 
spectrum. (Artistic photographers have sometimes used these differences to create special 
effects.) The camera lens will bring infrared radiation to a focal point that differs from that 
for visible radiation, so infrared images may be slightly out of focus if the normal focus is 
used. Some lenses have special markings to show the correct focus for infrared films; most 
digital cameras modified for infrared photography have also been modified to provide the 
correct focus.
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 FIGURE 4.28  Black-and-white infrared photograph (top) and a black-and-white photograph of 

the same scene (bottom).
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APPENDIX 4.2 YOUR OWN 3D PHOTOGRAPHS

You can take your own stereo photographs using a handheld camera simply by taking a pair 
of overlapping photographs. Two photographs of the same scene, taken from slightly different 
positions, create a stereo effect in the same manner in which overlapping aerial photographs 
provide a three- dimensional view of the terrain.

This effect can be accomplished by aiming the camera to frame the desired scene, taking 
the first photograph, moving the camera laterally a short distance, and then taking a second 
photograph that overlaps the field of view of the first. The lateral displacement need only be 
a few inches (equivalent to the distance between the pupils of a person’s eyes), but a displace-
ment of a few feet will often provide a modest exaggeration of depth that can be useful in 
distinguishing depth (Figure 4.25). However, if the displacement is too great, the eye cannot 
fuse the two images to simulate the effect of depth.

Prints of the two photographs can then be mounted side by side to form a stereo pair that 
can be viewed with a stereoscope, just as a pair of aerial photos can be viewed in stereo. Stereo 
images can provide three- dimensional ground views that illustrate conditions encountered 
within different regions delineated on aerial photographs. Chapter 6 provides more informa-
tion about viewing stereo photographs.

No 3D Glasses Required— Amazing 3D Stereoscopic Images:  
www.youtube.com/watch?v=Eq3MyjDS1co&feature=related

APPENDIX 4.3 YOUR OWN KITE PHOTOGRAPHY

Although success requires persistence and attention, do-it- yourself kite photography is within 
the reach of nearly anyone who has the interest. The main prerequisites are access to a small 
digital camera, a reasonably robust kite, and the skill to fabricate a homemade mount for 
the camera. Aside from experience, the main obstacle for most beginners will be devising the 
mount to permit the camera’s field of view to face the ground at the desired orientation. An 
abundance of books and websites are available that can provide design and instructions. The 
motion of the kite will cause the camera to swing from side to side, thereby producing a num-
ber of unsatisfactory photographs that must be screened to find those that are most suitable. 
These effects can be minimized by use of more elaborate mounts for cameras and possibly by 
attention to the choice of kite.

http://kap.ced.berkeley.edu

Make Podcast: Weekend Projects— Make a Kite Aerial Photograph:  
www.youtube.com/watch?v=kEprozoxnLY&feature=fvw

Maker Workshop— Kite Aerial Photography on MAKE:television:  
www.youtube.com/watch?v=swqFA9Mvq5M
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MAJOR TOPICS TO UNDERSTAND

Electronic Imagery

Spectral Sensitivity

Digital Data

Data Formats

Band Combinations: Multispectral Imagery

Image Enhancement

Image Display

Image Processing Software

5.1 INTRODUCTION

For much of the history of aerial survey and remote sensing, images were recorded as 
photographs or photograph- like images. A photographic image forms a physical record: 
pieces of paper or film with chemical coatings that record the patterns of the images. Such 
images are referred to as analog images because the brightness values within a photo-
graph are proportional (i.e., analogous) to the brightness values within a scene. Although 

 5 Digital Imagery
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photographic media have enduring value for recording images, in the context of remote 
sensing, their disadvantages (including difficulties of storage, transmission, searching, 
and analysis) form liabilities.

In contrast, digital image formats represent images as arrays of many individual 
values, known as pixels, that together form an image. When an image is represented as 
discrete numbers, it acquires qualities that offer many advantages over earlier analog 
formats. Digital values can be added, subtracted, multiplied, and, in general, subjected to 
statistical manipulation that is not feasible if images are presented only in analog format. 
Digital images are also easy to store in compact formats and easily transmitted, and stor-
age and retrieval is inexpensive and effective. Thus, the digital format greatly increases 
our ability to display, examine, and analyze remotely sensed data. However, we should 
note that digital formats have their own limitations, which are not always recognized. 
Imagery can be only as secure as the media on which they are stored, so just as analog 
images are subject to deterioration by aging, mishandling, and wear of physical media, 
so digital data are subject to corruption, damage to disk drives, magnetic fields, and dete-
rioration of the physical media. Equally significant are changes in the formats of digital 
storage media, which can render digital copies inaccessible because of obsolescence of the 
hardware necessary to read the digital media.

This chapter introduces some of the fundamental concepts underlying applications 
of digital data for remote sensing and expands on some of the concepts first introduced 
in Chapter 4. It addressees the collection of digital data, representation of digital values, 
alternative formats for storing digital data, display of digital data, and image processing 
software systems.

5.2 ELECTRONIC IMAGERY

Digital data can be created by a family of instruments that can systematically scan por-
tions of the Earth’s surface, recording photons reflected or emitted from individual 
patches of ground, known as pixels. A digital image is composed of many thousands of 
pixels, each of which is usually too small to be individually resolved by the human eye, 
each representing the brightness of a small region on the Earth’s surface, recorded digi-
tally as a numeric value, usually with separate values for each of several regions of the 
electromagnetic spectrum. Color images are composed of several such arrays of the same 
ground area, each representing brightness values in a separate region of the spectrum.

Digital images can be generated by several kinds of instruments. Chapter 4 has 
already introduced some of the most important technologies for digital imaging: CCDs 
and CMOS. Another technology, optical– mechanical scanning, is older but has proven 
to be reliable and is still important in several realms of remote sensing practice (Fig-
ure 5.1). Here, we focus on a specific form of the optical– mechanical scanner that is 
designed to acquire imagery in several spectral regions— the multispectral scanner, which 
has formed an enduring technology for the practice of remote sensing. Other forms of 
optical– mechanical scanners have been used for collecting thermal imagery (thermal 
scanners; Chapter 10) and hyperspectral imagery (hyperspectral scanners; Chapter 14).

As noted in Chapter 4, CCDs can be positioned in the focal plane of a sensor such 
that they view a thin rectangular strip oriented at right angles to the flight path (Figure 
5.1a). The forward motion of the aircraft or satellite moves the field of view forward 
along the flight path, building up coverage. This process is known as pushbroom scan-
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ning—the linear array of pixels slides forward along the flight path in a manner analo-
gous to the motion of a janitor’s pushbroom along a floor. In contrast, mechanical scan-
ning can be visualized by analogy to a whiskbroom, in which the side-to-side motion of 
the scanner constructs the lateral dimension of the image (Figure 5.1b), as the forward 
motion of the aircraft or satellite creates its longitudinal dimension.

Optical– mechanical scanners physically move mirrors, or prisms, to systematically 
aim the field of view over the Earth’s surface. The scanning mirror scans across the field 
of view at a right angle to the flight path of the sensor, directing radiation from the 
Earth’s surface to a secondary optical system and eventually to detectors that generate an 
electrical current that varies in intensity as the land surface varies in brightness (Figure 
5.1b). Filters or diffraction gratings (discussed in the next section) split the radiation into 
several segments to define separate spectral channels, so the instrument generates several 
signals, each carrying information about the brightness in a separate region of the spec-
trum. The electrical current provides an electronic version of the brightness of the terrain 
but is still in analog form; it provides a continuous record of brightness values observed 
by the sensor’s optics. To create a digital version, the electrical signal must be subdivided 
into distinct units to create the discrete values necessary for digital analysis. This conver-
sion from the continuously varying analog signal to the discrete values is accomplished 
by sampling the current at a uniform interval, a process known as analog- to- digital, or 
A-to-D, conversion (Figure 5.2). Because the values within this interval are represented 
as a single average, all variation within this interval is lost. The process of subdivision 
and averaging the continuous signal corresponds to sampling the terrain at a set spatial 
interval, so the choice of sampling interval establishes the spatial detail recorded by the 
image.

The instantaneous field of view (IFOV) of an optical– mechanical scanner refers to 
the area viewed by the instrument if it were possible to suspend the motion of the aircraft 
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 FIGURE 5.1  Optical– mechanical scanner. Whereas a linear array (a) acquires imagery line by 

line as its field of view slides forward along the ground track, the scan mirror of an optical– mechanical 

scanner (b) oscillates from side to side to build coverage pixel by pixel as the field of view progresses 

forward. Image by Susmita Sen.
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and the scanning of the sensor for an instant (Figure 5.3). The IFOV therefore defines the 
smallest area viewed by the scanner and establishes a limit for the level of spatial detail that 
can be represented in a digital image. Although data in the final image can be aggregated 
so that an image pixel represents a ground area larger than the IFOV, it is not possible for 
pixels to carry information about ground areas smaller than the IFOV. More generally, the 
concept of the ground resolved distance (GRD) specifies the estimated dimension of the 
size of the smallest feature that can be reliably resolved by an imaging system.

Electronic sensors must be operated within the limits of their design capabilities. 
Altitudes and speeds of aircraft and satellites must be selected to match the sensitivities 
of the sensors, so that detectors view a given ground area (pixel) long enough to accumu-
late enough photons to generate reliable signals (this interval is known as dwell time). If 
designed and operated effectively, the imaging system should provide a linear response to 
scene brightness, such that the values within an image will display consistent, predictable 
relationships with brightness on the ground. Although most sensors have good perfor-
mance under normal operating conditions, they will be subject to failures under extreme 
conditions.

 FIGURE 5.2  Analog- to- digital conversion.

 FIGURE 5.3  Instantaneous field of view. 

Image by Susmita Sen.
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The lower end of an instrument’s sensitivity is subject to the dark current signal (or 
dark current noise) (Figure 5.4). A CCD can record low levels of brightness even when 
there is none in the scene, due to energy within the CCD’s structure that is captured 
by the potential well and presented as brightness. Thus, very dark features will not be 
represented at their correct brightness. Likewise, at an instrument’s upper threshold of 
sensitivity, bright targets saturate the sensor’s response— the instrument fails to record 
the full magnitude of the target’s brightness. As an example in the context of remote sens-
ing, saturation might be encountered in images representing glaciers or snowfields, which 
may exceed a sensor’s ability to record the full range of brightness values in the optical 
region of the spectrum. For instruments using CCDs, saturation can sometimes manifest 
itself as streaking or blooming, as the excess charges that accumulate at a specific pixel 
site spill over to influence the charges at adjacent locations, creating bright streaks or 
patches unrelated to the actual features in the scene.

Between these limits, sensors are designed to generate signals that have predictable 
relationships with scene brightness; these relationships are established by careful design, 
manufacture, and calibration of each instrument. These characteristics define the upper 
and lower limits of the system’s sensitivity to brightness and the range of brightness val-
ues over which a system can generate measurements with consistent relationships to scene 
brightness values.

The range of brightnesses that can be accurately recorded is known as the sensor’s 
dynamic range. The lower limit of an instrument’s dynamic range is set during calibra-
tion at a level above the minimum illustrated in Figure 5.4, known as the offset. In gen-
eral, electronic sensors have large dynamic ranges compared with those of photographic 

 FIGURE 5.4  Dark current, saturation, and dynamic range.
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films, computer displays, or the human visual system. Therefore, photographic represen-
tations of electronic imagery tend to lose information at the upper and/or lower ranges 
of brightnesses. Because visual interpretation forms such an important dimension of our 
understanding of images, the way that image displays and image- enhancement methods 
(discussed subsequently) handle this problem forms an important dimension of the field 
of image analysis.

The slope of the line depicted in Figure 5.4 defines the gain of a sensor, expressing 
the relationship between the brightness values in the original scene and its representation 
in the image. Figure 5.4 represents the behavior of an instrument that portrays a range 
of brightness values that are approximately proportional to the range of brightness in 
the original scene (i.e., the slope of the line representing the relationship between scene 
brightness and image brightness is oriented at approximately 45°). A slope of 1 means 
that a given range of brightness values in the scene is assigned the same range in the 
image, whereas a steeper slope (high gain) indicates that a given range of brightness val-
ues in the scene is expanded to assume a larger range in the scene. In contrast, Figure 5.5 
shows two hypothetical instruments, one with high gain (i.e., it portrays a given range of 
brightness values in the scene as a larger range in the image) and another with low gain 
(i.e., the instrument creates an image with a narrower range of brightness values than is 
observed in the scene). The gain for a sensor is usually fixed by the design of an instru-
ment, although some may have alternative settings (high gain or low gain) to accommo-
date varied scenes or operational conditions.

Each sensor creates responses unrelated to target brightness, that is, noise, created 
in part by accumulated electronic errors from various components of the sensor. (In this 
context, “noise” refers specifically to noise generated by the sensor, although the noise 
that the analyst receives originates not only in the sensor but also in the atmosphere, 
the interpretation process, and so on.) For effective use, instruments must be designed 
so that their noise levels are small relative to the signal (brightness of the target). This is 

 FIGURE 5.5  Examples of sensors characterized by high and low gain. Image by Susmita Sen.
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measured as the signal- to-noise ratio (S/N or SNR) (Figure 5.6). Analysts desire signals 
to be large relative to noise, so the SNR should be large not only for bright targets when 
the signal is large but also over the entire dynamic range of the instrument, especially at 
the lower levels of sensitivity when the signal is small relative to noise. Engineers who 
design sensors must balance the radiometric sensitivity of the instrument with pixel size, 
dynamic range, operational altitude, and other factors to maintain acceptable SNRs.

5.3 SPECTRAL SENSITIVITY

Optical sensors often use prisms and filters to separate light into spectral regions. Filters 
are pieces of specialized glass that selectively pass certain wavelengths and block or absorb 
those that the designer desired to exclude. The most precise (and therefore most expen-
sive) filters are manufactured by adding dyes to glass during manufacture. Less precise, 
and less durable, filters are manufactured by coating the surface of glass with a film that 
absorbs the desired wavelengths. Usually, filters are manufactured by firms that produce 
a suite of filters, each with its own system for defining and designating filters, specifically 
tailored for the needs of certain communities of customers with specialized needs.

Because of the scattering of shorter wavelengths, filters are often used when record-
ing visible radiation to screen out ultraviolet or blue light (Figure 5.7a). Such a filter 
creates an image within the visible region that excludes the shorter wavelengths that can 
degrade the visual quality of the image. Often it is desirable to exclude all visible radia-
tion, to create an image that is based entirely on near- infrared radiation (Figure 4.18, 
right; Figure 4.20, right). A deep red filter (Figure 5.7b) blocks visible radiation but 
allows infrared radiation to pass. An image recorded in the near- infrared region is quite 
different from its representation in the visible spectrum (Figure 4.20). For example, liv-
ing vegetation is many times brighter in the near- infrared portion of the spectrum than 

 FIGURE 5.6  Signal- to-noise (S/N) ratio. At the bottom, a hypothetical scene is composed of two 

cover types. The signal records this region, with only a small difference in brightness between the two 

classes. Atmospheric effects, sensor error, and other factors contribute to noise, which is added to 

the signal. The sensor then records a combination of signal and noise. When noise is small relative to 

the signal (left: high S/N ratio), the sensor conveys the difference between the two regions. When the 

signal is small relative to noise (right: low S/N ratio), the sensor cannot portray the difference in bright-

ness between the two regions. Image by Susmita Sen.
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it is in the visible portion, so vegetated areas appear bright white on the black-and-white 
infrared image.

Although filters can be used in the collection of digital imagery, electronic sensors 
often use diffraction gratings, considered more efficient because of their effectiveness, 
small size, and light weight. Diffraction gratings are closely spaced transmitting slits cut 
into a flat surface (a transmission grating) or grooves cut into a polished surface (a reflec-
tion grating). Effective transmission gratings must be accurately and consistently spaced 
and must have very sharp edges. Light from a scene is passed through a collimating lens, 
designed to produce a beam of parallel rays of light that is oriented to strike the diffrac-
tion grating at an angle (Figure 5.8).

Light striking a diffraction grating experiences both destructive and constructive 
interference as wavefronts interact with the grating. Destructive interference causes some 
wavelengths to be suppressed, whereas constructive interference causes others to be rein-
forced. Because the grating is oriented at an angle with respect to the beam of light, dif-
ferent wavelengths are diffracted at different angles, and the radiation can be separated 
spectrally. This light then illuminates detectors to achieve the desired spectral sensitivity.

 FIGURE 5.7  Transmission curves for two 

filters. (a) Pale yellow filter (Kodak filter 2B) to pre-

vent ultraviolet light from reaching the focal plane; 

it is frequently used to acquire panchromatic 

images. (b) Kodak 89B filter used to exclude 

visible light, used for infrared images. (Shaded 

portions of the diagrams signify that the filter is 

blocking transmission of radiation at specified 

wavelengths.) From KODAK Photographic Filters 

Handbook (Code B-3). Copyright © Eastman 

Kodak Company. Used by permission.

 FIGURE 5.8  Diffraction grating and colli-

mating lens. From NASA.



 5. Digital Imagery 123

Because the various filters and diffraction gratings that instruments use to define the 
spectral limits (i.e., the “colors” that they record) do not define discrete limits, spectral 
sensitivity varies across a specific defined interval. For example, an instrument designed 
to record radiation in the green region of the spectrum will not exhibit equal sensitivity 
across the green region but will exhibit greater sensitivity near the center of the region 
than at the transitions to the red and blue regions on either side (Figure 5.9). Defining the 
spectral sensitivity to be the extreme limits of the energy received would not be satisfac-
tory because it is clear that the energy received at the extremes is so low that the effective 
sensitivity of the instrument is defined by a much narrower wavelength interval.

As a result, the spectral sensitivity of an instrument is often specified using the defi-
nition of full width, half maximum (FWHM)—the spectral interval measured at the level 
at which the instrument’s response reaches one-half of its maximum value (Figure 5.9). 
Thus FWHM forms a definition of spectral resolution, the narrowest spectral interval 
that can be resolved by an instrument. (Even though the instrument is sensitive to radia-
tion at the extreme limits, beyond the limits of FWHM, the response is so weak and 
unreliable at these limits that FWHM forms a measure of functional sensitivity.) Figure 
5.9 also illustrates the definition of the spectral sampling interval (known also as spectral 
bandwidth), which specifies the spectral interval used to record brightness in relation to 
wavelength.

5.4 DIGITAL DATA

Output from electronic sensors reaches the analyst as a set of numeric values. Each digital 
value is recorded as a series of binary values known as bits. Each bit records an exponent 
of a power of 2, with the value of the exponent determined by the position of the bit in 
the sequence. As an example, consider a system designed to record 7 bits for each digital 

 FIGURE 5.9  Full width, half maximum (FWHM). Image by Susmita Sen.
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value. This means (for unsigned integers) that seven binary places are available to record 
the brightness sensed for each band of the sensor. The seven values record, in sequence, 
successive powers of 2. A “1” signifies that a specific power of 2 (determined by its posi-
tion within the sequence) is to be evoked; a “0” indicates a value of zero for that position. 
Thus, the 7-bit binary number “1111111” signifies 26 + 25 + 24 + 23 + 22 + 21 + 20 = 64 
+ 32 + 16 + 8 + 4 + 2 + 1 = 127. And “1001011” records 26 + 05 + 04 + 23 + 02 + 21 + 20 
= 64 + 0 + 0 + 8 + 0 + 2 + 1 = 75. Figure 5.10 shows two different examples. Eight bits 
constitute a byte, intended to store a single character. Larger amounts of memory can be 
indicated in terms of kilobytes (KB), 1,024 (210) bytes; megabytes (MB), 1,048,576 (220) 
bytes; and gigabytes (GB), 1,073,741,824 (230) bytes (Table 5.1).

In this manner, discrete digital values for each pixel are recorded in a form suitable 
for storage on disks and for analysis. These values are popularly known as digital num-
bers (DNs), brightness values (BVs), or digital counts, in part as a means of signifying 
that these values do not record true brightness (known as radiance) from the scene but 
rather are scaled values that represent relative brightness within each scene. The number 
of brightness values within a digital image is determined by the number of bits avail-
able. The 7-bit example given above permits a maximum range of 128 possible values 
(0–127) for each pixel. A decrease to 6 bits would decrease the range of brightness values 
to 64 (0–63); an increase to 8 bits would extend the range to 256 (0–255). Thus, given 
a constant noise level, the number of bits minus a reserved sign bit, if used, determines 
the radiometric resolution of a digital image. The number of bits available is determined 

 FIGURE 5.10  Digital representation of values in 7 bits.

 TABLE 5.1 Terminology for Computer Storage

Bit A binary digit (0 or 1)

Byte 8 bits, 1 character

Kilobyte (K or KB) 1,024 bytes (210 bytes)

Megabyte (MB) 1,048,576 bytes (220 bytes)

Gigabyte (GB) 1,073,741,824 bytes (230 bytes)

Terabyte (TB) 1,099,511,627,776 bytes (240 bytes)



 5. Digital Imagery 125

by the design of the system, especially the sensitivity of the sensor and its capabilities for 
recording and transmitting data (each added bit increases transmission requirements). If 
we assume that transmission and storage resources are fixed, then increasing the num-
ber of bits for each pixel means that we will have fewer pixels per image and that pixels 
would each represent a larger ground area. Thus, technical specifications for remote 
sensing systems require trade-offs between image coverage and radiometric, spectral, and 
spatial resolutions.

Radiances

The brightness of radiation reflected from the Earth’s surface is measured as bright-
ness (watts) per wavelength interval (micrometer) per angular unit (steradian) per square 
meter from which it was reflected. Thus, the measured brightness is defined with respect 
to wavelength (i.e., “color”), spatial area (angle), intensity (brightness), and area. Radi-
ance is a record of actual brightness, measured in physical units and represented as real 
values (i.e., to include decimal fractions). Use of DNs facilitates the design of instruments, 
data communications, and the visual display of image data. For visual comparison of 
different scenes, or analyses that examine relative brightness, use of DNs is satisfactory. 
However, because a DN from one scene does not represent the same brightness as the 
same DN from another scene, DNs are not comparable from scene to scene if an analysis 
must examine actual scene brightness for purposes that require use of original physical 
units. Such applications include comparisons of scenes of the same area acquired at dif-
ferent times, or matching adjacent scenes to make a mosaic.

For such purposes, it is necessary to convert the DNs to the original radiance or to 
use reflectance (Chapters 2 and 11), which are comparable from scene to scene and from 
one instrument to another. Calculation of radiance and reflectance from DNs requires 
knowledge of calibration data specific to each instrument. To ensure that a given sensor 
provides an accurate measure of brightness, it must be calibrated against targets of known 
brightness. The sensitivities of electronic sensors tend to drift over time, so to maintain 
accuracy, they must be recalibrated on a systematic schedule. Although those sensors 
used in aircraft can be recalibrated periodically, those used in satellites are not available 
after launch for the same kind of recalibration. Typically, such sensors are designed so 
that they can observe calibration targets onboard the satellite, or they are calibrated by 
viewing landscapes of uniform brightness (e.g., the moon or desert regions). Nonetheless, 
calibration errors, such as those described in Chapter 11, sometimes remain.

5.5 DATA FORMATS

Digital image analysis is usually conducted using raster data structures in which each 
image is treated as an array of values. Additional spectral channels form additional arrays 
that register to one another. Each pixel is treated as a separate unit, which can always 
be located within the image by its row and column coordinates. In most remote sensing 
analysis, coordinates originate in the upper left-hand corner of an image and are referred 
to as rows and columns, or as lines and pixels, to measure position down and to the right, 
respectively.

Raster data structures offer advantages for manipulation of pixel values by image 
processing systems, as it is easy to find and locate pixels and their values. The disad-
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vantages are usually apparent only when we need to represent not the individual pixels, 
but areas of pixels, as discrete patches or regions. Then the alternative structure, vector 
format, becomes more attractive. The vector format uses polygonal patches and their 
boundaries as the fundamental units for analysis and manipulation. The vector format is 
not appropriate for digital analysis of remotely sensed data, although sometimes we may 
wish to display the results of our analysis using a vector format. Almost always, equip-
ment and software for digital processing of remotely sensed data must be tailored for a 
raster format.

Digital remote sensing data are typically organized according to one of three alterna-
tive strategies for storing images. Consider an image consisting of four spectral channels, 
which together can be visualized as four superimposed images, with corresponding pixels 
in one band registering exactly to those in the other bands.

One of the earliest formats for digital data was band interleaved by pixel (BIP). Data 
are organized in sequence values for line 1, pixel 1, band 1; then for line 1, pixel 1, band 
2; then for line 1, pixel 1, band 3; and finally for line 1, pixel 1, band 4. Next are the four 
bands for line 1, pixel 2, and so on (Figure 5.11). Thus, values for all four bands are writ-
ten before values for the next pixel are represented. Any given pixel, once located within 
the data, is found with values for all four bands written in sequence one directly after the 
other. This arrangement is advantageous for many analyses in which the brightness value 
(or digital number) vector is queried or used to calculate another quantity. However, it is 
an unwieldy format for image display.

The band interleaved by line (BIL) format treats each line of data as a separate unit 
(Figure 5.12). In sequence, the analyst encounters line 1 for band 1, line 1 for band 2, line 
1 for band 3, line 1 for band 4, line 2 for band 1, line 2 for band 2, and so on. Each line 
is represented in all four bands before the next line is encountered. A common variation 
on the BIL format is to group lines in sets of 3 or 7, for example, rather than to consider 
each single line as the unit.

A third convention for recording remotely sensed data is the band sequential (BSQ) 
format (Figure 5.13). All data for band 1 are written in sequence, followed by all data for 
band 2, and so on. Each band is treated as a separate unit. For many applications, this 

 FIGURE 5.11  Band interleaved by pixel format. In effect, each band is subdivided such that 

data  from pixels in the same location are collected from each sequential band and written to digi-

tal storage neighboring positions. Pixels from each band are intermingled as illustrated. Image by 

 Susmita Sen.
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format is the most practical, as it presents data in the format that most closely resembles 
the data structure used for display and analysis. However, if areas smaller than the entire 
scene are to be examined, the analyst must read all four images before the subarea can 
be identified and extracted.

Actual data formats used to distribute digital remote sensing data are usually varia-
tions on these basic alternatives. Exact details of data formats are specific to particular 
organizations and to particular forms of data, so whenever an analyst acquires data, 

 FIGURE 5.12  Band interleaved by line format. Lines of pixels from each band are selected and 

then written to digital storage such that lines for separate bands are positioned in sequence. Lines 

from each band are intermingled as illustrated. Image by Susmita Sen.

 FIGURE 5.13  Band sequential format. The structure of each band is retained in digital storage; 

all pixels for each band are written in their entirety before the next band is written. There is no intermin-

gling of pixels from separate bands. Image by Susmita Sen.
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he or she must make sure to acquire detailed information regarding the data format. 
Although organizations attempt to standardize formats for specific kinds of data, it is 
also true that data formats change as new mass storage media come into widespread use 
and as user communities employ new kinds of hardware or software.

The “best” data format depends on immediate context and often on the specific 
software and equipment available. If all bands for an entire image must be used, then the 
BSQ and BIL formats are useful because they are convenient for reconstructing the entire 
scene in all four bands. If the analyst knows beforehand the exact position on the image 
of the subarea that is to be studied, then the BIP format is useful because values for all 
bands are found together and it is not necessary to read through the entire data set to find 
a specific region. In general, however, the analyst must be prepared to read the data in the 
format in which they are received and to convert them into the format most convenient 
for use at a specific laboratory.

Other formats are less common in everyday applications but are important for appli-
cations requiring use of long sequences of multispectral images. Hierarchical data format 
(HDF) is a specialized data structure developed and promoted by the National Center for 
Supercomputing Applications (www.ncsa.illinois.edu/enabling/software) and designed 
specifically to promote effective management of scientific data. Whereas the formats dis-
cussed thus far organize data conveyed by a specific image, HDF and related structures 
provide frameworks for organizing collections of images. For example, conventional data 
formats become awkward when it is necessary to portray three- dimensional data struc-
tures as they might vary over time. Although such structures might typically portray 
complex atmospheric data as it varies hourly, daily, seasonally, or yearly, they also lend 
themselves to recording large sequences of multispectral images. HDF therefore enables 
effective analysis and visualization of such large, multifaceted data structures.

A related but distinctly different format, network common data form (NetCDF), 
which also provides structures tailored for handling dynamic, array- oriented data, is 
specifically designed to be compatible with a wide variety of computer platforms, so that 
it can facilitate sharing of data over the World Wide Web. NetCDF was designed spe-
cifically for the Unidata system (www.unidata.ucar.edu/software/netcdf), which allows 
rapid transmission of meteorological data to a wide range of users.

Although HDF and NetCDF structures are unlikely to be encountered in usual 
remote sensing applications, they are becoming more common in advanced applications 
requiring the handling of very large sequences of images, such as those encountered in 
geophysics, meteorology, and environmental modeling— applications that often include 
remotely sensed data.

Data compression reduces the amount of digital data required to store or transmit 
information by exploiting the redundancies within a data set. If data arrays contain val-
ues that are repeated in sequence, then compression algorithms can exploit that repetition 
to reduce the size of the array, while retaining the ability to restore the array to its origi-
nal form. When the complete array is needed for analysis, then the original version can 
be restored by decompression. Because remotely sensed images require large amounts of 
storage and usually are characterized by modest levels of redundancies, data compression 
is an important tool for effective storage and transmission of digital remote sensing data. 
Compression and decompression are accomplished, for example, by executing computer 
programs that receive compressed data as input and produce a decompressed version as 
output.
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The compression ratio compares the size of the original image with the size of the 
compressed image. A ratio of 2:1 indicates that the compressed image is one-half the 
size of the original. Lossless compression techniques restore compressed data to their 
exact original form; lossy techniques degrade the reconstructed image, although in some 
applications the visual impact of a lossy technique may be imperceptible. For digital satel-
lite data, lossless compression techniques can achieve ratios from 1.04:1 to 1.9 to 1. For 
digitized cartographic data, ratios of 24:1 using lossy techniques have been reported to 
exhibit good quality.

It is beyond the scope of this discussion to describe the numerous techniques and 
algorithms available for image compression. Probably the most well-known compression 
standard is the JPEG (Joint Photographic Experts Group) format, a lossy technique that 
applies the discrete cosine transform (DCT) as a compression– decompression algorithm. 
Although the JPEG algorithm has been widely accepted as a useful technique for com-
pression of continuous- tone photographs, it is not likely to be ideal for either remotely 
sensed images or geospatial data in general. A modification of the basic JPEG format, 
JPEG2000 (www.jpeg.org) has been recognized as providing a high compression rate 
with high fidelity (Liu, Wu, and Shih, 2005). Depending on its application, JPEG2000 
can be either lossy or nonlossy. Generally stated, lossy compression techniques should 
not be applied to data intended for analysis or as archival copies. Lossy compression may 
be appropriate for images used to present the visual records of results of the analytical 
process, provided they do not form input to other analyses.

5.6 BAND COMBINATIONS: MULTISPECTRAL IMAGERY

Effective display of an image is critical for effective practice of remote sensing. Band 
combinations is the term that remote sensing practitioners use to refer to the assignment 
of colors to represent brightness in different regions of the spectrum. Although there are 
many ways to assign colors to represent different regions of the spectrum, experience 
shows that some have proven to be more useful than others. A key constraint for the dis-
play of any multispectral image is that human vision portrays differences in the colors of 
surfaces through our eyes’ ability to detect differences in brightness in the three additive 
primaries— blue, green, and red. Because our eyes can distinguish between brightness in 
these spectral regions, we can distinguish not only between blue, green, and red surfaces 
but also between intermediate mixtures of the primaries, such as yellow, orange, and 
purple.

Color films, digital displays, and the like portray the effect of color by varying the 
mixtures of the blue, green, and red primaries. Although films must employ a single 
strategy for portraying colors, image processing systems and digital displays offer the 
flexibility to use any of many alternative strategies for assigning colors to represent dif-
ferent regions of the spectrum. These alternative choices then define the band selection 
task, that is, how to decide which primary colors to select to portray on the display screen 
specific radiation collected by remote sensing systems.

If imagery at hand is limited to three spectral regions (as is the case with normal 
everyday color imagery), then the band selection task is simple: display radiation from 
blue in nature as blue on the screen, green as green, red as red. However, once we have 
more than three channels at hand, as is common for remotely sensed imagery, then the 
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choice of assignment can have only arbitrary answers because, for example, there can be 
no logical selection of colors portrayed outside the three primaries. The common choices 
for the band selection problem, then, are established in part on the basis of conventions 
that have been accepted by use over the decades and in part by practice that has dem-
onstrated the effectiveness of certain combinations for certain purposes. An important 
theme for band combinations is that bands that are close to one another tend to replicate 
information in their adjacent regions of the spectrum. Therefore, the most effective band 
combinations are often (but not always!) formed from spectral regions that have different 
locations on the spectrum because they tend to provide independent representations of 
the same landscape.

Other color assignment models are used often but do not have widely accepted 
names. Here we discuss a few that are designated by the band numbers used for the 
Landsat Thematic Mapper, or Landsat TM (discussed in more detail in Chapter 7).

742

The 742 combination uses one region from the visible spectrum, one from the near infra-
red, and one from the mid- infrared region (Figure 5.14). It portrays landscapes using 
“false” colors but in a manner that resembles their natural appearance. Living, healthy 
vegetation appears in bright greens, barren soil as pink, dry vegetation and sparsely veg-
etated areas as oranges and browns, and open water as blue. This combination is often 
employed for geologic analyses, especially in desert landscapes, as differing mineralogies 
of surface soils appear as distinctive colors. Applications also include agriculture, wet-
lands, and, in forestry, fire management for postfire analysis of burned and unburned 
areas.

451

A 451 combination uses blue and mid- infrared radiation, together with a band from the 
near- infrared region (Figure 5.15). Deep, clear water bodies will appear very dark using 
this choice of bands— shallow or turbid water appears as shades of lighter blues. Healthy 
vegetation is represented in reds, browns, and oranges. Greens and browns often repre-
sent bare soils; white, cyan, and gray colors often represent urban features.

 FIGURE 5.14  742 band combination, based on Landsat TM band designations (comparable 

Landsat 8 designations are 753). Image by Susmita Sen.
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754

The 754 combination uses three bands from outside the visible region (Figure 5.16), 
which is often employed for geological analysis. Because it uses longer wavelengths, it is 
free of the effects of atmospheric scattering. Coastlines are clearly and sharply defined. 
Textural and moisture characteristics of soils can often be discerned.

543

A 543 combination uses the near- infrared, mid- infrared, and red regions (Figure 5.17). 
Edges of water bodies are sharply defined. It is effective in displaying variations in veg-
etation type and status as browns, greens, and oranges. It is sensitive to variations in soil 
moisture and useful for analysis of soil and vegetation conditions. Wetter surface soils 
appear in darker tones.

5.7 IMAGE ENHANCEMENT

Image enhancement is the process of improving the visual appearance of digital images. 
Image enhancement has increasing significance in remote sensing because of the grow-
ing importance of digital analyses. Although some aspects of digital analysis may seem 

 FIGURE 5.15  451 band combination, based on Landsat TM band designations (comparable 

Landsat 8 designations are 562). Image by Susmita Sen.

 FIGURE 5.16  754 band combination, based on Landsat TM band designations (comparable 

Landsat 8 designations are 765). Image by Susmita Sen.
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to reduce or replace traditional image interpretation, many of these procedures require 
analysts to examine images on computer displays, performing tasks that require many of 
the skills outlined in earlier sections of this chapter.

Most image- enhancement techniques are designed to improve the visual appearance 
of an image, often as evaluated by narrowly defined criteria. Therefore, it is important 
to remember that enhancement is often an arbitrary exercise; what is successful for one 
purpose may be unsuitable for another image or for another purpose. In addition, image 
enhancement is conducted without regard for the integrity of the original data. The origi-
nal brightness values will be altered in the process of improving their visual qualities, 
and they will lose their relationships to the original brightness on the ground. Therefore, 
enhanced images should not be used as input for additional analytical techniques; rather, 
any further analysis should use the original values as input.

Contrast Enhancement

Contrast refers to the range of brightness values present on an image. Contrast enhance-
ment is required because sensors often generate brightness ranges that do not match the 
capabilities of the human visual system. Therefore, for analysts to view the full range of 
information conveyed by digital images, it is usually necessary to rescale image bright-
ness to ranges that can be accommodated by human vision, photographic films, and 
computer displays. For example, if the maximum possible range of values is 0–255 (i.e., 
8 bits) but the display can show only the range from 0 to 63 (6 bits), then the image will 
have poor contrast, and important detail may be lost in the values that cannot be shown 
on the display (Figure 5.18a). Contrast enhancement alters each pixel value in the old 

 FIGURE 5.17  543 band combinations, based on Landsat TM band designations (top). Compa-

rable Landsat 8 designations are 654. Note the separation of urban and rural areas, and clear identi-

fication of land-water boundaries (bottom). Top image by Susmita Sen.
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image to produce a new set of values that exploits the full range of 256 brightness values 
(Figure 5.18b).

Figure 5.19 illustrates the practical effect of image enhancement. Before enhance-
ment (left), detail is lost in the darker regions of the image. After enhancement has 
stretched the histogram of brightness values to take advantage of the capabilities of the 
display system, the detail is more clearly visible to the eye.

Many alternative approaches have been proposed to improve the quality of the dis-
played image. The appropriate choice of technique depends on the image, the previous 
experience of the user, and the specific problem at hand. The following paragraphs illus-
trate a few of the simpler and more widely used techniques.

 FIGURE 5.18  Schematic representation of the loss of visual information in display of digital 

imagery. (a) Often, the brightness range of digital imagery exceeds the ability of the image display to 

represent it to the human visual system. (b) Image enhancement rescales the digital values to more 

nearly match the capabilities of the display system. Image by Susmita Sen.
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Linear Stretch

Linear stretch converts the original digital values into a new distribution, using new 
minimum and maximum values specified, often plus or minus two standard deviations 
from the mean. The algorithm then matches the old minimum to the new minimum and 
the old maximum to the new maximum. All of the old intermediate values are scaled pro-
portionately between the new minimum and maximum values (Figure 5.20). Piecewise 
linear stretch means that the original brightness range was divided into segments before 

 FIGURE 5.19  Pair of images illustrating the effect of image enhancement. By altering the distri-

bution of brightness values, the analyst is able to view detail formerly hidden by the ineffective distribu-

tion of image brightness.

 FIGURE 5.20  Linear stretch. Brightness values are spread over a broader range, allowing the 

eye to see detail formerly concealed in extremely dark or bright tones. Image by Susmita Sen.
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each segment was stretched individually. This variation permits the analyst to emphasize 
certain segments of the brightness range that might have more significance for a specific 
application.

Histogram Equalization

Histogram equalization reassigns digital values in the original image such that bright-
ness in the output image is equally distributed among the range of output values (Figure 
5.21). Unlike contrast stretching, histogram equalization is achieved by applying a non-
linear function to reassign the brightness in the input image such that the output image 
approximates a uniform distribution of intensities. The histogram peaks are broadened, 
and the valleys are made shallower. Histogram equalization has been widely used for 
image comparison processes (because it is effective in enhancing image detail) and for 
adjustment of artifacts introduced by digitizers or other instruments.

Density Slicing

Density slicing is accomplished by arbitrarily dividing the range of brightness in a single 
band into intervals, then assigning each interval a color (Figure 5.22). Density slicing 
may have the effect of emphasizing certain features that may be represented in vivid col-
ors, but, of course, it does not convey any more information than does the single image 
used as the source.

Edge Enhancement

Edge enhancement is an effort to reinforce the visual transitions between regions of con-
trasting brightness. Typically, the human interpreter prefers sharp edges between adja-
cent parcels, whereas the presence of noise, coarse resolution, and other factors often 
tend to blur or weaken the distinctiveness of these transitions. Edge enhancement in 

 FIGURE 5.21  Histogram equalization. Equalization spreads the range of brightness values but 

preserves peaks and valleys in the histogram.
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effect magnifies local contrast— enhancement of contrast within a local region. A typi-
cal edge- enhancement algorithm consists of a usually square window that is system-
atically moved through the image, centered successively on each pixel. There are many 
edge- enhancement filters, but one of the most common is a variant of the Laplacian that 
works as follows for a 3  3 window: (1) the brightness value of each input pixel under 
the moving window, except for the center pixel, is multiplied by –1; (2) the center pixel is 
multiplied by 8; and (3) the center pixel in the output image is then given the value of the 
sum of all nine products resulting from (1) and (2).

Rohde, Lo, and Pohl (1978) describe an edge- enhancement procedure that can illus-
trate some of the specifics of this approach. A new (output) digital value is calculated 
using the original (input) value and the local average of five adjacent pixels. A constant 
can be applied to alter the effect of the enhancement as necessary in specific situations. 
The output value is the difference between twice the input value and the local average, 
thereby increasing the brightness of those pixels that are already brighter than the local 
average and decreasing the brightness of pixels that are already darker than the local 
average. Thus, the effect is to accentuate differences in brightness, especially at places 
(“edges”) at which a given value differs greatly from the local average (Figure 5.23).

5.8 IMAGE DISPLAY

For remote sensing analysis, the image display is especially important because the ana-
lyst must be able to examine images and to inspect the results of analyses, which often 
are themselves images. At the simplest level, an image display can be thought of as a 
high- quality television screen, although those tailored specifically for image processing 
have image- display processors, which are special computers designed to rapidly receive 
digital data from the main computer, then display them as brightness on the screen. The 
capabilities of an image display are determined by several factors. First is the size of the 
image it can display, usually specified by the number of rows and columns it can show 
at any one time. Second, a display has a given radiometric resolution; that is, for each 
pixel, it has a capability to show a range of brightness. One-bit resolution would give the 

 FIGURE 5.22  Density slicing. Colors are assigned to specific brightness values. Image by Sus-

mita Sen.
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capability to represent either black or white— certainly not enough detail to be useful for 
most purposes. In practice, most modern displays use 256 brightness levels for each of the 
primary colors of light (red, green, and blue).

A third factor controls the rendition of color in the displayed image. The method 
of depicting color is closely related to the design of the image display and the display 
processor. Image- display data are held in the frame buffer, a large segment of computer 
memory dedicated to handling data for display. The frame buffer provides one or more 
bits to record the brightness of each pixel to be shown on the screen (the “bit plane”); 
thus, the displayed image is generated, bit by bit, in the frame buffer. The more bits that 
have been designed in the frame buffer for each pixel, the greater the range of brightness 
that can be shown for that pixel, as explained earlier. For actual display on the screen, the 
digital value for each pixel is converted into an electrical signal that controls the bright-
ness of the pixel on the screen. This requires a digital-to-analog (D-to-A) converter that 
translates discrete digital values into continuous electrical signals (the opposite function 
of the A-to-D converter mentioned previously).

Three strategies have been used for designing image displays: cathode ray tubes, 
liquid crystals, and plasma displays, each outlined here in abbreviated form.

The cathode ray tube (CRT) dates from the early 1940s, when it formed the basis 
for the first television displays. A CRT is formed from a large glass tube, wide at one end 
(the “screen”) and narrow at the other. The inside of the wide end is coated with phos-
phor atoms. An electron gun positioned at the narrow end directs a stream of electrons 
against the inside of the wide end of the tube. As the electrons strike the phosphor coat-
ing, it glows, creating an image as the intensity of the electron beam varies according to 
the strength of the video signal. Electromagnets positioned on four sides of the narrow 

 FIGURE 5.23  Edge enhancement and image sharpening. A sample image is shown with and 

without enhancement. In this example, the effect of sharpening is especially noticeable at the edges 

of some of the larger shadows.
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portion of the tube control the scan of the electron stream across the face of the tube, left 
to right, top to bottom.

As each small region of the screen is illuminated from the inside by the stream of 
electrons, it glows. Because the gun directs the stream of electrons systematically and 
very rapidly, it creates the images we can see on a computer display or television screen. 
Because the electron gun scans very rapidly (30–70 times each second), it can return to 
refresh, or update, the brightness at each pixel before the phosphor coating fades. In this 
manner, the image appears to the eye as a continuous image.

CRTs produce very clear images, but because an increase in the size of the screen 
requires a commensurate increase in the depth of the tube (so that the gun can illuminate 
the entire width of the screen), the size and weight of a CRT display present a major 
inconvenience. Thus, today CRTs have been supplanted by alternative technologies.

An alternative display technology was developed in the early 1970s. Liquid crystal 
displays (LCDs) depend on liquid crystals, substances that are intermediate between 
solid and liquid phases. The state assumed at a specific time depends on the temperature. 
An electrical current can change the orientation of the molecules within a liquid crystal 
and thereby block or transmit light at each pixel.

LCD displays use two sheets of polarizing materials that enclose a liquid crystal solu-
tion between them. When the video signal sends an electrical current to the display, the 
crystals align to block the passage of light between them. In effect, the liquid crystal at 
each pixel acts like a shutter, either blocking or passing the light. Color LCD displays use 
either of two alternative strategies; the best quality is provided by active matrix displays, 
also known as thin-film transistors (TFTs), which permit rapid refresh of the image. 
LCDs are used not only in watches, alarm clocks, and similar consumer products, but 
also in the flat-panel displays in portable computers and the compact displays now used 
for desktop computers.

A third display technology, plasma display, represents each pixel using three tiny 
fluorescent lights. These lights are small, sealed glass tubes containing an internal phos-
phor coating, an inert gas (mercury), and two electrodes. As an electrical current flows 
across the electrodes, it vaporizes some of the mercury. The electrical current also raises 
the energy levels of some of the mercury atoms; when they return to their original state, 
they emit photons in the ultraviolet portion of the spectrum. The ultraviolet light strikes 
the phosphor coating on the tube, creating visible light used to make an image. Variations 
in the coatings can create different colors. The positions of the tiny fluorescent light can 
be referenced as intersections in a raster grid, so the tube required for the CRT is not nec-
essary for a plasma display, and the screen can be much more compact. Plasma displays 
are suitable for large, relatively compact image displays, but they are expensive, so they 
are not now preferred for analytical use.

Advanced Image Display

Remote sensing typically generates very large images portraying fine levels of detail. Con-
ventional systems permit users to examine regions in fine detail only by zooming in to 
display the region of interest at the cost of losing the broader context. Or users can dis-
card the finer detail and examine broad regions at coarse detail. Although this trade-off 
sometimes causes little or no inconvenience, in other situations the sacrifice of one qual-
ity for the other means that some of the most valuable qualities of the data are discarded. 



 5. Digital Imagery 139

As a result, there are incentives to design display systems that can simultaneously repre-
sent fine detail and large image size. Two alternative strategies have each found roles for 
viewing remotely sensed imagery.

“Fisheye,” or “focus + context,” displays enable the analyst to simultaneously view 
selected detail without discarding the surrounding context. Fisheye displays use existing 
display hardware, but with a simulated magnifier that can roam over the image to selec-
tively enlarge specific regions within the context of the coarser- resolution display. Soft-
ware “lenses” locally magnify a subset while maintaining a continuous visual connection 
to the remainder of the unmagnified image. Such capabilities can be linked to existing 
analytical software to enable the analyst to annotate, measure, and delineate regions to 
improve the functionality of existing software. The same effects can be achieved in a 
different manner by linking two windows within the display— one for detail, one for the 
broader context— and providing the analyst with the capability to alter the size of the 
window. This approach is known as “multiple linked views” or the “overview + detail” 
display.

Multiple- monitor systems (sometimes referred to as tiled displays) are formed as 
arrays of flat-panel monitors (or rear- projection displays) that can display very large 
images at high levels of spatial detail (Figure 5.24). The highest quality tiled displays 
can project between 250 and 300 million pixels; in the near future, gigapixel displays (1 
billion pixels) will likely be attempted. Multiple- monitor systems enable the computer’s 
operating system to use the display areas from two or more display devices to create a 
single display. The rear- projection systems (sometimes referred to as “power walls”) do 
not have the seams between tiles that characterize the LCD tiled systems, so they have 
greater visual continuity, but the tiled LCDs have better visual quality and are cheaper.

Multiple- monitor systems became practical as the costs of random access memory 
(RAM) and LCD displays decreased to enable economical development of larger displays. 
Tiled displays are formed as a mosaic of screens, supported by operating systems con-
figured to support multiple displays. Innovations in titled displays became possible when 

 FIGURE 5.24  Example of a tiled image display. Such displays are used for handling images 

that are too large to be read completely into memory (for example, satellite images, images of broad-

scale weather systems, or detailed street grids). Photograph by Chris North, Virginia Tech Center for 

Human- Computer Interaction. Used by permission.
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LCD technology permitted the assembly of multiple flat-panel displays into tiled displays. 
Tiled displays assembled from several LCDs use special mounts to hold multiple displays 
provided by commercial vendors and specialized software systems to permit integrated 
use of the several monitors. Analysts can display images across the seams formed by the 
edges of the displays and can zoom, create multiple windows, run multiple applications, 
and arrange windows as most effective for specific tasks.

Obvious applications include remotely sensed and GIS images that require the ana-
lyst to simultaneously exploit fine detail and broad areal coverage. Analysts sometimes 
desire to run two or more analytical programs simultaneously, with independent displays 
of the images generated by each analysis. Both fisheye and multiple- monitor systems are 
emerging technologies in the sense that they are both proven to be successful but are still 
under investigation to explore how they can be most effectively used in specific applica-
tions. Multiple- monitor systems have value for emergency management systems, which 
benefit from having the capability for many people to simultaneously view large images 
representing states, counties, or similar regions as single images, and also having the 
ability to manipulate the display as needed to assist in evaluation of complex situations.

5.9 IMAGE PROCESSING SOFTWARE

Digital remote sensing data can be interpreted by computer programs that manipulate 
the data recorded in pixels to yield information about specific subjects, as described in 
subsequent chapters. This kind of analysis is known as image processing, a term that 
encompasses a wide range of techniques. Image processing requires a system of special-
ized computer programs tailored to the manipulation of digital image data. Although 
such programs vary greatly in purpose, sophistication, and detail, there are also signifi-
cant commonalities among most image processing systems.

A separate specific portion of the system is designed to read image data and to 
reorganize the data into the form to be used by the program. For example, many image 
processing programs manipulate the data in BSQ format. Thus, the first step may be 
to read BIL or BIP data and then reformat the data into the BSQ format required for 
the analytical components of the system. Another portion of the system may permit the 
analyst to subdivide the image into subimages; to merge, superimpose, or mosaic sepa-
rate images; and in general to prepare the data for analysis, as described in Chapter 11. 
The heart of the system consists of a suite of programs that analyze, classify (Chapter 
12), and manipulate data to produce output images and the statistics and data that may 
accompany them. Finally, a section of the image processing system must prepare data for 
display and output, either to the display processor or to the line printer. In addition, the 
program requires “housekeeping” subprograms that monitor movement and labeling of 
files from one portion of the program to another, generate error messages, and provide 
online documentation and assistance to the analysts.

Widely used image processing systems run on personal computers (PCs), Macs, or 
workstations. More elaborate systems can be supported by peripheral equipment, includ-
ing extra mass storage, digitizers, scanners, color printers, disk drives, and related equip-
ment. Almost all such systems are directed by menus and graphic user interfaces that 
permit the analyst to select options from a list on the screen.

Although many good image processing systems are available, some of the most com-
monly used are:
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Hexagon— ERDAS ER Mapper
https://download.hexagongeospatial.com/en/downloads/imagine/erdas-er-
mapper-2020
PCI Geomatics— Geomatica
www.pcigeomatics.com
L3Harris Geospatial— ENVI
www.harrisgeospatial.com/Software- Technology/ENVI
Hexagon— ERDAS Imagine
www.erdas.com
GRASS GIS (Open Source)
https://grass.osgeo.org
Clark Labs— TerrSet (IDRISI)
https://clarklabs.org

Lemmens (2004) provides a point-by-point comparison of image processing systems 
designed for remote sensing applications; Voss et al. (2010) list image processing systems, 
with point-by-point comparisons of their capabilities. The specific systems listed here can 
be considered general- purpose image processing systems; others have been designed spe-
cifically to address requirements for specific kinds of analysis (e.g., geology, hydrology), 
and some of the general- purpose systems have added optional modules that focus on 
more specific topics. Further details of image analysis systems are given by user manuals 
or help files for specific systems. Authors of image processing systems typically upgrade 
their systems to add new or improved capabilities, accommodate new equipment, or 
address additional application areas.

Several image processing systems are available to the public either without cost or at 
minimal cost. For students, some of these systems offer respectable capabilities to illus-
trate basics of image processing. A partial list includes:

ISIS: http://isis.astrogeology.usgs.gov/index.html
MultiSpec: https://engineering.purdue.edu/~biehl/MultiSpec
TNTlite: www.microimages.com
GRASS GIS: https://grass.osgeo.org
QGIS: https://www.qgis.org/en/site

Image Viewers, Online Digital Image Archives,  
and Cloud-Based Image Analysis

Image viewers (or, sometimes, map viewers) are programs designed to provide basic capa-
bilities to view and navigate through digital maps and images. Some image viewers are 
available commercially; others are available online at minimal cost or as freeware. They 
provide a convenient means of examining digital maps, GIS data, and aerial imagery. 
Although most image viewers do not offer analytical capabilities, they do permit users to 
examine a wide range of spatial data by searching, roaming, magnifying, and applying a 
variety of projection and coordinate systems. Image viewers are closely connected to the 
idea of digital imagery archives or libraries, which provide collections of digital imagery 



142 II. IMAGE ACQUISITION

in standardized formats, such that viewers can easily retrieve and navigate through the 
collection. Google Earth (http://earth.google.com) is a well-known example of an online 
imagery archive that provides comprehensive coverage of the Earth’s land areas, with the 
ability to roam and change scale, orientation, and detail.

Cloud-based image analysis is a rapidly evolving area for remote sensing and other 
disciplines that utilize very large data sets that are difficult to download and transfer. 
This allows researchers to apply their algorithms to data sets hosted on the cloud, using 
high- performance computing. We are now in the era of big data analytics and image 
fusion, and there are numerous examples of this technology in use or under development. 
Google Earth Engine provides a powerful cloud-based image analysis interface for sci-
entific research through the Earth Engine API, allowing global- scale analysis of satellite 
data hosted in Google’s archive (https://earthengine.google.com). The Planet platform is 
another cloud-based application programming interface (API) designed specifically for 
remote sensing imagery (www.planet.com/products/platform). Other large, well-known 
companies such as Amazon (e.g., Amazon Web Services: https://aws.amazon.com) and 
Microsoft (e.g., Microsoft Azure: https://azure.microsoft.com/en-us) have cloud-based 
computing platforms that provide services on a pay-by-use basis and are widely used for 
a variety of applications.

5.10 SUMMARY

Although digital data provide multiple advantages for practitioners of remote sensing, 
these advantages can be exploited only if the analyst has mastered the underlying con-
cepts and how they influence applications of remote sensing to specific problems. The 
information presented here resurfaces in later chapters, as the fundamental nature of 
digital data underlie the basic design and application of remote sensing systems. Each 
instrument must be operated within its design constraints and applied to an appropriate 
task. Although this chapter cannot provide the details necessary to make such assess-
ments, it can equip the reader with the perspective to seek the specifics that will permit a 
sound assessment of the question at hand.

 SOME TEACHING AND LEARNING RESOURCES

Diffraction Gratings
www.youtube.com/watch?v=5D8EVNZdyy0

Navigating a 13.3 Gigapixel Image on a 22 Megapixel Display Wall
www.youtube.com/watch?v=8bHWuvzBtJo

DOG (Difference of Gaussians)
www.youtube.com/watch?v=Fe-pubQw5Xc
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REVIEW QUESTIONS

 1. It may be useful to practice conversion of some values from digital to binary form as 
confirmation that you understand the concepts. Convert the following digital numbers to 
8-bit binary values:

a. 100 c. 24 e. 2 g. 256

b. 15 d. 31 f. 111 h. 123

 2. Convert the following values from binary to digital form:

a. 10110 c. 10111 e. 0011011

b. 11100 d. 1110111 f. 1101101

 3. Consider the implications of selecting the appropriate number of bits for recording 
remotely sensed data. One might be tempted to say, “Use a large number of bits to be 
sure that all values are recorded precisely.” What would be the disadvantage of using, 
for example, 7 bits to record data that are accurate only to 5 bits?

 4. Describe in a flow chart or diagram steps required to read data in a BIP format, and 
then organize them in a BSQ structure.

 5. What is the minimum number of bits required to represent the following values pre-
cisely?

a. 1,786 c. 689 e. 17 g. 29

b. 32 d. 32,000 f. 3

 6. Why are enhanced images usually not used as input for other analyses?

 7. Density slicing produces an image that uses a range of contrasting colors (see Figure 
5.22). Prepare a list of advantages and disadvantages of this form of image enhance-
ment.

 8. Do you expect that it is possible to estimate a sensor’s SNR by visual examination of 
an image? How?

 9. The digital format is now becoming the de facto standard for recording and storing 
aerial imagery. Discuss some of the advantages and disadvantages that accompany 
this change.

10. Some students find it highly illogical to use band combinations in which, for example, 
radiation in the red region of the spectrum is displayed using another color. Explain in a 
few concise sentences why such band combinations are useful.
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MAJOR TOPICS TO UNDERSTAND

The Context for Image Interpretation

Image Interpretation Tasks

Elements of Image Interpretation

Collateral Information

Imagery Interpretability Rating Scales

Image Interpretation Keys

Interpretive Overlays

The Significance of Context

Stereovision

Digital Photointerpretation

Image Scale Calculations

6.1 INTRODUCTION

Earlier chapters have defined our interest in remote sensing as focused primarily on 
images of the Earth’s surface— map-like representations of the Earth’s surface based on 

 6 Image Interpretation
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the reflection of electromagnetic energy from vegetation, soil, water, rocks, and human-
made structures. From such images we learn much that cannot be derived from other 
sources. Yet such information is not presented to us directly: the information we seek is 
encoded in the varied tones and textures we see on each image. To translate images into 
information, we must apply a specialized knowledge— knowledge that forms the field 
of image interpretation, which we can apply to derive useful information from the raw 
uninterpreted images we receive from remote sensing systems.

Photographic interpretation has been defined as “the act of examining photographic 
images for the purpose of identifying objects and judging their significance” (Colwell, 
1960). Aerial photointerpretation dates from the early days of aerial photography 
( Campbell, 2008), which initially focused on military operations and later was applied 
to civil applications.

World War I formed the context for matching aviation with the camera. Special-
ized cameras were developed to enhance aerial observation, and instructional materials 
were prepared for training British and French aerial observers, then later for U.S. avia-
tors. These materials were preserved as instructors’ notes at the direction of Col. Edwin 
 Gorrell (1891–1945), a U.S. aviator assigned to organize historical materials document-
ing U.S. aviation in the war. (This extensive work, History of the Air Service AEF, was 
never published as intended but is retained in the U.S. National Archives in a microfilm 
version available to the public.)

During the interwar years, publications regarding aerial photography focused 
mainly on the practicalities of aviation equipment. By the late 1930s, texts on applica-
tions of aerial photography were developed for geological mapping. Progress in develop-
ment of aerial cameras, aircraft, and supporting services during the interwar decades 
increased interest in applications of aerial photography. By 1939 (e.g., Melton, 1939), 
geologists recognized the value of aerial observation for teaching earth sciences and sup-
porting instruction to teach the basics of earth science (including streams, wind, waves, 
and glaciers).

World War II belligerents developed training materials, systemized as instructional 
materials, handbooks, and reference works, for instruction in quantitative measurements 
and recognition of enemy vehicles, weapons, and infrastructure. In the United States, 
especially in the aftermath of the war, experienced photoanalysts were in a position to 
apply their experience to civil enterprises and (in some instances) to take advantage of 
experienced pilots and sales of surplus materials and equipment to launch enterprises in 
aerial survey. Some of these efforts were described in early publications that expanded the 
audience for remote sensing image interpretation tasks to a broader public (e.g., Smith, 
1942, 1943).

Aerial photo interpretation is an important skill, although specifics have changed 
over the decades as technology and institutional needs have evolved (Figure 6.1), while 
basics have remained central to the interpretation of digital imagery from any platform. 
As noted, its value was recognized initially in World War I and World War II and later in 
the cold war years. Its value has been recorded in the works of Babington- Smith (1957), 
Brugioni (1991), Brugioni and Doyle (1997), and O’Conner (2015), which provide first- 
person accounts of the role of image interpretation.

Proficiency in image interpretation is formed from three separate kinds of knowl-
edge: the subject, the geographic region, and the remote sensing system. Only the remote 
sensing system falls within the scope of this book.
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Subject

Knowledge of the subject of our interpretation— the kind of information that motivates 
us to examine the image—is the heart of the interpretation. Accurate interpretation 
requires familiarity with the subject of the interpretation. For example, interpretation 
of geologic information requires education and experience in the field of geology. Yet 
narrow specializations are a handicap because each image records a complex mixture 
of many kinds of information, requiring application of broad knowledge that crosses 
traditional boundaries between disciplines. For example, accurate interpretation of geo-
logic information may require knowledge of botany and the plant sciences as a means of 
understanding how vegetation patterns on an image reflect geologic patterns that may 
not be directly visible. As a result, image interpreters should be equipped with a broad 
range of knowledge pertaining to the subjects at hand and their interrelationships.

Geographic Region

Knowledge of the specific geographic region depicted on an image can be equally signifi-
cant. Every locality has unique characteristics that influence the patterns recorded on an 

 FIGURE 6.1  Changes in aerial photointerpretation, 1943–2004. From U.S. Army (top), U.S. Navy 

(bottom).
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image. Often the interpreter may have direct experience within the area depicted on the 
image that can be applied to the interpretation. In unfamiliar regions, the interpreter may 
find it necessary to make a field reconnaissance or to use maps and books that describe 
analogous regions with similar climate, topography, or land use.

Remote Sensing System

Knowledge of the remote sensing system is obviously essential. The interpreter must 
understand how each image is formed and how each sensor portrays landscape features. 
Different instruments use separate portions of the electromagnetic spectrum, operate at 
different resolutions, and use different methods of recording images. The image inter-
preter must know how each of these variables influences the image to be interpreted and 
how to evaluate their effects on their ability to derive useful information from the imag-
ery. This chapter outlines how the image interpreter derives useful information from the 
complex patterns of tone and texture on each image.

6.2 THE CONTEXT FOR IMAGE INTERPRETATION

Human beings are well prepared to examine images, as our visual system and experience 
equip us to discern subtle distinctions in brightness and darkness, to distinguish among 
various image textures, to perceive depth, and to recognize complex shapes and features. 
Even in early childhood we apply such skills routinely in everyday experience so that few 
of us encounter difficulties as we examine, for example, family snapshots or photographs 
in newspapers. Yet image analysis requires a conscious, explicit effort not only to learn 
about the subject matter, geographic setting, and imaging systems in unfamiliar contexts 
but also to develop our innate abilities for image analysis.

Three issues distinguish interpretation of remotely sensed imagery from interpreta-
tion conducted in everyday experience. First, remotely sensed images usually portray an 
overhead view—an unfamiliar perspective. Training, study, and experience are required 
to develop the ability to recognize objects and features from this perspective. Second, 
many remote sensing images use radiation outside the visible portion of the spectrum. 
In fact, use of such radiation is an important advantage that we exploit as often as pos-
sible. Even the most familiar features may appear quite different in nonvisible portions 
of the spectrum than they do in the familiar world of visible radiation. Third, remote 
sensing images often portray the Earth’s surface at unfamiliar scales and resolutions. 
Commonplace objects and features may assume strange shapes and appearances as scale 
and resolution change from those to which we are accustomed.

This chapter outlines the art of image interpretation as applied to aerial photog-
raphy. Students cannot expect to become proficient in image analysis simply by read-
ing about image interpretation. Experience forms the only sure preparation for skillful 
interpretation. Nonetheless, this chapter can highlight some of the issues that form the 
foundations for proficiency in image analysis.

In order to discuss this subject at an early point in this book, we must confine the 
discussion to interpretation of aerial photography, the only form of remote sensing imag-
ery discussed thus far. But the principles, procedures, and equipment described here are 
equally applicable to other kinds of imagery acquired by the sensors described in later 
chapters. Manual image interpretation is discussed in detail by Paine and Kiser (2003), 
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Avery and Berlin (2003), Philipson (1996), and Campbell (2005); older references that 
may also be useful are the text by Lueder (1959) and the Manual of Photographic Inter-
pretation (Colwell, 1960).

6.3 IMAGE INTERPRETATION TASKS

The image interpreter must routinely conduct several kinds of tasks, many of which may 
be completed together in an integrated process. Nonetheless, for purposes of clarifica-
tion, it is important to distinguish among these separate functions (Figure 6.2).

Classification

Classification is the assignment of objects, features, or areas to classes based on their 
appearance on the imagery. Often a distinction is made among three levels of confidence 
and precision. Detection is the determination of the presence or absence of a feature. 
Recognition implies a higher level of knowledge about a feature or object, such that the 
object can be assigned an identity in a general class or category. Finally, identification 
means that the identity of an object or feature can be specified with enough confidence 
and detail to place it in a specific class. Often an interpreter may qualify his or her con-
fidence in an interpretation by specifying the identification as “possible” or “probable.”

Enumeration

Enumeration is the task of listing or counting discrete items visible on an image. For 
example, housing units can be classified as “detached single- family home,” “multifam-

 FIGURE 6.2  Image interpretation tasks: (a) classification, (b) enumeration, (c) mensuration, 

(d) delineation.
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ily complex,” “mobile home,” and “multistory residential,” and then reported as num-
bers present within a defined area. Clearly, the ability to conduct such an enumeration 
depends on an ability to accurately identify and classify items as discussed above.

Measurement

Measurement, or mensuration, is an important function in many image interpretation 
problems. Two kinds of measurement are important. First is the measurement of distance 
and height and, by extension, the measurement of volumes and areas as well. The practice 
of making such measurements forms the subject of photogrammetry (Chapter 4), which 
applies knowledge of image geometry to the derivation of accurate distances. Although, 
strictly speaking, photogrammetry applies only to measurements from photographs, by 
extension it has analogs for the derivation of measurements from other kinds of remotely 
sensed images.

A second form of measurement is quantitative assessment of image brightness. The 
science of photometry is devoted to measurement of the intensity of light and includes 
estimation of scene brightness by examination of image tone, using special instruments 
known as densitometers. If the measured radiation extends outside the visible spectrum, 
the term radiometry applies. Both photometry and radiometry apply similar instruments 
and principles, so they are closely related.

Delineation

Finally, the interpreter must often delineate, or outline, regions as they are observed 
on remotely sensed images. The interpreter must be able to separate distinct areal units 
that are characterized by specific tones and textures and to identify edges or boundar-
ies between separate areas. Typical examples include delineation of separate classes of 
forest or of land use—both of which occur only as areal entities (rather than as discrete 
objects). Typical problems include: (1) selection of appropriate levels of generalization 
(e.g., when boundaries are intricate, or when many tiny but distinct parcels are present); 
and (2) placement of boundaries when there is a gradation (rather than a sharp edge) 
between two units.

The image analyst may simultaneously apply several of these skills in examining an 
image. Recognition, delineation, and mensuration may all be required as the interpreter 
examines an image. Yet specific interpretation problems may emphasize specialized 
skills. Military photointerpretation often depends on accurate recognition and enumera-
tion of specific items of equipment, whereas land-use inventory emphasizes delineation, 
although other skills are obviously important. Image analysts therefore need to develop 
proficiency in all of these skills.

6.4 ELEMENTS OF IMAGE INTERPRETATION

By tradition, image interpreters are said to employ some combination of the eight ele-
ments of image interpretation: image tone, texture, shadow, pattern, association, shape, 
size, and site. These elements describe the characteristics of objects and features as they 
appear on remotely sensed images. Image interpreters quite clearly use these character-
istics together in complex, but poorly understood, processes as they examine images. 
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Nonetheless, it is convenient to list them separately as a way of emphasizing their signifi-
cance. Olson (1960) and Colwell (1960) have discussed the application of the elements of 
image interpretation to aerial photography and to other forms of aerial imagery.

Image Tone

Image tone denotes the lightness or darkness of a region within an image (Figure 6.3). 
For black-and-white images, tone may be characterized as “light,” “medium gray,” “dark 
gray,” “dark,” and so on, as the image assumes varied shades of white, gray, or black. For 
color or CIR imagery, image tone refers simply to “color,” described informally perhaps 
in such terms as “dark green,” “light blue,” or “pale pink.”

Image tone can also be influenced by the intensity and angle of illumination and by 
the processing of the film. Within a single aerial photograph, vignetting (Section 4.2) may 
create noticeable differences in image tone due solely to the position of an area within a 
frame of photography: The image becomes darker near the edges. Thus, the interpreter 
must employ caution in relying solely on image tone for an interpretation, as it can be 
influenced by factors other than the absolute brightness of the Earth’s surface. Also, non-
photographic sensors may record such a wide range of brightness values that they cannot 
all be accurately represented on photographic film. In such instances, digital analyses 
(Chapter 5) may be more accurate.

Experiments have shown that interpreters tend to be consistent in interpretation of 
tones on black-and-white imagery but less so in interpretation of color imagery (Cihlar 
and Protz, 1972). Interpreters’ assessment of image tone is much less sensitive to subtle 
differences in tone than are measurements by instruments (as might be expected). For the 
range of tones used in the experiments, human interpreters’ assessment of tone expressed 
a linear relationship with corresponding measurements made by instruments. Cihlar and 
Protz’s results imply that a human interpreter can provide reliable estimates of relative 
differences in tone but not be capable of accurate description of absolute image bright-
ness.

Image Texture

Image texture refers to the apparent roughness or smoothness of an image region. Usu-
ally, texture is caused by the pattern of highlighted and shadowed areas created when an 
irregular surface is illuminated from an oblique angle. Contrasting examples (Figure 6.4) 
include the rough textures of a mature forest and the smooth textures of a mature wheat 
field. The human interpreter is very good at distinguishing subtle differences in image 

 FIGURE 6.3  Varied image tones, dark to light (left to right). From the U.S. Department of Agri-

culture (USDA).



152 II. IMAGE ACQUISITION

texture, so it is a valuable aid to interpretation— certainly equal in importance to image 
tone in many circumstances.

Image texture depends not only on the surface itself but also on the angle of illumi-
nation, so it can vary as lighting varies. Also, good rendition of texture depends on favor-
able image contrast, so images of poor or marginal quality may lack the distinct textural 
differences that are so valuable to the interpreter.

Shadow

Shadow is an especially important clue in the interpretation of objects. A building or 
vehicle, illuminated at an angle, casts a shadow that may reveal characteristics of its size 
or shape that would not be obvious from the overhead view alone (Figure 6.5). Because 
military photointerpreters often are primarily interested in identification of individual 
items of equipment, they have developed methods to use shadows to distinguish subtle 
differences that might not otherwise be visible. By extension, we can emphasize this role 
of shadow in interpretation of any human-made landscape in which identification of 
separate kinds of structures or objects is significant.

Shadow is also of great significance in interpretation of natural phenomena, even 
though its role may not be as obvious. For example, Figure 6.6 depicts an open field in 
which scattered shrubs and bushes are separated by areas of open land. Without shad-
ows, the individual plants might be too small (as seen from above) and too nearly similar 

 FIGURE 6.4  Varied image textures, with descriptive terms. From USDA.

 FIGURE 6.5  Examples of significance of shadow for image interpretation, as illustrated by (a) 

fuel storage tanks, (b) military aircraft on a runway, and (c) a water tower. From USDA.



 6. Image Interpretation 153

in tone to their background to be visible. Yet their shadows are large enough and dark 
enough to create the streaked pattern on the imagery typical of this kind of land. A sec-
ond example is also visible in Figure 6.6: at the edges between the trees in the hedgerows 
and the adjacent open land, trees cast shadows that form a dark strip that enhances the 
boundary between the two zones, as seen on the imagery.

Pattern

Pattern refers to the arrangement of individual objects into distinctive recurring forms 
that facilitate their recognition on aerial imagery (Figure 6.7). Pattern on an image usu-
ally follows from a functional relationship among the individual features that compose 
the pattern. Thus, the buildings in an industrial plant may have a distinctive pattern due 
to their organization to permit economical flow of materials through the plant, from 
receiving raw material to shipping of the finished product. The distinctive spacing of trees 
in an orchard arises from careful planting of trees at intervals that prevent competition 
between individual trees and permit convenient movement of equipment through the 
orchard.

Association

Association specifies the occurrence of certain objects or features, usually without the 
strict spatial arrangement implied by pattern. In the context of military photointerpreta-
tion, the association of specific items has great significance, as, for example, when the 
identification of a specific class of equipment implies that other, more important items 
are likely to be found nearby.

Shape

The shapes of features are obvious clues to their identities (Figure 6.8). For example, 
individual structures and vehicles have characteristic shapes that, if visible in sufficient 
detail, provide the basis for identification. Features in nature often have such distinctive 

 FIGURE 6.6  Significance of shadow for 

image interpretation, as illustrated by the char-

acteristic pattern caused by shadows of shrubs 

cast on open field. Shadows at the edge of a for-

est enhance the boundary between the two dif-

ferent land covers. From USDA.
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shapes that shape alone might be sufficient to provide clear identification. For example, 
ponds, lakes, and rivers occur in specific shapes unlike others found in nature. Often, 
specific agricultural crops tend to be planted in fields that have characteristic shapes 
(perhaps related to the constraints of equipment used or the kind of irrigation that the 
farmer employs).

Size

Size is important in two ways. First, the relative size of an object or feature in relation to 
other objects on the image provides the interpreter with an intuitive notion of its scale 
and resolution, even though no measurements or calculations may have been made. This 
intuition is achieved via recognition of familiar objects (dwellings, highways, rivers, etc.), 
followed by extrapolation to use the sizes of these known features in order to estimate the 
sizes and identities of those objects that might not be easily identified. This is probably 
the most direct and important function of size.

Second, absolute measurements can be equally valuable as interpretation aids. Mea-
surements of the size of an object can confirm its identification based on other factors, 
especially if its dimensions are so distinctive that they form definitive criteria for specific 
items or classes of items. Furthermore, absolute measurements permit derivation of quan-

 FIGURE 6.7  Significance of distinctive image patterns, as illustrated by (a) structures in a sub-

urban residential neighborhood, (b) an orchard, (c) a highway interchange, and (d) a rural trailer park. 

From Virginia Department of Transportation (a, d), USDA (b), USGS (c).

 FIGURE 6.8  Significance of shape for image interpretation, as illustrated by (a) athletic fields; 

(b) aircraft parked on a runway, (c) automobiles in a salvage yard, and (d) a water treatment plant. 

From USDA.
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titative information, including lengths, volumes, or (sometimes) even rates of movement 
(e.g., of vehicles or ocean waves as they are shown in successive photographs).

Site

Site refers to topographic position. For example, sewage treatment facilities are posi-
tioned at low topographic sites near streams or rivers to collect waste flowing through the 
system from higher locations. Orchards may be positioned at characteristic topographic 
sites—often on hillsides (to avoid cold air drainage to low-lying areas) or near large water 
bodies (to exploit cooler spring temperatures near large lakes to prevent early blossom-
ing).

6.5 COLLATERAL INFORMATION

Collateral, or ancillary, information refers to non-image information used to assist in the 
interpretation of an image. Actually, all image interpretations use collateral information 
in the form of the implicit, often intuitive, knowledge that every interpreter brings to an 
interpretation in the form of everyday experience and formal training. In its narrower 
meaning, it refers to the explicit, conscious effort to employ maps, statistics, and similar 
material to aid in analysis of an image. In the context of image interpretation, use of col-
lateral information is permissible, and certainly desirable, provided two conditions are 
satisfied. First, the use of such information is to be explicitly acknowledged in the writ-
ten report, and second, the information must not be focused on a single portion of the 
image or map to the extent that it produces uneven detail or accuracy in the final map. 
For example, it would be inappropriate for an interpreter to focus on acquiring detailed 
knowledge of tobacco farming in an area of mixed agriculture if he or she then produced 
highly detailed, accurate delineations of tobacco fields but mapped other fields at lesser 
detail or accuracy.

Collateral information can consist of information from books, maps, statistical 
tables, field observations, or other sources. Written material may pertain to the spe-
cific geographic area under examination, or, if such material is unavailable, it may be 
appropriate to search for information pertaining to analogous areas— similar geographic 
regions (possibly quite distant from the area of interest) characterized by comparable 
ecology, soils, landforms, climate, or vegetation.

6.6 IMAGERY INTERPRETABILITY RATING SCALES

Remote sensing imagery can vary greatly in quality due to both environmental and tech-
nical conditions influencing acquisition of the data. In the United States, some govern-
mental agencies use rating scales to evaluate the suitability of imagery for specific pur-
poses. The National Imagery Interpretability Rating Scale (NIIRS) has been developed 
for single- channel and panchromatic imagery, and the Multispectral Imagery Interpret-
ability Rating Scale (MSIIRS; Erdman et al., 1994) has been developed for multispectral 
imagery. Such scales are based on evaluations using a large number of experienced inter-
preters to independently evaluate images of varied natural and human-made features, 
as recorded by images of varying characteristics. They provide a guide for evaluation of 
whether a specific form of imagery is likely to be satisfactory for specific purposes.
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6.7 IMAGE INTERPRETATION KEYS

Image interpretation keys are valuable aids for summarizing complex information por-
trayed as images. They have been widely used for image interpretation (e.g., Coiner and 
Morain, 1972). Such keys serve either or both of two purposes: (1) they are a means 
of training inexperienced personnel in interpreting complex or unfamiliar topics, and 
(2)  they are a reference aid for experienced interpreters to organize information and 
examples pertaining to specific topics.

An image interpretation key is simply reference material designed to permit rapid 
and accurate identification of objects or features represented on aerial images. A key 
usually consists of two parts: (1) a collection of annotated or captioned images or stereo-
grams, and (2) a graphic or word description, possibly including sketches or diagrams. 
These materials are organized in a systematic manner that permits retrieval of desired 
images by, for example, date, season, region, or subject.

Keys of various forms have been used for many years in the biological sciences, 
especially botany and zoology. These disciplines rely on complex taxonomic systems that 
are so extensive that even experts cannot master the entire body of knowledge. The key, 
therefore, is a means of organizing the essential characteristics of a topic in an orderly 
manner. It must be noted that scientific keys of all forms require a basic familiarity with 
the subject matter. A key is not a substitute for experience and knowledge but a means of 
systematically ordering information so that an informed user can learn it quickly.

Keys were first routinely applied to aerial images during World War II, when it was 
necessary to train large numbers of inexperienced photointerpreters in the identification 
of equipment of foreign manufacture and in the analysis of regions far removed from the 
experience of most interpreters. The interpretation key formed an effective way of orga-
nizing and presenting the expert knowledge of a few individuals. After the war ended, 
interpretation keys were applied to many other subjects, including agriculture, forestry, 
soils, and landforms. Their use has been extended from aerial photography to other 
forms of remotely sensed imagery. Today interpretation keys are still used for instruction 
and training, but they may have somewhat wider use as reference aids. Also, it is true 
that construction of a key tends to sharpen one’s interpretation skills and encourages the 
interpreter to think more clearly about the interpretation process.

Keys designed solely for use by experts are referred to as technical keys. Nontechni-
cal keys are those designed for use by those with a lower level of expertise. Often it is 
more useful to classify keys by their formats and organizations. Essay keys consist of 
extensive written descriptions, usually with annotated images as illustrations. A file key 
is essentially a personal image file with notes; its completeness reflects the interests and 
knowledge of the compiler. Its content and organization suit the needs of the compiler, so 
it may not be organized in a manner suitable for use by others.

6.8 INTERPRETIVE OVERLAYS

Often in resource- oriented interpretations, it is necessary to search for complex associa-
tions of several related factors that together define the distribution or pattern of interest. 
For example, soil patterns may be revealed by distinctive relationships between separate 
patterns of vegetation, slope, and drainage. The interpretive overlays approach to image 
interpretation is a way of deriving information from complex interrelationships between 
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separate distributions recorded on remotely sensed images. The correspondence between 
several separate patterns may reveal other patterns not directly visible on the image (Fig-
ure 6.9).

The method is applied by means of a series of individual overlays for each image 
to be examined. The first overlay might show the major classes of vegetation, perhaps 
consisting of dense forest, open forest, grassland, and wetlands. A second overlay maps 
slope classes, including perhaps level, gently sloping, and steep slopes. Another overlay 
shows the drainage pattern, and still others might show land use and geology. Thus, for 
each image, the interpreter may have as many as five or six overlays, each depicting a 
separate pattern. By superimposing these overlays, the interpreter can derive information 
presented by the coincidence of several patterns. From his or her knowledge of the local 
terrain, the interpreter may know that certain soil conditions can be expected where the 
steep slopes and the dense forest are found together and that others are expected where 
the dense forest matches to the gentle slopes. From the information presented by several 
patterns, the interpreter can resolve information not conveyed by any single pattern.

6.9 THE SIGNIFICANCE OF CONTEXT

It is important to consider the broader context and perspective during image interpreta-
tion, as a purely visual understanding of an image does not necessarily lead to an under-
standing of its underlying meaning. This topic deserves further exploration in the context 
of image interpretation.

Most of us are familiar with the kind of visual illusion illustrated in Figure 6.10, the 
Rubin illusion, in which the viewer sees either a white vase against a black background or 
two faces in silhouette facing each other against a white background. The success of the 
illusion depends on its ability to confuse the viewer’s capacity to assess the figure– ground 
relationship. To make visual sense of an image, our visual system must decide which part 

 FIGURE 6.9  Interpretive overlays. Image interpretation produces several separate overlays that 

can combine to permit interpretation of another feature that is not directly visible on the image.
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of a scene is the figure (the feature of interest) and which is the ground (the background 
that simply outlines the figure).

Normally, our visual system expects the background to constitute the larger propor-
tion of a scene. The Rubin illusion, like most visual illusions, is effective because it is 
contrived to isolate the viewer’s perception of the scene—in this instance, by designing 
the illustration so that figure and ground constitute equal proportions of the scene. The 
viewer’s visual system cannot resolve the ambiguity, so the viewer experiences difficulty 
in interpreting the meaning of the scene.

Although such contrived images are not encountered in day-to-day practice, the 
principles that they illustrate apply to situations that are frequently encountered. For 
example, relief inversion occurs when aerial images of shadowed terrain are oriented in a 
manner that confuses our intuitive expectations. Normally, we expect to see terrain illu-
minated from the upper right (Figure 6.11, left); most observers see such images in their 
correct relief. If the image is oriented so that the illumination appears to originate from 

 FIGURE 6.10  Rubin face/vase illusion. Because this 

figure (one of many such examples) is contrived to have 

equal balance between the white and black, the human 

visual system cannot decisively determine if it is viewing two 

black outlines of faces displayed against a white background 

or a white vase displayed against a black background. This 

effect, the figure– ground relationship, is an important part of 

how humans exact information from an image.

 FIGURE 6.11  Observer perception of shadowing on the landscape. Photographs of landscapes 

with pronounced shadowing are usually perceived in correct relief when shadows fall toward the 

observer. Left: When shadows fall toward the observer, relief is correctly perceived. Right: When the 

image is rotated so that shadows fall in the opposite direction, away from the observer, topographic 

relief appears to be reversed. From USGS.
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the lower right, most observers tend to perceive the relief as inverted (Figure 6.11, right). 
Experimentation with conditions that favor this effect confirms the belief that, like most 
illusions, relief inversion is perceived only when the context has confined the viewer’s 
perspective to present an ambiguous visual situation.

Photointerpreters should remember that the human visual system has a powerful 
drive to impose its own interpretation on the neurological signals it receives from the eye 
and can easily create plausible interpretations of images when the evidence is uncertain, 
confused, or absent. Image analysts must strive always to establish several independent 
lines of evidence and reasoning to set the context that establishes the meaning of an 
image. When several lines of evidence and reasoning converge, then an interpretation 
can carry authority and credibility. When multiple lines of evidence and reasoning do 
not converge or are absent, then the interpretation must be regarded with caution and 
suspicion.

Image interpretation’s successes illustrate the significance of establishing the proper 
context to understand the meaning of an image. The use of photointerpretation to iden-
tify the development and monitor the deployment of the German V-1 and V-2 missiles in 
World War II (Babington- Smith, 1957) and to identify at an early stage the deployment 
of Soviet missiles in Cuba during the 1962 Cuban Missile Crisis (Brugioni, 1991) was 
successful because it provided information that could be examined and evaluated in a 
broader context. Image interpretation proved to be less successful in February 2003 when 
U.S. Secretary of State Colin Powell presented images to the United Nations to document 
the case for an active threat from weapons of mass destruction in Iraq. Later, it became 
quite clear that there was insufficient information at hand to establish the proper mean-
ing of the images.

6.10 STEREOVISION

Stereoscopy is the ability to derive distance information (or in the case of aerial photog-
raphy, height information) from two images of the same scene. (Section 4.8 introduced 
the manner in which aerial cameras can collect duplicate coverage of a single region 
using overlapping images.) Stereovision contributes a valuable dimension to informa-
tion derived from aerial photography. Full development of its concepts and techniques is 
encompassed in the field of photogrammetry (Wolf, 1974); here we can introduce some 
of its applications by describing some simple instruments.

Stereoscopes are devices that facilitate stereoscopic viewing of aerial photographs. 
The simplest and most common of these devices is the pocket stereoscope (Figure 6.12). 
This simple, inexpensive instrument provides an important image interpretation aid that 
can be employed in a wide variety of situations and introduce concepts that underlie more 
advanced instruments. Its compact size and inexpensive cost make it one of the most 
widely used remote sensing instruments, even in this era of digital imagery. The pocket 
stereoscope consists of a body holding two low-power lenses attached to a set of collaps-
ible legs that can be folded so that the entire instrument can be stored in a space some-
what larger than a deck of playing cards. The body is usually formed from two separate 
metal pieces, each holding one of the two lenses, which can be adjusted to control the 
spacing between the two lenses to accommodate the individual user.

Other stereoscopes include the mirror stereoscope (Figure 6.13), which permits ste-
reoscopic viewing of large areas, usually at low magnification, and the binocular stereo-
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scope (Figure 6.14), designed primarily for viewing film transparencies on light tables. 
Often the binocular stereoscope has adjustable magnification that enables enlargement of 
a portion of the image up to 20 or 40 times the size of the original.

Although at first glance the stereoscope appears designed to magnify images, mag-
nification is really an incidental feature of the instrument. In fact, the purpose of the 
stereoscope is to assist the analyst in maintaining parallel lines of sight. Stereoscopic 
vision is based on the ability of our visual system to detect stereoscopic parallax, that 
is, differences in the appearance of objects from one eye to the next, which is caused by 
difference in perspectives. So, when we view a scene using only the right eye, we see a 
slightly different view than we do using only the left eye. This difference is known as 
stereoscopic parallax. Because stereoscopic parallax is greater for nearby objects than it 
is for more distant objects, our visual system can use this information to make accurate 
judgments about distance (see Figure 6.15).

 FIGURE 6.12  A USGS geologist using a pocket stereoscope to examine vertical aerial pho-

tography, 1957. (The pocket stereoscope is positioned on the desk, over the two photographs, and 

illustrated in the sketch at the right of the photograph.) From Photographic Library, USGS. Photograph 

by E. F. Patterson, no. 22.

 FIGURE 6.13  Image interpretation equip-

ment, Korean conflict, March 1952. A U.S. Air 

Force image interpreter uses a tube magnifier to 

examine detail of an aerial photograph. A mirror 

stereoscope, used for stereoscopic viewing of 

large photographs, is visible in the foreground. 

From U.S. Air Force, U.S. National Archives and 

Records Administration, ARC 542277.
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 FIGURE 6.14  U.S. Air Force image analyst examining reconnaissance imagery using a binocu-

lar microscope. From USAF. Photograph by SSgt. Reynaldo Ramon, USAF.

 FIGURE 6.15  Interpretation of aerial reconnaissance imagery. From U.S. Navy. Photograph by 

Mark J. Rebilas.
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Stereoscopic aerial photographs are acquired in sequences designed to provide over-
lapping views of the same terrain; that is, they provide two separate perspectives of the 
same landscape, just as our eyes provide two separate images of a scene. We can use a 
stereo pair of aerial photographs to simulate a stereoscopic view of the terrain, provided 
we can maintain parallel lines of sight, just as we would normally do in viewing a distant 
object (Figure 6.16a). Parallel lines of sight ensure that the right and left eyes each see 
independent views of the same scene, to provide the parallax needed for the stereoscopic 
illusion. However, when we view objects that are nearby, our visual system instinctively 
recognizes that the objects are close, so our lines of sight converge (Figure 6.16b), depriv-
ing our visual system of the two independent views needed for stereoscopic vision. There-
fore, the purpose of the stereoscope is to assist us in maintaining the parallel lines of sight 
that enable the stereoscopic effect (Figure 6.16c).

Although many students will require the assistance of the instructor as they learn 
to use the stereoscope, the following paragraphs may provide some assistance for begin-
ners. First, stereophotographs must be aligned so that the flight line of the photographs 
passes left to right (as shown in Figure 6.16). Check the photo numbers to be sure that 
the photographs have been selected from adjacent positions on the flight line. Usually 
(but not always), the numbers and annotations on photos are placed on the leading edge 
of the image: the edge of the image nearest the front of the aircraft at the time the image 
was taken. Therefore, these numbers should usually be oriented in sequence from left to 
right, as shown in Figures 6.12 and 6.15. If the overlap between adjacent photos does not 
correspond to the natural positions of objects on the ground, then the photographs are 
incorrectly oriented.

Next, the interpreter should identify a distinctive feature on the image within the 
zone of stereoscopic overlap. The photos should then be positioned so that the duplicate 
images of this feature (one on each image) are approximately 64 mm (2.5 in.) apart. 
This distance represents the distance between the two pupils of a person of average size 
(referred to as the interpupillary distance). For many, however, it may be a bit too large 
or too small, so the spacing of photographs may require adjustment as the interpreter 
follows the procedure outlined here. The pocket stereoscope should be opened so that its 

 FIGURE 6.16  The role of the stereoscope in stereoscopic vision. (a) To acquire the two indepen-

dent views of the same scene required for stereoscopic vision, we must maintain parallel lines of sight. 

(b) Normally, when we view nearby objects, our lines of sight converge, preventing us from acquiring 

the stereo effect. (c) The stereoscope is an aid to assist in maintaining parallel lines of sight even when 

the photographs are only a few inches away from the viewer. Image by Susmita Sen.

(a) (c)(b)
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legs are locked in place to position the lens at their correct height above the photographs. 
The two segments of the body of the stereoscope should be adjusted so that centers of 
the eyepieces are about 64 mm (2.5 in) apart (or a slightly larger or smaller distance, as 
mentioned above).

Then the stereoscope should be positioned so that centers of the lenses are above the 
duplicate images of the distinctive feature selected previously. Looking through the two 
lenses, the analyst sees two images of this feature; if the images are properly positioned, 
the two images will appear to “float” or “drift.” The analyst can, with some effort, con-
trol the apparent positions of the two images so that they fuse into a single image. As 
this occurs, the two images should merge into a single image that is then visible in three 
dimensions. Usually aerial photos show exaggerated heights, due to the large separation 
(relative to distance to the ground) between successive photographs as they were taken 
along the flight line. Although exaggerated heights can prevent convenient stereo view-
ing in regions of high relief, it can be useful in interpretations of subtle terrain features 
that might not otherwise be noticeable. The student who has successfully used the ste-
reoscope to examine a section of the photo should then practice moving the stereoscope 
over the image to view the entire region within the zone of overlap. (As long as the axis 
of the stereoscope is oriented parallel to the flight line, it is possible to retain stereo vision 
while moving the stereoscope.) If the stereoscope is not aligned with respect to the flight 
line, the interpreter loses stereo vision. By lifting the edge of one of the photographs, it 
is possible to view in stereo image regions near edges of the photos. Although the pocket 
stereoscope is valuable for examining terrain, drainage, and vegetation patterns, it does 
not provide the detailed measurements within the realm of photogrammetry and more 
sophisticated instruments.

The stereoscope is only one of several devices designed to present separate images 
intended to create a stereo effect using the optical separation technique. Left and right 
images are presented side by side, with an optical device designed to separate the ana-
lyst’s view of the left and right images. The red/blue anaglyph presents images intended 
for each eye in separate colors, blues for the left eye, reds for the right eye, and shades 
of magenta for those portions of the image common to both eyes. The analyst views the 
image using glasses with a red lens for the left eye and blue for the right eye. The colored 
lenses cause the image intended for the other eye to blend into the background; the image 
intended for its own eye will appear as black.

The anaglyph has been widely used for novelties, less often as an analytical device 
(see Figure 6.17 and https://serc.carleton.edu/download/images/8512/jge-jan07.jpg).

The use of polarized lenses for stereovision is based on the projection of images 
for each eye through separate polarizing filters (e.g., horizontal for the left eye, vertical 
for the right eye). The combined image must be viewed through special glasses that use 
orthogonal polarizations for the left and right lenses. This technique is one of the most 
effective means of stereoviewing for instructional and analytical applications. A pro-
prietary variation of this technique (CrystalEyes) displays left- and right-eye views of a 
digital image in sequential refresh scans on a monitor, then uses synchronized polarized 
shutter glasses to channel the correct image to the correct eye. This technique forms the 
basis for stereographic images in many virtual reality display environments. Many other 
techniques are effective to varying degrees for stereovision (including random dot stereo-
grams, Magic Eye images, and others). Most of them are less effective for scientific and 
analytical applications than stereoscopes and polarized lenses.
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6.11 DIGITAL PHOTOINTERPRETATION

Increasing use of digital photography and softcopy photogrammetry (Section 4.9) has 
blurred a previously distinct separation between manual and digital photointerpretation. 
Analyses that previously were conducted by visual examination of photographic prints or 
transparencies can now be completed by examination of digital images viewed on com-
puter screens. Analysts record the results of their interpretations as onscreen annotations, 
using the mouse and cursor to outline and label images. Figure 6.18 illustrates a digital 
record of interpreted boundaries recorded by onscreen digitization (left) and the outlines 
shown without the image backdrop (center). The right-hand image shows an enlargement 

 FIGURE 6.17  Anaglyph stereo maps of topographic surfaces. Crater Lake bathymetry produced 

by James V. Gardner, Larry A. Mayer, and Mark Butenica as merged into USGS topographic data. 

(Red/blue anaglyph glasses required to view these scenes in three dimensions.) Used by permission.
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of a portion of the labeled region, illustrating the raster structure of the image and land-
use boundaries.

Some systems employ photogrammetric software to project image detail in its correct 
planimetric location, without the positional or scale errors that might be present in the 
original imagery. Furthermore, the digital format enables the analyst to easily manipu-
late image contrast to improve interpretability of image detail. Digital photogrammetric 
workstations (Figure 6.19), often based on the usual PC or UNIX operating systems, can 
accept scanned film imagery, airborne digital imagery, or digital satellite data. The full 

 FIGURE 6.18  A digital record of image interpretation, depicting outlines traced by the analyst 

using onscreen digitization (left), outlined without the image backdrop (center), and detail of the raster 

structure of the digital outline (right).

 FIGURE 6.19  USGS photointerpreter using a 3D photogrammetric workstation to prepare multi-

dimensional representation of terrain. From USGS Earth Resources Observation and Science Center.
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range of photogrammetric processes can be implemented digitally, including triangula-
tion, compilation of digital terrain models (DTMs), feature digitization, construction of 
orthophotos, mosaics, and flythroughs. Analysts can digitize features onscreen (“heads-
up” digitization), using the computer mouse, to record and label features in digital format.

6.12 IMAGE SCALE CALCULATIONS

Scale is a property of all images. Knowledge of image scale is essential for making mea-
surements from images and for understanding the geometric errors present in all remotely 
sensed images. Scale is an expression of the relationship of the image distance between 
two points and the actual distance between the two corresponding points on the ground. 
This relationship can be expressed in several ways.

The word statement sets a unit distance on the map or photograph equal to the cor-
rect corresponding distance on the ground— for example, “One inch equals 1 mi” or, just 
as correctly, “One centimeter equals 5 km.” The first unit in the expression specifies the 
map distance, and the second is the corresponding ground distance. Another method of 
specifying scale is the bar scale, which simply labels a line with subdivisions that show 
ground distances. Yet another method, the representative fraction (RF), is more widely 
used and often forms the preferred method of reporting image scale. The RF is the ratio 
between image distance and ground distance. It usually takes the form “1:50,000” or 
“1/50,000,” with the numerator set equal to 1 and the denominator equal to the corre-
sponding ground distance.

The RF has meaning in any unit of length as long as both the numerator and the 
denominator are expressed in the same units. Thus, “1:50,000” can mean “1 in. on the 
image equals 50,000 in. on the ground” or “1 cm on the image equals 50,000 cm on the 
ground.” A frequent source of confusion is converting the denominator into the larger 
units that we find more convenient to use for measuring large ground distance. With 
metric units, the conversion is usually simple. In the example given above, it is easy to see 
that 50,000 cm is equal to 0.50 km and that 1 cm on the map represents 0.5 km on the 
ground. With English units, the same process is not quite so easy. It is necessary to convert 
inches to miles to derive “1 in. equals 0.79 mi” from 1:50,000. For this reason, it is useful 
to know that 1 mi equals 63,360 in. Thus, 50,000 in. is equal to 50,000/63,360 = 0.79 mi.

A typical scale problem requires estimation of the scale of an individual photograph. 
One method is to use the focal length and altitude method (Figure 6.19):

RF = Focal length (EQ. 6.1)
Altitude

Both values must be expressed in the same units. Thus, if a camera with a 6-in. focal 
length is flown at 10,000 ft, the scale is 0.5/10,000 = 1:20,000. (Altitude always specifies 
the flying height above the terrain, not above sea level.) Because a given flying altitude 
is seldom the exact altitude at the time the photography was done, and because of the 
several sources that contribute to scale variations within a given photograph (Chapter 4), 
we must always regard the results of such calculations as an approximation of the scale 
of any specific portion of the image. Often such values are referred to as the “nominal” 
scale of an image, meaning that it is recognized that the stated scale is an approximation 
and that image scale will vary within any given photograph.



 6. Image Interpretation 167

Another way to calculate the RF is to use a known ground distance. In instances in 
which accurate maps of the area represented on the photograph may not be available, the 
interpreter may not know focal length and altitude. Then, if possible, an approximation 
of image scale can be made to identify an object or feature of known dimensions. Such 
features might include a football field or baseball diamond; measurement of a distance 
from these features as they are shown on the image provides the “image distance” value 
needed to use the relationship given above. The “ground distance” is derived from our 
knowledge of the length of a football field or the distance between bases on a baseball 
diamond. Some photointerpretation manuals provide tables of standard dimensions of 
features commonly observed on aerial images, including sizes of athletic fields (soccer, 
field hockey, etc.), lengths of railroad boxcars, distances between telephone poles, and so 
on, as a means of using the known ground distance method. Similarly, we can identify two 
points at the same elevation on the aerial photograph that are also represented on a map. 
For example, in Figure 6.20, the image distance between points A and B is measured to 
be approximately 2.2 in. (5.6 cm). From the map, the same distance is determined to cor-
respond to a ground distance of 115,000 in. (about 1.82 mi). Thus, the scale is found to be:

RF = Focal length = 2.2 in. = 2.2 in. = 1 (EQ. 6.2)
Ground distance 1.82 mi. 115,000 in. 52,273

A second kind of scale problem is the use of a known scale to measure a distance on 
the photograph. Such a distance might separate two objects on the photograph but not 

 FIGURE 6.20  Measurement of image scale using a map to derive ground distance.
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be represented on the map, or the size of a feature may have changed since the map was 
compiled. For example, we know that image scale is 1:15,000. A pond not shown on the 
map is measured on the image as 0.12 in. in width. Therefore, we can estimate the actual 
width of the pond to be:

1 = Image distance

(EQ. 6.3)

15,000 Ground distance

0.12 in. = Image distance

Unknown GD Ground distance

GD = 0.12  15,000 in.

GD = 1,800 in., or 150 ft

This example can illustrate two other points. First, because image scale varies 
throughout the image, we cannot be absolutely confident that our distance for the width 
of the pond is accurate; it is simply an estimate, unless we have high confidence in our 
measurements and in the image scale at this portion of the photo. Second, measurements 
of short image distances are likely to have errors simply due to our inability to make accu-
rate measurements of very short distances (e.g., the 0.12 in. distance measured above). 
As distances become shorter, our errors constitute a greater proportion of the estimated 
length. Thus, an error of 0.005 in. is 0.08% of a distance of 6 in. but 4% of the distance 
of 0.12 in. mentioned above. Accordingly, the interpreter should exercise a healthy skepti-
cism regarding measurements made from images unless he or she has taken great care to 
ensure maximum accuracy and consistency.

6.13 SUMMARY

Image interpretation was once practiced entirely within the realm of photographic prints 
and transparencies, using the equipment and techniques outlined in the preceding sec-
tions. As digital analyses have increased in significance, so has the interpretation of imag-
ery presented on computer displays. Although such interpretations are based on the same 
principles outlined here for traditional imagery, digital data have their own characteris-
tics that require special treatment in the context of visual interpretation.

Despite the increasing significance of digital analysis in all aspects of remote sens-
ing, image interpretation still forms a key component in the way that humans under-
stand images. Analysts must evaluate imagery, either as paper prints or as displays on a 
computer monitor, using the skills outlined in this chapter. The fundamentals of manual 
image interpretation were developed for application to aerial photographs at an early date 
in the history of aerial survey, although it was not until the 1940s and 1950s that they 
were formalized in their present form. Since then, these techniques have been applied, 
without substantial modification, to other kinds of remote sensing imagery. As a result, 
we have a long record of experience in their application and comprehensive knowledge of 
their advantages and limitations.

Interesting questions remain. In what ways might image interpretation skills be mod-
ified in the context of interpretation using computer monitors? What new skills might be 
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necessary? How have analysts already adjusted to new conditions? How might equipment 
and software be improved to facilitate interpretation in this new context?

 SOME TEACHING AND LEARNING RESOURCES

Introduction to Photo Interpretation
www.youtube.com/watch?v=LlBDGBopt_g
This 1955 film has separate sections addressing photointerpretation for hydrology, 
soils, geology, and forestry. Although the production methods and presentation are 
clearly dated, many of the basic principles are effectively presented. Many viewers can 
safely skip the introduction, which concludes at about 4:30.

Map and Compass Basics: Understanding Map Scale
www.youtube.com/watch?v=jC1w2jb13GQ

Map Reading: Understanding Scale
www.youtube.com/watch?v=93xYDoEA7CQ&feature=related

REVIEW QUESTIONS

 1. A vertical aerial photograph was acquired using a camera with a 9-in. focal length at an 
altitude of 15,000 ft. Calculate the nominal scale of the photograph.

 2. A vertical aerial photograph shows two objects to be separated by 6¾ in. The corre-
sponding ground distance is 9½ mi. Calculate the nominal scale of the photograph.

 3. A vertical aerial photograph shows two features to be separated by 4.5 in. A map at 
1:24,000 shows the same two features separated by 9.3 in. Calculate the scale of the 
photograph.

 4. Calculate the area represented by a 9 in.  9 in. vertical aerial photograph taken at an 
altitude of 10,000 ft using a camera with a 6-in. focal length.

 5. You plan to acquire coverage of a county using a camera with 6-in. focal length and a 9 
in.  9 in. format. You require an image scale of 4 in. equal to 1 mi, 60% forward over-
lap, and sidelap of 10%. Your county is square in shape, measuring 15.5 mi on a side. 
How many photographs are required? At what altitude must the aircraft fly to acquire 
these photos?

 6. You have a flight line of 9 in.  9 in. vertical aerial photographs taken by camera with a 
9-in. focal length at an altitude of 12,000 ft above the terrain. Forward overlap is 60%. 
Calculate the distance (in miles) between ground nadirs of successive photographs.

 7. You require complete stereographic coverage of your study area, which is a rectangle 
measuring 1.5 mi  8 mi. How many 9 in.  9 in. vertical aerial photographs at 1:10,000 
are required?

 8. You need to calculate the scale of a vertical aerial photograph. Your estimate of the 
ground distance is 2.8 km. Your measurement of the corresponding image distance is 
10.4 cm. What is your estimate of the image scale?

 9. You have little information available to estimate the scale of a vertical aerial photo-
graph, but you are able to recognize a baseball diamond among features in an athletic 
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complex. You use a tube magnifier to measure the distance between first and second 
base, which is 0.006 ft. What is your estimate of the scale of the photo?

10. Assume you can easily make an error of 0.001 in your measurement for Question 9. 
Recalculate the image scale to estimate the range of results produced by this level of 
error. Now return to Question 3 and assume that the same measurement error applies. 
(Do not forget to consider the different measurement units in the two questions.) Calcu-
late the effect on your estimates of the image scale. The results should illustrate why it 
is always better whenever possible to use long distances to estimate image scale.

11. Visual search exercise. This exercise develops skills in matching patterns and devel-
oping a sense of spatial context for image interpretation. Examine each of the smaller 
images, and match it to the correct location on the source image shown below, using 
the coordinates marked at the edge of the source image. As an example, image 1 has 
been identified.
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12. Identification exercise. Identify the principal features depicted in each image, using 
the elements of image interpretation listed in the text. Be prepared to identify the key 
elements important for each image.



 6. Image Interpretation 173

 REFERENCES

Avery, T. E., and G. L. Berlin. 2003. Fundamentals of Remote Sensing and Airphoto Interpreta-
tion (6th ed.). New York: Macmillan, 540 pp.

Babington- Smith, C. 1957. Air Spy: The Story of Photo Interpretation in World War II. New York: 
Ballantine, 190 pp. (Reprinted 1985. Bethesda, MD: American Society for Photogrammetry 
and Remote Sensing, 266 pp.)

Brugioni, D. 1991. Eyeball to Eyeball: The Inside History of the Cuban Missile Crisis. New York: 
Random House, 622 pp.

Brugioni, D. 1996. The Art and Science of Photoreconnaissance. Scientific American, Vol. 274, 
pp. 78–85.

Brugioni, D. A., and F. J. Doyle. 1997. Arthur C. Lundahl: Founder of the Image Exploitation 
Discipline. In R. McDonald (Ed.), Corona between the Sun and the Earth: The First NRO 
Reconnaissance Eye in Space (pp. 159–166). Bethesda, MD: American Society for Photo-
grammetry and Remote Sensing.

Campbell, J. B. 2005. Visual Interpretation of Aerial Imagery. Chapter 10 in Remote Sensing for 
GIS Managers (S. Aronoff, ed.). Redlands, CA: ESRI Press, pp. 259–283.

Campbell, J. B. 2008. Origins of Aerial Photographic Interpretation, U.S. Army, 1916 to 1918. 
Photogrammetric Engineering and Remote Sensing, Vol. 74, pp. 77–93.

Campbell, J. B. 2010. Information Extraction from Remotely Sensed Data. Chapter 19 in Man-
ual of Geospatial Science and Technology (J. D. Bossler, ed.). Boca Raton, FL: CRC Press, 
pp. 363–389.

Cihlar, J., and R. Protz. 1972. Perception of Tone Differences from Film Transparencies. Photo-
grammetria, Vol. 8, pp. 131–140.

Coburn, C., A. Roberts, and K. Bach. 2001. Spectral and Spatial Artifacts from the Use of 
Desktop Scanners for Remote Sensing. International Journal of Remote Sensing, Vol. 22, 
pp. 3863–3870.

Coiner, J. C., and S. A. Morain. 1972. SLAR Image Interpretation Keys for Geographic Analysis 
(Technical Report 177–19). Lawrence, KS: Center for Research, 110 pp.

Colwell, R. N. (ed.). 1960. Manual of Photographic Interpretation. Falls Church, VA: American 
Society of Photogrammetry, 868 pp.

Colwell, R. N. 1977. Manual of Photographic Interpretation. Washington, DC: American Society 
for Photogrammetry and Remote Sensing.

Erdman, C., K. Riehl, L. Mayer, J. Leachtenauer, E. Mohr, J. Odenweller, . . . and D. Hothem. 
1994. Quantifying Multispectral Imagery Interpretability. In International Symposium on 
Spectra Sensing Research, Vol. 1, pp. 468–476. Alexandria, VA: U.S. Corps of Engineers.

Goddard, G. C. (with D. S. Copp). 1969. Overview: A Lifelong Adventure in Aerial Photography. 
Garden City, NY: Doubleday, 415 pp.

Gorrell, E. S. 1917–1919. Gorrell’s History of the U.S. Army Air Service. Microfilmed typescript, 
T-619 (58 rolls). College Park, MD: U.S. National Archives and Records Administration.

Haack, B., and S. Jampoler. 1995. Colour Composite Comparisons for Agricultural Assessments. 
International Journal of Remote Sensing, Vol. 16, pp. 1589–1598.

Hamburger, K. E. 1997. Learning Lessons in the American Expeditionary Forces. U.S. Army 
Center of Military History, CMH Publication 24–1, 28 pp.

Jensen, J. R. 2000. Remote Sensing of the Environment. New York: Prentice Hall, 592 pp.
Lee, W. T. 1922. The Face of the Earth as Seen from the Air. Special Publication No. 4. New York: 

American Geographical Society.
Lillesand, T., R. Keifer, and J. W. Chipman. 2008. Remote Sensing and Image Interpretation (6th 

ed.). New York: John Wiley, 756 pp.
Lueder, D. R. 1959. Aerial Photographic Interpretation: Principles and Applications. New York: 

McGraw- Hill, 462 pp.



174 II. IMAGE ACQUISITION

Melton, F. A. 1939. Aerial Photographs and the First Course in Geology. Photogrammetric Engi-
neering, Vol. 5, pp. 74–77.

O’Conner, J. 2015. NPIC: Seeing the Secrets and Growing the Leaders. Alexandria, VA: Acu-
mensa Solutions.

Olson, C. E. 1960. Elements of Photographic Interpretation Common to Several Sensors. Photo-
grammetric Engineering, Vol. 26, No. 4, pp. 651–656.

Paine, D. P., and J. D. Kiser. 2003. Aerial Photography and Image Interpretation. New York: John 
Wiley, 648 pp.

Philipson, W. R. (ed.). 1996. Manual of Photographic Interpretation (2nd ed.). Bethesda, MD: 
American Society for Photogrammetry and Remote Sensing, 689 pp.

Rapp, D. N., S. A. Culpeper, K. Kirkby, and P. Morin. 2007. Journal of Geoscience Education. 
Vol. 55, No. 1, pp. 5–16.

Smith, H. T. U. 1942. Aerial Photographs in Geomorphic Studies. Photogrammetric Engineering. 
Vol. 8, pp. 129–155.

Smith, H. T. U. 1943. Aerial Photographs and Their Applications. New York: Century Crofts, 
372 pp.

Stone, K. H. 1964, September. A Guide to the Interpretation and Analysis of Aerial Photos. Annals 
of the Association of American Geographers, Vol. 54, No. 3, pp. 318–328.

Wolf, P. R. 1974. Elements of Photogrammetry. New York: McGraw- Hill, 562 pp.



 175

MAJOR TOPICS TO UNDERSTAND

Current Satellite Systems

Landsat Origins and Evolution

Landsat- Like Systems

Broad-Scale/Coarse Resolution Satellites

Fine- Resolution Satellite Systems

SmallSats

Land Observation Satellite Orbits

Data Archives and Indexing Systems for Land Observation Satellites

International Charter

7.1 INTRODUCTION

Satellite remote sensing was first introduced in Chapter 3. Today, many nations, and 
a broad range of corporations, operate satellite remote sensing systems specifically 

 7 Land Observation  
Satellites
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designed for observation of the Earth’s surface to collect information concerning crops, 
forests, water bodies, land use, cities, and mineral resources. As first described in Section 
3.5, satellite platforms offer numerous advantages, including their synoptic perspective 
(observation of large areas in a single image), fine detail, and systematic, repetitive cover-
age. Section 3.5 describes the basic components of satellite systems and their orbits. Here 
we discuss the evolution of some of the key satellite systems that have contributed to our 
understanding of the Earth’s systems and human impacts on the environment. Due to the 
vast number of satellite observation systems in use and rapid changes in their design, it 
is not feasible to discuss them all. Nonetheless, an examination of the past, present, and 
future of key systems can provide readers with a basic framework to assist in understand-
ing key aspects of Earth observation satellites (EOS). Thus, this chapter outlines essential 
characteristics of some of the most important systems as a basis for understanding other 
systems not specifically discussed here. We focus on satellite systems that support optical 
sensors; subsequent chapters introduce other satellite systems that collect microwave and 
thermal imagery.

7.2 CURRENT SATELLITE SYSTEMS

Since the 1980s, the number and varied characteristics of such systems has increased so 
rapidly that it is impractical to list them, let alone describe their characteristics. Under-
standing Earth observation satellite systems is facilitated by considering them as mem-
bers of four families of satellites.

1. The first group consists of Landsat and Landsat- like systems, designed for 
acquisition of rather broad geographic coverage at moderate levels of detail. Data 
from these systems have been used for an amazingly broad range of applications, 
which can be generally described as focusing on surveying and monitoring land 
and water resources. The 30-m pixel size of Landsat has proven useful for record-
ing imagery that permits examination of patterns that match to scales that reflect 
how humans occupy the Earth’s surface (agricultural patterns, water resources, 
urban systems, coastal landforms, forest resources, etc.).

2. A second group is formed by those satellite observation systems designed to 
acquire very broad-scale images at coarse resolutions, intended in part to acquire 
images that can be aggregated to provide continental or global coverage. Such 
images enable scientists to monitor broad-scale environmental dynamics. We can 
think of these systems as providing imagery with pixels several kilometers in size, 
including some that extend to many tens of kilometers in size.

3. A third family of satellite systems provides very fine detail of small regions to 
acquire imagery that might assist in urban planning, design of highway or pipe-
line routes, or precision agriculture, for example. These satellites typically pro-
vide fine spatial detail (small-footprint images) at about 10-m detail or finer, 
reaching submeter detail in some instances.

4. A fourth category of satellites, SmallSats, consists of satellite systems defined by 
their very small sizes and by characteristics that derive from their low costs, small 
dimensions, light weights, and economical designs and operational costs.
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Although this categorization is imperfect, it does provide a framework that helps 
explain the capabilities of a very large number of satellite systems now available. For sys-
tems not discussed here, Stoney (2008) provides a comprehensive catalog of earlier land 
observation satellite systems.

7.3 LANDSAT ORIGINS AND EVOLUTION

Today’s land observation satellites have developed from earlier systems. Landsat (“land 
satellite”), designed in the 1960s and launched in 1972, was the first satellite tailored 
specifically for broad-scale observation of the Earth’s land areas, accomplishing for land 
resource studies what meteorological satellites had accomplished for meteorology and 
climatology. Today, the Landsat system is important in its own right—both as an innova-
tive remote sensing system that has contributed greatly to Earth resource studies and as 
a template for similar land observation satellites operated by national governments and 
private enterprises throughout the world.

Landsat was proposed by scientists and administrators in the U.S. government who 
envisioned application of basic principles of remote sensing to broad-scale, repetitive sur-
vey of the Earth’s land areas. This system has since supported many years of satellite 
observation of the Earth’s land areas, surveying both natural and human facets of the 
Earth’s surface as it changes. Here, we offer a concise introduction to Landsat’s history 
and some of its applications. We encourage readers to consult Landsat’s Enduring Leg-
acy (Landsat Legacy Project Team, 2017), a thoughtful, comprehensive review of Landsat 
and its applications.

The first Landsat sensors recorded energy in the visible and near- infrared spectra. 
Although these regions of the spectrum had long been used for aircraft photography, it 
was by no means certain that they would also prove practical for observation of Earth 
resources from satellite altitudes. Scientists and engineers were not completely confident 
that the sensors would work as planned, that they would prove to be reliable, that detail 
would be satisfactory, or that a sufficient proportion of scenes would be free of cloud 
cover. Although many of these problems were encountered, the feasibility of the basic 
concept was soon demonstrated, and Landsat has formed the model for similar systems 
now operated by other organizations throughout the world.

The Landsat system consists of spacecraft- borne sensors that observe the Earth and 
then transmit information by microwave signals to ground stations that receive and pro-
cess data for dissemination to a community of data users. The first Landsat vehicles car-
ried two sensor systems: (1) the Return Beam Vidicon (RBV) and (2) the Multispectral 
Scanner System (MSS) (Table 7.1). The RBV camera, designed as the primary sensor 
for Landsat 1 in 1972, generated high- resolution, television- like, images of the Earth’s 
surface. Its significance for our discussion is that it was designed to apply then- current 
remote sensing technologies for use from orbital, rather than aircraft, altitudes. It pro-
vided three spectral channels, in the green, red, and near infrared, to replicate informa-
tion conveyed by color infrared films, valued then as the most effective aerial film. The 
RBV was designed to provide a camera- like perspective, using a shutter to provide an 
electronic image that could be analyzed using photogrammetic principles, in much the 
same way that photogrammetry had been used to analyze aerial photographs acquired at 
aircraft altitudes. However, once the RBV instrument attained orbit, analysts discovered 
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that the RBV did not provide reliable imagery, leaving success of the mission with its 
remaining sensor— the multispectral scanner.

As a result of the unexpected unreliable performance of the RBV, the MSS became 
the primary Landsat sensor. Its design originated as an unsolicited proposal to NASA 
from Hughes Aerospace Corporation, prompted by the work of Virginia Norwood, a 
Hughes Aerospace Engineer (Figure 1.15), who proposed using a nascent digital scanning 
technology for the first Landsat mission (Figure 7.1), even though its design was as yet 
unproven in the context of its proposed use as an orbital sensor. In contrast to the RBV, 
the MSS was designed to provide finer detail concerning spectral characteristics of the 
Earth but less accurate positional detail. The IFOV was 68  83 m, which gives an area 
somewhat less than that of a U.S. football field. There are four spectral channels, located 
in the green, red, and near- infrared portions of the electromagnetic spectrum (Band 1: 
0.5–0.6 μm; Band 2: 0.6–0.7 μm; Band 3: 0.7–0.8 μm; Band 4: 0.8–1.1 μm).

The MSS then formed the operational core of the Landsat system and introduced the 
remote sensing community to a new imaging system, which required rapid innovation to 
develop and evaluate new analytical strategies for image analysis. In subsequent years, 
routine availability of MSS digital data formed a foundation for a dramatic increase in 
the number and sophistication of digital image processing capabilities available to the 
remote sensing community. Although the MSS has since been replaced by more advanced 
systems, it remains a foundation of remote sensing because it introduced, and established 
the validity of, concepts used later for more complex imaging systems. Furthermore, it 
has an important historic significance, as the techniques developed by scientists to ana-
lyze MSS imagery form the origins of the practice of digital image processing, which is 
now the foundation for current strategies for examining satellite imagery.

Subsequent missions improved on the basic design of the MSS with a new instrument 
known as the Thematic Mapper (TM). Landsats 4 and 5 carried both the TM and an 

 TABLE 7.1 Landsat Missions

Satellite Launched End of servicea Principal sensorsb

Landsat 1 July 23, 1972 January 6, 1978 MSS, RBV

Landsat 2 January 22, 1975 January 25, 1982 MSS, RBV

Landsat 3 March 5, 1978 March 3, 1983 MSS, RBV

Landsat 4 July 19, 1982 c TM, MSS

Landsat 5 March 1, 1984 June 5, 2013 TM, MSS

Landsat 6 October 5, 1993 Lost at launch ETM

Landsat 7 April 15, 1999 d ETM+

Landsat 8 February 11, 2013 OLI, TIRS

Note: See www.usgs.gov/land-resources/nli/landsat/landsat-satellite-missions for a complete chronology.
aSatellite systems typically operate on an intermittent or standby basis for considerable periods prior to formal 
retirement from space.
bSensors are discussed in Section 7.3. MSS = Multispectral Scanner System; RBV = Return Beam Vidicon; 
TM = Thematic Mapper; ETM = Enhanced Thematic Mapper; ETM+ = Enhanced Thematic Mapper Plus; OLI = 
Operational Land Imager; TIRS = thermal infrared sensor.
cTransmission of TM data failed in August 1993.
dMalfunction of TM scan line corrector has caused data gaps in the imagery since May 2003.
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MSS on an improved platform that maintained a high degree of stability as a means of 
improving image geometry, with additional sensor systems using improved technologies. 
The TM continued as the sensor system for Landsats 4 and 5 (1982–2013). The TM pro-
vided an impressive record of reliability, high- quality imagery, and continuity.

The TM was based on some of the same principles as the MSS but employed improved 
technologies to provide finer spatial resolution, improved geometric fidelity, greater 
radiometric detail, and more detailed spectral information in more precisely defined 
spectral regions. Despite the historical relationship between the MSS and the TM, the 
two sensors are distinct. Whereas the MSS used four broadly defined spectral regions, 
the TM recorded seven spectral bands (Table 7.2). Unlike the MSS, TM spectral channels 
were specifically tailored to record radiation of interest to specific scientific investigations 
rather than the arbitrary definitions used for the MSS. TM sensors used a spatial resolu-
tion of 30 m (about 0.09 ha, or 0.22 acre), which provided much finer spatial detail than 
the MSS. (TM band 6 used a coarser spatial resolution of about 120 m.) Digital values 
were quantized at 8 bits (256 brightness levels), which provided a much larger range of 
brightness values relative to the MSS. These modifications greatly improved the practical 
value of Landsat imagery, increasing the variety of applications and leading to a growing 
reliance on Landsat imagery for broad-scale monitoring and assessing landscapes.

The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) was designed to extend the 
capabilities of previous TMs by adding modest improvements to the TM design (Figure 
7.2). In the visible, near- infrared, and mid- infrared channels, its spectral channels dupli-
cate those of TM (Table 7.2). The thermal channel has 60-m resolution, improved from 
the 120-m resolution of earlier TMs. The ETM+ also has a 15-m panchromatic channel. 
The system is characterized by improvements in accuracy of calibration, data transmis-

 FIGURE 7.1  Multispectral Scanner System 

(MSS). The insight and vision of Virginia Norwood 

led to the design of the MSS, which, although 

intended as an experimental instrument, became 

the primary sensor for Landsat 1 when the pri-

mary instrument failed to perform as intended. 

The MSS’s reliability and high- quality imagery 

formed the model for later Landsat instruments. 

From NASA.
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 TABLE 7.2 Summary of Landsat TM Sensor Characteristics

Band Resolution Spectral definition Some applications

1 30 m Blue-green,  
0.45–0.52 μm

Penetration of clear water, bathymetry, mapping of coastal 
waters, chlorophyll absorption, distinction between 
coniferous and deciduous vegetation

2 30 m Green, 0.52–0.60 μm Reflection from green vegetation, plant vigor, turbid water

3 30 m Red, 0.63–0.69 μm Chlorophyll absorption, important for plant-type delineation

4 30 m Near infrared, 
0.76–0.90 μm

Indicator of plant cell structure, biomass, absorption by water 
facilitates shoreline delineation

5 30 m Mid infrared, 
1.55–1.75 μm

Vegetation moisture content, soil moisture mapping, 
differentiating snow from clouds, penetration of thin clouds

6 120 m Far infrared, 
10.4–12.5 μm

Vegetation heat stress analysis, evapotranspiration, thermal 
mapping

7 30 m Mid infrared, 
2.08–2.35 μm

Discrimination of rock types, alteration zones for 
hydrothermal mapping, hydroxylation absorption

 FIGURE 7.2  Pre- launch inspection, Enhanced Thematic Mapper Plus (ETM+) sensor for the 

Landsat 7 satellite. The ETM+ has eight bands in visible and infrared wavelengths. From NASA.
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sion, and other characteristics. ETM+ extends the continuity of earlier Landsat data by 
maintaining consistent spectral definitions, resolutions, and scene characteristics.

In 2013, the launch of Landsat 8 introduced the Operational Land Imager (OLI) to 
replace the TM and ETM instruments. This action replaced the electro- optical technolo-
gies used for earlier Landsat TM and ETM systems with charge- coupled device (CCD) 
sensors (see Chapter 4) as the basis for the OLI. In comparison to earlier systems, Landsat 
8 OLI (and the upcoming Landsat 9) have nine visible, near- infrared, and mid- infrared 
channels. These include an additional blue band for coastal aerosols (0.43–0.45 μm) 
and a cirrus band (1.36–1.38 μm). The wavelength ranges for each band are narrower 
than those in earlier systems and have higher radiometric resolution (12-bit) and a better 
signal- to-noise ratio. Landsat 8 also has two thermal infrared bands on the thermal infra-
red sensor (TIRS), which are described in Chapter 10. In addition, a quality assurance 
band provides information that supports, on a pixel-by-pixel basis, assessment of water, 
snow cover, or cloud conditions that may influence the accuracy and usability of pixels 
in other channels. As with Landsat 7, the OLI has a panchromatic channel that provides 
15-m detail for channels within the visible spectrum.

Throughout the decades- long life of the Landsat, NASA engineers have devoted 
careful attention to engineering detail that has enabled several generations of Landsat 
imagery to provide imagery of consistent quality. Such instruments have permitted the 
collection of imagery from one system to another. In this respect, Landsat systems, unlike 
most other satellite systems, have collected a large, comprehensive image archive of con-
sistent quality.

7.4 LANDSAT-LIKE SYSTEMS

The Landsat model has formed a template for the land remote sensing systems proposed 
and in use by many other nations. Lauer, Morain, and Salomonson (1997) listed 33 
separate Landsat or Landsat- like systems launched or planned for launch between 1972 
and 2007. This number attests to the value of observational systems designed to acquire 
regional overviews at moderate to coarse levels of spatial detail. Landsat has formed 
the model for these systems with respect to essential imaging capabilities, technological 
design, data management, and overall missions. For example, the first Landsat systems 
established the value of digital data for the general community of remote sensing practi-
tioners, set expectations that imagery would be easily accessible, and established a model 
for organizing, archiving, and cataloging imagery. Despite differences, related systems 
have followed Landsat’s lead in many respects.

SPOT

The French SPOT satellite system is an advanced Earth observation satellite system based 
on the Landsat model but with distinct technological advantages. SPOT, an acronym for 
Satellite Pour l’Observation de la Terre (Satellite for Observation of the Earth), was first 
lauched in 1986. The SPOT system was designed to provide data for land-use studies, 
assessment of renewable resources, exploration of geologic resources, and cartographic 
work at scales of 1:50,000 to 1:100,000. Design requirements included provision for 
complete world coverage, rapid dissemination of data, stereo capability, and sensitivity in 
spectral regions responsive to reflectance from vegetation.
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SPOT satellites (Table 7.3) are placed into circular sun- synchronous orbits (SSOs), 
completing about 14 revolutions per day. Initially, for SPOT 1–3, the primary SPOT sen-
sors were the two High Resolution Visible (HRV) sensors that could be operated indepen-
dently, or in coordination, to acquire either panchromatic imagery (viewing a single wide 
band across the visible region) or multispectral imagery (viewing at coarser detail, but in 
several spectral channels, in the red, green, and near- infrared regions). Because the HRV 
sensors could be aimed laterally, they could acquire oblique views, in effect improving 
the system’s revisit capability. As the SPOT sensors evolved, they significantly increased 
their spatial resolution. SPOT 4 improved upon the HRV design with the high- resolution 
visible and infrared (HRVIR) instrument, which included the addition of a mid- infrared 
band (1.58–1.75 μm) at 20-m resolution and red wavelengths at 10-m resolution. SPOT 
5 enables 2.5-m or 5-m panchromatic imagery, with stereoimagery at 5 m, intended for 
large-scale topographic maps and data (Figure 7.3). SPOT 6 and 7 further increased the 
spatial resolution to provide 1.5-m panchromatic and 6-m multispectral imagery. These 
instruments provide high- resolution imagery with broad spatial coverage and therefore 
play an important role in high- resolution environmental applications.

Sentinel-2

The European Space Agency (ESA) has developed a comprehensive satellite observation 
program consisting of several remote sensing systems. (Sentinel-1 provides two satellites 
with active microwave; this type of system and data are discussed in Chapter 8.) Here we 
discuss Sentinel-2, modeled to provide a measure of compatibility with the Landsat and 
SPOT systems.

Sentinel-2A and -2B (launched in June 2015 and March 2017, respectively) are 
designed in part to provide systematic multispectral imagery to support land manage-
ment, agriculture, forestry, disaster response, and security programs. Sentinel-2 satellites 
each provide 12-bit, high- resolution multispectral imagery, including 13 spectral bands 
covering a 290-km swath at 10-m, 20-m, and 60-m resolution (Table 7.4), acquired at 

 TABLE 7.3 Summary of SPOT Systems

Satellite Launched End of servicea Sensors

SPOT 1 February 22, 1986 December 31, 1990 HRV for SPOTs 1, 2, 3a

SPOT 2 January 22, 1990 July 2009

SPOT 3 September 26, 1993 November 14, 1997

SPOT 4 March 24, 1998 July 2013 HRVIRb

SPOT 5 May 4, 2002 March 31, 2015 HRGc

SPOT 6 September 9, 2012 NAOMId

SPOT 7 June 30, 2014

aHigh-resolution visible, with 10-m panchromatic and 20-m multispectral visible bands in the green, red, and 
NIR.
bHigh-resolution visible and mid infrared (20 m). A 10-m band covers the red wavelengths.
cHigh-resolution geometrical. Panchromatic imagery at 2.5 or 5 m. Stereo imagery at 5-m resolution. Spectral 
coverage of SPOT-4.
dNew Astrosat Optical Modular Instrument, 1.5-m panchromatic and 6-m multispectral imagery.
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 FIGURE 7.3  SPOT 5 satellite image, Agger Tange, Denmark, 2002. From Airbus Defense and 

Space. Used by permission.

 TABLE 7.4 Common Wavelength Range for Sentinel-2 Multispectral Instrument 
(MSI) Bands

Band Wavelength range (μm) Spatial resolution Notes

1 0.4322–0.4527 60 m Aerosol retrieval

2 0.4594–0.5251 10 m

3 0.5418–0.5770 10 m

4 0.6494–0.6801 10 m

5 0.6966–0.7116 20 m

6 0.7330–0.7466 20 m

7 0.7728–0.7897 20 m

8 0.7799–0.8858 10 m

8a 0.8542–0.8750 20 m

9 0.9351–0.9537 60 m Water vapor correction

10 1.3619–1.389 60 m Cirrus detection

11 1.5682–1.6574 20 m

12 2.1149–2.2782 20 m

Note: There are slight differences in the central wavelengths and bandwidths for Sentinel-2A and -2B. Most 
are very small (<1 nm), with the largest difference for Band 12 (17 nm central wavelength and 10 nm difference 
in bandwidth). Only the wavelength range in common is shown here. Please see https://sentinel.esa.int/web/
sentinel/user-guides/sentinel-2-msi/resolutions/radiometric for exact band specifications.
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10:30 A.M. local solar time. The two satellites have identical instrumentation, positioned 
in identical orbits but separated by 180° to provide frequent repeat coverage. At the 
equator, the Sentinel system provides a five-day coverage cycle when imagery from both 
satellites is used (shorter at higher latitudes). The four 10-m resolution bands allow for 
synergies with SPOT 4 and 5 data. The 20-m bands allow for analysis similar to what 
has been described for Landsat data but at higher spatial resolution. These synergies 
have enabled time- series applications in which the data from Landsat and Sentinel-2 are 
combined to improve the temporal coverage, including the development of a Harmonized 
Landsat and Sentinel-2 reflectance product (Claverie et al., 2018). The synergies of Sen-
tinel-2 with SPOT and Landsat data reflect the scientific community’s understanding 
of the importance of data continuity for the analysis of longer- term environmental pro-
cesses and change.

Indian Remote Sensing

After operating two coarse- resolution remote sensing satellites in the 1970s and 1980s, 
India began to develop multispectral remote sensing programs in the style of the Landsat 
system. During the early 1990s, two India Remote Sensing (IRS) satellites were in service. 
IRS-1A, launched in 1988, and IRS-1B, launched in 1991, carried the LISS-I and LISS-II 
pushbroom sensors. These instruments collect data in four bands: blue (0.45–0.52 μm), 
green (0.52–0.59 μm), red (0.62–0.68 μm), and near infrared (0.77–0.86 μm), creat-
ing images of 2,400 lines in each band. LISS-I provides resolution of 72.5 m in a 148-
km swath, and LISSII has 36.25-m resolution. Two LISS-II cameras acquire data from 
74-km-wide swaths positioned within the field of view of LISS-I, so that four LISS-II 
images cover the area imaged by LISS-I, with an overlap of 1.5 km in the cross-track 
direction and about 12.76 km in the along-track direction. Repeat coverage is 22 days 
at the equator, with more frequent revisit capabilities at higher latitudes. In the United 
States, IRS imagery can be purchased from a variety of image services that can be located 
using the internet.

The LISS-III instrument is designed for the IRS-1C and IRS-1D missions, launched 
in 1995 and 1997, respectively. They acquire data in four bands: green (0.52–0.59 μm), 
red (0.62–0.68 μm), near infrared (0.77–0.86 μm), and shortwave infrared (1.55–1.70 
μm). LISS-III provides 23-m resolution for all bands except for the shortwave infrared, 
which has a 70-m resolution. Swath width is 142 km for bands 2, 3, and 4, and 148 km 
in band 5. The satellite provides a capability for 24-day repeat coverage at the equator.

In 2003, India Remote Sensing launched Resourcesat 1, which includes three instru-
ments of interest. The first is LISS-3, as described above. The second is LISS-4, which 
acquires a 23.9-km image swath in multispectral mode and a 70.3-km swath in panchro-
matic mode. LISS-4 has a spatial resolution of 5.5 m, and three spectral channels match-
ing to channels 1, 2, and 3 of the LISS-3 instrument. The field of view can be aimed along 
the across- track dimension to acquire stereoscopic coverage and provide a five-day revisit 
capability. The third instrument is the Advanced Wide Field Sensor (AWiFS) instrument, 
which provides imagery of a 760-km swath at 56-m resolution, using the same four spec-
tral channels as LISS-3.

IRS’s Cartosat-1 (May 2005) uses two panchromatic cameras, aimed fore and aft, 
to acquire stereoscopic imagery within a 30-km swath in the along-track dimension in a 
single panchromatic band (0.50–0.85 μm). Its objective is to acquire imagery to support 
detailed mapping and other cartographic applications at the cadastral level, urban and 
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rural infrastructure development and management, as well as applications in land infor-
mation systems (LIS) and geographical information systems (GIS).

China-Brazil Earth Resources Satellite Program

Development of the China- Brazil Earth Resources Satellite Program (CBERS) dates from 
1988, when China and Brazil agreed to pursue a joint collaboration in science and tech-
nology. Initially, the satellite program was administered by the Chinese Academy of Space 
Technology and Brazil’s Instituto de Pesquisas Espaciais and focused on development and 
deployment of two satellites, CBERS-1 and CBERS-2. Later agreements included three 
additional satellites, CBERS-3, -4, and -4B. Combined, this suite of sensors captures 
panchromatic, visible, infrared, and thermal infrared at increasing spatial resolutions as 
the sensors evolved, similar to Landsat. However, these data have not been widely used 
outside of Brazil and China. This may change moving forward, as researchers are now 
increasing the use of multiple data sources to increase temporal coverage and improve 
data continuity to monitor changing Earth environments.

Advanced Spaceborne Thermal Emission  
and Reflection Radiometer

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an 
imaging system carried on the TERRA satellite (used also for the Moderate Resolution 
Imaging Spectroradiometer [MODIS] system, as described in Section 7.5), launched in 
December 1999 in an SSO. The ASTER system was designed and constructed as a coop-
erative effort among NASA, Japan’s Ministry of Economy, Trade and Industry (METI), 
and Japan Space Systems. ASTER does not fit well into the typology for classifying remote 
sensing satellite systems, as it covers a small area relative to other systems in the group. 
It is listed here with the Landsat- class satellites not because it offers broad coverage, but 
because it offers similar imaging capabilities.

ASTER’s three sensor systems provide unique capabilities, based on 14 different 
spectral bands (see Table 7.5 later in the chapter): (1) the 8-bit VNIR subsystem (two vis-
ible channels and a repeating NIR, one of which is nadir [3N] and the other backwards 
[3B], to capture a stereo pair in successive images); (2) the 8-bit SWIR subsystem (six 
channels at 30-m detail), and (3) a five- channel 12-bit thermal infrared (TIR) subsystem 
to capture a thermal perspective at 90-m detail. The ASTER SWIR channels are no lon-
ger active, although archived data are available. The three ASTER instruments (VNIR, 
SWIR, and TIR) can view the Earth in the cross- track orientation. Given its high resolu-
tion and its ability to change viewing angles, ASTER can capture stereoscopic images and 
generate terrain models.

Unlike the other satellite systems discussed here, ASTER will not collect imagery 
continuously; rather, it collects data as specifically requested by customers and scientists, 
for distribution shortly after the overpass. Current and archived ASTER data are avail-
able to the public without charge. Further information about the ASTER system can be 
found at:

https://asterweb.jpl.nasa.gov/characteristics.asp
https://lpdaac.usgs.gov/documents/262/ASTER_User_Handbook_v2.pdf
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The data can be ordered from GloVIS (discussed in Section 7.9) or other data distri-
bution sites.

7.5 BROAD-SCALE/COARSE RESOLUTION SATELLITES

Broad-scale/coarse resolution satellites have often been defined as systems that collect 
imagery at spatial resolutions between 250 m and 5 km, permitting broad-scale obser-
vation of the Earth at frequent revisit intervals. Such images, collected over a period of 
several weeks, can be used to generate cloud-free composites that represent large areas of 
the Earth without the cloud cover that would be present in any single scene. These images 
have opened a new perspective for remote sensing by allowing scientists to examine top-
ics that require examination at continental or global scale that previously were outside 
the scope of direct observation.

Advanced Very High Resolution Radiometer

The Advanced Very High Resolution Radiometer (AVHRR) is a scanning system that 
has been carried on NOAA’s polar orbiting environmental satellites since 1978 and on 
the European Organisation for the Exploitation of Meteorological Satellites Polar System 
since 2006. AVHRR is one of the oldest and most widely used of the broad-scale EOS 
systems. It provides 14 passes each day, viewing a 2,399-km swath. AVHRR collects data 
in four to six channels (depending on the satellite) covering the red, NIR, mid-IR, and 
thermal IR portions of the electromagnetic spectrum. The data support meteorology and 
climatology by providing synoptic information on snow/ice cover, water bodies, vegeta-
tion cover, and phenology.

At nadir, the AVHRR system provides an IFOV of about 1.1 km. Data presented at 
that level of detail is referred to as local area coverage (LAC). In addition, a global areal 
coverage (GAC) data set is generated by onboard averaging of the full- resolution data. 
GAC data are formed by the selection of every third line of data in the full- resolution 
data set. For each of these lines, four out of every five pixels are used to compute an aver-
age value that forms a single pixel in the GAC data set. This generalized GAC coverage 
provides pixels of about 4-km  4-km resolution at nadir. A third AVHRR image prod-
uct, high- resolution picture transmission (HRPT) data, is created by direct transmission 
of full- resolution data to a ground receiving station as the scanner collects the data. As 
for LAC data, resolution is 1.1 km. (LAC data are stored onboard for later transmission 
when the satellite is within line of sight of a ground receiving station; HRPT data are 
directly transmitted to ground receiving stations.)

Data from several passes are collected to create georeferenced composites that show 
large regions of the Earth without cloud cover. Scientists interested in broad-scale envi-
ronmental issues can use such data to examine patterns of vegetation, climate, and tem-
perature.

Further information describing AVHRR is available at:

www.usgs.gov/centers/eros/science/usgs-eros- archive- advanced- very-high- 
resolution- radiometer- avhrr
www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/
MetOp/About_AVHRR_3
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Moderate Resolution Imaging Spectroradiometer

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an imaging system car-
ried by two satellite systems (Terra and Aqua) within NASA’s Earth Observation System 
(EOS). MODIS is designed for long-term observation of the Earth’s surface, atmosphere, 
and oceans. Terra (“Earth”) follows an orbit timed for a morning equatorial (descending) 
pass, while Aqua (“Water”) passes south to north (an ascending pass), crossing the equa-
tor in the afternoon. Terra was launched in December 1999, Aqua in May 2002. Both 
systems were still in operation as of spring 2022, far beyond their design life of 6 years, 
providing a valuable long-term data record.

MODIS established a new imaging capability, characterized by daily revisits (A.M. 
and P.M.) with a calibrated, science- quality, coarse- resolution satellite observation. 
MODIS records 36 image bands in the visible and infrared regions designed to observe, 
over time, key ecological, atmospheric, land cover, and atmospheric variables. These 
bands provide imagery at 250-m detail at nadir for two bands, 500-m resolution for five 
bands, and the remaining 29 bands at 1-km detail, covering the visible, NIR, mid-IR, and 
thermal wavelengths. Both satellites follow SSOs at 705 km, with a swath width of 2330 
km, observing the Earth every 1 to 2 days.

MODIS imagery has enabled the compilation of global data sets at frequent inter-
vals. Depending on the product of interest, NASA provides MODIS data as daily scenes 
or as derived products in multi-day composites (4-, 8-, and 16-day) at different spatial res-
olutions (Figure 7.4). Composites are designed to eliminate most cloud cover and many 
other errors that characterize individual data. Image composites are formed by selecting 
the highest- quality pixels within the interval, then preparing an image (the “composite”). 
Over time, many products developed from MODIS data have been widely used by scien-
tists to study global change. They include products related to the atmosphere (aerosols, 
clouds, etc.), the land (land cover, surface temperature and emissivity, vegetation indi-
ces, leaf area index [LAI], evapotranspiration, etc.), the cryosphere (snow cover and sea 
ice), and the ocean (sea surface temperature, particulate carbon, and information related 

 FIGURE 7.4  Left: Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Leaf Area 

Index (LAI) 8-day composite around August 4, 2020, for an area on the east coast of the United States 

that includes Virginia (outlined in red). The red triangle in the western portion of Virginia indicates the 

location of a forested area in Bland County, for which the entire 8-day LAI time series was extracted. 

Right: MODIS 8-day LAI time series for the same forested area in Bland County. Note the seasonal 

trend of LAI, with peak growth in summer months and minimum LAI in winter, which is typical of the 

northern hemisphere.
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to photosynthesis). More information about MODIS products can be found at https://
modis.gsfc.nasa.gov/data/dataprod.

Visible Infrared Imaging Radiometer Suite

Building on the success of the MODIS systems, the VIIRS (Visible Infrared Imaging 
Radiometer Suite) system was launched in 2011 and complements MODIS’s long-term 
data record. We now have 10 years of overlap between these two systems. VIIRS is 
a 22-band NASA- sponsored scanning radiometer operating in the visible and infrared 
regions (from 0.4 to 12.5 μm), tailored to collect calibrated, broad-scale data supporting 
oceanic, ecological, atmospheric, and oceanographic studies. VIIRS is one of five instru-
ments onboard the Suomi National Polar- Orbiting Partnership (Suomi NPP) weather 
satellite (Figure 7.5). This satellite is named for the Finnish- American scientist Verner 
Edward Suomi, an early leader of satellite meteorology. Like MODIS, the VIIRS instru-
ment collects surface observations that are comparable to conventional Earth observation 
data.

The principal data characteristics of VIIRS include 16 moderate- resolution (750 m at 
nadir) bands of which eight are in the visible- NIR wavelengths, three are SWIR channels, 
two are mid-IR channels, and three are thermal IR channels. There are also five imaging 
channels (325-m resolution at nadir), with two visible NIR wavelengths, and one each 
of SWIR, mid- infrared, and thermal wavelengths. In addition, there is a panchromatic 
band with a spatial resolution of 750 m throughout the entire scan. The swath width of 
the system is 3060 km.

As with MODIS data, numerous VIIRS data products can be freely downloaded at 
different spatial and temporal scales. These include the reflectance and emittance data, 
clouds, sea surface temperature, polar wind, ocean color, aerosols, fire, snow and ice, 
vegetation indices, thermal anomalies, land surface temperature, albedo, LAI/fPAR land 
surface phenology (fPAR stands for the fraction of photosynthetically active radiation 
absorbed by green vegetation), and nighttime lights. This has allowed for data continu-
ity between MODIS and VIIRS and time- series products that combine the two systems.

7.6 FINE-RESOLUTION SATELLITE SYSTEMS

The third class of land observation satellites consists of systems designed to provide 
detailed coverage for small- footprint images. In the 1970s and 1980s, Landsat, SPOT, 
and other systems established the technical and commercial value of the land observation 

 FIGURE 7.5  The Visible Infrared Imaging Radi-

ometer Suite (VIIRS), used for ocean, land, and atmo-

sphere research. VIIRS will replace the Advanced 

Very High Resolution Radiometer (AVHRR) and 

MODIS, now approaching the ends of their service 

lives. From NASA/GSFC.
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satellite concept, but they also revealed the limitations of systems intended to provide 
general- purpose data for a broad community of users who may require more specialized 
image resources.

The success of these early satellite systems revealed the demand for fine spatial reso-
lution imagery required for tasks not satisfied by coarser resolutions, especially urban 
infrastructure analysis, transportation planning, precision agriculture, strategic recon-
naissance, and construction support. By the late 1980s and early 1990s, technologi-
cal, analytical, and commercial infrastructure was in place to support the development 
of smaller, special- purpose EOS focused on the requirements of these more narrowly 
defined markets. By 1994, the U.S. government relaxed its restrictions on commercial 
applications of high- resolution satellite imagery. These changes in policy, linked with 
advances in technology, opened opportunities for deployment of satellites designed to 
provide high- resolution image data with characteristics that are distinct from the design 
of the other, coarser- resolution systems described here.

Relative to the moderate- resolution class of satellite systems, fine- resolution systems 
offer highly specialized image products tailored for a specific set of applications. They 
provide imagery characterized by high spatial detail, high radiometric resolution with 
narrow fields of view, and small footprints targeted on specified areas. They acquire 
data in the optical and near- infrared regions of the spectrum, often with the capability 
to provide panchromatic imagery at even finer spatial detail. Some systems offer ste-
reo capability and may offer orthocorrected imagery to fully account for the positional 
effects of terrain relief within the image area. Fine- resolution systems are organized as 
commercial enterprises, although it is quite common for many to have strategic relation-
ships with government organizations. Image providers often collect image data at 10- or 
11-bit resolution, although some products are distributed at 8-bit resolution for custom-
ers who prefer smaller file sizes.

Sometimes fine- resolution satellite data are prepared as pan- sharpened imagery— 
that is, fused or merged multispectral channels that combine multispectral data with the 
finer detail of the corresponding panchromatic channel. For visual interpretation, such 
products can provide the benefit of multispectral imagery at the finer spatial detail of the 
panchromatic channel. However, unlike in a true multispectral image, the components 
of the pan- sharpened image are, so to speak, baked together such that they cannot be 
independently manipulated to change the image presentation. Therefore, they have lim-
ited utility in the analytical context, although they provide value for their effectiveness in 
visual interpretations.

Stated broadly, image archives for fine- resolution imaging systems began in the late 
1990s, so they will not have the comprehensive temporal or geographic scope of those 
moderate- resolution systems due to smaller footprints and acquisition strategies designed 
to respond to customer requests rather than to systematically build geographic coverage. 
The archives of the numerous commercial enterprises are not centralized, and users may 
find that some organizations have changed as they were reorganized or acquired by other 
enterprises.

Fine- resolution satellite imagery has created viable alternatives to aerial photogra-
phy, particularly in remote regions where the logistics of aerial photography may generate 
high costs. Fine- resolution satellite imagery has found important application niches for 
mapping of urban utility infrastructure, floodplain mapping, engineering and construc-
tion analysis, topographic site mapping, change detection, transportation planning, and 
precision agriculture.
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In the following capsule descriptions of fine- resolution systems, readers should refer 
to websites of companies that operate these systems for specifics concerning stereo capa-
bilities, positional accuracy revisit times, and other characteristics that are too intricate 
for the concise descriptions presented here. There are too many high- resolution systems 
in orbit to comprehensively review in this book. Here we highlight selected systems oper-
ated by Maxar and ImageSat International, which include well-known satellite systems, 
several of which originated from stand-alone companies that have merged with the par-
ent company over the years.

GeoEye-1 (Maxar)

GeoEye-1, launched in September 2008 and operated by Maxar, acquires panchromatic 
imagery at 0.41-m resolution and multispectral imagery at 1.65 m. Its footprint is 15.2 
km at nadir.

Band 1: 0.450–0.800 μm (panchromatic)
Band 2: 0.450–0.510 μm (blue)
Band 3: 0.510–0.580 μm (green)
Band 4: 0.655–0.690 μm (red)
Band 5: 0.780–0.920 μm (near infrared)

Details are available at https://satimagingcorp.com/satellite-sensors/geoeye-1.

IKONOS (DigitalGlobe)

The IKONOS satellite system (named from the Greek word for “image”), now decom-
missioned, was launched in September 1999 and operated by DigitalGlobe (now Maxar) 
as the first commercial satellite able to collect submeter imagery (0.80-m resolution in 
panchromatic mode [0.45–0.90 μm] and 3.2-m resolution in multispectral mode):

Band 1: 0.45–0.52 μm (blue)
Band 2: 0.52–0.60 μm (green)
Band 3: 0.63–0.69 μm (red)
Band 4: 0.76–0.90 μm (near infrared)

IKONOS imagery had an image swath of 11.3 km at nadir; imagery was acquired from 
an SSO, with a 10:30 A.M. equatorial crossing. The revisit interval varied with latitude; 
at 40°, repeat coverage could be acquired at about 3 days in the multispectral mode and 
at about 11 to 12 days in the panchromatic mode.

For details, see https://satimagingcorp.com/satellite-sensors/ikonos.

QuickBird (DigitalGlobe)

QuickBird, now decomissioned, launched in October 2001 by DigitalGlobe (now Maxar), 
was able to acquire panchromatic imagery at 0.60-m resolution and multispectral imag-
ery at 2.4-m resolution, with a revisit capability of 3.5 days, depending on latitude. Its 
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footprint at nadir was 16.5 km. It collected both panchromatic and multispectral imag-
ery as follows:

Band 1: 0.45–0.52 μm (blue)
Band 2: 0.52–0.60 μm (green)
Band 3: 0.63–0.69 μm (red)
Band 4: 0.76–0.89 μm (near infrared)
Band 5: 0.45–0.90 μm (panchromatic)

For more information, see https://satimagingcorp.com/satellite-sensors/quickbird.

WorldView-1, -2, -3, and -4 (Maxar)

Maxar’s WorldView satellites have provided high- resolution commercial satellite imagery 
since the launch of WorldView-1 in September 2007. The systems are characterized by 
increasing spatial resolution and number of spectral bands from WorldView-1, -2, and 
-3,  as shown in Table 7.5. WorldView-3 also includes moderate- resolution CAVIS bands 
(Clouds, Aerosols, Vapors, Ice, Snow; 30 m) to map clouds, ice, and snow and to correct 
for aerosols and water vapor. Until it stopped operating in 2019, WorldView-4 was simi-
lar to WorldView-3 in the panchromatic and some VNIR bands.

EROS (ImageSat International)

ImageSat International operates Earth Resources Observation Satellites (EROS), deployed 
in sun- synchronous, near-polar orbits. They are focused primarily on intelligence, home-
land security, and national development missions, but they are also employed in a wide 
range of civilian applications, including mapping, border control, infrastructure plan-
ning, agricultural monitoring, environmental monitoring, and disaster response. EROS 
A (launched in December 2000 and ended in 2016) collected panchromatic imagery at 
1.9-m to 1.2-m resolution. EROS B (launched in April 2006 and still active) acquires 

 TABLE 7.5 Summary of WorldView Satellites

Sensor Operation Description

WorldView-1 September 18, 2007–present 0.5 m panchromatic (PAN) (400–900 nm)

WorldView-2 October 8, 2009–present 0.46 m PAN (450–800 nm), 1.85 m 
multispectral

8 bands in visible, NIR, and red-edge

WorldView-3 August 13, 2014–present 0.31 m PAN (450–800nm), 1.24 m VNIR, 
3.7 m SWIR, 30 m CAVIS

8 VNIR bands (397–1039 nm)
8 SWIR bands (1184–2373 nm)
12 CAVIS bands (405–2245 nm)

WorldView-4 November 11, 2016–January 7, 2019 0.31 m PAN (450–800nm), 1.24 m VNIR
4 VNIR bands

Note: Additional details are available at https://satimagingcorp.com/satellite-sensors.
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panchromatic imagery at 70-cm resolution. Their “next- generation” constellation (EROS 
NG Constellation) has three satellites at 30-cm resolution. More information about these 
systems is available at www.imagesatintl.com/about.

7.7 SMALLSATS

SmallSats are a category of Earth observation satellites defined by their small size, char-
acterized typically by a mass less than 180 kg, a size sometimes compared to that of a 
large refrigerator. Variations are designated by the mass of each device:

Minisatellite: 100–180 kg
Microsatellite: 10–100 kg
Nanosatellite: 1–10 kg
Picosatellite: 0.01–1 kg
Femtosatellite: 0.001–0.01 kg

Early versions of larger SmallSats were designed and launched as early as the 1970s, 
leading to well-known interplanetary satellites, such as Voyagers 1 and 2. For some mis-
sions, they are favored for their inexpensive launch and operational costs. Our interest 
here is in the use of such small systems for Earth observation and some of their early 
applications.

CubeSats, first introduced in Chapter 3, are a subclass of nanosatellites manufac-
tured to specific sizes (Figure 7.6). This concept originated in the 1990s when universities 
developed a standardized template for educational and experimental satellite research. 
The standard CubeSat is based on a 1 unit (1 U), defined as a cube of 10  10  10 cm, 
expandable to form larger variations, such as 1.5, 2, 3, 6 U’s or larger.

A satellite constellation is a system of artificial Earth- orbiting satellites operating 
to achieve a common mission, such as collection of imagery of a specified region of the 

 FIGURE 7.6  CubeSats. Left: PhoneSat 2.5, a CubeSat (roughly 4  4  4 in.) built at NASA’s 

Ames Research Center with components from commercially available smartphones. From NASA 

Ames. Right: Artist’s rendition of a CubeSat in orbit. From NASA, Jet Propulsion Laboratory.
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Earth’s surface, or to observe the same region from different perspectives. Currently, 
CubeSats are recognized for their role in developing satellite constellations.

Planet

Planet (or Planet Labs) operates a constellation of three systems that acquire global high- 
resolution data, with more than 150 satellites. Most of the satellites (over 130 CubeSats) 
are part of PlanetScope, which has been active since 2009 and provides data at 3.7-m 
(resampled to 3-m) resolution in the VNIR wavelengths. Another system, RapidEye, has 
five satellites that provide imagery at 5 m (resampled from 6.5 m) in the visible, red-edge, 
and NIR wavelengths. The third system is SkySat (also known as Terra Bella, or Sky-
Box), a SmallSat system that consists of 15 satellites collecting panchromatic and VNIR 
data. In this system, panchromatic and pansharpened VNIR data are available at 0.5 m 
(resampled from 0.8 m), with normal VNIR at 1-m spatial resolution. More information 
about these systems can be found at www.planet.com/products/planet- imagery.

7.8 LAND OBSERVATION SATELLITE ORBITS

Satellites are placed in orbits tailored to match the mission objectives of each satellite 
and the capabilities of the sensors they carry. Types of orbits were introduced in Chapter 
3. The land observation satellite systems that form the principal focus for this chapter 
are positioned in SSOs, designed such that each orbital pass on the daylight side of the 
Earth is shifted westward each day to minimize variations in solar angle at the satellite’s 
overpass. Figure 7.7 illustrates this concept by showing that, as observed from above the 
North Pole, the orbital plane of the satellite maintains a constant angle with respect to 
the solar beam. Ideally, all satellite images would be acquired under conditions of uni-
form illumination, so that brightnesses of features within each scene could reliably indi-
cate conditions on the ground. In reality, brightnesses recorded by satellite images are not 
directly indicative of ground conditions because differences in latitude, time of day, and 
season lead to variations in the nature and intensity of light that illuminates each scene. 
See Chapters 5 and 6 for further discussion of this issue.

For simplicity, this section describes normal orbits, an idealization based on the 
assumption that the Earth’s gravitational field is spherical, although satellites actually 
follow perturbed orbits, due in part to distortion of the Earth’s gravitational field by 
the Earth’s oblate shape (flattened at the poles and bulging at the equator) and in part 
to influences of lunar and solar gravity, atmospheric drag, and solar wind. A normal 
orbit forms an ellipse with the center of the Earth at one focus (Figure 7.8, left), char-
acterized by an apogee (A; point farthest from the Earth), perigee (P; point closest to 
the Earth), ascending node (AN; point where the satellite crosses the equator moving 
south to north), and descending node (DN; point where the satellite crosses the equator 
passing north to south). For graphical simplicity, the inclination (i) is shown in Figure 
7.8 (right) as the angle that a satellite track forms with respect to the equator at the 
descending node.

Thus, SSOs are designed to reduce variations in illumination by systematically mov-
ing the orbital track westward (precessing) 360° each year. Illumination observed under 
such conditions varies throughout the year but repeats on a yearly basis. Careful selec-
tion of orbital height, eccentricity, and inclination exploit the gravitational effects of the 
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 FIGURE 7.7  Schematic view of the Earth, observed as an orbiting satellite as viewed from above 

the North Pole. An SSO passes over a given point on Earth at the same mean solar time. This effect is 

achieved by selecting an orbital altitude and inclination such that the oblateness of the Earth causes a 

desired precession of the orbit. This orbit has many desirable features, including retention of the same 

angle with respect to the Sun. Adapted from U.S. Geological Survey (USGS). Image by Susmita Sen.
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Earth’s equatorial bulge to cause the plane of the satellite’s orbit to rotate with respect to 
the Earth, to match seasonal motion of the solar beam. That is, the nodes of the satellite’s 
orbit will move eastward about 1° each day (Figure 7.9), so that over a year’s time, the 
orbit will move through a complete 360° cycle. A satellite placed in an SSO will observe 
each part of the Earth within its view at the same local Sun time each day, thereby remov-
ing time of day as a source of variation in illumination. Although optimum local Sun 
time varies with the mission of the specific satellite, most Earth observation satellites are 
placed in orbits designed to acquire imagery between approximately 9:30 A.M. and 10:30 
A.M. local Sun time—a time that provides a trade-off between preferred illumination and 
time of minimum cloud cover (as considered globally).

7.9 DATA ARCHIVES AND INDEXING SYSTEMS  
FOR LAND OBSERVATION SATELLITES

Because of the unprecedented amount of data generated by Earth observation satel-
lite systems, images are organized and indexed using computerized databases. Records 
describing coverages of satellite data, known as metadata, are important to enable users 
to search these vast databases (Mather and Newman, 1995). In the context of remote 
sensing, metadata usually consist of text describing images: dates, spectral regions, qual-
ity ratings, cloud cover, geographic coverage, and so on, for each image or scene. Usually, 
users can examine such archives on the internet. One example archive is Earth Explorer, 
offered by the USGS as an index for USGS and Landsat imagery and cartographic data 
(http://earthexplorer.usgs.gov). In this system, users can specify geographic regions of 

 FIGURE 7.9  An example of a land observation satellite coverage cycle, in this case for Landsats 

1, 2, and 3. Each numbered line designates a northeast- to- southeast pass of the satellite. In a single 

24-hour interval, the satellite completes 14 orbits; the first pass on the next day (orbit 15) is immedi-

ately adjacent to pass 1 on the preceding day.
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interest by using geographic coordinates, by outlining a region on a map, or by enter-
ing a place name. Subsequent screens allow users to select specific kinds of data, specify 
desirable dates of coverage, and indicate the minimum quality of coverage. The result is a 
computer listing that provides a tabulation of coverage meeting the constraints specified 
by the user.

Just as there are numerous and increasing land observation satellites, there are also 
different ways that each government agency or corporation indexes that data so that they 
can be archived, searched, and accessed by their locations. Landsat data are indexed 
according to how scenes are acquired along their orbital paths (described below), and 
there is some overlap at the edges of scenes. Other systems archive and release their data 
according to nonoverlapping tiling grids. For example, the European Space Agency Sen-
tinel-2 system (described above) uses a tiling scheme of 100-km  100-km tiles projected 
into UTM/WGS84. As the spatial resolution becomes coarser, the Earth may be tiled 
according to degrees, using different projections. A good example of this is MODIS, 
which has data products at 250 m, 500 m, 1 km, and 0.05 degrees. For MODIS data, 
there are three projections, depending on intended application (sinusoidal, Lambert azi-
muthal equal area, and geographic latitute/longitude for climate modeling). In general, 
there are too many satellites and different indexing systems to describe fully here, and it 
is more important that the user be aware of how the data are organized for their specific 
application and system of choice. For data archiving and access purposes, most systems 
have a tiling naming convention, such that users can access the data according to the tile 
name (or the path/row for Landsat) or according to a coordinate of interest. The particu-
lars of the Landsat Worldwide Reference Systems are described below because there is 
now such a large archive of Landsat data stored using the system, and because the tiles 
are overlapping.

There are several well-known data archiving systems in which satellite data from dif-
ferent systems can be queried and ordered. One common data portal is the USGS Global 
Visualization Viewer (GloVis, https://glovis.usgs.gov), which allows users to constrain 
the date, cloud cover, scene quality, and so on (Figure 7.10). Two others are EarthEx-
plorer (https://earthexplorer.usgs.gov) and the Copernicus Data and Information Access 
Service (DIAS) (https://sentinel.esa.int/web/sentinel/sentinel- data- access). There are also 
systems such as Google Earth Engine (earthengine.google.com), which archive data and 
allow image processing in the same interface, eliminating the need for massive data trans-
fer and downloads for time series analysis or studies over large regions.

Worldwide Reference Systems

The worldwide reference systems (WRS and WRS-2) are a concise designation of nominal 
center points of Landsat scenes, used to index Landsat scenes by location. The reference 
system is based on a coordinate system in which there are 233 north–south paths cor-
responding to orbital tracks of the satellite and 119 rows representing latitudinal center-
lines of Landsat scenes. A pair of path (E-W) and row (N-S) numbers uniquely identify a 
nominal scene center (Figure 7.11). Because of the drift of satellite orbits over time, actual 
scene centers may not match exactly to path-row locations, but the method provides a 
convenient and effective means of indexing locations of Landsat scenes. The initial WRS 
(WRS-1) was designed for MSS imagery; development of the TM led to a second version, 
WRS-2, tailored to index TM and OLI imagery (see also https://landsat.gsfc.nasa.gov/
about/the-worldwide-reference-system).



 7. Land Observation Satellites 197

 FIGURE 7.10  GloVis screenshot depicting Washington, D.C., and the surrounding area. Users 

can choose the data set (Landsat, Sentinel-2, Orbview-3, Aster, etc.) and set constraints on the date 

range, cloud cover, scene quality, and so on to select images. In this case, the date range is con-

strained from May 1, 2020, to July 21, 2020, with 40% maximum cloud cover. The upper image shows 

Landsat 8 scenes of the Washington, D.C., area (path 15, row 33) and the neighboring scene to the 

west (path 16, row 33). There are four total Landsat scenes in this area for these constraints (i.e., differ-

ent dates). The lower image shows a Sentinel-2 tile for the same area. There are 16 possible Sentinel-2 

tiles in this area for these constraints. From USGS.
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In a single 24-hour interval, the satellite completes 14 orbits; the first pass on the 
next day (orbit 15) is immediately adjacent to pass 1 on the preceding day, which provides 
an indexing system for Landsat imagery (Figure 7.12).

 7.10 INTERNATIONAL CHARTER

The International Charter, now in service for over 20 years, is a cooperative network 
of national governments and commercial satellite organizations that formally agree to 
share, without cost, image data with other nations to support disaster relief (such as 
floods, fire, and earthquakes) (Sivanpillai, Jones, and Lamb, 2017). This international 
network provides an ability to offer reporting covering a range of image dates and image 
scales. The International Charter allows for designation of authorized users qualified to 
use image data. Each agency member has committed resources to support the mission of 
the Charter and mitigate the effects of disasters on human life and property. The Interna-

 FIGURE 7.11  Path-row coordinates for the coterminous United States, which provide an indexing 

system for Landsat imagery. Here, the outline positioned at path 28, row 36 provides an example of 

the position and outline of a Landsat scene. Based on a NASA image.

 FIGURE 7.12  Progressive accumulation of 

Landsat coverage. On successive days, orbital 

tracks begin to fill in gaps left during westward 

displacement of orbits during the previous day. 

After 18 days, progressive accumulation of cov-

erage fills all gaps left on Day 1. This system 

(WRS-2) was designed for Landsats 1–3, applied 

to Landsats 4, 5, and 7, and later to Landsat 8. 

Based on a NASA image.
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tional Charter has provided data to support efforts to address the impacts of catastrophic 
events such as fires, earthquakes, floods, oil spills, and landslides.

In the United States, the USGS is the lead agency for participation in the Inter-
national Charter, calling on governmental and commercial assets to support Charter 
needs. USGS staff have supported coordination, organization, and training of volunteer 
participants to be prepared when emergencies occur. The USGS is able to provide direct 
historical and current satellite data to support disaster management of agencies and inter-
national relief organizations.

As a participant in the International Charter, USGS provides the following forms of 
support:

Submits requests for activation of the International Charter for international 
disasters on behalf of responsible emergency management authorities
Provides access to imagery from U.S. government and commercial resources in 
response to International Charter requests
Provides project manager (PM) services as needed
Supports training and coordination of the global PM network
Supports training and coordination of nonmember authorized users
Provides U.S. representation on International Charter operational and governance 
bodies

For more information, see:

www.disasterscharter.org/web/guest/home;jsessionid=644D24FA6A58EC56F2
F36A5079D98531.jvm1
https://www.usgs.gov/emergency-operations-portal

 7.11 SUMMARY

Today, Earth observation satellites are widely used throughout the world, supporting 
environmental monitoring, agriculture, forestry, water quality, defense and national 
security, urban systems, and many other contributions. Since the launch of Landsat 1, 
multiple new systems have been launched by at least 34 sovereign states to help address 
Earth system questions of national and global concern. Belward and Skøien (2015) offers 
a more complete assessment of the launches of civilian Earth observation statellites. Pub-
lic knowledge of and interest in remote sensing has increased. Digital data for satel-
lite images have contributed greatly to the growth of image processing, pattern recogni-
tion, and image analysis (Chapters 11–15). Satellite observation systems have increased 
international cooperation and collaboration through joint construction and operation of 
ground- receiving stations and through collaboration in the training of scientists.

The history of the U.S. Landsat system, as well as histories of comparable systems of 
other nations, illustrate the continuing difficulties experienced in defining structures for 
financing the development, operation, and distribution costs required for satellite imag-
ing systems. The large initial investments and high continuing operational costs (quite 
unlike those of aircraft systems) resemble those of a public utility. With Landsat data 
having been freely available to the public since 2008, the use of these data has increased 
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exponentially, significantly increasing the public value and allowing for new types of 
multitemporal analysis. In 2015, the U.S. National Geospatial Advisory Committee 
reported that “Landsat is widely considered to be a crucial national asset, comparable to 
the satellite- based GPS system and National Weather Service satellites” (www.usgs.gov/
news/landsat- seen- stunning- return- public- investment). Other systems have adopted a 
similar philosophy (e.g., Sentinel), and data are freely explored and available to users. 
Because of the long-term records of some of the data (i.e., Landsat, MODIS, AVHRR, 
and VIIRS), data continuity is a major concern (and benefit), and long-term funding for 
these systems is an important challenge.

Another concern that has been attracting more and more public attention is the issue 
of personal privacy. As systems provide more or less routine availability of imagery with 
submeter resolution, governmental agencies and private corporations have direct access 
to data that could provide detailed information about specific individuals and their prop-
erty. Although this imagery does not necessarily provide information that is not also 
available through aerial photography, the ease of access and the standardized format of 
satellite data open new avenues for use of such information. Combined with significant 
advancements in “big data” analytics, the real concern should focus not so much on the 
imagery itself as on the effects of combining such imagery with other data from mar-
keting information, census information, and the like. The combination of these several 
forms of information, each in itself rather benign, could develop capabilities that many 
people would consider to be objectionable or even dangerous. Land observation systems 
have benefited from the coordination and collaboration of government and corporate 
partners. In recent years, programs have increased collaborations, seeking consistency 
and continuity.

Technological developments have taken Earth observation from space into new direc-
tions. The focus on miniaturization in the form of SmallSat constellations has enabled 
cheaper, more agile roles for smaller enterprises and tailored Earth observation ques-
tions. Smallsats provide great benefit to certain applications but as yet cannot substitute 
for the value of Landsat- like or broad-scale systems that provide continuity in coverage 
with carefully calibrated systems to answer many important questions about Earth sys-
tem dynamics.

This chapter forms an important part of the foundation necessary to develop topics 
presented in subsequent chapters. The specific systems described here are significant in 
their own right, but they also provide the foundation for understanding other satellite 
systems that operate in the microwave (Chapter 8) and far- infrared (Chapter 10) regions 
of the spectrum. Finally, it can be noted that the discussion thus far has emphasized 
acquisition of satellite data. Little has been said about analysis of these data and their 
applications to specific fields of study. Both topics will be covered in subsequent chapters 
(Chapters 11–15 and 16–21, respectively).

REVIEW QUESTIONS

1. Several satellite systems have a long-term series of global data that are freely available 
to the public (e.g., Landsat, MODIS, VIIRS, AVHRR). What are some science questions 
that can now be investigated using these long-term data that would not be possible with 
only a few dates?
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2. What are some advantages of using satellite imagery, relative to the use of aerial pho-
tography? Can you identify disadvantages?

3. What are some pros and cons of private ownership of high- resolution satellite systems?

4. In some instances, it may be necessary to form a mosaic of several satellite scenes 
by matching images together at the edges. List some of the problems you expect to 
encounter as you prepare such a mosaic.

5. Why are orbits of land observation satellites so low relative to those of communications 
satellites?

6. What are some advantages of SmallSat constellations over more traditional Landsat- like 
or broad-scale systems? What are some disadvantages? Can you list some questions 
that might be better addressed with SmallSat systems?

7. Explain why a satellite image and an aerial mosaic of the same ground area are not 
equally useful, even though image scale might be the same.
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MAJOR TOPICS TO UNDERSTAND

Active Microwave

Geometry of the Radar Image

Look Direction and Look Angle

Wavelength

Penetration of the Radar Signal

Polarization

Interpreting Brightness Values

Interferometric SAR

8.1 INTRODUCTION

This chapter introduces active microwave sensor systems or radars. An active microwave 
sensor forms an example of an active sensor—a sensor that illuminates the Earth’s sur-
face using its own energy. More specifically, an active microwave system broadcasts a 
directed pattern of microwave energy to illuminate a portion of the Earth’s surface, then 
receives the portion scattered back to the instrument. This energy forms the basis for 

 8 Active Microwave



204 II. IMAGE ACQUISITION

the imagery we interpret. Because passive sensors (e.g., photography) form images from 
reflected solar radiation, their use is constrained by weather and time of day. In contrast, 
active sensors generate their own energy, so their use is subject to fewer constraints, and 
they can be used under a wider range of operational conditions. Some of the unique char-
acteristics of active microwave systems include the following:

All- weather capability, constrained only by extreme weather events
Ability to operate free of atmospheric effects and time of day
Ability to record precise details of the transmitted energy they generate (such as 
wavelength, phase, and polarization), which can be matched with characteristics 
of the returned signal
Ability to acquire detailed imagery at great distances

The term radar originated as an acronym for Radio Detection and Ranging and was 
used in U.S. Navy terminology as radar technology assumed a significant role in World 
War II. (Ranging refers to the ability of radars to measure the time required for a trans-
mitted signal to return to the transmitting antenna— basically, a way to measure distance 
with microwave energy.)

Radar imagery, first available for civil applications in the mid-1960s, holds a place in 
the history of remote sensing as the first widely used imaging system that could provide 
a synoptic perspective of large regions (Simpson, 1966). At the time, aerial photography 
of the day was largely acquired at low altitudes because aerial films suitable for high- 
altitude photography were not in widespread use; atmospheric scattering inhibited pho-
tography from altitude, and uneven illumination of aerial photography limited the use of 
aerial mosaics. Thus, the availability of active microwave systems greatly expanded the 
scope of remote sensing.

Active microwave systems transmit microwave signals and then capture the portion 
of the signal returned to the radar antenna (Figure 8.1, left). There are also passive micro-
wave and thermal systems that capture microwave or thermal energy emitted from the 
Earth’s surface (Figure 8.1, right). Thermal passive systems are discussed in Chapter 10.

 FIGURE 8.1  Active and passive remote sensing. Active microwave sensing (left) uses energy 

emitted by the sensor. Passive microwave systems (right) capture energy emitted from the surface at 

microwave wavelengths. Image by Susmita Sen.

Active microwave Passive microwave
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8.2 ACTIVE MICROWAVE

The microwave region of the electromagnetic spectrum extends from wavelengths of 
about 1 mm to about 1 m. This region is, of course, far removed from those in and near 
the visible spectrum, where our direct sensory experience can assist in our interpretation 
of images and data. Thus, a formal understanding of the concepts of remote sensing is 
vital to understanding imagery acquired in the microwave region. Because many aspects 
of the behavior are outside our everyday experience, the study of microwave imagery is 
often a difficult subject for beginning students and requires more attention than is neces-
sary for study of other regions of the spectrum.

Active Microwave Sensors

Active microwave sensors are radar devices— instruments that transmit a microwave sig-
nal and then receive its reflection as the basis for forming images of the Earth’s surface. A 
typical imaging radar system includes a transmitter, a switching mechanism, an antenna, 
a receiver, and a data recorder. Two key components include the transmitter, which gen-
erates powerful repetitive pulses (electromagnetic waves at microwave wavelengths), and 
the antenna, which emits microwave radiation to illuminate a small region of the Earth’s 
surface, and receives the returned signal.

The “ranging” capability of active microwave systems is achieved by measuring the 
time delay between the time a signal is transmitted toward the terrain and the time its 
echo is received. Through its ranging capability (possible only with active sensors), radar 
can accurately measure distances from the antenna to features on the ground. A second 
unique capability, also a result of radar’s status as an active sensor, is its ability to detect 
differences between the transmitted and received signals with respect to frequency, polar-
ization, and phase. Because the sensor transmits a signal of known characteristics, it is 
possible to compare the received signal with the transmitted signal. From such compari-
sons, imaging radars can detect changes in frequencies that provide capabilities that are 
not possible with other sensors.

Origins and History

Foundations for imaging radars were laid by scientists who first investigated the nature 
and properties of microwave and radio energy. Scottish physicist James Clerk Maxwell 
(1831–1879) first defined essential characteristics of electromagnetic radiation; his math-
ematical descriptions of the properties of magnetic and electrical fields prepared the way 
for further theoretical and practical work. In Germany, Heinrich R. Hertz (1857–1894) 
confirmed much of Maxwell’s work and further studied properties and propagation of 
electromagnetic energy in microwave and radio portions of the spectrum. (The hertz, the 
unit for designating frequencies [Chapter 2], is named in his honor.) Hertz was among 
the first to demonstrate the reflection of radio waves from metallic surfaces and thereby 
began research that led to the development of modern radios and radars.

Subsequent research improved the electronics required to produce high-power trans-
missions over narrow wavelength intervals, to carefully time short pulses of energy, and 
to amplify reflected signals. These and other developments led to the rapid evolution of 
radar systems in the years prior to and during World War II. Due to the profound mili-
tary significance of radar technology, World War II provided the context for rapid inno-
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vations in radar capabilities. Thus, the development and refinement of imaging radars is 
linked to military reconnaissance, even though many current applications now focus on 
civil applications.

Characteristics of Active Microwave Systems

An imaging radar operates by transmitting electromagnetic radiation, then receiving the 
radiation reflected/scattered from the Earth’s surface. (We might visualize returned radi-
ation as an “echo” of the original transmitted energy.) It acquires data using an antenna 
array directed laterally to the side of the path of the aircraft or satellite, so that it images 
a strip of land parallel to, and usually at some distance from, the ground track. The key 
to this process relies on an antenna, a metallic structure that can transmit and receive a 
narrow beam of timed electromagnetic pulses.

Initially, imaging radars used externally mounted antennae, aimed to laterally view 
the region to the side of the flight path (hence, the name for these early systems—side- 
looking airborne radar [SLAR]). Real aperture SLAR systems (sometimes referred to as 
brute force systems) are the oldest, simplest, and least expensive of imaging radar sys-
tems. For these systems, the ability to acquire fine detail in the along-track axis derives 
from its ability to focus the radar beam to illuminate a small area. A long antenna, rela-
tive to wavelength, permits the system to focus energy on a small strip of ground, improv-
ing details recorded in the along-track dimension of the image (Figure 8.2).

By the 1960s, release of selected advanced military radar technologies for civil appli-
cations greatly improved the caliber of imagery available for everyday applications. These 
new systems, synthetic aperture radar (SAR), replaced earlier real aperture imaging radar 
technologies. SAR systems are designed to mimic the effect of a longer antenna using 
the motion of the sensor, allowing for higher resolution data with smaller antennas. 

 FIGURE 8.2  Azimuth resolution of a real aperture side-looking airborne radar system. The beam 

width ( ) measures this quality of an imaging radar. Beam width, in relation to range (R), determines 

detail— region 1 at range R1 will be imaged in greater detail than region 2 at greater range R2. Also 

illustrated here are side lobes, smaller beams of microwave energy created because the antenna can-

not be perfectly effective in transmitting a single beam of energy.
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Although SAR systems have greater complexity and are more expensive to manufacture 
and operate than are real aperture systems, they can overcome some of the limitations 
inherent to real aperture systems and are therefore applied in a wider variety of applica-
tions, including observation from Earth- orbiting satellites. Today, because of their many 
advantages, SAR systems form the standard for operational imaging radars.

Here we provide an example of a SAR antenna from the Shuttle Imaging Radar-C/
X-Band Synthetic Aperture Radar (SIR-C/X-SAR) to illustrate some basic features (Fig-
ure 8.3). This antenna, far larger than most SAR systems, is designed to provide a kind 
of multispectral radar image by collecting images at three different wavelengths. One 
antenna operates at L-band (23.5-cm wavelength), one at C-band (5.8-cm wavelength), 
and the third at X-band (3-cm wavelength). Energy transmitted by the L- and C-band 
antennae can be electronically aimed away from the aircraft to view different regions 
within a landscape. (The X-band antenna must be physically [mechanically] aimed to 
orient the X-band beam at the objects or terrain of interest.) For more information, see 
https://earth.esa.int/web/eoportal/satellite-missions/s/sir-c.

The same antenna serves both to transmit the radar signal and to receive its echo 
from the terrain, a capability known as duplexing. The switch initially directs the pulse 
to the antenna, and the echo from the terrain to the receiver. The receiver accepts the 
reflected signal from the antenna, then filters and amplifies as required. Returned signals 
undergo the A-to-D conversion process (as discussed in Chapter 4), to create a digital 
record.

The antenna’s function is to transmit microwave energy and receive returned signals 
(the “echo” mentioned previously) from the landscape. The radar engineer’s challenge is 
to design a narrowly focused beam of microwave energy to the Earth’s surface, focused to 
illuminate a small area on the Earth’s surface to provide detailed spatial resolution. SAR 
uses the motion of the antenna to achieve this (Figure 8.4).

Consider a SAR system that images the landscape as depicted in Figure 8.4. At 1, 
the aircraft is positioned so that a specific region of the landscape is just barely outside 
the region illuminated by the SAR. At 2, it is fully within the area of illumination. At 3, 
it is just at the trailing edge of the illuminated area. Finally, at 4, the aircraft moves so 
that the region falls just outside the area illuminated by the radar beam. SAR operates 
on the principal that objects within a scene are illuminated by the radar over an interval 

 FIGURE 8.3  Synthetic aperture radar (SAR) antenna: large antenna systems (about 12 m in 

length) can be mounted in aircraft (or, in this instance, the Space Shuttle Cargo Bay, designed to 

transmit microwave radiation to the Earth’s surface and to receive echoes from the Earth’s surface). 

This is a depiction of an antenna from the SIR-C/X-SAR Project (NASA, with Italian Space Agency, and 

the German Space Agency).
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of time, as the aircraft moves along its flight path. A SAR system receives the signal scat-
tered from the landscape during this interval and saves the complete history of reflections 
from each object. Knowledge of this history permits reconstruction of the reflected sig-
nals as though they were received by a single antenna occupying physical space abc, even 
though they were in fact received by a much shorter antenna that was moved in a path 
along distance 1234. Thus, the term synthetic aperture denotes the artificial length of the 
antenna, in contrast to the “real” aperture based on the physical length of the antenna 
used with real aperture systems.

In order to implement this strategy, it is necessary to define a practical means of 
assigning separate components of the reflected signal to their correct positions as the spa-
tial representation of the landscape is re- created on the image. This process is, of course, 
extraordinarily complicated if each such assignment must be considered an individual 
problem in unraveling the complex history of the radar signal at each of a multitude of 
antenna positions. Fortunately, this problem can be solved in a practical manner because 
of the systematic changes in frequency experienced by the radar signal as it is scattered 
from the landscape. Objects within the landscape experience different frequency shifts in 
relation to their distances from the aircraft track. At a given instant, objects at the leading 
edge of the beam reflect a pulse with an increase in frequency (relative to the transmitted 
frequency) due to their position ahead of the aircraft, and those at the trailing edge of 
the antenna experience a decrease in frequency (Figure 8.5). This is the Doppler effect, 
often explained by analogy to the change in pitch of a train whistle heard by a stationary 
observer as a train passes by at high speed. As the train approaches, the pitch appears 
higher than that of a stationary whistle due to the increase in frequency of sound waves. 

1 2

3 4a b c

 FIGURE 8.4  SAR systems accumulating a history of backscattered signals from the landscape 

as the antenna moves along the path a-b-c. Image by Susmita Sen.
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As the train passes the observer, then recedes into the distance, the pitch appears lower, 
due to the decrease in frequency. Radar, as an active remote sensing system, is operated 
with full knowledge of the frequency of the transmitted signal. As a result, it is possible 
to compare the frequencies of transmitted and reflected signals to determine the nature 
and amount of frequency shift. Knowledge of frequency shift permits the system to assign 
reflections to their correct positions on the image and to synthesize the effect of a long 
antenna.

One of SAR’s unique and most useful characteristics is its ability to function at night 
or during inclement weather. SAR is often said to possess an “all- weather” capability, 
meaning that it can acquire imagery in all but the most severe weather conditions. The 
microwave energy used for SAR imagery is characterized by wavelengths long enough 
to escape interference from clouds and light rain. Because SAR systems are independent 
of solar illumination, missions using SAR can be scheduled at night or during morning 
or evening hours when solar illumination might be unsatisfactory for acquiring optical 
imagery. This capability is especially important for imaging radars carried by the Earth- 
orbiting satellites described later in this chapter because, for example, they can routinely 
capture conditions in polar regions that experience long periods without solar illumina-
tion.

SAR images typically provide crisp, clear representations of topography and drain-
age (Figure 8.6). Despite the presence of the geometric errors described in the following 
sections, radar images typically provide good positional accuracy, so they can provide 
the basis for accurate maps. Some of the most successful operational applications of SAR 
imagery have occurred in tropical climates, where persistent cloud cover has prevented 
acquisition of aerial photography and satellite imagery. Another important characteristic 
of SAR imagery is its synoptic view of the landscape. SAR’s ability to clearly represent 
the major topographic and drainage features within relatively large regions at moderate 
image scales makes it a valuable addition to our repertoire of remote sensing imagery. 
Furthermore, because it acquires images in the microwave spectrum, SAR may show 

Zero doppler shift

Shift t
oward lower fre

quencies

Shift toward higher frequencies

 FIGURE 8.5  The Doppler effect: frequency shifts experienced by features within the field of view 

of the radar system. Image by Susmita Sen.
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detail and information that differ greatly from that of sensors operating in the visible and 
near- infrared spectra.

8.3 GEOMETRY OF THE RADAR IMAGE

The side- looking character of SAR imagery produces an image geometry that differs 
greatly from that of other remotely sensed images; this geometry establishes radar imag-
ery as a distinctive form of remote sensing imagery. The basics of the geometry of a SAR 
image are illustrated in Figure 8.7. Here the radar beam is represented in vertical cross 
section as the fan- shaped figure at the side of the aircraft. The upper edge of the beam 
forms an angle with a horizontal line extended from the aircraft; this angle is designated 
as the depression angle of the far edge of the image. The upper and lower edges of the 
beam, as they intersect with the ground surface, define the edges of the radar image; the 
forward motion of the aircraft forms what is usually the “long” dimension of the strip 
of radar imagery. The smallest depression angle forms the far-range side of the image. 
The near-range region is the edge nearest to the aircraft. Intermediate regions between 
the two edges are sometimes referred to as midrange portions of the image. Steep terrain 
may hide areas of the imaged region from illumination by the radar beam, causing radar 
shadow. Note that radar shadow depends on topographic relief and the direction of the 
flight path in relation to topography. Within an image, radar shadow also depends on 

 FIGURE 8.6  SAR image of a landscape near Chattanooga, Tennessee, September 1985 

(X-band, horizontal–horizontal [HH] polarization). The shadowing to the west indicates that the air-

craft is illuminating the landscape from the eastern edge of the image, casting terrain shadows in the 

mountain valleys. The image shows topographic relief, open water, dammed river channels, electric 

power generation, topographic relief, urban structures, transportation systems, forested terrain, open 

farmland, bridges, and drainage systems. From USGS.



 8. Active Microwave 211

depression angle so that, given equivalent topographic relief, radar shadow will be more 
severe in the far-range portion of the image, where depression angles are smallest, or for 
those radar systems that use shallow depression angles. A specific radar system is often 
characterized by a fixed range of depression angles.

Radar systems measure distance to a target by timing the delay between a transmit-
ted signal and its return to the antenna (the ranging capability mentioned previously). 
Because the speed of electromagnetic energy is a known constant, the measure of time 
translates directly to a measure of distance from the antenna. Microwave energy travels 
in a straight path from the aircraft to the ground— a path that defines the slant range 
distance, as if one were to stretch a length of string from the aircraft to a specific point 
on the ground as a measure of distance. Image analysts prefer images to be presented in 
ground- range format, with distances portrayed in their correct relative positions on the 
Earth’s surface. Because radars collect all information in the slant-range domain, radar 
images inherently contain geometric artifacts, even though the image display may osten-
sibly appear to match a ground- range presentation.

One such artifact is radar layover (Figure 8.8). At near range, the top of a tall object 
is closer to the antenna than its base. As a result, the echo from the top of the object 
reaches the antenna before the echo from the base. Because radar measures all distances 
with respect to time elapsed between transmission of a signal and the reception of its 
echo, the top of the object appears, in the slant-range domain, to be closer to the antenna 
than does its base. Indeed, it is closer, if only the slant-range domain is considered. How-
ever, in the ground- range domain (the context for correct positional representation and 

 FIGURE 8.7  Geometry of a SAR system. The radar beam illuminates a strip of ground parallel 

to the flight of the aircraft; the reflection and scattering of the microwave signal from the ground forms 

the basis for the image. Image by Susmita Sen.
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for accurate measurement), both the top and the base of the object occupy the same 
geographic position. In the slant-range domain of the radar image, they occupy differ-
ent image positions— a geometric error perhaps analogous to relief displacement in the 
context of aerial photography.

Radar layover is depicted in Figure 8.8. Here the topographic feature ABC is shown 
with AB = BC in the ground- range representation. However, because the radar can posi-
tion A, B, and C only by the time delay with relation to the antenna, it must perceive the 
relationships between A, B, and C as shown in the slant range (image plane). Here A and 
B are reversed from their ground- range relationships, so that ABC is now bac because the 
echo from B must be received before the echo from A.

A second form of geometric error, radar foreshortening, occurs in terrain of modest 
to high relief depicted in the mid- to far-range portion of an image (Figure 8.9). Here 
the slant-range representation depicts ABC in their correct relationships abc, but the dis-
tances between them are not accurately shown. Whereas AB = BC in the ground- range 
domain, ab < bc when they are projected into the slant range. Radar foreshortening tends 
to cause images of terrain features to appear to have steeper slopes than they do in nature 
on the near-range side of the image and to have shallower slopes than they do in nature 
on the far-range side of the feature (Figure 8.10). Thus, a terrain feature with equal fore- 
and backslopes may be imaged to have shorter, steeper, and brighter slopes than it would 
in a correct representation, and the image of the backslope would appear to be longer, 
shallower, and darker than it would in a correct representation. Because depression angle 
varies with position on the image, the amount of radar foreshortening in the image of a 
terrain feature depends not only on the steepness of its slopes, but also on its position on 

 FIGURE 8.8  Radar layover. In the ground- range domain, AB and BC are equal. Because the 

radar can measure only slant-range distances, AB and BC are projected onto the slant-range domain, 

represented by the line bac. The three points are not shown in their correct relationship because the 

slant-range distance from the antenna to the points does not match their ground- range distances. 

Point B is closer to the antenna than is point A, so it is depicted on the image as closer to the edge of 

the image.
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the radar image. As a result, apparent terrain slope and shape on radar images are not 
necessarily accurate representations of their correct character in nature. Care should be 
taken when interpreting these features.

Figures 8.10 and 8.11 also show the sensitivity of radar signals to surface rough-
ness, with rough areas depicted as bright surfaces and smoother areas appearing as dark 
features. In Figure 8.10, the mountains appear bright, while the surrounding basins and 
valleys (Death Valley, California) are dark and smooth. The green areas in the far right of 
the image are the Furnace Creek alluvial fan— gravel deposits that wash down from the 
mountains over time. Several other semicircular alluvial fans are visible along the moun-
tain fronts. The sand dunes near Stovepipe Wells are near the center. A smooth floodplain 
enclosing Cottonball Basin appears dark (as a wrench- shaped feature).

Similarly, Figure 8.11 is a multispectral SAR image showing a region of the Mojave 
Desert in the vicinity of Barstow, California. Barstow is the lighter colored area in the 
lower left quadrant of the image, adjacent and below the sharp bend in the Mojave River, 
which is the blue thread that extends from the lower left to the upper edge of the image.  
At the center of the image, the V- shaped blue area is the Manix Basin, which includes the 
bed of the Mojave River. Within the basin, the orange circular and rectangular patches 
mark irrigated agricultural fields. Sparsely vegetated areas of gravel appear as blue; hills 
and rough gravel deposits appear mostly as shades of orange and brown. The distinctive 
dark patch at the upper left marks the smooth surface of Coyote Dry Lake. A set of elec-
trical power line towers extends from the top of the image to the center. At the left side of 
the image, variations in color on the hills are caused by differences in surface roughness 
related to rock composition.

 FIGURE 8.9  Radar foreshortening. Projection of A, B, and C into the slant-range domain distorts 

the representation of AB and BC, so that ab appears shorter, steeper, and brighter than it should be in 

a faithful rendition, and bc appears longer, shallower in slope, and darker than it should be.
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 FIGURE 8.10  Radar foreshortening, SAR imagery, Death Valley, California. The unnatural 

appearance of the steep terrain illustrates the effect of radar foreshortening, when a radar system 

observes high, steep topography at steep depression angles. The radar observes this terrain from 

the right; radar foreshortening creates the compressed appearance of the mountainous terrain in this 

scene. Elevations range from a low of 70 m (230 ft) in the Valley to a mountaintop high of more than 

3,300 m (10,800 ft) above sea level. In this image, colors represent varied radar channels: red = L 

band horizontally transmitted–horizontally received (LHH) polarization; green = L band horizontally 

transmitted– vertically received (LHV); and blue = C band horizontally transmitted–vertically received 

(CHV). From NASA, Jet Propulsion Laboratory.
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Scientists are using these radar data to address questions about the Earth’s geology, 
including processes that form alluvial fans and their changes through time in response to 
climatic changes and earthquakes. As noted previously, radars illuminate the Earth with 
microwaves, allowing detailed observations at any time, regardless of weather or sunlight 
conditions.

8.4 LOOK DIRECTION AND LOOK ANGLE

Look Direction

Look direction, the direction at which the radar signal strikes the landscape, is impor-
tant in both natural and human-made landscapes. In natural landscapes, look direction 
is especially important when terrain features display a preferential alignment. Look 
directions perpendicular to topographic alignment will tend to maximize radar shadow, 
whereas look directions parallel to topographic orientation will tend to minimize radar 
shadow. In regions of small or modest topographic relief, radar shadow may be desir-
able as a means of enhancing microtopography or revealing the fundamental structure 
of the regional terrain. The extent of radar shadow depends not only on local relief, 
but also on orientations of features relative to the flight path; those features positioned 

 FIGURE 8.11  Multispectral SAR image near Barstow, California, in the Mojave Desert in April 

1994. (Note: north is toward the upper left.) This is from NASA’s Spaceborne Imaging Radar-C/X-Band 

SAR (SIR-C/X-SAR) system that was on the space shuttle Endeavor. Colors are assigned according 

to wavelength and polarization as in Figure 8.10. Red is the C-band (6 cm) horizontally transmitted– 

vertically received (HV); green is the L-band (24 cm) (HH); and blue is the ratio of C-band to L-band 

(HH). From NASA, Jet Propulsion Laboratory.
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in the near-range portion (other factors being equal) will have the smallest shadows, 
whereas those at the far-range edge of the image will cast larger shadows (Figure 8.12). 
In areas of high relief, radar shadow is usually undesirable, as it masks large areas from 
observation.

In landscapes that have been heavily altered by human activities, the orientation of 
structures and land-use patterns are often a significant influence on the character of the 
radar return, and therefore on the manner in which given landscapes appear on radar 
imagery. For instance, if an urban area is viewed at a look direction that maximizes the 
scattering of the radar signal from structures aligned along a specific axis, it will have an 
appearance quite different from that of an image acquired at a look direction that tends 
to minimize reflection from such features.

Look Angle

Look angle, the depression angle of the radar, varies across an image, from relatively 
steep at the near-range side of the image to relatively shallow at the far-range side (Figure 
8.13). The exact values of the look angle vary with the design of specific radar systems, 
but some broad generalizations are possible concerning the effects of varied look angles. 
First, the basic geometry of a radar image ensures that the resolution of the image must 
vary with look angle; at steeper depression angles, a radar signal illuminates a smaller 
area than does the same signal at shallow depression angles. Therefore, the spatial resolu-
tion, at least in the across- track direction, varies with respect to depression angle. It has 
been shown that the sensitivity of the signal to ground moisture is increased as depression 
angle becomes steeper. Furthermore, the slant-range geometry of a radar image means 
that all landscapes are viewed by the radar at oblique angles. As a result, the image tends 
to record reflections from the sides of features. The obliqueness, and therefore the degree 
to which we view sides rather than tops of features, vary with look angle. In some land-
scapes, the oblique view may be very different than the overhead view to which we are 
accustomed in the use of other remotely sensed imagery (Figure 8.13). Such variations in 
viewing angle may contribute to variations in the appearance on radar imagery of other-
wise similar landscapes.

 FIGURE 8.12  Radar shadow. Radar shadow increases as terrain relief increases and depres-

sion angle decreases.
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8.5 WAVELENGTH

Imaging radars normally operate within a small range of wavelengths within the rather 
broad interval defined at the beginning of this chapter. Table 8.1 lists primary subdivisions 
of the active microwave region, as commonly defined in the United States. These divisions 
and their designations have an arbitrary, illogical flavor that is the consequence of their 
origin during the development of military radars, when it was important to conceal the 

LOOK
ANGLE

INCIDENCE ANGLE SMALL INCIDENCE ANGLE LARGE

NEAR RANGE
FAR RANGE

 FIGURE 8.13  Look angle and incidence angle. Image by Susmita Sen.

 TABLE 8.1 Radar Band Wavelengths

Wavelengths

P 30–107 cm

L 15–30 cm

S 7.5–15 cm

C 3.75–75 cm

X 2.40–3.75 cm

Ku 1.67–2.40 cm

K 1.18–1.67 cm

Ka 0.75–1.18 cm

VHF 1–10 m

UHF 10 cm–1 m
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use of specific frequencies for given purposes. To preserve military security, the designa-
tions were designed as much to confuse unauthorized parties as to provide convenience 
for authorized personnel. Eventually, these designations became established in everyday 
usage, and they continue to be used even though there is no longer a secrecy concern. 
Although experimental radars can often change frequency, or sometimes even use several 
frequencies (for “multispectral radar”), operational systems are generally designed to use 
a single wavelength, or a specific set of predesignated wavelengths. Recent operational 
SAR systems have frequently used C, L, P, and X bands. The choice of a specific micro-
wave band has several implications for the nature of the radar image. Penetration of the 
signal into the soil is, in part, a function of wavelength; for given moisture conditions, 
penetration is greatest at longer wavelengths. The longer wavelengths of microwave radi-
ation (relative to visible radiation) mean that imaging radars are insensitive to the usual 
problems of atmospheric attenuation; usually only very heavy rain will interfere with 
transmission of microwave energy.

8.6 PENETRATION OF THE RADAR SIGNAL

In principle, radar signals are capable of penetrating what would normally be consid-
ered solid features, including vegetative cover and the soil surface. In practice, it is very 
difficult to assess the existence or amount of radar penetration in the interpretation of 
specific images. Penetration is assessed by specifying the skin depth, the depth to which 
the strength of a signal is reduced to 1/e of its surface magnitude, or about 37%. Separate 
features are subject to differing degrees of penetration; specification of the skin depth, 
measured in standard units of length, provides a means of designating variations in the 
ability of radar signals to penetrate various substances. In the absence of moisture, skin 
depth increases with increasing wavelength. Thus, optimum conditions for observing 
high penetration would be in arid regions, using long- wavelength radar systems. Penetra-
tion is also related to surface roughness and to incidence angle; penetration is greater at 
steeper angles and decreases as incidence angle increases. We should therefore expect 
maximum penetration at the near-range edge of the image and minimum penetration at 
the far-range portion of the image.

In a practical sense, the effect of varying SAR wavelengths is to highlight differ-
ent features for different environments. Shorter wavelengths tend to scatter from the 
first surface they encounter, while longer wavelengths may penetrate some surfaces. For 
example, in heavily forested regions, images collected at shorter wavelengths may resem-
ble a panchromatic aerial photograph; the X-band microwave signal is scattered from 
the first surface it encounters (the forest canopy). Longer wavelengths (such as P-band 
images) penetrate through the canopy to the reveal features below the vegetation canopy, 
and possibly in some instances below the soil surface, depicting terrain and land-use fea-
tures not visible in imagery collected in the visible region of the spectrum.

Figure 8.14 illustrates an example over the Sahara Desert, collected from Shuttle 
Imaging Radar-A (the first imaging radar in space, launched in 1981) at L-band wave-
lengths (15–30 cm, Table 8.1). This relatively long wavelength, combined with the arid 
environment, favored deep penetration of the radar signal, and its return to the antenna 
from the ancient subsurface drainage system formed when this region of the Sahara expe-
rienced a more humid environment. To illustrate the contrast between the two environ-
ments, the graphic shows the elongated radar image, depicting the subsurface drainage 
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pattern, superimposed over satellite imagery of the surface as seen in the visible spec-
trum. This image, and others like it, revealed the existence of an ancient drainage system 
and the possibility of archaeological evidence of human settlement. In subsequent years, 
similar imagery has provided the basis for archeological studies.

8.7 POLARIZATION

The polarization of a radar signal denotes the orientation of the field of electromagnetic 
energy emitted and received by the antenna. Radar systems can be configured to transmit 
either horizontally or vertically polarized energy and to receive either horizontally or ver-
tically polarized energy as it is scattered from the ground. Unless otherwise specified, an 
imaging radar usually transmits horizontally polarized energy and receives a horizontally 
polarized echo from the terrain. However, some radars are designed to transmit horizon-
tally polarized signals, but to separately receive the horizontally and vertically polarized 
reflections from the landscape. Such systems produce two images of the same landscape 
(Figure 8.15). One is the image formed by the transmission of a horizontally polarized 
signal and the reception of a horizontally polarized return signal. This is often referred to 
as the HH image or the like- polarized mode. A second image is formed by the transmis-
sion of a horizontally polarized signal and the reception of the vertically polarized return; 
this is the HV image or the cross- polarized mode.

By comparing the two images, the interpreter can identify features and areas that rep-
resent regions on the landscape that tend to depolarize the signal. Such areas will reflect 
the incident horizontally polarized signal back to the antenna as vertically polarized 
energy; that is, they change the polarization of the incident microwave energy. Such areas 

 FIGURE 8.14  L-band Shuttle Imaging Radar-A image superimposed on an optical satellite 

image of the Sahara, from November 12, 1981. The L-band signal can penetrate through the arid des-

ert sands, revealing the same region as in its ancient, humid environment. The image pair illustrates 

the ability of the L-band signal to penetrate the dry, sandy, surface and reveal the ancient drainage 

pattern of an earlier humid climate. From NASA, Jet Propulsion Laboratory.
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can be identified as bright regions on the HV image and as dark or dark gray regions on 
the corresponding HH image. Their appearance on the HV image is much brighter due to 
the effect of depolarization; the polarization of the energy that would have contributed to 
the brightness of the HH image has been changed, so it creates a bright area on the HV 
image instead. Comparison of the two images therefore permits detection of those areas 
that are good depolarizers. This same information can be restated in a different way. A 
surface that is an ineffective depolarizer will tend to scatter energy in the same polariza-
tion in which it was transmitted; such areas will appear bright on the HH image and dark 
on the HV image. In contrast, a surface that is a “good” depolarizer will tend to scatter 
energy in a polarization different from that of the incident signal. Such areas will appear 
dark on the HH image and bright on the HV image. Causes of depolarization are related 
to physical and electrical properties of the ground surface. A rough surface, with respect 
to the wavelength of the signal, may depolarize the signal.

Another cause of depolarization is volume scattering from an inhomogeneous 
medium. Such scatter might occur if the radar signal is capable of penetrating beneath 
the soil surface (as might conceivably be possible in some desert areas where vegetation 
is sparse and the soil is dry enough for significant penetration to occur), where it might 
encounter subsurface inhomogeneities, such as buried rocks or indurated horizons.

8.8 INTERPRETING BRIGHTNESS VALUES

Each radar image is composed of many image elements of varying brightness (Figure 
8.16). Variations in image brightness correspond, at least in part, to place-to-place 
changes within the landscape; through knowledge of this correspondence, the image 

 FIGURE 8.15  Radar polarization. Many imaging radars can transmit and receive signals in both 

horizontally and vertically polarized modes. By comparing the like- polarized and cross- polarized 

images, analysts can learn about the characteristics of terrain surfaces. From NASA, Jet Propulsion 

Laboratory.
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interpreter has a basis for making predictions, or inferences, concerning landscape prop-
erties. Unlike passive remote sensing systems, active systems illuminate the land with 
radiation of known and carefully controlled properties. Therefore, in principle, the inter-
preter should have a firm foundation for deciphering the meaning of the image because 
the only “unknowns” of the many variables that influence image appearances are the 
ground conditions— the object of study.

In practice, the interpreter of a radar image faces many difficult obstacles in making 
a rigorous interpretation of a radar image. First, most imaging radars are uncalibrated in 
the sense that brightness values on an image cannot be quantitatively matched to back-
scattering values in the landscape. Typically, returned signals from a terrain span a broad 
range of magnitudes from very low to very high; the ranges in values are often so large 
that they exceed the ability of display systems to accurately portray the actual range of 
values, so the full dynamic range of the brightnesses cannot be viewed. Furthermore, the 
features that compose even the simplest landscapes have complex shapes and arrange-
ments, and are formed from diverse materials of contrasting electrical properties. As 
a result, there are often few detailed models of the kinds of backscattering that should 
in principle be expected from separate classes of surface materials. Direct experience 
and intuition are not always reliable guides to interpretation of images acquired outside 
the visible spectrum. In addition, many images are acquired at very shallow depression 
angles. Since interpreters gain experience from their observations at ground level, or from 
studying overhead aerial views, they may find the oblique radar view from only a few 
degrees above the horizon difficult to interpret.

Speckle

SAR images are subject to fine- textured effects that can create a grainy salt-and- pepper 
effect when inspected in detail. Speckle (formally known as random fading noise) is 

 FIGURE 8.16  Two examples of radar images illustrating their ability to convey detailed informa-

tion about quite different landscapes. Left: Agricultural fields of the Maricopa Agricultural Experi-

ment Station, Phoenix, Arizona (Ku band, spatial resolution about 1 m); varied tones and textures 

distinguish separate crops and growth states. Right: Structures near athletic fields, University of New 

Mexico, Albuquerque (Ku band, spatial information about 1 m). Varied brightness and tones convey 

information about diffuse surfaces, specular reflection, and corner reflectors, each of which carries 

specific meaning within the context of different landscapes. From Sandia National Laboratories. Used 

by permission.
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created by illumination of individual scattering facets that are too small relative to the 
wavelength of the system to be individually resolved. Because the radar signal is coherent 
(transmitted at very narrow range of wavelengths, in phase), the maxima and minima 
of energy scattered by small features tend either to reinforce each other (constructive 
interference) or to suppress each other (destructive interference). When high- amplitude 
peaks of the waveform coincide, they create bright specks. Alternatively, when the high- 
amplitude peaks match the low- amplitude values of the waveforms, they tend to cancel 
each other, creating a dark speck. Because speckle constitutes a form of noise (it does not 
convey useful information), it is usually processed either by multi-look processes that 
illuminate the scene with slightly differing frequencies that produce independent returns, 
which then can be averaged to reduce the effect of the speckle, or by local averaging that 
smooths the speckled effect. The alternative filtering strategies are characterized either as 
nonadaptive or adaptive. Nonadaptive filters require less computation: they apply a sin-
gle filter to the entire image uniformly, whereas the more complex adaptive filters adjust 
to match local properties of the terrain, thereby preserving natural edges and boundaries. 
All strategies, though intended to extract accurate estimates of backscatter, run the risk 
of eliminating genuine high- frequency information within the scene, so they must always 
balance benefits and losses within each image.

The Radar Equation

The fundamental variables influencing the brightness of a region on a radar image are 
formally given by the radar equation:
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Here, Pr designates the power returned to the antenna from the ground surface; R 
specifies the range to the target from the antenna; Pt is the transmitted power;  is the 
wavelength of the energy; and G is the antenna gain (a measure of the system’s ability to 
focus the transmitted energy). All of these variables are determined by the design of the 
radar system and are therefore known or controlled quantities. The one variable in the 
equation that is not thus far identified is , the backscattering coefficient;  is, of course, 
not controlled by the radar system, but by the specific characteristics of the terrain sur-
face represented by a specific region on the image. Whereas  is often an incidental fac-
tor for the radar engineer, it is the primary focus of study for the image interpreter, as 
it is this quantity that carries information about the landscape. The value of  conveys 
information concerning the amount of energy scattered from a specific region on the 
landscape as measured by o, the radar cross section. It specifies the corresponding area 
of an isotropic scatterer that would return the same power as does the observed signal. 
The backscattering coefficient ( o) expresses the observed scattering from a large surface 
area as a dimensionless ratio between two areal surfaces; it measures the average radar 
cross section per unit area. o varies over such wide values that it must be expressed as a 
ratio rather than as an absolute value.

Ideally, radar images should be interpreted with the objective of relating observed o 
(varied brightnesses) to properties within the landscape. It is known that backscattering is 
related to specific system variables, including wavelength, polarization, and azimuth, in 
relation to landscape orientation and depression angle. In addition, landscape parameters 
are important, including surface roughness, soil moisture, vegetative cover, and micro-
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topography. Because so many of these characteristics are interrelated, making detailed 
interpretations of individual variables is usually very difficult. This is in part due the 
extreme complexity of landscapes, which normally are intricate compositions of diverse 
natural and human-made features. Often many of the most useful landscape interpreta-
tions of radar images have attempted to recognize integrated units defined by assem-
blages of several variables rather than to separate individual components. The notion of 
“spectral signatures” is very difficult to apply in the context of radar imagery because of 
the high degree of variation in image tone as incidence angle and look direction change.

Moisture

Moisture in the landscape influences the backscattering coefficient through changes in 
the dielectric constant of landscape materials. (The dielectric constant is a measure of 
the ability of a substance to conduct electrical energy, an important variable determining 
the response of a substance that is illuminated with microwave energy.) Although natural 
soils and minerals vary in their ability to conduct electrical energy, these properties are 
difficult to exploit as the basis for remote sensing because the differences between dielec-
tric properties of separate rocks and minerals in the landscape are overshadowed by the 
effects of even very small amounts of moisture, which greatly change the dielectric con-
stant. As a result, the radar signal is sensitive to the presence of moisture both in the soil 
and in vegetative tissue; this sensitivity appears to be greatest at steep depression angles. 
The presence of moisture also influences effective skin depth; as the moisture content of 
surface soil increases, the signal tends to scatter from the surface. As moisture content 
decreases, skin depth increases, and the signal may be scattered from a greater thickness 
of soil.

Roughness

A radar signal that strikes a surface will be reflected in a manner that depends both on 
characteristics of the surface and properties of the radar wave, as determined by the radar 
system and the conditions under which it is operated. The incidence angle ( ) is defined 
as the angle between the axis of the incident radar signal and perpendicular to the sur-
face that the signal strikes (Figure 8.17). If the surface is homogeneous with respect to its 
electrical properties, and “smooth” with respect to the wavelength of the signal, then the 
reflected signal will be reflected at an angle equal to the incidence angle, with most of the 
energy directed in a single direction (specular reflection).

For “rough” surfaces, reflection will not depend as much on incidence angle, and the 
signal will be scattered more or less equally in all directions (diffuse, or isotropic, scatter-
ing). For radar systems, the notion of a rough surface is defined in a manner considerably 
more complex than that familiar from everyday experience, as roughness depends not 
only on the physical configuration of the surface, but also on the wavelength of the signal 
and its incidence angle (Table 8.2). Consider the physical configuration of the surface to 
be expressed by the standard deviation of the heights of individual facets (Figure 8.17). 
Although definitions of surface roughness vary, one common definition describes a rough 
surface as one in which the standard deviation of surface height (h) exceeds one- eighth of 
the wavelength ( ) divided by the cosine of the incidence angle (cos ):

 8
h

cos  (EQ. 8.2)
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where h is the average height of the irregularities. In practice, this definition means that 
a given surface appears rougher as wavelengths become shorter. Also, for a given wave-
length, surfaces will act as smooth scatterers as incidence angle becomes greater; that is, 
equal terrain slopes will appear as smooth surfaces as depression angle becomes smaller, 
as occurs in the far-range portions of radar images.

Corner Reflectors

The return of the radar signal to the antenna can be influenced not only by moisture 
and roughness, but also by the broader geometric configuration of targets. Objects that 
have complex geometric shapes, such as those encountered in an urban landscape, can 
create radar returns that are much brighter than would be expected based on size alone. 
This effect is caused by the complex reflection of the radar signal directly back to the 
antenna in a manner analogous to a ball that bounces from the corner of a pool table 
directly back to the player. This behavior is caused by objects classified as corner reflec-

 FIGURE 8.17  Measurement of incidence angle (a) and surface roughness (b).

 TABLE 8.2 Surface Roughness Defined for Several Wavelengths

Roughness category K-band (  = 0.86 cm) X-band (  = 3 cm) L-band (  = 25 cm)

Smooth h < 0.05 cm h < 0.17 cm h < 1.41 cm

Intermediate h = 0.05–0.28 cm h = 0.17–0.96 cm h = 1.41–8.04 cm

Data from Jet Propulsion Laboratory (1982).
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tors, which often are in fact corner- shaped features (such as the corners of buildings and 
the alleyways between them in a dense urban landscape), but are also formed by other 
objects of complex shape. Corner reflectors are common in urban areas due to the abun-
dance of concrete, masonry, and metal surfaces constructed in complex angular shapes 
(Figure 8.18). Corner reflectors can also be found in rural areas, formed sometimes by 
natural surfaces, but more commonly by metallic roofs of farm buildings, agricultural 
equipment, and items such as powerline pylons and guardrails along divided highways.

Corner reflectors are important in interpretation of the radar image. They form a 
characteristic feature of the radar signatures of urban regions, and they identify other 
features such as powerlines, highways, and railroads (Figure 8.19). It is important to 
remember that the image of a corner reflector is not shown in proportion to its actual 
size: the returned energy forms a star-like burst of brightness that is proportionately 
much larger than the size of the object that caused it. Thus, they can convey important 
information but do not appear on the image in their correct relative sizes.

8.9 INTERFEROMETRIC SAR

Interferometric SAR (InSAR or IfSAR) is a procedure that can extract elevation or change 
information from multiple SAR images of the same area taken from different positions. 
This capability is based on the unique status of SAR as an active sensor that can compare, 
in detail, its transmitted signal with its echo from the terrain. Thus far, our examination 
of SAR imagery has focused on interpretation of the intensities of energy scattered by the 
terrain. InSAR exploits another characteristic of the SAR energy— its phase information.

Imagine two SAR images of the same region acquired simultaneously from slightly 
different flight (or orbital) tracks. Because SAR is an active sensor, the characteristics 

 FIGURE 8.18  Three classes of reflectors important for interpretation of radar imagery. Very 

smooth surfaces cause specular reflection, typically away from the sensor, and will appear dark on the 

image (as in Figure 8.16). Corner reflectors, caused by abrupt geometric features on the landscape, 

will cause the signal to reflect back toward the sensor and appear very bright in the SAR image.
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of the transmitted signal are known in detail. Since SAR illuminates the terrain with 
coherent radiation of known wavelengths, it is possible to evaluate not only variations 
in brightnesses of the returned signals, but also variations in the phases of the scattered 
signal— that is, the extent to which the peaks of the transmitted waveforms align with 
those of the scattered signal from the terrain. The composite formed by the interaction 
between phases of the transmitted and scattered signals is known as an interferogram, 
which shows the differences in phase between the transmitted and scattered signals. 
Because the positions of the two antennae are known, differences in phase can be trans-
lated to differences in terrain elevation.

The interferogram can be processed to reveal differences in topographic elevation that 
have generated the phase differences, thereby providing an accurate representation of the 
terrain. This analytical process, known as phase unwrapping, generates elevation differ-
ences expressed in multiples of the SAR wavelength (as the process relies on the mathemati-
cal foundations of measuring phase differences) that create contour- like fringes, known as 
wrapped color (Figure 8.20). The most notable example of use of the across- track configu-
ration for the two antennas was the Shuttle Radar Topography Mission (SRTM), in which 
a second antenna was extended from the U.S. Space Shuttle orbiter to complement the 
primary antenna in the shuttle cargo bay. This system permits accurate mapping of a large 
portion of the Earth’s terrain. For example, other variations of this strategy can yield other 
kinds of information. If the two images are collected at different times, such as different 
orbital passes (repeat- pass interferometry), phase differences can reveal such processes as 
tectonic uplift or subsistence, movement of glaciers, or changes in vegetative cover.

 FIGURE 8.19  Corner reflectors seen as a subset of an X-band SAR (TerraSAR- X, 3.1-cm wave-

length) in the Panama Canal. Ships and lock features can be seen as bright corner reflectors, while the 

water acts as a specular reflector (dark and smooth). Vertical displacement can also be clearly seen 

with the three circular towers on shore in the upper right quadrant of the image. From Airbus Defense 

and Space. Used by permission.
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If two images are acquired from the same track at different times (e.g., if two anten-
nas are mounted fore and aft in the same aircraft, or if images are acquired at different 
times within the same orbital track), it is possible to establish a temporal baseline, which 
provides an image pair that can reveal changes that occurred during the interval between 
the acquisition of the two images. In a military context, the objects in motion might be 
vehicles; in a scientific context, the motion might record ocean currents, ice flow in gla-
ciers, or ice floes in polar oceans. The sensitivity of such analyses depends on the nature 
of the temporal baseline, so that very short temporal baselines can record rather rapid 
motion, such as vehicular motion, whereas longer baselines can detect slower speeds, 
such as movement of surface ice in glaciers. Paired antennas operated from a single plat-
form are sensitive to velocities of centimeters per second (e.g., suitable for observing mov-
ing vehicles or ocean waves). Longer temporal baselines (e.g., separate passes within the 
same orbital path) are effective in recording slower speeds, perhaps centimeters per day, 
such as the motion of glacial ice.

A more widespread use of SAR interferometry depends on the acquisition of pairs 
of images of the same region acquired by imaging radars following separate tracks. The 
separation in distance of the two instruments establishes a spatial baseline, which per-
mits measurement of topographic relief. The most favorable case arises when two images 
are acquired on parallel tracks, although analysis is possible with nonparallel tracks, 
provided that the angle of intersection is small.

 FIGURE 8.20  Radar interferometry, Honolulu, Hawaii, February 18, 2000. The Shuttle Radar 

Topography Mission (SRTM) uses two radar antennae to observe the same topography from separate 

positions. Processing of the two sets of microwave returns generates topographic data, shown here 

using the “wrapped color” bands to signify elevation classes. SRTM data have been processed to pro-

vide elevation data for a large proportion of the Earth’s surface. From NASA, Jet Propulsion Laboratory.
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8.10 SUMMARY

Radar imagery is especially useful because it complements the characteristics of images 
acquired in other portions of the spectrum. Aerial photography, for example, provides 
excellent information concerning the distribution and status of the Earth’s vegetation 
cover. The information it conveys is derived from biologic components of plant tissues. 
However, aerial photography gives us little direct information about the physical struc-
ture of the vegetation. In contrast, although active microwave imagery provides no data 
about the biologic component of the plant cover, it does yield detailed information con-
cerning the physical structure of plant communities (Figure 8.21).

Scientists working with radar remote sensing have been interested for years in the 
possibility of observing the Earth by means of imaging radars carried by Earth satellites. 
Whereas real aperture systems cannot be operated at satellite altitudes without unaccept-
ably coarse spatial resolution or the use of impractically large antennas, the synthetic 
aperture principle permits compact radar systems to acquire imagery of fine spatial detail 

 FIGURE 8.21  Contrast between aerial (top) and X-band SAR (bottom) images of the terrain bor-

dering the Rio Grande Valley, south of Albuquerque near Los Lunas, New Mexico. The wooded region 

borders the floodplain, buffering nearby landscapes from flooding. The images also show the levee/

canal that directs the flow of water to the landscapes bordering the river channel. The image shows 

agricultural lands bordering the channel. At distances farther from the river channel, the fertile terrain 

visible here forms an abrupt edge with arid landscapes without the structures, roadways, and agri-

cultural lands visible here. Note these images are oriented with the west at the top. Top: Google Earth 

image, from Landsat/Copernicus. Bottom: X-band SAR, from Sandia National Laboratories.
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at very high altitudes. This capability, combined with the ability of imaging radars to 
acquire imagery in darkness, through cloud cover, and during inclement weather, pro-
vides the opportunity for development of a powerful remote sensing capability, with the 
potential to observe large areas of the Earth’s ocean and land areas that might otherwise 
be unobservable because of remoteness and atmospheric conditions.

We would not expect to replace aerial photography or optical satellite data with 
radar imagery, but we could expect to be able to combine information from microwave 
imagery to acquire a more complete understanding of the character of the vegetative 
cover. Thus, the value of any sensor must be assessed not only in the context of its specific 
capabilities, but also in the context of its characteristics relative to other sensors.

REVIEW QUESTIONS

1. List advantages of the use of radar images relative to images from aerial photography 
and Landsat MSS. Can you identify disadvantages?

2. Imaging radars may not be equally useful in all regions of the Earth. Can you suggest 
certain geographic regions where they might be most effective? Are there other geo-
graphic zones where imaging radars might be less effective?

3. Radar imagery has been combined with data from other imaging systems, such as the 
Landsat MSS, to produce composite images. Because these composites are formed 
from data from two widely separated portions of the spectrum, together they convey 
much more information than either image can alone. Perhaps you can suggest (from 
information already given in Chapters 3 and 6) some of the problems encountered in 
forming and interpreting such composites.

4. Why might radar images be more useful in many less developed nations than in indus-
trialized nations? Can you think of situations in which radar images might be especially 
useful in the industrialized regions of the world?

5. A given object or feature will not necessarily have the same appearance on all radar 
images. List some of the factors that will determine the texture and tone of an object as it 
is represented on a radar image.

6. Why are the steep depression angles of SAR inappropriate for many land areas but well 
suited to oceans? Can you think of advantages for use of steep depression angles in 
some land regions?

7. What problems would you expect to encounter if you attempted to prepare a mosaic 
from several radar images?

8. Why are synthetic aperture radars required for radar observation of the Earth by satel-
lite?

9. Why is the shuttle imaging radar so important in developing a more complete under-
standing of interpretation of radar imagery?
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MAJOR TOPICS TO UNDERSTAND

Profiling Lasers

Scanning (Imaging) Lidars

Types of Lidar

Lidar Data

Selected Lidar Applications

Lidar Data Formats

9.1 INTRODUCTION

Lidar (light detection and ranging) is an active remote sensing system (i.e., a system that 
can generate energy [light] to assess ground features). Lidars generate pulsed laser light 
that can measure distances and generate precise, three- dimensional data describing the 
Earth and its surface features.

Functional components of a lidar system include (1) a laser scanner, (2) a Global 
Positioning System (GPS) with its associated highly accurate clock, and (3) an inertial 
navigation system (INS), typically mounted on aircraft. The laser scanner transmits brief 

 9 Lidar
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laser pulses to the surface (up to about 300,000 per second), which are scattered back to 
the laser scanner. As the system receives returning pulses from the surface, it records the 
time interval required to reach the surface and return. The system can then calculate, for 
each pulse, the distance between the laser scanner and the surface. Lidars can use ultravi-
olet, visible, or near- infrared light to scan objects. Near- infrared and green wavelengths 
are most commonly used for the systems discussed in this chapter.

Lidar can be considered as a technology analogous to radar imagery, in the sense 
that both families of sensors are designed to transmit energy in a narrow range of fre-
quencies, then receive backscattered energy to form images of the Earth’s surface. Both 
classes of instruments are active sensors; that is, they provide their own sources of energy, 
which means they are independent of solar illumination. More importantly, both have 
characteristics of transmitted and returned energy (i.e., the timing of pulses, wavelengths, 
and angles), so that they can be used to assess not only the brightness of backscattered 
energy, but also its angular position, changes in frequency, and timing of reflected pulses. 
Such knowledge means that lidar data, much like data acquired by active microwave sen-
sors, permit extraction of information describing terrain, structures, vegetative features, 
and other features not recorded by optical sensors.

Lidars are based on an application of lasers, using a form of coherent light—light 
that is composed of a very narrow band of wavelengths— very “pure” with respect to 
color. Whereas ordinary light (even if it transmits a specific color) is composed of many 
wavelengths, with a diverse assemblage of waveforms, a laser produces light that is in 
phase (“coherent”), comprised of a narrow range of wavelengths (“monochromatic”) 
(Figure 9.1). Such light can be transmitted over large distances as narrow beams that 
will diverge only slightly, in contrast to light we observe in our everyday experience that 
disperses over distance.

The laser—an acronym for light amplification by stimulated emission of radia-
tion— is an instrument that applies a strong electrical current to a “lasable” material, 
usually crystals or gases, such as rubies, CO2, helium– neon, argon, and other less famil-
iar materials. Such lasable materials have atoms, molecules, or ions that emit light as 
they return to a normal ground state after excitement by a stimulus, such as electricity or 
light. The emitted light forms the coherent beam described above. Each separate material 
provides a specific laser with its distinctive characteristics with respect to wavelength.

The laser provides an intense beam that does not diverge as it travels from the trans-
mitter, a property that can favor applications involving heating, cutting, etching, or illu-

 FIGURE 9.1  Normal (top) and coherent 

(bottom) light.
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mination. Laser pointers, laser printers, CD players, scanners, bar code readers, and 
many other everyday consumer items are based on laser technology. Although imaging 
lasers do not use intense beams, they do exploit the focused, coherent nature of the beam 
to produce focused light. A laser uses mirrored surfaces to accumulate many pulses to 
increase the intensity of the light before it leaves the laser (Figure 9.2).

9.2 PROFILING LASERS

Lasers were invented in the late 1950s and were initially used for scientific inquiry and 
industrial applications. The first environmental uses of lidars were principally for atmo-
spheric profiling: static lasers were mounted to point upward into the atmosphere to 
assess atmospheric aerosols. Solid particles suspended in the atmosphere directed a por-
tion of the laser beam back to the ground, where its density indicated the abundance of 
atmospheric particles. Because lasers can measure the time delay of the backscatter, they 
can assess the clarity of the atmosphere over a depth of several kilometers, providing a 
measure of atmospheric quality.

The first airborne lasers were designed as profiling lasers—lasers aimed directly 
beneath the aircraft to illuminate a single region in the nadir position. (When used pri-
marily to acquire topographic data, such instruments are known as airborne laser altim-
eters.) Forward motion of the aircraft carries the illuminated region forward to view a 
single track directly beneath the aircraft. Echoes from repetitive lidar pulses provide an 
elevation profile of the narrow region immediately beneath the aircraft (Figure 9.3). 
Although lidar profilers do not provide the image formats that we now expect, they 
provide a high density of observations and are used as investigative tools for researchers 
investigating topography, vegetation structure, hydrography, and atmospheric studies, 
among many applications.

 FIGURE 9.2  Schematic diagram of a simple laser. Energy, such as electricity, is applied to a 

substance, such as lasable gases (e.g., nitrogen, helium, neon) or materials (e.g., ruby crystals). When 

the materials return to their normal state, they emit coherent light, which is intensified before release by 

multiple reflections between the mirrored surfaces. Intensified light can then pass through the semi-

transparent mirror to form the beam of coherent light that is emitted by the instrument.
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9.3 SCANNING (IMAGING) LIDARS

By the late 1980s, several technologies matured and converged to create the context for 
development of precision scanning lidar systems that we now know. In this context, lidars 
assumed their current role as remote sensing instruments tailored for collection of imag-
ery of the Earth’s surface. Inertial measurement units (IMUs) enabled precise control 
and recording of orientation of aircraft (roll, pitch, and yaw). GPS could provide accurate 
records of geographic location of an aircraft as it acquired data. Furthermore, develop-
ment of highly accurate clocks permitted the precise timing of lidar pulses required to 
create high- performance lidar scanning systems.

A lidar scanner can transmit up to 300,000 pulses per second, depending on the spe-
cific design and application. A scanning mirror directs the pulses back and forth across 
the image swath beneath the aircraft. The width of the swath is determined by the instru-
ment’s design and the operating conditions of the aircraft. Most imaging lidars use wave-
lengths in the visible or near- infrared regions of the electromagnetic spectrum. Common 
near- infrared wavelengths include 1,024 or 1,064 nm, which are sensitive to vegetation, 
relatively free from atmospheric scattering, and are absorbed by open water. Green wave-
lengths (e.g., 532 nm) are more common for applications with ice and water.

Several alternative designs for imaging lidar instruments are in use (Habib, 2010). 
Figure 9.4 presents a schematic representation of a typical lidar system. (1) The system’s 
laser (coordinated by the electronic component) generates a beam of coherent light, trans-
mitted by a fiber optic cable to (2) a rotating mirror, offset to provide a scanning motion. 
The laser light is directed to fiber optic cables that can be twisted to transmit the light as 
a linear beam (3). The oscillating motion of the mirror scans the laser beam from side to 
side along the cross-track axis of the image, recording many thousands of returns each 

 FIGURE 9.3  Schematic representation of an airborne laser profiler. (a) Acquisition of laser pro-

file; (b) sample data gathered by a laser profiler, illustrating extraction of canopy height from the raw 

profile data.
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second. Because a lidar scanner is well integrated with GPS, IMUs, and timing systems, 
these pulses can be associated with specific points on the Earth’s surface. As the reflected 
portion of the laser beam reaches the lidar aperture, it is received by another system of 
lenses (4) and channeled through fiber optic cables to another scanning lens. (5) It is then 
directed through an optical system to filter light before it is directed to (6) a receiving 
system to accept and direct the signal to the electronics components. The electronics 
coordinate timing of the pulses and permit matching of the signal with data from the 
inertial navigation system and GPS.

Together, such components permit the system to place each returned signal in its 
correct geographic position. Typically, two fiberglass bundles are configured to view the 
ground along a linear path. One transmits laser pulses, and an identical bundle receives 
the echoes. The system operates at such high speed that a large collection of pulses is 
received from each square meter on the terrain. The timing capability of the lidar scan 
permits accurate assessment of distance and elevation, which enables formation of an 
image with detailed and accurate representation of features in the scene.

9.4 TYPES OF LIDAR

There are two main types of lidar technology: analog and photon- counting technology. 
The vast majority of lidar data currently available comes from analog systems designed 
for terrain analysis. Both of these technologies can also be used for water- related analy-
sis, referred to as bathymetric lidar. Most of the lidar systems designed for terrain analy-
sis use laser energy from the NIR wavelengths (1,024 nm or 1,064 nm are common), 
although some do use green wavelengths.

 FIGURE 9.4  Schematic diagram of a lidar scanner. (1) The system’s laser scanner (coordinated 

by the electronic component) generates a beam of light, transmitted by fiber optic cable to (2) a rotat-

ing mirror, offset to provide a scanning motion. The laser light is directed to a bundle of fiber optic 

cables that are twisted to provide a linear beam and then directed through a system of lenses toward 

the ground. The energy received back from the terrain is received by another system of lenses.
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Analog Lidar

By far the most common type of lidar is analog lidar, where the returned lidar pulse is 
recorded as the amount of energy returned over time. Through processing, informa-
tion about the speed of light, the scan angle, and the movement and orientation of the 
aircraft (made possible because of the GPS and IMU systems on the vehicle) are used 
to convert the data into elevation above the Earth’s ellipsoid and the amount of energy 
returned from that elevation. These analog systems store the data as either the entire 
returned waveform, referred to as either waveform lidar systems or discrete returns (1, 2, 
or multiple returns) extracted at specific points within that waveform, referred to as dis-
crete lidar systems. Most available lidar data today are from these analog systems, either 
waveform or discrete. The data are primarily collected from airborne systems, including 
UAVs, but they may also be collected from other vehicles, from backpack systems, or 
systems mounted on a tripod. These systems can collect profiles (typical of earlier lidar 
technology) or scans (most common today). Most of our discussion in this chapter refers 
to scanning analog system technology.

Photon-Counting Lidar

The second type of lidar system, referred to as photon- counting lidar, or quantum lid, 
uses quantum sensors to detect individual photons of light that are returned from the ini-
tial pulse. Photon- counting lidar has numerous technological advantages, with increased 
vertical sensitivity and the possibility of smaller instrumentation. However, the tech-
nology is relatively new, and there are far fewer systems with these types of data. One 
notable exception is the ATLAS instrument on the ICESat-2 satellite, which is designed 
to monitor ice sheet elevation and sea ice thickness. There are also a few airborne systems 
with this technology, which can provide data in incredible detail. However, because of 
the sensitivity of quantum sensors, the data tend to be very noisy, especially when col-
lected from space, with significant returns from the atmosphere. This makes it difficult 
to use the data for the same types of land surface analysis that have become routine 
with analog lidar. Numerous ongoing research efforts are ongoing to remove the “noise” 
(unwanted returns) from the signal for specific applications. Because of the increased 
vertical sensitivity of these systems and the possibility for smaller instrumentation and 
other technological advantages, this type of lidar system will likely become prevalent in 
the coming years.

Bathymetric Lidar

Although bathymetric lidar is essentially the same technology we have described, the 
applications are very different. As discussed in Chapter 2, water typically absorbs most of 
the energy at the NIR wavelengths, so there are very few lidar returns from water if these 
wavelengths are used. However, as noted above, some systems use green light for the lidar 
energy (532 nm is common) or have multiple beams and capture both the green and NIR 
wavelength ranges. At green wavelengths, lidar can penetrate water, and so it may be 
used for bathymetric applications that capture the floor of the water body. Having both 
green and NIR wavelengths (typical for systems intended specifically for bathymetry) 
allows for the capture of the surrounding shoreline terrain and water surface (NIR) and 
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bottom of the water body (green). Note that water penetration by bathymetric lidar is 
further discussed in Chapter 20.

9.5 LIDAR DATA

Lidar systems do not provide imagery in the same sense that we have been discussing with 
aerial photography, optical, or SAR sensors. Rather, they provide locations and ancillary 
data at each location, usually as discrete points or waveforms that describe some portion 
of the returned laser pulse recorded by the lidar system. In the case of scanning lidar 
systems, the data are so dense that it is common to convert either the height information 
or some of the ancillary information (e.g., the intensity of the return energy) into a high- 
resolution raster product and examine it with the same types of software programs used 
for other raster data. These products may be referred to as lidar imagery or a specific 
lidar- derived product.

Figure 9.5 provides a schematic sketch of a lidar system in flight, scanning side-
to-side as the aircraft flies forward along its planned (linear) flight path. The noticeable 
V- shaped gaps occur because of the simultaneous forward motion of the aircraft (Figure 
9.5, top). In reality, actual scan lines are positioned quite close together and frequently 

 FIGURE 9.5  Acquisition of lidar data. Lidar systems acquire data by scanning in the patterns 

suggested by the top diagram; details vary according to specific systems. The pattern of returns can 

then be interpolated to generate a systematic array from the lidar data.
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overlap with those of adjacent flight lines; they can be interpolated to form a dense, sys-
tematic array of pixels, as depicted in the lower section of Figure 9.5.

Discrete Analog Lidar Data

In the case of discrete lidar systems, each recorded lidar return can be precisely posi-
tioned in xyz space to provide a three- dimensional point cloud of position and associated 
attributes (intensity, scan angle, GPS time, etc.). The accuracy of these points will vary 
depending on the specifications of the system, which can be obtained from the manufac-
turer and the conditions on the ground. (Note: Forest cover and other conditions that 
cause GPS multipath errors can decrease locational point accuracy.) For small- footprint 
lidars (the most common type of lidar system), horizontal accuracy might be in the range 
of 20–30 cm, and vertical accuracy in the range of 15–20 cm. This enables the derivation 
of products from lidar data, such as digital elevation models of the ground surface, at 
comparable detail and positional accuracy to those acquired by photogrammetric analy-
sis of aerial photographs.

The available terrain detail will vary based on the lidar pulse density. The lidar pulse 
rate refers to the number of laser pulses emitted by the lidar per second, which can be in 
the hundreds of thousands. This is dependent on the sensor specifications and has tended 
to increase over time, as technology improves. The pulse density refers to the number of 
lidar returns per unit of ground area and is dependent on many factors, including the 
pulse rate, altitude and speed of the plane, and the local terrain (Figure 9.6).

Within the lidar point cloud, primary returns (or first returns) originate from the 
first objects a lidar pulse encounters— which could be the upper surface of a vegetation 
canopy (Figure 9.6), buildings, objects, or the ground. In addition, portions of a pulse 
pass through gaps in the canopy or other pervious surfaces. Some of this energy may 
be returned from features within the encountered object (such as branches in a tree), of 
which some energy may eventually reach the ground. This energy creates echoes known 
as secondary returns (or partial or multiple returns). Therefore, for complex surfaces 
such as forests with multiple canopies, some portions of a pulse might be reflected from 
upper and middle portions of the canopy and other portions from the ground surface at 
the base (Figures 9.7 and 9.8).

 FIGURE 9.6  Representations of differing lidar pulse densities within a 1-m circle, illustrating 

variations in the objectives of the lidar mission. From Parece et al. (2016). Used by permission of Vir-

giniaView.net.
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The resulting data is a three- dimensional point cloud (Figure 9.9). For some applica-
tions, particularly those related to vegetation analysis, researchers will analyze the point 
clouds themselves, to better understand the vertical distribution of points under different 
vegetation conditions (see Chapter 18). In the case of forest analysis, information such 
as canopy height, canopy openness, amount of leaf area, aboveground biomass, forest 
carbon, and other information about the physical shape and arrangement of the trees can 
be calculated from lidar point clouds.

 FIGURE 9.7  Schematic diagrams of primary and secondary lidar returns.

 FIGURE 9.8  First and last lidar returns from a deciduous forest canopy (left) and a coniferous 

forest canopy (right), shown in a two- dimensional profile. Dots near the tops of the diagram represent 

returns that are received first (primary returns), when the pulse encounters the top or near the top of 

the forest canopy, and dots at the lower and central portions of the diagram represent returns received 

later (secondary returns). Note the contrast between dome- shaped canopies formed by crowns of the 

deciduous forest (left) and peaked crowns of the coniferous canopy (right). The coniferous forest has 

only sparse undergrowth, while the deciduous forest is characterized by abundant undergrowth. From 

Sorin Popescu. Used by permission.
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Figure 9.10 provides an example of a lidar profile (a slice extracted from the point 
cloud) of lidar data that contains multiple features of interest and illustrates the level of 
detail contained in the data. Details can be seen about the shape of individual tree crowns, 
the height and slope of building roofs, and the terrain along the profile. If desired, users 
can extract individual features and explore their shape in three dimensions, with mea-
surements. In this example, the ground returns have been identified with a ground detec-
tion algorithm, and they are shown in brown. All other returns are white or gray.

Although the point cloud is useful for vegetation analysis, most applications of lidar 
data use raster- based products that are derived from the points through data processing. 
By far the most common product derived and used from lidar data is an interpolation of 
the ground returns to generate a digital elevation model (DEM) (Figure 9.11). Because 
lidar passes through vegetation and has high point density, lidar- derived DEMs have 
significant detail about the terrain surface and higher accuracy than other data sources 
that have been used in the past.

 FIGURE 9.9  Normalized lidar point cloud for a deciduous forest. Ground level can be seen as 

dark blue points. Points at the top of the canopy are red. Normalization of the point cloud means that 

the ground elevation has been subtracted from all points in the cloud to remove the effect of terrain. 

The lidar is sourced from the National Ecological Observatory Network Mountain Lake Biological Sta-

tion in Virginia. From Elizabeth M. Prior. Used by permission.
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A closer view of the lidar- derived DEM from Figure 9.11 illustrates the detailed ter-
rain information that is available with lidar data (Figure 9.12). Numerous details can 
be observed on the shaded relief of the surface, including a four-lane highway, nearby 
quarry, forested areas, and agricultural lands with a corn crop. Note that the data are 
detailed enough to show individual trees, including along a fence line (left side of the hill-
shade model). The parallel strips visible near the upper right depict mature cornfields— 
another example of the detail recorded by this technology.

Many applications use digital elevation models and topographic maps that existed 
long before lidar data became common. Some of these applications use ancillary informa-
tion, such as contour lines, to provide information about topographic relief, slope, and 
aspect (Figure 9.13). There are industry standards with respect to the required accuracy 
of these products for topographic mapping. It is common practice to derive this ancil-
lary information from lidar data during the data preprocessing stage and provide it as a 
product with the lidar data (at or exceeding required accuracy standards), even though 
the lidar data and the lidar- derived DEMs contain significantly more detail.

For urban applications, it is also common to extract information such as building 
footprints and their associated heights from the lidar first returns, in addition to pro-
viding the ground elevation in the DEM (Figure 9.14). It is also possible to generate an 
elevation model of the surface, which includes the heights of objects; these products are 

 FIGURE 9.10  Example of a lidar profile. This lateral view depicts tree canopies, dwellings, and a 

gentle downhill slope left to right, revealing a slight variation in terrain relief. From Parece et al. (2016, 

pp. 159, 160). Used by permission of VirginiaView.net.

 FIGURE 9.11  Top: Lidar- derived digital elevation model depicting terrain near Wytheville, Vir-

ginia, where brightness indicates relative elevation. Bottom: Lidar- derived shaded relief of the same 

area, generated using a hill- shading algorithm. This enables a view of the surface with shadow effects. 

From Virginia Department of Transportation. Copyright © 2003 Commonwealth of Virginia. Used by 

permission.
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(a) (b) (c)

 FIGURE 9.12  Portions of the lidar- derived DEM and hillshade model from Figure 9.11 enlarged 

to depict detail. Left: The digital elevation model, with darker areas corresponding to lower elevation. 

Right: The hillshade model (or shaded relief) of the same area with shadow effects. Note the very fine 

spatial detail of the terrain, including individual trees and microtopography. From Virginia Department 

of Transportation. Copyright © 2003 Commonwealth of Virginia. Used by permission.

 FIGURE 9.13  (a) High- resolution orthorectified camera imagery from 2015 of buildings and trees 

at the Mountain Lake Biological Station in Virginia. (b) Lidar last returns from 2015 (blue) displayed 

over the same imagery. Note the high density of points, which provides significant detail regarding 

three- dimensional structure. (c) 5-m contours derived from the last return points. Users can generate 

contours at intervals of their choice. Provisional data from National Ecological Observatory Network 

(2021a, 2021b).
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referred to as digital surface models (DSMs). Both DEMs and DSMs are raster products 
derived from lidar (similar to images) and are elevations relative to the Earth’s ellipsoid. 
If they are subtracted, a third raster product will be generated that contains the heights 
above the ground.

Waveform Data

Waveform data provide significantly more information about the interaction of the lidar 
pulse with features on the surface. Although many systems collect waveform data, as a 
practical matter the applications for the waveform itself are relatively few other than for 
research. Instead, scientists have developed algorithms to process the raw lidar wave-
form and extract relative heights. Figure 9.15 shows a waveform of the boreal forest in 
northern Ontario, Canada, collected by the Global Ecosystem Dynamics Investigation 
(GEDI) profiling lidar that is currently operating from the International Space Station 
(ISS). The large spike in the waveform, near the bottom orange dashed line, represents 
the interaction of the waveform with the ground. The other nodes between the dashed 
lines characterize the vertical structure of the canopy (i.e., a representation of the trunks, 
branches, and foliage). Readers should keep in mind that this level of detail is available 
for all 470 samples that make up the graph in Figure 9.16. This information is valuable 
for scientists, particularly those who are interested in forest vertical structure and how 
it is changing.

Algorithms have been developed to identify heights that indicate a more significant 
return from a feature, referred to as relative heights (RH), where RH100 would represent 
the height of 100% aboveground energy return— in other words, the height of the top of 
a feature such as a forest canopy. RH0 would represent the ground, and RH25, RH50, 
and RH75 would represent some intermediate height, conceptually similar to multiple 
returns in the discrete systems described above. The algorithm used to process the wave-
form in Figure 9.15 identified the following relative heights, which are seen at sample 
number 442 in Figure 9.16: RH100 = 13.7 m (top orange dashed line in Figure 9.15); 

 FIGURE 9.14  Left: Portion of a 2014 image from the U.S. Department of Agriculture National 

Agriculture Imagery Program (NAIP) over buildings on the Virginia Tech campus in Blacksburg, Vir-

ginia. Middle: A model of heights above ground (m) derived from lidar data. This model was created by 

subtracting a lidar- derived DSM from a lidar- derived DEM. The effects of terrain are removed, enabling 

the determination of feature heights, which include trees and buildings. Right: A three- dimensional 

viewing perspective of the same height model. From NAIP (left image). Middle and right image derived 

from 2017 lidar data provided by the USGS.
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 FIGURE 9.15  GEDI Level 1B RX waveform for sample 442 in Figure 9.16. The two dashed 

orange lines represent the approximate portion of the waveform that interacted with the boreal for-

est. The top orange dashed line represents the top of the canopy, at approximately 13.7 m above the 

ground. The largest spike in the waveform is caused by the ground, which causes the largest amount 

of energy return to the sensor. The signal above and below the dashed lines are considered back-

ground noise and are filtered out by the data processing algorithm.
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 FIGURE 9.16  Example of relative heights extracted from waveform lidar collected by the GEDI 

system from the International Space Station (ISS) on August 7, 2019. The orbital path of the ISS passed 

over the boreal forest in northern Ontario, Canada. The graph shows the relative heights along a short 

transect, where each sample location on the graph can be linked to a full waveform, such as that in 

Figure 9.15. Available for public download in the GEDI level 2b data.
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RH75 = 6.5 m; RH25 = 1.46 m. Users can obtain either the waveforms themselves or 
the processed relative heights, which are much easier to explore. In this example, RH25, 
RH50, RH75, and RH100 are shown along the profile, covering 470 individual wave-
form samples along the ISS ground track over northern Ontario. You can see that the top 
of the forest canopy is at or below 20 m (typical at this latitude), and there are areas along 
the transect that are relatively open, with much lower heights.

9.6 SELECTED LIDAR APPLICATIONS

From the beginning, lidar systems have been successfully applied to address an abundance 
of useful applications— essentially any application that benefits from height information, 
including detailed information about ground surface. Lidars have been effective in their 
ability to support varied functions under a range of conditions, including unfavorable 
weather, day/night conditions, and rough terrain. Common uses of lidar data include 
surveying, mapping of anthropogenic features, particularly urban, transportation, pip-
ing, and communication infrastructure, floodplain and flood risk mapping, archaeology, 
forestry (Chapter 18), coastal resilience (Chapter 20), agriculture, and bathymetry. There 
are many more uses of lidar data—too many to describe here. Below we expand upon 
four common terrain applications of lidar.

Forestry. Lidar data is used extensively in forestry, as it provides a method for char-
acterizing tree size and shape, as well as the ground. This issue is discussed further in 
Chapter 18. Lidar is used to estimate canopy height, aboveground biomass, leaf area, and 
other forest inventory variables. Among other uses, this is important for forest industry, 
carbon monitoring, understanding biodiversity and wildlife habitat, mapping forested 
wetlands, predicting fire risk, and understanding hydrological processes in forests.

Agriculture. Monitoring agricultural lands is a critical component for a farmer’s 
maintenance of agricultural productivity. Lidar observations provide an effective and 
inexpensive resource for monitoring crops during the growing season, supporting farm-
ers’ ability to closely monitor their crops, their status, and their yield. Lidar observations 
can also provide the basis for preparing topographic maps of fields in order to detect 
slopes, ponding, and erosion. Other types of remote sensing used for agriculture are 
described in more detail in Chapter 17.

Geology. Geoscientists have applied lidar imagery, often with GPS, to detect and 
interpret structural geology and geophysics to detect and study faults, as well as to mea-
sure uplift and other changes in terrain.

Archaeology. Lidar has made significant contributions to the detection and map-
ping of archaeological remains by revealing structures beneath forest canopies as well as 
the subtle outlines of building foundations, which are often buried but cause slight eleva-
tion changes detectable in the microtopography of a lidar- derived DEM. There have been 
dramatic archaeology finds in the rainforest, which is often too dense to penetrate with 
other forms of remote sensing. An example is the Mayan archaeology of Guatemala and 
Belize, where lidar revealed a much larger extent of civilization than had been previously 
known (e.g., Chase et al., 2014; Canuto et al., 2018).
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9.7 LIDAR DATA FORMATS

As lidar technology has evolved and the data have become more available and heavily 
used, the way the data are stored has become more standardized. In early years, the data 
were often either in ASCII text format or in a proprietary binary format from the vendor. 
However, the ASCII format was impractical and computationally inefficient, and the pro-
prietary formats were difficult to access. Over time, the binary LAS (LASer) file format 
became an industry standard, and it is now common to store the point and waveform 
in this format. The standards have evolved over time, as technology and data improved, 
and are specified by the American Society for Photogrammetry and Remote Sensing 
(ASPRS). Through each evolution (currently, version ASPRS LAS 1.4), consideration is 
given to legacy compatibility such that earlier lidar data can still be accessed. The format 
is designed to contain the data and the associated attributes. There is also the ability to 
store a reference class for each point, which can be assigned in postprocessing after the 
data are collected (ground, water, vegetation, etc.). The idea is that binary data are stored 
in a computationally efficient yet open and common format, around which software and 
analysis tools can be designed while still maintaining all- important attribute data for 
each point or waveform.

9.8 SUMMARY

Lidar provides a highly accurate, detailed representation of terrain and permits the sepa-
ration of features (such as vegetation) from the terrain, a capability unique among remote 
sensing instruments. Its status as an active sensor permits convenience and flexibility in 
flight planning due to its insensitivity to variations in weather and solar illumination— 
both important constraints on aerial photography.

Lidar data provide detailed, spatial data of high accuracy and precision. Lidar gives 
a direct measurement of surface elevation, with detail and accuracy usually associated 
only with photogrammetric surveys. Some lidar applications replace photogrammetric 
applications of aerial photography. Many applications have focused on urban regions, 
which experience continuing needs for detailed information concerning building densi-
ties, urban structures, and building footprints. Lidar data are used for highway plan-
ning, pipeline routing, and design of wireless communication systems in urban regions. 
Although wall-to-wall lidar coverage of the United States does not exist, several states 
have completed or are planning to acquire statewide lidar coverage to support floodplain 
mapping programs and other efforts with broader geographic reach. Lidar data have also 
been used to study forest structure, as the detailed and accurate information describing 
canopy configuration and structure may permit accurate mapping of timber volume. 
There are now a broad range of environmental applications, in which lidar’s detailed rep-
resentations of terrain have opened avenues of inquiry that are not practical with coarser 
data. As lidar archives acquire increasing geographic scope and temporal depth, the field 
will be able to expand its reach to examine sequential changes in vegetation cover, land 
use, and geomorphology with a precision and accuracy not previously feasible.
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 SOME TEACHING AND LEARNING RESOURCES

Introductory Resources

Introduction to Light Detection and Ranging (LiDAR)—Explore Point Clouds and 
Work with LiDAR Raster Data in R; National Ecological Observatory Network
www.neonscience.org/intro-lidar-r- series

Lidar: Light Detection and Ranging
www.youtube.com/watch?v=hxiRkTtBQp8&fmt=22

Parece, Tammy E., John A. McGee, and James B. Campbell. 2016. Working with 
Lidar Using ArcGIS Desktop. Blacksburg, VA: VirginiaView, 333 pp.

3D Elevation Program— United States Geological Survey (for publicly available lidar 
data)
www.usgs.gov/core- science- systems/ngp/3dep

Examples of Lidar Data, Applications, and Acquisitions

Lidar Surface Shadow Model for Boston’s Back Bay
www.youtube.com/watch?v=s4OhzaIXMhg&NR=1

Pylon Lidar Survey
www.youtube.com/watch?v=Dv6a0KgTbiw

Terrapoint Aerial Services— Lidar Flight Simulation
www.youtube.com/watch?v=GSPcyhSAgTQ&NR=1

LandXplorer: Lidar Scan of London
www.youtube.com/watch?v=F2xy-US46PQ&NR=1

Lidar Survey
www.youtube.com/watch?v=f1P42oQHN_M&feature=related

eCognition Image Analysis: Extracting Tree Canopy from Lidar
www.youtube.com/watch?v=OR1Se18Zd4E

REVIEW QUESTIONS

 1. Review some of the strengths of lidar data relative to other forms of remotely sensed 
data discussed thus far.

 2. Identify some reasons that lidar might be effectively used in combination with other 
data. What difficulties might be encountered in bringing together lidar data and, for 
example, fine- resolution optical satellite imagery?

 3. Many observers believe that the increasing availability of lidar will displace the current 
role of aerial photography for many applications. What are some of the reasons that 
might lead people to believe that lidar could replace many of the remote sensing tasks 
now performed by aerial photography?

 4. Can you identify reasons that aerial photography might yet retain a role, even in com-
petition with the strengths of lidar data?
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 5. If aerial photography is largely replaced by lidar, do you believe that there will still be a 
role for teaching aerial photography as a topic in a university remote sensing course? 
Explain.

 6. Assume for the moment that lidar data become much cheaper, easier to use, and, 
in general, more widely available to remote sensing practitioners. What kinds of new 
remote sensing analyses might become possible, or what existing analyses might 
become more widespread?

 7. The text discusses how lidar data is based on the convergence of several technologies. 
Review your notes to list these technologies. Think about the technologic, scientific, 
social, and economic contexts that foster the merging of these separate capabilities. 
How do you think we can prepare to encourage future convergences of other technolo-
gies (now unknown) that might lead to advances in remote sensing instruments?

 8. Lidar imagery may not be equally useful in all regions of the Earth. Can you suggest 
certain geographic regions or environments in which lidar data might not be effective?

 9. Discuss some of the considerations that might be significant in deciding the season in 
which to acquire lidar data for your region.

10. Identify some of the special considerations that might be significant in planning acquisi-
tion of lidar data in urban regions.
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MAJOR TOPICS TO UNDERSTAND

Thermal Detectors

Thermal Radiometry

Microwave Radiometers

Infrared Thermography

Thermal Properties of Objects

Land Surface Temperature

Geometry of Thermal Images

The Thermal Image and Its Interpretation

10.1 INTRODUCTION

This chapter discusses the uses of radiation from about 7 to 18 μm for remote sensing 
of landscapes, using passive remote sensing, as defined previously in Chapter 2. The 
infrared spectrum was discovered in 1800 by Sir William Herschel (1738–1822), a British 
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astronomer who recognized that surfaces illuminated with wavelengths beyond the red 
region produced temperatures higher than those observed within the visible spectrum. 
Later, he found that these longer wavelengths could be reflected, refracted, absorbed, 
and transmitted in a manner similar to that of visible radiation. His research not only 
advanced the field of astronomy, but has also opened new dimensions for fields such as 
meteorology, medicine, fire suppression, and geosciences.

The infrared region of the spectrum begins at the longwave edge of the visible region 
(at about 0.72 μm), extending to the shortwave edge of the microwave region (at about 1 
mm). The infrared region is notable because of the wide range of wavelengths, its diverse 
range of applications for remote sensing, and the range of sensors.

Six subdivisions of the infrared spectrum are recognized:

The near- infrared (NIR) region (about 0.72–2.5 μm), already introduced in Chap-
ter 2, is noted for its ability to (1) assess the health and vigor of living plant tissue; 
(2) avoid the effects of atmospheric haze and scattering; and (3) sharply define the 
boundary between land and open water. In addition, NIR radiation is used with 
other bands to define several band ratios to detect vegetation health, as discussed 
in later chapters.
The reflective infrared region (0.72–3.0 μm) behaves much like visible light in the 
sense that it is reflected from, or absorbed by, objects. Many of the same kinds of 
films, filters, lenses, and cameras that we use in the visible portion of the spectrum 
can also be used, with modest variations, for imaging in the shortwave infrared 
region.
Within the reflective infrared region, there is sometimes a distinction between the 
photographic infrared (0.72–1.2 μm) and the broader region extending to 3 μm. 
The photographic infrared region identifies wavelengths that can be captured with 
photographic films.
The shortwave infrared (SWIR) region (1.40–3.0 μm) behaves much as visible 
light does, in the sense that it is reflected, which can allow for relatively fine spa-
tial resolution. The SWIR region can penetrate atmospheric smoke and haze, so it 
is effective in monitoring forest and range fires, and in defining regions of active 
burning, detecting hot spots, and estimating severity of burned regions. SWIR 
is significant for its role in detecting the presence of minerals exposed at the soil 
surface, so it is especially useful in searching for minerals.
The mid- infrared (mid-IR) region (3–8 μm), also known as the “thermal infrared” 
or “emissive infrared” region, does not reflect radiation that forms imagery, but 
rather generates and emits it.
The thermal infrared (TIR) region (3–14 μm) also includes longer IR wavelengths 
(far-IR) and transmits heat generated by processes such as geothermal warming, 
forest and range fires, and solar warming of impervious surfaces.

In a remote sensing context, the infrared region’s spectrum presents challenges 
because it encompasses such a broad range of wavelengths, with varied subdivisions, 
applications, and sensing technologies. Landsat and Sentinel sensors have bands specifi-
cally targeted within the SWIR and TIR (for Landsat) regions to capture wavelengths 
that will provide useful information at wavelengths that can minimize atmospheric inter-
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ference. In Figure 10.1, “SWIR” identifies regions for two common SWIR bands. Table 
10.1 provides more specific definitions of the Landsat SWIR and thermal bands.

Remote sensing in the mid- and far-IR is based on a family of imaging devices that 
differ greatly from the cameras and films used in the visible and near- infrared regions. 
The interactions of the mid- and far-IR regions with the atmosphere are also quite dif-
ferent than those of shorter wavelengths. The far-IR regions are free from the scattering 
that is so important in the ultraviolet and visible regions, but absorption by atmospheric 
gases restricts uses of the mid- and far-IR spectrum to specific atmospheric windows. 
Also, information acquired by sensing the far-IR spectrum differs from that acquired 
in the visible and near- infrared regions. Variations in emitted energy in the far- infrared 
region provide information concerning surface temperature and thermal properties of 
soils, rocks, vegetation, and anthropogenic structures.

Visible NIR SWIR Thermal Microwave

0.40 μm 0.72 μm 1.40 μm 3.0 μm 1.0 mm

CAMERAS THERMAL RADAR

 FIGURE 10.1  Infrared and thermal spectrum. This schematic view of the infrared spectrum iden-

tifies principal designations within the infrared region. Labeled regions are not always contiguous 

because some portions of the infrared spectrum are unavailable for remote sensing because of atmo-

spheric effects. Names and spectral limits vary within different disciplines, so details may not agree 

with other references. (This diagram is not drawn to scale.) Image by Susmita Sen.

 TABLE 10.1 Landsat SWIR and TIRS Summary

Band Wavelength (μm) Principal application

Landsat 4, 5, & 7 (TM, ETM+) SWIR1, b5 1.55–1.75 Soil and vegetation moisture; penetrates 
thin clouds

SWIR2, b7 2.09–2.35 Hydrothermally altered rocks associated 
with mineral deposits

TIR 10.40–12.5 Thermal mapping, soil moisture

Landsat 8 OLI SWIR1, b6 1.566–1.651 Soil and vegetation moisture; penetrates 
thin clouds

SWIR2, b7 2.107–2.294

Landsat 8 TIRS (100 m) TIRS1, b10 10.60–11.19 Thermal mapping, soil moisture

TIRS2, b11 11.50–12.51

Note: ETM+ = Enhanced Thematic Mapper Plus; OLI = Operational Land Imager; TIRS = thermal infrared 
sensor; TM = Thematic Mapper. Data from Barsi et al. (2014).
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10.2 THERMAL DETECTORS

Before the 1940s, the absence of suitable instruments limited the use of thermal infrared 
radiation for aerial reconnaissance. Aerial mapping of thermal energy depends on use of 
a sensor that is sufficiently sensitive to thermal radiation such that variations in appar-
ent temperature can be detected by an aircraft moving at considerable speed high above 
the ground. Early instruments for thermographic measurements examined differences in 
electrical resistance caused by changes in temperature. But such instruments could func-
tion only when in close proximity to the objects of interest. Although such instruments 
could be useful in an industrial or laboratory setting, they are not sufficiently sensitive for 
use in the context of remote sensing; they respond slowly to changes in temperature and 
cannot be used at distances required for remote sensing applications.

During the late 1800s and early 1900s, the development of photon detectors (some-
times called thermal photon detectors) provided a practical technology for use of the 
thermal portion of the spectrum in remote sensing. Such detectors are capable of respond-
ing directly to incident photons by reacting to changes in electrical resistance, providing 
a sensitivity and speed of response suitable for use in reconnaissance instruments. By the 
1940s, a family of photon detectors had been developed to provide the basis for electro- 
optical instruments used in several portions of the TIR spectrum.

Detectors are devices formed from substances known to respond to energy over a 
defined wavelength interval, generating a weak electrical signal with a strength related to 
radiances of features in the field of view of the sensor. Often, sensitivity of such materials 
increases to practical levels when they are cooled to very low temperatures to increase 
sensitivity and reduce noise. The electrical current is amplified, then used to generate a 
digital signal that can be employed to form a pictorial image, roughly similar in overall 
form to an aerial photograph.

Detectors have been designed with sensitivities for many of the spectral intervals of 
interest in remote sensing, including regions of the visible, near- infrared, and ultravio-
let spectra. Detectors sensitive in the thermal portion of the spectrum are formed from 
rather exotic materials, such as indium antimonide (InSb) and mercury- doped germa-
nium (Ge:Hg). InSb has a peak sensitivity near 5 μm in the mid- infrared spectrum, and 
Ge:Hg has a peak sensitivity near 10 μm in the far- infrared spectrum (Figure 10.2). 
Mercury cadmium telluride (MCT) is sensitive over the range 8–14 μm. To maintain 
maximum sensitivity, such detectors must be cooled to very low temperatures (–196°C or 
–243°C) using liquid nitrogen or liquid helium.
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 FIGURE 10.2  Sensitivity of some common 

thermal detectors. Image by Susmita Sen.
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The sensitivity of the detector is a significant variable in the design and operation of 
the system. Low sensitivity means that only large differences in brightness are recorded 
(“coarse radiometric resolution”) and most of the finer detail in the scene is lost. High 
sensitivity means that finer differences in scene brightness are recorded (“fine radiometric 
resolution”). The signal- to-noise ratio (SNR or S/N ratio) expresses this concept (Chap-
ter 5). The “signal” in this context refers to differences in image brightness caused by 
actual variations in scene brightness. “Noise” designates variations unrelated to scene 
brightness. Such variations may be the result of unpredictable variations in the perfor-
mance of the system. (There may also be random elements contributed by the landscape 
and the atmosphere, but here “noise” refers specifically to that contributed by the sensor.) 
If noise is large relative to the signal, the image does not provide a reliable representation 
of the feature of interest. Clearly, high noise levels will prevent imaging of subtle features. 
Even if noise levels are low, there must be minimum contrast between a feature and its 
background (i.e., a minimum magnitude for the signal) for the feature to be imaged. 
Also, note that increasing fineness of spatial resolution decreases the energy incident on 
the detector, with the effect of decreasing the strength of the signal. For many detectors, 
noise levels may remain constant even though the level of incident radiation decreases; 
if so, the increase in spatial resolution may be accompanied by decreases in radiometric 
resolution, as suggested in Chapter 5.

10.3 THERMAL RADIOMETRY

A radiometer is a sensor that measures the intensity of radiation received within a speci-
fied wavelength interval and within a specific field of view, as shown by the schematic 
view in Figure 10.3. A lens, or mirror, collects radiation from the ground and then 
focuses it on a detector positioned in the focal plane. A field stop may restrict the field 
of view, and a filter may be used to restrict the wavelength interval that reaches the 
detector. The dichroic mirror in Figure 10.3 serves this purpose by separating specific 
wavelengths.

A characteristic feature of radiometers is that radiation received from the ground 
is compared with a reference source of known radiometric qualities. This process can 
be implemented through the design sketched in Figure 10.3. The slotted rotating mir-
ror depicted in Figure 10.3 (sometimes known as a chopper) is capable of interrupting 
radiation reaching the detector. The chopper consists of a slotted disk, or similar device, 
rotated by an electrical motor so that as the disk rotates, it causes the detector to alter-
nately view the target and the reference source of radiation. Because the chopper rotates 
very fast, the signal from the detector consists of a stream of data that alternately mea-
sures the radiance of the reference source, then radiation from the ground. This signal 
can be used to determine the radiance difference between the reference and the target. 
Because the reference source has known radiance, radiance of the target can then be 
estimated.

Although there are many variations on this design, this description outlines the most 
important components of radiometers. Related instruments include photometers, which 
operate at shorter wavelengths and often lack the internal reference source, and spec-
trometers, which examine radiance over a range of wavelengths. Radiometers can be 
designed to operate at different wavelength intervals, including portions of the infrared 
and ultraviolet spectra. By carefully tailoring the sensitivity of radiometers, scientists 
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have been able to design instruments that are very useful in studying atmospheric gases 
and cloud temperatures. Radiometers used for Earth resources studies are often con-
figured to view only a single trace along the flight path; the output signal then consists 
of a single stream of data that varies in response to differences in radiances of features 
along the flight line. A scanning radiometer can gather data from a corridor beneath the 
aircraft; output from such a system resembles that from some of the scanning sensors 
discussed in earlier chapters.

Instantaneous Field of View

Spatial resolution of a radiometer is determined by an instantaneous field of view (IFOV), 
which is in turn controlled by the sensor’s optical system, the detector, and flying alti-
tude. Radiometers often have relatively coarse spatial resolution. For example, satellite- 
borne radiometers may have spatial resolutions of 60–100 km or more—in part because 
of the desirability of maintaining high radiometric resolution. To ensure that the sensor 
receives enough energy to make reliable measurements of radiance, the IFOV is defined to 
be rather large; a smaller IFOV would mean that less energy would reach the detector, the 
signal would be much too small with respect to system noise, and the measure of radiance 
would be much less reliable.

 FIGURE 10.3  Schematic sketch of an optical– mechanical thermal scanner. The instrument col-

lects radiation from the Earth’s surface. As the rotating mirror (shown here in cross section) rotates, it 

alternatively projects radiation from the Earth’s surface and from the reference source. The lens sys-

tem directs radiation to the dichroic mirror (which splits incoming light by wavelength) to provide both 

thermal and optical data. Image by Susmita Sen.
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The IFOV can be informally defined as the area viewed by the sensor if the motion of 
the instrument were to be suspended so that it records radiation from only a single patch 
of ground. The IFOV can be more formally expressed as the angular field of view ( ) of 
the optical system (Figure 10.4). The projection of this field of view onto the ground sur-
face defines the circular area that contributes radiance to the sensor. Usually, for a par-
ticular sensor it is expressed in radians (r); to determine the IFOV for a particular image, 
it is necessary to know the flying altitude (H) and to calculate the size of the circular area 
viewed by the detector.

From elementary trigonometry it can be seen that the diameter of this area (D) is 
given as

 D = H  (EQ. 10.1)

as illustrated in Figure 10.4. Thus, for example, if the angular field of view is 1.0 milli-
radians (mr) (1 mr = 0.001 r) and the flying altitude (H) is 400 m above the terrain, then:

                 D = H
 D = 400  1.0  0.001
                 D = 0.40 m

Because a thermal scanner views a landscape over a range of angles as it scans from side 
to side, the IFOV varies in size depending on the angle of observation ( ). Near the nadir 
(ground track of the aircraft), the IFOV is relatively small; near the edge of the image, the 

 FIGURE 10.4  Sketch of the geometry of an aerial thermal scanner. The circular shape beneath 

the aircraft depicts the sensor’s instantaneous field of view (IFOV) (representing the size and shape of 

the area viewed by the sensor as it views the nadir). At nadir, the diameter of the IFOV is determined 

by the flying altitude and the instrument’s field of view (H ). As the instrument scans side to side, it 

observes at an angle ( ) in off-nadir positions along the scan path. Image by Susmita Sen.
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IFOV is large. This effect is beneficial in one sense because it compensates for the effects 
of the increased distance from the sensor to the landscape, thereby providing consistent 
radiometric sensitivity across the image.

Other effects are more troublesome. Equation 10.1 defines the IFOV at nadir as H . 
Most thermal scanners scan side to side at a constant angular velocity, which means that, 
in a given interval of time, they scan a larger cross-track distance near the sides of the 
image than at the nadir. At angle , the IFOV measures H sec   in the direction of flight 
and H sec2   along the scan axis. Thus, near the nadir, the IFOV is small and sym-
metrical; near the edge of the image, it is larger and elongated in the direction of flight. 
The variation in the shape of the IFOV creates geometric errors in the representations of 
features— a problem discussed in subsequent sections. The variation in size means that 
radiance from the scene is averaged over a larger area and can be influenced by the pres-
ence of small features of contrasting temperature. Although small features can influence 
data for IFOVs of any size, the impact is more severe when the IFOV is large.

10.4 MICROWAVE RADIOMETERS

Microwave emissions from the Earth convey some of the same information carried by 
thermal (far-IR) radiation. Even though their wavelengths are much longer than those 
of thermal radiation, microwave emissions are related to temperature and emissivity in 
much the same manner as is thermal radiation. Microwave radiometers are sensitive 
instruments tailored to receive and record radiation in the range from about 0.1 mm to 
3 cm. Whereas imaging radars discussed in Chapter 8 are active sensors that illuminate 
the terrain with their own energy, microwave radiometers are passive sensors that receive 
microwave radiation naturally emitted by the environment. The strength and wavelength 
of such radiation are largely functions of the temperature and emissivity of the target. 
Thus, although microwave radiometers, like radars, use the microwave region of the 
spectrum, they are functionally most closely related to the thermal sensors discussed in 
this chapter.

In the present context, we are concerned with microwave emissions from Earth, 
which indirectly provide information pertaining to vegetation cover, soil moisture status, 
and surface materials. Other kinds of studies, peripheral to the field of remote sens-
ing, derive information from microwave emissions from the Earth’s atmosphere or from 
extraterrestrial objects. In fact, the field of microwave radiometry originated with radio 
astronomy, and some of its most dramatic achievements have been in the reconnaissance 
of extraterrestrial objects.

A microwave radiometer consists of a sensitive receiving instrument typically in the 
form of a horn- or dish- shaped antenna that observes a path directly beneath an aircraft 
or satellite. The signal gathered by the antenna is electronically filtered and amplified and 
then displayed as a stream of digital data, or, in the instance of scanning radiometers, as 
an image. As with thermal radiometers, microwave radiometers have a reference signal 
from an object of known temperature. The received signal is compared with the reference 
signal as a means of deriving the radiance of the target.

Examination of data from a microwave radiometer can be complex due to the many 
factors that contribute to a given observation. The component of primary interest is usu-
ally energy radiated by the features within the IFOV; of course, variations within the 
IFOV are lost, as the sensor can detect only the average radiance within this area. The 
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atmosphere also radiates energy, so it contributes radiance, depending on moisture con-
tent and temperatures. In addition, solar radiation in the microwave radiation can be 
reflected from the surface to the antenna.

10.5 INFRARED THERMOGRAPHY

Infrared thermography is the science of recording imagery at the longer wavelengths of 
the infrared spectrum (about 9–14 μm). Thermal scanners collect overhead lateral scans 
that can be assembled to form composite vertical images (Section 10.3). In contrast, ther-
mographic cameras collect snapshot- like images (often with an oblique perspective) in the 
manner of the framing cameras discussed in Chapter 4.

A principal design difference between optical cameras and thermal cameras is com-
position of the lens. Glass lenses designed for optical cameras will reflect thermal radiation 
rather than allow radiation to pass through the lens to form an image. Therefore, thermal 
cameras require designs tailored to accommodate thermal radiation— specifically, to use 
lenses manufactured of materials such as germanium (Ge), chalcogenide glass, zinc sel-
enide (ZnSe), and zinc sulfide (ZnS). Such materials are expensive, especially in the case 
of germanium, and are fragile, so protective coatings are required. The high costs of these 
special lenses form the principal source of the expense of thermographic cameras relative 
to that of more familiar optical cameras.

Although a broad range of thermographic cameras is in use, a specific design is 
widely used for aerial thermal imagery. Forward- looking infrared (FLIR) cameras form 
an important means for collecting aerial thermography. FLIR cameras employed by both 
military and civilian aircraft, as well as other thermal imaging cameras, detect infra-
red radiation typically emitted from a heat source. The “forward- looking” designation 
distinguishes between fixed, forward- looking, thermal imaging systems and the lateral- 
scanning infrared systems used for the aerial scanners and satellite systems previously 
discussed in this chapter. The FLIR camera is typically mounted to view forward to 
acquire an oblique view along the flight path. Since systems using lateral scans are not 
practical for real-time imaging, FLIR technologies expand the range of capabilities for 
thermal imaging. They also provide a real-time capability that is especially important for 
military, law enforcement, and search and rescue applications. Other important applica-
tions include heat loss surveys, monitoring forest and range fires, and security monitor-
ing (Figure 10.5). FLIR cameras facilitate aerial navigation at night and in fog, haze, 
and total darkness, through light fog, light rain, and snow. The distance they can see is 
affected by these atmospheric conditions.

In many applications discussed here, it is not feasible to calibrate instruments to 
measure the temperatures of surfaces. The purpose of many thermal surveys is not so 
much to precisely measure temperatures, but to gauge relative temperatures to identify 
anomalies or abnormalities to highlight features that require further examination using 
other technologies. FLIR images can be displayed in a black-and-white/panchromatic 
format, with lighter tones indicating warmer temperatures and darker grays and blacks 
signifying cooler surfaces. It is also common to display temperature variations in FLIR 
imagery as a density- sliced image (Chapter 5), using a more or less standardized color 
scale (whites, reds, yellows signifying warmer darker shades of blues, then black for 
cooler/cold colors.)
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10.6 THERMAL PROPERTIES OF OBJECTS

All objects at temperatures above absolute zero emit thermal radiation, although the inten-
sity and peak wavelength of such radiation vary with the temperature of the object, as 
specified by the radiation laws outlined in Chapter 2. For remote sensing in the visible and 
NIR spectra, we examine contrasts in the abilities of objects to reflect direct solar radia-
tion to the sensor. For remote sensing in the far-IR spectrum, we sense differences in the 
abilities of objects and landscape features to absorb shortwave visible and near- infrared 
radiation, then to emit this energy as longer wavelengths in the far- infrared region.

Thus, except for geothermal energy, anthropogenic thermal sources, and range and 
forest fires, the immediate source of emitted thermal infrared radiation is shortwave solar 
energy. Direct solar radiation (with a peak at about 0.5 μm in the visible spectrum) is 
received and absorbed by the landscape (Chapter 2). The amount and spectral distribu-
tion of energy emitted by landscape features depend on the thermal properties of these 
features, as discussed below. Contrasts in thermal brightness, observed as varied gray 
tones on the image, can form the basis for identifying specific features.

A blackbody is a theoretical object that acts as a perfect absorber and emitter of 
radiation; it absorbs and reemits all energy that it receives. Although the blackbody is a 
theoretical concept, it is useful in describing and modeling the thermal behavior of actual 
objects. Moreover, it is possible to approximate the behavior of blackbodies in laboratory 
experiments. As explained in Chapter 2, as the temperature of a blackbody increases, 

 FIGURE 10.5  A residential structure with varied degrees of thermal protection. Dark blue sec-

tions indicate a favorable degree of energy retention. In contrast, light blue tones signify energy losses 

at this region of the structure. In winter, this section releases energy through this relatively transparent 

section. Yellow and red colors at window frames indicate higher energy losses through windows. The 

dark blue color at the roof suggests a careful effort to reduce energy losses at the roof. Image by 

Explorer1001 (2013).
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the wavelength of peak emission decreases in accordance with Wien’s displacement law 
(Equation 2.5). The Stefan– Boltzmann law (Equation 2.4) describes mathematically the 
increase in total radiation emitted (over a range of wavelengths) as the temperature of a 
blackbody increases.

Emissivity ( ) is the ratio of emittance of an object to emittance of a blackbody at 
the same temperature:

 = Radiant emittance of an object (EQ. 10.2)
Radiant emittance of a blackbody at the same temperature

(See also Equation 2.3.) The subscript ( ) sometimes used with  signifies that  has been 
measured for specific wavelengths. Emissivity therefore varies from 0 to 1, with 1 signify-
ing a substance with a thermal behavior identical to that of a blackbody. Table 10.2 lists 
emissivities for some common materials. Note that many of the substances commonly 
present in the landscape (e.g., soil, water) have emissivities rather close to 1. Note, how-
ever, that emissivity can vary with temperature, wavelength, and angle of observation.

 TABLE 10.2 Emissivities of Some Common Materials

Material Temperature (°C) Emissivitya

Polished copper 50–100 0.02

Polished brass 200 0.03

Polished silver 100 0.03

Steel alloy 500 0.35

Graphite 0–3,600 0.7–0.8

Lubricating oil (thick film on nickel base) 20 0.82

Snow –10 0.85

Sand 20 0.90

Wood (planed oak) 20 0.90

Concrete 20 0.92

Dry soil 20 0.92

Brick (red common) 20 0.93

Glass (polished plate) 20 0.94

Wet soil (saturated) 20 0.95

Distilled water 20 0.96

Ice –10 0.96

Carbon lamp black 20–400 0.96

Lacquer (matte black) 100 0.97

Note: Data from Hudson (1969) and Weast (1986).
aMeasured at normal incidence over a range of wavelengths.
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Graybodies

An object that has an emissivity less than 1.0 but constant emissivity over all wavelengths 
is known as a graybody (Figure 10.6). A selective radiator is an object with an emissivity 
that varies with respect to wavelength. If two objects in the same setting are at the same 
temperature but have different emissivities, the one having the higher emissivity will 
radiate more strongly. Because the sensor detects radiant energy (apparent temperature) 
rather than the kinetic (“true”) temperature, precise interpretation of an image requires 
knowledge of the emissivities of features shown on the image.

Heat

Heat is the internal energy of a substance arising from the motion of its component atoms 
and molecules. Temperature measures the relative warmth or coolness of a substance. It 
is the kinetic temperature or average thermal energy of molecules within a substance. 
Kinetic temperature, sometimes known as the true temperature, is measured using the 
usual temperature scales, most notably the Fahrenheit, Celsius (centigrade), and Kelvin 
(absolute) scales. Radiant (or apparent) temperature measures the emitted energy of an 
object. Photons from the radiant energy are detected by the thermal scanner.

Heat capacity is the ratio of the change in heat energy per unit mass to the corre-
sponding change in temperature (at constant pressure). For example, we can measure the 
heat capacity of pure water to be 1 calorie (cal) per gram (g), meaning that 1 cal is required 
for each gram to raise its temperature by 1°C. The specific heat of a substance is the ratio 
of its heat capacity to that of a reference substance. Because the reference substance typi-
cally is pure water, specific heat is often numerically equal to its heat capacity. Because a 
calorie is defined as the amount of heat required to raise by 1°C the temperature of 1 g of 
pure water, use of water as the reference means that heat capacity and specific heat will 
be numerically equivalent. In this context, specific heat can be defined as the amount of 
heat (measured in calories) required to raise the temperature of 1 g of a substance 1°C.

Thermal conductivity is a measure of the rate at which a substance transfers heat. 
Conductivity is measured as calories per centimeter per second per degree Celsius, so it 
measures calories required to transfer a change in temperature over specified intervals 

 FIGURE 10.6  Thermal emissivity diagrams for a blackbody, graybody, and whitebody. Image 

by Susmita Sen.
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of length and time. Some of these variables can be integrated into a single measure, 
called thermal inertia (P), which measures the tendency of a substance to resist changes 
in temperature, or, more precisely, the rate of heat transfer at the contact between two 
substances. P is defined as:

 P KC  (EQ. 10.3)

where K is the thermal conductivity (cal · cm–1 · sec–1 · °C–1); C is the heat capacity (cal · 
g–1 · °C–1); and  is the density (g · cm–3). P is then measured in cal · cm–2 · °C–1 · sec–1/2.

In the context of remote sensing, thermal inertia indicates the ability of a surface 
to retain heat during the day and reradiate it at night, thereby signaling the nature of 
the varied thermal properties of the local terrain. The thermal inertia of specific sur-
faces (perhaps at the depths of several centimeters) will be determined by their physi-
cal characteristics, including mineralogy, particle size, compactness and lithification of 
mineral grains, and presence and depth of unconsolidated surface materials, such as 
sand, dust, and other loose sediments. Thus, implementation of remote sensing in the 
context of thermal inertia observes landscapes within the daily cycle of heating and 
cooling. Although a single thermal image provides only an isolated snapshot of relative 
temperatures, a pair of carefully timed thermal snapshots permits observation of tem-
perature changes between the warmest and coolest portions of the day, and therefore 
offers an opportunity to observe differences in the thermal properties of the materials at 
the Earth’s surface.

Temperatures of materials with low thermal inertia change significantly during the 
daily heating- cooling cycle, whereas temperatures of materials with high thermal inertias 
will respond more slowly. Thermal inertia characterizes a material’s ability to conduct 
and store heat, and therefore its ability to retain heat during the day, then reradiate it 
at night. For remote sensing, thermal inertia represents a complex composite of factors 
such as particle size, soil cover, moisture, bedrock, and related terrain features. Relative 
thermal inertia can sometimes be approximated by assessing the amplitude of the diurnal 
temperature curve (i.e., the difference between daily maximum and minimum surface 
temperatures). Assessing differences in thermal inertia of the materials at the Earth’s 
surface, in the context of other characteristics, can help to characterize these surface 
materials and their properties.

10.7 LAND SURFACE TEMPERATURE

Satellite remote sensing has made important contributions, not only to the practice of 
land remote sensing, but also to meteorology and climatology. Assessment of land surface 
temperature (LST) has provided a strategy for estimating the temperature of the Earth’s 
surface through remotely sensed observations (Gillespie, 2014). (In Chapter 7, discussion 
of VIIRS introduced the role of such instruments to collect such data.) LST is most appro-
priate for estimating temperatures of surfaces and for tracking temperature patterns over 
time and is less suitable for assessing the temperatures of specific objects.

Land surface temperature is defined as the average temperature of a specified area of 
the Earth’s surface (i.e., soil surfaces and vegetation canopies), as calculated from mea-
sured radiance observed from above (Jin and Dickinson, 2010). LST estimates are based 
on application of basic radiation laws (Chapter 2) that define relationships between the 
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intensity of emitted radiation and observed temperature. Because observed radiation has 
an intensity proportional to the temperature of the Earth’s surface at the observed site, 
LST can estimate temperatures for specific sites as observed by aerial sensors. Thus, LST 
itself is not measured directly but through observations collected by airborne or space-
borne sensors that record energy radiated in the TIR region of the spectrum. LST has 
been estimated using AVHRR, MODIS (Wan and Dozier, 1996), VIIRS, and Landsat 
data, among others.

Calculating LST

Accurate estimation of LST requires application of relationships between energy emitted 
by a blackbody and peak wavelength of that energy, as an estimate of temperature. Thus, 
for example, Planck’s Law (Section 2.4) can estimate intensity of radiation emitted by a 
blackbody in relation to peak wavelength (or frequency) for the radiation. Then, tempera-
ture estimates based on the radiation’s peak wavelength provide a basis for estimates of 
the temperature of the surface.

Brightness Temperature

As mentioned above, a satellite sensor observes radiation emitted from a defined area at 
the Earth’s surface. By observing the peak wavelength of that radiation, Planck’s Law 
then forms the basis for estimation of the temperature of that object. One way to esti-
mate LST is based on the inversion of Planck’s Law, which defines the temperature (Tb) 
at which a blackbody (e1) would emit radiance that is measured by remote sensing. This 
approach can be applied on a single image band (i.e., the thermal band):
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where  is the middle of the band wavelength range, T is temperature, and B is the spec-
tral radiance at  (Gillespie, 2014).

Model Temperature (Tm)

In some situations, image classification can identify surface composition, from which  
(emissivity) can then be inferred to provide a more refined estimate of LST (van de Griend 
and Owe, 1993). For example, the normalized difference vegetation index (NDVI) has 
been shown to be correlated with emissivity for certain vegetation types (van de Griend 
and Owe, 1993). Also, there are known emissivities for certain materials (e.g., Table 10.1), 
which could be one or more classes of interest.

Color Temperature (Tc)

Color temperature is defined as the temperature that satisfies Planck’s Law measured 
at two different wavelengths. A simple way to estimate it is to calculate the ratio of two 
bands, where emissivity is known. This is most frequently done for night images in order 
to reduce the impact of solar reflection (Gillespie, 2014).
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Generalized Split-Window Algorithm

Another important strategy for estimating LST relies on data collected by two separate 
instruments, using two separate channels with different wavelengths (Wan and Dozier, 
1996). Alternative methods (mentioned above) rely on radiances collected in a single 
spectral channel, which may be effective with a clear atmospheric profile. The split- 
window strategy is based on spectral radiance differences collected by two different 
spectral channels that permit elimination or reduction of atmospheric effects. We note 
that this split- window strategy has been applied to the TIRS instrument for Landsat 8 
(Caselles et al., 1998; Du et al., 2014). In the case of the Landsat 8 TIRS, there are two 
thermal channels at slightly different wavelengths, each at a swath width of 190 km, in 
the longwave infrared region. Thus, both TIRS sensors view the same footprint to record 
thermal radiation emitted by the Earth and its atmosphere (Figure 10.7). The use of these 
two separate thermal channels to view the same footprint permits separation of atmo-
spheric effects from the ground temperature signal, thereby allowing TIRS to separate 
the atmospheric signal from the terrestrial signal, thereby improving the accuracy of the 
estimate of surface temperature. This split- window algorithm strategy produces a high- 
quality thermal signal, relative to alternative approaches.

Difficulties in Estimating LST

Regardless of the algorithmic approach to estimating LST, the variability of most land 
surfaces can result in factors that confound the ability to estimate and validate it. Some 
of these factors include the following:

Varied angles of observation
Sub-pixel variations in temperature and surfaces
Variations in spectral emissivity at different wavelengths

 FIGURE 10.7  Landsat TIRS using two separate thermal channels to view a single footprint, per-

mitting separation of atmospheric effects from estimates of ground surface temperatures, thereby 

improving the accuracy of surface temperature estimates. This strategy, known as the split- window 

algorithm (Caselles et al., 1998), improves the quality of the thermal signal.
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Effects of atmospheric temperature and humidity
Presence of aerosols and clouds

Even under ideal circumstances, temporal variations (diurnal and seasonal) contribute to 
LST variations.

LST for Evapotranspiration and Drought

There are many applications for calculation of LST. One widely used application is the 
examination of LST over time to study evapotranspiration (ET) and drought (Figure 
10.8). Numerous products have been designed for this purpose for different satellite 
platforms, including the MODIS evapotranspiration product (MOD16), which provides 
global estimates of ET at 1 km2 every 8 days (Mu, Zhao, and Running, 2011). Products 
are also available for Landsat for some areas, including the Mapping EvapoTranspiration 
at high Resolution with Internalized Calibration (METRIC) product (Senay et al., 2016; 
Wang, He, and Hu, 2015). This product was designed to calculate per-pixel ET and has 
been used to gauge water use for western regions of the United States, where field sizes 
are large enough to be recorded by the 100m TIRS pixels (Allen et al. 2007; Willardson, 
2014). It has been applied using Landsat 7 thermal data and later Landsat 8 TIRS. The 
basic premise behind these products is that irrigated fields are cooled by evapotranspira-
tion. Therefore, temperatures indicate water use at specific fields or vegetated areas at 
particular times.

 FIGURE 10.8  Classified images of sequential drought, Tuy Phong Province, Vietnam, as 

observed in January, March, and September 2015, illustrating the effectiveness of Landsat surface 

temperature estimates and the normalized difference vegetation index as strategies for monitoring 

drought progression. From Tran et al. (2017). Used by permission of Taylor & Francis.
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10.8 GEOMETRY OF THERMAL IMAGES

Thermal scanners, like all remote sensing systems, generate geometric errors as they 
gather data. These errors mean that representations of positions and shapes of features 
depicted on thermal imagery do not match to their correct planimetric forms. Therefore, 
images cannot be directly used as the basis for accurate measurements. Some errors are 
caused by aircraft or spacecraft instability. As the aircraft rolls and pitches, the scan lines 
lose their correct positional relationships, and of course, the features they portray are not 
accurately represented in the image.

Thermal imagery also exhibits relief displacement analogous to that encountered in 
aerial photography (Figure 10.9). Thermal imagery, however, does not have the single 
central perspective of an aerial photograph, but rather a separate nadir for each scan line. 
Thus, the focal point for relief displacement is the nadir for each scan line or, in effect, the 
trace of the flight path on the ground. Thus, relief displacement is projected from a line 
that follows the center of the long axis of the image. At the center of the image, the sensor 
views objects from directly overhead, and planimetric positions are correct. However, as 
distance from the centerline increases, the sensor tends to view the sides rather than only 
the tops of features, and relief displacement increases. These effects are visible in Figure 
10.9; the tanker and the tanks appear to lean outward from a line that passes through the 
center of the image. The effect increases toward the edges of the image.

Figure 10.9 also illustrates other geometric qualities of thermal line scan imagery. 
Although the scanning mirror rotates at a constant speed, the projection of the IFOV 

 FIGURE 10.9  Relief displacement and tangential scale distortion. (a) Position of the plane rela-

tive to three objects. The center object is directly below the plane (i.e., nadir), so there is no relief dis-

placement for this object and only the top is visible.  (b) Relief displacement in the two outer objects. 

The tops of the objects appear to lean away from the sensor. (c) Tangential scale distortion in scanning 

sensors, caused by the movement of the scanner. The IFOV scans a larger area on the ground at the 

edge of the scene. Image by Susmita Sen.
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onto the ground surface does not move at equal speed (relative to the ground) because of 
the varied distance from the aircraft to the ground. At nadir, the sensor is closer to the 
ground than it is at the edge of the image; in a given interval of time, the sensor scans 
a shorter distance at nadir than it does at the edge of the image. Therefore, the scanner 
produces a geometric error that tends to compress features along an axis oriented perpen-
dicular to the flight line and parallel to the scan lines. In Figure 10.9, this effect, known 
as tangential scale distortion, is visible in the shapes of the cylindrical storage tanks. 
The images of those nearest the flight line are more circular, whereas the shapes of those 
farthest from the flight line (nearest the edge of the image) are compressed along an axis 
perpendicular to the flight line. Sometimes the worst effects can be removed by correc-
tions applied as the film image is generated, although it is often necessary to avoid use of 
the extreme edges of the image.

10.9 THE THERMAL IMAGE AND ITS INTERPRETATION

The image generated by a thermal scanner usually appears as a black-and-white strip 
depicting thermal contrasts in the landscape as variations in gray tones (e.g., Figure 
10.10). Brighter tones (whites and light grays) represent warmer features; darker tones 
(dark grays and blacks) represent cooler features. In some applications, the black-and-
white image may be subjected to density slicing (Chapter 5) or other enhancements that 
assign distinctive hues to specific tones to aid visual interpretation. Often, it is easier for 
the eye to separate differing shades of color rather than variations in gray on the original 
image. Such enhancements are simply manipulations of the basic infrared image; they do 
not represent differences in either the means of acquisition or in the quality of the basic 
information available for interpretation.

 FIGURE 10.10  Thermal image of an oil tanker and petroleum storage facilities near the Delaware 

River, December 19, 1979. This image, acquired at 11:43 P.M., shows discharge of the warm water from 

the refinery into the Delaware River and the thermal patterns arising from operation of a large petro-

leum facility. From Daedalus Enterprises, Inc. Used by permission.
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For any TIR image, the interpreter must always determine (1) whether the image 
at hand is a positive or a negative image, and (2) the time of day that the image was 
acquired. Sometimes it may not be possible to determine the correct time of day from 
information within the image itself; misinterpretation can alter the meaning of gray tones 
on the image and render the resulting interpretation useless.

Thermal scanners are generally uncalibrated, so they show relative radiances rather 
than absolute measurements of radiances. However, some thermal scanners do include 
reference sources that are viewed by the scanning system at the beginning and end of each 
scan. The reference sources can be set at specific temperatures that are related to those 
expected to be encountered in the scene. Thus, each scan line includes values of known 
temperature that permit the analyst to estimate temperatures of objects within the image.

As noted above, certain geometric distortions can confound the interpretation of 
the image. As the sensor views objects near the edge of the image, the distance from the 
sensor to the ground increases. This relationship means that the IFOV is larger near the 
edges of the image than it is at the flight line.

In addition, errors caused by the atmosphere and by the system itself prevent precise 
interpretation of thermal imagery. Typical system errors might include recording noise, 
variations in reference temperatures, and detector errors. Full correction for atmospheric 
conditions requires information that is not usually available in detail. Often, then, it is 
necessary to use approximations, or value-based samples acquired at a few selected times 
and places, which are then extrapolated to estimate values elsewhere. Also, the atmo-
spheric path traveled by radiation reaching the sensor varies with angle of observation, 
which changes as the instrument scans the ground surface. These variations in angle can 
lead to errors in observed values within the image.

Even when accurate measures of radiances are available, it is difficult to derive data 
for kinetic temperatures from the apparent temperature information within the image. 
Derivation of kinetic temperatures requires knowledge of emissivities of the materials. 
In some instances, such knowledge may be available, as the survey may be focused on a 
known area that must be repeatedly imaged to monitor changes over time (e.g., as mois-
ture conditions change). But many other surveys examine areas not previously studied 
in detail, and information regarding surface materials and their emissivities may not be 
known.

Emissivity is a measure of the effectiveness of an object in translating temperature 
into emitted radiation (and in converting absorbed radiation into a change in observed 
temperature). Because objects differ with respect to emissivity, observed differences in 
emitted infrared energy do not translate directly into corresponding differences in tem-
perature. As a result, it is necessary to apply knowledge of surface temperature or of emis-
sivity variations to accurately study surface temperature patterns from thermal imagery. 
Because knowledge of these characteristics assumes a detailed prior knowledge of the 
landscape, such interpretations should be considered as appropriate for examination of a 
distribution known already in some detail rather than for reconnaissance of an unknown 
pattern (e.g., one might already know the patterns of soils and crops at an agricultural 
experiment station but may wish to use the imagery to monitor temperature patterns). 
Often, estimated values for emissivity are used, or assumed values are applied to areas of 
unknown emissivity.

It should also be recognized that the sensor records radiances at surfaces of objects. 
Because radiances may be determined at the surface of an object by a layer perhaps as 
thin as 50 μm, a sensor may record conditions that are not characteristic of the overall 
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subsurface mass, which is often the object of the study. For example, evaporation from a 
water body or a moist soil surface may cool the thin layer of moisture at the contact point 
with the atmosphere. Because the sensor detects radiation emitted at this surface layer, the 
observed temperature may differ considerably from that of the remaining mass of the soil 
or water body. Leckie (1982) estimates that calibration error and other instrument errors 
are generally rather small, although they may be important in some instances. Errors in 
estimating emissivity and in attempts to correct for atmospheric effects are likely to be 
the most important sources of error in quantitative studies of thermal imagery.

In many instances, a thermal image must be interpreted to yield qualitative rather 
than quantitative information. Although some applications do require interpretations of 
quantitative information, there are many others for which qualitative interpretation is 
completely satisfactory. An interpreter who is well informed about the landscape repre-
sented on the image, the imaging system, the thermal behavior of various materials, and 
the timing of the flight is prepared to derive considerable information from an image, 
even though it may not be possible to derive precise temperatures.

The Thermal Landscape

The thermal landscape is a composite of the familiar elements of surface material, topog-
raphy, vegetation cover, and moisture. Various rocks, soils, and other surface materials 
respond differently to solar heating. Thus, in some instances, the differences in thermal 
properties listed in Table 10.2 can be observed in thermal imagery. However, the thermal 
behavior of surface materials is also influenced by other factors. For example, slopes that 
face the Sun will tend to receive more solar radiation than slopes that are shadowed by 
topography. Such differences are, of course, combined with those arising from different 
surface materials. Also, the presence and nature of vegetation alter the thermal behavior 
of the landscape. Vegetation tends to heat rather rapidly but can also shade areas, creat-
ing patterns of warm and cool.

Water tends to retain heat, to cool slowly at night, and to warm slowly during 
the daytime. In contrast, many soils and rocks (if dry) tend to release heat rapidly at 
night and to absorb heat quickly during the daytime. Even small or modest amounts of 
moisture can greatly alter the thermal properties of soil and rock. Therefore, thermal 
sensors can be effective in monitoring the presence and movement of moisture in the 
environment. In any given image, the influences of surface materials, topography, veg-
etation, and moisture can combine to cause complex image patterns. However, often it 
is possible to isolate the effect of some of these variables and therefore to derive useful 
information concerning, for example, movement of moisture or the patterns of differing 
surface materials.

Timing the acquisition of thermal imagery is very important. Optimum times vary 
according to the purpose and subject of the study, so it is not possible to specify univer-
sally applicable rules. Because the greatest thermal contrast tends to occur during the 
daylight hours, sometimes thermal images are acquired in the early afternoon to capture 
the differences in the thermal properties of landscape features. However, in the 3–6 μm 
range, the sensor may record reflected as well as emitted thermal radiation, so daytime 
missions in this region may not be optimum for thermal information. Also, during day-
time, the sensor may record thermal patterns caused by topographic or cloud shadowing. 
Although shadows may sometimes be useful in interpretation, they are more likely to 
complicate analysis of a thermal image, so it is usually best to avoid acquiring heavily 
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shadowed images. In a daytime image, water bodies typically appear as cool relative to 
land, and bare soil, meadow, and wooded areas appear as warm features.

Some of the problems arising from daytime images are avoided by planning missions 
just before dawn. Shadows are absent, and sunlight, of course, cannot cause reflection (at 
shorter wavelengths) or shadows. However, thermal contrast is lower, so it may be more 
difficult to distinguish between broad classes of surfaces based on differences in thermal 
behavior. On such images, water bodies would appear to be warm relative to land. For-
ested areas may also appear to be warm. Open meadows and dry, bare, soil patches are 
likely to appear as cool features.

The thermal images of petroleum storage facilities (Figures 10.10 and 10.11) show 
thermal contrasts that are especially interesting. A prominent feature in Figure 10.10 is 
the bright thermal plume discharged by the tributary to the Delaware River. The image 
clearly shows the sharp contrast in temperature as the warm water flows into the main 
channel, then disperses and cools as it is carried downstream. Note the contrast between 
the full and partially full tanks and the warm temperatures of the pipelines that connect 
the tanker with the storage tanks. Many of the same features are also visible in Figure 
10.11, which shows a partially loaded tanker with clear delineation of the separate storage 
tanks within the ship.

In Figure 10.12, two thermal images depict a portion of the Cornell University cam-
pus in Ithaca, New York, acquired in January (left) and again the following November 
(right). Campus buildings are clearly visible, as are losses of heat through vents in the 
roofs of buildings and at manholes where steam pipes for the campus heating system join 
or change direction. The left-hand image shows a substantial leak in a steam pipe as it 

 FIGURE 10.11  Thermal image of oil tankers and petroleum storage facilities, Delaware River, 

December 1979. Here we see internal compartments in the larger tanker and a broader view of the 

petroleum facility, with details of petroleum storage. Note that this image shows the image nadir, 

oriented left-to-right along the center of the image, with relief displacement revealing the outward- 

oriented sides of the tankers (at the upper edge) and storage tanks (at the lower edge). From Daeda-

lus, Inc. Used by permission.
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 FIGURE 10.12  Two images of a portion of the Cornell University campus, Ithaca, New York, as 

imaged at nighttime, January and November of the same year. These images were acquired to moni-

tor losses of heat in the underground steam transmission system. The large leak at the center right of 

the January image has been repaired in the November image. From Daedalus Enterprises, Inc. Used 

by permission.

January November
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passes over the bridge in the right center of the image. On the right, a later image of the 
same region shows clearly the effects of repair of the defective section.

Figure 10.13 shows Painted Rock Dam, Arizona, as depicted by both an aerial pho-
tograph and a thermal infrared image. The aerial photograph (top) was taken at about 
10:30 A.M., and the thermal image was acquired at about 7:00 A.M. the same day. The 
prominent linear feature is a large earthen dam, with the spillway visible at the lower left. 
On the thermal image, the open water upstream from the dam appears as a uniformly 
white (warm) region, whereas land areas are dark (cool)—a typical situation for the early 
morning hours, before solar radiation has warmed the Earth. On the downstream side of 
the dam, the white (warm) regions reveal areas of open water or saturated soil. The open 
water in the spillway is, of course, expected, but the other white areas indicate places 
where there may be seepage and potentially weak points in the dam structure.

 FIGURE 10.13  Painted Rock Dam, Arizona, January 28, 1979. Aerial photograph (top) and ther-

mal image (bottom). From Daedalus Enterprises, Inc. Used by permission.
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Thermal Inertia

If imagery or data for two separate times are available, it may be possible to employ 
knowledge of thermal inertia as a means of studying the pattern of different materials 
at the Earth’s surface. Figure 10.14 illustrates the principles involved— it represents two 
images acquired at times that permit observation of extremes of temperature, perhaps 
near noontime and again just before dawn. These two sets of data permit estimation of 
the ranges of temperature variation for each region on the image. Because these varia-
tions are determined by the thermal inertias of the substances, they permit interpretation 
of features represented by the images. Leckie (1982) notes that misregistration can be a 
source of error in comparisons of day and night images, although such errors are thought 
to be small relative to other errors.

Landsat Daytime/Nighttime Thermal Examples

Although the timing of Landsat 8–based thermal measurements (and other satellite- based 
measurements) is constrained by the orbit characteristics, Landsat 8 does occasionally 
capture data at night in ascending mode. This provides some opportunity to capitalize 
on the differences between day and night imagery described above.

Figure 10.15 shows the Grand Junction, Colorado, region as imaged by Landsat 8 
OLI (daytime) and TIRS (Table 10.1, nighttime) scenes, June 2016. This example provides 

 FIGURE 10.14  Schematic illustration of diurnal temperature variation of several broad classes of 

land cover, illustrating their responses over a 24-hour interval to daily temperature variations. Image 

by Susmita Sen.
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a distinctive situation illustrating differential heating and cooling, and variations in the 
ability of landscapes to retain heat after sunset. Here, local relief is unusually high in the 
sense that, for this region of northwestern Colorado, typical valley elevations are about 
4,500 feet above sea level, and the highest at about 10,000 feet, so local relief within this 
image is at least 5,000 feet. The Grand Junction region, at the confluence of the Colo-
rado and Gunnison rivers, is depicted as a patchwork of light and dark features— paved 
surfaces, parks, local irrigation, and vegetation, characteristic of urban landscapes. At 
the center right edge of the image, the jet-black shapes show the cooler surfaces of Grand 
Mesa (about 5,000 ft higher than Grand Junction). In low-lying terrain at the center 
of the image, irrigated landscapes bordering rivers at this time of year provide enough 
moisture to retain, then slowly release, heat during the nighttime hours. In higher can-
yons, steep slopes that face the Sun accumulate heat during the day, to slowly reradiate 
it at night, forming the light-toned surfaces in the image. Narrow, steep- walled canyons, 
shadowed during the day, are cool at night as they quickly lose the radiation accumulated 

 FIGURE 10.15  Grand Junction, Colorado. Left: Daytime Landsat 8 (bands 7-5-8) (at 30-m detail) 

multispectral imagery. Green represents forested and vegetated areas, often on north- facing slopes, 

shaded from direct sunlight for much of the day. The reddish tones represent the largely dry, sparsely 

vegetated, rangelands and unvegetated surfaces open to direct sunlight during daytime. The green 

strip at the center and left of the image is the settlement of Grand Junction, including urban land-

scapes and adjacent irrigated lands. Right: Nighttime TIRS thermal imagery (June 2016) (at 100-m 

detail). In the nighttime image, note the large temperature variations related to terrain elevation and 

aspect. Imaged prepared by Tammy Parece. Used by permission.
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during the day. On average, in June, the mesa surface is about 18° cooler than the valley 
terrain, so it shows as a jet-black surface on this nighttime thermal image.

The significant amount of impervious surface and human activities in urban areas 
causes notable thermal inertial patterns that are distinctive in thermal energy. The urban 
heat island effect, where urban areas are warmer than the surrounding landscape, can 
often be seen, especially on calm nights. Figure 10.16 presents two Landsat images of 
the Roanoke- Salem, Virginia, region, in April 2010 (Landsat 7, day), and June 2016 
(Landsat 8, night). The images were acquired for clear, calm conditions after several 
consecutive days of solar heating, creating a distinctive meteorological situation that 
coincided with cloud-free conditions at the time of these Landsat overpasses. In the 
daytime image (left), the red tones (chiefly the TIR channel) signify peak emission in 
thermal region (roughly 10 μm)—mainly pavement, parking lots, central business dis-
trict, arterial highways, and impervious surfaces, bordered by structures and parking 
lots. Such surfaces, if exposed to the solar beam, will heat up, emitting preferentially in 
the TIR. The yellowish colors (green + red) depict hot surfaces emitting in or near the 
SWIR and far- infrared regions (see Table 10.1 for wavelengths). Blue- tinted white tones 
(bright in all three bands) signify surfaces such as the roofs of large buildings, often 
warehouses or industrial buildings, reflecting or emitting radiation in all three channels. 
In the nighttime image (right), the light-toned network is formed mainly by warmer 
roadways and parking lots that are emitting thermal radiation from impervious sur-
faces. The light-toned gray features between roadways are largely vegetated or forested 
regions. Dark features in the daytime image are mainly cooler shadowed terrain that did 
not retain much heat during the day; most of the black, dot- shaped features are mainly 
rooftops of large refrigerated warehouses.

For the same daytime image shown in Figure 10.16, Figure 10.17 shows the urban 
heat island during the day for nearby Blacksburg, Virginia. This example illustrates the 

 FIGURE 10.16  Shortwave infrared region (SWIR) and thermal images for Roanoke, Virginia, illus-

trating differences between daytime and nighttime thermal patterns. Left: Landsat 7 daytime multi-

spectral image (bands 675) (approximately 10:30 A.M., September 2010). This daytime image shows 

both thermal emissions from the landscape and reflected solar radiation. Right: Nighttime Landsat 8 

TIRS thermal imagery (approximately 11 P.M., June 2016). The nighttime image shows thermal radia-

tion emitted from impervious surfaces heated by solar radiation throughout daytime hours. To a lesser 

extent, the nighttime image may also record emitted radiation from industrial activities.
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warming of calm air in proximity to sizeable areas of impervious surface. The left-hand 
image (TM bands 675) displays warm air visible as the red shapes. The right-hand image 
displays only the daytime thermal band (TM band 6). Here, pockets of warm air are vis-
ible as the cloud-like shapes positioned at impervious surfaces, such as parking lots, large 
buildings, and dense street patterns.

Landsat Observations of Fire

During the summer of 2015, there was a very serious outbreak of fire in California 
known as the Shasta- Trinity fires (named for two adjacent northern California counties). 
Officially, the Shasta- Trinity fires started on July 30, initiated from widespread light-
ning strikes, extending, despite efforts to suppress the spread of fire, until October 29–
November 3, 2015, together burning about 113,584 km2. Irregular terrain, dense forests, 
sparse road networks, and dry summers in the Mediterranean climate of the California 
coastline are several of the many factors that create serious fire hazards in this region. 
The fires and their smoke plumes can be clearly seen in Landsat 8 imagery (Figure 10.18). 
The VNIR reflectance data (left) highlights the smoke plumes but does not depict the 
fires very clearly because it does not capture their emitted energy. In contrast, the SWIR 
data (right) minimizes smoke and haze, while depicting burned areas.

To depict burned areas more clearly, two normalized burn ratios have been devel-
oped and commonly applied, and can be downloaded as products from Landsat imagery. 
The normalized burn ratio (NBR) uses the standard normalized form with NIR and 
SWIR data, as follows (Lopez Garcia and Caselles, 1991; Key and Benson, 2006):

 NIR SWIR
NBR

NIR SWIR
 (EQ. 10.5)

The SWIR2 band is most commonly used with NBR (see Table 10.1 for wavelengths) 
and provides great contrast with the NIR band, minimizing clouds and highlighting 
burned areas (Figure 10.19, left).

 FIGURE 10.17  Urban heat island effect from Landsat 7 imagery, Blacksburg, Virginia (Septem-

ber 2010). Left: Thematic Mapper (TM) bands 675 (see Table 10.1 for wavelengths). Right: TM band 6 

(thermal band, at 60-m resolution), with a shapefile overlay depicting the street pattern.
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 FIGURE 10.19  Forest fires in the Shasta- Trinity Forest, August 2015, as observed using alterna-

tive burn ratios. Left: NBR ratio. Right: NBR-2 ratio. The alternative burn ratios provide differing per-

spectives on this landscape. Images prepared by Hoa Tran. Used by permission.

 FIGURE 10.18  Forest fires, Shasta- Trinity Forest, California, August 2015, as recorded by Land-

sat 8 OLI. Left: Standard false color near- infrared- radiation band combination— fires and burned 

areas are poorly delineated and largely obscured by smoke. Right: Two-band combination of SWIR 1 

and SWIR 2 (red). Note the effectiveness of the SWIR ratio in minimizing effects of smoke and haze, 

permitting observation of the extent of burned areas (orange patches). Images prepared by Hoa Tran. 

Used by permission.
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In contrast, the second normalized burn ratio (NBR-2) (Figure 10.19, right) substi-
tutes the SWIR1 band for the NIR (www.usgs.gov/land- resources/nli/landsat/landsat- 
normalized- burn-ratio-2). It is designed to highlight burned areas, but also water sensi-
tivity in vegetation, which may be important for recovery. Because SWIR radiation can 
penetrate atmospheric smoke and haze, it is effective in monitoring forest and range fires, 
defining regions of active burning, detecting hot spots, and estimating the severity of 
burned regions. The NBR-2 image in Figure 10.19 (right) shows recently burned areas, 
but also depicts variations in relief, vegetation patterns, and local terrain. It is calculated 
as follows:

 
SWIR1 SWIR2

NBR
SWIR1 SWIR2

 (EQ. 10.6)

To further explore the impacts of fire on the landscape, it is also possible to calculate 
the difference in burn ratios for images taken pre- and postfire (Key and Benson, 2006; 
Escuin, Navarro, and Fernandez, 2008). This is referred to as a differenced NBR.

10.10 SUMMARY

Thermal imagery is a valuable asset for remote sensing because it conveys information 
that is not easily derived from other forms of imagery. The thermal behavior of different 
soils, rocks, and construction materials can permit derivation of information not present 
in other images. The thermal properties of water contrast with those of many other land-
scape materials, so that thermal images can be sensitive to the presence of moisture in the 
environment. Furthermore, the presence of moisture is itself often a clue to differences 
between different classes of soil and rock.

Of course, use of data from the far- infrared region can present its own problems. 
Like all images, thermal imagery has geometric errors. Moreover, the analyst cannot 
derive detailed quantitative interpretations of temperatures unless detailed knowledge 
of emissivity is at hand. Timing of image acquisition can be critical. Atmospheric effects 
can pose serious problems, especially from satellite altitudes. Because the thermal land-
scape differs so greatly from the visible landscape, it may often be necessary to use aerial 
photography to locate familiar landmarks while interpreting thermal images. Existing 
archives of thermal imagery are not comparable in scope to those for aerial photography 
or satellite data (such as those of Landsat or SPOT), so it may be difficult to acquire suit-
able thermal data unless it is feasible to purchase custom- flown imagery.

REVIEW QUESTIONS

1. Explain why choice of time of day is so important in planning acquisition or analysis of 
thermal imagery.

2. Why do you expect season of the year to be important for analysis?

3. In your new job as an analyst for an institution that studies environmental problems in 
coastal areas, it is necessary for you to prepare a plan to acquire thermal imagery of a 
tidal marsh. List the important factors you must consider as you plan the mission.
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4. In what ways would thermal imagery be important for agricultural research?

5. How would thermal imagery be useful for studies of the urban landscape?

6. Examine Figure 10.10. Is the tanker empty, partially full, or full? Compare this to Figure 
10.11; is the tanker empty, partially full, or full? From your inspection of the imagery, what 
can you determine about the construction of tankers and the procedures used to empty 
or fill tankers?

7. Why is thermal imagery considered so useful for scientists even though it does not usu-
ally provide measurements of actual temperature? Can you identify situations where it 
might be important to determine actual temperatures from imagery?
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MAJOR TOPICS TO UNDERSTAND

Image Statistics

Feature Extraction

Radiometric Preprocessing

Geometric Preprocessing

Image Data Processing Standards

11.1 INTRODUCTION

In the context of digital analysis of remotely sensed data, preprocessing refers to those 
operations that are preliminary to the principal analysis. Typical preprocessing opera-
tions could include (1) radiometric preprocessing to adjust digital values for the effect of 
a hazy atmosphere, and/or (2) geometric preprocessing to bring an image into registration 
with a map or another image. Once corrections have been made, the data can then be 
subjected to the primary analyses described in subsequent chapters. Thus, preprocessing 
forms a preparatory phase that, in principle, improves image quality as the basis for later 
analyses that will extract information from the image.

 11 Statistics 
and Preprocessing
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It should be emphasized that, although certain preprocessing procedures are fre-
quently used, there can be no definitive list of “standard” preprocessing steps because 
each data type or project requires individual attention and some preprocessing decisions 
may be a matter of personal preference or organizational protocols. Furthermore, the 
quality of remotely sensed data varies greatly, so some data may not require the prepro-
cessing that would be necessary in other instances. Also, preprocessing changes data. We 
may assume that such changes are beneficial, but the analyst should remember that pre-
processing may create artifacts that are not immediately obvious. As a result, the analyst 
should tailor preprocessing to the data at hand and the needs of specific projects, using 
only those preprocessing operations essential to obtain a specific result.

Preprocessing includes a wide range of operations, from the very simple to extremes 
of abstractness and complexity. Most (at least in the context of spectral data) can be 
categorized into one of three groups: (1) feature extraction, (2) radiometric corrections, 
and (3) geometric corrections. Although there are far too many preprocessing methods to 
discuss in detail here, we will illustrate some of the principles important for each group.

This chapter focuses on the preprocessing of spectral data from passive sensors. 
Data from lidar sensors, radar sensors, thermal imagers, and mapping cameras require 
specialized preprocessing that is nonetheless predicated on the same basic principles. It 
should also be noted that the concept of “analysis- ready data” is increasingly a goal of 
most public agencies and commercial entities that acquire and distribute remotely sensed 
data. Thus, radiometric and geometric preprocessing are increasingly incorporated into 
higher level data products from myriad sensors and programs.

11.2 IMAGE STATISTICS

There are common statistical measures by which remotely sensed data are commonly 
summarized. These include, for each band, the mean, minimum, maximum, variance, 
and standard deviation. Among bands, covariance and correlation matrices provide 
important summary descriptors.

Figure 11.1 shows 3  3 images of digital numbers (DNs) varying from 0 to 15 (4-bit 
radiometric resolution). The summary statistics for each subfigure are as follows: Figure 
11.1a, m = 4.0 DN and s2 = 17.5 DN2; Figure 11.1b, m = 9.0 and s2 = 7.8 DN2; Figure 
11.1c, m = 9.1 DN and s2 = 11.6 DN2. Note that the lighter blue (higher overall values) in 
Figures 11.1b and 11.1c are reflected in their means being much higher than the mean of 
Figure 11.1a. The greater spread of values in Figure 11.1a versus the other two subfigures 
is reflected in its higher variance.

The mean, m, is defined as follows (using the image in Figure 11.1a as an example):
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 FIGURE 11.1  3  3 images of digital numbers (DNs) varying from 0 to 15 (4-bit radiometric reso-

lution) with their corresponding heat maps.
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where i is the cell, xi is the value of the cell, and n is the number of cells. (Note that i 
increments left to right, top to bottom.)

The sample variance, s2, tells us how spread out our values are, defined as the aver-
age of the squared differences from the mean, m, as follows (using the image in Figure 
11.1a as an example):

s2
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(EQ. 11.2)

The square root of the sample variance is the sample standard deviation, s, which 
has the same units as our original values (or their mean).

These summary statistics are ways of quantitatively describing the distribution of 
data in a spectral band, but visual representations are often as helpful, or more. One of 
the most common visual representations of data in a single band is an image histogram, 
which is a vertical bar chart in which the range of values in a given spectral band is first 
divided into contiguous bins, usually (but not necessarily) of equal width. The height of 
each bar is then proportional to the frequency of values (e.g., reflectances) present in each 
bin. Figure 11.2 is an example of a histogram with just three equal-width bins derived 
from Figure 11.1a.

One of the most common sets of descriptive statistics, as useful in remote sensing 
as in any other branch of data analytics, is the five- number summary. This consists 
of the minimum, maximum, median, first quartile, and third quartile. As an example, 
let’s derive each of these from Figure 11.1a. The minimum is the smallest value, 0. The 
maximum is the largest value, 12. The median is the middle value (when the data are 
represented as an ordered list), 3 (Equation 11.3), or the mean of the two middle values 
if n, the number of values, is even. The median is also known as the second quartile, Q2.

median = Q2
(EQ. 11.3)= center value in ordered list {0, 1, 1, 2, 3, 3, 4, 10, 12}

= 3

There are numerous ways to compute quartiles, and as such, any method we present 
here will have its proponents and detractors among the statistical cognoscenti. For most 
remote sensing analysts, the specific method is less important than understanding that 
the first quartile is the value between the first quarter of the data and the remaining three 
quarters. By extension, the third quartile is the value between the first three quarters of 
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the data and the last quarter. As such, the following paragraph is only for readers inter-
ested in the details of constructing a quartile using one of many common methods, but it 
is not necessary for a gestalt understanding.

However, with the cognizance that there are multiple ways in which quartiles can 
be calculated, let’s look at a common method using the nine values in the image shown 
as Figure 11.1a. We first order the values, as shown in Equation 11.3. Since there are an 
odd number of points, we remove the median and split the data into two halves. (If there 
were an even number of points we would leave the median and split the dataset into two 
halves.) The first quartile, Q1, is the median of the lower half. The third quartile, Q3, is 
the median of the upper half. Equations 11.4 and 11.5 show these calculations.

first quartile = Q1 = median {0,1,1,2} 
1  1

 1 (EQ. 11.4)
2

third quartile = Q3 = median {3,4,10,12} 
4  10

 7 (EQ. 11.5)
2

The resulting five- number summary for the image in Figure 11.1a is shown in Table 11.1.
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 FIGURE 11.2  Histogram of image shown in Figure 11.1a.

 TABLE 11.1 Five-Number Summary from Image Shown in Figure 11.1a

Value

min (Q0)  0

Q1  1

Q2  3

Q3  7

max (Q4) 12
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We are often interested in how much two variables (e.g., spectral bands, or the same 
band acquired on different dates) change together. This is called the sample covariance, 
C, defined as follows with the calculation example using Figures 11.1a and 11.1b:

1
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(EQ. 11.6)

Since this value is so low compared to the variance of a given image (e.g., 17.5 DN2 
for the first image and 7.75 DN2 for the second image), change in one does not appear 
related to change in the other, reflected in the very low covariance of –0.75 DN2. In con-
trast, however, the values in Figures 11.1b and 11.1c do appear to vary together, and this 
is reflected in a higher covariance, 9.3 DN2.

It is possible, if bands are not in the same scale (e.g., for DNs with different gains and 
biases), to calculate interband correlation, r (which is just the sample covariance divided by 
the product of the two sample standard deviations), affording standardization. However, 
as pointed out by Mather and Koch (2011), such standardization is inherently “undesir-
able” when the units and measurement scale are the same (such as with radiance or reflec-
tance, as discussed below), as it “removes the effects of changes in the degree of variability 
between the bands.” However, many analysts nonetheless find correlation easier to inter-
pret than covariance, as values always range from –1 to 1. This indicates both the strength 
and direction of the linear relationship between two spectral bands, with absolute values 
close to zero having very little (to no) relationship and absolute values close to one having 
a very strong relationship. With respect to direction, correlation is positive when the band 
values (DN, radiance, reflectance, etc.) increase together, and negative when one value 
decreases as the other increases. The following two tables show the covariance matrix 
(Table 11.2) and correlation matrix (Table 11.3) for the 3  3 images shown in Figure 11.1.

A scatter plot is a plot of the values of one spectral band (or other variable) against 
another spectral band (or other variable). The scatter plots associated with the images 
shown in Figure 11.1 are shown in Figure 11.3. Note the differences in appearance 
between high and low interband correlation.

The First Law of Geography states that “everything is related to everything else, but 
near things are more related than distant things” (Tobler, 1970). While “near” is typi-
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cally construed as spatial proximity, temporal or spectral proximity also typically has 
the same effect (autocorrelation). To illustrate this from a spectral standpoint, let’s take 
a look at a practical illustration of the concepts in this section using descriptive statistics 
from a spatial and spectral subset of a Landsat 8 Operational Land Imager (OLI) scene 
(WRS-2 row 17 path 34) acquired May 11, 2015 (Figure 11.4).

As we can see from Tables 11.4 and 11.5, spectrally proximate wavelength bands 
(e.g., blue and green with r = 0.96) are more correlated than those that are less spectrally 
proximate (e.g., blue and near  infrared [NIR] with r = –0.30). As spectral resolution 
increases (e.g., imaging spectroscopy data), this general trend is exacerbated.

11.3 FEATURE EXTRACTION

In the context of image processing, the term feature extraction (or feature selection) has 
specialized meaning. “Features” are not geographical features, visible on an image; rather, 
they are “statistical” characteristics of image data— individual bands or combinations of 
band values that carry information concerning systematic variation within the scene. 

 TABLE 11.2 Covariance Matrix from Images Shown in Figure 11.1

11.1a 11.1b 11.1c

11.1a 17.5 –0.75 –0.88

11.1b –0.75  7.75  9.25

11.1c –0.88  9.25 11.61

 TABLE 11.3 Correlation Matrix from Images Shown in Figure 11.1

11.1a 11.1b 11.1c

11.1a 1.0 –0.06 –0.06

11.1b –0.06 1.0  0.98

11.1c –0.06  0.98 1.0

 FIGURE 11.3  Scatter plots associated with the images shown in Figure 11.1.
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 FIGURE 11.4  Near- infrared (NIR) band 

(0.845–0.885 μm, surface reflectance) from a 

subset of a Landsat 8 OLI scene (WRS-2 row 

17 path 34) acquired May 11, 2015 (Blacks-

burg, Virginia, and vicinity).

 TABLE 11.4 Covariance Matrix from a Six-Band Subset of a Landsat OLI Image 
Acquired May 11, 2015

Blue Green Red NIR SWIR1 SWIR2

Blue 707704 724592 1105252 –817543 949071 1106350

Green 724592 802040 1179270 –424747 1212915 1232224

Red 1105252 1179270 1867404 –1247069 1855659 1998525

NIR –817543 –424747 –1247069 10257846 1673930 –652673

SWIR1 949071 1212915 1855659 1673930 3810167 2851772

SWIR2 1106350 1232224 1998525 –652673 2851772 2751335

 TABLE 11.5 Correlation Matrix from a Six-Band Subset of a Landsat OLI Image 
Acquired May 11, 2015

Blue Green Red NIR SWIR1 SWIR2

Blue 1 0.96 0.96 –0.30 0.58 0.79

Green 0.96 1 0.96 –0.15 0.69 0.83

Red 0.96 0.96 1 –0.28 0.7 0.88

NIR –0.30 –0.15 –0.28 1 0.27 –0.12

SWIR1 0.58 0.69 0.7 0.27 1 0.88

SWIR2 0.79 0.83 0.88 –0.12 0.88 1
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Thus, feature extraction could also be known as “information extraction,” isolation of 
components within spectral data that are most useful in portraying the essential elements 
of an image, its “hidden structure” (Schlens, 2014). In theory, discarded data contain 
noise and errors present in original data. Thus, feature extraction may increase accuracy. 
In addition, feature extraction reduces the number of spectral channels, or bands, that 
must be analyzed, thereby reducing computational demands. After feature selection is 
complete, the analyst works with fewer but more potent channels. The reduced data set 
may convey almost as much information as does the complete data set. Feature selection 
may increase speed and reduce the costs of analysis.

Multispectral data, by their nature, consist of multiple channels of data. Although 
some images may have as few as 3 or 4 channels (Chapter 6), other image data may have 
many more, possibly 200 or more channels (imaging spectroscopy, Chapter 14). Data vol-
ume is further increased with the routine analysis of multitemporal data. With so much 
data, processing of even modest- sized images requires considerable time. In this context, 
feature selection assumes considerable practical significance, as image analysts wish to 
reduce the amount of data while retaining effectiveness and/or accuracy.

High correlation between pairs of bands (see parts b and c of Figure 11.1; Figure 
11.3, right) means that the values in the two channels are closely related. Feature selec-
tion attempts to identify, then remove, such duplication so that the data set can include 
maximum information using the minimum number of channels.

For example, for data represented by Table 11.5, the blue, NIR, and SWIR1 bands 
might include almost as much information as the entire set of six channels because the 
blue band is closely related to the red and green, the two SWIR bands are highly cor-
related (r = 0.88), and the NIR band carries information largely unrelated to any others. 
Therefore, each of the discarded channels (green, red, and SWIR2) resembles one of 
the channels that has been retained. So a simple approach to feature selection discards 
unneeded bands, thereby reducing the number of channels. Although this kind of selec-
tion can be used as a kind of rudimentary feature extraction (particularly when coupled 
with analysis- specific variable selection), feature selection is typically a more complex 
process based on statistical interrelationships among channels.

Principal Components Analysis

A powerful approach to feature selection applies a method of data analysis called princi-
pal components analysis (PCA). This presentation offers only a superficial description of 
PCA. More complete explanation requires the level of detail provided by Davis (2002), 
Richards (2013), and Schlens (2014). In essence, the axes (variables) in the original mul-
tidimensional feature space (the multidimensional scatter plot) are transformed such that 
(1) there is no remaining covariance among the variables (i.e., spectral bands) and (2) each 
principal component is oriented to capture as much of the variability that remains in a 
serial (and successively orthogonal) fashion. These new axes form the new basis for the 
data contained in the original reflectance vectors from each pixel.

In matrix notation (and this paragraph is not essential for a conceptual understand-
ing of PCA), the new basis is a linear transformation of the original basis (Schlens, 2003) 
of the form

 Y  PX (EQ. 11.7)
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 FIGURE 11.6  Scatter plot of the first two principal component bands.

where Y is the transformed (in this case, decorrelated) image data set with k rows b
columns, where k is the number of pixels in the image and b is the number of bands in the 
image), X is the original data set (also k b), and P is the linear transformation matrix 
(TM; in this case, the eigen matrix) that transforms X into Y via a rotation and stretch 
(b b). The rows of P are a set of new orthogonal basis vectors (in this case, the eigen 
vectors) for expressing the columns of X. When k = 1, a new PC vector is calculated from 
the original reflectance vector using the eigen matrix. Since the eigen matrix is the linear 
transformation that eliminates all covariance, it varies from image to image.

The effect is most easily seen using only two bands. Figure 11.5 is a scatter plot of 
the blue and green bands from the image shown in Figure 11.4. The high correlation 
between the bands (0.96) is evident. Figure 11.6 shows the same data subsequent to the 
PCA, with the covariance matrices before and after the transformation shown as Table 

 FIGURE 11.5  Scatter plot of the blue and green bands.
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11.6 and Table 11.7. Note that the nondiagonal elements of the covariance matrix are now 
zero. Tables 11.4 and 11.8 show the effects of the transformation on covariance for a six-
band subset of the same date.

The total variance is the sum of the individual PC band variances (also known as 
the eigen values). For the two-band example (Table 11.7), this is the sum of the diagonal 
elements (the matrix trace): 1,480,998 + 28,746 = 1,509,744. The percentage variance 
explained by each principal component can be found by dividing each variance by the 
total. So, the percentage variance explained by principal component 1 is 1,480,998 / 
1,509,744 = 98%. We are also commonly interested in the percent variance explained 
by the first n principal components. This is easily found by first finding the cumulative 
variance and then dividing by the sum of the eigen values (the trace of the principal com-
ponent image covariance matrix). So, the percent variance explained by the first three 
principal components shown in Table 11.8 is as follows:

10,843,409  8,532,934  667,807
 99.2% (EQ. 11.8)

10,843,409  8,532,934  667,807  109,525  27,080  15,741

 TABLE 11.6 Covariance Matrix from a Two-Band Subset of a Landsat OLI Image 
Acquired May 11, 2015

Blue Green

Blue 707704 724592

Green 724592 802040

 TABLE 11.7 Covariance Matrix from the Principal Components Computed Using 
a Two-Band Subset of a Landsat OLI Image Acquired May 11, 2015

PC1 PC2

PC1 1480998 0

PC2 0 28746

 TABLE 11.8 Covariance Matrix from the Principal Components Computed Using 
a Six-Band Subset of a Landsat OLI Image Acquired May 11, 2015

PC1 PC2 PC3 PC4 PC5 PC6

PC1 10843409 0 0 0 0 0

PC2 0 8532934 0 0 0 0

PC3 0 0 667807 0 0 0

PC4 0 0 0 109525 0 0

PC5 0 0 0 0 27080 0

PC6 0 0 0 0 0 15741
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For data with similar characteristics (e.g., signal- to-noise ratio), the number of prin-
cipal component bands needed to explain a given amount of variance (often 99%) is a 
way to understand the inherent dimensionality (a way to express the information con-
tent) of an image.

Let’s use Figure 11.7 to illustrate this concept with multitemporal imagery of the 
same area. Using 99% as the cumulative variance threshold, the inherent dimensionality 
of one OLI image is 3 (bands), and that of a six-date stack is 12. As such, while we went 
from 6 multispectral bands from one date to 36 spectral bands from six dates, a sixfold 
increase, we only increased the inherent dimensionality four times (3 vs. 12). Further-
more, of course, since the first 12 PC bands represent almost all the variance, we can use 
the 12 PC bands instead of the 36 original spectral bands for many applications, reducing 
data volume and enhancing the speed (and often quality) of subsequent analyses.

Figure 11.8 shows transformed data for a subset of a Landsat TM scene. Images PC I 
and PC II are the most potent; PC III, PC IV, PC V, and PC VI show the decline in infor-
mation content, such that the images for the higher PCs (such as PCs V and VI) record 
artifacts of system noise, atmospheric scatter, topographic shadowing, and other undesir-
able contributions to image brightness. If such components are excluded from subsequent 
analysis, it is likely that accuracy can be retained (relative to the entire set of six channels) 
while also reducing time and cost devoted to the analysis. A color presentation of the first 
three components, assigning each to one of the additive primaries (red, green, and blue), 
is usually effective in presenting a concise, potent portrayal of the information conveyed 
by a multichannel multispectral image. Note, however, that because each band is a lin-
ear combination of the original channels, the analyst must be prepared to interpret the 
meaning of the new channels. In some instances, this task is relatively straightforward; in 
other instances, it can be difficult to unravel the meaning of a PCA image. Furthermore, 
the PCA transformation applies only to the specific image at hand, and each new image 

 FIGURE 11.7  Cumulative percent variance from principal components derived from one Land-

sat OLI scene versus a stack of six Landsat OLI scenes (WRS-2 row 17 path 34) of the same area 

over the course of just over a year. The blue, green, red, NIR, SWIR1, and SWIR2 bands are used for 

each date. The dates are as follows: March 21, 2014; May 8, 2014; May 24, 2014; January 19, 2015; 

February 4, 2015; May 11, 2015 (last date used for the one scene cumulative variance calculation).
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requires a new recalculation of the PCA. For some applications, this constraint limits the 
effectiveness of the technique.

Tasseled Cap Transformation

The “tasseled cap” (TC) transformation (Kauth and Thomas, 1976) is a linear transfor-
mation that projects soil and vegetation information into a single plane in multispectral 
data space—a plane in which the major spectral components of an agricultural scene are 

 FIGURE 11.8  Feature selection by PCA. The first principal component image (PC I), formed from 

a linear combination of data from all seven original bands, accounts for over 80% of the total variation 

of the image data. PC II and PC III present about 10% and 5% of the total variation, respectively. The 

higher components (e.g., PC V and PC VI) account for very low proportions of the total variation and 

convey mainly noise and error, as is clear by the image patterns they show.
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displayed in two dimensions (the plane of vegetation, Cohen and Goward, 2004; see also 
Figure 11.9). Algebraically, it, like PCA, is just a change of basis (Equation 11.7), but 
with a tranformation matrix (P) that is constant for a given sensor (e.g., Tables 11.9 and 
11.10). Though defined initially for Multispectral Scanner System (MSS) data, subsequent 
research (Crist and Cicone, 1984) has extended the concept to the six nonthermal bands 
of the TM and later, to the OLI (Baig et al., 2014; Zhai et al., 2022). The transforma-
tion can be visualized as a rotation of a solid multidimensional figure (the feature space 
representing all spectral bands) in a manner that permits the analyst to view the major 
spectral components of an agricultural scene as three two- dimensional figures (Figures 
11.9, 11.10, and 11.11).

The transformation consists of a linear combination of the original spectral channels 
to produce a set of new variables (Equation 11.7), each describing a specific dimension of 
the agricultural scene. Multiplication of the sensor- specific transformation matrix by a 
reflectance vector from a given OLI pixel results in the TC transformation values for that 
pixel, as shown in Equation 11.9.

green

red

NIR

SWIR1

SWIR2

brightness 0.4596 0.5046 0.5458 0.4114 0.2589

greenness 0.3374 0.4901 0.7909 0.0177 0.1416

wetness 0.2254 0.3681 0.2250 0.6053 0.6298

(EQ. 11.9)

The coefficients are calculated by means of an iterative procedure (Jackson, 1983). 
The transformation is based on the calibration information for each specific sensor and 
so requires a dedicated effort to derive the values for a specific sensor. Once the values 
are available, they can be applied to imagery from that sensor.

 TABLE 11.9 Tasseled Cap Transformation Matrix for OLI Surface Reflectance

Component Green Red NIR SWIR1 SWIR2

5-band Brightness  0.4596  0.5046 0.5458  0.4114  0.2589

Greenness –0.3374 –0.4901 0.7909  0.0177 –0.1416

Wetness  0.2254  0.3681 0.2250 –0.6053 –0.6298

Note: From Zhai et al. (2022). Used by permission.

 TABLE 11.10 Tasseled Cap Transformation Matrix for OLI Top-of-Atmosphere 
Reflectance

Component Green Red NIR SWIR1 SWIR2

5-band Brightness  0.4321  0.4971 0.5695  0.4192  0.2569

Greenness –0.3318 –0.4844 0.7856 –0.0331 –0.1923

Wetness  0.2633  0.3945 0.1801 –0.6121 –0.6066

Note: From Zhai et al. (2022). Used by permission.
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 FIGURE 11.9  Tasseled cap plane of vegetation calculated using a subset of an OLI scene 

(WRS-2 row 17 path 34) acquired May 11, 2015.
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 FIGURE 11.10  Tasseled cap plane of soils calculated using a subset of an OLI scene (WRS-2 

row 17 path 34) acquired May 11, 2015.

 FIGURE 11.11  Tasseled cap transition zone calculated using a subset of an OLI scene (WRS-2 

row 17 path 34) acquired May 11, 2015.
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Although the TC bands no longer match directly to observable spectral bands, they 
do carry specific information concerning agricultural scenes. Crist and Cicone (1984) 
interpret TC1 as brightness, a weighted sum of all five or six input bands. TC2 is desig-
nated as greenness, a band that conveys information concerning the abundance and vigor 
of living vegetation. TC3, wetness (only available in the post-MSS era), contrasts “the 
SWIR bands against the visible and NIR bands in an effort to express the water content 
of soils” (Cohen and Goward, 2004) and moisture in plant tissues.

The first two bands (brightness and greenness) usually convey almost all the infor-
mation in an agricultural scene—often 95% or more. Therefore, the essential compo-
nents of an agricultural landscape are conveyed by a two- dimensional diagram, the plane 
of vegetation, using brightness and greenness (Figures 11.9 and 11.12).

Over the interval of an entire growing season, brightness and greenness values for a 
specific field follow a stereotyped trajectory (Figure 11.12). Initially, the spectral response 
of a field is dominated by soil, as the field is plowed, disked, and planted (point a in 
Figure 11.12). The field has a position near the soil brightness line. As the crop emerges 
(b) and grows, it simultaneously increases in greenness and decreases in soil brightness as 
the green canopy covers more and more of the soil surface (b to c). Then, as senescence, 
maturity, and harvest occur, the field decreases in greenness and increases in soil bright-
ness to return the field to near its original position on the diagram (c to d).

Figure 11.13 illustrates the application of the Landsat 9 Operational Land Imager–2 
(OLI-2) tasseled cap model to OLI-2 imagery of analysis-ready surface reflectance data 
acquired in February 2022 over Jefferson County, Alabama, showing the original image, 
brightness, greenness, and wetness.

As noted earlier, the principal components transformation must be calculated (and 
re- interpreted) individually for each new image. In contrast, the TC coefficients, once 
calculated for a specific sensor, apply to all images acquired by that sensor; the meanings 
of the resulting TC components are thus consistent across images. As a result, the TC 
transformation has been used for understanding not only images of agricultural scenes, 
but also a variety of other ecological settings.

11.4 RADIOMETRIC PREPROCESSING

Many preprocessing operations fall into the category of image restoration (Estes et al., 
1983), the effort to remove the undesirable influence of atmospheric interference, system 
noise, and sensor motion. By applying knowledge of the nature of these effects, it is pos-
sible to estimate their magnitude, then to remove or minimize their influence upon the 
data used in later steps of the analysis. After removing these effects, the data are said 

 FIGURE 11.12  Seasonal variation of a field in data space 

defined by the greenness and brightness axes. Point descrip-

tions: (a) bare soil, (b) greening up, (c) full canopy closure, (d) 

senescence. From Crist and Cicone (1984). Copyright © 1984 

IEEE. Used by permission.
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to be “restored” to their (hypothetical) correct condition, although we can, of course, 
never know what the correct values might be; we must always remember that attempts 
to correct data may themselves introduce errors. So the analyst must decide if the errors 
removed are likely to be greater than those that might be introduced. Typically, image 
restoration includes efforts to correct for both radiometric and geometric errors.

Recollect from Chapter 5 that the discrete digital values recorded by the sensor are 
known as digital numbers (DNs) or brightness values (BVs). Most analysts, however, 
prefer to work with reflectance, which is the ratio of reflected to incident energy (Chap-
ter 2). Two forms of reflectance data are commonly used. Top-of- atmosphere (TOA) 
reflectance corrects for differential (1) sensor- or band- specific sensitivity and (2) solar 
illumination (for passive optical sensors), but assumes there is no need for atmospheric 
correction. Bottom- of- atmosphere (BOA) or, equivalently, surface reflectance (SR), has 
(at least nominally) removed all atmospheric effects as well.

As a simple example of why atmospheric corrections are necessary, remember that 
any sensor that observes the Earth’s surface using visible or near- visible radiation will 
record a mixture of two kinds of brightnesses. One brightness is due to the reflectance 
from the Earth’s surface— the brightnesses that are of interest for remote sensing. But 
the sensor also observes the brightness of the atmosphere itself— the effects of scattering 
(path radiance; see Chapter 2). Thus, an observed digital brightness value (e.g., “56”) 
might be in part the result of surface reflectance (e.g., “45”) and in part the result of 

 FIGURE 11.13  The tasseled cap transformation applied to a Landsat 9 Operational Land 

Imager–2 image of Jefferson County, Alabama. Top left shows the standard false color composite; 

then, in sequence, tasseled cap band (TC) 1, brightness; TC2, greenness; and TC3, wetness.

Original TC1

TC2 TC3
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atmospheric scattering (e.g., “11”). Of course we cannot immediately distinguish the two 
brightnesses, so one objective of atmospheric correction is to identify and separate these 
two components so that the main analysis can focus on examination of correct surface 
brightness (the “45” in this example). Ideally, atmospheric correction should find a sepa-
rate correction for each pixel in the scene. In practice, we may apply the same correction 
to an entire band, or apply a single factor to a local region within the image.

Preprocessing operations to correct for atmospheric degradation fall into two rather 
broad categories. First are those procedures based on efforts to model the physical behav-
ior of the radiation as it passes through the atmosphere. Application of such models 
permits digital numbers to be adjusted to approximate true values that might be observed 
under a clear atmosphere, thereby improving image quality and analysis accuracy. Physi-
cal models (i.e., models that attempt to model the physical process of scattering at the 
level of individual particles and molecules) have important advantages with respect to 
rigor, accuracy, and applicability to a wide variety of circumstances. But they also have 
significant disadvantages. Often they are very complex, usually requiring detailed data 
and intricate computer programs. An important limitation is the requirement for detailed 
meteorological information pertaining to atmospheric humidity and the concentrations 
of atmospheric particles. Such data may be difficult to obtain in the necessary detail and 
may apply to only a few points within a scene. Also, atmospheric conditions vary with 
altitude and over space. Although meteorological satellites, as well as a growing number 
of remote sensing systems, collect atmospheric data that can contribute to atmospheric 
corrections of imagery, procedures for local implementation of such methods require a 
substantial investment on the part of the analyst and (if not standardized) preclude data 
normalization across space and time.

Fortunately, however, image providers are now cognizant of the value of analysis- 
ready imagery, so they increasingly provide it as a higher- order data product. For exam-
ple, TOA reflectances are now provided as the default by the European Space Agency for 
Sentinel-2 MultiSpectral Instrument (MSI) (levels 1B and 1C) as well as by the U.S. Geo-
logical Survey (USGS) for Landsat (level 1 products with user- applied rescaling; see Fig-
ures 11.14 and 11.15). The two programs differ in their approach to surface reflectance. 
To date, the Landsat program calculates surface reflectance using the radiative transfer 
model 6S (Vermote et al., 1997), a product for direct download, whereas the Sentinel 
program requires users to calculate surface reflectance themselves using the Sentinel-2 
Toolbox. The Sentinel-2 MSI algorithm also uses a different radiative transfer model 
(ATCOR/LIBRADTRAN; Mayer and Kylling, 2005; Richter and Schlaepfer, 2011).

A second approach to atmospheric correction of remotely sensed imagery is based 
on examination of reflectances from objects of known or assumed brightness recorded 
by multispectral imagery. From basic principles of atmospheric scattering, we know that 
scattering is related to wavelength, sizes of atmospheric particles, and their abundance. If 
a known target is observed using a set of multispectral measurements, the relationships 
between values in the separate bands can help assess atmospheric effects.

Ideally, the target consists of a natural or human-made feature that can be observed 
with airborne or ground- based instruments at the time of image acquisition, so the ana-
lyst could learn from measurements independent of the true brightness of the object when 
the image was acquired. However, in practice we seldom have such measurements; there-
fore, we must look for features of known brightness that commonly, or fortuitously, 
appear within an image. In its simplest form, this strategy can be implemented by iden-
tifying a very dark object or feature within the scene. Such an object might be a large 
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water body or possibly shadows cast by clouds or by large topographic features. In the 
infrared portion of the spectrum, both water bodies and shadows should have brightness 
at or very near zero because clear water absorbs strongly in the near- infrared spectrum 
and because very little infrared energy is scattered to the sensor from shadowed pixels. 
Analysts who examine such areas, or the histograms of the digital values for a scene, can 
observe that the lowest values (for dark areas, such as clear water bodies) are not zero 
but some larger value. Typically, this value will differ from one band to the next. For 

 FIGURE 11.14  Histogram from the blue band of a subset of a Landsat 8 scene acquired Sep-

tember 29, 2015, WRS-2 path 28, row 27, showing the difference between top-of- atmosphere and 

bottom- of- atmosphere reflectance.
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 FIGURE 11.15  Histogram from the red band from the same scene. Note that reduced scattering 

in the red leads to less need for (and results from) atmospheric correction.



304 III. ANALYSIS

example, for Landsat, the values might be 12 for band 1, 7 for band 2, 2 for band 3, and 
2 for band 4. These values, assumed to represent the value contributed by atmospheric 
scattering for each band, are then subtracted from all digital values for that scene and 
that band. Thus, the lowest value in each band is set to zero, the dark black color assumed 
to be the correct tone for a dark object in the absence of atmospheric scattering. This 
procedure forms one of the simplest, most direct methods for adjusting digital values for 
atmospheric degradation (Chavez, 1975), known sometimes as the histogram minimum 
method, or the dark object subtraction technique.

This procedure has the advantages of simplicity, directness, and almost universal 
applicability, as it exploits information present within the image itself. Yet it must be 
considered as an approximation; atmospheric effects change not only the position of the 
histogram on the axis, but also its shape (i.e., not all brightnesses are affected equally). 
(Chapter 2 explained that the atmosphere can cause dark pixels to become brighter and 
bright pixels to become darker, so application of a single correction to all pixels will 
provide only a rough adjustment for atmospheric effects.) In addition, in arid regions 
observed at high Sun angles, shadows, clouds, and open water may be so rare or of such 
small areal extent that the method cannot be applied.

There are numerous other approaches to atmospheric correction, but as we noted 
earlier, their need is increasingly obviated by the use of ever more sophisticated physically 
based models by image providers. Newer sensor designs incorporate spectral bands that 
provide pixel- specific information on radiative transfer model parameters.

How can the analyst decide if additional atmospheric corrections are necessary 
beyond those implemented by the image provider? This may be a difficult decision, as 
the effects of atmospheric degradation are not always immediately obvious from casual 
inspection. The analyst should always examine summary statistics for each scene (see 
Section 11.2), inspecting means, variances, covariances, and frequency histograms for 
suggestions of poor image quality and the absence of dark values, especially if the image 
is known to show large water bodies.

Of course, inspection of the image may reveal evidence suggesting a requirement for 
correction. Loss of resolution and low contrast may indicate poor atmospheric condi-
tions. Sometimes the image date may itself suggest the nature of atmospheric quality. In 
the central United States, summer dates often imply high humidity, haze, and poor vis-
ibility, whereas autumn, winter, and spring dates are often characterized by clearer atmo-
spheric conditions. Thus, the image date may provoke further investigation by the analyst 
to determine if corrections are necessary. Finally, the analyst should examine summary 
statistics for the scene, especially the frequency histograms for each band.

Fundamentally, however, an analyst will rarely use an image at only one point in 
time. More commonly, multiple images through time are used. It is the very ubiquity of 
multitemporal analysis that has led, in part, to organizational mandates to provide cali-
brated, analysis- ready data with the highest radiometric fidelity.

11.5 GEOMETRIC PREPROCESSING

A critical consideration in the application of remote sensing is preparation of planimetri-
cally correct versions of aerial and satellite images so that they will match to other imag-
ery and to maps and will provide the basis for accurate measurements of distance and 
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area. Previously, in Chapter 4, we learned that aerial imagery has inherent positional 
errors that prevent use of the raw imagery for positional measurements. Chapter 4 also 
introduced the orthophoto, which is a planimetrically correct version of an aerial (or sat-
ellite) image created by analysis of stereo imagery through removal of positional effects 
of topographic relief to produce a positionally accurate image. Similar products can be 
prepared by applying precise knowledge of the internal geometry of the instrument and 
of the sensor’s position in space relative to the terrain to derive planimetrically correct 
versions of an aerial or satellite image. Because such images are prepared by applying 
basic optical principles and details of the instrument calibration, they form the preferred 
standard for positionally correct images. As such, they are increasingly implemented by 
image providers by default.

A second approach to image registration, known as image resampling, approaches 
the problem in a completely different manner. No effort is made to apply our knowledge 
of system geometry. Instead, the images are treated simply as an array of values that 
must be manipulated to create another array with the desired geometry. Resampling 
scales, rotates, translates, and performs related manipulations as necessary to bring the 
geometry of an image to match a particular reference image of desired properties. Such 
operations can be seen essentially as an interpolation problem similar to those routinely 
considered in cartography and related disciplines. Such processes constitute the practice 
of image resampling— the application of interpolation to bring an image into registra-
tion with another image or a planimetrically correct map. Image resampling forms a 
convenient alternative to the analytical approach, as it does not require the detailed data 
describing the instrument and its operation (which may not be at hand). Although resa-
mpling may provide useful representations of images, users should recognize that resa-
mpled images are not equivalent to orthographic representations but are produced by 
arbitrary transformations that bring a given image into registration with another map or 
image. Although resampling can apply to vector data, our discussion here refers to raster 
images.

Resampling is related to but distinct from georeferencing. Georeferencing indicates 
that resampling of an image requires matching not only to a reference image but also 
to reference points that correspond to specific known locations on the ground. Geore-
ferenced images are presented in a specific geographic projection so that the image is 
presented in a defined projection and coordinate system. Georeferencing is, of course, 
important for images that are to be used as locational references or to be matched to 
other maps and images. Although our discussion here focuses on the resampling process, 
in most image processing systems resampling and georeferencing are usually part of a 
single process.

In Figure 11.16, the input image is represented as an array of open dots, each repre-
senting the center of a pixel in the uncorrected image. Superimposed over this image is 
a second array, symbolized by solid dots, which shows the centers of pixels in the image 
transformed (as described below) to have the desired geometric properties (the “output” 
image).

The locations of the output pixels are derived from locational information provided 
by ground control points (GCPs), places on the input image that can be located with 
precision on the ground and on planimetrically correct maps. (If two images are to be 
registered, GCPs must be easily recognized on both images.) The locations of these points 
establish the geometry of the output image and its relationship to the input image. Thus, 
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this first step establishes the framework of pixel positions for the output image using the 
GCPs.

The next step is to decide how best to estimate the values of pixels in the corrected 
image, based on information in the uncorrected image. The simplest strategy from a 
computational perspective is simply to assign each “corrected” pixel the value from the 
nearest “uncorrected” pixel. This is the nearest- neighbor approach to resampling (Figure 
11.17). It has the advantages of simplicity and the ability to preserve the original values of 
the unaltered scene—an advantage that may be critical in some applications. The nearest- 
neighbor method is considered the most computationally efficient of the methods usually 
applied for resampling. On the other hand, it may create noticeable positional errors, 
which may be severe in linear features where the realignment of pixels may be noticeable 
and may exhibit similar artifacts when applied to imagery of uneven terrain acquired 
by a pushbroom scanner. Its principal advantage is that it makes few, if any, alterations 
to pixel values. This is an advantage in applications where even minor changes may be 
considered significant.

A second, more complex, approach to resampling is bilinear interpolation (Figure 
11.18). This method calculates a value for each output pixel based on a weighted average 

 FIGURE 11.17  Nearest- neighbor resam-

pling. Each estimated value ( ) receives its value 

from the nearest point on the reference grid ( ).

 FIGURE 11.16  Resampling. Open circles 

( ) represent the reference grid of known values 

in the input image. Black dots ( ) represent the 

regular grid of points to be estimated to form the 

output image. Each resampling method employs 

a different strategy to estimate values at the out-

put grid, given known values for the input grid.
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of the four nearest input pixels. In this context, “weighted” means that nearer pixel val-
ues are given greater influence in calculating output values than are more distant pixels. 
Because each output value is based on several input values, the output image will not have 
the unnaturally blocky appearance of some nearest- neighbor images. The image there-
fore has a more “natural” look. Yet there are important changes. First, because bilinear 
interpolation creates new pixel values, the brightness values in the input image are lost. 
The analyst may find that the range of brightness values in the output image differs from 
that of the input image. Such changes to digital brightness values may be significant in 
later processing steps. Second, because the resampling is conducted by averaging over 
areas (i.e., blocks of pixels), it decreases spatial resolution by a kind of “smearing” caused 
by averaging small features with adjacent background pixels.

Finally, the most sophisticated, most complex, and most widely used resampling 
method is cubic convolution (Figure 11.19). Cubic convolution uses a weighted average 
of values within a neighborhood that extends about two pixels in each direction, usually 
encompassing 16 adjacent pixels. Typically, the images produced by cubic convolution 
resampling are much more attractive than those of other procedures, but the data are 

 FIGURE 11.18  Bilinear interpolation. Each 

estimated value ( ) in the output image is formed 

by calculating a weighted average of the values 

of the four nearest neighbors in the input image 

( ). Each estimated value is weighted according 

to its distance from the known values in the input 

image.

 FIGURE 11.19  Cubic convolution. Each 

estimated value in the output matrix ( ) is found 

by assessing values within a neighborhood of 16 

pixels in the input image ( ).
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altered more than are those of nearest- neighbor or bilinear interpolation, the computa-
tions are more intensive, and the minimum number of GCPs is larger. Operational pro-
grams commonly do not resample using nearest- neighbor. At the time of this writing, for 
example, Landsat 8 OLI data are resampled using cubic convolution, and Sentinel-2 MSI 
data are resampled using bilinear interpolation.

Identification of GCPs

A practical problem in applying image registration procedures is the selection of control 
points (Figure 11.20). GCPs are features that can be located with precision and accuracy 
on accurate maps, yet are also easily located on digital images. Ideally, GCPs could be as 
small as a single pixel, if one could be easily identified against its background. In practice, 
most GCPs are likely to be spectrally distinct areas as small as a few pixels. Examples 
might include intersections of major highways, distinctive water bodies, edges of land 
cover parcels, stream junctions, and similar features (Figure 11.21). Although identifica-
tion of such points may seem to be an easy task, in fact, the difficulties that might emerge 
during this step can form a serious roadblock to the entire analytical process, as another 
procedure may depend on completion of an accurate registration.

Typically, it is relatively easy to find a rather small or modest- sized set of control 
points. However, in some scenes, the analyst finds it increasingly difficult to expand this 
set, as one has less and less confidence in each new point added to the set of GCPs. Thus, 
there may be a rather small set of “good” GCPs, points that the analyst can locate with 
confidence and precision both on the image and on an accurate map of the region.

The locations may also be a problem. In principle, GCPs should be dispersed through-
out the image, with good coverage near edges. Obviously, little is to be gained from hav-
ing a large number of GCPs if they are all concentrated in a few regions of the image. 
Analysts who attempt to expand areal coverage to ensure good dispersion are forced to 
consider points in which it is difficult to locate GCPs with confidence. Therefore, the 
desires to select “good” GCPs and to achieve good dispersion may work against each 
other such that the analyst finds it difficult to select a judicious balance. Analysts should 
anticipate difficulties in selecting GCPs as they prepare subsets early in the analytical 
process. If subsets are too small, or if they do not encompass important landmarks, the 
analysts may later find that the subset region of the image does not permit selection of a 
sufficient number of high- quality GCPs.

Bernstein (1983) presents information that shows how registration error decreases as 
the number of GCPs is increased. Obviously, it is better to have more rather than fewer 
GCPs. But, as explained above, the quality of GCP accuracy may decrease as their num-
ber increases because the analyst usually picks the best points first.

 FIGURE 11.20  Selection of distinctive 

ground control points.
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Many image processing programs permit the analyst to anticipate the accuracy of 
the registration by reporting errors observed at each GCP if a specific registration has 
been applied. The standard measure of the location error is the root mean square error 
(RMSE), which is the standard deviation of the difference between the actual positions 
of GCPs and their calculated positions (i.e., after registration). These differences are 
known as the residuals. Usually, RMSE is reported in units of image pixels for both 
north–south and east–west directions (Table 11.11). Points with abnormally high residu-
als should be reevaluated, but deleted or moved only if, upon further inspection, there 
is a clear problem with the GCP quality. Many image processing programs can suggest 
candidate GCP locations on the target image once there are enough GCPs to create 
a model. This feature should be used with caution, as novice analysts often seek to 
minimize the RMSE of each succeeding point based on what may be a very poor initial 
model. To assess the overall accuracy of the registration, some of the GCPs should be 
withheld from the registration procedure (check points) and then used to evaluate its 
success. Registration accuracy can also be calculated using a cross- validation procedure 
employing the same points used to build the model, though this capability is rarely avail-
able in software solutions.

Some images distributed by commercial enterprises or governmental agencies have 
been georeferenced by standardized processing algorithms to meet specified standards. 
Some users may therefore find that the positional accuracy of such images is satisfactory 
for their needs. Such images are designated by specific processing levels. For example, 
Landsat 8 OLI data are terrain corrected using cubic convolution, high- quality digital 
elevation models, inputs from the sensor and spacecraft, and an established archive of 
GCPs (USGS, 2016). Other image providers employ similar procedures.

 FIGURE 11.21  Examples of ground control points (GCPs). GCPs must be identifiable both on 

the image and on a planimetrically correct reference map.
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 TABLE 11.11 Sample Tabulation of Data for Ground Central Points

Point no. Image X pixel X pixel residual Image Y pixel Y pixel residual

 1 1269.75 –0.2471E+00 1247.59 0.1359E+02

 2 867.91 –0.6093E+01 1303.90 0.8904E+01

 3 467.79 –0.1121E+02 1360.51 0.5514E+01

 4 150.52 0.6752E+02 1413.42 –0.8580E+01

 5 82.20 –0.3796E+01 163.19 0.6189E+01

 6 260.89 0.2890E+01 134.23 0.5234E+01

 7 680.59 0.3595E+01 70.16 0.9162E+01

 8 919.18 0.1518E+02 33.74 0.1074E+02

 9 1191.71 0.6705E+01 689.27 0.1127E+02

10 1031.18 0.4180E+01 553.89 0.1189E+02

11 622.44 –0.6564E+01 1029.43 0.8427E+01

12 376.04 –0.5964E+01 737.76 0.6761E+01

13 162.56 –0.7443E+01 725.63 0.8627E+01

14 284.05 –0.1495E+02 1503.73 0.1573E+02

15 119.67 –0.8329E+01 461.59 0.4594E+01

16 529.78 –0.2243E+00 419.11 0.5112E+01

17 210.42 –0.1558E+02 1040.89 –0.1107E+01

18 781.85 –0.2915E+02 714.94 –0.1521E+03

19 1051.54 –0.4590E+00 1148.97 0.1697E+02

20 1105.95 0.9946E+01 117.04 0.1304E+02

Note: X root mean square error (RMSE) error = 18.26133. Y RMSE = 35.33221. Total RMSE = 39.77237 

Point no. Error Error contribution by point

 1 13.5913 0.3417

 2 10.7890 0.2713

 3 12.4971 0.3142

 4 68.0670 1.7114

 5 7.2608 0.1826

 6 5.9790 0.1503

 7 9.8416 0.2474

 8 18.5911 0.4674

 9 13.1155 0.3298

10 12.6024 0.3169

11 10.6815 0.2686

12 9.0161 0.2267

13 11.3944 0.2865

14 21.6990 0.5456

15 9.5121 0.2392

16 5.1174 0.1287

17 15.6177 0.3927

18 154.8258 3.8928

19 16.9715 0.4267

20 16.3982 0.4123
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11.6 IMAGE DATA PROCESSING STANDARDS

The availability of analysis- ready data from agencies such as the USGS, NOAA, NASA, 
and the European Space Agency has limited the availability of lower-order products 
except for internal users developing or testing the preprocessing algorithms. For example, 
data from the MSI on Sentinel-2a have the following processing levels (Table 11.12), but 
only levels 1c and 2a are made available to users.

11.7 SUMMARY

Understanding the remotely sensed data being considered for or used in an analysis is 
vital. The increasing availability of analysis- ready data is decreasing the need for radio-
metric and geometric preprocessing by the image end user. However, no analysis should 
proceed without a visual and statistical understanding of the image data, including its 
covariance structure. Feature extraction, whether by principal components analysis, tas-
seled cap transformation, or other means, is often helpful both to reduce dimensionality 
and to reveal hidden structure and meaning in the data.

REVIEW QUESTIONS

1. How can an analyst know if preprocessing is advisable? Suggest how you might make 
this determination?

2. How can an analyst determine if specific preprocessing procedures have been effective?

3. Discuss the merits of preprocessing techniques that improve the visual appearance of 
an image but do not alter its basic statistical properties. Are visual qualities important in 
the context of image analysis?

4. Examine images and maps of your region to identify prospective GCPs. Evaluate the 
pattern of GCPs. Is the pattern even, or is it necessary to select questionable points to 
attain an even distribution?

5. Are optimum decisions regarding preprocessing likely to vary according to the subject of 
the investigation? For example, would optimum preprocessing decisions for a land cover 
analysis differ from those for a hydrologic or geologic analysis?

6. Can you identify analogies for preprocessing in other contexts?

 TABLE 11.12 Sentinel-2 MSI (European Space Agency) Processing Levels

Level Characteristics

0 Compressed raw data

1a Uncompressed raw data

1b Radiometrically corrected radiance data

1c Orthorectified TOA reflectance

2a BOA reflectance
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7. Images from unmanned aerial vehicles (UAVs) are increasingly available to analysts and 
decision makers and often require substantial preprocessing. What factors lead to the 
need for increased geometric and radiometric preprocessing of UAV- acquired data when 
compared to, say, data from a satellite- based program like Sentinel?
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MAJOR TOPICS TO UNDERSTAND

Informational Classes and Spectral Classes/Samples

Unsupervised Classification

Supervised Classification

12.1 INTRODUCTION

Digital image classification is the process of assigning single multiband pixels (Figure 
12.1a) or multipixel objects (Figure 12.1b) to classes (categories). An example of this type 
of analysis is determining whether a given pixel or object is a forest or some other type of 
land cover. Analyses that result in estimates of continuous variables for pixels or objects 
are also common. For example, even if we already know that an area is a forest, managers 
may need maps of tree height, canopy cover, leaf area index, or biomass on a per-pixel or 
per- object basis. Our focus in this chapter is on classification.

Usually, each pixel is treated as a vector composed of values in several spectral bands 
at one point in time (Figure 12.2), multiple points in time (more commonly), or some 
equivalent vector derived from nonoptical remotely sensed data. By comparing pixels to 
one another and to pixels of known identity, it is possible to assemble groups of similar 

 12 Image Classification
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pixels into classes that are associated with the informational categories of interest to users 
of remotely sensed data. These classes form regions on a map or an image, so that after 
classification the digital image is presented as a mosaic of uniform parcels, each identi-
fied by a color or symbol (Figure 12.3). These classes are, in theory, homogeneous: pixels 
within classes are spectrally more similar to one another than they are to pixels in other 
classes. In practice, of course, each class will display some diversity.

Image classification is an important part of the fields of remote sensing, image analy-
sis, and pattern recognition. In some instances, the classification itself may be the object 
of the analysis. For example, classification of land use from remotely sensed data (Chapter 
21) produces a map-like image as the final product of the analysis. In other instances, the 
classification may be only an intermediate step in a more elaborate analysis, in which the 
classified data form one of several data layers in a GIS. For example, in a study of water 
quality, an initial step may be to use image classification to identify wetlands and open 
water within a scene. Later steps may then focus on more detailed study of these areas to 

(a) (b)

(a) (b) (c)

 FIGURE 12.1  (a) Pixel as a single set of spectral values considered in isolation from its neigh-

bors. (b) Object as a group of similar adjacent pixels.

 FIGURE 12.2  (a) Spectral bands shown in 

parts b and c. (b) Vector derived from pixel shown in 

Figure 12.1a. (c) Scaled Landsat 8 Operational Land 

Imager (OLI) top-of-atmosphere reflectance vector 

from Leech Lake, Minnesota, on September 29, 2015 

(397227E, 52223510N, UTM zone 15N, scene ID 

LC80280272015272LGN00).
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identify influences on water quality and to map variations in water quality. Image classi-
fication therefore forms an important tool for examination of digital images— sometimes 
to produce a final product, other times as one of several analytical procedures applied to 
derive information from an image.

The term classifier refers loosely to a computer program that implements a specific 
procedure for image classification. Over the years scientists have devised many classifica-
tion strategies. The analyst must select a classification method that will best accomplish 
a specific task. At present it is not possible to state that a given classifier is “best” for all 
situations because the characteristics of each image and the circumstances for each study 
vary so greatly. Therefore, it is essential that each analyst understand the alternative strat-
egies for image classification so that she or he is prepared to select the most appropriate 
classifier for the task at hand.

The simplest form of digital image classification is to consider each pixel individu-
ally, assigning it to a class based on its reflectance vector. Sometimes such classifiers are 
referred to as spectral or point classifiers because they consider each pixel as a “point” 
observation. Although point classifiers offer the benefits of simplicity and economy, they 
are not capable of exploiting the information contained in relationships between each 
pixel and those that neighbor it. Human interpreters, for example, could derive little 
information using the point-by-point approach because humans derive less information 
from the brightnesses of individual pixels than they do from the context and the patterns 
of brightnesses, of groups of pixels, and from the sizes, shapes, and arrangements of par-
cels of adjacent pixels. These are the same qualities that we discussed in the context of 
manual image interpretation.

As an alternative, classification of multipixel objects (a key facet of GEOgraphic- 
Object- Based Image Analysis [GEOBIA]) enables use of texture, shape, size, context 
(site/association), and other characteristics that are so important for the human inter-
preter (Figures 12.1b, 12.4, and 12.5). Because of these advantages, object- based classifi-

 FIGURE 12.3  (a) Numeric image. (b) Classified image. The classified image is defined by exam-

ining the numeric image and then grouping together those pixels that have similar spectral values. 

Here class “A” is formed from values 0, 1, 2, and 3 and class “B” from values 6, 7, 8, and 9.

(a) (b)
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ers are now the de facto standard for many analyses, and an informed analyst must always 
carefully consider whether pixels or objects will be most appropriate for a given task.

While there are no uniformly applicable rules for when objects will be the better 
choice of analysis unit, many analysts will gravitate toward the use of objects when the 
following conditions apply:

1. The image is composed of distinct entities.
2. The spatial resolution is much finer than the size of the entities.

 FIGURE 12.4  (a) Vector positions of object- specific band means 

(m), standard deviations (s), and shape variables (area, A; perimeter, P; 

area:perimeter ratio, A : P). (b) Object vector example using object shown in 

Figure 12.1b.

 FIGURE 12.5  Segmentation of standard false-color composite IKONOS image of Dunedin City 

and the surrounding rural areas, New Zealand, acquired February 20, 2005. Yellow lines delineate the 

image objects. From Mathieu et al. (2007).

(a) (b)
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3. Shape, size, texture, and other characteristics of image interpretation uniquely 
available from GEOBIA are essential to an accurate classification.

4. There is an automated means by which useful objects can be created in a mini-
mally heuristic manner.

Another kind of distinction in image classification separates supervised classifica-
tion from unsupervised classification. Supervised classification procedures require con-
siderable interaction with the analyst, who must guide the classification by identifying 
areas on the image that are known to belong to each category (i.e., the analyst identifies 
spectral classes within known informational classes). Unsupervised classification, on the 
other hand, proceeds with only minimal interaction with the analyst, in a search for 
natural groups of pixels present within the image (i.e., the algorithm identifies spectral 
classes— also known as clusters— typically without prior knowledge of the informational 
class to which they belong). The distinction between supervised and unsupervised classi-
fication is useful, especially for students who are first learning about image classification. 
But the two strategies are not as clearly distinct as these definitions suggest, for some 
methods do not fit neatly into either category. These so- called hybrid classifiers share 
characteristics of both supervised and unsupervised methods.

12.2 INFORMATIONAL CLASSES  
AND SPECTRAL CLASSES/SAMPLES

Informational classes are the categories of interest to the users of the data. Informational 
classes are, for example, the different kinds of geological units, forest, or the different 
kinds of land use that convey information to planners, managers, administrators, and 
scientists who use information derived from remotely sensed data. These classes are the 
information that we wish to derive from the data—they are the object of our analysis. 
Unfortunately, these classes are not directly recorded on remotely sensed images; we can 
derive them only indirectly, using the evidence contained in brightnesses recorded by each 
image. For example, the image cannot directly show geological units, but rather only the 
differences in topography, vegetation, soil color, shadow, and other factors that lead the 
analyst to conclude that certain geological conditions exist in specific areas.

Spectral classes are groups of pixels that are uniform with respect to the brightnesses 
in their several spectral channels. The statistics derived from spectral classes (e.g., mean 
and covariance matrix) are used in many classifiers. Others use reflectance vectors from 
individual pixels or objects (spectral samples) rather than descriptive statistics from spec-
tral classes.

Remote sensing classification proceeds by matching spectral categories to informa-
tional categories. If the match can be made with confidence, then the information is likely 
to be reliable. If spectral and informational categories do not correspond, then the image 
is unlikely to be a useful source for that particular form of information. Seldom can we 
expect to find exact one-to-one matches between informational and spectral classes. Any 
informational class includes spectral variations arising from natural variations within the 
class (Figure 12.6). For example, a region of the informational class forest is still forest, 
even though it may display variations in age, species composition, density, and vigor, all 
of which lead to differences in the spectral appearance of a single informational class. 
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Furthermore, other factors, such as variations in illumination and shadowing, may pro-
duce additional variations even within otherwise spectrally uniform classes. Fundamen-
tally, nearly every informational class is composed of more than one spectral class, a one-
to-many relationship, and this is not a concern with respect to classifier performance. 
However, a spectral class composed of multiple informational classes will decrease clas-
sification accuracy, since in typical “hard” classifications it will still have to be assigned 
to one informational class in the final recoding step.

Thus, informational classes are typically composed of numerous spectral subclasses, 
spectrally distinct groups of pixels that together may be assembled to form an informa-
tional class. In digital classification, we must often treat spectral subclasses as distinct 
units during classification but then recode spectral classes to their corresponding infor-
mational classes for the final image or map to be used by planners or administrators (who 
are, after all, interested only in the informational categories, not in the intermediate steps 
required to generate them).

In subsequent sections, we will be interested in several properties of spectral classes. 
For each band, each class is characterized by a mean, or an average, value that of course 
represents the typical brightness of each class. In nature, all classes exhibit some vari-
ability around their mean values; some pixels are darker than the average, others a bit 
brighter. These departures from the mean are measured as the variance or sometimes as 
the standard deviation (the square root of the variance; Chapter 11).

12.3 UNSUPERVISED CLASSIFICATION

Unsupervised classification can be defined as the identification of natural groups, or 
structures, within multispectral data (Figures 12.7 and 12.8). The notion of the existence 
of natural, inherent groupings of spectral values within a scene may not be intuitively 

 FIGURE 12.6  Two- dimensional scatter plot (near- infrared vs. red) showing pixels with known 

informational classes within the feature space.
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obvious, but it can be demonstrated that remotely sensed images are usually composed of 
spectral classes that are reasonably uniform internally in respect to brightnesses in sev-
eral spectral channels. Unsupervised classification is the definition, identification, label-
ing, and mapping of these natural classes, also called clusters.

Advantages

The advantages of unsupervised classification (relative to supervised classification) can 
be enumerated as follows:

No extensive prior knowledge of the region is required. Or, more accurately, the 
nature of knowledge required for unsupervised classification differs from that required 
for supervised classification. To conduct supervised classification, detailed knowledge of 

 FIGURE 12.7  (a) NIR versus red scatter plot showing the result of an unsupervised classification 

into seven spectral classes. (b) NIR versus SWIR1 scatter plot showing the result of an unsupervised 

classification into seven spectral classes.

(a)

(b)
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the area to be examined is required to select representative examples of each class to be 
mapped. To conduct unsupervised classification, no detailed prior knowledge is required, 
but knowledge of the region is required to evaluate and label machine- generated spectral 
classes.

Opportunity for human error (at least with respect to identifying spectral classes) 
is minimized. To conduct unsupervised classification, the operator might specify only the 
number of categories desired (or possibly, minimum and maximum limits on the number of 
categories), and sometimes constraints governing the distinctness and uniformity of groups. 
Many of the detailed decisions required for supervised classification are not required for 
unsupervised classification, so the analyst is presented with less opportunity for error. If the 
analyst has inaccurate preconceptions regarding the region, she or he will have little oppor-
tunity to influence the classification. Machine- generated spectral classes (clusters) also typi-
cally partition the feature space well, with minimal within- class heterogeneity.

Unique classes are recognized as distinct units. Such classes (perhaps of very small 
areal extent, or widely dispersed, or both) may remain unrecognized in the process of 
supervised classification and could inadvertently be incorporated into other classes, gen-
erating error and imprecision throughout the entire classification.

Disadvantages and Limitations

The disadvantages and limitations of unsupervised classification arise primarily from 
reliance on “natural” groupings and difficulties in matching these groups to the informa-
tional categories that are of interest to the analyst.

Unsupervised classification identifies spectrally homogeneous classes within the 
data that do not necessarily correspond to the informational categories that are of inter-
est to the analyst. As a result, the analyst is faced with the problem of matching spectral 
classes generated by the classification to the informational classes that are required by 
the ultimate user of the information. Seldom is there a simple one-to-one correspondence 
between the two sets of classes (e.g., Figure 12.9). Some hybrid approaches (see below) 
focus specifically on developing informationally homogeneous spectral classes.

 FIGURE 12.8  Three- dimensional 

scatter plot showing the same seven 

spectral classes shown in Figure 12.7.
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The analyst has limited control over the menu of classes and their specific identi-
ties, though some algorithms do permit “seeding” with known informational classes and 
reflectance vectors. Supervised identification of initial cluster centers, followed by unsu-
pervised identification of spectrally homogeneous spectral classes, has characteristics of 
both supervised and unsupervised methods (i.e., “hybrid” classification), and provides 
evidence that the distinction between the two approaches is not as clear as idealized 
descriptions imply. Generally, however, if it is necessary to generate a specific menu of 
informational classes (e.g., to match to other classifications for other dates or adjacent 
regions), the use of unsupervised classification may be unsatisfactory.

Spectral properties of specific informational classes will change over time (on a 
seasonal basis, as well as over the years). As a result, relationships between informational 
classes and spectral classes are not constant, and relationships defined for one image usu-
ally cannot be extended to others.

Distance Measures

Unsupervised classification of an entire image must consider many thousands of pixels. 
But the clustering process is always based on the answer to the same question: “Do the 
two pixels belong to the same group?” Answering this question requires finding the dis-
tances between pairs of pixels.

A number of methods for finding distances in multidimensional feature space are 
available. One of the simplest is Euclidean distance, which is the square root of the inner 
product of the difference vectors, as follows:

1 2 1 2
Tx x x x (EQ. 12.1)

where x is a vector from a pixel or object, and 1 and 2 are two different pixels or objects. 

 FIGURE 12.9  Informational classes contained within spectral class six in Figure 12.7b. Note 

that this spectral class, while a natural grouping of “like” pixels, is not homogeneous with respect to 

informational class composition.
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This is the square root of the sum of the band- specific squared differences. This measure 
can be applied to as many dimensions (spectral channels) as might be available. Using, for 
example, the reflectance vectors in Table 12.1, we obtain the Euclidean distances shown 
in Table 12.2.

The Euclidean distance has little significance in itself, but in relation to other Euclid-
ean distances it forms a means of defining similarities between pixels. For example, we 
can see that the two forested pixels are more similar to each other than to the agriculture 
pixel and that both are comparably distant from the agriculture pixel.

Not all distance measures are based on Euclidean distance. Other possibilities 
include the L1 distance (the sum of the absolute differences between values in individual 
bands; Swain and Davis, 1978) or the Pearson distance.

k-Means

Remote sensing analysts use numerous clustering algorithms, and exploring the nuances 
of each is beyond the scope of this book. However, one of the most useful and widely 
implemented algorithms is k-means. The k in k-means refers to the number of clusters, 
which must be specified a priori by the analyst. While numerous formalized methods 
have been proposed by which k can be specified, it is most commonly chosen heuristi-
cally to address two fundamental criteria, as follows: (1) finding the minimum number of 
clusters that maximize the variance explained (i.e., the point at which additional clusters 
explain very little additional variance); and (2) maximizing spectral class homogeneity 
with respect to informational classes. The latter tends to be the dominant factor in the 
selection of k for most remote sensing applications.

 TABLE 12.1 Scaled Reflectance Vectors from Landsat 8 OLI

For 1 For 2 Ag 1

Blue  8799  8876  9134

Green  8493  8666  9200

Red  6949  7108  7617

NIR 20581 20324 26159

SWIR1 11807 12353 13635

SWIR2  7744  8248  8501

Note: For = forested; Ag = agriculture. Scene (WRS–2 row 17 path 34) acquired May 11, 2015 (Blacksburg, VA, 
and vicinity).

 TABLE 12.2 Euclidean Distances between Pairs of Vectors Shown in Table 12.1

For 1 For 2 Ag 1

FOR 1    0  824 6007

FOR 2  824    0 6030

AG 1 6007 6030    0

Note: For = forested; Ag = agriculture.
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The objective of k-means is to separate the data into groups of minimized, equal 
variance. It will always converge with enough iterations but possibly to a local rather 
than global minimum. The sequence is as follows:

1. Identify k initial cluster centers, preferably located throughout the multidimen-
sional feature space.

2. Assign each reflectance vector to its nearest cluster center based on Euclidean 
distance.

3. Calculate new cluster centers as the mean of the reflectance vectors assigned to 
each cluster.

4. Repeat steps 2 and 3 until cluster centers no longer move or the maximum num-
ber of specified iterations is reached (Figure 12.10).

ISODATA

The ISODATA classifier (Ball and Hall, 1965; Duda and Hart, 1973) is a modification 
of k-means. ISODATA, unlike k-means, does not require a priori identification of the 
number of clusters, but other analyst- specified parameters (with some variation by imple-
mentation) affect the resulting clustering, including the following: (1) the initial number 
of clusters, (2) the maximum number of iterations, (3) the minimum number of pixels 
per cluster, (4) the maximum standard deviation of pixels from their cluster center, and 
(5) the minimum required distance between two cluster centers.

Initial cluster centers can be prespecified by the analyst (see above). More commonly, 
however, they are statistically initialized throughout the feature space, often along the 
first principal component axis. The algorithm flow is as follows (again, with some varia-
tion across implementations):

1. Assign all pixels to the nearest cluster center.
2. Delete clusters with fewer than the minimum number of pixels; reassign pixels 

within deleted clusters.
3. Calculate cluster means, within- cluster standard deviations (even iterations), and 

among- cluster Euclidean distances (odd iterations).
4. Merge clusters that are closer than the minimum required distance between two 

cluster centers (odd iterations) and recalculate cluster centers, or
5. Split clusters that exceed the maximum standard deviation (even iterations). The 

two new class centers are plus or minus one standard deviation from the previous 
center.

6. Check to see if the maximum number of iterations has been reached. If so, 
stop;  otherwise repeat. (Some implementations also allow specification of the 
degree of convergence between successive iterations as an additional stopping 
criterion.)

Mather (1976) suggests resolving ISODATA’s occasional difficulties by first creating a 
superset of clusters (i.e., specifying a very large initial k) and then implementing only 
the merge function. (Fortran code for this k-means modification is available in Mather 
[1976]; a Python implementation is in Whitebox Tools [Lindsay, 2017].)
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 FIGURE 12.10  Unsupervised classification of Landsat 8 OLI data with k-means with k = 7 at first, 

third, and final iterations.
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Assignment of Spectral Categories to Informational Categories

Regardless of whether k-means, ISODATA, or some other clustering algorithm is cho-
sen, the resulting spectral classes have to be labeled with an informational class. This is 
often an analyst- intensive process, with difficulty increasing as the number of spectral 
and informational classes increases. A serious practical problem with unsupervised clas-
sification is that clear matches between spectral and informational classes are not always 
possible; some informational categories may not have direct spectral counterparts, and 
vice versa. Thus, despite the advantages that unsupervised classification has with respect 
to feature space partitioning, finding nonspatially contiguous classes, and the like, lack 
of one-to-one correspondence between spectral and informational classes can preclude its 
use. However, hybrid techniques have successfully addressed the issue of spectral classes 
being mixed with respect to informational classes. Some examples of these hybrid tech-
niques are detailed in the section “Hybrid Parametric Classifiers” later in this chapter.

12.4 SUPERVISED CLASSIFICATION

Supervised classification can be defined informally as the process of using samples of 
known identity (i.e., pixels already assigned to informational classes) to classify pixels 
of unknown identity (i.e., to assign unclassified pixels to one of several informational 
classes). While most supervised classification algorithms use sample pixels or objects, 
some decision rules use descriptive statistics from analyst- developed spectral classes 
(i.e., a spectrally homogeneous group of pixels or objects). Regardless, it is impossible to 
overemphasize how vital high- quality training data are to classification outcomes. Ana-
lysts will often go to great lengths to specify a state-of-the-art classification algorithm, 
but algorithm performance is completely dependent on the quality of the training data, 
defined as follows:

1. It is a representative sample that completely partitions the feature space. This 
typically requires a strong element of (or complete) randomness and a large num-
ber of observations.

2. Each observation in the sample is properly labeled with the appropriate informa-
tional class.

3. All necessary algorithm- specific criteria are met (e.g., independent and identically 
distributed observations).

4. When spectral classes, rather than sample pixels or objects, are used, they should 
be spectrally separable and distinct, especially between spectral classes that are 
assigned to different informational classes.

Advantages

The advantages of supervised classification, relative to unsupervised classification, can 
be enumerated as follows. First, the analyst has control of a selected menu of informa-
tional categories tailored to a specific purpose and geographic region. This quality may 
be vitally important if it becomes necessary to generate a classification for the specific 
purpose of comparison with another classification of the same area at a different date 
or if the classification must be compatible with those of neighboring regions. Under such 
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circumstances, the unpredictable (with respect to number, identity, size, and pattern) 
qualities of categories generated by unsupervised classification may be inconvenient or 
unsuitable. Second, supervised classification is tied to specific areas of known identity, 
determined through the process of selecting training areas or sample observations. Third, 
the analyst using supervised classification is not faced with the problem of matching 
spectral categories on the final map with the informational categories of interest (this 
task has, in effect, been addressed during the process of selecting training data). Finally, 
the operator may be able to detect serious errors in classification by examining training 
data to determine if they have been correctly classified by the classification procedure— 
inaccurate classification of training data indicates serious problems in the classification 
or selection of training data, although correct classification of training data does not 
always indicate correct classification of other data.

Disadvantage

The primary disadvantage of supervised classification is that conscientious selection of 
a high- quality training data set is often a subjective, time- consuming, expensive, and 
tedious undertaking, even if ample resources are at hand. Furthermore, as noted earlier, 
prior studies (e.g., Scholz, Fuhs, and Hixson, 1979; Hixson, Scholz, and Fuhs, 1980; and 
many others in the ensuing decades) have shown that training data quality is as impor-
tant as or more important than the choice of classification algorithm in most cases (really 
just a remote sensing variant on the well-known adage, “garbage in, garbage out”).

Specific Methods for Supervised Classification

A variety of different methods have been devised to implement the basic strategy of super-
vised classification. The following sections outline only a few of the most commonly 
used methods of supervised classification. The most widely used methods (Classifica-
tion and Regression Tree analysis [CART], random forests, k-nearest neighbor [kNN], 
and artificial neural networks [ANNs]) are considered nonparametric in that they “rely 
on no or few assumptions about the shape or parameters of the population distribution 
from which the sample was drawn” (Hoskin, 2012, p.  2). Some methods (maximum 
likelihood/Bayes, minimum distance to means, and the hybrid parametric classifiers) do 
assume an approximately normal distribution. In most instances, as noted above, it is the 
quality of the training sample that drives classification quality, but choice of algorithm is 
an important second- order decision.

Classification and Regression Tree Analysis

CART (Breiman et al., 1984; Lawrence and Wright, 2001) is one of the most widely used 
(and most understandable) of all classification techniques. CART (also known as deci-
sion trees) uses binary recursive splitting to divide the feature space into nonoverlapping 
(hyper)rectangles, such that each rectangle is as pure (homogeneous) as possible with 
respect to an informational class. Each split is made by examining all possible split val-
ues for each variable to determine the extent to which impurity is reduced, normally by 
computing the difference between the pre-split purity and the sum of the two post-split 
purities. Each split is greedy in that it only maximizes purity at that step. Purity can be 
defined in numerous ways, but one of the most common is called the Gini rule:
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where G is the total cost over all classes, C is the number of classes, k is a given class, and 
p is the proportion of the training observations in a rectangle that are in a given class.

Let’s look at this with a couple of examples. Assume in both instances that we have a 
classification scheme consisting of forest (k = 1), nonforest (k = 2), and water (k = 3). We 
have 10 observations, all in class forest. In that case, p(k) for both nonforest and water is 
0, and that for forest is 1 (10 of 10). As such,
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Contrast this pure rectangle with one in which we have 4 forest observations, 4 non-
forest observations, and 2 water observations:
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This is very close to the maximum value of C (1 – C), which is 0.67 in this three- 
informational class case.

Particularly using the Gini rule, application of CART is sensitive to variations in 
numbers of pixels; it performs best when numbers of pixels in training data sets are 
approximately equal. Often the use of a large number of spectral and ancillary variables 
leads to very accurate results, but results that are tailored to specific data sets—a condi-
tion known as overfitting. As a result, the application of CART often includes a pruning 
step, which reduces the tree size to create a more concise, more robust, and generally 
applicable solution. Many CART implementations improve the robustness of the pruning 
step by assessing node error rates through implementing a V-fold cross- validation (that 
also helps assess possible overfitting when a separate hold-out test sample is not feasible). 
This process divides the data into V subsets, with V – (1/V) observations used for train-
ing and 1/V observations used for validation for each of V realizations. Most studies 
have found V = 5 to 10 optimal, though increasing V to 20 is feasible when the number 
of observations per class is sufficient to allow a test sample to have the analysis- specified 
minimum number of samples at both leaf (terminal) and split nodes.

For many of the subsequent illustrations in this chapter, classifications use scaled 
reflectances from a 36-band Landsat OLI time series stack from scene WRS–2 row 17 
path 34 (Blacksburg, Virginia, and vicinity). Blue, green, red, NIR, SWIR1, and SWIR2 
bands are used from six dates: March 21, 2014; May 8, 2014; May 24, 2014; January 19, 
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2015; February 4, 2015; and May 11, 2015. The training data set consists of 500 random 
points (excepting a few purposive water samples) labeled as either forest or nonforest.

If we constrain a CART analysis to only one level using these data, we find that a 
single split, on SWIR2 from May 8, 2014, enables separation of forest from nonforest 
with an overall accuracy of 89% (Figures 12.11 and 12.12).

Random Forests

As noted above, one mechanism by which overfitting can be addressed in part is through 
pruning from the maximal tree. Another, more robust method to address overfitting is 
by not relying on a single tree but rather an ensemble (forest) of trees (typically ranging in 
number from several hundred to several thousand). In the resulting random forest, each 
tree is created using the same techniques but using random subsets of both the samples 
(for each tree) and explanatory variables (for each split of each tree) (Figure 12.13). Using 
a small subset of explanatory variables at each node decorrelates the trees.

To further clarify how random forests works, we need to define two more sampling 
terms, with replacement and without replacement. A simple example will show the dif-
ference. Consider a set of eight colors, C = {red, blue, green, yellow, cyan, magenta, 
black, white}. We choose a random element from this set, blue. If we sample without 
replacement, blue is now not in the set of possible colors, so the new set (which is a subset 
of C) is D = {red, green, yellow, cyan, magenta, black, white} with seven elements. It is 
now not possible to choose blue as another element is drawn randomly. However, if we 
sample with replacement, and blue is the element selected randomly, the set of possible 
colors does not change; it is still C = {red, blue, green, yellow, cyan, magenta, black, 
white}.

Returning to random forests, the subset of samples for a given tree is selected ran-
domly with replacement (bootstrapping), meaning it is possible for a given element to 

 FIGURE 12.11  Classification tree from a single- level classification of forest from nonforest that 

uses only a spring SWIR2 band from OLI scene WRS–2 row 17 path 34 acquired May 8, 2014.
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be selected for that tree more than once. The subset of explanatory variables for a given 
node is selected without replacement. While the size of these subsets is an adjustable 
model parameter, typical defaults (for classification) are as follows: (1) the square root of 
the number of original explanatory variables is selected for each node, and (2) two- thirds 
(usually) to four- fifths of the data are selected for each tree. The data that are not sampled 
for a given tree are called the out-of-bag sample. Conversely, the data not in the bootstrap 
sample are known as the in-bag sample (Figure 12.13).

The resulting trees are different and, as such, the results for a given set of input data 
will not be uniform. A majority vote is common among implementations, though other 
options are available. To get a feel for how this would work in practice, consider a for-
est of 100 decision trees and a given pixel reflectance vector to which a class must be 
assigned in a simple three-class scheme: forest, nonforest, and water. If, for that pixel, 
60 trees classify it as forest, 25 as water, and 15 as nonforest, then the class label will 
become forest.

The out-of-bag sample is particularly important for random forests, as it is used to 
calculate (1) an unbiased estimate of error as well as (2) variable importance. Remember 
that each tree in the forest has its own out-of-bag samples that were not used to develop 
the tree but for which the class is known. The flip side of this is that every training sample 
has a set of trees for which it was not used to train. The out-of-bag error estimate is then 
calculated as follows:

1. For a given sample, determine the majority class that is assigned for the trees that 
did not use that sample for construction.

2. Compare the assigned (majority) class for a given sample to the known class. If 
different, it is considered an error.

 FIGURE 12.12  Classification results using the tree shown in Figure 12.11. On the left is a stan-

dard false-color composite from the Landsat image acquired January 19, 2015. On the right is the 

resulting classification. Tan is nonforest, green is forest.
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3. Repeat steps (1) and (2) for all samples.
4. The out-of-bag error estimate is then just the number of misclassified samples 

divided by the total number of samples.

Variable importance measures differ, but the most robust and widely used is based on 
random permutation of the values of individual features (in our case, usually spectral 
bands) for the out-of-bag samples for each tree. The steps are as follows:

1. For a given tree, run the out-of-bag samples down the tree and count how many 
out-of-bag samples were correctly classified.

2. For a given variable in a given tree, randomly permute its values (i.e., typically, 
scramble the existing values across pixel/object vectors).

 FIGURE 12.13  Sampling with replacement for a given tree in the ensemble. Eighteen sample 

locations are shown on the 10-m resolution near- infrared band of a Sentinel-2 MultiSpectral Instrument 

image acquired over western France on May 4, 2016. Twelve of these samples are the in-bag samples 

chosen at random for this tree, indicated by yellow stars, leaving six out-of-bag samples, indicated by 

pink stars. (Since 18 samples were drawn with replacement, some of the 12 samples shown in yellow 

will be repeated, perhaps multiple times.) For each of these samples, there are 10 spectral bands with 

20-m or finer resolution. The square root of 10, rounded down, is 3; thus, three of these bands are 

randomly selected (without replacement) for each node, color coded here. Note that a spectral band 

can be selected for more than one node, as is the case with Red Edge 1 for the first two nodes and 

Red for nodes 2 and 3. Also recollect that only one of the selected subsamples of bands can be used 

for the split at a given node.
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3. Run the modified out-of-bag samples (with the permuted variable) back down the 
tree and count how many of the out-of-bag samples with the permuted variable 
are correctly classified.

4. Subtract the result obtained from Step 3 from that obtained in Step 1 to get the 
(raw) importance of that variable. (Note that if little changes, then the variable is 
not very important!)

5. Repeat steps 2–4 across all trees. Average the results and calculate the standard 
error.

6. Compute z- scores by dividing the average by the standard error.
7. Repeat steps 1–6 for every variable.

A random forests classification is shown as Figure 12.14.
It should be noted that while highly correlated variables do not adversely affect the 

quality of random forest models, they do reduce the quality of permutation- based vari-
able importance.

k-Nearest Neighbors

The kNN classifier is a simple but effective means of assigning a class to a pixel or 
object using the training data points closest to that pixel or object in the feature space. 
It requires a dense, representative (usually random) sample of labeled training data. The 
kNN procedure examines each pixel to be classified (Figure 12.15), then identifies the 
k-nearest training samples, as measured in feature space. Typically, k is set to be a rela-
tively small integer divisor. The candidate pixel is then assigned to the class that is rep-
resented by the most samples among the k neighbors. The optimal k varies by data set 
and can be optimized using iterative bootstrapping (e.g., Budreski et al., 2007). Smaller k
values sharpen boundaries; larger k values are needed for noisy data sets.

 FIGURE 12.14  Classification results using a 

random forest. Compare to Figure 12.12. Tan is 

nonforest, green is forest.
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Artificial Neural Networks

ANNs are computer programs designed to simulate human learning processes through 
establishment and reinforcement of linkages between input data and output data. It is 
these linkages, or pathways, that form the analogy with the human learning process, in 
that repeated associations between input and output in the training process reinforce the 
connections that can then be employed to link input and output, in the absence of train-
ing data.

ANNs are often represented as being composed of three elements: an input layer, an 
output layer, and a hidden layer. An input layer consists of the source data, which in the 
context of remote sensing are the multispectral observations, perhaps in several bands 
and from several dates. ANNs are designed to work with large volumes of data, including 
many bands and dates of multispectral observations, together with related ancillary data.

The output layer consists of the classes required by the analyst. There are few restric-
tions on the nature of the output layer, although the process will be most reliable when 
the number of output labels is small, or modest, with respect to the number of input chan-
nels. Included are training data in which the association between output labels and input 
data is clearly established. During the training phase, an ANN establishes an association 
between input and output data by establishing weights within one or more hidden layers 
(Figure 12.16) composed of virtual “neurons.” Connections among neurons are, by exten-
sion, virtual “synapses.” As the number of hidden layers increases, the network becomes 
“deeper,” from which the term deep learning (which typically, though not always, refers 
to a deep neural network) arises. In the context of remote sensing, repeated associations 
between classes and digital values, as expressed in the training data, strengthen weights 
(synaptic strength) within hidden layers that permit the ANN to assign correct labels 
when given spectral values in the absence of training data.

ANNs are designed using less severe statistical assumptions than many of the 
usual classifiers (e.g., maximum likelihood), although in practice successful application 
requires careful application, particularly in the training phase. ANNs have been found to 
be accurate in the classification of remotely sensed data, and deep learning is at the time 
of this writing increasingly widely used in remote sensing, especially when both copious, 

 FIGURE 12.15  k-nearest- neighbors classifier (kNN). 

kNN assigns candidate pixels according to a “vote” of 

the k-neighboring pixels, with k determined by the ana-

lyst.



334 III. ANALYSIS

 FIGURE 12.17  Classification results using 

a sequential artificial neural network with four 

epochs. The input layer has 500 neurons, the 

hidden layer 250 neurons, and the output layer 2 

neurons. The activation for the input and hidden 

layers is a rectified linear unit. The activation for 

the output layer is softmax. Twenty percent of the 

neurons were randomly dropped in the input and 

hidden layers to avoid overfitting. Tan is nonforest, 

green is forest.

high- quality training data and the necessary computational resources are available. An 
example classification is shown as Figure 12.17.

Parallelepiped Classification

Parallelepiped classification, sometimes also known as the box decision rule, or level-slice 
procedures, uses ranges of values within the training data to define regions within a mul-
tidimensional feature space. The spectral values of unclassified pixels are projected into 
feature space; those that fall within the regions defined by the training data are assigned 
to the appropriate categories.

 FIGURE 12.16  Artificial neural network.
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An example can be formed from data presented in Table 12.3. Here Landsat MSS 
bands 5 (Red) and 7 (NIR, 0.8–1.1 um) are selected from a larger data set to provide 
a concise, easily illustrated example. In practice, four or more bands can be used. The 
ranges of values with respect to band 5 can be plotted on the horizontal axis in Figure 
12.18. The extremes of values in band 7 training data are plotted on the vertical axis 
and then projected to intersect with the ranges from band 5. The polygons thus defined 
represent regions in feature space that are assigned to categories in the classification. As 
pixels of unknown identity are considered for classification, those that fall within these 
regions are assigned to the category associated with each polygon, as derived from the 
training data. The procedure can be extended to as many bands, or as many categories, as 
necessary. In addition, the decision boundaries can be defined by the standard deviations 
of the values within the training areas rather than their ranges. This kind of strategy is 
useful because fewer pixels will be placed in an “unclassified” category (a special prob-
lem for parallelepiped classification), but it also increases the opportunity for classes to 
overlap in feature space.

Although this procedure for classification has the advantages of accuracy, directness, 
and simplicity, some of its disadvantages are obvious. Spectral regions for informational 
categories may intersect. The covariance among spectral bands present in most spectral 
classes is poorly handled. Training data may underestimate actual ranges of classification 
and leave large areas in feature space and on the image unassigned to informational cat-
egories. Also, the regions as defined in feature space are not uniformly occupied by pixels 
in each category; those pixels near the edges of class boundaries may belong to other 
classes. Also, if training data do not encompass the complete range of values encountered 
in the image (as is frequently the case), large areas of the image remain unclassified, or the 

 TABLE 12.3 Data for Example Shown in Figure 12.15

Group A Group B

Band Band

1 2 3 4 1 2 3 4

34 28 22  3 28 18 59 35

36 35 24  6 28 21 57 34

36 28 22  6 28 21 57 30

36 31 23  5 28 14 59 35

36 34 25  7 30 18 62 28

36 31 21  6 30 18 62 38

35 30 18  6 28 16 62 36

36 33 24  2 30 22 59 37

36 36 27 10 27 16 56 34

Low 34 28 18  3 27 14 56 28

High 36 36 27 10 30 22 62 38

Note: These data have been selected from a larger data set to illustrate parallelepiped classification.
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basic procedure described here must be modified to assign these pixels to logical classes. 
This strategy was among the first used in the classification of Landsat data and is still 
used, although it may not always be the most effective choice for image classification.

Minimum Distance Classification

Another approach to classification uses the central values of the spectral data that form 
the training data to assign pixels to informational categories. The spectral data from 
training fields can be plotted in multidimensional feature space in the same manner illus-
trated previously for unsupervised classification. Values in several bands determine the 
positions of each pixel within the clusters that are formed by training data for each cat-
egory (Figure 12.19). These clusters may appear to be the same as those defined earlier 
for unsupervised classification. However, in unsupervised classification, these clusters 
of pixels were defined according to the “natural” structure of the data. Now, for super-

 FIGURE 12.19  Minimum distance classifier. 

Here the small dots represent pixels from train-

ing fields, and the crosses represent examples 

of large numbers of unassigned pixels from else-

where on the image. Each of the pixels is assigned 

to the closest group, as measured from the cen-

troids (represented by the larger dots) using dis-

tance measures like Equation 12.1.

 FIGURE 12.18  Parallelepiped classifica-

tion. Ranges of values within training data (Table 
12.3) define decision boundaries. Here only two 

spectral bands are shown, but the method can 

be extended to several spectral channels. Other 

pixels, not included in the training data, are 

assigned to a given category if their positions fall 

within the polygons defined by the training data.
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vised classification, these groups are formed by values of pixels within the training fields 
defined by the analyst.

Each cluster can be represented by its centroid, which is usually defined as its mean 
value. As unassigned pixels are considered for assignment to one of the several classes, the 
multidimensional (Euclidean) distance to each cluster centroid is calculated and the pixel 
is then assigned to the closest cluster. Thus, the classification proceeds by always using 
the “minimum distance” from a given pixel to a cluster centroid defined by the training 
data as the spectral manifestation of an informational class.

Minimum distance classifiers are direct in concept and in implementation but are 
not widely used in remote sensing work. In its simplest form, minimum distance clas-
sification is not always accurate; there is no provision for accommodating differences in 
variability of classes, and some classes may overlap at their edges. It is possible to devise 
more sophisticated versions of the basic approach just outlined by using different distance 
measures and different methods of defining cluster centroids.

Maximum Likelihood Classification

In nature, the classes that we classify exhibit natural variation in their spectral patterns 
(Figure 12.20). Further variability is added by the effects of haze, topographic shadow-
ing, system noise, and the effects of mixed pixels. As a result, remote sensing images sel-
dom record spectrally pure classes; more typically, they display a range of brightnesses in 
each band. The classification strategies considered thus far do not consider variation that 
may be present within spectral categories and do not address problems that arise when 
frequency distributions of spectral values from separate categories overlap. For example, 
for application of a parallelepiped classifier, the overlap of classes is a serious problem 
because feature space cannot then be neatly divided into discrete units for classification.

This kind of situation arises frequently because often our attention is focused on 
classifying those pixels that tend to be spectrally similar rather than those that are dis-
tinct enough to be easily and accurately classified by other classifiers.

Assume that we examine a digital image representing a region composed of three- 
fourths forested land and one- fourth cropland, and that (extremely atypically) one spec-
tral class suffices to represent each informational class. The two spectral classes “Forest” 
and “Cropland” are distinct with respect to average brightness, but extreme values (very 

 FIGURE 12.20  Maximum likelihood classification. These frequency distributions represent pix-

els from two training fields; the zone of overlap depicts pixel values common to both categories. The 

relation of the pixels within the region of overlap to the overall frequency distribution for each class 

defines the basis for assigning pixels to classes. Here, the relationship between the two histograms 

indicates that the pixel with the value “45” is more likely to belong to the Forest (“F”) class rather than 

the Crop (“C”) class.
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bright forest pixels or very dark crop pixels) are similar in the region where the two fre-
quency distributions overlap. (For clarity, Figure 12.20 shows data for only a single spec-
tral band, although the principle extends to values observed in several bands and to more 
than the two classes shown here.) Brightness value “45” falls into the region of overlap, 
where we cannot make a clear assignment to either “Forest” or “Cropland.”

In this situation, an effective classification would consider the relative likelihoods of 
“45 as a member of Forest” and “45 as a member of Cropland.” We could then choose 
the class that would maximize the probability of a correct classification, given the infor-
mation in the training data. This kind of strategy is known as maximum likelihood 
classification: it uses the training data as a means of estimating means and variances of 
the classes, which are then used to estimate the probabilities. Maximum likelihood clas-
sification considers not only the mean, or average, values in assigning classification, but 
also the variability of brightness values in each class, which need not be the same from 
class to class.

The maximum likelihood decision rule, implemented quantitatively to consider sev-
eral classes and several spectral channels simultaneously, forms a powerful classifica-
tion technique. It requires intensive calculations, so it has the disadvantage of requir-
ing more computer resources than do most of the simpler techniques mentioned above. 
Also, it is sensitive to variations in the quality of training data—even more so than most 
other supervised techniques. Computation of the estimated probabilities is based on the 
assumption that both training data and the classes themselves display multivariate nor-
mal (Gaussian) frequency distributions. (This is one reason that training data should 
exhibit unimodal distributions, as discussed above.) Data from remotely sensed images 
often do not strictly adhere to this rule, although the departures are often small enough 
that the usefulness of the procedure is preserved. Nonetheless, training data that are not 
carefully selected may introduce error.

Bayes’ Classification

The classification problem can be expressed more formally by stating that we wish to 
estimate the “probability of Forest (F), given that we have an observed digital value 45,” 
and the “probability (P) of Cropland (C), given that we have an observed digital value 
45.” These questions are a form of conditional probabilities, written as “P(F|45)” and 
“P(C|45),” and read as “The probability of encountering category Forest, given that digi-
tal value 45 has been observed at a pixel,” and “The probability of encountering cat-
egory Cropland, given that digital value 45 has been observed at a pixel.” That is, they 
state the probability of one occurrence (finding a given category at a pixel), given that 
another event has already occurred (the observation of digital value 45 at that same 
pixel). Whereas estimation of the probabilities of encountering the two categories at ran-
dom (without a conditional constraint) is straightforward (here P[F] = 0.50, and P[C] = 
0.50, as mentioned above), conditional probabilities are based on two separate events. 
From our knowledge of the two categories as estimated from our training data, we can 
estimate P(45|F) (“the probability of encountering digital value 45, given that we have 
category Forest”), and P(45|C) (“the probability of encountering digital value 45, given 
that we have category Cropland”). For this example, P(45|F) = 0.75, and P(45|C) = 0.25.

However, what we want to know are values for probabilities of “Forest, given that 
we observe digital value 45” [P(F|45)], and “Cropland, given that we observe digital 
value 45” [P(C|45)], so that we can compare them to choose the most likely class for the 
pixel. These probabilities cannot be found directly from the training data. From a purely 
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intuitive examination of the problem, there would seem to be no way to estimate these 
probabilities.

But, in fact, there is a way to estimate P(F|45) and P(C|45) from the information 
at hand. Thomas Bayes (1702–1761) defined the relationship between the unknowns 
P(F|45) and P(C|45), and the known P(F), P(C), P(45|F), and P(45|C). His relationship, 
now known as Bayes’ theorem, is expressed as follows for our example:

P(F)P(45|F) 
P(F|45) =              

P(F)P(45|F) + P(C)P(45|C)
(EQ. 12.5)

P(C)P(45|C) 
P(C|45) =              

P(C)P(45|C) + P(F)P(45|F)
(EQ. 12.6)

In a more general form, Bayes’ theorem can be written:

P(b1)P(a1|b1) 
P(b1|a1) =                  

P(b1)P(a1|b1) + P(b2)P(a1|b2) + . . .
(EQ. 12.7)

where a1 and a2 represent alternative results of the first stage of the experiment, and 
where b1 and b2 represent alternative results for the second stage. For our example, Bayes’ 
theorem can be applied as follows:

  P(F)P(45|F) 
P(F|45) =                

  P(F)P(45|F) + P(C)P(45|C)

½ ¾     3
8   3 

 =           =     =   

(½ ¾) + (½ ¼)   4
8   4

  P(C)P(45|C) 
P(C|45) =                

   P(C)P(45|C) + P(F)P(45|F)

½ ¼     1
8
  1 

 =           =     =   

(½ ¼) + (½ ¾)   4
8   4

(EQ. 12.8)

So we conclude that this pixel is more likely to be “Forest” than “Cropland.” Almost 
always there will be multiple spectral classes for any given informational class, data for 
multiple spectral channels/dates are considered, and there are more than two categories, 
so this example is greatly simplified. We can extend this procedure to as many bands or 
as many categories as may be necessary, although the expressions become more complex 
than can be discussed here.
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For remote sensing classification, application of Bayes’ theorem is especially effec-
tive when classes are indistinct or overlap in feature space. It can also form a convenient 
vehicle for incorporating ancillary data into the classification, as the added information 
can be expressed as a conditional probability. In addition, it can provide a means of intro-
ducing the costs of misclassification into the analysis. (Perhaps an error in misassignment 
of a pixel to Forest is more serious than a misassignment to Cropland.) Furthermore, we 
can combine Bayes’ theorem with other classification procedures, so, for example, most 
of the pixels can be assigned using a parallelepiped classifier, and then a Bayesian classi-
fier can be used for those pixels that are not within the decision boundaries or within a 
region of overlap. Some studies have shown that such classifiers are very accurate (Story, 
Campbell, and Best, 1984).

Thus, Bayes’ theorem is an extremely powerful means of using information at hand 
to estimate the probabilities of outcomes related to the occurrence of preceding events. 
The weak points of the Bayesian approach to classification are as follows: (1) prior prob-
abilities are needed for each spectral rather than informational class, a much more dif-
ficult proposition in most instances, and (2) the spectral classes must (a) partition the 
multidimensional feature space well, (b) be separable, and (c) have multivariate normal 
frequency distributions. In the hands of a skilled analyst, this remains one of the most 
effective and accurate means of classification, albeit increasingly less common in the 
operational domain.

Hybrid Parametric Classifiers

The clustering algorithms used for unsupervised classification have numerous advantages, 
primarily (1) partitioning the feature space well with separable spectral classes that meet 
the distributional assumptions for parametric classifiers and (2) identifying spatially non-
contiguous but spectrally homogeneous spectral classes. They have two primary disad-
vantages, which are the (1) difficulty in labeling the resulting spectral classes, especially 
as they become more numerous, and (2) nonhomogeneity with respect to informational 
classes (i.e., a spectral class might inherently “belong” to two or more informational 
classes). Hybrid classifiers retain all the benefits associated with unsupervised classifica-
tion while improving (1) labeling and (2) spectral class homogeneity.

Many hybrid classification methods have been developed. Phillips, Watson, and 
Wynne (2007) encapsulate the general thrust of the historical development, to which the 
reader is referred. However, there are two methods for which development activity and/
or operational use remains high: guided clustering (Bauer et al., 1994; Figure 12.21) and 
iterative guided spectral class rejection (IGSCR; Wayman et al., 2001; Musy et al., 2006; 
Phillips et al., 2007; Figure 12.22).

Guided Clustering

Guided clustering (Figure 12.21) requires the analyst to develop informational class 
(rather than spectral class) areas of interest. The polygons that constitute, in the aggre-
gate, a given informational class, must encompass the spectral variability associated with 
that informational class. However (unlike supervised training), the individual spectral 
classes within an informational class need not be identified, greatly simplifying the pro-
cess. Clusters are developed using only the pixels that are circumscribed or intersected by 
the polygons that constitute a given informational class. For example, if eight polygons 
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together encapsulate all the spectral variability within informational class Agriculture, 
then only the pixels that fall within (or touch) those eight polygons are used in the cluster-
ing stage. The principal user- supplied parameter is the desired number of spectral classes. 
The analyst is not constrained to a given clustering algorithm, though both k-means and 
ISODATA have clearly demonstrated prior utility. The resulting spectral classes are then 
evaluated using an informational class- specific feature space image (constructed using 
the same pixels) to evaluate feature space partitioning and class separability. If either of 
these is lacking, then the analyst is generally advised to recluster using a different number 
of clusters. Once the clustering result is satisfactory, then manual refinement of the clus-
ters within an informational class is possible, though seldom necessary. After a similar 
process is complete for each informational class, the resulting spectral signatures are 
then combined. Spectral class refinement by the analyst (particularly careful deletion of 
confused classes across informational class boundaries) is often necessary at this stage, 
though it is normally quite minimal. Attempts have been made to automate even the 
relatively minimal user input required (e.g., Podger, 2004), but the process can be quickly 
implemented by an experienced analyst.

Iterative Guided Spectral Class Rejection

IGSCR also uses informational class- specific areas of interest. However, the pixels under-
girding the polygons in a given informational class are used only to label clusters derived 
from the whole image rather than individual identified informational classes. A hypoth-
esis test is used to determine whether each resulting spectral class is homogeneous with 
respect to one informational class (Figure 12.23). If a spectral class is not “pure” by this 
criterion, all the pixels in the image that were assigned to that spectral class (and others 
that are similarly “impure”) will be reclustered. Since the specified number of spectral 
classes does not change between iterations, the net result is usually a continual reduction 
in the size of spectral classes at each iteration, particularly at the informational class 
boundary. The process ends (Figure 12.24) when (1) only pure classes are identified in 
a given iteration, (2) the analyst- provided maximum number of iterations is reached, 
or (3) there are no longer enough remaining pixels for hypothesis tests at a prespecified 
level of homogeneity. Analyst- provided inputs include, as noted above, the maximum 
number of iterations and the homogeneity threshold. The number of spectral classes to 
be identified at each iteration is also required. Since the method is iterative, there is no 
need to specify a large number of spectral classes. A sensitivity analysis (Kelly et al., 
2004) revealed three spectral classes as best for their application, along with a 90 percent 
homogeneity threshold. Successful application of IGSCR does require that the number of 
training pixels in each class roughly approximates the proportionality of informational 
classes in the image or study area. Also, as the homogeneity threshold increases, the num-
ber of required training samples also increases, often substantially, so a lower threshold 
is often more practical (and, as noted above, has been shown to be as or more accurate 
than higher thresholds).

Ancillary Data

Ancillary, or collateral, data can be defined as data acquired by means other than remote 
sensing that are used to assist in the classification or analysis of remotely sensed data. 
There is a long tradition of both implicit and explicit use of such information in the pro-
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 FIGURE 12.23  Feature space display of the spectral classes created as a result of the first itera-

tion of an IGSCR classification of a Landsat Thematic Mapper (TM) image using 10 ISODATA classes 

and a 90% homogeneity threshold.

 FIGURE 12.24  Feature space display of the spectral classes created as a result of the sixth 

iteration of an IGSCR classification of a Landsat TM image using 10 ISODATA classes and a 90% 

homogeneity threshold. Note the substantially smaller size of the classes at higher iterations.
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cess of manual interpretation of images, including data from maps, photographs, field 
observations, reports, and personal experience. For digital analysis, ancillary data often 
consist of data available in formats consistent with the digital spectral data, or in forms 
that can be conveniently transformed into usable formats. Examples include digital eleva-
tion data or digitized soil maps (Anuta, 1976).

Ancillary data can be used in either of two ways. They can be added to the spectral 
data to form a single multiband image; the ancillary data are treated simply as additional 
channels of data. Or the analysis can proceed in two steps using a layered classification 
strategy. In either instance, ancillary data are vital to the success of many classifications, 
and they are integral to the production of operational products derived from remotely 
sensed data such as the U.S. National Land Cover Data (Homer et al., 2004; Wickham 
et al., 2014).

Fuzzy Classification

Fuzzy classification addresses a problem implicit in much of the preceding material: pix-
els must be assigned to a single discrete class. However, many processes prevent clear 
matches between pixels and classes, as noted by Robinove (1981) and Richards and Kelly 
(1984). Therefore, the focus on finding discrete matches between pixels and informa-
tional classes ensures that many pixels will be incorrectly or illogically labeled. Fuzzy 
logic attempts to address this problem by applying a different classification logic.

Fuzzy logic (Kosko and Isaka, 1993) has applications in many fields but has special 
significance for remote sensing. Fuzzy logic permits partial membership, a property that 
is especially significant in the field of remote sensing, as partial membership translates 
closely to the problem of mixed pixels. So whereas traditional classifiers must label pixels 
as either “Forest” or “Water,” for example, a fuzzy classifier is permitted to assign a pixel 
a membership grade of 0.3 for “Water” and 0.7 for “Forest,” in recognition that the pixel 
may not be properly assigned to a single class. Membership grades typical vary from 0 
(nonmembership) to 1.0 (full membership), with intermediate values signifying partial 
membership in one or more other classes (Table 12.4).

A fuzzy (aka “soft”) classifier assigns membership to pixels based on a membership 
function. Membership functions for classes are determined either by general relation-
ships or by definitional rules describing the relationships between data and classes. Or, 

 TABLE 12.4 Partial Membership in Fuzzy Classes

       

Class 

Pixel

A B C D E F G

Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Urban 0.00 0.01 0.00 0.00 0.00 0.00 0.85

Transportation 0.00 0.35 0.00 0.00 0.99 0.79 0.14

Forest 0.07 0.00 0.78 0.98 0.00 0.00 0.00

Pasture 0.00 0.33 0.21 0.02 0.00 0.05 0.00

Cropland 0.92 0.30 0.00 0.00 0.00 0.15 0.00
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as is more likely in the instance of remote sensing classification, membership functions 
are derived from experimental (i.e., training) data for each specific scene to be examined. 
In the instance of remote sensing data, a membership function describes the relationship 
between class membership and brightness in several spectral bands.

Figure 12.25 provides contrived examples showing several pixels and their member-
ship grades. (Actual output from a fuzzy classification is likely to form an image that 
shows varied levels of membership for specific classes.) Membership grades can be hard-
ened (Table 12.5) by setting the highest class membership to 1.0 and all others to 0.0. 
Hardened classes are equivalent to traditional classifications: each pixel is labeled with 
a single label and the output is a single image labeled with the identity of the hardened 
class. Programs designed for remote sensing applications (Bezdek, Ehrilich, and Full, 
1984) provide the ability to adjust the degree of fuzziness and thereby adjust the struc-
tures of classes and the degree of continuity in the classification pattern.

Fuzzy clustering has been judged to improve results, at least marginally, with respect 
to traditional classifiers, although the evaluation is difficult because the usual evalua-
tion methods require the discrete logic of traditional classifiers. Thus, the improvements 

 FIGURE 12.25  Membership functions for fuzzy clustering. This example illustrates membership 

functions for the simple instance of three classes considered for a single spectral band, although the 

method is typically applied to multibands. The horizontal axis represents pixel brightness; the verti-

cal axis represents degree of membership, from low, near the bottom, to high, at the top. The class 

“Water” consists of pixels darker than brightness 20, although only pixels darker than 8 are likely to be 

completely occupied by water. The class “Agriculture” can include pixels as dark as 22 and as bright 

as 33, although pure “Agriculture” is found only in the range 27–29. A pixel of brightness 28, for exam-

ple, can only be agriculture, although a pixel of brightness of 24 could be partially forested, partially 

agriculture. (Unlabeled areas on this diagram are not occupied by any of the designated classes.)

 TABLE 12.5 “Hardened” Classes for Example Shown in Table 12.4

Class 

Pixel

A B C D E F G

Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Urban 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Transportation 0.00 1.00 0.00 0.00 1.00 1.00 0.00

Forest 0.00 0.00 1.00 1.00 0.00 0.00 0.00

Pasture 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cropland 1.00 0.00 0.00 0.00 0.00 0.00 0.00
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noted for hardened classifications are probably conservative, as they do not reveal the full 
power of fuzzy logic.

Contextual Classification

Contextual information is derived from spatial relationships among pixels or objects 
(with the latter being particularly common) within a given image. Context is determined 
by positional relationships among objects, either classified or unclassified, anywhere 
within the scene (Swain, Vardeman, and Tilton, 1981; Gurney and Townshend, 1983).

Although contextual classifiers can operate on either classified or unclassified data, 
it is convenient to assume that some initial processing has assigned a set of preliminary 
classes on a pixel-by-pixel basis without using spatial information. The function of the 
contextual classifier is to operate on the preliminary classification to reassign pixels as 
appropriate in the light of contextual information.

Context can be defined in several ways, as illustrated in Figure 12.26. In each 
instance, the problem is to consider the classification of a pixel or a set of pixels (repre-
sented by the shaded pattern) using information concerning the classes of other, related 
pixels. Several kinds of links define the relationships between the two groups. The sim-
plest link is that of distance. Perhaps the unclassified pixels are agricultural land, which 
is likely to be “Irrigated Cropland” if positioned within a certain distance of a body of 
open water; if the distance to water exceeds a certain threshold, the area might be more 
likely to be assigned to “Rangeland” or “Unirrigated Cropland.” The second example 
in Figure 12.26 illustrates the use of both distance and direction. Contiguity (Figure 
12.26c) may be an important classification aid. For example, in urban regions, specific 

 FIGURE 12.26  Contextual classification. 

The shaded regions depict pixels to be clas-

sified; the open regions represent other pixels 

considered in the classification decision. (a) Dis-

tance is considered; (b) direction is considered; 

(c)  contiguity forms a part of the decision pro-

cess; (d)  inclusion is considered. From  Gurney 

and Townshend (1983). Copyright © 1983 

the American Society of Photogrammetry and 

Remote Sensing. Used by permission.
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land uses may be found primarily in locations adjacent to a specific category. Finally, 
specific categories may be characterized by their positions within other categories, as 
shown in Figure 12.26d.

Contextual classifiers are efforts to simulate some of the higher order interpretation 
processes used by human interpreters, in which the identity of an image region is derived 
in part from its location in relation to other regions of specified identity. For example, 
a human interpreter considers the sizes and shapes of parcels in identifying land use, as 
well as the identities of neighboring parcels. The characteristic spatial arrangement of the 
central business district, industrial, residential, and agricultural land in an urban region 
permits the interpreter to identify parcels that might be indistinct, if considered with 
conventional classifiers.

Contextual classifiers can also operate upon classified data to reclassify erroneously 
classified pixels or to reclassify isolated pixels (perhaps correctly classified) that form 
regions so small and so isolated that they are of little interest to the user. Such uses may 
be essentially cosmetic operations, but they could be useful in editing the results for final 
presentation.

12.5 SUMMARY

This chapter has described a few specific classifiers as a means of introducing the student 
to the variety of classification strategies that are available today. Possibly the student 
may have the opportunity to use some of these procedures, so these descriptions may 
form the first step in a more detailed learning process. It is more likely, however, that the 
student who uses this book will never use many of the specific classifiers described here. 
Nonetheless, those procedures that are available for student use are likely to be based on 
the same principles outlined here using specific classifiers as examples. Therefore, this 
chapter should not be regarded as a complete catalog of image classification methods, 
but rather as an effort to illustrate some of the primary methods of image classification. 
Specific details and methods will vary greatly, but if the student has mastered the basic 
strategies and methods of image classification, he or she will recognize unfamiliar meth-
ods as variations on the fundamental approaches described here.

REVIEW QUESTIONS

1. This chapter mentions only a few of the many strategies available for image classifica-
tion. Why have so many different methods been developed? Why not use just one?

2. Why might the decision to use or not to use preprocessing be especially significant for 
image classification?

3. Image classification is not necessarily equally useful for all fields. For a subject of inter-
est to you (geology, forestry, etc.), evaluate the significance of image classification by 
citing examples of how classification might be used. Also list some subjects for which 
image classification might be more or less useful.

4. Speculate on the course of further developments in image classification. Can you sug-
gest relationships between sensor technology and the design of image classification 
strategies?
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5. Why might an analyst choose to use CART rather than random forests if the latter is 
better at preventing overfitting?

6. What is the difference between a parametric and nonparametric classifier? How does 
training differ between these two sets of classifiers?

7. Why, for parametric classifiers, should you not use a single spectral class to represent 
an informational class?

8. Given that the quality of training data is normally much more important than the choice 
of classification algorithm, how can you ensure their quality?
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MAJOR TOPICS TO UNDERSTAND

Sources of Classification Error

Error Characteristics

Measurement of Map Accuracy

Sampling Scheme

Cross Validation

Sample Size

Comparing Maps

Area Estimation

13.1 INTRODUCTION

Prospective users of maps and data derived from remotely sensed images quite naturally 
ask about the accuracy of the information they will use. Yet questions concerning accu-
racy are surprisingly difficult to address in a convincing manner. This chapter describes 
how the accuracy of a thematic map can be evaluated and how two maps can be com-
pared to determine if they are statistically different from one another.

 13 Accuracy Assessment
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Accuracy and Precision

Accuracy defines “correctness”; it measures the agreement between a standard assumed 
to be correct and a classified image of unknown quality. If the image classification cor-
responds closely with the standard, it is said to be “accurate.” There are several methods 
for measuring the degree of correspondence, all of which are described in later sections.

Precision defines a measure of the sharpness (or certainty) of a measurement (Figure 
13.1). In remote sensing, precision has two connotations: (1) categorical specificity of a 
thematic map and (2) the confidence interval within which estimates of map accuracy or 
area are likely to be contained. For continuous variables such as aboveground biomass 
or Secchi depth (a measure of water transparency), this latter connotation can also be 
expressed by the root mean square error or standard error of the estimator. With respect 
to categorical specificity, one may be able to increase accuracy by decreasing precision— 
that is, by being vague in the classification. For example, consider a stand of trees labeled 
simply as forest. If that class is further subdivided into coniferous forest, mixed forest, 
and pine forest, detail increases. If the pines are further subdivided into shortleaf pine 
forest, Virginia pine forest, and loblolly pine forest, detail increases even more. Each 
time categorical specificity increases, so does the opportunity for error. (It is clearly more 
difficult to assign detailed classes correctly than to assign general classes.) Evaluation of 
accuracy seldom explicitly considers precision, yet we must always ask if the precision 
is appropriate for the purpose at hand. Accuracy of 95% in separating water and forest 
is unlikely to be useful if we need to know the distributions of evergreen and deciduous 
categories.

 FIGURE 13.1  Bias and precision. Accuracy 

consists of bias and precision. Consistent differ-

ences between estimated values and true values 

create bias (top diagram). The lower diagram 

illustrates the concept of precision. High variabil-

ity of estimates leads to poor precision; low vari-

ability of estimates creates high precision.
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In a statistical context, high accuracy means that bias is low (that estimated values 
are consistently close to an accepted reference value). High precision means that the vari-
ability of estimates (independent of their bias) is low (Figure 13.1). The usefulness of a 
map is related not only to its correctness, but also to the precision with which the user 
can make statements about specific points depicted on the map. A map that offers only 
general classes (even if correct) enables users to make only vague statements about any 
given point represented on the map; one that uses detailed classes permits the user to 
make more precise statements (Webster and Beckett, 1968).

Significance

Accuracy has many practical implications: for example, it affects the legal standing of 
maps and reports derived from remotely sensed data, the operational usefulness of such 
data for land management, and their validity as a basis for scientific research. Analyses 
of accuracies of alternative classification strategies have significance for everyday uses of 
remotely sensed data. There have, however, been few systematic investigations of relative 
accuracies of manual and machine classifications, of different individuals, of the same 
interpreter at different times, of alternative preprocessing and classification algorithms, 
or of accuracies associated with different images of the same area. As a result, accuracy 
studies would be valuable research in both practical and theoretical aspects of remote 
sensing.

Often people assess accuracy from the appearance of a map, from past experience, or 
from personal knowledge of the areas represented. These can all be misleading, as overall 
accuracy may be unrelated to the map’s cosmetic qualities, and often personal experience 
may be unavoidably confined to a few unrepresentative sites. Instead, accuracy should be 
evaluated through a well- defined effort to assess the map in a manner that permits quan-
titative measure of accuracy and comparisons with alternative images of the same area.

Evaluation of accuracies of information derived from remotely sensed images has 
long been of interest, but a new concern regarding the accuracies of digital classifica-
tions has stimulated research on accuracy assessment. As digital classifications were first 
offered in the 1970s as replacements for more traditional products, many found the meth-
ods of machine classification to be abstract and removed from the direct control of the 
analyst; their validity could not be accepted without evidence. This concern prompted 
much of the research outlined in this chapter.

Users should not be expected to accept at face value the validity of any map, regard-
less of its origin or appearance, without supporting evidence. We shall see in this chapter 
how difficult it can be to compile the data necessary to support credible statements con-
cerning map accuracy.

13.2 SOURCES OF CLASSIFICATION ERROR

Errors are present in any classification. In manual interpretations, errors are caused by 
misidentification of parcels, excessive generalization, errors in registration, variations 
in detail of interpretation, and other factors. Perhaps the simplest causes of error are 
related to the mis- assignment of informational categories to spectral categories (Chapter 
12). Bare granite in mountainous areas, for example, can be easily confused with the 
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spectral response of concrete in urban areas. However, most errors are probably more 
complex. Mixed pixels occur as resolution elements fall on the boundaries between land-
scape parcels; these pixels may well have digital values unlike either of the two categories 
represented and may be misclassified even by the most robust and accurate classification 
procedures. Such errors may appear in digital classification products as chains of misclas-
sified pixels that parallel the borders of large, homogeneous parcels (Figure 13.2).

In this manner, the character of the landscape contributes to the potential for error 
through the complex patterns of parcels that form the scene. A very simple landscape 
composed of large, uniform, distinct categories is likely to be easier to classify accurately 
than one with small, heterogeneous, indistinct parcels arranged in a complex pattern. 
Key landscape variables are likely to include:

Parcel size
Variation in parcel size
Parcel identities
Number of categories
Arrangement of categories
Number of parcels per category
Shapes of parcel
Radiometric and spectral contrast with surrounding parcels

These variables change from one region to another (Podwysocki, 1976; Simonett 
and Coiner, 1971) and within a given region from season to season. As a result, errors 
present in a given image are not necessarily predictable from previous experience in other 
regions or on other dates.

 FIGURE 13.2  Incorrectly classified border pixels at the edges of parcels. Both examples, based 

on Musy et al. (2006), show validation points that were classified as nonforest but were labeled as 

forest in the reference data. The images are black-and-white infrared composites (Landsat Thematic 

Mapper bands 4, 3, and 2). In both cases, the forest lies at the edge of a water body.
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13.3 ERROR CHARACTERISTICS

Classification error is the assignment of a pixel belonging to one category (as, for exam-
ple, determined by ground observation) to another category during the classification pro-
cess. There are few if any systematic studies of geographic characteristics of these errors, 
but experience and logic suggest that errors are likely to possess at least some of the 
characteristics listed below.

Errors are not distributed over the image at random but display a degree of system-
atic, ordered occurrence in space. Likewise, errors are not assigned at random to the 
various categories on the image but are likely to be preferentially associated with certain 
classes. Often erroneously assigned pixels are not spatially isolated but occur grouped in 
areas of varied size and shape (Campbell, 1981). Errors may have specific spatial relation-
ships to the parcels to which they pertain; for example, they may tend to occur at the 
edges or in the interiors of parcels.

Figure 13.3 shows error patterns from estimation of a continuous variable, tree 
canopy cover, using random forest regression (Coulston et al., 2016). Note the follow-
ing: (1) error is not random but in fact is higher in heterogeneous areas or at land cover 
boundaries; (2) modern analysis methods can discern the spatial distribution of error 
(albeit using techniques beyond the scope of this book). Figure 13.3 shows the quantity, 
not sources, of errors, but quantifying the magnitude of uncertainty from various sources 
is also now possible using modern data assimilation techniques (e.g., Das et al., 2016).

13.4 MEASUREMENT OF MAP ACCURACY

The accuracy assessment task can be defined as one of comparing two sources of infor-
mation, one based on analysis of remotely sensed data (the map) and another based on 
a different source of information, assumed to be more accurate (the reference data). The 
reference data are of obvious significance; if they are in error, then the attempt to mea-
sure accuracy will be in error. For information that varies seasonally or over time, it is 
important that the reference data match with respect to time. Otherwise, the comparison 
may detect differences that are not caused solely by inaccuracies in the classification. For 
example, some of the differences may not really be errors, but simply changes that have 
occurred during the interval that elapsed between image acquisition and reference data 
acquisition. In some instances, we may examine two maps simply to decide if there is a 
difference, without concluding that one is more accurate than the other. For example, 
we may compare maps of the same area made from data acquired by different sensors 
or using different classification protocols. More commonly in such cases, however, we 
will use reference data applicable to both classifications to determine whether one map is 
more accurate than the other.

To assess the accuracy of a map, it is necessary that the map and reference data be 
co- registered, that they both use the same classification system and minimum mapping 
unit, and that they have been classified at comparable levels of detail. The strategies 
described here are not appropriate if the two data sources differ with respect to detail, 
number of categories, or meanings of the categories.

The resulting quantification of site- specific accuracy is based on the detailed assess-
ment of agreement between the map and reference data at specific locations (Figure 
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 FIGURE 13.3  (a) National Agriculture Imagery Program (NAIP) imagery for an area east of 

Atlanta, Georgia. (b) Percent tree canopy cover based on a random forests model. (c) Half-width of 

the 95% prediction interval for percent tree canopy cover. (d) Masked predicted percent tree canopy 

cover with 5% error rate for area of no canopy cover overlaid on NAIP imagery. From Coulston et al. 

(2016). Copyright © 2016 the American Society for Photogrammetry and Remote Sensing. Used by 

permission.

(a) (b)

(c) (d)
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13.4). Gersmehl and Napton (1982) refer to this kind of error as classification error. In 
many accuracy assessments of maps derived from moderate resolution imagery, the sam-
ples are pixels, but this strategy is impractical for very large (and usually mixed) or very 
small pixels (for which, among other issues, accurate registration between the mapped 
pixel and the reference data becomes more difficult). Therefore, instead of pixel-by-pixel 
comparisons, accuracy comparison often uses pixel groups (commonly a square 3  3 
window) or polygons.

13.5 SAMPLING SCHEME

Once the sample unit has been chosen, the next two questions that immediately arise 
are: (1) What sampling scheme should be used? and (2) How many samples should be 
collected? With regard to sampling scheme, the most critical issue is that it needs to have 
a random element (i.e., be probabilistic). Remember, the goal of accuracy assessment is 
to estimate the accuracy of the image classification (the population, in this case) using a 
sample of reference data. With a large enough sample size, a simple random sample is best. 
However, as sample size decreases, categories that are less prevalent on the landscape can 
be missed using a simple random sample. For this and other reasons, stratification based 
on map or change categories (resulting in a stratified random sample) is often used and 
is a recommended best practice (Olofsson et al., 2014). However, modern machine learn-
ing workflows often collect training and validation (test) data concomitantly, making a 
priori stratification infeasible (see also Section 13.6). Furthermore, the stratification will 

 FIGURE 13.4  Site- specific accuracy. Reference data (shown here as black or white crosses) 

with known locations are used to assess map accuracy.
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be most appropriate for the map or change pairs from which strata were developed, mak-
ing the validation set potentially less appropriate for other maps of the same area (such as 
when one is comparing maps made by different organizations, analyses, or classification 
algorithms; see Section 13.8).

13.6 CROSS VALIDATION

It is possible to use the training data to assess accuracy using a process known as cross 
validation. The training data set is split into smaller sets (usually five or ten) called folds, 
in which the number of folds is denoted V (Pedregosa et al., 2011; Abu- Mostafa et al., 
2017).1 The following steps are then repeated V times, one for each separate fold:

1. Remove a fold from the training data set.
2. Use the remaining folds to train the model.
3. Assess the model accuracy using the removed fold.

The accuracies from each of the V folds are then averaged, as formalized in Equation 
13.1.

 
1

1 V

CV v
v

O o
V

 (EQ. 13.1)

where v is the fold number, V = total number of folds, ov = accuracy of a given fold, OCV 
= the cross validation accuracy (after Abu- Mostafa et al., 2017).

While conceptually straightforward, we illustrate the process with an example in 
which the objective is to choose the appropriate k (how many proximate training data 
points are used to label an unclassified pixel or segment) in the k-nearest- neighbors clas-
sification algorithm. Ten samples were chosen from a Sentinel-2 MultiSpectral Instru-
ment (MSI) image acquired over Blacksburg, Virginia, on November 7, 2020 (Table 13.1; 
Figure 13.5), and assigned (using an equalized random sampling scheme) to one of five 
folds (Table 13.1, Figure 13.5).

For each fold, the Euclidean distance between the two samples in that fold and the 
other eight samples not held out is calculated (Table 13.2).

From the computed distances, the three nearest neighbors (the three samples closest 
spectrally) are identified. For sample 2 in fold 1, these are, in order, sample 3 (distance = 
188.1), sample 6 (distance = 493.8), and sample 7 (distance = 561.5). From Table 13.1, we 
note that these were labeled as forest, forest, and water, respectively (Figure 13.6). The 
closest neighbor corresponds to k = 1, which is forest. The class assignment for k = 3 is 
the class with the majority of the three nearest neighbors. Since two of the three closest 
neighbors are forest, the class assignment for k = 3 is also forest. The results from this 
process, completed for the other nine samples as well, is shown as Table 13.3.

Notice in Table 13.3 for fold 1 that the accuracy is 50% for k = 1. There are two 
samples in the fold (ID = 2 and ID = 5; Table 13.1), and only one (ID = 2; Figure 13.6) 

1 Many treatments use k, rather than V for the number of folds. Here we follow Abu- Mostafa et al. 
(2017), in part because of the overabundant use of k in remote sensing (k-means clustering, k-nearest 
neighbors, k = the number of pixels in an image, and the like).
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is labeled correctly using the nearest neighbor (1st Cls column). This is denoted by the 
nonblack (blue, in this case) F in the 1st Cls column. As such, the accuracy for fold 1 is 
0.5 (since one sample out of the two in the fold was classified correctly).

Using the same procedure, we can obtain the accuracies for the other four folds and 
then use Equation 13.1 to calculate the cross- validation accuracy for k = 1, as shown in 
Equation 13.2.

 TABLE 13.1 Ten Water or Forest Sample Pixels from a Sentinel-2 MSI Scene

X Y Red NIR Class Fold

 1 513384 4144281 389 204 water 5

 2 511646 4140311 761 1693 forest 1

 3 511623 4140266 896 1824 forest 3

 4 516345 4134132 353 585 forest 3

 5 510773 4133535 311 393 forest 1

 6 504604 4141436 962 2144 forest 4

 7 518507 4152852 643 1144 water 4

 8 513399 4152556 382 230 water 2

 9 521162 4162914 558 1123 water 2

10 532973 4174855 383 274 water 5

0 500 1,000 1,500 2,000

red
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1,000

1,500

2,000
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IR

forest

water

class

1
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split

 FIGURE 13.5  Two-band scatter plot of the 10 brightness value vectors from Sentinel-2 MSI 

image T17SNB_20201107T161459 shown in Table 13.1. Each pixel has been identified as either water 

or forest, and then the ten pixels were randomly allocated to one of five 2-pixel splits.
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The calculation for k = 3 is shown as Equation 13.3.
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(EQ. 13.3)

As such, based on the cross- validation accuracies determined from the training data, the 
best choice of k is 1.

 TABLE 13.2 Euclidean Distances

1 2 3 4 5 6 7 8 9 10

 1 1534.8 1697.5  382.7  204.5 2022.9 973.7   26.9  934.4

 2 1534.8  188.1 1180.7  493.8 561.5 1511.3  605.1 1468.5

 3 1697.5  188.1 1546.0  326.7 725.5 1674.8  778.2 1632.7

 4  382.7 1180.7  196.5 1673.7 629.7  356.2  575.7  312.4

 5  204.5 1546.0  196.5 1868.1 821.1  177.8  770.7  139.1

 6 2022.9  493.8  326.7 1673.7 1868.1 1999.9 1098.0 1957.6

 7  973.7  561.5  725.5  629.7  821.1  950.5   87.6  908.0

 8   26.9 1511.3 1674.8  356.2  177.8 1999.9 950.5   44.0

 9  934.4  605.1  778.2  575.7  770.7 1098.0  87.6  866.8

10 1468.5 1632.7  312.4  139.1 1957.6 908.0   44.0  866.8

 FIGURE 13.6  Three nearest neighbors of sample 2 (with proximity 0).
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So can cross validation replace the traditional held-out or separately created valida-
tion data set? The best practice guideline response to this question is “no,” as illustrated 
in Figure 13.7. Cross validation is most commonly used to either select from possible 
machine learning algorithms or to parameterize a specific algorithm (as we just illus-
trated with choosing the best k between two possibilities for the k-nearest neighbors 
algorithm). The same data used to optimize an algorithm cannot be used to assess its 
accuracy. We further caution that the characteristics of the held-out samples (red test data 
used for final model evaluation in Figure 13.7) often must be different than the character-
istics of training data used for a particular algorithm (see Budreski et al., 2007, for how 
this can be handled in practice). A likely scenario, for example, is that an analyst will 
need an equalized random sample for a random forest classification and then a stratified 
random sample for the accuracy assessment.

Every rule has its exceptions, of course. In the rare instance that algorithm param-
eterization did not use cross validation and the sampling scheme required for training of 
the algorithm matches that required for a robust accuracy assessment, it is possible to use 
cross validation for accuracy assessment. This situation, however, is increasingly unlikely 
given modern machine learning workflows used for advanced remote sensing analysis.

13.7 SAMPLE SIZE

So what is a “sufficient” sample size? Since a key objective of most accuracy assessments 
is to estimate proportional areas of each class, stratified random sampling in which map 
classes (or change categories) are the strata is a recommended best practice. Estimating 

 TABLE 13.3 Nearest Neighbors and Corresponding Class Assignments 
for the Samples Identified in Table 13.1

ID Cls Split

Nearest neighbors

Corresponding class assignments 

for each neighbor

1st 2nd 3rd 1st cls 2nd cls 3rd cls k = 3

1 W 5 8 5 4 W F F F

2 F 1 3 6 7 F F W F

3 F 3 2 6 7 F F W F

4 F 3 5 10 8 F W W W

5 F 1 10 8 4 W W F W

6 F 4 3 2 9 F F W F

7 W 4 9 2 4 W F F F

8 W 2 1 10 5 W W F W

9 W 2 7 4 2 W F F F

10 W 5 8 5 4 W F F F

Note: Cls = class; F = forest; W = water. If the modeled k-nearest neighbor (k = 1 or k = 3) is the same as the 
actual class, then it is colored with respect to its fold, with the following scheme:  = 1,  = 2,  = 3,  = 4,  = 5.
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the needed sample size requires estimating the likely user’s accuracy of each class. While 
at some level this is a classic “chicken- and-egg” dilemma, in practice we often have either 
prior experience or prior studies from which to base our estimates of user’s accuracies.

Following Cochran (1977) and Olofsson et al. (2014), we can then compute the stan-
dard deviation of a given stratum as shown in Equation 13.4.

1i i iS U U (EQ. 13.4)

where Si is the standard deviation of the stratum (map class) i and Ui is the estimated 
user’s accuracy for stratum (map class) i.

Assuming that the classified image being assessed has a very large number of pixels 
or objects, the required sample size can then be estimated using Equation 13.5.
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ˆ

M
i ii

W S
n

S O
(EQ. 13.5)

where n = sample size, i = map class (which is also the stratum), M = total number of 
classes (categories), Wi is the map marginal proportion for map class i, Si is the stan-
dard  deviation of stratum i, Ô is the (estimate of) overall accuracy, and S(Ô) is the 
desired standard error of the estimated overall accuracy.

Assume mapped area (marginal) proportions of nondisturbed forest (0.852) and 
disturbed forest (0.147) following Vogeler et al. (2020). From prior experience we know 
we have more trouble mapping the disturbances (estimated user’s accuracy of 0.70) than 
the undisturbed forest (estimated user’s accuracy of 0.90). Table 13.4 shows the compu-
tation of the stratum- specific metrics, assuming the desired standard error for overall 
accuracy is 0.01. In the table, n is the sum over all strata, which per Equation 13.5 is 
((0.2556 + 0.0673)  0.01)2 = 1043. If strata are sufficiently large, a proportional alloca-
tion of samples to strata is warranted. For this example, the number of samples allocated 
to undisturbed would be the product of the marginal proportion (0.852) and the total 

 FIGURE 13.7  Cross validation and its role in model parameterization. Based on Pedregosa et 

al. (2011).
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sample size (1043), or 0.852  1043 = 889, with the other 154 samples allocated to dis-
turbed.

Foody (2009) notes that one of the principal objectives of accuracy assessment is 
typically comparison, whether it be among classification results or against a reference 
standard. Statistically valid comparisons must have a sample size appropriate to the type 
of test, effect size (which Foody defines as the “minimum meaningful difference in accu-
racy”), power (see the discussion in Section 13.8, later in this chapter), significance level, 
and confidence limits of the comparison. In many studies, there are too few samples to 
permit statistically robust comparisons.

The Error Matrix

The standard form for reporting site- specific error is the error matrix in which each 
element is expressed as estimated proportional areas (Table 13.5; Olofsson et al., 2014; 
Morales- Barquero et al., 2019). Sometimes the error matrix is referred to as the con-
fusion matrix because it identifies not only overall errors for each category, but also 
misclassifications (due to confusion between categories) by category. Compilation of a 
proportional error area matrix is required for any serious study or reporting of accuracy. 
The error matrix is an M  M array, where M represents the number of categories (classes) 
(following Richards, 2013).

The left-hand side is labeled with the categories on the map (i); the upper edge is 
labeled with the same M categories from the reference data (j). (Note that the meanings 
of the two axes can be reversed in some applications, as the convention is not universal.)

The error matrix contains a wealth of information. The diagonal from upper left to 
lower right (the main diagonal) shows the proportional area correctly classified for each 
class. Nondiagonal elements represent the areas in which the map class and reference 

 TABLE 13.4 Example of Sample Size Calculation for Two Map Classes

S(Ô) Ui Si Wi SiWi

Undisturbed 0.01 0.9 0.300 0.852 0.2556

Disturbed 0.01 0.7 0.458 0.147 0.0673

Note: Variables are the same as those in Equation 13.5.

 TABLE 13.5 Example of an Error Matrix from a Probabilistic Sample of 725 Pixels 
across Minnesota

Undisturbed Disturbed Mapped area proportions

Undisturbed 0.827 0.025 0.852

Disturbed 0.002 0.145 0.147

Estimated area proportions 0.829 0.170

Note: Proportional areas correctly classified are shown in italics. The forest disturbance map being assessed 
was created using an analysis of 6041 Landsat images spanning 1974 through 2018.
Source: Vogeler et al. (2020).
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data class did not agree. Comparison of the relative magnitudes of the nondiagonal ele-
ments enables a scientist or manager to understand which classes are typically confused 
on the map in question. Further inspection of the matrix reveals other information. Row 
totals show the area proportions as mapped (also known as the map marginal propor-
tions). Column totals show the estimated area proportions (using the reference data).

In the subsections that follow, we work through a step-by-step example on how to 
construct an error matrix and the descriptive statistics derived therefrom, starting with a 
necessary precursor, the sample count error matrix.

Precursor Sample Count Error Matrix

To construct the sample count error matrix, the analyst must compare two sources of 
data—the reference samples and the classified image—on a point-by-point basis to deter-
mine exactly how each of the validation samples is represented in the classification. It 
is very important that the validation samples and the map be well co- registered to one 
another. Errors in registration will appear as errors in classification, so registration prob-
lems will create errors in the assessment of accuracy. This is also true with respect to 
timing; the validation data and the image should be acquired as close in time as possible.

The categories for the map and reference data are compared systematically for each 
sample. The analyst or software maintains a count of the numbers in each reference cat-
egory as they are assigned to classes on the map. A summation of this tabulation becomes 
the error matrix.

Let’s walk through the whole process using a very simple data set and two classifi-
cation examples from Chapter 12. A multitemporal stack of six Landsat-8 Operational 
Land Imager images has been classified into nonforest and forest using two different 
techniques, as follows: (1) random forests, labeled as rf (see Figure 12.14), and (2) nearest 
neighbor, labeled as nn. Forty-five samples, representing Landsat pixels at ground resolu-
tion, have been randomly chosen (as a random subset of the original random sample with 
an n of 475) and categorized using the same classification scheme and minimum map-
ping unit using a combination of aerial photography and field visits at or near the time of 
image acquisition.2 The result is Table 13.6, where 1 = nonforest, and 2 = forest.

The resulting sample count error matrix (for rf) is shown as Table 13.7.

Image Statistics

Estimation of the sample size and conversion of the precursor sample count matrix to the 
estimated proportional area error matrix both require descriptive statistics from the clas-
sified image. The descriptive statistics from the random forests classification from which 
the samples shown in Table 13.6 were drawn are shown as Table 13.8. Note that the map 
marginal proportion (W; Card, 1982; Wynne et al., 2000) for a given class i (Wi) is just 
the number of pixels mapped into that class divided by the total number of pixels in the 
classified image. In the case of nonforest in this example, Wnonforest = 156,950  262,144 
= 0.5987. Note that the mapped area could also be divided by total area to yield the same 
proportion.

2 Note that (1) computing the required number of samples (n) is a necessary precursor, and (2) a stratified 
random sample would be preferred over a random sample given constraints to the size of n.
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 TABLE 13.6 Accuracy Assessment Data Using a Probabilistic Sample

X (m) Y (m) Reference rf nn

248 550869 4116222 1 1 2

378 552465 4112117 1 2 2

473 546894 4109051 1 1 1

118 546141 4120919 1 1 1

132 541389 4119978 1 1 2

365 543427 4112096 2 2 2

339 539828 4113160 1 1 1

198 546175 4117797 1 1 1

191 540752 4117591 1 1 1

73 542357 4121628 2 2 2

434 548706 4110531 1 2 1

321 541967 4113572 1 1 1

91 540608 4121110 2 2 1

21 537941 4123645 2 2 2

62 550445 4122835 1 1 1

392 547863 4111465 1 1 1

241 545841 4116400 2 2 2

341 541178 4112855 2 2 2

406 542431 4110950 2 2 1

228 552318 4117094 1 1 1

46 539466 4122622 1 1 1

117 544971 4120387 1 1 1

474 547151 4108705 2 1 2

16 549276 4124005 1 1 1

275 538865 4115341 2 2 2

304 545392 4114707 2 2 2

1 537854 4123848 2 2 2

17 550704 4123679 1 1 1

176 544227 4118681 2 2 2

289 549504 4114836 1 1 1

93 541801 4121164 2 2 2

144 550235 4119828 1 1 1

(continued)
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 TABLE 13.7 Precursor Sample Count Error Matrix Derived from Random Forests 
Classification (rf) in Table 13.6

Map Nonforest Forest Row totals

Nonforest 21  1 22

Forest  3 20 23

Column totals 24 21 45

Note: Italicized count is from samples with object IDs 378, 434, and 429 in Table 13.6 (also italicized). Class row 
totals, shown in blue, are used to calculate the error matrix.

 TABLE 13.6 (continued)

X (m) Y (m) Reference rf nn

158 545911 4118940 1 1 1

429 544421 4110387 1 2 1

246 549331 4116732 2 2 2

67 538587 4121630 2 2 2

106 551398 4121193 1 1 1

291 550672 4114842 2 2 2

416 549824 4110821 1 1 1

30 544182 4123431 2 2 2

160 548164 4119110 1 1 1

363 541527 4112665 2 2 1

303 544466 4114416 2 2 2

223 548214 4116993 2 2 2

53 544587 4122465 2 2 1

Note: Coordinates are shown in the WGS84 ellipsoid, Universal Transverse Mercator projection, zone 17 North. 
Note that retention of the object identifier and coordinates is important for quality control and reuse of the data 
set by other practitioners. 1 = nonforest; 2 = forest; rf = random forests; nn = nearest neighbor. Italicized class 
labels are used to create the italicized count in a cell of Table 13.7.

 TABLE 13.8 Map Statistics from Random Forests Classification (Figure 12.14) 
from which Table 13.6 Was Derived

Map class (i) Number of pixels in map class (Ni ) Map marginal proportion (Wi) Area (ha)

Nonforest 156950 0.5987167358398438  14125.5

Forest 105194 0.40128326416015625   9467.5

Total 262144 1.0000 23593.0

Note: For each category i, the map marginal proportion (Wi) is the number of pixels mapped into a given class 
(Ni ) divided by the total number of pixels in the classified image (k). The map marginal proportions, shown 
in red, are used in calculating the error matrix. While rounding the proportions to three or four places after 
the decimal point is typical for publication, these values are not rounded to prevent floating point error in 
subsequent calculations.
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Constructing the Error Matrix

Each element of the error matrix is an unbiased estimator of the proportion of total area 
represented. As noted by Card (1982), for a given map class i this estimate is calculated as 
the product of the map marginal proportion (the proportion of a thematic map in a given 
category) for that class and the proportion of the reference data mapped as class i that is 
class i in the reference data (Equation 13.6).

 ˆ ij
ij i

i

n
p W

n
 (EQ. 13.6)

where i is a map data class, j is a reference data class, Wi is the map marginal proportion 
for map data class i, nij is the corresponding element in the precursor sample count error 
matrix, and ni· is the row total (number of the reference samples mapped into class i; 
shown as blue in Table 13.7).

Let’s look at an example using Table 13.7 and Table 13.8. For reference class non-
forest (j = 1) and map class forest (i = 2), the calculation is shown as Equation 13.7. The 
row total is shown in blue, the map marginal proportion in red, and the corresponding 
element in the precursor sample count error matrix shown in italics.

 2,1
2,1 2
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0.4012832 36416015625 4ˆ 0.0
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n 3
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 (EQ. 13.7)

The estimate of the proportion of area in each class j is the column total for that 
class ( ˆ

jp ).
The entire error matrix is shown as Table 13.9.
Note that since the number of pixels is known, it is possible to use the estimated area 

proportions totals to estimate the number of pixels represented by each reference class j, 
( 2ˆ

jN ) as shown in Equation 13.8:

 2ˆ ˆ
j jN p k  (EQ. 13.8)

where k is the number of pixels in the image.

 TABLE 13.9 Error Matrix Calculated Using Table 13.7 and the (Red) Map Marginal 
Proportions from Table 13.8

Map Nonforest Forest Mapped area proportions (Wi)

Nonforest 0.5715020 0.0272144 0.59871673583984380

Forest 0.0523413 0.3489420 0.40128326416015625

Estimated area proportions ( ˆ
jp ) 0.6238440 0.3761560 1.0000

Note: While rounding the proportions to three or four places after the decimal point is typical for publication, 
these values are not rounded to prevent floating point error in subsequent calculations. Note that the row totals 
(red) are the map marginal proportions, also shown in red in Table 13.8. The column totals are the estimates of 
the proportion of area in each class.
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User’s and Producer’s Accuracies

We are often interested in determining how well a particular category was identified in 
a classification. There are two measures of category- specific accuracy, user’s and pro-
ducer’s accuracy, estimated from the error matrix using the following formulas (Equation 
13.9 and Equation 13.10; Story and Congalton, 1986).
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where ˆ
iU  is the estimate of user’s accuracy (or recall) for map class i, ˆ

jP  is the estimate of 
producer’s accuracy (or precision) for reference data class j, ˆ

iip  and ˆ jjp  are the error matrix 
elements for a given map (i) or reference data (j) class, ˆ

iip  is the row total (total mapped 
area proportion) for map class i, and ˆ

jp  is the column total (total estimated area propor-
tion) for reference data class j.

Using the error matrix shown as Table 13.9, the user’s and producer’s accuracies for 
nonforest are shown as Equation 13.11 and Equation 13.12.
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The variances for the user’s and producer’s accuracies are given by the following equa-
tions (after Olofsson et al., 2014):
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where each variable is as described in Table 13.10. The 95% confidence interval for a 
given category- specific accuracy is then approximated as  1.96 times the square root of 
the variance. Producer’s accuracy would then be expressed as follows:

 9ˆ 6 ˆ1. ˆ
j jP V P

with a parallel formulation for user’s accuracy.
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The estimated variance for the user’s accuracy for nonforest is shown as Equation 13.15.
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If we take the square root of the variance and multiply by 1.96, we then have the 
95% confidence interval for nonforest user’s accuracy, 8.9%. An example calculation for 
the estimated variance of the producer’s accuracy is omitted for brevity.

The category- specific accuracies and their confidence intervals are shown as Table 
13.11.

By examining relationships between the two kinds of errors (user’s and producer’s 
accuracies), the map user gains insight about the varied reliabilities of classes on the 
map, and the analyst learns about the performance of the process that generated the 
maps. Examined from the user’s perspective, the matrix reveals user’s accuracy (or preci-
sion). Examined from the analyst’s point of view, the matrix reveals producer’s accuracy 
(or recall). (The omission error is 1—producer’s accuracy; the commission error is 1—
user’s accuracy.) The difference between the two lies in the base from which the error is 
assessed. For user’s accuracy, the base is the area in each class on the final map. Thus, for 
the example in Table 13.9, producer’s accuracy for nonforest is 0.5715020

0.6238440 91.6%. For the 
same class, user’s accuracy is 9

0
8

.5
7

715
0.5 16

020
7 95.5%. User’s accuracy forms a guide to the reli-

 TABLE 13.10 Description of Variables Used in Variance Equations (Eq. 13.13 
and Eq. 13.14)

Variable Description

V̂ (Û i) Estimated variance for the user’s accuracy for map class i

Û i Estimate of user’s accuracy for map class i

ni Row total in the sample error matrix for map class i

V̂ (P̂ j) Estimated variance for the producer’s accuracy for reference data class j

P̂ j Estimate of producer’s accuracy for reference data class j

ˆ
jN Estimated marginal number of pixels of reference class j

ˆ
jN Number of pixels in map class j

jn Number of pixels in reference class j

M Number of classes

ˆ
iN Number of pixels in map class i

nij Element in sample error matrix

 TABLE 13.11 Category-Specific Accuracies with Their 95% Confidence Intervals

Category User’s accuracy Producer’s accuracy

Nonforest 95.5%  8.9% 91.6%  8.3%

Forest 87.0%  14.1% 92.8%  19.2%
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ability of the map as a predictive device— it tells the user of the map that, in this example, 
of the area labeled nonforest on the map, 95.5% actually corresponds to nonforest on 
the ground. Producer’s accuracy informs the analyst who prepared the classification that, 
of the actual nonforested landscape, 91.6% was correctly classified. In both instances, 
the error matrix permits identification of the nonforested areas erroneously labeled forest 
and forested areas mislabeled as nonforest.

F-measure

The F- measure (sometimes also known as the F-score) combines precision (user’s accu-
racy) and recall (producer’s accuracy; also known as sensitivity) into a single class- specific 
accuracy (Equation 13.16; Sokolova, Japkowicz, and Szpakowicz, 2006).

 
2

2

1 recall precision

recall precision
F  (EQ. 13.16)

where  = 1 results in an evenly balanced harmonic mean. When  > 1, precision is favored; 
when  < 1, recall is favored (Sokolova et al., 2006). An evenly balanced F- measure (also 
known as F1) calculated for nonforest using the values in Table 13.11 is shown as Equa-
tion 13.17.

 
2 2

2 2

1 recall precision 1 1 0.916 0.955
0.935

recall precision 1 0.916 0.955
F  (EQ. 13.17)

Notice that the even balancing results in an F- measure between the producer’s and user’s 
accuracies.

Overall Accuracy

One of the most widely used measures of accuracy is the overall accuracy, a report of the 
overall proportion of area correctly classified. An estimate of overall accuracy is the sum 
of the diagonal elements (also called the trace) in the error matrix, not including row and 
column totals. Equation 13.18 expresses Table 13.9 as a matrix.

 
0.5715 0.0272
0.0523 0.3489

C  (EQ. 13.18)

The overall accuracy is the trace of the error matrix, as shown in Equation 13.19.

 ˆ trO C  (EQ. 13.19)

where Ô is the (estimate of) overall accuracy and C is the error matrix. For our example, 
the overall accuracy can thus be calculated as shown in Equation 13.20.

 4ˆ tr 0.5715 0.3489 0.920O C  (EQ. 13.20)

Following Olofsson et al. (2014), the estimated variance for overall accuracy is given as 
Equation 13.21.
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where ˆ
ˆ
O

V  is the estimated variance of the overall accuracy, i = the map class, M = the 
number of classes, ˆ

iU  is the user’s accuracy, and ni is the row total in the sample error 
matrix for map class i.

For the error matrix shown as Table 13.9, the computations to calculate the esti-
mated variance for the overall accuracy are shown as Equation 13.22, Equation 13.23, 
and Equation 13.24 (class 1 is nonforest and class 2 is forest.)
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O

V V V  (EQ. 13.24)

The 95% confidence interval is then 1.96 times the square root of the variance, or 7.8%. 
As such, the overall accuracy is 92.0%  7.8%.

Often, the overall accuracy is used alone, without the error matrix, as a simple mea-
sure of accuracy. By itself, the overall accuracy may suggest the relative effectiveness of 
a classification, but in the absence of an opportunity to examine the full error matrix, 
it cannot provide convincing evidence of the classification’s accuracy. A full evaluation 
must consider the categories used in the classification. For example, it would be easy to 
achieve high values of overall accuracy by classifying a scene composed chiefly of open 
water—a class that is easy to classify correctly. Furthermore, variations in the accuracies 
of specific classes should be noted, as should the precision of the classes. A classification 
that used only broadly defined classes could achieve high accuracies but would not be 
useful for someone who required more detail.

Hay (1979) stated that it is necessary to consider five questions to thoroughly under-
stand the accuracy of a classification:

What proportion of the classification decision is correct?
What proportion of assignments to a given category is correct?
What proportion of a given category is correctly classified?
Is a given category overestimated or underestimated?
Are errors randomly distributed?

“Overall accuracy” can answer only the first of these questions; the others can be 
answered only by examination of the full error matrix.

Deprecation of Kappa

We caution that calculation of  (a nominal adjustment for the effect of random chance 
on classification accuracy; Cohen, 1960) has been deprecated by the remote sensing com-
munity (Pontius and Millones, 2011; Oloffson et al., 2014). We no longer recommend its 
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use. The reasons that computation of  is no longer a recommended practice include the 
following:

1.  is redundant due to its strong correlation with overall accuracy (Pontius and 
Millones, 2011).

2. Chance agreement is often overestimated (Foody, 1992).
3.  underestimates the probability that a given pixel or object is correctly classified 

(Olofsson et al., 2014).

13.8 COMPARING MAPS

There is often a need to compare maps, particularly when an analyst is ensuring the qual-
ity and representativeness of training data or comparing classification algorithms or their 
parameterizations (though cross validation can often be used for both algorithm com-
parison and parametrization within a given algorithm, as noted earlier). For example, we 
may ask if two maps are in agreement— a question that is difficult to answer because the 
notion of “agreement” may be difficult to define and implement. The error matrix is an 
example of a more general class of matrices, known as contingency tables, which sum-
marize classifications analogous to those considered here. Some of the procedures that 
have been developed for analyzing contingency tables can be applied to examination of 
the error matrix.

The McNemar test (McNemar, 1947; Foody, 2004, 2009) is extensively used as a 
nonparametric method for comparing thematic maps using the same validation data set 
(since sample independence is not required). The test requires a particular “cross tabula-
tion” of the thematic maps as shown in Table 13.12.

The McNemar calculation of z (the standard score) is then given as Equation 13.25.

 
b c

z
b c

 (EQ. 13.25)

Let’s look at an example using the data in Table 13.13 with a column added to denote 
the appropriate matrix element (denoted by letter a, b, c, or d) in Table 13.12 (with the 
caveat that the sample size is far too small). Let’s look at the first and second rows as 
examples. In the first row, both maps are correct (both they and the validation point were 
placed in category 1, nonforest. Looking at Table 13.13, if both maps are correct, then 
the appropriate matrix element is a, so we place an a in the Letter column. In the second 
row, the first map is correct and the second map is not. In Table 13.13, this would make 
it matrix element c.

 TABLE 13.12 McNemar’s Test Cross Tabulation

Map 2

Map 1

Correct Incorrect

Correct a b

Incorrect c d
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The McNemar statistic is now easily calculated using Equation 13.25 and the num-
ber of b’s (2) and c’s (3) we found in constructing Table 13.13, as shown in Equation 
13.26.
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 (EQ. 13.26)

Let’s assume, per Foody (2009), that the maps will be stated to be statistically dif-
ferent from one another at  (the predetermined probability of making a Type I error, 
defined in this instance as incorrectly stating that the maps are different when in fact 
they are not) = 0.05 if |z| > 1.96 (two- tailed test). As such, since |–0.45| is not greater than 
1.96, the maps are not different from one another. It should be noted that while this is a 
common  level, there is no one level that is appropriate for all studies. Besides  = 0.05, 
another common value for  is 0.01, in which case (for the two- tailed test) |z| must be 
greater than 2.58.

 TABLE 13.13 Accuracy Assessment Data Labeled for McNemar Test

Point number Map 1 Map 2 Reference Letter

 1 1 1 1 a

 2 1 2 1 c

 3 1 1 1 a

 4 1 1 2 d

 5 1 1 1 a

 6 1 2 1 c

 7 1 1 1 a

 8 2 2 2 a

 9 2 1 1 b

10 2 2 2 a

11 2 2 1 d

12 2 2 1 d

13 2 2 2 a

14 2 1 2 c

15 2 1 1 b

16 2 2 2 a

17 2 2 2 a

18 2 2 2 a

19 2 2 2 a

20 2 2 2 a
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While often ignored by researchers and practitioners, Type II error (its probability 
denoted by ) occurs when there really is a noteworthy difference between maps that is 
not detected. The power of the test is then 1 – . As one increases the desired power and 
decreases the desired , a larger sample size is required. Many, if not most, accuracy 
assessments contain too few samples, though it is possible (when, say, using another 
map as reference data) to have so many samples that very small differences between and 
among maps are declared to be statistically significant (Foody, 2009).

13.9 AREA ESTIMATION

Category- specific areas from thematic maps are used in many operational programs. 
For example, funds to fight forest fires are allocated in many U.S. states based on how 
much forest there is in a given county. However, in almost every conceivable instance, 
a thematic map will not be 100% accurate. As such, category- specific areas will not be 
either. Fortunately, there are long- established methods (e.g., Card, 1982, and Wynne et 
al., 2000; both based on Cochran, 1977) by which corrected area estimates (expressed in 
either areal units or proportion of the mapped area) and their precision (usually expressed 
as confidence intervals, Figure 13.8) can be calculated using a thematic map and its error 
matrix. These methods are well established and long utilized (e.g., Musy et al., 2006). 
Figure 13.8 illustrates a desired outcome, where either area or proportion of the total 
mapped area is represented along with a measure of confidence (here shown, as is typical, 
with a 95% confidence interval).

The now standard practice of expressing the error matrix as estimated proportional 
areas for each element (e.g., Table 13.5) makes estimation of the area proportions in each 
class a straightforward sum of the reference data columns ( ˆ

jp ). The area represented by 
each class is then just the corresponding portion of the total area, shown as Equation 
13.27 (after Olofsson et al., 2013).

ˆ ˆ
j tot jA A p (EQ. 13.27)

where Atot is the total area, ˆ
jA  is the estimated area in class j, and ˆ

jp  is the sum of the error 
matrix column for reference class j.
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 FIGURE 13.8  Proportions (  95% confidence intervals) for the Landsat- mapped disturbance 

categories in Virginia’s southwestern coalfields, 1984–2011. Data from Li et al. (2015).
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The standard error of the area proportion (also assuming either simple random or 
stratified random sampling) is shown as Equation 13.28.

2

1

ˆ ˆ
ˆ

1

M
i ij ij

j
i i

W p p
S p

n
(EQ. 13.28)

where ˆ
jp  is the standard error of the area proportion, M = the number of classes, Wi is 

the map marginal proportion for map data class i, ˆ
ijp  is an element of the error matrix (in 

which each element is expressed as estimated proportional areas) for map data class i and 
reference data class j, and ni is the row total in the precursor sample count error matrix.

Figure 13.9 shows the area and 95% confidence intervals for the worked example.

13.10 SUMMARY

Accuracy assessment is a complex process. This chapter cannot address all the relevant 
topics in detail because even the most complete discussion leaves many issues unresolved. 
Research continues, and despite agreement on many important aspects of accuracy evalu-
ation, other issues are likely to be debated for a long time before they are resolved. For 
example, there is disagreement concerning the best way to compare two thematic maps. 
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 FIGURE 13.9  Area (  95% confidence intervals) for the worked example (Landsat- mapped for-

est and nonforest) using the sample (Table 13.6) and image (Table 13.8) data.
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For many problems, there may be no single “correct” way to conduct the analysis, but 
we may be able to exclude some alternatives and to speak of the relative merits and short-
comings of others.

This chapter should provide the background to assess the accuracies of classifica-
tions using procedures that, if not perfect, are at least comparable in quality to those in 
common use today. Furthermore, the student should now be prepared to read some of the 
current research on this topic and possibly to contribute to improvements in the study of 
accuracy assessment. Many of the problems in this field are difficult but are not beyond 
the reach of interested and informed students.

REVIEW QUESTIONS

1. Why is a probabilistic sample necessary for accuracy assessment?

2. Typically, one cannot use cross validation for accuracy assessment. Why?

3. What might be the consequence if we had no effective means of assessing the accuracy 
of a classification of a remotely sensed image?

4. Why is use of the kappa statistic no longer recommended?

5. What are the implications of knowing the confidence intervals for overall and class- 
specific accuracies?

6. Accuracy assessment and area estimation are now intertwined. Why was this an impor-
tant development?

7. Discuss key considerations (with particular emphasis on the need to estimate user’s 
accuracies beforehand) for deciding the sample size appropriate for accuracy assess-
ment of a specific remote sensing project.

8. Why is the F-score a useful category- specific metric?
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MAJOR TOPICS TO UNDERSTAND

Spectroscopy

Hyperspectral Remote Sensing

The Airborne Visible/Infrared Imaging Spectrometer

The Image Cube

Spectral Libraries

Overview of Typical Abundance Mapping Processing Steps

Spectral Mixing Analysis

Spectral Angle Mapping

Analyses

Wavelet Analysis for Hyperspectral Imagery

14.1 INTRODUCTION

Remote sensing involves examination of features observed in several regions of the elec-
tromagnetic spectrum. Conventional remote sensing, as outlined in previous chapters, 

 14 Hyperspectral 
Remote Sensing
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is based on use of several rather broadly defined spectral regions. Hyperspectral remote 
sensing is based on examination of many narrowly defined spectral channels. Sensor 
systems such as the Multi-angle Imaging SpectroRadiometer (MISR) and Sentinel-2 Mul-
tiSpectral Instrument (MSI) provide 4 and 12 spectral channels, respectively. The hyper-
spectral sensors described below can provide 200 or more channels, each only 10 nm 
wide. In the context of the discussion of image resolution, hyperspectral sensors imple-
ment the concept of “spectral resolution” to the extreme. Although hyperspectral remote 
sensing applies the same principles and methods discussed previously, it requires such 
specialized data sets, instruments, field data, and software that it forms a specialized 
field of inquiry.

14.2 SPECTROSCOPY

Hyperspectral data have detail and accuracy that permit investigation of phenomena 
and concepts that greatly extend the scope of traditional remote sensing. For example, 
analysts can begin to match observed spectra to those recorded in spectral libraries and 
closely examine relationships among brightnesses in several spectral channels to estimate 
atmospheric effects using data within the image itself. Such capabilities present oppor-
tunities for much more precise identification of material types and conditions than is 
possible with broadband sensors, for investigation of phenomena such as the blue and red 
shifts, and, as noted, for correction of data in some bands using other bands that convey 
information about atmospheric transmission.

These capabilities extend the reach of remote sensing into the field of spectroscopy, 
the science devoted to the detailed examination of very accurate spectral data. Classical 
spectroscopy has its origins in experiments conducted by Isaac Newton (1642–1727), 
who used glass prisms to separate visible light into the spectrum of colors. Later, another 
English physicist, William Wollaston (1766–1828), noted that spectra displayed dark lines 
when light is projected through a narrow slit. The meaning of these lines was discovered 
through the work of Joseph Fraunhofer (1787–1826), a German glassmaker who discov-
ered distinctive lines in spectra of light from the Sun and from stars. Dark lines (absorp-
tion spectra) are observed as radiation passes through gases at low pressure; bright lines 
(emission spectra) form as heated gases (e.g., in the Sun’s atmosphere) emit radiation. 
These lines have origins in the chemical elements present in the gases, a discovery that has 
permitted astronomers to investigate differences in the chemical compositions of stars 
and planets. The Danish physicist Niels Bohr (1885–1962) found that the character of 
Fraunhofer lines is ultimately determined by the atomic structure of gases.

Instruments used in spectroscopy—spectroscopes, spectrometers, spectrographs—
are designed to collect radiation with a lens and divide it into spectral regions (using a 
prism or diffraction grating) that are then measured electronically. This form of spectros-
copy is now a standard method not only in astronomy, but also for laboratory analyses to 
characterize unidentified materials.

14.3 HYPERSPECTRAL REMOTE SENSING

Hyperspectral remote sensing uses the practice of spectroscopy to examine images of the 
Earth’s surface. Although hyperspectral remote sensing sometimes applies the techniques 
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of classical spectroscopy to the study of atmospheric gases and pollutants, for example, 
more commonly it applies these techniques to the making of precise, accurate, detailed 
spectral measurements of the Earth’s surface (imaging spectroscopy).1 Such data have 
accuracy and detail sufficient to begin to match observed spectra to those stored in data-
bases known as spectral libraries. Instruments for hyperspectral remote sensing differ 
from those of conventional spectroscopy in that they gather spectra not only for point 
targets, but for areas—not for stars or laboratory samples, but for regions of the Earth’s 
surface. Instruments for hyperspectral remote sensing differ from other remote sensing 
instruments in terms of their extraordinarily fine spectral, spatial, and radiometric reso-
lutions and their careful calibration. Some hyperspectral instruments collect data in 200 
or more channels at 12 or more bits. Because of their calibration and ability to collect 
data having fine detail, such instruments greatly extend the reach of remote sensing, not 
only by extending the range of applications but also by defining new concepts and ana-
lytical techniques.

Although the techniques of classical spectroscopy can be used in hyperspectral 
remote sensing to examine, for example, atmospheric gases, hyperspectral remote sensing 
typically examines very detailed spectra for images of the Earth’s surface, applies correc-
tions for atmospheric effects, and matches them to spectra of known features.

14.4 THE AIRBORNE VISIBLE/INFRARED 
IMAGING SPECTROMETER

One of the first airborne hyperspectral sensors was designed in the early 1980s by the 
NASA Jet Propulsion Laboratory (JPL, Pasadena, California). The airborne imaging 
spectrometer (AIS) greatly extended the scope of remote sensing by virtue of its number 
of spectral bands; their fine spatial, spectral, and radiometric detail; and the accuracy of 
its calibration. AIS collected 128 spectral channels, each about 10 nm wide, in the inter-
val 1.2 to 2.4 μm. The term hyperspectral remote sensing recognizes the fundamental 
difference between these data and those of the usual broadband remote sensing instru-
ments. (Sensor systems with even finer spectral resolution, designed primarily to study 
atmospheric gases, are known as ultraspectral sensors.)

Although several hyperspectral instruments are now in operational use, an impor-
tant pioneer in the field of hyperspectral remote sensing is the airborne visible/infrared 
imaging spectrometer (AVIRIS; http://aviris.jpl.nasa.gov). AVIRIS was developed by 
NASA and JPL from the foundations established by AIS. AVIRIS was first tested in 1987, 
was placed in service in 1989, and has since been modified at intervals to upgrade its reli-
ability and performance. It has now acquired thousands of images.

Hyperspectral sensors necessarily employ designs that differ from those of the 
usual sensor systems. An objective lens collects radiation reflected or emitted from the 
scene. A collimating lens then projects the radiation as a beam of parallel rays through 
a diffraction grating that separates the radiation into discrete spectral bands (Figure 
14.1).

1 Other planetary bodies, can, of course be studied using similar instrumentation. For example, the 
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imaging system 
aboard the Mars Reconnaissance Orbiter with 6.55 nm/channel spacing. Data quality, as of this writ-
ing, has been adversely impacted by the failure of two of the three cryocoolers.



14. Hyperspectral Remote Sensing 381

Energy in each spectral band is detected by linear arrays of silicon (visible), indium 
gallium arsenide (NIR), and indium antimonide (SWIR). Because of the wide spectral 
range of AVIRIS, detectors are configured in four separate panels (0.4–0.7 μm, 0.7–1.3 
μm, 1.3–1.9 μm, and 1.8–2.5 μm), each calibrated independently (Figure 14.2). AVIRIS 
operates over the spectral range of 400–2500 nm (0.4–2.45 μm), producing 224 spectral 
channels, each 10 nm wide (Figure 14.3). At its usual operating altitude, each image 
records a strip 11 km wide, processed to form scenes recording areas about 11 km  512 
lines (or about 10 km) each. Each line of data conveys about 677 pixels. If operated at 
low altitude, pixels might each represent ground areas about 4 m on a side; if operated 
at higher altitudes, as is common practice, each pixel represents ground areas as large as 
about 20 m on a side.

14.5 THE IMAGE CUBE

The image cube refers to the representation of hyperspectral data as a three- dimensional 
figure, with two dimensions formed by the x and y axes of the usual map or image display 
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and the third (z) formed by the accumulation of spectral data as additional bands are 
superimposed on each other. In Figure 14.4, the top of the cube is an image composed 
of data collected at the shortest wavelength (collected in the ultraviolet), and the bottom 
of the cube is an image composed of data collected at the longest wavelength (2.5 μm). 
Intermediate wavelengths are found as horizontal slices through the cube at intermediate 
positions. Values for a single pixel observed along the edge of the cube form a spectral 
trace describing the spectra of the surface represented by the pixel.
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14.6 SPECTRAL LIBRARIES

The development of hyperspectral remote sensing has been accompanied by the accumu-
lation of detailed spectral data acquired in the laboratory and in the field. These data are 
organized in spectral libraries, databases maintained primarily by governmental agencies 
but also by other organizations. These libraries assemble spectra that have been acquired 
at test sites representative of varied terrain and climate zones, observed in the field under 
natural conditions. Also included are other data describing, for example, construction 
materials, minerals, vegetation, and fabrics as observed in laboratories under standard-
ized conditions.

Such data are publicly available to the remote sensing community and have been 
incorporated into software designed for use in hyperspectral remote sensing. Mainte-
nance of a spectral library requires specialized effort to bring data into a common format 
that can be used by a diverse community of users. Spectral data are typically collected 
by diverse instruments under varied conditions of illumination. These many differences 
must be resolved to prepare data in a format that permits use by a diverse community.

Because of the fine spectral, spatial, and radiometric detail of hyperspectral analysis, 
identification and cataloging present special problems for design of spectral libraries. 
Therefore, each spectral record must be linked to detailed information specifying the 
instruments used, meteorological conditions, nature of the surface, and circumstances of 
the measurement. These kinds of ancillary data are required for successful interpretation 
and analysis of the image data.

14.7 OVERVIEW OF TYPICAL ABUNDANCE MAPPING 
PROCESSING STEPS

Figure 14.5, modified from Boardman and Kruse (2011), illustrates a sequence of analy-
sis for hyperspectral data from conversion to surface reflectance to abundance mapping 
(additional details for many of these summarized steps are outlined below), assuming lin-
ear spectral mixing. Analysis begins with processing to apparent surface reflectance (e.g., 
level 2 from AVIRIS- Next Generation). Any of several methods discussed earlier can be 
used to correct for atmospheric effects if analysis- ready data are not available. Spectral 
data reduction reduces the number of bands to the inherent image dimensionality with 
respect to signal. Since the signal- to-noise ratio is often quite low in hyperspectral data, 
the maximum noise fraction (MNF; Green et al., 1988) is usually used at this step (a PCA 
variant that successively maximizes signal rather than variance, sometimes called errone-
ously but synonymously the minimum noise fraction). Using the retained MNF (Green et 
al., 1988) bands, pixels that protrude from the MNF feature space are selected as “pure” 
pixels and potential endmembers (spectrally pure constituent spectra; see Section 14.8). 
Two- and three- dimensional scatter plots are then used to locate the tips of the feature 
space protuberances that, as simplex vertices (see Section 14.8), represent the spectral 
endmembers, which are then identified using spectral libraries, in situ examination, and 
the like. Finally, endmember abundance (the fraction of each pixel composed of a given 
endmember) is mapped through one of several linear spectral unmixing methods.

Spectral unmixing is necessitated since most pixels are mixtures at the spatial reso-
lution of typical hyperspectral sensors. The typical processing flow summarized here 
presumes that at least some pure pixels are present in the scene. That may not be the case, 
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however, in which case endmembers have to be identified using an alternative strategy 
(see, for example, Plaza et al., 2011). In addition, even when pure pixels are present, the 
spectral hourglass processing flow is analyst- intensive and computationally expensive. 
There are more efficient mechanisms for finding simplex vertices (see, e.g., Nascimento 
and Bioucas- Dias, 2005) that combine the spatial reduction and scatter plot steps in 
Figure 14.5.

While more details are given in the following section, the overall linear mixing model 
(following the treatment and nomenclature of Settle and Drake, 1993) is straightforward 
mathematically. First, we have to assume that every endmember has been identified. Geo-
metrically, as pointed out by Nascimento and Bioucas- Dias (2005), the endmembers are 
vertices of a simplex (the concept of a triangle extended to n-dimensions) containing all 
scene observations. Each endmember (simplex vertex) is a spectral signature, a column in 
endmember matrix M. The rows in M are the spectral bands. The rows in pixel reflec-
tance vector x are the spectral bands (like the rows in M). Fraction vector f contains the 
proportion of each endmember present in each pixel, where the rows are the endmem-
bers. Then,

 x = Mf (EQ. 14.1)

(the error term excluded for clarity). In practice, of course, we know x and M and need to 
estimate f. A least squares solution to this equation is feasible but requires (1) every frac-
tion to be positive and (2) all fractions for a given pixel to add up to one. For additional 

 FIGURE 14.5  Spectral hourglass. From Board-

man and Kruse (2011). Copyright © 2011 IEEE. Used 

by permission.
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details on the linear algebra necessary for estimating f (including for less constrained 
solutions), see Settle and Drake (1993). An example of a mixture of just two endmembers 
is shown as Table 14.1.

14.8 SPECTRAL MIXING ANALYSIS

Fine spectral resolution, like fine spatial resolution, does not overcome the enduring 
obstacles to the practice of remote sensing. Surface materials recorded by the sensor 
are not always characteristic of subsurface conditions. Atmospheric effects, shadowing, 
and topographic variations contribute to observed spectra to confuse interpretations. 
Even when observed at fine spatial and spectral detail, surfaces are often composed of 
varied materials (Figure 14.6). Therefore, the sensor observes composite spectra that 
may not clearly match to the pure spectra of spectral libraries. Linear mixing refers to 
additive combinations (Figure 14.6b) of several diverse materials that occur in patterns 

 TABLE 14.1 Example of Mixture of Two Endmembers

Water Trees Riparian

Blue 1014.0 941.0 962.9

Red 832.0 799.0 808.9

Green 538.0 579.0 566.7

NIR 338.0 1846.0 1393.6

Note: The riparian pixel is a linear mixture consisting (in this case) of 30% water and 70% trees. Endmember 
brightness values are from a Sentinel 2 Multispectral Imager acquisition over East Godavari district, Andhra 
Pradesh, India, acquired on December 22, 2017.

A+BA

A

A
BBA

A,B
(a) (b) (c)

Pure Linear mixing Nonlinear mixing

 FIGURE 14.6  Linear and nonlinear spectral mixing. (a) If a pixel represents a uniform ground 

area at the resolution of the sensor, the pixel represents a pure spectrum. (b) If a pixel represents 

two or more surfaces that occur in patches that are large relative to the sensor’s resolution, mixing 

occurs at the sensor. The pattern of the composite surfaces can never be resolved, but because mix-

ing occurs in a linear manner, proportions of the components can be estimated. (c) If the composite 

occurs at a scale that is fine relative to the resolution of the sensor, mixing occurs before the radia-

tion reaches the sensor, and components of the composite cannot be estimated using the methods 

described here. Image by Susmita Sen.
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too fine to be resolved at the resolution of the sensors. This is the effect of mixed pixels. 
As long as the radiation from component patches remains separate until it reaches the 
sensor, it is possible to estimate proportions of component surfaces from the observed 
pixel brightness. Linear mixing might occur when components of a composite surface 
are found in a few compact areas. Nonlinear mixing occurs when radiation from several 
surfaces combines before it reaches the sensor. Nonlinear mixing occurs when compo-
nent surfaces arise in highly dispersed patterns (Figure 14.6c). Nonlinear mixing cannot 
be described by the techniques addressed here, but they can be addressed using physics- 
based techniques, such as the isotropic multiple scattering approximation (Hapke, 2012) 
or statistical/machine learning techniques such as support vector machines (SVMs; see, 
for example, Brown, Gunn, and Lewis, 1999), though SVM can also be used to unmix 
linearly. The reader should refer to Hapke (2012) and Heylen, Parente, and Gader (2014) 
for further detail on nonlinear unmixing techniques.

Spectral mixing analysis (also known as spectral unmixing) is devoted to extracting 
pure spectra from the complex composites of spectra that by necessity form each image. 
It assumes that pixels are formed by linear mixing and further assumes that it is possible 
to identify the components contributing to the mixture. It permits analysts to define key 
components of a specific scene and forms an essential component in the process of spec-
tral matching, discussed below. Analysts desire to match data from hyperspectral images 
to corresponding laboratory data in order to identify surfaces from their spectral data 
much more precisely than previously was possible. Whereas conventional image analysis 
(Chapter 12) matches pixels to broad classes of features, hyperspectral image matching 
attempts to make more precise identifications— to the specific mineral constituents of 
soils or rocks, for example.

Therefore, spectral matching requires the application of techniques that enable ana-
lysts to separate pure pixels from impure pixels. This problem is well matched to the 
capabilities of convex geometry, which examines multidimensional data envisioned in n 
dimensions. Individual points (pixels) within this data space can be examined as linear 
combinations of an unknown number of pure components. Convex geometry can solve 
such problems, provided that the components are linearly weighted, sum to unity, and are 
positive. We assume also that the data have greater dimensionality (more spectral bands) 
than the number of pure components.

The illustrations here, for convenience and legibility, show only two dimensions, 
although the power of the technique is evident only with much higher dimensionality. 
In Figure 14.7, the three points A, B, and C represent three spectral observations at the 
extreme limits of the swarm of data points, represented by the shaded pattern. That is, 
the shaded pattern represents the values of all the pixels within a specific image or subim-
age, which is simplified by the triangle shape. (Other shapes can be defined as appro-
priate to approximate the shape of data swarm, although an objective is to define the 
simplest shape, simplex, that can reasonably approximate the pattern of the data swarm.)

These three points (for the example in Figure 14.7a) form endmembers, defined 
as the pure pixels that contribute to the varied mixtures of pixels in the interior of the 
data swarm. Once the simple form is defined, the interior pixels can be defined as linear 
combinations of the pure endmembers. In general, interior points can be interpreted as 
positive unit-sum combinations of the pure variables represented by endmembers at the 
vertices. In general, a shape defined by n + 1 vertices is the simplest shape that encom-
passes interior points (i.e., for two dimensions [n = 2], the simplex is a triangle [3 = n + 
1]). The faces of the shape are facets, and the exterior surface is a convex hull. In Figure 
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14.7, A, B, and C are the observed approximations of the idealized spectra A, B, and C 
that may not be observed on any specific image.

In the application of convex geometry to hyperspectral data, it is first necessary 
to define the dimensionality of the data (see Chapter 11). The original hyperspectral 
data are converted to surface reflectances (from radiances) using atmospheric models. 
The data are condensed by applying a noise- segregated version of principal components 
analysis, the MNF (Green et al., 1988) as noted in Section 14.7. Although hyperspectral 
data may include many bands (224 for AVIRIS), duplication from one channel to another 
means that inherent dimensionality is much less (often somewhere between 10 and 20), 
depending on the specifics of each scene.

The analyst then examines the transformed data in a data space to define the small-
est simplex that fits the data. This process defines the n + 1 facets that permit identifica-
tion of the n endmembers (Figure 14.7a). These vertices, when projected back into the 
original spectral domain, estimate the spectra of the endmembers. These spectra are 
represented by Figure 14.7b. The objective is to match these endmembers to spectra from 
spectral libraries and then to prepare maps and images that reveal the varied mixtures of 
surfaces that contribute to the observed spectra in each image.

Typical endmembers in arid regions have included bare soil, water, partially veg-
etated surfaces, fully vegetated surfaces, and shadows. End members can be investigated 
in the field to confirm or revise identifications made by computer. Software for hyper-
spectral analysis often includes provisions for accessing spectral libraries (and for import-
ing additional spectra as acquired in the field or laboratory), as well as for searching for 
matches with endmembers identified. Although it may not always be possible to uniquely 
identify matches in spectral libraries, such analyses can narrow the range of alternatives. 
In some instances, mathematical models can assist in defining poorly established end-
members.

C'
C

A'

B'

A

B

B
an

d 
1

Band 2

Wavelength (μm)

R
efl

ec
ta

nc
e

1

0.8

0.6

0.4

0.2

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

(a)

(b)

 FIGURE 14.7  Spectral mixing analysis: (a) sim-

plex; (b) endmembers. Based on Tompkins et al. 

(1993). Image by Susmita Sen.



388 III. ANALYSIS

14.9 SPECTRAL ANGLE MAPPING

Spectral angle mapping (SAM) is a classification approach that examines multispectral 
or hyperspectral data by evaluating the relationships between pixel values projected in 
feature space. Envision a pixel projected into feature space: its position can be described 
by a vector with an angle in relation to the measurement axes (Figure 14.8). Its position 
relative to another pixel (or perhaps a set of reference or training data) can be evaluated 
by assessing the difference between the angles of the two vectors. Small angles indicate a 
close similarity; large angles indicate lower similarity.

The effectiveness of this technique is achieved when applied to many more pixels 
and dimensions than can be represented in a single diagram. SAM is most useful when 
extended to tens or hundreds of dimensions (Kruse et al., 1993). SAMs differ from the 
usual classification approaches because they compare each pixel in the image with each 
spectral class and then assign a value between 0 (low resemblance) and 1 (high resem-
blance) to each pair. Although SAMs are valuable for hyperspectral analyses in many 
dimensions, their effectiveness is based on the implicit assumption that each pixel is being 
compared to pure spectra.

14.10 ANALYSES

Other investigations have attempted to understand relationships between spectral data 
and specific physical or biological processes. For example, Curran (1994) reviews efforts 
to use hyperspectral data to monitor botanical variables, such as the chlorophyll, lig-
nin, cellulose, water, and nitrogen content of plant tissues. Others have examined, at 
high levels of spectral, radiometric, and spatial resolution, observed spectra of laboratory 
samples of plant tissues influenced by atomic and molecular structures of water and by 
specific concentrations of organic compounds (such as chlorophyll, lignin, and cellulose). 
These relationships have formed the basis for research devoted to the examination of 
hyperspectral data of vegetation canopies in order to derive estimates of foliar chemistry 
of plant tissues in situ. Such estimates support agricultural, forestry, and ecological stud-
ies by providing indications of nutrient availability, rates of productivity, and rates of 
decomposition. Green (1993) and Rivard and Arvidson (1992) report some of the appli-
cations of hyperspectral data to lithological and mineralogic analyses.

 FIGURE 14.8  Spectral angle mapping. 

Image by Susmita Sen.
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14.11 WAVELET ANALYSIS FOR HYPERSPECTRAL IMAGERY

A wavelet can be defined as a wave-like oscillation of fixed duration, characterized by an 
amplitude that has a value of zero, then increases, then declines again to zero— analogous 
perhaps to oscillations such as those that we encounter on seismographs or heart moni-
tors. (See Figure 14.9 for an example of a Haar wavelet.) Wavelet analysis decomposes 
images, sounds, or spectra into wavelets of varying duration. Given the focus of this 
chapter, we will discuss wavelet analysis of spectra, but the basic techniques are the 
same for images and sounds. Wavelet analysis is inherently a multiscale (or multiresolu-
tion) analysis because the spectrum is decomposed into subspectra of ever-finer scales. 
In practice, we first determine the finest scale wavelets (from the first detail) present in a 
spectrum and then remove them, resulting in a less detailed approximation of the spec-
trum. The next finest- scale wavelets (second detail) are then removed, and so on, until 
we end up with a spectrum in which only the broadest absorption and reflection features 
are present. The details are illustrated by Figure 14.10, where on the right d1 (detail 1) 
through d6 (detail 6) represent ever- coarser scales. The resulting approximations of the 
spectrum, once each level of detail has been removed, are shown on the left. To use a 
musical analogy, for which we are indebted to Walker (2008), think of the process as 
successively stripping off “ornaments” to an essential melody. A thorough discussion of 
wavelets is well beyond the reach of our discussion here, so readers are referred to sources 
such as Walker (2008) for a proper introduction to this topic.

14.12 SUMMARY

The vast amounts of data collected by hyperspectral systems, and the problems they 
present for both collection and analysis, prevent routine use of hyperspectral data in the 
same way that we might collect Landsat or Sentinel-2 data on a regular basis. More likely 
in the near term, hyperspectral data will provide a means for discovering and refining 
the knowledge needed to develop improved sensors and analytical techniques that can be 
applied on a more routine basis. A second important role for hyperspectral data lies in 
the monitoring of long-term research sites, especially those devoted to study of biophysi-
cal processes and other phenomena that change over time (e.g., the National Ecologi-
cal Observatory Network; Johnson et al., 2010). The fine detail of hyperspectral data 
will provide enhanced data for ecological monitoring and for understanding patterns 
recorded on lower resolution data of the same sites.

 FIGURE 14.9  Illustration of 

a Haar wavelet.
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Data from satellite- based hyperspectral sensors are available through, for example, 
the U.S. Geological Survey Earth Explorer (https://earthexplorer.usgs.gov). NASA’s EO-1 
satellite, launched in November 2000 and decommissioned in March 2017, was designed 
as a vehicle to test the feasibility of advanced imaging systems. One of EO-1’s sensors was 
Hyperion, a high- resolution hyperspectral sensor capable of resolving 220 spectral bands 
from 0.4 to 2.5 m at a 30-m resolution (Figure 14.11). The instrument could image a 7.5 
km  100 km land area to provide detailed spectral mapping across all 220 channels with 
high radiometric accuracy. EO-1 was in an orbit permitting both Landsat 7 and EO-1 to 
image the same ground area at least once a day, permitting both systems to collect images 
under identical viewing conditions. The paired images were used for evaluation of the 
imaging technology.

Scientists continue to make compelling cases for specific, narrow wavelength bands 
(such as those needed for better articulation of the red edge or detection of crop residue). 
As the number of these new narrow bands increases, an engineering case can be made 
to convert the sensors on moderate resolution Earth resource satellite imaging from mul-
tispectral (Landsat, Sentinel-2) to hyperspectral. At the time of this writing, engineer-
ing challenges constraining signal- to-noise ratio at needed spatial resolutions were being 
addressed. As such, the future of moderate resolution Earth resource remote sensing is 
likely to include an increased use of imaging spectroscopy.

 FIGURE 14.10  Wavelet analysis. Original hyperspectral radiance (in W m –2 sr –1) curve of a ran-

domly chosen shortleaf pine spectrum (acquired using the AVIRIS sensor) and its approximation (a1, 

a2, . . . a6) and details (d1, d2, . . . d6), up to six levels of decomposition. From Banskota et al. (2011, 

p. 3554). Copyright © 2011 Taylor and Francis Group, LLC.
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REVIEW QUESTIONS

 1. Discuss the advantages of hyperspectral remote sensing in relation to more conven-
tional remote sensing instruments.

 2. List some disadvantages of hyperspectral remote sensing relative to use of systems 
such as Sentinel-2 or Landsat.

 3. Prepare a plan to monitor an agricultural landscape in northern France using both 
hyperspectral data and Sentinel-2 or Landsat data.

 4. How would use of hyperspectral data influence collection of field data, compared to 
similar studies using Sentinel-2 or Landsat imagery?

 FIGURE 14.11  Hyperion images of the Puyehue-Cordón Caulle volcano eruption, Chile, obtained 

on June 14, 2011. In the main image, created from data at visible wavelengths, the ash-rich volcanic 

plume billows out of the vent, punching through a low cloud layer. The plume’s gray color is a reflec-

tion of its ash content. Fine particles of ash are carried high into the atmosphere and get dispersed 

by the prevailing winds. The scene depicted here is about 19 mi (30 km) wide and has a resolution of 

98 ft (30 m) per pixel. The vertical direction is north. The small Hyperion images are each 4.8 mi (7.7 

km) across. From NASA.
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 5. Discuss how preprocessing and image classification differ with hyperspectral data, 
compared to more conventional multispectral data.

 6. How would equipment needs differ for image processing of hyperspectral data, com-
pared to more conventional multispectral data?

 7. The question of choosing between broad-scale coverage at coarse detail and focused 
coverage at fine detail recurs frequently in many fields of study. How does the availabil-
ity of hyperspectral data influence this discussion?

 8. Can you think of ways that the availability of hyperspectral data will influence the con-
cepts and theories of remote sensing?

 9. Hyperspectral data have so much volume that for typical users it is not feasible to accu-
mulate geographic coverage comparable to that of Sentinel-2 or Landsat, for example. 
What value, then, can hyperspectral data have?

10. Discuss the problems that arise in attempting to design and maintain a spectral library. 
Consider, for example, the multitude of different materials and surfaces that must be 
considered, each under conditions of varied illumination.
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MAJOR TOPICS TO UNDERSTAND

Bitemporal Spectral Change Detection Techniques

Multitemporal Spectral Change Detection

15.1 INTRODUCTION

Repeated imaging enables assessment of changes in the type or condition of surface fea-
tures. This is one of the most important of all analyses in remote sensing, typically called 
change detection. Many of these analyses use images acquired at two points in time, 
known as bitemporal change detection, the primary focus of this chapter. Increasingly, 
however, more widely available image time series have afforded the possibility of multi-
temporal change detection, addressed in Section 15.3.

Comparing images after classifying each is called postclassification change detec-
tion, which consists only of comparing, for a given location, the assigned class in one 
map to the assigned class in another. Even though this operation is a simple raster GIS 
analysis, it is often not the first choice of most analysts. This is because the resulting accu-
racy is typically low, as it incorporates any errors present in the original classifications, 

 15 Change Detection
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approximated as the product of the overall accuracies of the individual classifications 
(Coppin et al., 2004).

In part because of the inherently low accuracy of postclassification change detec-
tion, analysis of spectral changes between two (or more) dates, called spectral change 
detection, is often preferred for analysis of traditional optical imagery (rather than lidar 
or radar data). Whether the unit of analysis is a pixel, a neighborhood, a multitemporal 
segment, or even (rarely) a spectral class, it is very important to follow the image prepro-
cessing steps that minimize signal from variation that could be confused with the change 
detection signal of interest. Ideally, this means that the images being compared are:

1. Acquired from the same or well- intercalibrated sensors and acquired at the same 
time of day using the same instantaneous field of view and look angle.

2. For interannual analyses, acquired during the same season to minimize differ-
ences due to phenological changes.

3. Well co- registered, preferably to within two- tenths of a pixel or less (Dai and 
Khorram, 1999).

4. Free of clouds in the area of analysis.
5. Corrected to top-of- atmosphere or (preferably) surface (bottom- of- atmosphere) 

reflectance (see Chapter 11).
6. Free of other conditions not deemed part of the signal of interest. Examples of 

this last point could include the presence of soil moisture differences when assess-
ing changes in forest wetland canopy cover or differences in harvest dates when 
assessing changes in vegetative cover using anniversary date images acquired in 
autumn.

It is often difficult in practice to meet all of these conditions, but maximizing signal from 
the change of interest requires minimizing signal from anything that could be confused 
with it.

15.2 BITEMPORAL SPECTRAL CHANGE DETECTION TECHNIQUES

Spectral change detection techniques can be classified (not mutually exclusively) as fol-
lows: (1) visual interpretation, (2) image algebra, (3) transformation/data reduction, (4) 
classification, and (5) statistical. The categories and techniques described here are com-
mon in both remote sensing research and applications, but they are by no means exhaus-
tive. The reader should refer to edited compilations such as Lunetta and Elvidge (2000) or 
to reviews such as Coppin et al. (2004) and Lu et al. (2004) for additional information.

Visual Interpretation

Comparison of images from two dates is always the first place to start and is easily 
accomplished using one of three basic techniques. In the first, known as a multidate color 
image composite, two suitable radiometrically calibrated and co- registered images are 
first composited (in which all bands from both dates are stacked to form one image), and 
then bands from different dates are chosen for display to highlight the change of inter-
est. In the second technique, the images are not composited but are displayed with one 
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on top of the other. Tools commonly available in most image processing packages can 
then be used to visualize change, including swiping one image over the other and flicker-
ing between images. The third technique is simply to view co- registered and geolinked 
images side by side, using the typical pan, zoom, and cursor inquiry tools for targeted 
analysis.

One primary goal of visual interpretation is often to help select the best change 
detection techniques based on the goals of the analysis. In some instances, however, 
it might be the mechanism by which the analysis is conducted. If the latter, heads-up 
digitizing is often used to both identify and classify change between the images. In some 
instances, a sample of points is interpreted. In either instance, however, the analyst is 
able to use elements of image interpretation besides hue (e.g., texture, shadows, pattern, 
shape, size, and association; Chapter 6), combined with knowledge of the area of applica-
tion, with the potential for very accurate results (albeit through a time- consuming and 
subjective process).

Image Algebra

In image algebra, arithmetic operations are applied to corresponding pixels in each image, 
with the change image formed from the resulting values. While there are many possible 
algebraic operations, the most common are image differencing, image ratios, Euclidean 
distance, and change vector analysis.

Image differencing, particularly using vegetation indices, is one of the most widely 
used (and most effective) spectral change detection techniques. It consists of simply sub-
tracting one or more bands from the same band(s) of the same area acquired at a different 
date. Values at or near zero identify pixels that have similar spectral values and therefore 
presumably have experienced no change between the two dates. The analyst must specify 
some threshold value, often heuristically, beyond which change is considered to have 
occurred. The results are very sensitive to the threshold chosen, and, as such, it is often 
desirable to use an objective process for its selection. A “salt-and- pepper” appearance 
also often results because of small spectral changes caused by other factors previously 
discussed, including slight misregistration (see Figure 15.1).

Taking the ratio of two bands, one from one image date, the other from the same 
band in the second image date, is another popular change detection technique. A simple 
numerical example using two Landsat images can illustrate the two approaches. On date 
one, we have a pixel in class forest with digital numbers of 100 and 24 in the near infra-
red and red, respectively. On date two, the digital numbers for the same pixel (now in 
class urban or bare soil) are 61 and 36 in the near infrared (NIR) and red, respectively. 
Let’s take a look at the image difference and image ratio for the near- infrared band. The 
image difference would be 100 – 61 = 39. The image ratio would be 100  61 = 1.64.

Now, what happens if we want to assess the magnitude of change using more than 
one band? One common means of doing this is the Euclidean distance introduced in 
Chapter 12, Equation 12.1. Stated in words, this calculation is nothing more than the 
square root of the sum of the squares of the distances. Returning to the previous example, 
we see that the difference in the red band for this pixel is 24– 36 = –12. The square root 
of the sum of the squares of the distances between these two brightness value vectors is 
then just

 2 2(39) ( 12) 1665 40.8D  (EQ. 15.1)
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Stated in the more easily extendable matrix form, the Euclidean distance is

 1 2 1 2( ) ( )D x x x x  (EQ. 15.2)

where x is the brightness value or reflectance vector for the given pixel, and the prime 
represents a matrix transposition. Working this through for our example gives us

 2 2
1 2 1 2

39
( ) ( ) [39 12] 39 ( 12) 1665 40.8

12
D x x x x     (EQ. 15.3)

The Euclidean distance, however, gives only the magnitude of the multiband change. 
What if we also want to know the direction of the change? In this instance, change vector 
analysis (of which Euclidean distance can be considered a subset) is needed. This opera-
tion is best examined graphically. Consider Figure 15.2, in which the two pixels we have 

 FIGURE 15.1  Normalized difference vegeta-

tion index (NDVI) image in which the 1992 Landsat 

Thematic Mapper (TM)–derived NDVI was sub-

tracted from the 2002 Landsat TM– derived NDVI 

in Rondônia, Brazil. Areas that are brighter showed 

an increase in NDVI, and those that are darker 

showed a decrease.

 FIGURE 15.2  Change vectors. Two pixels 

are shown as vectors. The near- infrared digital 

number forms the y axis, and the red digital num-

ber is the x axis. The angle between them is .
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been examining are shown as vectors, with the near- infrared digital number as the y axis 
and the red digital number as the x axis. The angle between them is , defined as

 1 1 2

1 2

cos
x x
x x

 (EQ. 15.4)

where

 1 2 1, 2, 1,1 2,1 1,2 2,2 1, 2,
1

n

n n n n
i

x x x x x x x xx x  (EQ. 15.5)

which is the dot product of the two vectors. For our two vectors, the dot product would 
be as follows:

 1 2

100 61
(100)(61) (24)(36) 6100 864 6,964

24 36
x x  (EQ. 15.6)

The other term in Equation 15.4 that needs explanation is the vector length (also called 
the norm), defined as the sum of the squares of the vector elements, that is,

 2 2 2
1 2 nx x x x  (EQ. 15.7)

For our two vectors, the lengths are then as follows:

 2 2
1

100
100 24 10,000 576 10,576

24
x  (EQ. 15.8)

 2 2
2

61
61 36 3,721 1,296 5,017

36
x  (EQ. 15.9)

Note that the vector length in two dimensions is just the hypotenuse calculated using the 
familiar Pythagorean theorem.

Substituting the dot product and vector lengths into Equation 15.4, we are able to 
compute the angle between the two vectors as follows:

 1 1 11 2

1 2

6,964
cos cos cos (0.45) 63.5

10,576 5,017
x x

x x
 (EQ. 15.10)

Let’s look at this now from the perspective of the land-use change we are trying to 
detect. The Euclidean distance between the forest and urban or bare soil is 40.8, giving 
the magnitude of the change vector. The angle between the two vectors is 63.5°. See 
Figure 15.3 for an example using six bands from each of two Landsat TM images 11 
years apart. Note that, for this example, only two bands and two pixels were used for 
simplicity, but there is nothing to preclude use of any number of spectral or derived bands 
or alternative units of analysis (e.g., image segments). Further analysis of the change 
between the vectors can proceed in many ways, such as thresholding, which is discussed 
earlier in the context of image differencing, or classification, which is discussed in the 
section “Classification,” below.
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Transformation/Data Reduction

There are a variety of techniques by which the data in the original image can be trans-
formed to new axes composed of linear combinations of the existing bands. The most 
widely used of these techniques are principal components analysis (PCA) and the tas-
seled cap (TC) transformation, both discussed in Chapter 11. Other possibilities, more 
widely utilized in hyperspectral data analysis, include the singular value decomposition 
and maximum (aka minimum) noise fraction.

Recall that PCA reorients the axes of multidimensional data space such that there is 
no longer any remaining covariance among the principal components (PC) bands, which 
are linear combinations of the original bands. This operation results in a de facto abil-
ity to provide the same information content using fewer bands. The result has value for 
change detection in two very particular ways. First, a PCA can be implemented on the 
composite image. If the change the analyst wishes to detect represents a large portion of 
the variance between the two dates, then one or more of the resulting PC bands may be 
oriented such that it highlights that change. When this effect occurs, it is very powerful. 
Unfortunately, there is no guarantee that PCA will produce this effect in every applica-
tion. There are alternative transformations (such as canonical discriminant analysis) that 
can reorient the axes to maximize discrimination among classes, but these are beyond 
the scope of this discussion.

 FIGURE 15.3  Change vector analysis. Example of change vector analysis output in which the 

distance (using all six nonthermal bands) between a 1992 Landsat Thematic Mapper (TM) image and 

a 2002 Landsat TM image acquired over Rondônia, Brazil, is shown at left. The right-hand image is 

the spectral angle image of the same area, in which the gray tones indicate the value of the spectral 

angle, with brighter tones indicating higher spectral angles and, therefore, higher spectral differences 

between the two dates. In this instance, at least, the spectral angle map seems to provide a more 

nuanced representation of the changes, with fewer areas represented as the dark gray or black tones 

indicating that no changes had occurred.
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The second way in which PCA can be used in bitemporal spectral change detection is 
first to perform the transformation on each image and then to use one of the other tech-
niques discussed in this section (e.g., image differencing, change vector analysis, classifi-
cation, image cross- correlation) to assess whether there are important changes in the PC 
bands between dates. Again, however, this technique is not foolproof, as the axis orienta-
tions will be different for each date, producing results that are difficult to interpret. That 
being said, this technique can still be very valuable, particularly when the images are very 
similar (thus ensuring a similar axis rotation) except for the change being assessed.

The TC transformation uses the same coefficients (for a given sensor) to reorient the 
axes every time, and for this reason it circumvents many of the issues associated with the 
PCA’s image- dependent nature. Most commonly, particularly when a mid- infrared band 
is available, the first three axes (brightness, greenness, and wetness), or some derivation 
therefrom (such as the greenness- brightness ratio), are used. Analysis can then proceed 
using one or more of the techniques discussed in this section.

Classification

Classification is often underutilized in spectral change detection, but it is extremely pow-
erful, whether alone or in combination with other techniques discussed in this section. 
One reason for its use is that we often want to not only detect change but attribute it. As 
an example, we may want to know not only if there is a loss of forest cover, but also, if 
so, whether the lost forest became a pasture, strip mine, or suburban development. Clas-
sification can occur using the whole area of interest, or it can be used only to attribute 
change once the areas in which change has occurred have been identified employing some 
other technique.

If used alone on the whole area of interest, a common technique is to use a composite 
image of either the spectral or transformed bands (e.g., TC) as the source of data. The 
brightness value vectors from the composite, whether they be from pixels or multitempo-
ral segments, are made up of bands from two dates. When the change of interest results 
in separable bitemporal spectral signatures, the classification protocol and decision rule 
(be it supervised or unsupervised, parametric or nonparametric) can then identify the 
change of interest. However, there may be other precursors to the classification other 
than the spectral or transformed bands. These might include, for example, the magni-
tude and direction from change vector analysis or the Pearson product- moment correla-
tion coefficient from image cross- correlation (see the next section). As such, a variety of 
approaches or combinations of approaches can be used, depending on the specific needs 
of the analysis.

Statistical Techniques

There are numerous ways to compare images statistically, but one of the most widely used 
techniques is image cross- correlation using pixel neighborhoods or multitemporal seg-
ments. The mathematics are the same regardless, but this discussion will presume use of 
the latter. The equation forms used are those of Im and Jensen (2005) and Im, Jensen, and 
Tullis (2008), and they use only a single band for simplicity. Multiband correlations are 
feasible, but absent some method of combining the bands a priori (such as a vegetation 
index) will result in a correlation matrix, thus increasing the complexity of interpretation.
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The Pearson product- moment correlation, r, between brightness values (or reflec-
tances) from a single band across two dates of imagery is defined as

 12
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s s
 (EQ. 15.11)

where s1 and s2 are the standard deviations of the brightness values found in each seg-
ment and cov12 is the covariance between brightness values of the two dates for the 
segment.

The standard deviation for a given band, date, and segment is as follows:
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where n is the number of pixels in the segment, y is the brightness value of each pixel, and 
y is the mean of all brightness values in the segment.

Standard tests for the significance of the resulting correlation(s) can be used as an 
additional variable, as can the slope and intercept derived from a least squares analysis 
of the brightness value pairs within the segment (Im and Jensen, 2005; Im et al., 2008).

Choosing a Technique

The first and most important choice is usually whether to first classify the data from each 
date and then proceed with a postclassification change detection. If the classification 
accuracy will be high, and the classification process objective, with both images, this is 
a clear choice. However, if as is often the case, the classification accuracy will neither be 
high nor the process objective, then spectral change detection presents a viable alternative 
as long as the change of interest is spectrally distinguishable. Visual interpretation can 
often help the analyst ascertain (1) whether the change of interest is distinguishable, and 
(2) if so, which of the several techniques presented here, alone or in combination, might 
be most useful. Knowledge of the spectral properties of the material type or conditions of 
interest— and how they change— is essential.

15.3 MULTITEMPORAL SPECTRAL CHANGE DETECTION

No-Cost Data Enabling New Class of Analyses

Data policies affording access to no-cost satellite data at a coarse resolution have been 
common within the meteorological community for decades. However, the land remote 
sensing community, typically desiring to address the scale at which land is used and man-
aged (and thus changes) has required moderate- to high- resolution data. As discussed in 
other chapters, even satellites built, launched, and operated using public funds have had 
cost recovery mechanisms in place that effectively limited data availability (and thus algo-
rithm development). However, analysis- ready Landsat data are now available for preview 
and download at no cost through the U.S. Geological Survey (USGS) Earth Explorer (for 
more details, see the discussion in Section 7.9). Data from the two Sentinel-2 satellites are 
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also available at no cost. These data are opening up a rich set of applications never before 
possible, as analysts can now use multitemporal stacks of images, be they of original or 
derived bands, to conduct their analyses.

Trade-Offs

Before getting into some of the details on how to conduct these analyses, it is worth 
thinking about some of the advantages and disadvantages of interannual multitemporal 
change detection. Advantages include the following:

1. Better separation of low- magnitude change from scene differences not arising 
from changes in land use or management (e.g., Sun or sensor angle, phenology, 
and atmospheric variability).

2. Slow rates of change (e.g., vegetation growth, ecological succession, and drought- 
or pathogen- induced mortality) can often be detected just as well as abrupt phe-
nomena (e.g., vegetation clearing or fire).

3. Annual time steps are often better suited to many socioeconomic and natural 
processes than longer time steps.

There are also some disadvantages associated with multitemporal spectral change 
detection, including the following:

1. Persistent cloud cover over a given area that spans multiple years of images must 
be explicitly addressed for most algorithms to function (this is often the largest 
constraint to analysis).

2. Images must be geometrically and radiometrically the same as much as possible.
3. Phenology, drought, uncorrected atmospheric or sensor effects, and other factors 

can impact reflectance in a manner unrelated to the signal of interest (e.g., vegeta-
tion recovery).

4. Temporal signatures, while useful, require calibration to the timing of an event of 
interest (e.g., vegetation clearing) that can occur across a range of years.

5. Data volume can be very high.
6. Algorithm development is still maturing, with few commercial remote sensing 

image processing packages fully supporting this type of analysis.

Preprocessing

While approaches to analyze interannual multitemporal stacks of (primarily Landsat and 
Sentinel) images are rapidly evolving, a close look at some of the seminal early studies 
characterizing forest disturbance and recovery can help inform the preprocessing and 
algorithm selection for any given problem and data set. While steps can and do differ 
from application to application, the following preprocessing steps are widely utilized:

1. Acquire images at or near the same time of year and phenological condition.
2. Ensure the images are well co- registered.
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3. Convert to top-of- atmosphere or surface reflectance (Chapter 11) if analysis- 
ready data are not available.

4. Remove clouds (usually a combination of semiautomated and manual techniques).
5. (Optionally) choose or derive a single band with which to work.
6. Normalize the image to remove remnant atmospheric, phenological, or sensor 

effects.
7. (Optionally) segment the image into objects in which spatially juxtaposed pixels 

with similar spectral and/or temporal trajectories are grouped (sensu Budreski et 
al., 2007; Lhermitte et al., 2008).

As noted earlier, cloud cover often forms a major constraint. For interannual multi-
temporal analyses in which only one image per year is used, the analyst will, of course, 
choose the best image for a given year that minimizes cloud cover, undesired phenologi-
cal effects, and the like. However, for most areas the requirement of having one image 
per year inevitably leads to having to use some images that are not ideal, particularly 
with respect to cloud cover. Once the clouds are removed, the first question that arises 
is how to address the resulting gaps in the time series for a given area. This is an active 
area of research, but in general there are only three principal choices: (1) (for small areas) 
interpolate using adjacent pixel values in the same image, (2) interpolate using images 
acquired near the same date as the preferred image, or (3) use techniques by which miss-
ing values are explicitly handled in the subsequent analysis (e.g., exponentially weighted 
moving average change detection [EWMA-CD] or continuous change detection and clas-
sification algorithm [CCDC], see below).

A second constraint to multitemporal analysis is often the remnant variability in 
the surface reflectance not due to targeted changes in surface material type or condition. 
Often these effects are the result of subtle changes in phenology, but there are a host of 
other possible sources of this variability. The image normalization mentioned in step 6 
is designed to address this remnant variability in reflectance at the preprocessing stage. 
This can be achieved through a variety of tools, but the analyst should be very careful in 
their selection and use, as all change the data from their original values. While the hope 
is that these changes help separate the signal of interest from the noise, in many instances 
use of these tools reduces the quality of the resulting analysis. While discussion of all 
the possibilities is beyond the scope of this book, area-based image matching techniques 
include histogram equalization, image cross- correlation, image-to-image regression, 
phase correlation, and maximization of mutual information (Zitová and Flusser, 2003). 
The reader should consult Zitová and Flusser (2003) plus standard remote sensing image 
processing texts (e.g., Richards, 2013) for additional information.

The particular demands of multitemporal image analysis have also given rise to their 
own class of image matching techniques. These are based on the idea of normalizing to 
a reference material type or condition. For example, for deforestation studies, it might 
be helpful to first identify forest that is undisturbed throughout the period of inquiry. In 
the next step, the difference between the mean brightness value or reflectance vector for 
the reference forest and each pixel’s or object’s brightness value or reflectance vector is 
calculated, as shown in the following equation (Browder, Wynne, and Pedlowski, 2005):

 ( )( )k kd f m f m  (EQ. 15.13)
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where d is the Euclidean distance, f the mean brightness value vector for primary forest, 
and m the mean brightness value vector for each pixel, k. Browder et al. (2005) used this 
approach as a preprocessing step to assess whether the species planted in agroforestry 
plots in Rondônia made any difference to forest recovery. As shown in Figure 15.4, the 
onset of active management (1993) resulted in a notable increase in the distance from 
forest in all groups due to the clearing of vegetation in the plot establishment phase. The 
growth in the year following plot establishment resulted in a decrease in distance to forest 
as vegetation cover returned to the plot, but the degree to which the groups were tempo-
rally coherent after the establishment phase varied. The plot composition (and resulting 
management) differences in the three groups appear to be associated with different land-
use strategies, with the timber group being most proximate to the spectral characteristics 
of primary forest toward the end of the project period.

Healey et al. (2005) took a different (but related) approach to both the image nor-
malization and creation of a single derived band, the disturbance index (DI) based on the 
first three TC bands (Kauth and Thomas, 1976; Crist and Cicone, 1984a), brightness, B; 
greenness, G; and wetness, W. Each TC band is rescaled to its standard deviation above 
or below the scene’s mean undisturbed forest value, as follows:
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 FIGURE 15.4  Mean spectral distance from primary forest by agroforestry group type. Euclidean 

distance between reference forest condition and agroforestry practices using Landsat TM/Enhanced 

Thematic Mapper Plus imagery from 1992 to 2002. From Browder et al. (2005). Used by permission 

of Springer.
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where Br , Gr , and Wr are the rescaled TC indices expressed as z- scores; B, G, and W 
are the means of the TC indices in undisturbed forest; and B, G, and W are the stan-
dard deviations of the TC indices in undisturbed forest. Note that this method explicitly 
addresses interband differences in variance. Healey et al. (2005) point out that recently 
cleared forest exhibits high brightness and low greenness and wetness in relation to 
undisturbed forest. DI is defined to take advantage of these disturbance related changes 
in the TC indices, as follows:

 ( )r r rDI B G W  (EQ. 15.17)

z- scores can, of course, be calculated using raw as well as derived bands, and other means 
can be used to combine them other than the one proposed by Healey et al. (2005). For 
example, Huang et al. (2010) show that the mean of the squared z- scores computed for 
the red and two shortwave infrared region (SWIR) bands can be used in a manner similar 
to the disturbance index.

Regardless of technique chosen, the analyst should realize that in many cases some 
sort of image normalization or matching procedure may be necessary to maximize signal 
and minimize noise across multiple scenes, even when using surface reflectance data.

Time Series Analysis

A time series is a sequence of data points evenly sampled through time. Classical analysis 
of time series can be used with image time series stacks. While specificity on these tech-
niques is beyond the scope of this book, there is merit in a brief discussion (especially of 
key constraints to implementation) given the clear relevance to this chapter. For readers 
who wish to follow up, we recommend any of several good introductory texts on time 
series analysis (e.g., Montgomery, Jennings, and Kulahci, 2008).

Assuming an evenly sampled data set, classical time series analysis can separate 
trends in the data from periodic fluctuations (often due to seasonality) and measure-
ment error (noise). However, two major constraints to time series analysis using imagery 
are (1) the presence of step changes in reflectance caused by land cover change such as 
forest clearing, and (2) the need to have the data points evenly sampled. The latter is 
typically quite unlikely using moderate resolution Earth resource satellite data, as the 
analyst typically has to choose the best possible image for a given period under other 
constraints (such as cloud cover or being within a certain part of the growing season). 
This has two major deleterious effects on time series analysis. First, the time series is then 
inherently unevenly sampled. Second, and perhaps more perniciously, subtle differences 
in reflectance due to phenology are often introduced. New methods to predict daily sur-
face reflectance at moderate (e.g., Landsat) resolution have been introduced (Gao et al., 
2006; Brooks et al., 2012). These show promise for addressing both of these issues when 
appropriate imagery is available, and when coarse resolution data are also used (e.g., Gao 
et al., 2006), landscape fragmentation is not overly high.

There are three categories of time series algorithms (Saxena et al., 2018, liberally 
quoted given the shared authorship), as follows:
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Kernel regression methods. These methods represent the time series as a linear 
combination of basis functions, “a set of functions that can be linearly combined to form 
a more general set of functions” (American Meteorological Society, 2015). Typically, a 
linear system of equations is solved to determine the coefficients. Analysis and predic-
tions are done based on this representation.

Top-down approaches. In these algorithms, an approximation is first made to the 
whole time series. Then, typically using error estimate criteria, finer partitions of the time 
series are sought so that each new partition is a refinement of the previous partition. This 
is repeated until either a maximum number of iterations is reached or each segment of the 
partition satisfies a convergence criterion.

Bottom- up approaches. Bottom- up approaches represent the most elementary 
units of the data first; on each iteration, increasingly larger structures are composed from 
the simpler structures and their evaluations in the previous iteration. Dynamic program-
ming and all recursive algorithms classify as bottom- up algorithms, which are frequently 
implemented using backtracking, “a method of searching . . . in stages, beginning with a 
depth-first search” (American Meteorological Society, 2015).

Table 15.1 labels the approach taken by each of seven multitemporal change detec-
tion algorithms.

Analysis of Vegetation Disturbance and Recovery

Time series analysis will form an ever larger portion of the suite of tools used for mul-
titemporal change analysis. Unfortunately, many methods are quite complicated math-
ematically and thus are beyond the scope of an introductory course. However, we high-
light some examples, which can give the beginning remote sensing student an entry point 
into this very active area of research and applications.

Control- chart change detection (e.g., Brooks et al., 2012, 2014) is an example of a 
kernel regression method that can be used with well- calibrated dense time series stacks 
available from Landsat, Sentinel-2, and the like. Polynomial or, more usually, harmonic 
regression (Figure 15.5, Brooks et al., 2012; Equation 15.18, sensu Brooks et al., 2012, 
but after Zhu and Woodcock, 2014) is first used to establish the typical intra- annual pat-

 TABLE 15.1 Classification of Recent Multitemporal Change Detection Algorithms

Classification Algorithms

Kernel regression CCDCa, EWMA-CDb, ShapeSelectForestc

Top-down LandTrendRd, VeRDETe

Bottom-up BFASTf, VCTg

Note: BFAST = Breaks For Additive Seasonal and Trend; CCDC = continuous change detection and 
classification; EWMA-CD = exponentially weighted moving average change detection; LandTrendR = Landsat-
based Detection of Trends in Disturbance and Recovery; VCT = vegetation change tracker; VeRDET = 
Vegetation Regeneration and Disturbance Estimates through Time. From Saxena et al. (2018). Copyright © 
2018. Reprinted by permission of Elsevier.
aZhu and Woodcock (2014).  bBrooks et al. (2014).    cMoisen et al. (2016).   dKennedy et al. (2010). 
eHughes et al. (2017).      fVerbesselt et al. (2010).  gHuang et al. (2010).
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tern (the process) in a given pixel for a given spectral band or vegetation index using a 
least squares fit on all available cloud-free images for a given pixel/year:

0 1 2
2 2ˆ cos sinx a a x a x
T T

(EQ. 15.18)

where

a0–2 = harmonic regression coefficients (0, overall value / constant; 1–2, cosine and 
sine for intra- annual change)

T = days / year (365)
x = date (Julian)
ˆ x = predicted value at Julian date x

Multiple years of data can be used to establish this pattern, but care must be taken 
that the land use or management practices for a given use did not change during the 
multiyear period. An additional bonus is that the coefficients for the resulting regres-
sion can themselves be used in subsequent analyses and serve as a de facto compression 
mechanism, as they describe the temporal trajectory of a given band or ratio throughout 
the year for a given pixel (Figure 15.6).

Once that pattern (including variation inherent to the modeled process) has been 
established, departures from the pattern can be assessed using statistical control charts,

 FIGURE 15.5  Harmonic regression. From Brooks et al. (2012). Copyright © 2012 IEEE. Used by 

permission.



408 III. ANALYSIS

“graphs used to study how a process changes over time” (ASQ, 2018). Small shifts (such 
as forest growth or forest thinning) in the modeled process are best modeled using an 
EWMA control chart (Figure 15.7; Brooks et al., 2014). Larger process shifts (such as 
remnant clouds, stand- replacing disturbances, and land cover change) are best detected 
using Shewhart X-bar charts, as also noted by Brooks et al. (2014).

One issue with control chart change detection is that the “process” being “con-
trolled” is, in general, an intra- annual phenological pattern that is assumed to be sta-
ble across time. However, for areas experiencing constant gradual change (e.g., forest 
growth), this assumption is not met. One option is to signal the departure from the extant 
process and then (perhaps nearly continually) retrain (sensu Brooks et al., 2017).

 FIGURE 15.6  Harmonic regression coefficients for the Landsat 8 panchromatic band (one har-

monic) using all available Landsat data from 2014 to 2016 in South Carolina. Note that only three 

bands of data are needed to fully represent scores of input images, also enabling simulation of the 

value of a given band or ratio for any day of the year. The first four panels are from Jill Marie Datsko. 

Used by permission. The last two panels are from ESRI’s ArcMap. Copyright © 2021 ESRI and its 

licensors. Used by permission.
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Another option is to concomitantly model both the intra- annual and interannual 
trends, resulting in, for one harmonic, four coefficients rather than three (constant, sine, 
cosine, and interannual trend):

0 1 2 3
2 2ˆ cos sinx a a x a x a x
T T

(EQ. 15.19)

where

a3 = coefficient for linear interannual change trend

This is the approach used by the CCDC algorithm (Zhu and Woodcock, 2014), which, as 
added benefits, can (1) explicitly model abrupt change as time series breaks (not shown in 
Equation 15.20) and (2) models all available wavelength bands for each pixel, retaining 
the root mean square error (RMSE). Change is flagged in the original version of CCDC 
if the following condition is true for three consecutive new observations (Zhu and Wood-
cock, 2014):

, ,

1

ˆ1
1

3
i x i xk

i
ik RMSE

(EQ. 15.20)

where

x = Julian date
i = the ith spectral band/index

 FIGURE 15.7  Exponentially weighted moving average chart for residual values after removing 

seasonality. The forested Landsat pixel (yellow boxes on 2009 and 2011 National Agriculture Imagery 

Program images at right) was thinned in December 2010. From Brooks et al. (2014). Copyright © 2014 

IEEE. Used by permission.
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k = the number of spectral bands/indices

i,x = observed value for the ith spectral band at Julian date x
ˆ i,x = predicted value for the ith spectral band at Julian date x

Notice that this approach is explicitly multispectral, presenting an advantage over 
most commonly implemented control chart change detection methods. In addition, since 
interannual trends, such as forest growth, are explicitly incorporated, they do not them-
selves constitute change ipso facto, which is an advantage for most protocols. Like con-
trol charts, the CCDC algorithm uses the inherent variability (through the RMSE), has 
control limits (i.e., 3  RMSE), and requires multiple observations (three) to flag a true 
change.

One potential issue with both control chart-based change detection and CCDC is 
that there is a de facto assumption of a stable intra- annual process, but this is not always 
the case. Take, for example, an extremely dry area that only receives enough rainfall 
for seeds to sprout on a quite irregular basis, or an inherently mixed pixel with rapidly 
changing land cover composition (a situation common in some developing peri-urban 
areas and in smallholder agriculture). Additional research is under way to address these 
issues, but, in general, the practitioner can feel comfortable with these algorithms for 
most typical applications.

Correctly flagging change, however, is only part of the information need. As noted 
earlier in the discussion of bitemporal change detection, attribution of a flagged change 
is important for many applications. By attribution we mean knowing what caused the 
change or, more subtly, characterizing the material type or condition prior to and sub-
sequent to the flagged change. The pattern predisturbance, the magnitude of the distur-
bance, and the pattern postdisturbance are often combined algorithmically to both flag 
and attribute change and its aftermath. While changes in vegetation are clearly just a sub-
set of possible changes of interest, many tools for analysis of vegetation disturbance and 
recovery have been developed and have merit by themselves or with simple extensions to 
other multitemporal change analysis problems.

There are many ways to analyze time series stacks that explicitly utilize the pattern 
predisturbance, the magnitude of the disturbance, and the pattern postdisturbance. Iden-
tifying surface coal mines in the southern Appalachians and analyzing their postreclama-
tion vegetation recovery using interannual, multitemporal Landsat data provide a good 
illustration of typical steps. It should be noted that this is but an illustrative example; a 
wide range of both applications and analytical approaches is feasible. Figure 15.8 shows 
some of the key features of such an analysis through analysis of vegetation index values 
at or near the annual maximum for the life cycle of a surface coal mine in the southern 
Appalachians.

Most important are the features that are diagnostic of the disturbance and its type. 
Notice the substantial drop (in 1997) as the clearing of the native hardwoods precedes 
mining. The three years of the mining period have only minor fluctuations in the veg-
etation index value. However, the area is reclaimed after the coal has been extracted, 
leading to a rapid recovery (starting in 2000) of the vegetation. Note, however, that even 
after 8 years the vegetation index has not yet recovered its value prior to the onset of 
mining.

Both the magnitude of the drop and the slope of the vegetation recovery are diag-
nostic of the type of disturbance (Figure 15.9). The mined areas are more completely 



 15. Change Detection 411

cleared of vegetation and thus have the most precipitous drop, more than either forest 
fires or clearing for urban development (in this area). Furthermore, recovery does not 
begin immediately in mined areas, but only after the cessation of mining and the onset of 
reclamation. The recovery is steep for mines but more gradual (with a lower asymptote) 
for urban development.

As such, the following components of a typical mining trajectory can be used to 
discriminate mining from other common disturbances:

 FIGURE 15.8  Vegetation index trajectory (1984–2008) for a mining disturbance that is reclaimed 

promptly compared with other trajectories common in the area. (Vegetation index images are shown 

at key points in the trajectory.) Vegetation index trajectories contrasted to the background undisturbed 

forest of surrounding areas (left) and typical recovery trajectories of other common disturbances 

(right). The horizontal time dimension constitutes several decades. Image by Susmita Sen.

 FIGURE 15.9  Interannual multitemporal trajectory of a vegetation index for a surface coal mine 

in the southern Appalachians. Notice the significant drop in vegetation as the area to be mined is 

cleared of trees, and then observe its gradual recovery after reclamation. Adapted from Sen et al. 

(2012). Used by permission of the American Society for Photogrammetry and Remote Sensing.
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1. The minimum value that equals or is less than a threshold (the mining delineation 
threshold): the sharp drop of the vegetation index, caused by the rapid clearing of 
vegetation and surface soil to expose underlying geologic material, can discrimi-
nate mining from less drastic landscape disturbances such as forest harvests and 
forest fires.

2. The slope of the recovery trajectory: following the drop, the trajectory takes an 
upward trend due to vegetation development. The recovery is steepest during 
its first 3 to 4 years, and the slope of the trajectory in these years can be used 
to discriminate mining from disturbances such as urban development and road 
construction.

3. The recovery maximum: the maximum value in the recovery phase can be used to 
help assess the quality of the reclamation process or separate mining from other 
disturbances.

House and Wynne (2018) automated the process of calculating these and related vari-
ables (Figure 15.10) through release of the Disturbance Detection and Diagnostics (D3) 

 FIGURE 15.10  The six predictor variables calculated by D3 (House and Wynne, 2018). The same 

type of disturbance and recovery reflectance or vegetation index trajectory can lend itself to many 

other parameters describing its shape. For example, Kennedy et al. (2007) defined four disturbance 

classes (disturbance, disturbance and recovery, recovery, and recovery to stable state). For hypoth-

esized trajectories describing each of these classes they defined three shape parameters, as follows: 

(1) the end year of the disturbance, (2) the pre- disturbance mean, and (3) the post- disturbance mean. 

Each pixel was classified based on the best nonlinear least- squares fit between the observed spectral 

trajectory (from Landsat TM/ETM+ band 5) and each of the four hypothesized trajectories.
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algorithm (which can be found at https://doi.org/10.7294/W4FB513G). The refined 
algorithm has been shown to be effective in separating low- density development from 
actively managed forests (House and Wynne, 2018). Kennedy et al. (2007) defined four 
disturbance classes (disturbance, disturbance and recovery, recovery, and recovery to 
stable state). See Figure 15.11. 

Focusing only on recovery trajectories, Schroeder, Cohen, and Yang (2007) first 
mapped clearcuts and then used ISODATA clustering to develop and map four forest 
regrowth classes (little to no, slow, moderate, and fast) developed using Landsat TM/
ETM+ data. Third-order polynomial curves fit to each of three periods’ forest regrowth 
classes are shown as Figure 15.12.

Moisen et al. (2016) extend this concept further by fitting nonparametric shape- 
restricted regression splines to time series. The seven predefined temporal patterns 
(shapes) are shown in Figure 15.13 for SWIR1. While the specifics of the algorithm are 
beyond the scope of this book, this is a very important advance, as change detection 
and attribution (causal agent of the disturbance, sensu Schroeder et al., 2017) can be 
addressed concomitantly.

The above examples are helpful in understanding the important role that multitem-
poral change detection can play in analyzing disturbance and recovery. The important 
points to remember are as follows:

 FIGURE 15.11  A detailed view of fitted values from four pixels representing four hypothesized 

models of disturbance or recovery. (a) Simple disturbance, (b) disturbance followed by exponential 

revegetation, (c) revegetation from disturbance prior to observation record, (d) revegetation from prior 

disturbance, reaching a stable point during the observation period. From Kennedy et al. (2007). Copy-

right © 2007. Used by permission of Elsevier.
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1. Local knowledge of the land use and land cover transitions that are typical in the 
area is essential.

2. Analysis of the resulting time series requires a close understanding of the spectral 
dynamics associated with land use and land cover change.

3. Spectral trajectories require a new way of thinking about and analyzing remotely 
sensed data.

It is important to recognize that while these examples focus primarily on vegetation 
disturbance and recovery, there is nothing to preclude using similar approaches for more 
traditional classification problems, including vegetation mapping. In Figure 15.14, for 
example, invasive shrub species are separable from native hardwoods and pines because 
of their growth trajectories. Figure 15.15 shows how the minimum vegetation index in a 
time series, along with the slope to the maximum value postrecovery, enables separation 
of low- density development from actively managed forests.

For the analyst or student interested in analyzing spectral trajectories, we must reit-
erate the importance of appropriate preprocessing. After that, it is extremely important 
to know your area and problem well to choose the best technique— as is true with all 
remote sensing. Increasingly, practitioners are realizing that there is very little agree-

 FIGURE 15.12  Mean forest regrowth trajectories for (a) little to no, (b) slow, (c) moderate, and 

(d) fast regrowth classes. Solid lines are fitted third-order polynomial curves; dashed lines are the 

average across period standard deviations. From Schroeder et al. (2007). Copyright © 2007. Used by 

permission of Elsevier.
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 FIGURE 15.13  Seven possible shapes describing temporal patterns in SWIR1 (here denoted 

as B5) as described by Moisen et al. (2016). Note that the patterns are inverted from what would be 

expected if a vegetation index had been used.

 FIGURE 15.14  Invasive species detected using interannual, multitemporal image chronose-

quences. NDVI trajectories are from disturbed sites in Virginia and West Virginia that have developed 

full canopies of differing woody species types. The trajectories were not coincident in time but have 

been plotted with “Year 0” as the estimated date of the original disturbance. Missing annual val-

ues, which are evident in the Black Locust— Autumn Olive data series, occur because of occasional 

obscuration by clouds.



416 III. ANALYSIS

ment among multitemporal change detection techniques (Cohen et al., 2017). As such, 
an ensemble of techniques (Healey et al., 2018) or a polyalgorithm combining techniques 
(Saxena et al., 2018) might be an improvement over any given algorithm. Multitemporal 
change detection and attribution using time series stacks will burgeon with both innova-
tion and increasingly diverse applications in the coming years as both data and appropri-
ate analytical tools become increasingly available.

15.4 SUMMARY

Change detection, whether it be bitemporal or multitemporal, is a mainstay of remote 
sensing analyses. Its importance is magnified by the extensive changes in land use 
occurring with swelling— and increasingly well-off—human populations. No-cost well- 
preprocessed data, increasingly available from programs such as Landsat (NASA and 
USGS) and Sentinel (European Space Agency), are essential to ensuring the data quantity 
and quality necessary for these analyses. Remotely sensed data are essential to our abil-
ity to monitor and model the changes we are making to the Earth’s ecosystems— and to 
ensure their sustainability.

 FIGURE 15.15  Example of exurban development (blue) compared to active forest management 

(orange) over time. Both pixels were flagged as having been disturbed in 2003. Exurban development 

remains lower than active forest management through the remainder of the time series and is much 

more constant (House and Wynne, 2018).
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REVIEW QUESTIONS

 1. Prepare a list of reasons why development of effective change detection capability 
is an important capability to support public policy at international, national, and local 
scales.

 2. In your next job, you are called on to testify in court to defend the rigor of a change 
detection analysis that has been challenged as unscientific. Prepare notes that you 
would use to defend the validity of the analysis.

 3. You do such a good job in preparing your responses for Question 2 that the opposition 
has now hired you to attack the validity of a change analysis in dispute in their next 
case. Prepare notes that you will use to question the validity of this new change analy-
sis.

 4. Can you identify landscapes that might be inherently difficult to analyze using spectral 
change detection?

 5. Outline ideal circumstances for conducting change analysis using remotely sensed 
data.

 6. Review the text for this chapter that describes preprocessing necessary for execution 
of change detection. Prepare a list of the most important considerations.

 7. Even if images have been selected carefully and processed, change detection can 
be subject to errors. Review the text for this chapter to identify some of the sources of 
error that are inherent to the process of change detection.

 8. Why are established techniques for analyzing time series seldom used in analysis of 
remotely sensed data?

 9. For a given spatial resolution, there is often a level of landscape fragmentation that 
precludes accurate spectral change detection. Why might this be the case?

10. List three advantages and three disadvantages of multitemporal change detection as 
compared with bitemporal change detection.
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MAJOR TOPICS TO UNDERSTAND

Structure of the Leaf

Spectral Behavior of the Living Leaf

Vegetation Indices

Applications of Vegetation Indices

Phenology

Land Surface Phenology

Foliar Chemistry

16.1 INTRODUCTION

The Earth’s vegetative cover is often the first surface encountered by the energy we use 
for remote sensing. So, for much of the Earth’s land area, remote sensing imagery records 
chiefly the character of the vegetation at the surface. Therefore, our ability to interpret 
the Earth’s vegetation canopy forms the key to knowledge of other distributions, such as 
geologic and pedologic patterns that are not directly visible but do manifest themselves 
indirectly through variations in the character and distribution of the vegetation cover.

 16 Plant Science 
Fundamentals



424 IV. APPLICATIONS

In other situations, we have a direct interest in the vegetation itself. Remote sensing 
can be useful for monitoring areas planted to specific crops, for detecting plant diseases 
and insect infestations, and for contributing to accurate crop production forecasts. In 
addition, remote sensing has been used to map forests, including assessments of timber 
volume, insect infestation, and site quality.

Furthermore, remote sensing provides the only practical means of mapping and 
monitoring changes in major ecological regions that, although not directly used for pro-
duction of food or fiber, have great long-term significance for humankind. For example, 
the tropical forests that cover significant areas of the Earth’s surface have never been 
mapped or studied except in local regions that are unlikely to be representative of the 
unstudied regions. Yet these regions are of critical importance to humankind due to their 
role in maintaining the Earth’s climate (Rouse et al., 1979) and as a source of genetic 
diversity. Humans are rapidly destroying large areas of tropical forests; it is only by 
means of remote sensing that we are ever likely to understand the nature and locations of 
these changes. Similar issues exist with respect to other ecological zones; remote sensing 
provides a means to observe such regions at global scales and to better understand the 
interrelationships among the many factors that influence such patterns.

Vegetation Classification and Mapping

Vegetation classification can proceed along any of several alternative avenues. The most 
fundamental approach is simply to separate vegetated from nonvegetated regions or for-
ested from open lands. Such distinctions, though ostensibly very simple, can have great 
significance in some contexts, especially when data are aggregated over large areas or are 
observed over long intervals of time. Thus, national or state governments, for example, 
may have an interest in knowing how much of their territories are covered by forest or 
may want to make changes in forested land from one 10-year period to the next, even 
though there may be no data available regarding the different kinds of forest.

However, it is usually important to acquire information at finer levels of detail. 
Although individual plants can be identified on aerial photographs, seldom if ever is it 
practical to use the individual plant as the unit for mapping vegetation. Instead, it is more 
useful to define mapping units that represent groups of plants. A plant community is an 
aggregation of plants with mutual interrelationships among each other and with the envi-
ronment. Thus, an oak- hickory forest is a useful designation because we know that com-
munities are not formed by random collections of plants, but by consistent associations of 
the same groups of plants— plants that tend to prefer the same environmental conditions 
and to create the environments that permit certain other plants to exist nearby. A com-
munity consists of many stands— specific, individual occurrences of a given community 
(Figure 16.1).

Plants within communities do not occur in equal proportions. Certain species tend 
to dominate; these species are often used to name communities (e.g., hickory forest), 
although others may be present. Dominant species may also dominate physically, form-
ing the largest plants in a sequence of layers, or strata, that are present in virtually all 
communities. Stratification is the tendency of communities to be organized vertically, 
with some species forming an upper canopy, others a middle stratum, and then shrubs, 
mosses, lichens, and so on, forming other layers nearer to the ground. Even ostensibly 
simple vegetation communities in grasslands or arctic tundra, for example, can be shown 
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to consist of distinct strata. Specific plants within each community tend to favor distinc-
tive positions within each stratum because they have evolved to grow best under the con-
ditions of light, temperature, wind, and humidity that prevail in their strata.

Floristics refers to the botanical classification of plants, which is usually based on the 
character of the reproductive organs and uses the system founded by Carolus  Linnaeus 
(1707–1778). Linnaeus, a Swedish botanist, created the basis for the binomial system of 
designating plants by Latin or Latinized names that specify a hierarchical nomenclature, 
of which the genus and species (Table 16.1) are most frequently used. The Linnaean sys-

 FIGURE 16.1  Vegetation communities, stands, vertical stratification, and different life forms.

 TABLE 16.1 Floristic Classification

Level Examplea

Class Angiospermae (broad/general)

Order Sapindales

Family Aceraccae

Genus Acer

Species saccharum (narrow/specific)

aExample = sugar maple (Acer saccharum).
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tem provides a distinctive name that places each plant in relationship with others in the 
taxonomy. Floristic classification reveals the genetic character and evolutionary origin of 
individual plants.

In contrast, the life form or physiognomy describes the physical form of plants (Table 
16.2). For example, common physiognomies might include “tree,” “shrub,” “herbaceous 
vegetation,” and so on. Physiognomy is important because it reveals the ecological role of 
the plant—the nature of its relationship with the environment and other plants. Floristics 
and physiognomy often have little direct relationship to one another. Plants that are quite 
close floristically may have little similarity in their growth form, and plants that are quite 
similar in their ecological roles may be very different floristically. For example, the rose 
family (Rosaceae) includes a wide variety of trees, shrubs, and herbaceous plants that 
occupy diverse environments and ecological settings. Conversely, a single environment 
can be home to hundreds of different species. For example, the alpine meadows of New 
England are composed of some 250 species, including such diverse families as Primula-
ceae (primrose), Labiatae (mint), Araliaceae (ginseng), and Umbelliferae (parsley). Thus, 
a purely floristic description of plants (e.g., “the rose family”) seldom conveys the kind 
of information we would like to know about plants, their relationships with one another, 
and their environment.

Although it is often possible to identify specific plants and to assign taxonomic des-
ignations from large-scale imagery, vegetation studies founded on remotely sensed images 
typically employ the structure and physiognomy of vegetation for classification purposes. 
That is, usually we wish to separate forest from grassland, for example, or distinguish 
between various classes of forest. Although it is important to identify the dominant spe-
cies for each class, our focus is usually on separation of vegetation communities based on 
their overall form and structure rather than on floristics alone.

No single approach to vegetation classification can be said to be universally supe-
rior to others. At given levels of detail, and for specific purposes, each of the approaches 
mentioned above serves important functions. Floristic classification is useful when scale 
is large and mapping is possible in fine detail that permits identification of specific plants. 
For example, analyses for forest management often require a large scale, both for mea-

 TABLE 16.2 Classification by Physiognomy and Structure

Woody plants Broadleaf evergreen
Broadleaf deciduous
Needleleaf evergreen
Leaves absent
Mixed
Semideciduous

Herbaceous plants Graminoids
Forbs
Lichens and mosses

Special life forms Climbers
Stem succulents
Tuft plants
Bamboos
Epiphytes

Note: Data from Küchler (1967). Küchler’s complete classification specifies plant height, leaf characteristics, 
and plant coverage.
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surement of timber volume and for identification of individual trees. Physiognomy or 
structure is important whenever image scale is smaller, detail is coarser, and the analyst 
focuses more clearly on the relationships of plants to environment. Ecological classifi-
cation may be used at several scales for analyses that require consideration of broader 
aspects of planning for resource policy, wildlife management, or inventory of biological 
resources.

Another approach to classification of vegetation considers vegetation as the most 
easily observed component of an environmental complex, including vegetation, soil, cli-
mate, and topography. This approach classifies regions as ecological zones, usually in a 
hierarchical system comparable to that shown in Table 16.3. Bailey (1998, p. 145) defines 
his units as ecoregions: “major ecosystem[s], resulting from large-scale predictable pat-
terns of solar irradiation and moisture, which in turn affect the kinds of local ecosystems 
and animals and plants found there.” At the very broadest scales, ecological classifica-
tion is based on long-term climate and very broad-scale vegetation patterns, traditionally 
derived from information other than remotely sensed data. However, later sections of this 
chapter will show how it is now possible to use remotely sensed data to derive these clas-
sifications with much more precision and accuracy than was previously possible.

At finer levels of detail, remotely sensed imagery is essential for delineating ecore-
gions. The interpreter considers not only vegetation cover, but also elevation, slope, 
aspect, and other topographic factors in defining units on the map.

Biophysical Measures of Vegetation Cover

A contrasting approach applies multispectral remote sensing to estimate basic biophysical 
properties of the Earth’s vegetation cover. That is, instead of labeling a region to a par-
ticular class or category as explained above, this approach attempts to provide specific 
measures of the biophysical function of that region. Three common biophysical measures 
follow.

Vegetation fraction (VF) is defined as the percentage of vegetation occupying a pixel 
as viewed in vertical projection. It is a comprehensive quantitative index in forest man-

 TABLE 16.3 Bailey’s Ecosystem Classification

Level Example

Domain Humid temperate

Division Hot continental

Province Eastern deciduous forest

Section Mixed mesophytic forest

District 

Land-type association 

Land type 

Land-type phase 

Site 

Data from Bailey (1978).
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agement and vegetation community cover conditions, and it is also an important param-
eter in many remote sensing ecological models.

Leaf area index (LAI) is the ratio between the total area of the upper leaf surface 
of vegetation and the surface area of the pixel in question. LAI is a dimensionless value, 
typically ranging between 0 for a pixel composed of bare soil and values as high as 6 for 
a dense forest. See Figure 16.2 for an application that applies remote sensing imagery to 
estimate LAI for the continental United States.

Net primary production (NPP) is a measure of the inherent productivity of a region 
or ecological system— mainly the Earth’s production of organic matter, principally 
through the process of photosynthesis in plants. The organisms responsible for primary 
production, primary producers, form the base of the food chain. Whereas gross primary 
productivity (GPP) estimates the total productivity of a region, NPP is the value that 
remains after allowing for the amount of organic material used to sustain the produc-
ers. Because of the basic significance of NPP to understanding agricultural systems and 
ecosystems in general, the use of remote sensing is of interest as a tool to measure place-
to-place and seasonal variations in NPP (Ruimy, Saugier, and Dedieu, 1994).

Kinds of Aerial Imagery for Vegetation Studies

Aerial imagery enables the analyst to conduct quick and accurate delineation of major 
vegetation units, providing at least preliminary identification of their nature and com-
position. Note, however, that interpretation from aerial images cannot replace ground 

 FIGURE 16.2  Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI), 

March 24–April 8, 2000.
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observations. An accurate interpretation assumes that the analyst has field experience 
and knowledge of the area to be examined and will be able to evaluate her or his inter-
pretation in the field.

Stereoscopic coverage provides advantages for interpretation of vegetation coverage 
and for study of vertical canopy structure, the three- dimensional spatial arrangement 
of a plant canopy. Optimum choice of image scale, if the analyst has control over such 
variables, depends on the nature of the map and the complexity of the vegetation pattern. 
Detailed studies have been conducted using photography at scales as large as 1:5,000, but 
scales from about 1:15,000 to 1:24,000 are probably more typical for general- purpose 
vegetation studies. Of course, if photographs at several different scales, dates, or seasons 
are available, multiple coverage can be used to good advantage to study changes. Small-
scale images can be used as the basis for delineating the extents of major regions, whereas 
the greater detail of large-scale images can be used to identify specific plants and plant 
associations.

Lidar data, especially in conjunction with optical data, are often preferred to ste-
reoscopic photographs alone when information on the canopy structure is particularly 
important to a scientific or management objective. Modern lidar systems, whether they 
be waveform, discrete return, or photon- counting, typically enable better penetration— 
and thus representation— of dense canopies.

Panoramic photographs have been successfully used for a variety of purposes per-
taining to vegetation mapping and forest management. Modern panoramic cameras per-
mit acquisition of high- resolution imagery over very wide regions, such that large areas 
can be surveyed quickly. Such images have extreme variations in scale and perspective, 
so they cannot be used for measurements, but their wide areal coverage permits a rapid, 
inexpensive inventory of wide areas, and identification of areas that might require exami-
nation using more detailed imagery.

The timing of flights, which may not always be under the analyst’s control, can be 
a critical factor in some projects. For example, mapping the understory in forested areas 
can be attempted only in the early spring when shrubs and herbaceous vegetation have 
already bloomed, but the forest canopy has not fully emerged to obscure the smaller 
plants from overhead views. Because not all plants bloom at the same time, a succession 
of carefully timed photographic missions in the spring can sometimes record the sequence 
in which specific species bloom, thereby permitting mapping of detail that could not be 
reliably determined by a single image showing all trees in full bloom.

Infrared sensors have obvious advantages for vegetation studies of all kinds, as 
emphasized previously. Given the availability of visible near- infrared sensors in increas-
ingly less expensive, commercially available, remotely piloted aircraft systems, custom- 
flown, stereoscopic, color- infrared (CIR) photography is once again becoming common-
place.

16.2 STRUCTURE OF THE LEAF

Many applications of remote sensing to vegetation patterns depend on knowledge of the 
spectral properties of individual leaves and plants. These properties are best understood 
by examining leaf structure at a rather fine level of detail.

The cross section of a typical leaf reveals its essential elements (Figure 16.3). The 
uppermost layer, the upper epidermis, consists of specialized cells that fit closely together 
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without openings or gaps between cells. This upper epidermis is covered by the cuticle, 
a translucent waxy layer that prevents moisture loss from the interior of the leaf. The 
underside of the leaf is protected by the lower epidermis, similar to the upper epidermis 
except that it includes openings called stomates (or stomata), which permit movement of 
air into the interior of the leaf. Each stomate is protected by a pair of guard cells that can 
open and close as necessary to facilitate or prevent movement of air to the interior of the 
leaf. The primary function of stomata is apparently to allow atmospheric CO2 to enter 
the leaf for photosynthesis. Although the guard cells and the epidermis appear to be small 
and inefficient, they are in fact very effective in transmitting gases from one side of the 
epidermis to the other. Their role in permitting CO2 to enter the leaf is obviously essential 
for the growth of the plant, but they also play a critical role in maintaining the thermal 
balance of the leaf by permitting movement of moisture to and from the interior of the 
leaf. The guard cells can close to prevent excessive movement of moisture and thereby 
economize moisture use by the plant. The positions of stomata on the lower side of the 
leaf favor maximum transmission of light through the upper epidermis and minimize 
moisture loss when stomata are open.

On the upper side of the leaf, just below the epidermis, is the palisade tissue consist-
ing of vertically elongated cells arranged in parallel, at right angles to the epidermis. Pali-
sade cells include chloroplasts—cells composed of chlorophyll and other (“accessory”) 
pigments active in photosynthesis, as described below. Below the palisade tissue is the 
spongy mesophyll tissue, which consists of irregularly shaped cells separated by intercon-
nected openings. The surface of the mesophyll has a very large surface area; it is the site 
for the O2 and CO2 exchange necessary for photosynthesis and respiration. Although leaf 
structure is not identical for all plants, this description provides a general outline of the 
major elements common to most plants, especially those that are likely to be important 
in agricultural and forestry studies.

In the visible portion of the spectrum, chlorophyll controls much of the spectral 
response of the living leaf (Figure 16.4). Chlorophyll is the green pigment that is chiefly 
responsible for the green color of living vegetation. Chlorophyll enables the plant to 
absorb sunlight, thereby making photosynthesis possible; it is located in specialized lens- 
shaped structures, known as chloroplasts, found in the palisade layer. Light that passes 
through the upper tissues of the leaf is received by chlorophyll molecules in the palisade 
layer, which is apparently specialized for photosynthesis, as it contains the largest chlo-
roplasts, in greater abundance than other portions of the plant. CO2 (as a component 
of the natural atmosphere) enters the leaf through stomata on the underside of the leaf 
and then diffuses throughout cavities within the leaf. Thus, photosynthesis creates car-

 FIGURE 16.3  Diagram of a cross-section 

of a typical leaf.
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bohydrates from CO2 and H2O, using the ability of chloroplasts to absorb sunlight as a 
source of energy. Chloroplasts include a variety of pigments, some known as accessory 
pigments, that can absorb light and then pass its energy to chlorophyll. Chlorophyll 
occurs in two forms. The most common is chlorophyll a, the most important photosyn-
thetic agent in most green plants. A second form, known as chlorophyll b, has a slightly 
different molecular structure; it is found in most green leaves, as well as in some algae 
and bacteria.

16.3 SPECTRAL BEHAVIOR OF THE LIVING LEAF

Chlorophyll does not absorb all sunlight equally. Chlorophyll molecules preferentially 
absorb blue and red light for use in photosynthesis (Figure 16.5). They may absorb as 
much as 70 to 90% of incident light in these regions. Less of the green light is absorbed 
and more is reflected, so the human observer, who can see only the visible spectrum, sees 
the dominant reflection of green light as the color of living vegetation (Figures 16.5 and 
16.6).

Chlorophyll emits light (in addition to heat) as photons are absorbed, called fluores-
cence. This subtle emitted signal, with peaks at approximately 690 and 740 nm (Khos-
ravi et al., 2015), is difficult to observe because it is mixed in with a large amount of 
reflected light (comprising less than 3% of this total in the near infrared [NIR]; Moya 
et al., 2004). However, there are dark features in the observed solar spectrum (Chapter 

 FIGURE 16.4  Chlorophyll a absorption 

spectrum of a typical leaf. This pigment is 

used in oxygenic photosynthesis and absorbs 

blue and red radiation.

 FIGURE 16.5  Interaction of leaf structure 

with visible and infrared radiation.
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14), Fraunhofer lines, caused by absorption by atmospheric constituents. Two of these 
lines, labeled A (760 nm), and B (687 nm), are among the four principal Fraunhofer 
lines caused by molecular oxygen absorption. These two lines overlap the chlorophyll 
fluorescence emission spectrum. In these two Fraunhofer lines, the additive signal from 
fluorescence is relatively larger, and methods have been developed (Plascyk and Gabriel, 
1975, and successive refinements in other studies) enabling fluorescence quantification.

In the near- infrared spectrum, reflection of the leaf is controlled not by plant pig-
ments but by the structure of the spongy mesophyll tissue. The cuticle and epidermis are 
almost completely transparent to infrared radiation, so very little infrared radiation is 
reflected from the outer portion of the leaf. Radiation passing through the upper epider-
mis is strongly scattered by mesophyll tissue and cavities within the leaf. Little of this 
infrared energy is absorbed internally— most (up to 60%) is scattered upward (which we 
call “reflected energy”) or downward (“transmitted energy”). Some studies suggest that 
palisade tissue may also be important in infrared reflectance. Thus, the internal structure 
of the leaf is responsible for the bright infrared reflectance of living vegetation.

At the edge of the visible spectrum, as the absorption of red light by chlorophyll 
pigments begins to decline, reflectance rises sharply (Figure 16.7). Thus, if reflectance 

 FIGURE 16.6  Typical spectral reflectance 

from a living leaf. The leaf is brightest in the near- 

infrared region, although in the visible region 

(blue through red) the maximum is in the green 

region. Note that most of even the green light is 

absorbed.

 FIGURE 16.7  Vegetation 

spectral signatures in the visible 

and near infrared wavelengths. 

Differences between vegetation 

classes are often more distinct in 

the near- infrared than in the visible. 

Image by Susmita Sen.
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is considered not only in the visible but across the visible and the near infrared, peak 
reflectance of living vegetation is not in the green but in the near infrared. This behavior 
explains the great utility of the near- infrared spectrum for vegetation studies and facili-
tates separation of vegetated from nonvegetated surfaces, which are usually much darker 
in the near infrared. Furthermore, differences in the spectral signatures of plant species 
often are more pronounced in the near infrared than they are in the visible, meaning 
that discrimination of vegetation classes is sometimes made possible by use of the near- 
infrared reflectance (Figure 16.7).

As a plant matures or is subjected to stress by disease, insect attack, or moisture 
shortage, the spectral characteristics of the leaf may change. In general, these changes 
apparently occur more or less simultaneously in both the visible and the near- infrared 
regions, but changes in near- infrared reflectance are often more noticeable. Reflectance 
in the near- infrared region is apparently controlled by the nature of the complex cavi-
ties within the leaf and internal reflection of infrared radiation within these cavities. 
Although some scientists suggest that moisture stress or natural maturity of a leaf causes 
these cavities to “collapse” as a plant wilts, others maintain that it is more likely that 
decreases in near- infrared reflection are caused by deterioration of cell walls rather than 
physical changes in the cavities themselves. Thus, changes in infrared reflectance can 
reveal changes in vegetative vigor; infrared images have been valuable in detecting and 
mapping the presence, distribution, and spread of crop diseases and insect infestations. 
Furthermore, changes in leaf structure that accompany natural maturing of crops are 
subject to detection with infrared imagery, so that it is often possible to monitor the rip-
ening of crops as harvest time approaches. CIR sensors are valuable for observing such 
changes because of their ability to show spectral changes in both the visible and near- 
infrared regions and to provide clear images that show subtle tonal differences.

In the shortwave (or “mid-”) infrared wavelengths (beyond 1.3 μm), leaf water con-
tent appears to control the spectral properties of the leaf (Figure 16.8). The term equiva-
lent water thickness (EWT) has been proposed to designate the thickness of a film of 
water that can account for the absorption spectrum of a leaf within the 1.4–2.5 μm 
interval (Allen et al., 1971). Within the shortwave infrared region (SWIR), Tucker (1980) 
found the 1.55–1.75 μm (SWIR1) best suited to monitor canopy water status from space 
platforms. However, since both internal structure and dry matter influence SWIR reflec-
tance across species (Ceccato et al., 2001), interspecific EWT- reflectance relationships 
require both the NIR (structure, dry matter) and the SWIR.

 FIGURE 16.8  Reflectance differences 

between equivalent water thicknesses of 0.018 

cm and 0.014 cm. Changes in leaf water content 

may be pronounced in the mid- infrared region. 

Diagram based on simulated data reported by 

Tucker (1979, p. 10).
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As such, indices have been developed using both the NIR and SWIR that have been 
shown to be related to leaf or canopy water content using wavelength bands available 
on well- calibrated (Landsat, Sentinel, SPOT) moderate- resolution Earth resource satel-
lites. The moisture stress index (MSI; Hunt and Rock, 1989), shown as Equation 16.1, 
is linearly related to leaf water content in a species- specific fashion. More important, 
however, MSI is linearly related to log10EWT. Since EWT and LAI are correlated, MSI 
is also related to LAI.

MSI = SWIR1 (EQ. 16.1)
NIR

The normalized difference moisture index (NDMI; Hardisky, Klemas, and Smart, 1983; 
Jin and Sader, 2005), shown as Equation 16.2, is highly correlated with canopy water 
content and, by extension, to changes in the canopy that affect the water content.

NDMI = NIR – SWIR1 (EQ. 16.2)
NIR + SWIR1

Reflection from Canopies

Knowledge of the spectral behavior of individual leaves is important for understanding 
the spectral characteristics of vegetation canopies but cannot itself completely explain 
reflectance from areas of complete vegetative cover. Vegetation canopies are composed of 
many separate leaves that may vary in their size, orientation, shape, and coverage of the 
ground surface. In the field, a vegetation canopy (e.g., in a forest or a cornfield) is com-
posed of many layers of leaves; the upper leaves form shadows that mask the lower leaves, 
creating an overall reflectance created by a combination of leaf reflectance and shadow.

Shadowing tends to decrease canopy reflectance below the values normally observed 
in the laboratory for individual leaves. Knipling (1970) cited percentages reported in sev-
eral previously published studies (shown in Table 16.4).

Thus, the reflectance of a canopy is considerably lower than reflectances measured 
for individual leaves. But the relative decrease in the near- infrared region is much lower 
than that in the visible. The brighter canopy reflection for the near infrared is attributed 
to the fact that plant leaves transmit NIR radiation, perhaps as much as 50–60%. There-
fore, infrared radiation is transmitted through the upper layers of the canopy, reflected 
in part from lower leaves, and retransmitted back through the upper leaves, resulting 
in bright infrared reflectance (Figure 16.9). Physicists and botanists have been able to 
develop mathematical models for canopy reflectances by estimating the optical properties 
of the leaves and the canopy as a whole. Because some of the transmitted infrared radia-

 TABLE 16.4 Reflectance in Canopies versus Individual Leaves

Visible Near infrared

Single-leaf reflectance (%) 10 50

Canopy reflectance (%) 3–5 35

Source: Based on Knipling (1970).
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tion may in fact be reflected from the soil surface below the canopy, such models have 
formed an important part of the research in agricultural remote sensing.

The Red Shift

Collins (1978) reports the results of studies that show changes in the spectral responses of 
crops as they approach maturity. His research used high- resolution multispectral scanner 
(MSS) data of numerous crops at various stages of the growth cycle. Collins’s research 
focused on examination of the far-red region of the spectrum, where chlorophyll absorp-
tion decreases and infrared reflection increases (Figure 16.9). In this zone, the spectral 
response of living vegetation increases sharply as wavelength increases: in the region from 
just below 0.7 μm to just above 0.7 μm, brightness increases by about 10 times (Figure 
16.10).

Collins observed that as crops approach maturity, the position of the chlorophyll 
absorption edge shifts toward longer wavelengths, a change he refers to as the “red shift” 
(Figure 16.10; also known as the red edge shift). The red edge shift is observed not only in 
crops but also in other plants. The magnitude of the red edge shift varies with crop type 
(it is a pronounced and persistent feature in wheat).

Collins observed the red edge shift along the entire length of the chlorophyll absorp-
tion edge, although it was most pronounced near 0.74 m, in the infrared region, near the 
shoulder of the absorption edge. He suggested that very narrow bands at about 0.745 
μm and 0.780 μm would permit observation of the red edge shift over time and thereby 
provide a means of assessing differences between crops and the onset of maturity of a 
specific crop. Many modern multispectral sensors (RapidEye, Sentinel-2) have added nar-
row wavelength bands enabling detection of subtle changes in the red edge.

Causes of the red edge shift appear to be very complex. Chlorophyll a appears to 
increase in abundance as the plant matures; increased concentrations change the molecu-
lar form in a manner that adds absorption bands to the edge of the chlorophyll a absorp-
tion region, thereby producing the red shift. Biochemical concentrations, particularly can-
opy nitrogen (Mutanga and Skidmore, 2007) also shift the red edge. (Certain factors can 
alter the spectral effect of chlorophyll, thereby shifting the edge of the absorption band 
toward shorter wavelengths; this is the “blue shift” observed in geobotanical studies.)

 FIGURE 16.9  Simplified cross- sectional 

view of behavior of energy interacting with a 

vegetation canopy. (See Figures 16.3 and 16.4.) 
In some portions of the spectrum, energy trans-

mitted through the upper layer is available for 

reflection from lower layers (or from the soil sur-

face).
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16.4 VEGETATION INDICES

Vegetation indices (VIs), based on digital brightness values, attempt to measure biomass 
or vegetative vigor. A VI is formed from combinations of several spectral values that 
are added, divided, and/or multiplied in a manner designed to yield a single value that 
indicates the amount or vigor of vegetation within a pixel. High values of the VI identify 
pixels covered by substantial proportions of healthy vegetation. The simplest form of VI 
is a ratio between two digital values from separate spectral bands. Some band ratios have 
been defined by applying knowledge of the spectral behavior of living vegetation.

Band ratios are quotients between measurements of reflectance in separate portions 
of the spectrum. Ratios are effective in enhancing or revealing latent information when 
there is an inverse relationship between two spectral responses to the same biophysi-
cal phenomenon. If two features have the same spectral behavior, ratios provide little 
additional information. If they have quite different spectral responses, however, the 
ratio between the two values provides a single value that concisely expresses the contrast 
between the two reflectances.

For living vegetation, the ratioing strategy can be especially effective because of the 
inverse relationship between vegetation brightness in the red and infrared regions. That 
is, absorption of red light (R) by chlorophyll and strong reflection of NIR radiation by 
mesophyll tissue ensure that the red and near- infrared values will be quite different and 
that the simple ratio (SR; Equation 16.3) of actively growing plants will be high. Non-
vegetated surfaces, including open water, human-made features, bare soil, and dead or 
stressed vegetation will not display this specific spectral response, and the ratios will 
decrease in magnitude. Thus, the SR can provide a measure of photosynthetic activity 
and biomass within a pixel.

 FIGURE 16.10  Red shift. The absorption edge of chlorophyll shifts toward longer wavelengths 

as plants mature. The shaded area represents the magnitude of this shift as the difference between the 

spectral response of headed wheat and mature alfalfa. Similar but smaller shifts have been observed 

in other plants. The red shift is important for distinguishing the headed stage of a crop from earlier 

stages of the same crop and for distinguishing headed grain crops from other green, nongrain crops. 

From Collins (1978, p. 47). Copyright © 1978 by the American Society of Photogrammetry and Remote 

Sensing. Used by permission.
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SR = NIR (EQ. 16.3)
R

The SR is only one of many measures of vegetation vigor and abundance. One of the 
most widely used VIs is known as the normalized difference vegetation index (NDVI; 
Equation 16.4):

NDVI = NIR – R (EQ. 16.4)
NIR + R

This index in principle conveys the same kind of information as the SR, but it is con-
strained to vary within limits that preserve desirable statistical properties in the resulting 
distributions. Tucker (1980) and Perry and Lautenschlager (1984) suggest that in practice 
few differences among the many VIs have been proposed.

16.5 APPLICATIONS OF VEGETATION INDICES

Many of the first studies examining applications of VIs attempted to “validate” their 
usefulness by establishing that values of the VIs are closely related to the biological char-
acteristics of plants. For example, such studies might examine test plots during an entire 
growing season and then compare values of the VIs, measured throughout the growing 
season, to samples of vegetation taken at the same times. The objective of such studies is 
ultimately to establish use of VIs as a means of remote monitoring of the growth and pro-
ductivity of specific crops, or of seasonal and yearly fluctuations in productivity. Often 
values of the VIs have been compared to in situ measurements of LAI or to above- ground 
biomass (the weight of vegetative tissue, excluding roots). A number of VIs appear to be 
closely related to LAI (at least for specific crops), but no single VI seems to be equally 
effective for all plants and all agricultural conditions. The results of such studies have 
in general confirmed the utility of the quantitative uses of VIs, but details vary with 
the specific crop considered, atmospheric conditions, and local agricultural practices. A 
second category of applications uses VIs as a mapping device— that is, much more as a 
qualitative rather than a quantitative tool. Such applications use VIs to assist in image 
classification, to separate vegetated from nonvegetated areas, to distinguish between dif-
ferent types and densities of vegetation, and to monitor seasonal variations in vegetative 
vigor, abundance, and distribution (Figure 16.11).

Although such studies have established the utility of VIs for practical applications, 
there are many precautions for uses of VIs that are to be interpreted quantitatively rather 
than qualitatively. Values of VIs can be influenced by many factors external to the plant 
leaf, including viewing angle, soil background, and differences in row direction and spac-
ing in the case of agricultural crops. Ratios may be sensitive to atmospheric degradation 
because atmospheric effects have greater impact on bands at shorter wavelengths than 
those at longer wavelengths. Atmospheric effects can alter the ratios from their true val-
ues (Figure 16.12). Because atmospheric path length varies with viewing angle, values 
calculated using off-nadir satellite data (Chapter 5) vary according to position within the 
image. Clevers and Verhoef (1993) found that the relationship between LAI and the VI 
they studied was very sensitive to differences in leaf orientation. Although preprocessing 
can sometimes address such problems, it may still be difficult to compare values of VIs 
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 FIGURE 16.11  Time- integrated NDVI (TIN) for 2008. TIN estimates a daily (interpolated) NDVI 

above a baseline summed for the entire duration of the growing season and interpreted as growing 

season canopy photosynthetic activity (related to primary productivity). Darker blues and greens rep-

resent the higher values, whereas beiges and browns represent the lowest values. This figure shows 

a pattern related to vegetation cover, moisture, and insolation. From U.S. Geological Survey (USGS), 

Earth Resources Observation and Science (EROS) Center.

 FIGURE 16.12  Influence of atmospheric turbidity on near infrared/red ratio, or simple ratio, as 

estimated from simulated data. From Jackson et al. (1983, p. 195). Copyright © 1983 Elsevier Science 

Publishing Co., Inc. Used by permission.
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over a period of time because of variation in external factors. Price (1987) and others have 
noted that efforts to compare ratios or indices over time, or from one sensor to another, 
should reduce digital values to radiances before calculating ratios, thereby accounting for 
differences in calibration of sensors. Turner et al. (1999) showed the importance of cor-
recting for atmospheric effects as well (converting to surface reflectance), which, when 
feasible, should always be done prior to computing a VI.

NDVI has been validated as a measure effective in separating pixels with active veg-
etation growth from those that are unvegetated, or characterized by senescent vegetation. 
However, it may not be appropriate for some applications in which the NDVI values are 
to be interpreted as continuous measures of biophysical parameters. Myneni et al. (1995, 
2002) and Huete et al. (2002), for example, have shown that NDVI exhibits nonlinear 
relationships with biophysical measures such as VF or LAI, for example. Values of NDVI 
approach saturation (their maximum) before the biomass of the observed target reaches 
a maximum; that is, NDVI values reach a maximum and do not increase despite contin-
ued increases in LAI, biomass, or similar measures. Researchers have proposed modified 
indices or alternative analytical approaches to compensate for such effects.

16.6 PHENOLOGY

Phenology is “the study of the ways in which the timing and other aspects of periodic 
events . . . are affected by climate and other environmental factors” (Hine and  Martin, 
2016). Often phenology refers specifically to seasonal changes in vegetative growth and 
decline, but other seasonal phenomena, such as lake ice, are also extensively studied 
(Wynne et al., 1998). Many phenological changes can be monitored by means of remote 
sensing because plants change in appearance and structure during their growth cycle. Of 
special significance are spectral and physiological changes that occur as a plant matures. 
Each season, plants experience chemical, physical, and biological changes, known as 
senescence, that result in progressive deterioration of leaves, stems, fruit, and flowers. In 
the midlatitudes, annual plants typically lose most or all of their roots, leaves, and stems 
each year. Woody perennial plants typically retain some or all of their roots, woody 
stems, and branches but shed leaves. Evergreens, including tropical plants, experience 
much more elaborate phenological cycles. Individual leaves may experience senescence 
separately (i.e., trees do not necessarily shed all leaves simultaneously), and individual 
trees or branches of trees may shed leaves on cycles quite distinct from others in the same 
forest (Koriba, 1958).

During the onset of senescence, deterioration of cell walls in the mesophyll tissue 
produces a distinctive decline in infrared reflectance; an accompanying increase in visible 
brightness may be the result of decline in the abundance and effectiveness of chlorophyll 
as an absorber of visible radiation. Changes in chlorophyll produce the red shift men-
tioned above. Such changes can be observed spectrally, so remote sensing imagery can be 
an effective means of monitoring seasonal changes in vegetation.

The phenology of a specific plant defines its seasonal pattern of growth, flowering, 
senescence, and dormancy. Remotely sensed images can expand the scope of study to 
include overviews of vegetation communities or even of entire biomes. (Biomes are broad-
scale vegetation regions that correspond roughly to the Earth’s major climate regions.) 
Dethier et al. (1973), for example, used several forms of imagery and data to observe 
the geographic spread of the emergence of new growth in spring, as it progressed from 
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south to north in North America. This phenomenon has been referred to as the green 
wave. Then in late summer, the brown wave sweeps across the continent as plant tissues 
mature, dry, and are harvested.

Figure 16.13 illustrates local phenological differences in the spread of the green wave 
in the early spring. The image shows Landsat MSS band 4 (NIR) radiation, which is sen-
sitive to variations in the density, type, and vigor of living vegetation. The region repre-
sented by Figure 16.13 has uneven topography covered by a mixture of forested and open 
land, including large regions of cropland and pasture. When this image was acquired in 
mid-April, vegetation in the open land was just starting to emerge. Grasses and shrubs 
in these regions have bright green leaves, but leaves on the larger shrubs and trees have 
not yet emerged. Therefore, the pattern of white depicts the regions occupied primarily 
by early blooming grasses and shrubs in lower elevations. Within a week or so after this 
image was acquired, leaves on trees began to emerge, first at the lower elevations and 
later at higher elevations. Thus, a second image acquired only 2 weeks or so after the 
first would appear almost completely white, due to the infrared brightness of the almost 
complete vegetation cover. If it were possible to observe this region on a daily basis, under 
cloud-free conditions, we could monitor the movement of the green wave upward from 
lower to higher elevations and from south to north, as springtime temperatures prevail 
over more and more of the region. In reality, of course, we can see only occasional snap-
shots of the movement of the green wave, as the infrequent passes of Landsat and cloud 
cover prevent close observation during the short period when we must watch its prog-

 FIGURE 16.13  Landsat MSS band 4 image of southwestern Virginia. Data from USGS, EROS 

Center.



 16. Plant Science Fundamentals 441

ress. Virtual constellations (in which data from two or more sensors are combined into 
a single data set, sensu Claverie et al., 2018) improve temporal resolution and therefore 
enable more subtle characterizations of phenology even at the spatial resolution of moder-
ate resolution Earth resource satellite data.

16.7 LAND SURFACE PHENOLOGY

Traditionally, the study of phenology focused largely on individual plants. However, as 
the field of remote sensing developed the tools to assess seasonal changes over rather 
large areas, it became possible to evaluate the phenological behavior at regional, or even 
continental, scales using metrics to be described below. This broad-scale focus is known 
as land surface phenology (de Beurs and Henebry, 2004; Morisette et al., 2009).

NDVI, as observed by satellite sensors, permits tracking the seasonal rise and decline 
of photosynthetic activity within large regions, over several growing seasons. Reed and 
Yang (1997) were among the first to systematically apply broad-scale remote sensing 
instruments to derive phenology for very large regions. They accumulated cloud-free 
Advanced Very High Resolution Radiometer (AVHRR) composites of the United States 
over a 4-year period, calculating NDVI for each pixel. Examination of NDVI over such 
long periods and such large areas permitted inspection of phenological patterns of varied 
land cover classes, as well as responses to climatic and meteorological events, including 
drought, floods, and freezes. They used AVHRR 14-day composites during the March– 
October growing season and once a month during the winter season. Such products are 
useful for monitoring agricultural regions, assessing climatic impact on ecosystems, pro-
duction of food, and cover for wildlife. Agricultural systems can be observed at a broad 
scale to assess the response of crops to meteorological and climatic variations through-
out the growing season, enabling yield forecasts. Subsequent applications of the same 
approach have used MODIS data (Stöckli and Vidale, 2004) and Landsat data (Fisher, 
Mustard, and Vadeboncoeur, 2006; Walker, de Beurs, and Wynne, 2012) to provide 
additional spatial detail.

Some precautions are necessary in making detailed interpretations of such data. 
NDVI is, of course, subject to atmospheric effects, and the coarse resolution of AVHRR, 
MODIS, and Visible Infrared Imaging Radiometer Suite data often results in a given pixel 
encompassing multiple land cover classes with varied phenological responses, especially 
in regions where landscapes are locally complex and diverse. Atmospheric effects can 
create noise that contaminates the brightness values, so it is necessary to smooth the 
observations using a moving average to filter the effects of the atmosphere, snow cover, 
and the like upon NDVI values (Figure 16.14).

Observed over time, values of the NDVI depict a seasonal pattern of increase and 
decrease (Figure 16.14). During the winter season, NDVI reaches minimum values as 
vegetation enters dormancy, although in some regions, residual islands of green vegeta-
tion may remain. As springtime approaches, NDVI begins to rise. The onset of longer 
days, warmer temperatures, and spring rains promotes the budding of vegetation and the 
emergence of leaves, first with grasses and shrubs, then with trees. The seasonal response 
in NDVI is known as green-up. The rise in NDVI marks the start of season (SOS). Even-
tually, green-up peaks at maximum NDVI. Mature plants invest energy in growing the 
seeds and fruits necessary to prepare the species for success in the next year’s growing 
season. As the season progresses, green-up slows, stops, and then declines, marking 
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the end of season (EOS). The decline from mid- to late summer records the decline in 
vigor as senescence, and harvest time (for agricultural crops) approaches. The regional 
decline in NDVI in the fall is sometimes known as brown-down. The interval between 
SOS and EOS constitutes a region’s growing season, which is sometimes measured as 
the duration of season or by integrating the area under the phenological curve as the 
TIN. Thus, these data can provide a means of assessing place-to-place variation in the 
length of growing seasons. The result produces a typical seasonal pattern as depicted in 
Figure 16.15.

Land surface phenology metrics, such as SOS, are important indicators of regional 
and global climate change, with broad implications for plant productivity. For example, 
Figure 16.16 shows that for a 20-year period (1982–2011), the SOS in much of Fen-
noscandia (Finland, Sweden, Norway, and northwest Russia west of the White Sea) is 
now much earlier.

16.8 FOLIAR CHEMISTRY

The development of operational hyperspectral sensors (Chapter 14) has opened possi-
bilities for application of remote sensing to observation of characteristics of vegetated 
surfaces, which was not feasible by using the instruments that were previously at hand. 
Hyperspectral data have created the capability to investigate foliar chemistry, the chemi-
cal composition of living leaves. If such a capability could be applied in an operational 
context, it could help identify plants at levels of detail not previously feasible and monitor 
the growth and health of crops and forests.

Although a considerable body of research is devoted to remote sensing of foliar 
chemistry, much of this work is specific to particular sensors, individual test sites, or spe-
cific processing algorithms, and has been acquired by varied means (laboratory analyses, 
field observations, and airborne data). Therefore, much work remains to be completed 
to develop the suggestions offered by existing studies. The following paragraphs outline 
some of the efforts to investigate the hyperspectral sensing of foliar chemistry.

 FIGURE 16.14  Seasonal phenological variation in NDVI for a single pixel tracked over the interval 

2016–2019. These data are from the VIIRS (Visible Infrared Imaging Radiometer Suite) 500 m 16-day 

composite NDVI product. The latitude and longitude of the pixel location are 37.27º N, 80.48º W.
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 FIGURE 16.15  Idealized phenological diagram for a single season. The vertical axis represents 

NDVI, whereas the horizontal axis represents time, beginning and ending in the northern hemisphere 

winter season. Annotations identify key metrics, including start of season (SOS) and end of sea-

son (EOS), defined by quantitative assessment of the sequence of individual NDVI measurements 

throughout the year. From Kirsten de Beurs. Used by permission.

 FIGURE 16.16  Number of days of the earlier start of the growing season in Fennoscandia in 

2011 compared to 1982, assuming a linear trend. Black line, national borders; gray line, vegetation 

region borders. From Høgda et al. (2013).
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Lignin and Starch Content

Kokaly and Clark (1999) applied a normalization procedure that permitted detection of 
lignin and cellulose in dried ground leaves in a laboratory setting. Peterson et al. (1988) 
found that the spectral region in the 1500–1750 nm range in airborne imaging spectrom-
eter (AIS) data was linked to levels of lignin and starch content. Martin and Aber (1997) 
reported positive results for predicting lignin using four airborne visible infrared imaging 
spectrometer (AVIRIS) bands in the 1660–2280 nm range, at test sites in the northeastern 
United States. More recent work, focused on the cellulose- to- lignin ratio important to 
nutrient cycling rates after litterfall, has highlighted the importance of the 2.1- and 2.3-
μm absorption features (Kokaly et al., 2009).

Nitrogen

Card et al. (1988) found promising relationships between spectroradiometer data and 
the nitrogen content of ground, dried laboratory samples. Wessman, Aber, and Peter-
son (1989) investigated forest canopy chemistry using AIS imagery; they found strong 
relationships between foliar nitrogen and reflectance in bands between 1,265 nm and 
1,555 nm. Martin and Aber (1997) examined AVIRIS data (20-m resolution) on a mixed 
broadleaf forest of oak (Quercus rubra), maple (Acer rubrum), and needle- leaved spe-
cies. They found a relationship between nitrogen content and brightness in the intervals 
750–2140 nm and 950–2290 nm. Pellissier et al. (2015) were able to estimate percent 
foliar nitrogen in lawn and other cultivated grasslands using airborne imaging spectros-
copy data. Root mean square error, expressed as a percentage of the mean, was 16.9%, 
with the partial least squares variable importances focused in the 750–1300 nm and, to 
a lesser extent, 1550–1750 nm wavelength ranges.

Chlorophyll Concentration and Fluorescence

Kupiec and Curran (1993) examined AVIRIS data and found that brightness at 723 
nm was strongly correlated with chlorophyll content in the needles of slash pine (Pinus 
elliotti). Sims and Gamon (2002), in a comprehensive study of 53 species, found the 
modified SR at 705 nm (mSR705; Equation 16.5) best correlated with total leaf chloro-
phyll (mmol m–2). However, variability was induced from both leaf anthocyanin content 
and leaf surface reflectance.

mSR705 =
R750 – R445 (EQ. 16.5)
R705 – R445

Solar- induced fluorescence (SIF; emitted light from sunlit leaves) has been mapped 
globally (Figure 16.17), showing photosynthetic activity by both annual totals and grow-
ing season maxima. Of particular interest in Figure 16.17 is the time series, reminding us 
of the continued importance of the humid tropics with respect to global photosynthetic 
activity. SIF is linearly related to GPP as measured by eddy flux towers in a largely biome- 
independent fashion (Sun et al., 2017; Figure 16.18), at least when skies are clear (Zhang 
et al., 2018). As such, SIF is giving the scientific community a new window on global GPP 
dynamics at a critical time with respect to anthropogenic influences.
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 FIGURE 16.17  The Orbiting Carbon Observatory–2 (OCO-2) solar-induced chlorophyll fluores-

cence (SIF) retrieval (the composite of 757 nm and 771 nm) on a 1°  1° grid for (a) the annual aver-

age, (c) the summer average (June–July– August), and (d) the winter average (December– January– 

February) of 2015–2016. (b) Time series of the latitudinal mean SIF from September 2014 to July 2017. 

Only grid-cells with more than five soundings are shown. From Sun et al. (2017). Used by permission 

of the American Association for the Advancement of Science.

 FIGURE 16.18  The relationship between gross primary productivity and OCO-2 SIF (daily mean 

value, denoted as SIF, converted from instantaneous measurements) at three flux tower sites repre-

sentative of three different biomes. Error bars represent the standard error of the OCO-2 SIF retrieval. 

From Sun et al. (2017). Used by permission of the American Association for the Advancement of Sci-

ence.
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16.9 SUMMARY

For a large proportion of the Earth, vegetation cover forms the surface observed by remote 
sensing instruments. In some instances, we have a direct interest in examining this vegeta-
tive blanket in order to map the patterns of different forests, rangelands, and agricultural 
production. In other instances, we must use vegetation as a means of understanding those 
patterns that may lie hidden beneath the plant cover. In either instance, it is essential that 
we be able to observe and understand the information conveyed by the vegetated surface.

Given the obvious significance of plants to global ecosystem function, and sustain-
able food and fiber systems, the techniques outlined in this chapter are likely to form one 
of the most significant contributions of remote sensing to the well-being of humankind. 
The ability to examine vegetation patterns using the techniques described here, combined 
with the synoptic view and repetitive coverage of satellite sensors, provides an opportu-
nity to survey vegetation patterns and productivity in a manner that was not possible 
even a few years ago. The timing of our new capabilities is critical, since increases in 
human population and living standards are changing the structure and function of eco-
systems globally.

REVIEW QUESTIONS

1. Summarize differences between classification of vegetation from ground observations 
and classification from aerial images. Consider such factors as (a) the basis of the clas-
sification and (b) the units classified. Identify distinctions for which remote sensing is 
especially well suited and those for which it is not likely to be useful.

2. To apply some of the knowledge presented in this chapter (e.g., the red shift), it is 
necessary to have data with very fine spectral, radiometric, and spatial detail. From your 
knowledge of remote sensing, discuss how this requirement presents difficulties for 
operational applications.

3. List some of the reasons why an understanding of the spectral behavior of an individual 
plant leaf is not itself sufficient to conduct remote sensing of vegetation patterns.

4. List some reasons why multispectral satellite images might be especially well suited 
for observation of vegetation patterns. Or, if you prefer, list some reasons why they are 
not quite so useful for vegetation studies. Briefly compare the Sentinel-2 MultiSpectral 
Instrument and Landsat 8 Operational Land Imager with respect to their utility for veg-
etation studies.

5. Write a short description of a design for a multispectral sensor tailored specifically for 
recording information about living vegetation and vegetation patterns, disregarding all 
other applications. Suggest optimum timing for a satellite to carry the sensor in a sun- 
synchronous orbit.

6. Describe some of the ways that image classification (Chapter 12) might be useful in the 
study of vegetation patterns. Also identify some of the limitations of such methods in the 
study of vegetation.

7. How do changes in Sun angle and Sun azimuth (due to differences in season and time 
of day) influence the way in which vegetative patterns are recorded on remotely sensed 
images?
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8. What is solar induced fluorescence, how is it measured from space, and what is its utility 
in vegetation studies?

9. Note (with an equation) an index related to leaf water content. Why would such an index 
also be useful to estimate LAI? Why would it be useful to study vegetation disturbance 
and recovery?
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17.1 INTRODUCTION

In the early days of manned flight, aviators recognized the value of the aerial view to 
observe croplands when they were quick to appreciate the value of aviation’s unique 
overhead perspective. However, until aerial cameras and films were available, they could 
provide little practical value for the farmer. In the United States, by the 1930s, aerial cam-
eras surveyed croplands to estimate agricultural production and to support soil survey 
and erosion control. Despite the value of such imagery for agricultural inventory, it was 
decades more before the technology and analysis progressed to the point where we could 
record and monitor agricultural systems, assess crop status throughout the growing sea-
son, and routinely acquire aerial imagery of the agricultural landscape.

In the 1950s, applications of Robert Colwell’s research (introduced in Chapter 1) 
formed the foundation for practical applications within U.S. agriculture and forestry. 
The availability of improved aerial cameras, as well as the availability of infrared films, 
facilitated the effectiveness of Colwell’s contributions. By the early 1970s, the U.S. 
Department of Agriculture (USDA), in collaboration with other agencies, began system-
atic collection of agricultural data using remotely sensed imagery. Shortly thereafter, the 
availability of Landsat imagery nurtured interest and vision for systematic use of satellite 
imagery for agricultural analysis. Later, improved spatial and spectral detail of Enhanced 
Thematic Mapper (ETM) imagery of Landsats 4, 5, and 7 provided the basis for analyti-
cal strategies for conducting agricultural analysis of satellite imagery (Landsat Legacy 
Project Team, 2017). These efforts defined and validated the effectiveness of many of the 
analytic strategies that we now routinely use to examine digital satellite data, not only in 
agriculture, but also in many other applications.

17.2 CROPLANDS

Croplands identify land devoted to cultivated row crops, or close-grown crops, perhaps 
rotated with hay or pasture. The alternative, noncultivated cropland, includes land per-
manently devoted to hay or horticultural cropland (a subcategory of cropland used for 
growing fruits, nuts, berry, vineyard, and other bush fruit and similar crops). Here we 
focus on croplands because of their role in the worldwide production of food (Figure 17.1) 
and the key roles that remote sensing plays in monitoring croplands and forecasting the 
economic dimensions of food production.

Figure 17.1 represents croplands worldwide (at a nominal 30-m resolution), derived 
from Landsat imagery for the year 2015. The pattern highlights both the immense land 
areas devoted to croplands, and simultaneously, the vast land areas that are not now cul-
tivated (due to factors such as climate, terrain, and urbanization). The image highlights 
the value of broad-scale multispectral remote sensing as a strategy for routine monitoring 
of the large region globally devoted to agriculture. At this scale, regional, national, and 
global patterns in agricultural productivity, land use transition, cultivation, and response 
to major environmental stresses (i.e., fires, droughts, etc.) can be observed.

While broad patterns in agricultural activity are important, it is also valuable to 
assess agriculture at the scale of the farm, where the food is grown and the land is man-
aged. Figure 17.2 presents a detailed view of croplands in Noxubee County, Missis-
sippi, providing the farmer with an aerial perspective from imagery transmuted in real 
time. Here, the local region’s agricultural profile includes corn, soybeans, grains, cotton, 
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woodlands, pasture, and aquaculture. It is now possible for each farmer to view their 
cropland in the context of nearby landscapes.

Thus, the practice of remote sensing forms a vehicle for understanding agricul-
tural concerns through its ability to examine landscapes at varied scales, record tem-
poral changes, and detect spectral anomalies that reveal, for example, incipient signs of 
drought, diseases, or insect infestations. Agricultural systems are characterized by broad 
geographic scope, seasonal changes, local variation, and intimate interactions with the 

 FIGURE 17.2  Aerial image (Noxubee 

County, Mississippi) showing crops at dif-

fering growth stages. This image was trans-

mitted directly from aircraft by a high-speed 

wireless system that enables farmers to down-

load aerial images directly to their personal 

computers as they are acquired. Crops here 

include corn, soybeans, and forage. From the 

U.S. Department of Agriculture (USDA), Agri-

cultural Research Service (ARS), no. K10384.

 FIGURE 17.1  Map showing croplands (bright green) recorded by Landsat imagery for the year 

2015. The croplands depicted here represent different crops that vary with latitude, season, and cli-

mate. From U.S. Geological Survey (USGS), GFSAD30 Project.
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landscape, so remote sensing’s inherent capabilities match well to observation of agricul-
tural systems.

Remote sensing provides information for significant portions of the world’s agricul-
tural production, including for crops that enter international commerce for distribution 
of food to regions that have experienced crop failures, flooding, conflict, and similar 
food crises. Remote sensing contributes to the following (see Atzberger, 2013):

1. Biomass and yield estimation, including estimation of crop yields and dates of 
harvest.

2. Vegetation vigor and stress monitoring, including surveying of crop damage, 
storm, drought impact, flooding, and frost.

3. Assessment of crop phenological development (Chapter 16).
4. Crop acreage estimation and cropland mapping, including assessment of tillage 

practices, crop rotation, harvests, and broad-scale monitoring of agricultural 
lands to estimate extent of agricultural harvest.

5. Mapping of disturbances and land use/land cover changes.

Combining these capabilities of remote sensing over time allows for the long-term 
monitoring of harvests and the projection of future harvests. This provides the basis for 
forecasting prices and stabilizing commodity markets, as well as predicting the nature 
and locations of food shortages.

17.3 TECHNICAL LIMITATIONS 
FOR AGRICULTURAL APPLICATIONS

Despite the many strengths that remote sensing systems bring to our ability to observe 
agricultural productivity, important limitations and shortcomings deserve our attention.

Spatial resolution: If we take satellite systems as an example, there are important 
variations in pixel characteristics within a single image due to differences between nadir 
and off-nadir perspectives. Pixels acquired by an optical sensor viewing from a nadir 
perspective will have size and shape as specified by instrument design specifications. 
Pixels acquired off-nadir will decrease in size as lateral distance from the nadir increases, 
generating coarser detail and masking details of crops rather than providing an overhead 
view. Furthermore, a lateral perspective increases the atmospheric path of radiation that 
reaches the sensor, increasing atmospheric effects, and contaminating spectral signatures 
relative to a nadir view.

Cross- calibration of varied sensors: As of November 2017, there were 596 active 
Earth observation satellites, about 327 of which were using optical instruments. Many 
of these instruments were designed for specific purposes, so they differ in bandwidth, 
spatial detail, and calibration. For some studies, acquiring imagery to provide the needed 
temporal resolution may require use of images from several satellites, each with differing 
optical characteristics (Song, 2004; Liu, Gopal, and Woodcock, 2004). For example, dif-
fering viewing geometries, overpass schedules, and calibration gains generate differences 
in imagery of the same region.

Much of this chapter focuses on applications of remote sensing to broad-scale obser-
vation of landscapes, such as the central regions of North America, where fields are large, 
follow predictable crop cycles, and are dedicated to rather limited selections of crops. 
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In other regions, fields may be smaller, the crops more varied, and weather and climate 
characterized by frequent cloud cover. Remote sensing is often less effective in such situa-
tions but still provides valuable information through knowledge of the local agricultural 
scene. The value of remotely sensing imagery in an agricultural context lies not only in its 
broad scope and ability to collect sequential imagery, but also its ability to provide spatial 
detail that supports understanding of agricultural management, identification of crops, 
growth status, diseases, and infestations.

17.4 COMMON AGRICULTURAL PRACTICES

Considered worldwide, significant agricultural crops include wheat, barley, corn (maize), 
rice, potatoes, sweet potatoes, yams, soybeans, plantains, cassava, and sorghum (milo). 
All have specific histories and roles in regional agriculture and diets. The significance of 
such crops can be ranked by acres under cultivation, dietary significance, and economic 
value, among other considerations.

Except at the very finest levels of detail, remote sensing does not normally permit 
reliable identification of specific plants or even identification of fields of the same plant. 
As a result, crops are typically classified as large-grain (such as corn and sorghum) or 
small-grain (such as wheat, barley, oats, or rye). From a remote sensing perspective, the 
distinction is not so much about sizes of the grains themselves, but rather about the struc-
tures of mature plants. Large-grain crops are typically planted in rows; plants grow to be 
large enough and separated by rows wide enough to be recognizable on aerial imagery 
through their distinctive texture. In contrast, small-grain crops have thinner, less rigid 
stalks that, once mature, appear on imagery as even, smooth textures that can be reli-
ably separated from large-grain crops. Furthermore, as noted below, analysts familiar 
with the local scene can understand local crops, together with planting and harvesting 
schedules.

For large areas in the midlatitudes, crop production is often based on raising a single 
crop (or, perhaps, two crops in rotation from one year to the next) within the same field, 
with little year-to-year variation. Under such conditions, identification of crops from 
aerial imagery may present few challenges, as most analyses can rely on familiar crops, 
agricultural practices, and established crop calendars (discussed below). In other cir-
cumstances, crop identification by aerial observation can be complicated by alternative 
practices that intermingle varied crops within the same field. For example, intercropping 
identifies practices that mix separate plants within the same field, often used in com-
munity gardens and as routine practice in tropical regions. Likewise, aerial observations 
of croplands can be complicated by practices that produce two or more crops within the 
same fields.

Multicropping refers to the practice of producing two or more crops within a single 
growing season. Double cropping/triple cropping refers to production of two or three 
different crops in succession within the same fields in a single growing season. In tropical 
regions, especially irrigated fields, multiple plantings of the same crop can be grown in 
the same field. This is common practice for growing rice in tropical regions or cotton in 
irrigated regions of the southeastern United States. (Monocropping refers to production 
of a single crop year after year on the same land, without rotation, whereas polycrop-
ping is growing multiple crops in the same fields in order to protect against disease and 
insects.)
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Crop rotation (distinct from double cropping) is the practice of alternating different 
crops within the same field from year to year, typically following similar crop calendars. 
This is done to maintain soil structures, restore nutrients, reduce pathogens, and main-
tain soil health. For example, legumes contain nitrogen- fixing bacteria, and so they are 
often alternated with cereal crops that require nitrates. In the U.S. Corn Belt, a common 
crop rotation sequence is to alternate soybeans and corn crops. (Soybeans, as legumes, 
restore the nitrogen that corn crops take from the soil.)

Dryland farming: In regions of low or highly variable precipitation, farmers must 
cultivate crops without irrigation, so they rely on a suite of practices that can improve 
the environment for crops by tilling fields after harvest, suppressing weeds, reducing 
moisture loss, and retaining tillage debris in the field after harvest (no-till agriculture) to 
reduce erosion, capture snow, and reduce runoff.

Drought- resistant crops, such as sorghum (Figures 17.3 and 17.4), are well matched 
to environments with low or uncertain moisture, through lower transpiration, slower 
growth, or dormancy during drought conditions, which often can reduce transpiration 
and may lessen moisture demands during periods of moisture shortage, resuming growth 
when conditions again become favorable. Drought- evasive crops achieve their main 
growth during those times of the year when heat and drought conditions are not severe. 
Crops adapted to dryland farming are usually smaller and quicker to mature than those 
grown under more humid conditions and are usually allotted more space.

Fallow land: Farmers sometimes specifically leave some of their fields without seed-
ing for the next growing season, either plowed or unplowed. Fallow lands can restore 
fertility, possibly as part of a crop rotation strategy, accumulate soil moisture, or avoid 
surplus production. Fallow fields may be treated with pesticides or herbicides to reduce 
weeds or insects.

Agricultural burning: In some areas, such as the western plains, farmers may peri-
odically burn their fields to remove plants or residue to prepare fields for the next season. 
Often such burning, known as “prescribed” fire programs, is regulated by local laws that 
require safety permits, specified practices, and regulated timing. Although practitioners 
may use unmanned aerial vehicles (UAVs) to monitor prescribed burning, it is not typi-
cally the subject of remote sensing analysis. However, large regions of Africa and India, 

 FIGURE 17.3  Coarse- grain crop: sor-

ghum, approaching harvest. Finney County, 

Kansas.

 FIGURE 17.4  Sorghum crop, approaching 

harvest. Finney Country, Kansas. From USDA, ARS.
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for example, are characterized by extensive agricultural burning, monitored by Moderate 
Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite, 
which provide seasonal reviews of aerial imagery (Pereira, 2003).

17.5 IMPORTANT CROPS

In this section, we are not so much concerned with a complete inventory of significant 
crops, but rather with noting that many of the food crops most easily assessed by remote 
sensing include many of the most significant crops essential to world food security, 
including rice, wheat, corn, barley, soybeans, and sorghum. As we review this list, it’s 
important to consider that (1) this list is a concise selection from a broad inventory; (2) 
worldwide, many other crops are significant locally or regionally and are not easily moni-
tored using approaches discussed in this chapter; (3) other crops not listed above (such as 
cotton, for example) have important industrial applications; and (4) still others (corn, for 
example) have both nutritional and industrial significance.

Corn/maize: Corn, a cereal grain native to Mexico, forms one of the world’s most 
widely grown crops (from 58°N latitude in Canada and Russia to 40°S latitude in South 
America). Corn has many uses, including fodder, human food, industrial material, and 
biofuels. In the United States, the major uses include livestock feed (30%), ethanol (40%), 
and export (10–20%, much of which is also used for livestock), with the remainder used 
mainly for food and beverages. In midlatitudes, corn is planted in spring and harvested 
in late summer or autumn. Although corn is efficient in its use of soil moisture, it is 
shallow- rooted, and so it can be sensitive to late- season drought. Maize used for silage is 
harvested late in the growing season, while the leaves are green; field maize is left in the 
field until late autumn and sometimes is not harvested until winter.

Sorghum (also known as milo, grain sorghum, and other names) is a tall annual, 
resembling corn in some respects; it is known for its drought resistance, in part because 
of its extensive root system (Figures 17.3 and 17.4). Relative to other crops, sorghum 
requires relatively little moisture and so is favored in arid climates. Sorghum for export 
from the United States includes fodder, fuel (ethanol), human food, flour, syrup, and 
molasses. In the United States, sorghum is grown rather widely, but it is especially promi-
nent in the western edges of the Great Plains and other regions such as Arizona and Cali-
fornia, where rainfall is limited. There, it is used for cover crops, forage, and feed grains. 
Sorghum is widely used in India, China, and Africa.

Soybeans, native to Asia, were introduced to North America in the late 1700s and 
are now widely grown in the United States and elsewhere (Figure 17.5). They grow as a 
grass-like plant—a species of legume valuable for its edible bean. As forage for livestock, 
initially in the southeastern part of the United States and later in the midwestern states, 
soybeans became a significant U.S. agricultural crop. In 1904, the American agricultural 
chemist George Washington Carver recognized that soybeans are a valuable source of 
nutrients that thrive in a variety of soils. Like many legumes, soybeans fix atmospheric 
nitrogen, which can restore nitrogen to soils. As a result, soybeans are often rotated with 
a corn crop to retain soil productivity and increase yields of both corn and maize. Today, 
additional soybean producers include China, Uruguay, Bolivia, Brazil, and Argentina.

Wheat is a grass that is grown globally and is often widely regarded as the world’s 
second- most important cereal crop (after maize and ahead of rice). Wheat is regarded 
as the leading source of vegetal protein in human food and is raised in many varieties 
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throughout midlatitudes, including Argentina, the United States, Canada, China, Central 
Asia, and Europe. Winter wheat is a strain of wheat planted in autumn to germinate and 
sprout before winter weather sets in (Figures 17.6 and 17.7). During winter, the crop lies 
dormant and resumes growth in early spring for a summer harvest.

Rice, a cereal grain of Asian origin, is recognized as the most widely consumed 
staple food for a large proportion of the world’s population. In its many varieties, it is 
raised, sometimes as an annual, in a wide range of locations and landscapes, provided 
the climate is relatively warm and a reliable access to water resources is available, includ-

 FIGURE 17.5  Geneticist Thomas Carter working to develop drought- tolerant soybean breeding 

lines that can grow over an expanded geographic range, Sandhills Research Station, North Carolina. 

From USDA. Photograph by Thomas Carter, no. d1257-1.

 FIGURE 17.6  Example of small-grain crop: winter wheat. USDA Extension agent Wayne Cooley, 

ARS agronomist Randy Anderson, and farmer Gilbert Lindstrom examine a wheat crop as they con-

sider a wheat/corn/fallow rotation within a dryland cropping system. From USDA, ARS.
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ing coastal zones, deltas, estuaries, and river floodplains. Upland rice is produced in 
quite different environments, often rain-fed fields, and is seeded when dry, similar to 
cultivation of maize or wheat. In steep terrain, construction supports rice cultivation in 
uneven terrain distant from the coastal regions often associated with rice production. 
Worldwide, rice crops are susceptible to numerous diseases (including bacteria, fungi, 
and insects), as well as to extremes of weather and climate and other hazards. Effective 
management therefore requires both expertise and experience.

In Asia, rice paddy fields are prepared by plowing, fertilization, and bed preparation 
(smoothing the soil to prepare the seed bed to ensure uniform water depth and accurate 
control of irrigation). By tradition, it is common practice for rice farmers to plant seed-
lings in beds outside fields and then, 30 to 50 days later, transplant to fields flooded by 
rain or irrigation. It is now common in some regions for farmers to plant the crop directly, 
without transplantation, to well- prepared, irrigated fields as a means of avoiding weather 
delays in the planting schedule, which can increase the risks of disease and other hazards.

During the growing season, farmers carefully control irrigation manually or by gates 
in local dikes. Farmers drain fields before harvest (Figure 17.8). There is a wide variation 
in the specific varieties of rice; some agricultural practices are tailored to support rice 
production in varied locations. Outside Asia, leading exporters, such as the United States, 
Australia, and Brazil, rely on mechanized production in large inland fields, with reliable 
access to water. In some remote regions, rice may be cultivated on a subsistence basis, a 
practice largely outside the scope of remote sensing analysis.

Figure 17.9 illustrates the significance of rice production in the United States, form-
ing the nation’s third largest source of cereal production, after corn and wheat. Here we 
can see the scope of mechanized harvest for Fort Bend County, Texas, with additional 
production in Arkansas, California, Louisiana, Mississippi, and Missouri. Typically 
the United States harvests a single rice crop each year from rice fields, although Texas 
and southwest Louisiana may harvest a second crop from a single planting (known as a 
“ratoon” crop), due to the effect of a longer growing season.

Remote sensing forms an important asset for monitoring the progress of the inter-
national rice crop throughout South Asia, especially Vietnam, the Philippines, India, 
China, and Korea. Both synthetic aperture radar (SAR) imagery and Landsat/Sentinel 
optical imagery have proven effective in assessing rice cultivation, especially in examin-
ing double- cropping and triple- cropping, which are common practices in some regions 
(Son et al., 2013; Lam-Dao et al., 2017).

 FIGURE 17.7  Small-grain crop: winter wheat, approaching harvest, 

Finney County, Kansas.
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 FIGURE 17.8  Rice fields maturing as harvest date approaches, Son La Province, Vietnam. Pho-

tograph by Hoa Tran. Used by permission.

 FIGURE 17.9  Aerial view of mechanized rice harvest, Fort Bend County, Texas. From USDA. 

Photograph by David Nance.
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17.6 MONITORING THE GROWTH STAGE

The growth stage of any crop influences its appearance on aerial imagery. Seldom can 
most of us recognize crops as individual plants, but rather by the overall appearance 
of fields during specific seasons, by the growth stages of crops, and by characteristics 
such as the spatial arrangement of fields and clusters of plants. Specific crops rarely dis-
play distinct spectral signatures because all vegetation appears relatively similar in spec-
tral response compared to other features on the landscape. Furthermore, the spectral 
response differs according to the agricultural calendar and even within the same species. 
Often, it may not be possible to distinguish between specific crops within each class, 
so remotely sensed imagery is seldom the principal source of information regarding the 
specific identity of crops. However, some broad distinctions can be made using aerial 
imagery, provided image scale is large enough, and plants are approaching maturity.

Agricultural scientists often define many stages for specific crops. These vary from 
crop to crop, and not all stages can be determined from aerial photography. However, it 
is often possible to interpret principal growth stages using large-scale aerial photography. 
Typically, when the crop is planted, the field is mainly bare, tilled soil. Initially, there is 
little evidence of the presence of plants.

Emergence indicates that seedlings have sprouted, providing visible evidence of 
the plants. As crops emerge after planting and germination, they present leafy growth 
above ground. Initially, this growth is usually barely detectable on aerial photography 
(on color-infrared [CIR] photography, possibly by a light pink tint). At this stage the 
field, as seen from above, is primarily bare soil with only slight evidence of the emerging 
crop. Although plants at this stage are usually too small to identify as individual crops, 
their identities may be indicated by planting pattern, the presence or absence of irriga-
tion, and other observations. Further growth progressively presents larger areas of leaf, 
shielding the soil from view and indicating the increasing maturity of the crop. As crops 
mature, leaves begin to shade the soil that was formerly visible between plants, presenting 
an increasingly complete cover as seen from above. Depending on the specific crop and 
its method of cultivation, the linear pattern of rows from initial planting may be visible. 
Assuming that the crop matures without drought or attack by disease or insects, the 
ground surface will likely be completely covered as the crop matures.

As the crop reaches maturity, many grains will exhibit senescence (i.e., aging of the 
plant, when growth slows or stops, usually indicated by drying of the leaves). As seen 
on CIR aerial photography, mature crops eventually attain a lighter color and often a 
grayish or greenish cast as near-infrared (NIR) reflectance decreases. At maturity, coarse 
grains usually can be recognized by their rougher textures as they appear in the field, due 
to their larger stalks, coarser leaves, complex structure, and increased micro- shadowing. 
Small grains, once mature, often have an even, smooth texture that tends to mask rows 
and irregularities in terrain. Row crops, such as soybeans, are usually recognizable by the 
latent linear appearance that remains even after the crops are mature enough to mask the 
rows themselves. Harvest occurs, weather permitting, at or near maturity. After harvest, 
the crop residue often remains on the field until the field is tilled just prior to planting the 
next year’s crop. This gives fields a greenish cast in a CIR image, although the bare soil 
usually brightens the overall tone of harvested fields.

Although remotely sensed imagery can provide valuable information about the agri-
cultural landscape, it generally is not used as the principal means of identifying specific 
crops. Thus, aside from the ability of aerial imagery to provide a broad sketch of crops 
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grown in a region, its value is usually to assess acreages planted to croplands or left as 
fallow; mark the progress of crops as they mature through the growing season; detect 
disease and insect infestation; quantify the effects of drought; and obtain other data 
relating to crop status.

Throughout the growing season, agronomists monitor the progression of the crop 
regionally through the agricultural calendar to assess disruptions from the usual time-
table. Aerial imagery can form a valuable aid in documenting damage for insurance pur-
poses, guiding response to infestations, and assisting commodity markets.

17.7 IRRIGATION

Irrigation is the practice of controlled application of water to agricultural lands to pro-
mote the production of crops. This practice dates from antiquity and is evidence of 
humanity’s ingenuity in devising varied technologies for collecting and distributing water 
for agriculture. Today, wide varieties of irrigation strategies are in use in the United 
States (Figure 17.10) and throughout the world. They rely on access to a reliable supply of 

 FIGURE 17.10  Irrigated agriculture, United States, presented as a map based on 2012 Moderate 

Resolution Imaging Spectroradiometer data. Much of this pattern relates to the availability of surface 

water or to reliable groundwater supplies. Some areas require irrigation because of arid climates, oth-

ers require irrigation, not because of the prevailing aridity, but because of seasonal needs for water at 

specific times of the year (e.g., late summer, when evaporation may be high). From USGS.



462 IV. APPLICATIONS

water, including surface water (pumped from river channels and diverted from rivers and 
streams), groundwater (pumped by wind or natural gas), dams, and numerous varieties 
of alternatives.

Ditch/gravity/flood/furrow irrigation is a traditional low-tech irrigation strategy 
that redirects water from surface streams to fields by a series of channels (“ditches,” 
which are sometimes lined to prevent seepage), controlled by a series of gates (Figures 
17.11 and 17.12). Ditch irrigation may require expensive land- leveling to remove terrain 
irregularities and attain the desired grade to permit uniform distribution of water and 
prevent ponding.

Drip irrigation distributes water through a system of tubes or conduits perforated 
to allow water to seep into the soil surface. Farmers position such tubes within furrows 
at the soil surface. Drip irrigation makes economical use of the water supply, although 
buried conduits are expensive to install.

As mentioned above, the irregular terrain of Asia’s upland regions have supported, 
sometimes for many centuries, stone terraces carefully engineered to provide even sur-
faces for cultivating rice and for controlling distribution of irrigation water. Such terraces 
are expensive to construct and maintain, and so they represent substantial investments 
in labor and productivity.

Sprinkler/spray/center- pivot irrigation systems distribute water by pressure through 
the air using sprinklers, tubes, and spray guns. Although they are still favored in many 
areas, sprinkler systems can be inefficient because of water losses through wind and 
evaporation, especially in arid regions where wind and dry air can deplete water before it 
reaches plants. Also included in the sprinkler system category, as a form of spray irriga-
tion, is center-pivot irrigation (Figure 17.13), which uses a line of A- shaped metal frames 
mounted on rolling wheels that direct pressurized water through sprinkler heads to dis-

 FIGURE 17.11  Aqueduct channel, with drop structure and sluice gates feeding irrigation water to 

lateral channels and croplands, Phoenix, Arizona.
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tribute to the fields as the line rotates slowly around a central point at the center of the 
field. Electric motors slowly power the frames to rotate in a large circle, spraying water 
as they pivot. Center- pivot systems are widely used throughout the world, usually relying 
on groundwater supplies. This approach is efficient in the sense that it does not require 
land- leveling and has permitted agriculture to extend into lands that otherwise would not 
be cultivated because of lack of access to water or because of uneven terrain. This type of 
irrigation is obvious from above, owing to a distinct circular shape.

 FIGURE 17.12  Furrow irrigation, Phoenix, Arizona. Cement- lined channel in foreground carries 

irrigation water to furrows within fields. Curved siphon tubes transport water over the edge of the chan-

nel to the furrows. Photograph by Baojuan Zheng. Used by permission.

 FIGURE 17.13  Left: Center- pivot sprinkler irrigation in use, Nebraska. From USGS. Right: View of 

terminal truss at the end of a different but similar system.
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Irrigation infrastructure is expensive both to install and to maintain, so it represents 
a sizable and continuing investment. Irrigation is, of course, significant in arid regions 
where water is absent, insufficient, or unreliable. It is also important in humid climates 
where annual precipitation totals are adequate but poorly distributed throughout the 
growing season. So, for example, irrigation may protect a corn crop as it approaches 
maturity late in the growing season (August, for example) when evapotranspiration may 
be high and rainfall low or unreliable.

From a broader remote sensing perspective, irrigation can complicate the timing of 
remote sensing analysis of agricultural systems. Because irrigation permits farmers to 
control the growing cycle, the observed seasonal patterns may not match expected crop 
calendars, which may create challenges for temporal assessments.

17.8 A VIEW OF AN IRRIGATED LANDSCAPE, WESTERN KANSAS

The scene represented in Figure 17.14 provides a retrospective glimpse of irrigation prac-
tices in the western edge of the Great Plains. Here we see a portion of the High Plains 
landscape west of Garden City, Kansas, a region noted for its varied crops, some of which 
are dependent on irrigation, while others are suited for dryland farming of this semiarid 
region. This area is characterized by its fertile soils, even topography, access to rail com-
munications, and proximity to the Arkansas River.

 FIGURE 17.14  Irrigation systems near Holcomb, Finney County, Kansas, from Google Earth Pro. 

(A) September 1991; (B) June 2014.
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Here we also see snapshots of a current center- pivot irrigation system (B), superim-
posed over the footprint of the previous flood irrigation system. Recall that the center- 
pivot system relies on groundwater, whereas the earlier flood irrigation system used sur-
face water redirected from the Arkansas River, channeled along the canal (marked by the 
yellow arrows) originating from the Arkansas River (just off the lower left-hand corner 
of the maps).

Beginning in the 1880s, a growing population of pioneering farmers sought to stabi-
lize the agricultural scene by constructing irrigation systems redirecting water from the 
nearby Arkansas River to adjacent lands (Hanks, 2014). Farmers upstream (to the west, 
in Colorado) also used the Arkansas River for irrigation water, so downstream farms in 
western Kansas soon experienced reduced irrigation capabilities. To expand local irriga-
tion efforts, entrepreneurs in the downstream sections, near Garden City, began to use 
pumps and windmills to provide local sources of groundwater to support irrigation agri-
culture, and constructed ambitious irrigations systems.

The two snapshots in Figure 17.14 show the same landscape at different dates. The 
1991 image (A) provides a black-and-white image of the agricultural landscape west of 
Holcomb, Kansas, and just north of the Arkansas River (flowing west to east). Here, we 
see the gridded field boundaries, and the irrigation canal that carries water channeled 
from the Arkansas River (just upstream, off the lower left edge of the image). The canal, 
as mentioned above, originates from the days of early local irrigation projects, following 
local terrain to minimize costs. (The red/yellow arrows mark the path of the channel as 
it follows local terrain.) Its function is to distribute irrigation water, using siphons to dis-
tribute water to field furrows (Figure 17.12). These fields are also irrigated by pumps (not 
visible on our imagery) powered by natural gas. The lower right of Figure 17.14 shows 
the same area, but for June 2014, now with center- pivot irrigation system. Center- pivot 
irrigation was introduced to the broader region as early as the 1970s and was used at this 
specific site beginning in about 2002.

17.9 CROP CALENDAR

A crop calendar describes the cycle of crops grown during the agricultural year, in har-
mony with regional climate, local practices and landscapes, and economic incentives. 
Each farmer adopts a specific sequence of preparing the field, planting, and harvest-
ing to minimize labor and risk for the crop, and to maximize agricultural production. 
Although each farmer decides the specifics for a given farm, over broad regions, farmers 
as a group tend to follow a common sequence of agricultural activities for their region. 
As an example, the crop calendar for principal crops of western Nebraska can be broadly 
sketched as is depicted in Figure 17.15.

Analysts who examine images of agricultural landscapes apply knowledge of a 
region’s agricultural calendar to understand the meaning of the patterns they see on 
imagery. Over decades, crop calendars may change as new crops and crop varieties are 
introduced, new agricultural technologies are installed, and weather and climate vary. 
Thus, at any given time, the landscape shows a variety of crops, each at different growth 
stages, due to varied planting dates as determined by the local agricultural calendar.

Sequential coverage provided by Earth observation satellites permits monitoring of 
agricultural systems over time, allowing analysts to apply knowledge of local crop calen-
dars to identify cropping patterns. For example, the winter wheat crop may be character-
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ized by open fields in September and October, and by a mixture of soil and newly emerged 
vegetation in mid-to-late autumn. The crop is dormant during the winter months; then, 
during spring and early summer, crop cover increases, completely masking the soil by 
late May or early June. As the crop matures, spectral evidence of senescence signals the 
approach of harvest in late June or early July.

In contrast, the corn crop (Figure 17.15) is typically not planted until late spring, 
emerging in early summer, attaining complete coverage until June, and maturing in 
August. Thus, each crop displays a characteristic behavior over time, permitting tracking 
progress of crop growth and (in many cases) recognition of its identity.

Note that Figure 17.15 presents the crop calendar for a midlatitude region where 
there is a small range of crops, with planting and harvest cycles that follow a rather 
simple structure. In other regions of the world, climate, soils, and terrain dictate forms of 
agriculture based on a wider variety of crops, intercropping, and varied planting and har-
vesting cycles. For comparison, Figure 17.16 presents a crop calendar for the Malaprabha 
Basin in southern India, which presents a much more intricate sequence of crops. The 
difference illustrates the challenge of relying on broad-scale remote sensing to assess such 
complex environments. Todoroff and Kemp (2016) specifically examined the effective-
ness of remote sensing in a tropical context (mainly agriculture), noting the difficulties 
presented by the prevalence of small holdings.

Knowledge of the local crop calendar provides an analyst with the ability to examine 
the patchwork of local crops to identify differing growth stages and permits selection of 
a single date that will provide maximum contrast between two crops. In the instance of 
discrimination between corn and wheat, for example, selection of a date in late spring 
should show complete vegetative cover in wheat fields, whereas cornfields show only 
newly emerged plants against a background of bare soil.

 FIGURE 17.15  Local agricultural calendar for western Nebraska, 1968. From the Center for 

Advanced Land Management Information Technologies. Used by permission.
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Harvard Marsh, Nebraska

Figure 17.17 offers a practical example of how the local crop calendar appears on the 
landscape. Here we see a CIR aerial photograph of an agricultural landscape, Harvard 
Marsh, in south central Nebraska, as observed in mid- August. In this image, red is indic-
ative of vegetation (mainly corn), due to relatively high reflectance in the NIR. The CIR 
film eliminates shorter wavelengths from the image, highlighting living vegetation and 
creating dark, sharply defined, shadows. Clear, open, water is imaged as dark black, 
with sharp, well- defined edges. Winter wheat fields, planted in the autumn of the previ-
ous year, have been harvested early in summer (perhaps in June or July) and so are now 
clearly distinctive as harvested in midsummer, with open, bare, fields and some crop 
residue left from the harvest earlier in the summer.

 FIGURE 17.16  Crop calendar for cropping systems in the Malaprabha Basin of southern India, 

illustrating the complexity of crops and their temporal patterns relative to typical midlatitude agricul-

tural systems. From Heller et al. (2012). Copyright © 2012 American Society for Photogrammetry and 

Remote Sensing. Used by permission.

 FIGURE 17.17  Harvard Marsh, 

Nebraska. Near- infrared imagery, August 

1983. From U.S. Fish and Wildlife Service.



468 IV. APPLICATIONS

Much of the remainder of the image shows the corn crop, which requires ample 
moisture, supplied here by irrigation, needed in this region because of long periods of 
daylight, high transpiration, and dry weather as summer progresses. The corn crop is 
visible on this image as bright red fields, planted in spring, now approaching harvest 
time. Fields irrigated by center- pivot irrigation are visible (top center) as bright red, with 
generally even textures on the aerial photograph. Elsewhere, the corn crop has been irri-
gated by ditch irrigation, channeling the water flow in open channels, confined by field 
boundaries.

Figure 17.18 depicts the same scene with annotations to indicate notable features of 
this landscape scale:

1. Farmstead (likely well established over many years), with equipment sheds, and 
forest cover serving as windbreak.

2. Center- pivot irrigation. Maize (with variations in crop maturity) approaching 
harvest. Darker reds here and elsewhere suggest maize crop approaching harvest 
time.

3. Maize crop, ditch irrigation.
4. Unplanned release of irrigation water.
5. Winter wheat, after harvest earlier in the summer, to be planted for the next year, 

likely later in August or in September.
6. Grazing and water for cattle.
7. Paved highway; the culvert channels irrigation water below highway.
8. Wetlands. This section of the image is a protected wildlife refuge, which expands 

in spring with snowmelt and drainage. At this time in August, much of the wet-
land region has retreated to its smaller dimensions.

9. Natural channel.

17.10 CROP DAMAGE

Aerial imagery can be a significant asset for observing the effects of disease, weather 
damage, and insect infestation. Lodging is a common agricultural feature— a severe form 
of storm damage that occurs when strong winds and hail damage mature crops (see 
Figure 17.19, right). Lodging damages the stems of mature wheat, for example, as they 
are beaten down by heavy rain, hail, or winds. Mature crops are especially vulnerable 

 FIGURE 17.18  Harvard Marsh, 

Nebraska. Near- infrared radiation 

photography, August 1983. From U.S. Fish 

and Wildlife Service. Annotated to illustrate 

topics discussed in text. See the text for 

labels and key.
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to lodging; as crops approach maturity, the plants are larger and the stems weaker. Even 
if the lodged plants survive to continue growth, the broken stems prevent harvesting. 
Hail damage to some crops completely shreds the leaves, physically destroying the plant 
beyond hope of recovery (Figure 17.19, left). Yet some plants can survive hail damage, 
especially if they are young enough, because smaller, more compact leaves and stems are 
strong in comparison with those of the mature plant.

Aerial photography and photointerpretation are especially important tools for 
assessing crop status. Although farmers and agricultural analysts are familiar with crops 
planted in their own regions, it is difficult to assess the nature and status of crops over 
much larger regions at a given time because of the regional differences in crops, agricul-
tural practices, climate, and terrain. The spatial perspective and the use of the nonvisible 
spectrum offered by aerial photography provide the agricultural community with a valu-
able means of understanding the crop status.

17.11 CONSERVATION TILLAGE

Tillage is the agricultural practice, dating from antiquity, of disturbing the soil surface 
at the time of planting in order to prepare the seedbed, disturb weeds, aerate the soil, 
accelerate the drying of wet soils, and, at high latitudes, promote springtime warming 
of soil. Tillage was practiced, initially with hand tools, later with wooden plows and 
draft animals, as early as 100 BCE in China, and 643 CE in Europe. Later, by 1836, in 
the United States, development of the John Deere plow provided farmers the ability to 
precisely adjust depth, width, and incline for plowing (Schmitz and Moss, 2015).

By the early 1900s, industrialization introduced steam- powered and then gasoline- 
powered tractors. Mechanization led to larger farm sizes and increased agricultural out-
put. As mechanization increased, the nature and scope of tillage practices changed as 
it became possible to till larger areas, steeper slopes, and sod too tough to plow prior 
to mechanization (Figure 17.20). By the 1940s, increased awareness of the detrimental 
aspects of tillage (Faulkner, 1943), combined with the availability of herbicides, led to 
alternative practices to minimize adverse aspects of tillage, including increased erosion 
and loss of nutrients.

 FIGURE 17.19  Storm- damaged crops. Left: Hail- damaged corn crop, Kansas. Right: Wind- 

damaged (lodged) wheat, Virginia.
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In this context, some specialists recommended conservation tillage practices to min-
imize cultivation and retain crop debris from the previous season’s crop, reduce the use of 
herbicides, retain soil moisture, protect against erosion, and retain organic matter within 
the soil (Figure 17.21). Although conservation tillage can present disadvantages, its use 
has been encouraged to improve sustainability and soil management relative to more 
conventional practices.

Separation of no-till fields from conventional tillage practices (turning the soil sur-
face to bury organic debris from the previous year’s crop) provides the ability to assess 
broad-scale erosion risk and threats to water quality by runoff of fertilizers, pesticides, 
and sediment transport. Field sampling procedures and roadside surveys provide only 
rough estimates. In this context, Landsat satellite imagery provides an effective strategy 
for tillage assessment.

Tillage intensity can be characterized by the fraction of soil surface covered by crop 
residue. The Conservation Technology Information Center (CTIC) defined the follow-
ing categories of tillage, based on the crop residue cover on the soil surface shortly after 
planting: conventional tillage has <15% residue cover; reduced tillage has 15–30% resi-

 FIGURE 17.20  Example of inten-

sive tillage, less than 30% residue cover 

remaining in the field after planting. Iowa, 

May 2017. Photograph by Michael Gra-

ham. Used by permission.

 FIGURE 17.21  Example of con-

servation tillage; more than 30% resi-

due cover remains after planting (in this 

example, strip- tillage). Iowa, May 2017. 

Photograph by Michael Graham. Used by 

permission.
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due cover; conservation tillage has >30% residue cover (Claassen et al., 2018). Assess-
ment of tillage intensity includes visual assessment, field measurements, agricultural cen-
sus, and remote sensing.

The standard technique to characterize tillage intensity used by the USDA’s National 
Resources Conservation Service is the line-point transect method. For a specific field, 
a 15- to 30-m line with 100 evenly spaced markers is positioned diagonally across crop 
rows. Field crews count points where the line intersects crop residue. The effectiveness of 
the line-point transect method depends on the length of the line, the number of points per 
line, and the skill of the observer. At least 500 points must be observed to determine corn 
residue cover to within 15% of the mean (Laflen et al., 1981). Significant modifications 
to the line-point transect method include use of measuring tapes, meter sticks, and wheels 
with pointers (Morrison et al., 1993).

Although aerial imagery, properly timed and collected at suitable resolutions, offers 
the capability to assess soil tillage status, the broad-scale surveys require areal coverage, 
revisit capabilities, and spectral channels that are, as a practical matter, available only 
through satellite observation.

By the 1980s, agronomists recognized the potential of satellite imagery for broad-
scale survey of tillage practices, but it required several decades to define an effective strat-
egy (outlined below) for use of satellite imagery. Here we outline the two main classes of 
satellite systems offering potential for routine broad-scale tillage assessment:

1. Optical remote sensing (visible, near- infrared, and mid- infrared imaging sensors)
2. Microwave remote sensing (SAR, Chapter 8)

Practitioners of remote sensing have proposed a variety of multispectral indices tai-
lored to identify the presence of crop debris at the soil surface. As an example, the nor-
malized difference tillage index (NDTI) (van Deventer et al., 1997) is defined as:

NDTI = TM5 – TM7 (EQ. 17.1)
TM5 + TM7

Thematic Mapper spectral bands are not optimized to separate crop residues from 
soil background, so many studies have been done to evaluate the effectiveness of such 
indices. Whereas the normalized difference vegetation index (NDVI) and related veg-
etation indices can exploit the sharp contrast in brightness of vegetation in the red and 
near- infrared regions, there is no such dramatic contrast between crop debris and the soil 
background. Moreover, the contrast that does exist decreases as crop debris weathers 
and decomposes, so the effectiveness of tillage indices varies regionally in part because of 
variations in the color and brightness of the soil background. A variety of other measures 
have been proposed, some of which use other sensors; Serbin et al. (2009), Sullivan et al. 
(2008a), Arsenault and Bonn (2005), and Daughtry et al. (2005) review many of these 
indices.

The effectiveness of tillage assessment depends not only on the tillage index, but also 
on the timing of the acquisition of the imagery (Zheng et al., 2012) Accurate assessment 
of tillage status requires a sequence of images acquired late in the spring, when crop resi-
due is still present, but before the new crop has emerged to mask residue cover (Figure 
17.22). Zheng et al. (2012) demonstrated that a single “snapshot” Landsat image is inad-
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equate to record tillage status because of the wide variety of planting dates encountered 
within even a small area. A single image will record only a fraction of the fields needed 
to assess tillage status for a region. Thus, assessment of tillage status requires a sequence 
of images acquired at the beginning of the growing season. This task can be challenging 
because of the difficulty of acquiring several cloud-free images within the rather narrow 
temporal window available to assess tillage status.

At the time of this writing, the current availability of Landsat 8, Sentinel-2a, and Sen-
tinel-2b imagery (Chapter 7) should, with their compatible orbits, similar spectral chan-
nels, and coordinated revisit intervals, improve practical application of the NDTI tillage 
assessment strategy, as opportunities for acquiring cloud-free sequences will increase. 
Such developments will greatly improve our ability to assess tillage in regions where 
agriculture is characterized by large fields, monoculture (single crops within fields), and 
favorable cloud cover (such as North America, Central Asia, China, Argentina, South 
Africa, and Australia). In other regions, especially in tropical zones, cloud cover presents 
a serious obstacle to acquisition of the sequential imagery mentioned above; field sizes are 
often smaller or irregularly shaped, and crops can be planted at intervals throughout the 
growing season and intermixed within fields.

17.12 USDA CROPLAND DATA LAYER

In 1997, the USDA began systematic preparation of the Cropland Data Layer (CDL), 
which includes site- specific inventories of U.S. croplands for the 48 contiguous states 
(Johnson and Mueller, 2010). The USDA’s National Agricultural Statistics Service (NASS) 
has responsibility for preparing the survey each year, with each year’s results released in 
January of the following year. USDA’s analysts generate the CDL through analysis of 
moderate- resolution satellite imagery, supported by field validation and organized as a 

 FIGURE 17.22  Remote sensing of tillage status derived from Landsat 5 and Landsat 7. Left: 

Marshall County, Iowa. Right: Champaign County, Illinois. Darker shades of green symbolize fields 

characterized by conservation tillage. Lighter shades of green symbolize fields characterized by con-

ventional tillage. Tillage status based on methods and validation as reported by Zheng et al. (2013a). 

From Baojuan Zheng. Used by permission.
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raster at 30-m detail (note that earlier versions were at 56-m resolution), using the Albers 
Equal-Area Conic projection (Figure 17.23).

Analysts identify croplands on a field-by-field basis, based on local agricultural cal-
endars, satellite imagery, and field verification, supplemented by comparable imagery 
from similar systems when cloud cover masks the use of primary imagery. The CDL 
program began in 2006 and initially focused on five states in the central United States 
(Iowa, Arkansas, Illinois, Indiana, and North Dakota). Then, as analytical techniques 
were refined and validated, its scope was expanded. By about 2010, all 48 contiguous 
U.S. states were included.

The CDL’s ability to provide national, regional, and state-level maps reveals the over-
all pattern of agricultural activities, providing valuable insight into agricultural systems. 
At finer scales, such as the county- level detail of the central plains, field sizes are large 
enough that cropping patterns and, over time, changes in cropping patterns, are distinct. 
The basic CDL product is displayed online as the NASS CropScape tool (https://nassgeo-
data.gmu.edu/CropScape), which provides users with the ability to roam, magnify, and 
select data for a specific calendar year.

17.13 BIOPHYSICAL DIMENSIONS  
OF AGRICULTURAL REMOTE SENSING

The discussion on the biophysical measure of vegetation cover in Chapter 16 is obviously 
relevant for agriculture. The three common biophysical measures discussed previously (i.e., 
vegetation fraction, leaf area index, and net primary production) are widely used to moni-
tor crop cover, condition, and productivity. The vegetation indices introduced in Chap-
ter 16 (simple ratio, NDVI, moisture stress index, normalized difference moisture index), 
among others, are widely used for agricultural monitoring. Numerous other indices are 
useful for agriculture but were not discussed in Chapter 16. We discuss two additional 
indices below which incorporate information about the soil.

 FIGURE 17.23  Segment of USDA Cropland Data Layer, Garden City, Finney County, Kansas, 

2014. This region is characterized by a variety of crops and agricultural practices, including center- 

pivot irrigation, ditch irrigation, and dryland farming. From USDA.
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When assessing large areas, the pixel resolution of satellites often results in a mix of 
vegetation reflectance with that of the soil surface. Furthermore, in agricultural scenes, 
reflection from individual plants or rows of plants is closely intermingled with bare soil 
between plants and between rows of plants, such that reflectance is mixed, even at the 
finest resolutions. Such mixing is especially important after plants have emerged because 
large proportions of soil are exposed to the sensor.

We can examine the relationship between vegetation and soil, based on their reflec-
tance in red and NIR wavelengths (Figure 17.24). Dry soils tend to be bright in both 
spectral regions and appear at the high end of the line (C); wet soils tend to have dark 
colors and are positioned at the low end (B). Richardson and Wiegand (1977) defined this 
relationship, known as the soil brightness line, and recognized that the spectral response 
of living vegetation will always have a consistent relationship to the line. Soils typically 
have high or modest responses in the red and infrared regions, whereas living vegetation 
must display low values in the red (due to the absorption spectra of chlorophyll) and high 
values in the near infrared (due to infrared [IR] brightness of mesophyll tissue).

Points representing a “pure” vegetation response will be positioned in the upper left 
of Figure 17.24, where values on the red axis are low and those on the IR axis are high. 
Furthermore, Richardson and Wiegand (1977) defined an index to portray the relative 
magnitudes of soil background and vegetative cover to a given spectral response. Point 
X typifies a “pure” vegetation pixel, with a spectral response determined by vegetation 
alone and with no spectral contribution from the soil surface. In contrast, point Y typifies 
a response from a partially vegetated pixel; it is brighter in the red and darker in the near 
infrared than is X. Richardson and Wiegand quantified this difference by defining the 
perpendicular vegetation index (PVI) as a measure of the distance of a pixel (in spectral 
data space) from the soil brightness line. The PVI is simply a Euclidean distance measure 
similar to those discussed in earlier chapters:

 2 2PVI  R R IR IRIR
S V S V  (EQ. 17.2)

where S is the soil reflectance, V is the vegetation reflectance, subscript R represents red 
radiation, and subscript IR represents near- infrared radiation.

In practice, the analyst must identify pixels known to be composed of bare soil to 
identify the local soil brightness line and pixels known to be fully covered by vegetation 
to identify the local value for full vegetative cover (point X in Figure 17.24). Then, inter-

 FIGURE 17.24  Perpendicular vegetation index. Based 

on Richardson and Weigand (1977, p.  1547). Copyright © 

1977 the American Society for Photogrammetry and Remote 

Sensing. Used by permission.
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mediate values of PVI indicate the contributions of soil and vegetation to the spectral 
response. The soil line has been used to indicate soils that are free of vegetation at the 
time that the image was acquired and to separate partially vegetated pixels from those 
that have complete vegetative cover. The position of any specific pixel on the soil line is 
likely determined by the nature of the soil surface, to include soil properties (physical 
and chemical), roughness, and moisture status (Baret, Jacquemond, and Hancoq, 1993). 
Because such properties can be transient, it is not likely that a single soil line can precisely 
represent all soils.

Baret et al. (1993) investigated the soil brightness line from both experimental and 
theoretical perspectives. They concluded that the theoretical basis for the soil brightness 
line is sound, although the effects of variations in soil moisture and surface roughness are 
still not well understood. Baret et al.’s experimental data revealed that it is not feasible to 
define a single, universally applicable soil brightness line, as local variations in soil types 
lead to spectral variations. However, these variations were found to be minor in the red 
and infrared regions. They concluded that the use of a single soil brightness line is a rea-
sonable approximation, especially in the context of analysis of coarse- resolution satellite 
data. Nanni and Dematte (2006) and Ladoni et al. (2009) provide reviews of research on 
these topics.

Soil- Adjusted Vegetation Index (SAVI). In regions where vegetative cover is sparse 
enough to expose soil surfaces (e.g., <40%), reflectance of red and near- infrared light can 
affect NDVI values. This effect can be problematic when the goal is to compare differing 
surfaces, because altered brightness can distort NDVI values. Thus, SAVI was specifi-
cally developed to adjust for the effects of soil brightness when vegetative cover is sparse 
(Huete, 1988):

SAVI = (NIR – RED)  (1 + L) (EQ. 17.3)
(NIR + RED + L)

where NIR is the reflectance value of the near- infrared band, RED is reflectance of the 
red band, and L is the soil brightness correction factor. The value of L varies by the 
amount or cover of green vegetation: in highly vegetated situations, L = 0, and SAVI = 
NDVI. In areas without green vegetation, L = 1. Generally, an L = 0.5 works well in most 
situations and is the default value.

17.14 PRECISION AGRICULTURE

Previous sections have introduced aerial observations of terrain and agricultural land-
scapes, offering opportunities to examine important regions at varied scales and per-
spectives. Here, we introduce unmanned aerial systems (UAS), often known as drones— 
basically, aircraft operated without pilots or passengers, guided by experienced controllers 
at ground level, within range of the instrument. In the United States, the Federal Aviation 
Administration (FAA) publishes requirements for drone operations, requiring that pilots 
pass an examination, register aircraft, and carefully follow restrictions. Examples of 
applications include aerial photography, agriculture, forestry, construction, monitoring 
traffic, and forest fires. For the most part, we should think of drone imagery as character-
ized by rather small or modest features.
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Drones are widely used in the United States, Canada, and most other countries to 
varying degrees, most specifically for optimizing agricultural operations, improving crop 
production, and monitoring crop status. Drones can therefore empower farmers to exam-
ine fields without direct on-site observation, enhancing crop yields and efficiency. Fur-
thermore, aerial views acquired by drones can monitor agricultural production, such as 
irrigation, diseases, soil variation, pests, fungal infestations, and related characteristics.

In this context, we should think of UAS imagery as tailored to observe small or 
modest- sized features. So, whereas aerial and satellite systems may observe very broad 
regions, perhaps many miles in size, drone operations focus on observing small fields. 
Such fields enable farmers to observe fine detail, and to frequently monitor crops. Drones 
recording detail (sometimes known as “agricultural drones”) enable farmers to exam-
ine locations without on-site investigation, for example, storm damage, local flooding, 
and infestation. Because healthy plants often reflect light differently than do less vibrant 
plants, some forms of light might enable farmers to recognize nutrient deficiencies and 
perhaps to detect diseases.

Furthermore, we note that farmers can tailor selected crops to isolate specific rows 
or regions to meet local requirements. As a practical matter, UASs (drones) can apply low- 
altitude aerial imagery to monitor the progress of small crops such as corn, soybeans, and 
varied forms of small grains. Drones can often be effective in observing crop development, 
especially when crops such as soybeans, corn, or small-grain crops are considered. In con-
trast, other crops, especially tobacco, can be difficult to monitor because of the exposed 
soil present between crop rows. In this context, we note the effectiveness of Austin Hayes’s 
drone research, which focuses on the effects of tobacco canopies on masking vegetation 
canopies (Figure 17.25). Tobacco crops often present exposed soil surfaces such that gen-
erally low- flight altitudes of drones can expose soils dominating aerial views.

Figure 17.25 presents aerial views of crops, specifically the right-hand view of 
graphics in Figure 17.25. Here, the image in the lower right corner presents a detailed 

 FIGURE 17.25  Unmanned aerial vehicle systems in support of agricultural management. Note 

the within- row detail and variation made possible with the high spatial resolution of this system. Pho-

tographs by Austin Hayes. Used by permission.
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illustration of the agricultural landscape, outlined to highlight the area marked to iden-
tify precise areas to be analyzed, separating key targets (inside the black stripes) from the 
broader regions of the range background of the larger region.

17.15 REMOTE SENSING OF PLANT PATHOLOGY

The Disease Triangle

Plant pathology is the study of plant diseases and their occurrence. Plant pathologists 
study the biochemistry and biology of pathogens and the plants they infect to understand 
the life cycle of the pathogens and the means by which they infect hosts. Plant patholo-
gists counter the effects of pathogens by proposing management techniques, designing 
pesticides, and recommending countermeasures to minimize the effects of the disease and 
to prevent or slow its spread to other regions.

A few well-known examples can remind us of the significance of plant diseases. Dur-
ing 1846–1850, the Irish potato famine killed at least one million Irish citizens, caused 
immense social disruption, and created emigration that itself influenced social systems in 
the United States and elsewhere. In the United States, Dutch elm disease and the chest-
nut blight have destroyed trees that once constituted North America’s most distinctive 
and beautiful trees. Specifically, the decline of the American chestnut tree changed the 
ecology of large regions of Appalachian forests. The tree once constituted perhaps one- 
fourth of the trees of the Appalachian forests and provided food for both humans and 
wildlife. Both tree species exist now only as isolated remnants. Often such catastrophes 
are closely connected to human behavior, especially through the introduction of plants 
and diseases from other regions, the tendency to depend on single crops, usually densely 
planted, and the uses of genetically uniform hybrids that may increase susceptibility to 
attacks by pathogens.

Infection depends on the co- occurrence of three interrelated factors (known as the 
disease triangle):

1. A pathogen (bacteria, viruses, fungi, mycoplasmas, nematodes)
2. A susceptible host plant (a plant’s resistance to disease)
3. Favorable environmental conditions (including temperature, wind, solar illumi-

nation, and soil)

Pathogens spread through the environment by wind, water, and soil and by biologic 
transmission, including through insects, animals, and humans.

Remote sensing offers many ways to supplement and reinforce the efforts of the 
detailed, ground- based expertise of the plant pathologist. Applications of remote sens-
ing employ the plant pathologist’s understanding of the dynamics of an infestation in its 
spatial context at the landscape level and the use of ground- based surveys to understand 
the behavior of the pathogen at the level of the plant and the cell.

Remote sensing offers the ability to conduct systematic surveys to detect mortality 
associated with diseases or declines in vegetation health and to document spread from 
one region to another and the effectiveness of countermeasures. Specifically, remote sens-
ing has been useful in the following:
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Detection of infestation; symptoms from aerial imagery
Detection of host plants, identification of crop residue and volunteer growth that 
can harbor pathogens
Phenology: understanding the onset of seasonal growth in hosts or vectors
Assessment of environmental conditions favorable for the pathogen
Spatial perspective on the occurrence and spread of the disease and monitoring of 
its spread

A few case studies can highlight some of the issues pertaining to the role of remote sens-
ing in assessing and monitoring the occurrence of plant diseases.

The Corn Blight Watch Experiment, 1971

One of the earliest applications of remote sensing to a broad-scale infestation occurred 
during the 1971 Corn Blight Watch Experiment (see Figures 17.26 and 17.27). In previ-
ous years, corn breeders had introduced varieties of maize that had been optimized for 
hybridization but that were vulnerable to specific varieties of the fungus (Bipolaris may-
dis) that causes southern corn leaf blight (SCLB).

SCLB exists in nature, mainly as a minor disease of corn. SCLB produces elongated 
brown spots on leaves and stalks during the interval from mid-June to mid- October. If 
the disease attacks before the ears have formed, crop losses can be severe. The fungus 
resides in soil and in crop debris, remains after harvest, and survives the winter season 
to infest the crops of the succeeding year. SCLB thrives in warm, moist weather, so it 
spreads easily in the summer weather of central North America. Its occurrence is very 
difficult to control.

 FIGURE 17.26  Corn Blight 

Watch Experiment flight lines. Initi-

ated in April 1971, this experiment 

evaluated the effectiveness of remote 

sensing and focused on the follow-

ing: evaluating the use of advanced 

remote sensing techniques and 

concepts; detecting development 

and spread of corn blight during 

the growing season in the Corn 

Belt region; amplifying information 

acquired by ground visits to better 

assess the current blight status and 

probable impacts on crop produc-

tion; estimating the applicability of 

these techniques to similar future sit-

uations. Orange stripes signify zones 

for photographic coverage flown at 

60,000 ft, green stripes include a 

multispectral scanner at 5,000 ft. 

From NASA (1974).
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Once the vulnerable hybrid became widely used, SCLB rose from a minor nuisance 
to a major threat to U.S. agriculture. The 1970 corn crop had declined by 15% of the 
previous crop, creating havoc in commodities markets and creating political pressures 
for agricultural officials. By the early months of 1971, seeds carrying the genetic weak-
ness had already been widely distributed to farmers throughout the continent. As the 
1971 growing season began, agricultural scientists became increasingly concerned about 
the vulnerability of the North American corn crop. Because of the widespread use of 
the vulnerable seed and the dense occurrence of maize cultivation throughout central 
North America, the right weather conditions could lead to rapid spread of the blight and 
destruction of the nation’s corn production, with ominous implications for the agricul-
tural economy and a major portion of the nation’s food production.

The Corn Blight Watch Experiment was based on the use of remotely sensed data 
to monitor the occurrence and spread of SCLB during the 1971 growing season. A series 
of flight lines was designed to assess the spread of the infection throughout the grow-
ing season. Biweekly flights collected CIR photography, as well as multispectral scanner 
data, for the principal corn- growing regions in the United States and Canada. Ground 
data were collected in coordination with the collection of aerial imagery. The sampling 
design allowed ground data to be extended to broad-scale estimates for the principal 
corn- producing regions of the United States and Canada.

Photointerpretation estimates varied in accuracy when compared against the data 
collected at ground level. Photointerpretation was effective in distinguishing between 
healthy or slight levels of infection for more severely infected fields, but was not effective 
in assessing slight or mild levels of infection. Early in the growing season, there was a 
large discrepancy between estimates of crop damage from ground- based observations and 
those derived from photointerpretation (Figure 17.27). Some difficulties were experienced 
in assessing the effects of blight when other causes influenced the health of the corn crop.

Significantly, the Corn Blight Watch Experiment is a clear example of a broad-scale 
attempt to use remote sensing as a tool to contribute to understanding the spatial behav-
ior of a plant pathogen. As globalization and concerns about bioterrorism raise aware-
ness about the possible impacts of introduced pathogens, this experiment from several 
decades past may merit examination.

 FIGURE 17.27  Results of the 1971 

Corn Blight Watch Experiment at the con-

clusion of its seasonal program, illustrat-

ing the effectiveness of remote sensing’s 

capabilities. Dark panels in this image 

signify the presence of high blight sever-

ity. The Corn Blight Watch Experiment 

was the first to apply a sound statistical 

design for broad-scale remote sensing. 

Here, the accuracy of corn identifica-

tion by remote sensing exceeded 90% 

throughout the experiment. From NASA 

(1974).



480 IV. APPLICATIONS

17.16 SUMMARY

Given the pressures on global food security, with increasing population and changing 
environmental stressors, the techniques outlined in this chapter (as well as Chapter 16) 
are an integral component of decision making for the well-being of humankind and the 
sustainability of global ecosystems. The ability to examine agriculture patterns using 
vegetation indices, combined with the synoptic view and repetitive coverage of satellite 
sensors, provides an opportunity to survey agricultural patterns and inform decision 
making at multiple scales, from the individual farm to national and global policy struc-
tures. If the information gathered by remote sensing systems can be better integrated into 
decision making and the transportation and distribution systems that are so important 
for agricultural production, there is a prospect for improvements in the effectiveness of 
food production.

 SOME TEACHING AND LEARNING RESOURCES

Additional teaching and learning resources on this topic can be viewed in the video 
series “Science for a Hungry World”:
www.nasa.gov/feature/goddard/science- for-a- hungry- world

REVIEW QUESTIONS

1. Remote sensing to monitor crop development is much more difficult than it might appear 
initially. List some of the practical problems you might encounter as you plan an experi-
ment to use satellite data to study the development of the winter wheat crop in western 
Kansas (or another crop region specified by your instructor).

2. Connecting the concepts of this chapter to those presented in Chapter 16, list some 
of the ways in which monthly phenologic information might be useful for the study of 
cropped agricultural land.

3. Why are multispectral satellites particularly well suited for studying agriculture patterns?

4. What are some ways that remote sensing could be used to study the impacts of drought 
on agriculture?
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MAJOR TOPICS TO UNDERSTAND

Silviculture

Fire

Inventory

18.1 INTRODUCTION

Forestry is “the profession embracing the science, art, and practice of creating, manag-
ing, using and conserving forests and associated resources for human benefit and in a 
sustainable manner” (Helms, 1998, p. 72). Human benefit encompasses a wide range of 
management objectives, including timber, nontimber forest products, water quality and 
yield, carbon sequestration, and biodiversity and wildlife conservation. The last objec-
tive in this list was the first historically, as the Middle English origin of the term forest 
denoted a wooded area kept for hunting (Fernow, 1907; Stevenson and Lindberg, 2017). 
This management objective remains vital today, with, as just one example, an active 
market in hunt leases.

Silviculture is the “art and science of controlling the establishment, growth, compo-
sition, health, and quality of forests and woodlands to meet the diverse needs and values 
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of landowners and society on a sustainable basis” (Helms, 1998, p. 167). More simply, 
and akin to the agriculture analog discussed in the preceding chapter, silviculture is the 
growing and cultivation of trees (Steven and Lindberg, 2017). Etymologically, silviculture 
is “wood cultivation” and agriculture is “field cultivation.”1

Forest measurements “supply the numerical data needed to make prudent manage-
ment decisions” (Burkhart, Avery, and Bullock, 2019). The fundamental unit of forest 
management is the forest stand (also known as a compartment), a contiguous group of 
trees with similar composition and growth characteristics. Forest stand mapping origi-
nated in medieval Germany (Fernow, 1907). The first stand map in the United States 
was made by Gifford Pinchot for the Biltmore Estate (Figure 18.1). A subset of a modern 
stand map for a U.S. national forest is shown as Figure 18.2. Use of remote sensing and 
related spatial data processing is a vital, near-daily, part of professional forestry practice. 
Satellite images and digital aerial photographs (from either piloted or remotely piloted 
aircraft) are used most frequently, but use of lidar data and lidar- derived products is 
becoming increasingly common.

18.2 SILVICULTURE

The range of a tree species is largely climatically driven. Recent work elucidating the 
specific climatic drivers of range for temperate trees (Körner et al., 2016) has revealed a 
“triangular interaction of inherent freezing tolerance of foliage in spring, that selects for 

1 The reader with a strong interest in forestry is encouraged to peruse modern silviculture texts such 
as Ashton and Kelty (2018) and Nyland et al. (2016) for more information than can be presented here.

 FIGURE 18.1  First stand map in the United States. From Pinchot (1893). Used by permission of 

the Forest History Society, Durham, North Carolina.
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a certain phenological control of spring flushing, which in turn truncates the length of 
the growing season, and thus, the time available for tissue maturation” (p. 1085). To sim-
plify: the tree species that could grow in a particular area is climatically driven. However, 
the actual distribution (presence at a given site) of a given temperate tree species is largely 
edaphically controlled (Walthert and Meier, 2017).

To better understand the hierarchy of silvicultural decision making, for simplicity, 
let’s start with a backyard gardening analogy. You are going to plant tomatoes but have 
to decide which varieties to plant. That decision is based in part on the soils you either 
have or (for smaller areas) choose to create combined with the prevailing climate. These 
together comprise the edaphic (“of, produced by, or influenced by the soil” per Stevenson 
and Lindberg, 2017) and climatic drivers, the abiotic environment. Once you have found 
the suitable tomato varieties for both your personal tastes and environmental constraints, 
you will usually then want to grow as many as you can—the focus of the next section.

 FIGURE 18.2  Subset of map from George Washington National Forest’s 2014 Land and 

Resource Management Plan, south half, alternative I. From United States Forest Service (2014).
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Intensive silviculture requires an understanding of genetic  environment  silvicul-
ture (G  E  S) interactions (Rubilar et al., 2018) to improve stand productivity. Recall 
from Chapter 16 that net (primary) productivity is the net production of biomass/unit 
area/unit time (also sensu Powers, 1999). Since leaves grow on trees, stand productivity 
is directly related to the available leaf area. Powers (1999, p. 273) introduced the pivotal 
concept of potential productivity, which is the site’s potential for biomass production 
when “at full carrying capacity for leaf area” (Figure 18.3). The constraints on potential 
productivity are climate, soils, and genetics. Powers (1999) further, and importantly, 
notes that each of these three factors is also mutable (through, for example, irrigation, 
fertilization, and improved growing stock; Figure 18.3), so potential productivity is not 
fixed for a given site/species. Actual current productivity, in contrast, is also directly 
related to the actual, rather than potential, leaf area for a given stand/age.

Reaching, and increasing, potential productivity is the goal of silvicultural treat-
ments. Per Rubilar et al. (2018), there are four broad categories of treatments, as follows: 
(1) managing carrying capacity (initial planting density, thinning), (2) managing radia-
tion interception (pruning, thinning), (3) reducing site limitations (bedding, release from 
competing vegetation), and (4) adding limiting resources (irrigation, fertilization).

Given that productivity, whether it be actual or potential, is directly related to leaf 
area, remote sensing applications for silvicultural decision support focus on precise esti-
mation of leaf area (usually leaf area index [LAI], Chapter 16). Potential productivity 
is established through either process- based modeling or field trials (such as twin plots) 
where it can be directly measured and/or increased (Leite da Silva et al., 2016). However, 
as noted by Reich (2012), once leaves (estimated by remotely sensed LAI) harvest light, 
they must biochemically fix carbon using the photosynthetic chemistry of the foliage 
(estimated by percent of nitrogen). If we also add the length of the growing season (esti-
mated by land surface phenology metrics, Chapter 16), almost 90% of the variance in 
productivity is explained.

In this section, we focus on estimation of LAI, not nitrogen. The reasons for this are 
fourfold. First, foliar nitrogen estimation using remote sensing requires imaging spectros-

 FIGURE 18.3  Relationship of manage-

ment intensity to site productivity: (A) man-

aging to potential productivity; (B) improving 

potential productivity. Adapted from Powers 

(1999). Image by Susmita Sen.
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copy (Martin et al., 2008), and the requisite operational satellite sensors with the appro-
priate signal- to-noise ratio and spatial resolution will likely not be available until the 
launch of the German Environmental Mapping and Analysis Program (EnMAP) hyper-
spectral satellite mission (Guanter et al., 2015), followed half a decade later by the NASA 
Surface Biology and Geology mission (National Academies of Sciences, Engineering, and 
Medicine, 2018). Second, high interband correlations in hyperspectral data require tai-
lored analytical approaches, such as partial least squares regression, which are beyond 
the scope of this book. Third, the methods by which foliar nitrogen can be estimated 
using remote sensing have focused on interspecific models; monospecific estimation accu-
racy using remote sensing may not yet be sufficient for tailored silvicultural prescriptions. 
Fourth, and most important, a stand’s “response” to increased nitrogen availability is 
often to increase total LAI (Albaugh et al., 1998) but not change foliar nitrogen percent-
ages (Mayor, Wright, and Turner, 2014).

LAI

Leaves grow trees, and LAI is how foresters quantify leaf area. Forest productivity and a 
wide range of productivity- related ecosystem goods and services are thus associated with 
remote estimation of LAI.

Passive

LAI can be estimated passively, using passive optical sensors, or actively, using either 
synthetic aperture radar (less common) or lidar (more common). Given their widespread 
availability and use, we start our discussion with optical estimation.

In Chapter 16 we introduced some important vegetation indices, including the sim-
ple ratio (SR), normalized difference moisture index (NDMI), and normalized difference 
vegetation index (NDVI). All three of these indices are linearly related to LAI before satu-
ration occurs, which varies by both index and forest composition. The reduced simple 
ratio (RSR) is also widely utilized in empirical models of LAI and has been shown to out-
perform SR in some instances, particularly in boreal forests. RSR is defined as follows:

 min

max min

SWIR1 SWIR1
RSR SR 1

SWIR1 SWIR1
 (EQ. 18.1)

where SWIR1 (shortwave infrared 1) is the reflectance from the wavelength band cen-
tered around 1.6 μm (band 6 on Landsat 8 Operational Land Imager [OLI] and band 11 
on Sentinel-2 MultiSpectral Instrument [MSI]). The minimum and maximum are defined 
as the SWIR1 values for a completely closed and completely open canopy, respectively. 
In practice, though, these are often defined as the maximum and minimum for the for-
ested area under consideration. The analyst must be careful to exclude water pixels in 
this calculation. The scene and forest specificity of the minimum and maximum SWIR1 
reflectances in RSR are both its strength and its weakness. The specificity strengthens 
local relationships with biophysical variables like LAI. However, since the RSR varies 
with local conditions (because the range in SWIR1 does), scientists and managers have 
difficulty in comparing RSR levels across space and time.

The scale of management requires remotely sensed data at a comparable scale. This, 
at a minimum, means use of the well- calibrated and radiometrically consistent moder-
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ate resolution Earth resource satellites such as Sentinel-2 MSI, Landsat 8 OLI, and the 
Satellite Pour l’Observation de la Terre (SPOT) series. High spatial resolution commer-
cial satellite data are also increasingly utilized by forest scientists and managers, albeit 
with foreknowledge of potentially reduced radiometric consistency due to different look 
angles, inherent sensor characteristics, and the like.

Ganguly et al. (2012) proposed a physically based algorithm for LAI retrieval using 
Landsat based on canopy spectral invariants theory (Huang et al., 2007) to parameter-
ize the bidirectional reflectance factor. In addition, of course, to high- quality sensor- 
observed surface reflectances (now routinely available, as noted in Chapter 11, for both 
Sentinel-2 MSI and Landsat), global application of this or similar algorithms also requires 
accurate pixel- specific land cover to be available at least annually. While the details of 
either radiative transfer or spectral invariants theory is beyond the scope of this book, it is 
likely that this or another physically based LAI retrieval algorithm will eventually be the 
basis of a higher- order LAI product, but at the time of this writing was not yet available.

Given the lack of availability of an accurate, global, physically based LAI prod-
uct, empirical modeling of LAI has dominated research and applications for decades. 
Most such efforts relate one or more vegetation indices to field- measured LAI to develop 
regionally applicable (and usually species- specific) models. The most common indices 
used are SR, NDVI, and RSR. Two examples are shown below. The first is for Norway 
spruce (Picea abies (L.) Karst.) stands in Finland (Stenberg et al., 2004):

 LAI  0.18  RSR + 1.04 (EQ. 18.2)

The second is for loblolly pine (Pinus taeda L.) stands in the southern United States 
(Blinn et al., 2019):

 LAI  0.33  SR – 0.0021 (EQ. 18.3)

Many other examples abound and are in local to regional use by practitioners.

Active

Both lidar and synthetic aperture radar data are utilized to estimate LAI. Lefsky et al. 
(1999) found that LAI could be estimated using metrics (filled canopy volume, closed gap 
volume, and number of canopy classes per unit height) derived from waveform lidar data. 
They note that after crown closure, LAI increases come from distributing leaves over a 
larger volume. The potential volume available increases with canopy height. As such, 
early studies using the more commonly available small- footprint airborne laser scanner 
data could relate height metrics directly to LAI for specific study sites. One example is the 
study by Lim et al. (2003) in which log- transformed LAI was shown to be well related to 
the log- transformed mean laser height derived from all returns.

Discrete return airbone laser scanner data enable the calculation of leaf penetration 
metrics that are biophysically related to leaf area (rather than using height as a predictor; 
Zhao and Popescu, 2009). While these are many and varied, two that stand out are the 
laser penetration index (LPI; Barilotti et al., 2005) and the above and below ratio index 
(ABRI; Sumnall et al., 2016b). There are numerous formulations of both indices, but we 
present only the original concepts here. The LPI is the ratio of the number of returns that 
hit the ground divided by the total number of returns (i.e., both those that hit vegetation 
and those that hit the ground). ABRI is defined as the ratio of the number of vegetation 
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returns divided by the number of ground returns. Importantly, if pulse energy and/or 
density are sufficient, one can partition the LAI vertically, enabling, for example, detec-
tion of competing understory vegetation (Sumnall et al., 2016a).

Synthetic aperture radar can also be used to estimate LAI. Frequencies with wave-
lengths roughly corresponding to leaf size (i.e., the X and C bands) are commonly used. 
Peduzzi et al. (2012) found that variables derived from both X-band interferometric height 
and backscatter were important for loblolly pine LAI estimation. Stankevich et al. (2017) 
were able to estimate LAI accurately and parsimoniously using Sentinel-1 (C-band) data 
through use of the relative difference polarization index (RDPI), defined as follows:

 
0

0 0
RDPI VH

VH VV

 (EQ. 18.4)

where 0
VH  and 0

VV  are backscatter coefficients (normalized radar cross sections) from 
different polarization bands and  is the degree of polarization. Unfortunately, however, 
the RDPI must be further modified using orientation information computed from the 
radar heading angle, radar incidence angle, terrain slope, and terrain aspect.

Chen et al. (2017) compared both optical and synthetic aperture radar–derived 
(SAR-derived) indices for their utility in estimating LAI in a mixed forest in Inner Mon-
golia. They found that the optically derived SR (the so- called ratio vegetation index, or 
RVI) produced the best model out of 20 compared sensors/indices. However, two SAR- 
derived indices (Figure 18.4), the radar RVI (RRVI) and the radar NDVI (RNDVI), 
computed using L-band data from ALOS PALSAR, outperformed all other indices but 
one, the atmospherically corrected vegetation index (ARVI; Kaufman and Tanré, 1992). 
These two radar vegetation indices are defined as follows:

 
0

0
RRVI HH

HV

 (EQ. 18.5) 

 
0 0

0 0
RNDVI HV HH

HV HH

 (EQ. 18.6)

 FIGURE 18.4  Relationship between LAI and (L-band) SAR- derived vegetation indices: (a) radar 

ratio vegetation index, (b) radar normalized difference vegetation index. From Chen et al. (2017).



492 IV. APPLICATIONS

where, as above, 0
HV and 0

HH  are backscatter coefficients from different polarization 
bands.

Polarimetric SAR-based estimation of forest LAI thus shows great promise and is 
effective independent of cloud occlusion. While X, C, and L bands have all been used 
to estimate LAI successfully, as noted above, seminal early work (Paloscia, 1998) high-
lighted the L band as being preferred. Thus, the NASA-ISRO SAR (NISAR), slated at the 
time of this writing for launch in 2023, will have strong potential for LAI estimation. 
Technical challenges still remain, however, and lidar or optical measurements are thus 
more routinely used by practitioners for LAI estimation.

Competing Vegetation

Control of competing vegetation is important to maximize survival and growth immedi-
ately postestablishment. This has been definitively shown for many target species, including 
birch (Hytönen and Jylhä, 2005), poplar (Böhlenius and Övergaard, 2015), oak ( Jensen and 
Löf, 2017), and Douglas fir (Roberts, Harrington, and Terry, 2005). Control of competing 
vegetation is also important for growth after the establishment phase. This, too, has been 
well demonstrated for a wide variety of target species, including loblolly pine (Lauer and 
Glover, 1999; Yin and Sedjo, 2001; Carter and Foster, 2006), Douglas fir, Eucalptus spp., 
and radiata pine (Wagner et al., 2006), and white fir and sugar pine (Zhang et al., 2017).

Competing vegetation is aptly named, since whatever site resources go to the non-
target species are not going to the target species. Specific mechanisms have been demon-
strated ecophysiologically for numerous site resources. As such, control of competing veg-
etation can lead to increased nitrogen availability (Slesak, Harrington, and Schoenholtz, 
2010), increased water availability (Vargas et al., 2018), and increased light availability 
(Hytönen and Jylhä, 2005).

Controlling competing vegetation is thus quite important, and remote sensing is 
increasingly being used to determine whether control is needed at a given stand. Effi-
cacious methods vary depending on stand composition and vertical structure. In cases 
where deciduous understory species are competing with overstory evergreens, for exam-
ple, vegetation indices can be compared across seasons to assess the amount of leaf area 
in the understory. Spring is a particularly important time (Knight et al., 2004; Blinn et 
al., 2012) since leaves start appearing on the deciduous trees while overstory evergreens 
are still at or near their leaf area minimum. In instances when the understory is also 
evergreen (such as ericaceous understory in the flatwoods of the U.S. South), winter is 
usually the best season. Peduzzi, Allen, and Wynne (2010), for example, showed a strong 
correlation between winter SR and ericaceous understory LAI in slash pine plantations.

In some instances, the competing vegetation is at or near the same vertical position 
in the canopy. In these instances (which include stand establishment and immediately 
thereafter), classification using visible, near- infrared, and shortwave infrared spectral 
bands (including vegetation indices derived therefrom) has been effective in separating 
target species from competing species (Prasad and Brooks, 1989; Knight et al., 2004) as 
long as the spatial resolution is sufficiently fine. Tree species can be separated using point 
cloud data alone (e.g., for lidar, Brandtberg, 2007) or, with better results, in combination 
with optical data (Ke, Quackenbush, and Im, 2010). Given that species are often easily 
separated using hyperspectral data (van Aardt and Wynne, 2007), the combination of 
canopy height and hyperspectral data is particularly powerful in identifying the presence 
and amount of competing vegetation (Tuominen et al., 2018).
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Keep in mind, however, that the silvicultural decision is often whether to release the 
stand (mechanically or chemically) from competing vegetation. As such, just knowing 
the relative magnitude of the competition with respect to leaf area is often sufficient. 
Approaches include seasonal vegetation index analysis (as noted above) and, increas-
ingly, vertical partitioning of leaf area using lidar data (Sumnall et al., 2016a). The latter 
is particularly efficacious, though it has been shown to be less accurate if the difference 
between the height of the target and competing vegetation is low (Korpela et al., 2008), 
including at establishment, or if the distance between the ground and vegetation height is 
low (because of discrete return lidar dead zones; Nayegandhi and Brock, 2008).

18.3 FIRE

There have been forest fires as long as there have been forests (Bowman et al., 2009), and 
humans have long influenced forest fire patterns in time and space. As of this writing, 
Australia just recorded its worst fire season (Tarabay, 2020), the rate of rainforest loss 
to fire in the Brazilian Amazon was higher than that in any year in the preceding decade 
(Kraus et al., 2019), and a reforesting Europe was primed to ignite (Sengupta, 2020). A 
warming world is lengthening the fire seasons in temperate and boreal forests (Flannigan 
et al., 2009), and the wildland- urban interface continues to expand (Intini et al., 2020). 
In the United States, the federal costs for fighting fires exceed 2 billion dollars annually 
and are by far the largest part of the U.S. Forest Service’s budget (United States Forest 
Service, 2017).

Remote sensing is vital to every aspect of wildland fire monitoring and management. 
Remote sensing is used to (1) map fuel types (groups of characteristics for both live and 
dead biomass; Arroyo, Pascual, and Manzanera, 2008), (2) conduct active fire monitor-
ing, (3) map burned areas, and (4) characterize postfire ecological effects (Lentile et al., 
2006). We focus on the first two of these in this chapter.

Fuel-Type Mapping

A fuelbed is a relatively homogeneous landscape unit with fuel characteristics that rep-
resent a distinct combustion environment (Riccardi et al., 2007; United States Forest 
Service, 2020b). Excerpts from the characteristics are shown in Table 18.1 for two dif-
ferent species and in Table 18.2 for the same species with different conditions. Remote 
sensing can be used (almost always in conjunction with field and other ancillary data) 
in three principal ways with respect to fuelbeds, as follows: (1) selection of the appropri-
ate fuelbed for a given pixel or object, (2) partial characterization of a newly identified 
fuelbed, and (3) development of new fuelbeds (e.g., Pettinari and Chuvieco, 2016).

Characterization of fuels thus requires information on structure (both horizontal 
and vertical) as well as composition. Stereo aerial photography, since it provides both 
structure and spectral information, has been long used (in concert with field data) for fuel 
characterization, acquired using both manned (Oswald et al., 1999) and unmanned (Shin 
et al., 2018; Figure 18.5) aircraft. Three- dimensional structure can also be obtained 
using airborne (Mutlu et al., 2008; Erdody and Moskal, 2010) and terrestrial (Rowell et 
al., 2020) laser scanning. In addition to aerial photography, multispectral (Mutlu et al., 
2008) and hyperspectral (Lasaponara, Lanorte, and Pignatti, 2006; Varga and Asner, 
2008) data (from air- or spaceborne sensors) can be used to determine composition.
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Active Fire Monitoring

The core principle behind active fire monitoring is that as fires get hotter, their emitted 
energy increases and the peak of their emitted energy decreases in wavelength. This is 
shown conceptually in Figure 18.6, which shows the Planck curves for a 780 K fire and 
a normal surface (280 K) not undergoing combustion. The bandwidth for the I4 band 
from the Visible Infrared Imaging Radiometer Suite (VIIRS) is shown in green. At night, 
a simple brightness temperature threshold is often used. For example, the VIIRS 375-m 
active fire detection data product (Schroeder et al., 2014) uses 320 K as the nighttime 
brightness temperature threshold (meaning any pixel hotter than that is flagged as burn-

 TABLE 18.1 Select Fuelbed Characteristics for Two Different Species

Overstory 

cover (%)

DBH 

(inches)

Overstory 

height (feet)

Primary herb. 

cover (%)

Herb. cover primary 

species

Douglas-fir forest 55 12 70 30 Polystichum munitum

Loblolly-slash 
pine plantation

90 7 70 10 Toxicodendron radicans

Note: DBH = diameter at breast height; herb. = herbaceous. Shown are Fuel Characteristics Classification 
System (FCCS) fuelbed 3, Douglas-fir forest, and fuelbed 161, Loblolly-slash pine plantation. FCCS version 3.0 
as accessed from Fire and Fuel Tools version 2.0.

 TABLE 18.2 Select Fuelbed Characteristics for the Same Species, pinus contorta
(Lodgepole Pine)

Overstory 

cover (%)

Overstory 

height (feet)

Density 

(trees/acres) DBH (inches)

21 50 5 5400 0.5

22 70 50  402 4.6

23 50 63.2  218 8.2

Note: DBH = diameter at breast height. Shown are Fuel Characteristics Classification System (FCCS) fuels 21, 
young lodgepole pine forest; 22, mature lodgepole pine forest; and 23, mature lodgepole pine forest with bark 
beetle damage. FCCS version 3.0 as accessed from Fire and Fuel Tools version 2.0.

 FIGURE 18.5  Structure from motion point cloud excerpted from the acquisition used to estimate 

forest canopy fuels (canopy cover and tree density) in a Pinus ponderosa (ponderosa pine) stand. 

The images from which the point cloud was derived were acquired using a multispectral camera on 

the SenseFly eBee fixed-wing unmanned aerial vehicle (minimum endlap and sidelap 85%, maximum 

flight altitude 120 m). From Shin et al. (2018).
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ing if the observation is cloud-free and of sufficient quality). The precursor Moderate 
Resolution Imaging Spectroradiometer (MODIS) product used 330 K as the threshold 
for a comparable portion of the electromagnetic spectrum, and the Sentinel-3 Sea and 
Land Surface Temperature Radiometer uses 326 K (with a large dynamic range specifi-
cally designed for active fire monitoring; Xu et al., 2020). False alarms can occur if the 
same threshold is used in the daytime (since the ambient surface temperature is hotter), 
so the absolute threshold is increased and an alternative flagging technique, the differ-
ence between the brightness temperatures at 4 μm and 11 μm, is also used. We note that, 
while conceptually simple, the implemented operational algorithms are complex, able to 
handle a variety of fire types, background land covers, and background temperatures. 
An example of the VIIRS 375-m active fire detection product from February 2, 2021, is 
shown as Figure 18.7.

 FIGURE 18.6  Core principle behind 

active fire monitoring illustrated using Planck 

curves for an active fire (at 780 K) and typical 

surface temperature (at 280 K). Units for the y

axis are W m–2 sr  –1 μm–1. Bandwidth of VIIRS I4 

band shown in green.

 FIGURE 18.7  Example of VIIRS active fires detected over North America on February 2, 2021.
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Even 375-m resolution is insufficient for a tactical response, however, so aircraft- 
mounted thermal sensors have long been used (since the 1960s in the United States) to 
aid firefighting. Sensor types include (1) gimbal- mounted camera ball systems (combining 
optical wavelengths via a complementary metal oxide semiconductor and the medium- 
wave infrared with a microbolometer) and (2) scanners (United States Forest Service, 
2020c). The use case is slightly different for each. Data from camera ball systems can be 
acquired using both manned and unmanned (e.g., Christensen, 2015) aircraft and have 
higher spatial resolution but typically less coverage. As such, they are particularly good 
for detecting humans and other mammals (especially for cooled sensors), spotting fires, 
and providing support for ground operations. The thermal scanners, in contrast, are 
typically flown at least 10,000 feet (3,048 m) above ground, have a high scan volume, 
provide much greater areal coverage, and are best for mapping large fires (Figure 18.8) 
or multiple fires spanning a large geographic area.

 FIGURE 18.8  Phoenix image mosaic of the King Fire (El Dorado County, California) acquired 

September 18, 2014, at or near 1:18 A.M. local time (07:18 UTC), 5 days into the 26-day fire that con-

sumed 97,717 acres (39,545 ha). Both red and black pixels indicate active fire. The Phoenix line scan-

ner has an 8-bit quantization level, two wavelength bands (one spanning 3–5 μm for fire detection and 

the other spanning 8–14 μm for background terrain temperature), and a spatial resolution of approxi-

mately 3.5 m at nadir at typical flying heights (10,000 ft above ground). Image from United States For-

est Service (2020a); fire statistics from California Department of Forestry and Fire Protection (2020).
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18.4 INVENTORY

Species Identification

Identifying trees, whether on the ground or using remotely sensed data, has always been 
critical to the practice of forestry. As Gifford Pinchot noted in 1914 (p. 18), “The trained 
Forester must know the forest as a doctor knows the human machine. First of all, he must 
be able to distinguish the different trees of which the forest is composed, for that is like 
learning to read.”

Interpretation of Species

Identification of individual plants can be accomplished by close examination of crown 
size and shape (Figure 18.9). At the edges of forested areas, the shadows of trees can form 
clues to their identification. At smaller scales, individual plants are not recognizable, 
and the interpreter or machine vision algorithm must examine patterns formed by the 
aggregate appearance of individual stands, in which individual crowns form a distinctive 
tone and texture. Identification may be relatively straightforward if stands are pure or 
are composed of only a few species that occur in consistent proportions. If many species 
are present and their proportions vary, then specific identification may not be possible, 
and the use of such broad designations as mixed deciduous forest may be necessary 
(as supported by extant classification schemes; analysts are cautioned to work carefully 
within the context of an appropriate scheme). The level of categorical specificity that can 
be achieved in a given classification scheme is scale dependent, as shown in Table 18.3.

At these smaller scales, cover types are distinguished using differences in image tone, 
image texture, site, and shadow rather than spectral differences alone. Cover classes can 
be considered as rather broad vegetation classes, based perhaps on the predominant spe-
cies present, their age, and their degree of crown closure. Thus, forest- cover-type classes 
might include aspen/mixed conifer and Douglas fir, indicating the predominant species 
without precluding the presence of others. Subclasses or secondary descriptors could 
indicate sizes of the trees, crown closure, and presence of undergrowth.

 FIGURE 18.9  Identification of individual plants by crown size and shape. Sizes and shapes of 

individual tree canopies form distinctive shadows, as do the structures and densities of the individual 

branches.
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Forest Photogrammetry

Foresters desire to identify specific stands of timber, areas of forest with uniform species 
composition, age, and density that can be treated as homogeneous units. Stands are the 
basic unit of forest management, so forest managers wish to monitor their growth over 
time to detect the effects of disease, insect damage, and fire or drought. Even when stands 
have been planted from seedlings by commercial foresters, aerial photography, by virtue 
of its map-like perspective and its wealth of environmental information, provides accu-
rate and economical information concerning the condition of the stand at a specific time.

If large-scale, high- quality images are available (preferably in stereo), it is possible 
to apply the principles of photogrammetry to measurement of factors of significance in 
forestry. In most instances, these assessments are made using algorithmic approaches 
beyond the scope of this book. We note, however, that drone- acquired structure from 
motion photogrammetry is leading to a resurgence in photogrammetrically derived forest 
measurements (e.g., Figure 18.5).

Crown Closure

One of the most important variables that contributes to estimates of stand density is 
assessment of crown closure, the proportion of the area of a stand that that is covered by 
crowns of trees. Crown closure measures the density of trees in a stand and indicates the 
degree of competition between trees as a stand matures. Because crown closure is also 
related to stand volume, it assists predictions of economic dimensions of a stand at har-
vest. Because the size of the crown of a tree is closely related to many of its physiological 
characteristics (such as its ability to conduct photosynthesis), crown closure, monitored 
over time, permits foresters to assess the growth of the forest.

Although crown closure can be measured at ground level using any of several pro-
cedures, aerial photography forms a valuable tool for assessing crown closure. It assesses 
the percentage of a stand that is covered by the crowns of the dominant and co- dominant 
species. (Crowns of understory trees are not easily resolved with photogrammetry, though 
understory trees and shrubs are often detectable using airborne laser scanning, sensu 
Gopalakrishnan et al., 2018.) Crown closure is reported as a percentage (i.e., 60%), or as 
a decimal in the form 0.6, or 0.7.

 TABLE 18.3 Examples of Cover Types

a. At small scale (1:1,000,000 to 1:50,000), cover types must be defined at coarse levels of detail 
because it will not be possible to distinguish or to delineate classes that are uniform at the species 
level:
  “evergreen forest”
  “deciduous forest”
  “chaparral”
  “mixed broadleaf forest”
  “mangrove forest”

b. At large scale (larger than about 1:20,000), cover types may be defined at fine levels of detail. 
Sometimes, when stands are very uniform, cover types can be mapped at the detail of individual 
species:
  “balsam fir”
  “shortleaf pine”
  “aspen and white birch”
  “oak–hickory forest”
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With experience, crown closure can be accurately estimated by eye, though analog 
interpretation is rare in current workflows. The use of stereo is especially effective when 
understory crowns are visible. The quality of the photography can be important, includ-
ing scale, shadows, and haze. So also can variables related to the stand, including the 
presence of irregular topography, the nature of spacing of trees, and the backgrounds of 
other vegetation.

Timber Volume Estimation

Foresters are routinely interested in estimating timber volume for a specific stand as a 
means of monitoring its growth over time, assessing management practices, and deter-
mining the amount of timber to be obtained at harvest. Volume measurement consists of 
estimates of board-foot or cubic-foot volumes to be obtained from a specific tree or, more 
often, from a specific stand. In the field, the forester measures the diameter of the tree at 
breast height (DBH) and the height of the straight section of the trunk (bole) as the two 
basic components to volume estimation.

There are many approaches to estimation of volume from measurements derived 
from aerial photographs; there can be no universally applicable relationship between 
photo measurements and timber volume, as species composition, size, age, soil, and cli-
mate vary so greatly from place to place.

Lidar Data

Chapter 9 introduced the application of laser altimetry to acquisition of data charac-
terizing vegetation structure, and we noted its clear utility to LAI estimation earlier in 
this chapter. Because lidar data directly characterize the physical structure of a forest 
(heights, crown closure, crown size, etc.), they provide an opportunity to directly assess 
the three- dimensional structure of vegetation formation in ways that are not possible 
with other sensors. As such, when available, they have for decades been “the gold stan-
dard” of remotely sensed data used for forest assessment and inventory. They form the 
remote sensing “backbone” of many corporate and national forest inventory systems 
(always in concert with high- quality, well- geolocated field measurements). Furthermore, 
as was noted earlier, lidar pulses penetrate to lower canopy layers, which is not pos-
sible using photogrammetric approaches (classical or structure from motion; Figure 
18.10). Discrete- return airborne laser scanning is by far the workhorse lidar data type 
for forestry applications, but sampling approaches using terrestrial laser scanning, drone- 
acquired lidar, and spaceborne lidars (ICESat-2, GEDI) are employed, depending on the 
forest science or management objective.

18.5 SUMMARY

Ensuring healthy forests is vital for humans and the earth system. Forests are managed 
for various uses, including commodity wood and fiber, water quality, and carbon seques-
tration. Forests remain under threat globally from conversion to agriculture and a chang-
ing climate. Remotely sensed data from both active and passive sensors provide the data 
needed for monitoring, modeling, and management. Information derived from advances 
in forest remote sensing improves decisions at the management and policy scales.
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REVIEW QUESTIONS

1. Summarize differences between classification of forests from ground observations 
versus classification from aerial images. Consider such factors as (a) the basis of the 
classification and (b) the units classified. Identify distinctions for which remote sensing is 
especially well suited and those for which it is not likely to be useful.

2. Why is LAI important for forestry?

3. Why might a forester choose to use drone-based structure from motion photogrammetry 
rather than airborne laser scanning from a manned aircraft?

4. What effect will shadows have on the optical assessments of LAI?

 FIGURE 18.10  Normalized lidar point cloud (also shown as Figure 9.9) captures the whole for-

est structure, from ground level (dark blue) to the very top of the canopy (red). The photogrammetric 

point cloud (black; new to this figure) depicts the upper to midstory canopy, but it is unable to detect 

the ground. The lidar is sourced from the National Ecological Observatory Network Mountain Lake 

Biological Station. The photogrammetric point cloud is sourced from the National Agriculture Imagery 

Program. Both data sets were acquired in 2018. Area is approximately 1410 sq m. From Elizabeth M. 

Prior. Used by permission.
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5. Why is detection of forest fires more challenging in daytime than at night? If you have to 
implement a daytime acquisition, what thermal bands will be needed to improve detec-
tion?

6. Why has lidar data become so important for forestry applications of remote sensing?
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19.1 INTRODUCTION

This chapter addresses applications of remote sensing in the earth sciences, broadly 
defined to include geology, geomorphology, soil science, and related topics. Despite their 
many differences, these disciplines share a common focus on the Earth’s shape and struc-
ture and the nature of the soils and sediments at its surface. Applications of remote 
sensing in the earth sciences can be challenging because the subjects of investigation are 
geologic structures, soil horizons, and other features entirely or partially hidden beneath 
the Earth’s surface. Remote sensing cannot provide direct firsthand observation of these 
features, but rather gives an overhead perspective that provides the context for firsthand 
observations and allows for inference of certain characteristics. Furthermore, interpre-
tations of geoscience information are frequently based on subtle distinctions in tone, 
texture, and spectral response. Even direct examination of many geologic and pedologic 
materials is subject to error and controversy, so it should be no surprise that applications 
of remote sensing in these fields can be equally difficult.

Remote sensing offers the ability to observe reflectance and emittance over a range 
of wavelengths, opening opportunities to study subjects that would not otherwise be 
possible. The synoptic view of satellite images provides broad-scale perspectives of pat-
terns that are not normally discernible by ground observation. Furthermore, the ability 
of sequential imagery to record seasonal changes or the impacts of events (such as land-
slides, fires, and floods) also allows geoscientists to record and analyze them before their 
character is altered by subsequent events.

Finally, although remotely sensed images cannot replace field and laboratory studies, 
they can form valuable supplements to more traditional methods and sometimes provide 
information and perspectives that are not otherwise available.

Historical Context for Aerial Imagery  
on the Earth Sciences

Aerial imagery assumed an early role in the development and adoption of aerial observa-
tion for understanding terrain, physiography, and geomorphic systems. As mentioned in 
previous chapters, the airplane and camera initially existed as separate, largely unrelated, 
technologies that were integrated only with considerable effort. World War I formed 
the context for effective aerial observation, mainly through rapid experimentation and 
innovation to improve its effectiveness for understanding the battlefield. The firsthand 
experience of pilots and observers drove the rapid innovation in aerial observation, aerial 
photography, and accurate interpretation of aerial imagery.

As World War I concluded, aerial photography began its transformation from status 
as a military implement to a practical scientific tool for examining soils, geological fea-
tures, coastlines, and river systems. In the interwar years, publications regarding aerial 
photography focused mainly on the practicalities of aviation equipment. Lee’s (1922) 
outline of aerial photography’s potential for civil applications forms a notable landmark 
in the documentation of aerial photography’s role in acquiring data to investigate both 
social and physical systems.

By the late 1930s, use of aerial photography for geological inquiry was visible through 
development of aerial cameras, aircraft, and supporting services. Geologists recognized 
the value of aerial observation for teaching earth sciences, developing instruction in the 
fundamentals of earth science (including streams, wind, waves, and glaciers).
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As World War II began, the belligerents developed training materials that may be 
considered the precursors of instructional materials, handbooks, and reference works for 
instruction in quantitative measurements and recognition of enemy vehicles, weapons, 
and infrastructure. In the United States especially, experienced pilots and photoanalysts 
were in a position to apply their experience in civil society. Authors such as Ray (1960) 
and Simpson (1966) prepared texts and reference materials that introduced civil society 
to the practical value of aerial imagery. Bauer (2004) considered geomorphology as based 
on landform description and classification, supported by the availability of remote sens-
ing imagery to assess the following:

1. Placement of landforms and surface features
2. Land surface elevation
3. Land surface composition
4. Subsurface characterization

Millington and Townshend (1987) focused on the role of satellite remote sensing as a 
source of topographic data, and the value of advances in geomorphological inquiry. Smith 
and Pain (2009) amended Millington and Townshend’s schematic diagram to provide a 
more current graphic (Figure 19.1). They noted that advances in geomorphological inquiry 
had progressed because of the availability of new technologies, specifically (1) the increas-
ing availability of digital elevation models and (2) the introduction of hyperspectral imag-
ing, radiometrics, and electromagnetics. Remote sensing also began to offer improved 
capacities in terms of close-range (<200 m) techniques for very high- resolution imagery.

19.2 PHOTOGEOLOGY

Geologists study many aspects of the Earth’s surface in an effort to understand its struc-
ture, to guide the search for minerals and fuels, and to assess geologic hazards. Remote 
sensing contributes to several dimensions of the geological sciences by providing infor-
mation concerning lithology, structure, and vegetation patterns. Lithology refers to the 
fundamental physical and chemical properties of rocks, including, for example, the gross 
distinctions between sedimentary, igneous, and metamorphic rocks. Structure defines 
the kinds of deformation experienced by rocks, including folding, fracturing, and fault-
ing. Geobotanical studies focus on relationships between plant cover at the Earth’s sur-
face and the lithology of underlying rocks.

Photogeology is the derivation of geological information from interpretation of aerial 
photography, originating early in the development of aerial photo interpretation. Many 
of its basic techniques were developed in the 1920s, and then refined and applied into the 
1950s and 1960s, when they approached the limits of their capabilities, to be assimilated 
into newly developing research in geological remote sensing (Ray, 1960). Today, photoge-
ology is routinely applied to good effect. However, because aerial photographs now form 
only one of many forms of aerial imagery routinely available to geologists, most research 
and innovation is now likely to occur in the broader context of geological remote sensing.

The practice of photogeology is based on direct application of principles of image 
interpretation (Chapter 6) to geological problems. Image texture, size, shape, tone, and 
shadow all continue to have special significance for the geologist’s view of terrain. Like-
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wise, the principles of photogrammetry (Chapter 4) have special applications in the con-
text of photogeology for calculating the thicknesses of beds and determining strike and 
dip from aerial photography. Such measurements provide the capability to derive struc-
tural information from aerial images.

19.3 GALISTEO CREEK, NEW MEXICO

Remotely sensed images can provide valuable information about structure and terrain, 
especially if stereoscopic views are available. As an illustration, Figure 19.2 presents a 
stereo image of an arid landscape in New Mexico (near Galisteo Creek), characterized by 
a history of tectonic activity and related volcanic events. This landscape, positioned east 
of the Rio Grande between Santa Fe and Albuquerque, experienced extensive volcanism 
during the Quaternary and late Tertiary.

 FIGURE 19.1  Changing relationships between spatial and temporal scales as they apply to 

applications of remotely sensed data for geomorphic analysis. Dashed lines represent thresholds 

they reported in 1987. Red lines signify current thresholds depicting the expansion of data archives in 

recent years and improved resolution and data- handling capabilities. From M. J. Smith and C. F. Pain. 

Used by permission of SAGE.
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Our image was acquired in 1954. (Recent photographs of this region are available 
using imagery displayed by Google Earth [35° 29.71212  N, 105° 9.228  W]). The fol-
lowing paragraphs highlight some of the distinctive landscape features of this region, 
illustrating the value of the aerial perspective in understanding the geospatial landscape. 
Figure 19.3 provides an annotated version of the image, marked to label distinctive fea-
tures discussed below.

A. Hogbacks: These features, known as hogbacks (i.e., resistant strata upended to 
form steeped- sided ridges with jagged crests) are characterized by resistant sand-
stones forming the jagged ridges, with less resistant shales eroded to form inter-
vening valleys. Figure 19.4 presents a ground view of the hogbacks, taken from a 
position near the center lower edge of Figure 19.3 (south of the site of the yellow 
“A”).

B. Volcanic dikes: These photographs also show evidence of the volcanism that has 
shaped this landscape. Volcanic dikes cut across established topography as nar-
row, pronounced, steep-sided ridges. Notice that, in Figure 19.3, these dikes cut 
across north–south- oriented ridges, confirming the recent age of the volcanism 
relative to the other structures.

C. Braided streams: Braided streams, a common feature of arid regions, are charac-
terized by varied flow, alternating between a mainly dry riverbed, with minimal 
flow, and in contrast, high, rapidly flowing currents that can transport large 
amounts of sediment, coarser stones, and gravels.

D. Bajada: A bajada is a broad slope of alluvial material at the foot of an escarp-

 FIGURE 19.2  Stereo aerial photography of the terrain near Galisteo Creek region, north central 

New Mexico (35° 29.71212  N, 105° 9.228  W). From U.S. Geological Survey (USGS) and Army Map 

Service.
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 FIGURE 19.3  Annotated aerial photography of the terrain near Galisteo Creek, New Mexico, 

1954, labeled to identify some of the distinctive landforms of this region. Explanations of the labels are 

found in the text. From USGS and Army Map.

 FIGURE 19.4  Ground- level photograph of terrain near the Galisteo Creek region, looking north-

ward across the creek toward the hogback visible in the lower center of Figures 19.2 and 19.3. Gali-

steo Creek (a braided stream) is visible in the foreground, flowing from right to left (at low flow stage). 

The cinder cone marked as “G” in Figure 19.3. is recognizable as the tiny feature visible at the right-

hand horizon. From Photographic Library, USGS. Photograph by W. T. Lee.
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ment, formed in this example by transport of alluvial sediment weathered from 
the mesa, and eroded sediment transported from the canyon, as marked as “H.”

E. Mesa cliffs: A mesa is an elevated, flat- topped landform, with steep, cliff-like 
sides, and with an upper, highly resistant, flat surface. Viewed in stereo, the 
resistant character of the basaltic surface is evident from its sharp relief and the 
precipitous cliffs at its margins. The cliffs are distinctive for their abrupt, sharp, 
edges. As viewed in stereo, the thick, rigid, character of the basaltic surface is 
evident. Below, it is clear that lower strata have been subject to weathering and 
fracturing, undermining the stronger basalt, leading to collapse of large basaltic 
blocks (barely) visible at the base of the cliff. (See the markers near the tips of 
arrows marked at “E” in Figure 19.3.)

F. Mesa surface: The basaltic mesa surface, as viewed on the aerial photograph, 
has a distinctive appearance, even in tone, slightly rough in texture, and with a 
puffy appearance when viewed in stereo. “F” marks one of several stabilized lava 
flows (created where the movement of molten cooled to freeze in place). Note 
that the mesa surface is characterized by several such features, not all of which 
are immediately recognizable. Using Google Earth, we can view where the flow 
of the mesa’s sediment has covered some of the north–south- oriented sediments, 
indicating the recent origins of the mesa relative to underlying sediments.

G. Cinder cone: More or less at the center right of the mesa (marked as “G” in Fig-
ure 19.3) is a cinder cone, a remnant from events that released the flow of lava, 
creating the cinder cone and the discharge of lava over the mesa surface.

H. Canyon: Deep channels such as this can provide protection from intense heat and 
have a reliable supply of water. Downstream, the water is used for crops.

At the base of the cliff, the aerial photograph shows contrasting textures of a thick 
sheet of stone, sand, and gravel, shaped by fluvial processes that transport geologic debris 
across the slope at the base of the cliff toward the stream flowing right to left across the 
photograph. This stream has maintained its course across the hogbacks as they were 
formed, carving a distinct V- shaped notch through the right-hand ridge. As the stream 
passes through the notch, it enters a terrain formed by erosion of shales exposed at the 
surface. Here, surface erosion is much more effective than on the surfaces of the basaltic 
flows, for example, and the topography is much more disorganized and chaotic relative 
to the surface visible on the left-hand side of the image.

Although discussion of this example is necessarily quite brief, it illustrates the power 
of aerial imagery to provide information and insight to the Earth scientist, both to derive 
new information and to organize and interpret information already at hand. Subsequent 
sections explore some other dimensions of photogeology and the value of remotely sensed 
imagery for the earth sciences.

19.4 DRAINAGE PATTERNS

Drainage patterns are often the most clearly visible features on remotely sensed imag-
ery, and they are also among the most informative indicators of surface materials and 
processes. The character of drainage patterns permits geologists to infer valuable infor-
mation about the surface materials and the geologic structure that prevail for a specific 
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landscape (Figures 19.5 and 19.6). Drainage patterns as observed in nature may display 
characteristics of two or more of these patterns, so they may not match precisely to illus-
trations used to describe them.

A common drainage pattern is characterized by even branching of tributaries, simi-
lar to patterns of veins on an oak or maple leaf—a dendritic drainage pattern. Dendritic 
patterns suggest uniformly resistant surface materials, gentle regional slopes, and the 
absence of major faults or structural systems. Parallel drainage is also found on uniform 
materials, but typically on landscapes that have pronounced regional slopes. Parallel 
drainage resembles the dendritic pattern but is recognizable by its elongated form derived 
from the increased typographic slope. In fact, many transitional forms fall between these 
two forms.

If a landscape has been uplifted by tectonic forces or if base level has been lowered 
(e.g., by a decline in sea level), then streams may become entrenched, or incised, into the 
landscape such that their channels are cut well below the surface of the surrounding land-
scape. The nature of the incision can reveal the character of the bedrock— sharp, deep, 
well- defined edges suggest the presence of strong, cohesive surface materials. More gently 
sloping terrain near the channel suggests the presence of less cohesive, weaker strata.

If the landscape is characterized by linear structural or lithologic features, drainage 
often develops to form a trellis pattern. Tributaries often follow the strike of the struc-
ture, whereas the main streams cut across the principal structures. Therefore, tributaries 
join main streams at right angles to form a system in which the main streams and the 
tributaries are oriented perpendicular to each other. When a landscape is dominated by a 
large central peak, the drainage system is organized to drain water away from the central 
upland, forming a radial pattern.

When landscapes are disturbed by broad-scale processes such as glaciation, faulting, 
surface mining, or volcanic deposition, often buried or disturbed drainage systems are 
established. Such landscapes form incoherent drainage systems— lakes and marshes con-
nected by a confused, chaotic system of streams without the organized stream patterns 
that we expect to encounter in most regions. As time passes, erosion and deposition will 
reestablish the familiar stream networks, but in the meantime, the drainage system will 
be chaotic and disorganized.

Finally, braided streams have several channels that divide and rejoin, separated by 
ephemeral bars and islands. Braided streams are often found in locales that have vari-
able stream discharge, such as those of arid regions, or are supplied by glacial meltwater 
(which may have uneven discharge) and high sediment loads. Their appearance is usually 
quite distinctive— a wide, sparsely vegetated strip of open sand or gravel, with a network 
of ephemeral, anastomosing channels and elongated bars and islands.

Closer inspection of details of the drainage system can reveal specifics of the textures 
of the surface materials. Steep slopes are characteristic of coarse, loose, surface mate-
rials. Noticeably flat, rounded slopes may indicate cohesive, plastic surface materials. 
The absence of surface drainage or a very simple drainage pattern often indicates well- 
drained pervious soil. Highly integrated drainage patterns often indicate impervious, 
plastic sediments that lose their strength when wet.

The shape of the cross section of a drainage way is controlled largely by the cohesive-
ness of surface materials. Abrupt changes in stream grade, channel direction, or its cross 
section indicate changes in the underlying bedrock or the surface materials. Generally, 
short, V- shaped gullies with steep gradients are typical of well- drained, loosely struc-
tured sediments such as coarse sands. U- shaped stream profiles indicate the presence 
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 FIGURE 19.5  Sketches of varied drainage patterns. Note that each pattern reveals, without the 

underlying topography, relief information. Image by Susmita Sen.
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 FIGURE 19.6  Aerial images of varied drainage patterns. Note that each pattern reveals the 

underlying topography. From USGS.
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of deep, uniform, silt deposits, especially the wind- deposited sediments known as loess. 
Poorly drained, fine- textured, surface materials usually form shallow drainage ways with 
shallow, rounded saucer- like profiles.

On black-and-white aerial photography, tones of surface materials can indicate the 
character of the drainage. Soft, light tones generally indicate pervious, well- drained, 
soils, often characterized by light gray, uniform color tones, a flat appearance, and a lack 
of conformity; such patterns indicate a natural surface drainage. Clays and organic soils 
frequently appear as dark gray to black. In general, a sharp change in colors or tones 
signals a change in soil texture.

19.5 LINEAMENTS

Lineaments is the name geologists give to lines or edges of presumed geologic origin, 
visible on remotely sensed images. Such features have also been referred to as linears or 
lineations, although O’Leary, Friedman, and Pohn (1976) establish lineaments as the 
preferred term. Use of the term lineament in a geological context dates to 1904 and 
apparently has even earlier analogs in other languages. These early uses, prior to the 
availability of aerial images, applied to specific geologic or geomorphic features, such as 
topographic features (ridgelines, drainage systems, or coastlines), lithologic contacts, or 
zones of fracture.

As early as the 1930s, photogeologists studied fracture patterns visible on aerial 
photographs as a means of inferring geologic structure. These photo features apparently 
corresponded rather closely to faults and fractures defined in the field. More recently, in 
the context of geological remote sensing, the term has assumed a broader meaning. Any 
linear feature visible on an aerial image can be referred to as a lineament. A problem 
arises because it is sometimes difficult to establish a clear link between the features on 
images and corresponding features, if any, on the ground.

The strength of this link depends in part on the nature of the imagery. In the instance 
of interpretations from aerial photographs and photomosaics, scales may have fine detail, 
and linear features are likely to match to features that can be confirmed in the field. 
However, more extensive and subtle features cannot be easily detected on broad-scale 
imagery. Each photograph shows only a small area; if mosaics are formed to show larger 
regions, variations in illumination and shadowing obscure more subtle lineaments that 
might extend over many photographs. Furthermore, in the era prior to routine avail-
ability of the multispectral imagery, high- altitude photographs (which can show large 
areas under uniform illumination) were not of good visual quality due to the effects of 
atmospheric scattering.

The advent of nonphotographic sensors and the availability of the broad-scale view 
of satellite images changed this situation because it then became possible to view large 
areas with images of good visual clarity. Early radar images depicted large areas illumi-
nated from a single direction at rather low- illumination angles— conditions that tended 
to increase topographic shadowing in a manner that enhanced the visibility of linear 
features (Figure 19.7). The locations of these features did not always match previously 
known faults or fractures, so the term lineament was evoked to avoid an explicit state-
ment of a geological origin. Later, similar features were again detected on Landsat Mul-
tispectral Scanner System (MSS) imagery. Initially, the detection of lineaments and the 
interpretation of their meaning generated some controversy; the broad scale and coarse 
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resolution of the early satellite imagery caused lineaments to be subtly expressed and 
difficult to relate to previously known geological features. During the intervening years, 
investigation and debate have confirmed the value of lineaments as guides to understand-
ing geologic phenomena.

Lineaments are, of course, “real” features if we consider them simply to be linear 
features detected on aerial imagery. The uncertainty arises when we attempt to judge 
their geological significance. There are sound reasons for assigning a geological meaning 
to some lineaments, even if they do not always correspond to clearly observable physical 
features at a specific point. In the simplest instances, a dip-slip fault may leave a subtle 

 FIGURE 19.7  Synthetic aperture radar (SAR) mosaic of southern Venezuela, illustrating clear 

patterns of topography and drainage. (A) Prominent linear features include lineaments, often related 

to tectonic forces. From Goodyear Aerospace. (B) Linear features alternatively highlighted by shadow-

ing and by solar illumination. Image by Susmita Sen. (C) Vegetation aligned with subsurface structure 

features can create linear surface features. Image by Susmita Sen.
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topographic feature that is visible as a linear shadow on aerial photography when illu-
minated obliquely from the elevated side (Figure 19.7). The axis of displacement for a 
dip-slip fault is along the dip of the fault plane, to create a difference in relief, as depicted 
in Figure 19.7. In the alternative instance, a strike- slip fault, the axis of the fault displace-
ment follows the strike of the fault (along the trace of the fault on the surface), creating 
fewer opportunities for surface expression. Of course, a fault that is oriented parallel to 
the direction of illumination may be indistinct or invisible. Not all faults are expressed 
topographically, but the fault plane may offer preferred avenues of movement for mois-
ture and for the growth of plant roots (Figure 19.7c). Therefore, the trace of the fault 
may be revealed by vegetation patterns, even though it may have no obvious topographic 
expression. Faults of any form can alter drainage in a manner that creates linear drainage 
segments, which are then visible on aerial images. Such features, when clearly expressed, 
may have structural origins, and it may be possible to verify their existence through field 
observations. However, more subtle features may be observable only as broad-scale fea-
tures, not easily verifiable at a given location. Such lineaments may be genuine structural 
features but not easily confirmable as such.

Linear features that are clearly of structural origin are significant because they indi-
cate zones of fracturing and faulting. It is often assumed that regions of intersection of 
lineaments of differing orientation are of special significance, as in theory they might 
identify zones of mineralization, stratigraphic traps, regions of abundant groundwater, 
or zones of structural compression. For this reason, much is often made of the orientation 
and angles of intersection of lineaments.

Other lineaments may not have structural origins. It is conceivable that some may 
be artifacts of the imaging system or of preprocessing algorithms. In Figure 19.7, note 
the numerous human-made linear features. Some linear features may be purely surface 
features, such as wind-blown sediments, that do not reflect subsurface structure (Figure 
19.8). Cultural patterns, including land cover boundaries, edges of land ownership par-
cels, and political borders, can all have linear form and can be aligned in a manner that 
creates the linear features observed on aerial images (Figure 19.7). Because these fea-
tures may not be readily distinguished from those of geologic origin, and because of the 
inconsistency of individual delineations of lineaments from the same image, lineament 
analysis has been regarded with skepticism by a significant proportion of the geological 
community (Wise, 1982).

 FIGURE 19.8  Linear surface features unrelated to geologic structure (in this example— sand 

dunes). Image by Susmita Sen.
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Because the human visual system tends to generalize, manual interpretations may 
identify continuous linear features that are later found to be formed of separate segments 
of unrelated origin. Lineaments that are found to correspond to geologic features often 
are extensions of known fault systems rather than completely new systems. Results of 
manual interpretations vary greatly from interpreter to interpreter (Podwysocki, Moik, 
and Shoup, 1975). As a result, other research has attempted to automate the interpreta-
tion of lineaments. Because detection of edges and lines has long been an important task 
in the fields of image analysis and pattern recognition, the fields of image processing and 
machine vision were well equipped with techniques to apply to this inquiry. There is a 
rich literature that has investigated procedures for enhancing images to highlight linear 
features and then has analyzed patterns to extract linear features that might be present.

Fracture Density Studies

Often, images and field data can be analyzed to assess the abundance of lineaments by 
plotting their occurrence within cells used to partition the image. Analysis of the distri-
bution and orientation of lineaments and fractures, in the context of field studies and 
other databases, can lead to assessment of groundwater or mineral potential.

Abrams et al. (1983) studied lineaments interpreted from a Landsat MSS color 
composite of a region in southwestern Arizona. Their analysis focused on the Helvetia- 
Rosemont area, known to be rich in porphyry copper. They attempted to determine 
whether their techniques would locate previously discovered mineralized zones. Paleo-
zoic limestones, quartzites, shales, and dolomites cover Precambrian granites and schists 
in the study area. The Paleozoic deposits themselves were altered by Mesozoic uplift 
and erosion, and were then covered by further deposition. The Laramide orogeny dur-
ing the late Cretaceous produced intrusion of granitic rocks with thrust faulting along 
a predominant northeast– southwest trend. This tectonic activity, together with later 
Paleocene intrusions, caused mineralization along some of the faults. Tectonic activity 
continued into the late Tertiary, producing extensive faulting and a complex pattern of 
lineaments.

Abrams et al. examined orientations of lineaments they interpreted from the Landsat 
image, and they then plotted their results in the form of a rose diagram (Figure 19.9). 
Each wedge in the circular pattern represents the number of lineaments oriented along 

 FIGURE 19.9  Strike- frequency 

diagram of lineaments for a region 

of southeastern Arizona. Features, 

such as discussed in the text, include 

(A) prominent northwest– southeast 

orientation; (B) prominent northeast– 

southwest orientation; and (C) low- 

frequency records of lineaments along 

the axis that parallels the solar beam at 

the time of image acquisition. Adapted 

from Abrams et al. (1983, p. 593) Image 

by Susmita Sen. Used by permission of 

the Society of Economic Geologists.
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specific compass azimuths. Because each lineament has two azimuths (e.g., a “north–
south” line is oriented as much to the south as it is to the north), the diagram is symmet-
ric, and some investigators prefer to show only half of the diagram.

Several features are noteworthy. First, the low numbers of lineaments oriented at 
(approximately) 110 (and 290), roughly east/ southeast to west/ northwest, correspond to 
the axis that parallels the orientation of the solar beam at the time that the Landsat 
data were acquired. The lineaments that might have this orientation will not be easily 
detected because shadowing is minimized. The northeast– southwest trend (B in Figure 
19.9) is said to represent the predominant trend of Precambrian faulting that is observed 
throughout Arizona. Superimposed over this pattern is the northwest– southeast trend 
(A) arising from faulting in the Mesozoic rocks mentioned above. Finally, the east–west 
trend (C) is interpreted as the result of the Laramide faulting known to be associated 
with the mineralization that produced the copper deposits present in this region. Abrams 
and his colleagues counted the frequencies of the lineaments in each cell of a 10-km grid 
superimposed over the image and concluded that the highest frequencies, which they 
interpreted to form favorable locations for intrusion of magmas and for mineralization, 
correspond to zones of known mineral deposits.

19.6 LIDAR’S CONTRIBUTIONS AND GEOSCIENCE INFORMATION

As described in Chapter 9, lidar (light detection and ranging) systems are based on tech-
nologies that transmit laser pulses, chiefly from airborne systems (also spaceborne, or 
ground- based vehicles) to measure distances to features on the Earth’s surface to map 
terrain, vegetation, and structures. In modified form, lidar systems can be applied for 
bathymetric mapping to examine shallow coastal waters. Generally, use of lidar systems 
is relatively expensive but can provide valuable data.

Lidar instruments can acquire coordinates of ground features with submeter accu-
racy. In geoscience applications, the principal applications of lidar include mapping of 
geomorphic surfaces, including, for example, topographic features, debris flows, glacial 
features, alluvial fans, dune fields, and lava fields, especially when they are mobile, haz-
ardous, or require frequent monitoring. Such features include flood mapping, landslides, 
debris flows, and earthquake damage.

Bathymetric lidars (designed for mapping shallow waters) are especially valuable for 
mapping submerged or emergent features. Although bathymetric lidars are ostensibly 
similar to conventional instruments, the marine environment presents numerous chal-
lenges that are not present in the conventional settings, including changing weather con-
ditions, sea state, turbidity, subsurface vegetation, and varied water clarity.

Gypsum dunes. Figure 19.10 illustrates lidar data for New Mexico’s gypsum dunes 
at White Sands National Monument, as observed by aerial photography and lidar imag-
ery. The existing dunes sediments were formed by the shallow seas of the Permian Period, 
which covered the area now recognized as White Sands. These sediments were uplifted 
to form deposits in the nearby San Andreas and Sacramento Mountains. Rain dissolved 
the gypsum deposits, which were transported into the Tularosa Basin, including shallow 
gypsum deposits now covering over 275 square miles. The prevailing southwest winds, 
combined with the processes of weathering and erosion, eventually formed the white 
dunes. Lidar and aerial photography allow for measurements of the dune structure and 
their changing shape over time.
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Lidar data depicted in Figure 19.11 displays three- dimensional information acquired 
near the town of John Day, Oregon. The vegetation canopy conceals the underlying 
topography. The lidar data reveal the underlying debris flow, and its crescent- shaped 
cavity apparently reveals its origins as a rotational slide. The two large lobes at the base 
suggest a single sudden event, probably creating the two branches in the same event.

19.7 MASS WASTING AND DEBRIS FLOWS

Mass wasting (also sometime known as mass movement) refers to geomorphic processes 
that displace downslope, by gravitation force, materials such as unconsolidated rock, 
soil, sand, and regolith. A landslide generally refers to slow to rapid displacement of rock 
or soil. Debris flows are distinctive forms of mass wasting. Whereas many of the most 
commonly recognized mass wasting events displace (for example) coherent, rigid masses 
of solid or fractured rock, debris flows displace a mixture of saturated soil and frag-
mented rock, often channelized and effective in entraining nearby unconsolidated sedi-
ments. These events often share characteristics of landslides and the flow-like movements 
associated with sudden movement of water, snow and ice, and fine- grained sediments.

Debris flows typically occur without warning and are often associated with combi-
nations of rainfall, snowmelt, landslides, or tectonic events (Ritter, Kochel, and Miller, 
2011; Summerfield, 1991). Because of their sudden occurrence and unexpected power, 

 FIGURE 19.10  Gypsum dunes, White Sands National Monument (New Mexico), as observed 

by aerial photography and lidar. (A) Aerial image. (B) Hillshaded relief display. (C) Color-coded relief 

display (red represents highest elevations). (D) Broad-scale view of the region shown in the detailed 

insets. Lidar’s detail and accuracy permit calculation of sand volume and, in the case of sequential 

imagery, measurement of rates of dune movement. From Google Earth, Open Topography. Used by 

permission.
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debris flows are especially hazardous. Here we present contrasting examples of debris 
flows that differ greatly with respect to size, age, location, and character.

The Landslide at Oso, Washington

In March 2014, the region at the south side of the Stillaguamish River in western Wash-
ington was flooded by the flow of its North Fork following prolonged rainfall. The steep 
terrain to the north of the channel failed, releasing mud and debris across the river chan-
nel to cover an area about one square mile in size. This event has been said to be the 
deadliest of its kind in U.S. history. It is often designated as the Oso Landslide in some 
official reports, or as the SR530 landslide by local jurisdictions in Snohomish County 
and Washington State. It is notable because of the amount of debris released by the event 
and the unusual speed of the failure. Forty-five days of heavy rain preceded the event, 
which damaged or destroyed 49 homes and related structures. The USGS report, Revisit-
ing the Oso Landslide (2017) provides a review of the earlier history of events at this site, 
including instability.

Figure 19.12 is an oblique aerial photograph of the Oso Landslide in northwestern 
Washington. It depicts the event from an eastern perspective, showing the entire extent of 
the landslide source area and its path shortly after the event. The landslide and sizeable 
areas of open water are flooded by river water blocked by the landslide debris, having 
destroyed numerous dwellings and supporting structures.

Remote sensing has been used to study the impact of this event, with data from 
before and after the landslide. For example, scientists from the USGS used photogram-
metry from aerial imagery to create high- resolution multiple digital elevation models (a 

 FIGURE 19.11  Lidar data of this region near John Day, Oregon, reveals a debris flow below a 

forest canopy. Photograph by the Oregon Department of Geology and Mineral Industries. Used by 

permission.
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technique referred to as structure from motion) over the flooding season after the event 
in order to quantify the erosion and sediment and assess changes in the channel over time.

Grand Mesa Debris Flow

Another major mass wasting event that can be clearly seen and monitored with remote 
sensing is the Grand Mesa debris flow, which occurred on the north- facing slope of 
Grand Mesa, Colorado, on May 25, 2014 (Figure 19.13). This was one of the largest 
recent debris flows in the United States, much larger than the Oso Landslide described 
above. Grand Mesa, at about 10,000 ft (3,048 m) above sea level and 6,000 ft (1,800 
m) above Grand Junction, is often recognized as the world’s largest mesa. Figure 19.13 
provides a good example of the types of before- and-after remote sensing analysis possible 
when a natural disturbance has a large impact on the landscape. The area impacted can 
be clearly seen and measured/monitored over time.

The left-hand image in Figure 19.13 shows the same feature as it appeared in 2011. 
Here, vegetation (and coarser- resolution photography) have concealed details of earlier 
slides, but vegetation patterns appear to suggest the presence of earlier slides at the same 
location. This area has a known history of instability, due to the underlying geology and 
the accumulation of precipitation. Google Earth historical imagery of the same region 

 FIGURE 19.12  Oblique aerial photograph showing the impact of the Oso Landslide on the sur-

rounding landscape (Snohomish County, northwest Washington, 2014). Note the areas of open water 

in the foreground, caused by flooding of the river water due to debris blocking the channel. From 

USGS. Photograph by Mark Reid.
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appears to suggest the presence of slides (although possibly not as large as those recorded 
on more recent imagery) as early as 1993, though not of the same magnitude.

Unseasonably heavy rains in early May 2014 melted local snowpack and saturated 
underlying soils. By late May, minor slope displacements were evident, increasing in mag-
nitude. By May 25 a major failure of the headwall at the crest of the Mesa was triggered 
by snowmelt and heavy rains (Figure 19.14). These conditions caused a succession of 
failures that created a series of “rock avalanches,” creating catastrophic failures over the 
2.8-mile length of the valley (Figure 19.15). This event created a slide reaching 2,300 ft 
(700 m) below the crest of Grand Mesa. The depth of the debris was reported to be 123 
ft (37 m). A series of smaller events occurred in the interval after the principal failure.

19.8 STREAM DIVERSION

This section describes a region that exhibits systematic “diversion” of stream channels 
over time. The formal meaning of “stream displacement” or “stream divergence” signi-
fies intentional human rerouting of stream channels, often to open channels for naviga-
tion, permit passage of large vessels, or control flooding. Here, the discussion refers to 
natural processes that have diverted/displaced the courses of stream systems in rather 
distinctive patterns.

The northwestern region of Virginia is characterized by rough, uneven topography 
and narrow ridges. Here, streams follow valleys with floodplains, generally support-
ing pasture, cropland, and woodlands, bordered by steep, wooded topography (Figure 
19.16). Valley floors are often positioned about 2200 ft above sea level, with neighbor-

 FIGURE 19.13  Before/after images of the West Salt Creek Rock Avalanche, May 25, 2014. A 

sudden release of saturated debris high at the Grand Mesa rim created this 2.6-mile flow. The left-

hand Google Earth Pro image shows the area in August 2011 before the slide, with vegetation cover. 

The right-hand image is about 2 years after the 2014 slide. From Landsat/Copernicus.
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ing ridgelines about 3200 ft in elevation (creating an elevation difference of about 100 ft 
from valley floor to ridgelines). Ridges and steep terrain are generally characterized by 
complex geology, as well as a history of high- intensity cyclonic storms that often linger 
over tectonic events and human disturbance on mountain slopes and modifications of 
vegetation cover.

Many of the valleys in this region have distinctive features caused by the Appalachian 
Mountain chain. Valley edges are defined by clear-cut breaks in edges characterized by 
steep terrain that rises from valley borders to ridge crests. Within the valleys, streams 
switch sharply from one side of the valley to the other, as is evident in Figure 19.17.

Inspection of local terrain indicates something of the nature of topography and 
hydrologic processes that have been driving the overall topography of this area. Figure 
19.17 (A and B) shows the abrupt traverse of stream channel from one valley side to the 
opposite side. Inspection of the channel using the terrain tools in Google Earth Pro per-
mits definition of the catchment area (C) and the deposition zone (D). Trial-and-error 
use of the Google Earth Pro terrain tools permits definition of sediment deposits at the 
western edge of the valley. Figure 19.18 provides contours showing that there is about 
100 ft of relief from the mouth of the catchment to the shallow end of the diversion of 

 FIGURE 19.14  Oblique, southward- facing aerial photograph of the crest of the Grand Mesa, 

which failed due to snowmelt and heavy rain (see the arrow). To appreciate the scale of the failure, 

compare the gray, cliff-like failure slope with the trees visible at the base of the cliff surface. The trees 

have been backrotated, tilted toward the cliff surface. The distance from the trees to the crest of the 

cliff is estimated to be about 100 m. From Getty Images, no. 493951413. Used by permission.
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the stream course at the eastern bend of the stream. Within these valleys, the distinctive 
patterns of natural stream diversions are characteristic of stream patterns throughout 
much of this region.

The long ridges characteristic of this region are supported by erosion- resistant sand-
stones, whereas valleys are characterized by more easily eroded rocks and sediments. 
Drainage is channeled along the narrow valleys parallel to the long ridges. Ridges are 
underlain by resistant rocks, while softer rocks of the valleys to the east and west are 
underlain by more easily weathered shales and limestone. The ridges are subject to mass 
wasting similar to the Grand Mesa events discussed above, but they are more the result 
of severe storms that displace large, fragmented strata of local ridges and, in effect, dam 
the narrow valleys (Godt and Coe, 2007, and Wooten et al., 2016). Wooten et al. (2016, 
pp. 203–204) outline the overall characteristics of mass wasting events in the Southern 
Appalachian Highlands (SAH):

Debris flows, dominant among landslide processes in the SAH, are triggered when rain-
fall increases pore-water pressures in steep, soil- mantled slopes. Storms that trigger hun-
dreds of debris flows occur about every 9 years and those that generate thousands occur 
about every 25 years. Rainfall from cyclonic storms triggered hundreds to thousands of 

 FIGURE 19.15  Oblique, northward- facing aerial photograph of the debris flow caused by the 

Grand Mesa failure on May 25, 2015. The cliff in this figure is off- camera at the lower right-hand cor-

ner of the image, with the debris flow having cascaded downslope from the lower right corner toward 

the distant center. The photograph depicts the terminus of the slide just as it vanishes into the distant 

topography at the top of the image. From Getty Images, no. 493951373. Used by permission.
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 FIGURE 19.16  Stream and topographic patterns, Spring Run, northwestern Virginia (38° 8.5938  

N, 79° 50.938  W). This Google Earth Pro image illustrates the distinctive, irregular channel patterns 

within this narrow valley. From Landsat/Copernicus.

 FIGURE 19.17  Historic debris flows in northwestern Virginia (38º 3.772  N, 79º 50.143  W). A and 

B show distinctive shapes of stream patterns after diversion by debris flows. C and D show estimates 

of the catchment area (C) and the deposition zone (D) after the debris flow. Graphics by Robert Sev-

erynse. Used by permission. Google Earth Pro image from Landsat/Copernicus.
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debris flows in 1916, 1940, 1969, 1977, 1985, and 2004. Debris flows have caused loss 
of life and property, and severely affected forest lands by altering forest structure and 
disrupting aquatic ecosystems.

Although there are fewer documented landslide events for the Blue Ridge Moun-
tains, and Ridge and Valley of Virginia and West Virginia, rainfall events there have 
triggered the greatest numbers of documented landslides. The remnants of Hurricane 
Camille in 1969 generated a total of 5,377 documented landslides (mainly debris flows) 
in Virginia and West Virginia making it the largest magnitude, well- documented land-
slide event in the SAH.

19.9 GEOBOTANY

Geobotany is the study of relationships between plants and the underlying geologic sub-
stratum (Ustin et al., 1999). Such relationships include variations in the presence, abun-
dance, vigor, and appearance of plants, indicator species, and distinctive phonological 
behavior. Often it can refer more specifically to examination of the relationships between 
plants and their response to unusual levels of nutrients or toxins released to the soil by 
weathering of geologic materials. Regional geobotany focuses on the study of vegeta-
tion patterns as indicators of lithologic variations. Specific plant species may have local 
significance as indicator species, for they tend to avoid or favor certain lithologic units. 
In other instances, variations in abundance or vigor may signal the occurrence of certain 
lithologies.

Geologic processes may concentrate trace elements in specific strata or regions. Geo-
logic weathering may release trace elements in a form that can be absorbed by vegetation. 
Plants that absorb these trace elements at higher than normal levels may display abnor-
mal spectral signatures, thereby signaling the existence and location of the anomalous 
concentration of elements.

 FIGURE 19.18  Debris flow and stream diversion, northwestern Virginia, as shown previously in 

Figure 19.17. Here, contours map the topography to better illustrate elevations. The red arrows identify 

discharge sites from the catchment area, perhaps about 100 ft above the current stream elevation. 

This difference would appear sufficient for debris deposits to divert streamflow to form the distinctive 

stream channel visible today. Graphics by Robert Severynse. Used by permission. Topographic map 

from USGS. Google Earth Pro image from Landsat/Copernicus.
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Geobotany depends on knowledge of how geologic materials release elements into 
the nutrient pool, how these elements are absorbed by the soil and concentrated in plant 
tissues, and how they can alter the spectral signatures of plants. Because specific kinds 
of plants may thrive under certain unusual conditions of soil fertility, detailed knowledge 
of the spectral characteristics of such plants can be very valuable. Geobotanical studies 
are especially valuable in heavily vegetated regions where soil and rock are not exposed 
to the direct view of the sensor, but they may also be useful in sparsely vegetated regions 
where it may be possible to identify individual plants or where vegetation patterns may 
be especially sensitive to subtle environmental variations.

The practice of geobotanical reconnaissance is restricted by several factors. First, 
geobotanical studies may depend on observations of subtle distinctions in vegetation 
vigor and pattern, so successful application may require data of very fine spatial, spectral, 
and radiometric resolution— resolution much finer than that of Landsat or Sentinel data, 
for example. Thus, some of the concepts of geobotanical exploration cannot be routinely 
applied with the imagery and data most commonly available. Hyperspectral remote sens-
ing (Chapter 14) provides capabilities for developing geobotanical knowledge. Second, 
geology is only one of the many factors that influence plant growth. Site, aspect, and dis-
turbance (both by humankind and by nature) influence vegetation distributions in very 
complex patterns. The effects of these several causes cannot always be clearly separated.

The timing of image acquisition is critical. Some geobotanical influences may be 
detectable only at specific seasons or may be observable as, for example, advances in the 
timing of otherwise normal seasonal changes in vegetation coloring. The issue of timing 
may be especially important because the remote sensing analyst may not have control 
over the timing of image acquisition or may have imagery only for a single date, whereas 
observation at several dates may be necessary to observe the critical changes. Finally, 
many geobotanical anomalies may have a distinctively local character. Specific indicators 
may have meaning only for restricted regions, so intimate knowledge of regional vegeta-
tion and geology may be necessary to fully exploit knowledge of geobotany.

Geobotanical knowledge can be considered first in the context of the individual 
plant and its response to the geological substratum. The growth of most plants is sensi-
tive not only to the availability of the major nutrients (phosphorus [P], potassium [K], 
and nitrogen [N]), but also to the micronutrients, those elements (including barium [Ba], 
magnesium [Mg], sulfur [S], and calcium [Ca]) that are required in very small amounts. 
It is well established that the growth and health of plants depend on the availability of 
elements present in very low concentrations and that sensitivity may be high in some 
plant species. In contrast, other elements are known to have toxic effects, even at very 
low concentrations, if they are present in the soil in soluble form. Heavy metals, includ-
ing nickel (Ni), copper (Cu), chromium (Cr), and lead (Pb), may be present at sufficient 
levels to reveal their presence through stunted plant growth or through the localized 
absence of specific species that are especially sensitive to such elements. From such evi-
dence, it may be possible to indirectly use the concentrations of these elements to reveal 
the locations of specific geologic formations or zones of mineralization worthy of further 
investigation.

Hydrocarbons may significantly influence plant growth if they are present in the 
root zone. Hydrocarbon gases may migrate from subsurface locations; at the surface, 
concentrations may be locally sufficient to influence plant growth. Hydrocarbons may 
be present in greater concentrations at the surface as petroleum seeps or coal seams. The 
presence of hydrocarbons in the soil may favor plant growth by increasing soil organic 
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matter but may also alter soil atmosphere and soil biology in a manner that is toxic to 
some plants.

Specific geobotanical indicators include the following, which of course may have 
varied geologic interpretation depending on the local setting. Variations in biomass, 
either significantly higher or lower than expected, may indicate geobotanical anomalies. 
Or the coloring of vegetation may be significant. The term chlorosis refers to a general 
yellow discoloration of leaves due to a deficiency of chlorophyll. Chlorosis can be caused 
by many of the geologic factors mentioned above, but it is not uniquely of geologic origin, 
so its interpretation requires knowledge of the local geologic and biologic setting.

Observation of such indicators may be facilitated by use of the vegetation indices 
and ratios mentioned in Chapter 16. Manual interpretation of color- infrared model imag-
ery often provides especially good information concerning the vigor and distribution of 
vegetation. Of special significance in the context of geobotany is the blue shift in the 
chlorophyll absorption spectra. The characteristic spectral response for living vegeta-
tion was discussed in Chapter 16. In the visible, peak reflectance is in the green region; 
the absorption spectra of chlorophyll decreases reflectance in both the blue and the red 
regions. However, in the near infrared, reflectance increases markedly (Chapter 16).

Collins, Chang, and Kuo (1981) and others have observed that geochemical stress is 
most easily observed in the spectral region from about 0.55 to 0.75 μm (which includes 
portions of the green, red, and infrared regions). Most notably, the position and slope of 
the line that portrays the increase in reflectance at the edge of the visible region, although 
constant for healthy green plants, are especially sensitive to geochemical influences. As 
geochemical stress occurs, the position of this line shifts toward shorter wavelengths (i.e., 
toward the blue end of the spectrum; hence the term blue shift), and its slope becomes 
steeper (Figure 19.19).

It must be emphasized that, by everyday standards, the change is very subtle (0.007–
0.010 μm) and has been observed only in data recorded by high- resolution sensors pro-
cessed to filter out background reflectance. Such data are not acquired by remote sensing 
instruments available for routine use, although increased spectral, spatial, and radiomet-
ric resolution provided by hyperspectral remote sensing (Chapter 14) opens up opportu-
nities to exploit this kind of knowledge. Nonetheless, Collins et al. (1983) reported that 
the blue shift had been observed in all plant species studied thus far; they also reported 

 FIGURE 19.19  Blue shift at the edge of the chlo-

rophyll absorption band. As the heavy mineral con-

centrations in plant tissue increase, the edge of the 

absorption band shifts toward shorter wavelengths 

(i.e., toward the blue end of the spectrum). The solid 

black line shows the spectrum for a control plant. Dot-

ted and dashed lines show how magnitudes of the 

shift increase as concentration of the heavy minerals 

increases. Adapted from Chang and Collins (1983, 

p. 727). Image by Susmita Sen. Used by permission 
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that they believed this effect to be “universal for most green plants” (p. 739), so it is not 
confined to a few species.

The cause of the blue shift is not clearly understood at present. Unusual concentra-
tions of heavy metals in the soil are absorbed by plants and apparently tend to be trans-
ported toward the actively growing portions of the plant, including the leaves. Concen-
trations of such metals can cause chlorosis, which is often observed by more conventional 
methods. The relationship between heavy metals and the blue shift is clear, but work by 
Chang and Collins (1983) indicates that the presence of heavy metals in the plant tissues 
does not alter the chlorophyll itself: the metallic ions apparently do not enter the structure 
of the chlorophyll. The heavy metals appear to retard the development of chlorophyll, 
thereby influencing the abundance, but not the quality, of the chlorophyll in the plant 
tissue.

Chang and Collins (1983) conducted laboratory and greenhouse experiments to con-
firm the results of spectral measurements in the field and to study the effects of differ-
ent metals and their concentrations. Their experiments used oxides, sulfates, sulfides, 
carbonates, and chlorides of Cu, zinc (Zn), iron (Fe), Ni, manganese (Mn), molybdenum 
(Mo), and vanadium (V). Selenium (Se), Ni, Cu, and Zn produced stress at concentrations 
as low as 100 ppm. Fe and Pb appeared to have beneficial effects on plant growth; Mo 
and V produced little effect at the concentrations studied. In combination, some elements 
counteracted each other, and some varied in effect as concentrations changed.

19.10 DIRECT MULTISPECTRAL OBSERVATION  
OF ROCKS AND MINERALS

A second broad strategy for remote sensing of lithology depends on accurate observation 
of spectra from areas of soil and rock exposed to observation. Color and, by extension, 
the spectral characteristics of rocks and minerals can be distinctive identifying features in 
the direct examination of geologic samples. Geologists use color for identification of sam-
ples in the field, and in the laboratory sensitive instruments are used to measure spectral 
properties across a range of wavelengths in the ultraviolet, visible, and infrared regions. 
Spectral emittance and reflectance of rocks and minerals are important properties that 
are often closely related to their physical and chemical properties. In the laboratory, spec-
tral characteristics can be observed in such sufficient detail that they can sometimes form 
diagnostic tests for the presence of specific minerals. In addition, small radiometers can 
be taken to the field to permit in situ observation of rocks and minerals in nonvisible por-
tions of the spectrum. As a result, geologists have considerable experience in observing 
the spectral properties of geologic materials, and they have developed an extensive body 
of knowledge concerning the spectral properties of rocks and minerals.

The application of this knowledge in the context of remote sensing can be very diffi-
cult. In the laboratory, spectra can be observed without the contributions of atmospheric 
attenuation, vegetation, or shadowing to the observed spectra. In the laboratory setting, 
scientists can hold secondary properties (such as moisture content) constant from one 
sample to the next or can compensate for their effects. In remotely sensed data, the effects 
of such variables often cannot be assessed. The usual remote sensing instruments do not 
have the fine spectral and radiometric resolutions required to make many of the subtle 
distinctions this strategy requires. Furthermore, the relatively coarse spatial resolution of 
many remote sensing systems means that the analyst must consider composite signatures 
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formed by the interaction of many landscape variables rather than the pure signatures 
that can be observed in the laboratory. Whereas photogeology distinguishes between 
units without attempting to make fine lithologic distinctions, much of the research in 
multispectral remote sensing in geology is devoted to more precise identification of spe-
cific minerals thought to be both spectrally distinctive and especially valuable in mineral 
exploration.

Locations of zones of hydrothermal alteration may be revealed by the presence of 
limonite at the surface. Limonite refers broadly to minerals bearing oxides and oxyhy-
drites of ferric iron, including goethite and hematite. Such minerals tend to exhibit broad 
absorption bands in the near- infrared, visible, and ultraviolet regions. Typically, their 
spectra decline below 0.5 μm, producing a decrease in the ultraviolet that is not normally 
observed in other minerals (Figure 19.20). A broad, shallow absorption region from 
0.85 μm to 0.95 μm is observed in the near infrared. The presence of limonite, either as 
a primary mineral or secondarily as the product of geologic weathering, may identify 
the location of a zone of hydrothermal alteration, thereby suggesting the possibility of 
mineralized zones. However, the identification of limonite is not definitive evidence of 
hydrothermal activity, as limonite can be present without hydrothermal alteration and 
hydrothermal activity may occur without the presence of limonite. Thus, the observation 
of these spectra, or any spectra, is not uniquely specific, and the analyst must always 
consider such evidence in the context of other information and his or her knowledge of 
the local geologic setting.

Clay minerals often decrease in reflectance beyond 1.6 μm; this behavior is common 
to enough minerals and occurs over a spectral region that is broad enough that it has been 
used to locate zones of hydrothermal alteration by means of the surface materials rich in 
clay minerals. At finer spectral resolution, these clay minerals and carbonates character-

 FIGURE 19.20  Spectra of some natural geologic surfaces: (A) White Joe Lott Tuff member of 

Mt. Belknap volcanics; (B) limonitic Joe Lott Tuff member of Mt. Belknap volcanics; (C) tan soil on 

rhyolite; (D) orange- layered laterite. Data were collected in the field near the surface using portable 

spectroradiometers. Limonitic minerals (B, C, D) show low reflectances at wavelengths below 0.5 

m, relative to nonlimonitic materials (A). Based on Goetz et al. (1975); adapted from Williams (1983, 

p. 1748). Image by Susmita Sen. Used by permission.
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ized by aluminum hydroxide and magnesium hydroxide structures display spectra with a 
narrow but distinctive absorption band from 2.1 to 2.4 μm (Figure 19.20).

Emittance in the spectral region from 8–12 μm (the mid- infrared region) permits 
the identification of some silicate minerals and the separation of silicate minerals from 
nonsilicate minerals. Silicate minerals typically exhibit emittance minima in this region, 
whereas nonsilicate minerals have minima at longer wavelengths.

19.11 PHOTOCLINOMETRY

Photoclinometry, loosely defined, is the understanding of the relationship between image 
brightness and the orientation of the surface that generated the brightness. If an irregular 
surface of uniform reflectance is illuminated at an angle, variations in image brightness 
carry information concerning the slopes of individual facets on the ground. Therefore, 
the full image, composed of many such pixels, depicts the shape of the terrain (Eliason, 
Soderblom, and Chavez, 1981). The Earth’s surface does not reflect uniformly, so the 
brightness caused by irregular terrain is mixed with the brightnesses caused by different 
surface materials. Remote sensing is usually concerned with the spectral differences that 
we observe at different places on the Earth’s surfaces as clues to the local abundance of 
minerals and other resources. Therefore, the brightnesses caused by surface orientation 
are often regarded as complicating factors in our effort to extract and interpret spectral 
information.

The field of photoclinometry contributes to remote sensing by providing tools that 
permit analysis to separate the spectral information from the brightness that arises from 
the orientation of the surface. A diffuse reflector (Chapter 2) will have a brightness that 
is predictable from the angle of illumination. It is intuitively obvious that as the angle of 
illumination changes, so also will the brightness of the surface. In the context of remote 
sensing, the surface and the source of illumination have a fixed geometric relationship, 
but the scene itself is composed of many individual facets, each with a specific orientation 
with respect to the solar beam. That is, the solar beam illuminates the Earth at a fixed 
angle at any given instant, but topographic irregularities cause the image to be formed of 
many varied brightnesses. Thus, for a uniform surface of irregular topography, variations 
in image gray tone portray variations in surface slope and orientation.

Although few surfaces on the Earth meet the assumption of uniform reflectance, 
some extraterrestrial surfaces display only small variations in reflectivity, primarily 
because of the absence of vegetative cover and differences in color caused by the weather-
ing of geologic materials. Photogeologists who have studied the Moon’s surface and those 
of the planets have formalized the methods necessary to derive topographic information 
from images (Wildey and Pohn, 1964). Photoclinometry encompasses elements of remote 
sensing, photogrammetry, photometry, and radiometry. Although both the theory and 
practice of photoclinometry must still deal with many unsolved issues, it has important 
applications in remote sensing.

For the present discussion, let us note simply that it is possible to approximate the 
brightnesses of the terrain, measured in a specific pair of bands, by a ratio between them:

Gband 1  C R1 (EQ. 19.1)
Gband 2 R2
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where G represents the brightness of the gray tone on an image of spectral band selected 
from a multiband image, and C represents an arbitrary constant. This ratio image (R1/
R2) has several useful properties.

First, the relationship holds both for shadowed pixels and for directly illuminated 
pixels. Therefore, a ratio image shows pure reflectance information without the effects of 
topography. This result permits geologists to examine the spectral properties of surfaces 
without the confusing effects of mixed brightnesses of topography and material reflec-
tances. In the raw image, a difference in pixel brightness can be caused by a difference 
in slope, by shadowing, or by differences in the color of the surface material. In a ratio 
image, the geologist knows that differences in brightness are caused by differences in 
reflectance only.

In the context of photoclinometry, ratio images have a special application. An unsu-
pervised classification of the several ratio images derived from a multispectral image per-
mits identification of regions on the Earth’s surface that have uniform spectral behavior. 
Remember that the ratio images convey only spectral, not topographic, information, so a 
classification performed on ratio images, not on the original digital values, will produce 
classes based on uniform spectral properties regardless of slope.

19.12 BAND RATIOS

Band ratios have further significance in geologic remote sensing. By removing the effects 
of shadowing, which otherwise are mixed with the spectral information necessary to 
make lithologic discriminations, they can convey purely spectral information. Further-
more, ratios may minimize differences in brightness between lithologic units (i.e., ratios 
tend to emphasize color information and to deemphasize absolute brightness) and may 
facilitate comparisons of data collected on different dates, which will differ in solar angle.

The use of ratio images carries certain risks, as mentioned in Chapter 16. In a geo-
logic context, it is important that data be free of atmospheric effects or that such effects 
be removed by preprocessing. The significance of the atmosphere can be appreciated by 
reexamining the earlier discussion, in which the diffuse light values in the two band val-
ues were estimated to have predictable values that would cancel each other out. If severe 
atmospheric effects are present, they will differ from one band to the other. The value of 
the ratio will no longer portray only spectral properties of the ground surface but instead 
will have values greatly altered by the varied atmospheric contributions to the separate 
bands.

19.13 SOIL AND LANDSCAPE MAPPING

Soil scientists study the mantle of soil at the Earth’s surface in an effort to understand soil 
formation and to map patterns of soil variation. Soil is a complex mixture of inorganic 
material weathered from the geologic substratum and mixed with decayed organic matter 
from tissues of plants and animals. Typically, a “soil” consists of three layers (known as 
soil horizons) of varying thickness and composition (Figure 19.21). Nearest the surface 
is the A horizon, which is usually dark in color and rich in decayed organic matter. The 
A horizon is sometimes known popularly as topsoil—the kind of soil one would like to 
have for a lawn or garden. In this layer, plant roots are abundant, as are microorgan-
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isms, insects, and other animals. Below the A horizon is the second layer, the B horizon, 
which is usually lighter in color and more compact and where plant roots and biologic 
activity are less abundant. Sometimes the B horizon is known as the subsoil—the kind 
of hard, infertile soil one would prefer not to have at the surface of a lawn or garden. 
At even greater depth is the C horizon, the deepest pedologic horizon, which consists of 
weathered geologic material, decayed or fractured into material that is softer and looser 
than the unweathered geologic strata below. This is the material that usually forms the 
raw material for the A and B horizons. Finally, below the C horizon is the R horizon, 
consisting of unaltered bedrock.

The exact nature of the horizons at a given place is determined by the interaction 
between local climatic, topographic, geologic, and biologic elements as they act over 
time. Because varied combinations of climate, vegetation, and topography produce dif-

 FIGURE 19.21  Soil profiles, presented here as cartoon- like sketches to illustrate varying struc-

tures and forms of contrasting soils. Detailed assessment of soil profiles requires firsthand observation 

(such as Figure 19.23).
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ferent soils from similar geologic materials, soil science is distinct from, though closely 
related to, geology and geomorphology.

The landscape is covered by a mosaic of patches of different kinds of soil, each 
distinct from its neighbors with respect to character and thickness (Figure 19.22). Soil 
surveyors outline on maps those areas covered by specific kinds of soil as a means of 
showing the variation of soils on the landscape. Each symbol represents a specific kind 
of soil, or, when the pattern is very complex, sometimes two or three kinds of soil that 
occur in an intimate pattern (Figure 19.23). For example, in Figure 19.23, near the 
center of the image is a large patch of a relatively flat, non-treed land with type 16B soil. 
This is defined as Groseclose and Poplimento soil, with 2–7% slopes (Table 19.1). Soil 
maps portray distributions of pedologic units, which, together with other maps and data, 
convey valuable information concerning topography, geology, geomorphology, hydrol-
ogy, and other landscape elements. In the hands of a knowledgeable reader, they convey 
a comprehensive picture of the physical landscape. As a result, they can be considered 
to be among the most practical of all forms of landscape maps and are used by farmers, 
planners, and others who must judge the best locations for specific agricultural activities, 
for community facilities, or for construction of buildings and highways.

Soil mapping is conducted routinely by national soil surveys (or their equivalents) in 
most countries and by their regional counterparts at lower administrative levels. Details 
of mapping technique vary from one organization to another, but the main outlines of 
the procedure are common to most soil survey organizations. A soil map is formed by 
subdividing the landscape into a mosaic of discrete parcels. Each parcel is assigned to a 
class of soil—a mapping unit—that is characterized by specific kinds of soil horizons. 
Each mapping unit is represented on the map by a specific symbol— usually a color or 

 FIGURE 19.22  The soil landscape, as represented by a schematic sketch depicting principal 

landscape features and dominant soil units, northeastern Kansas. Such diagrams present a broad 

perspective of the overall pattern of principal soils of the region. From U.S. Department of Agriculture, 

Natural Resources Conservation Service.
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an alphanumeric designation. In theory, mapping units are homogeneous with respect to 
pedologic properties, although experienced users of soil maps acknowledge the existence 
of internal variation, as well as the presence of foreign inclusions. Mapping units are usu-
ally defined with links to a broader system of soil classification defined by the soil survey 
organization, so that mapping units are consistently defined across, for example, county 
and state borders. For each region, a mapping unit can be evaluated with respect to the 
kind of agriculture that is important locally, so the map can serve as a guide to select the 
best uses for each soil. The following paragraphs outline an example of the soil survey 
process, although details may vary from one organization to the next.

The first step in the actual preparation of the draft map is the mapping process 
(Figure 19.23). The term mapping in this context means specifically to designate the 
delineation of landscape units on an aerial photograph or map base, rather than in the 
broader sense that refers to the entire set of activities necessary to generate the map. In the 
mapping step, the soil scientist examines aerial photographs, often using a stereoscope, to 
define the major boundaries between classes of soil. The soil scientist has already learned 
much about the region’s soils through field observations, so he or she has knowledge of 
the kinds of soils present and their approximate locations. The soil scientist can use this 

 FIGURE 19.23  Field collection of soil data as a component of soil mapping. The map overlay 

(middle) shows soil surveyors’ delineations of distinctive soil units in Montgomery County, Virginia 

(subset from Sheet Number 19, in Porter et al., 1985, pp. 192). The upper left and lower right images 

show USGS scientists collecting soil samples in the field. The soil codes shown in this image are 

explained in Table 19.1. From USGS. Upper left photograph by Nora Foley.
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field knowledge to interpret the photograph, using breaks in slope, boundaries between 
vegetation classes, and drainage patterns to define boundaries between soil mapping 
units. Seldom if ever can the soil classes actually be identified from the photograph; iden-
tification must be based on field observations. But in the mapping step, the scientist can 
subdivide the landscape into a mosaic of soil parcels, each of which is then treated as an 
independent unit in the later steps.

Completion of the mapping step requires considerable field experience within the 
region to be mapped, as the surveyor must acquire knowledge of the numbers and kinds 
of soils present within a region, their properties and occurrence, and their uses and limi-
tations. As a result, completion of this step requires a much longer time than that actually 
devoted to marking the aerial photographs if we include the time required to learn about 
the local landscape. Morphological descriptions of each mapping unit are made in the 
field, and mapping units are sampled for later analysis.

The second step is characterization. Samples are collected from each prospective 
mapping unit and then subjected to laboratory analysis for physical, chemical, and min-
eralogical properties.

These measurements form the basis for classification, the third step. In the United 
States, classification is the implementation of the classification criteria specified by 
Soil Taxonomy, the official classification system of the Soil Conservation Service, U.S. 
Department of Agriculture. In other countries, classification is conducted by applying the 
classification criteria established by each national soil survey organization.

Correlation, the fourth and possibly the most difficult step, matches mapping units 
within the mapped region to those in adjacent regions and to those in ecologically anal-
ogous areas. Whereas the other steps in a soil survey may be conducted largely on a 
local basis, correlation requires the participation of experienced scientists from adjacent 
regions, and even those from national or international levels in the organization, to pro-
vide the broader experience and perspective often required for successful correlation.

 TABLE 19.1 Soil Types Present in the Map from Montgomery County, Virginia, 
Depicted in Figure 19.23

Symbol Type

2B Berks–Groseclose Clymer complex, 2–7% slopes

2C Berks–Groseclose Clymer complex, 7–15% slopes

3E Berks–Lowell–Rayne complex, 25–65% slopes

11B Duffield–Ernest complex, 2–7% slopes

12B Frederick and Vertrees silt loams, 2–7% slopes

16B Groseclose and Poplimento soils, 2–7% slopes

16C Groseclose and Poplimento soils, 7–15% slopes

16D Groseclose and Poplimento soils, 15–25% slopes

25 McGary and Purdy soils

29 Udorthents and urban land

33 Weaver soils
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The fifth and final step is interpretation, in which each mapping unit is evaluated 
with respect to prospective agricultural and engineering uses. The interpretation step 
provides the user of the map with information concerning the likely suitability of each 
mapping unit to the land uses most common in the region.

Within this rather broad framework there are, of course, many variations in details 
of technique and in overall philosophy and strategy. The result is a map that shows the 
pattern of soils in a region and a report that describes the kind of soil that is encountered 
in each mapping unit. Each mapping unit is evaluated with regard to the kinds of uses 
that might be possible for the region, so that the map serves as a guide to wise use of soil 
resources.

19.14 INTEGRATED TERRAIN UNITS

Definition of integrated terrain units is based on the concept that the varied and complex 
assemblages of soil, terrain, vegetation, and so on form distinctive spectral responses that 
can be recognized and mapped. This general approach has long been applied, under many 
different names, to the interpretation of resource information from aerial photographs 
and other forms of imagery. The best known, and oldest, of these methods is known as 
land system mapping.

Land system mapping subdivides a region into sets of recurring landscape elements 
based on comprehensive examination of distributions of soils, vegetation, hydrology, 
and physiography. The formalization of land system mapping procedures dates from the 
period just after World War II, although some of the fundamental concepts had been 
defined earlier. Today a family of similar systems is in use, all of which are based on 
similar principles and methods, although the terminology and details vary considerably. 
One of the oldest, best known, and most formally defined systems is that developed by 
the Australian Commonwealth Scientific and Industrial Research Organisation, Division 
of Land Research and Regional Survey (Christian, 1959); variations have been developed 
and applied throughout the world.

The method is based on a hierarchical subdivision of landscapes. Land systems 
are recurring, contiguous associations of landforms, soils, and vegetation, composed of 
component land units. The basic units of the system (which are assigned varied defini-
tions and names in alternative versions of this basic strategy) are areas of uniform lithol-
ogy with relatively uniform soil and drainage. A characteristic feature of all versions of 
the land system method is a hierarchical spatial organization, so that subcategories are 
nested within the broader categories defined at higher levels. Designation of separate lev-
els within the hierarchy differs among alternative versions. For example, Thomas (1969) 
defines the following sequence: site (the smallest units), facet, unit landform, landform 
complex, landform system, and landform region. Wendt, Thompson, and Larson (1975) 
define a system using landtypes (the smallest regions), landtype associations, landtype 
phases, subsections, sections, and provinces. Although many versions imply that both 
land systems and their component elements recur in widely separated geographic regions 
(though under analogous ecological circumstances), closer examination of the method 
(Perrin and Mitchell, 1969) reveals that land systems are most effective when defined to 
be essentially local units.

Implicit, if not explicit, in most applications is the use of aerial photography as a pri-
mary tool for land system mapping, together with direct observation in the field. Aerial 
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photography provides the broad overview and the map-like perspective favoring conve-
nient definition and delineation of land systems. It portrays the complex spatial patterns 
of topography, vegetation, and drainage in an integrated form that is compatible with 
the assumptions, methods, and objectives of this approach to terrain analysis. “There 
would be no point in defining any terrain class if its chances of being recognized from the 
air photographs and background information were small” (Webster and Beckett, 1970, 
p. 54).

An assumption of the procedure is that easily identified landscape features (e.g., 
vegetation and physiography) form surrogates for more subtle soil features not as easily 
defined from analysis of aerial photographs. Although the procedure has been applied at 
a range of scales from 1:1,000,000 to 1:25,000, most applications are probably at fairly 
broad scales, for reconnaissance surveys, or mapping of rather simple landscape divisions 
under circumstances in which the ultimate use will be rather extensive.

The method and its many variations have been criticized for their subjectivity and 
the variability of the results obtained by different analysts. Compared with most large-
scale soil surveys, land system mapping presents a rather rough subdivision of the land-
scape, as the mapping units display much greater internal variability and are not as care-
fully defined and correlated as one would expect in more intensive surveys. As a result, 
the procedure may be best suited for application in reconnaissance mapping, for which 
broad-scale, low- resolution mapping is required as the basis for planning more detailed 
surveys.

The method of integrated terrain units has also been applied to analysis of digi-
tal data. At the coarse resolution of satellite sensors, individual spectral responses from 
many landscape components are combined to form composite responses. In this context, 
the usual methods of image classification for mapping individual classes of soil, vegeta-
tion, or geology may be extraordinarily difficult. Therefore, many analysts have applied 
the integrated terrain unit strategy to digital classification in an effort to define image 
classes in a more realistic manner. In the ideal, we might prefer to define pure categories 
that each show only a single thematic class. But given the complexity of the natural land-
scape, composite categories are often well suited to representation of the gradations and 
mixtures that characterize many environments (Green, 1986; Robinove, 1981).

19.15 WETLANDS INVENTORY

Wetlands are areas of land characterized by saturated or inundated soil. In the United 
States, wetlands are legally defined by the presence of (1) hydrophytic vegetation (plants 
that occur predominantly in wetlands environments); (2) a wetlands hydrologic regimen, 
including evidence of inundation or saturation; and (3) diagnostic pedologic features 
caused by low oxygen levels, most notably gray or black colors, often with distinctive 
mottling indicative of prolonged saturation. Wetlands are not defined merely by proxim-
ity to bodies of open water but are encountered in a wide variety of ecological and phys-
iographic settings, including uplands.

Understanding the occurrence of wetlands is significant for a broad spectrum of pol-
icy issues, including land-use regulation, water quality, flood abatement, agriculture, and 
carbon sequestration. As a result, mapping their occurrence and extent is an important 
responsibility of local, state, and federal governments. For some purposes, field studies 
are necessary to identify and delineate the extent of wetlands.
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For other purposes, however, remotely sensed imagery forms an important tool 
for inventory and monitoring of wetlands. At a national level in the United States, the 
National Wetlands Inventory conducted by the U.S. Fish and Wildlife Service prepares 
a national inventory based on photointerpretation of aerial imagery such as that from 
the National High-Altitude Aerial Photography Program (NHAP) and National Agricul-
tural Imagery Program (NAIP). Although wetlands vary greatly in their occurrence and 
distinctive properties (Lyon, 2001), optical, thermal, and SAR data all have distinctive 
capabilities that can detect some of the distinctive characteristics of wetlands. Because 
wetlands vary so greatly with respect to their distinct properties and vary seasonally, it 
may not be feasible to propose a single uniformly applicable approach to remote sens-
ing of wetlands. It seems more likely that remotely sensed imagery may form the central 
resource for a suite of data that might be useful in delineating and monitoring wetlands.

19.16 RADAR IMAGERY FOR EXPLORATION

As a conclusion to this chapter, we note the application of SAR data to offshore petro-
leum exploration. Natural seepage of petroleum from the ocean floor causes a thin film 
of petroleum floating on the ocean surface (a “slick”) that creates a locally smooth water 
surface, which in turn induces conditions that promote specular reflection over that 
region of the ocean. Oil slicks occur when molecules of oil reach the sea surface to form 
a thin layer of petroleum that dampens the ocean- surface capillary waves. SAR technol-
ogy is sensitive to differences in surface roughness, so it can easily discriminate between 
the smoother oil slick and the surrounding rough water. Thus, oil slicks are regions of 
little to no backscatter, characterized by distinct areas of darkness on the radar image. 
Therefore, the dark returns assist in identifying regions where such slicks might originate. 
Because SAR has the ability to observe such regions day and night, and over a wide range 
of meteorological conditions, SAR data assist in identifying regions where such slicks 
form on a regular basis. Critical exploration maps can be produced by using a geographic 
information system to overlay other information such as coastline, bathymetry, gravimet-
ric data, shipping lanes, and existing oil rigs on the SAR image. These maps allow deci-
sion makers to reduce magnetic field exploration risk and increase the cost- effectiveness 
of offshore drilling efforts.

19.17 SUMMARY

Aerial photography and remote sensing have long been applied to problems in the earth 
sciences. Geology, topographic mapping, and related topics formed one of the earliest 
routine applications of aerial photography, and today remote sensing, used with other 
techniques, continues to form one of the most important tools for geologic mapping, 
exploration, and research.

Research for geologic remote sensing spans the full range of subjects within the field 
of remote sensing, including use of additional data in the thermal, near- infrared, visible, 
and microwave regions of the spectrum. More than most other subjects, efforts such 
as geobotanical research are especially interesting because they bring knowledge of so 
many different disciplines together to bear on a single problem. In addition, geological 
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investigations have formed important facets of research and applications programs for 
optical (i.e., Landsat, SPOT, ERS-2, and others) and for SAR (i.e., RADARSAT, ERS-1, 
and others) systems. Geological studies are said to form a major economic component of 
the practice of remote sensing. Certainly, they form one of the most important elements 
in both the theoretical and practical advances in remote sensing.

 SOME TEACHING AND LEARNING RESOURCES

Geologic Fieldwork with ASD: part 1 of 3
www.youtube.com/watch?v=cjuitl_-_LU

Geologic Fieldwork with ASD: part 2 of 3
www.youtube.com/watch?v=xBknHsZdG2E&feature=related

Geologic Fieldwork with ASD: part 3 of 3
www.youtube.com/watch?v=2-AkC8jcL08&feature=related

REVIEW QUESTIONS

 1. Why is the timing of overpasses of Earth observation satellites such as Landsat or 
SPOT likely to be of special significance for geologic remote sensing?

 2. Explain why the ability to monitor the presence of moisture (both open water bodies 
and soil moisture at the ground surface) might be of special significance in geologic, 
geomorphic, and pedologic studies.

 3. In the past, there has been discussion of conflicts between earth scientists and plant 
scientists concerning the design of spectral sensitivity of sensors for the Multispectral 
Scanner System (MSS) and Thematic Mapper (TM), based on the notion that the two 
fields have quite different requirements for spectral information. Based on information 
in this chapter, explain why such a distinct separation of information requirements may 
not be sensible.

 4. Why should Landsat imagery have been such an important innovation in studies of 
geologic structure?

 5. Summarize the significance of lineaments in geologic studies and the significance of 
remote sensing to the study of lineaments.

 6. Compare the relative advantages and disadvantages of photogeology and geologic 
remote sensing, as outlined in this chapter.

 7. Some might consider lineament analysis, application of geobotany, and other elements 
of geologic remote sensing to be modern, state-of-the-art techniques. If so, why should 
photogeology, which is certainly not as technologically sophisticated, be so widely 
practiced today?

 8. Full application of the principles and techniques of geologic remote sensing requires 
much finer spectral, radiometric, and spatial resolution than most operational sensors 
have at present. What difficulties can you envision in attempts to use such sensors for 
routine geologic studies?
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 9. Refer back to Chapter 12; compare and contrast the concept of image classification 
with that of integrated terrain units (Section 19.14). Write two or three paragraphs that 
summarize the major differences between the two strategies.

10. In what ways might radar imagery (Chapter 8) be especially useful for studies of geol-
ogy and other earth sciences?

11. Write a short description of a design for a multispectral remote sensing system tailored 
specifically for recording geologic information. Disregard all other applications. Sug-
gest how you would select the optimum spatial and radiometric resolution and the most 
useful spectral regions.
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MAJOR TOPICS TO UNDERSTAND

Remote Sensing of Water Characteristics

Bathymetry

Coastal Processes and Landforms

Impact of Hurricane Sandy on Mantoloking, New Jersey

Lidar for Coastal Erosion of North Carolina Beaches

Challenges in Coastal Communities— Example of Miami Beach

20.1 INTRODUCTION

Open water covers about 74% of our planet’s surface. Oceans account for about 95% 
of the surface area of open water, but freshwater lakes and rivers (about 0.4%) have a 
significance that exceeds their small areal extent (Table 20.1).

In addition, soil and rock near the Earth’s surface hold significant quantities of fresh-
water (but only about 0.01% by volume of the Earth’s total water), as do the ice and snow 
of polar regions. Moisture in the form of “permanent” ice (about 5% of the Earth’s sur-
face) is largely beyond our reach, although the seasonal accumulation and melt of snow-

 20 Coastal Processes 
and Landforms
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pack in temperate mountains is an important source of moisture for some agricultural 
regions in otherwise arid zones, such as the Great Basin of North America. Hydrologists 
and meteorologists monitor water as it occurs in all these forms, as it changes from liq-
uid to vapor, condenses to rain and snow, and moves on and under the Earth’s surface 
(Figure 20.1). In addition, studies of sea ice, movement of pollutants, and ocean currents 
are among the many important subjects that attract the attention of scientists who study 
hydrology, oceanography, and related subjects.

Most traditional means of monitoring the Earth’s water depend largely on mea-
surements made at specific points or collections of samples from discrete locations. The 
nature of ocean, lake, and river water can be studied by samples collected at the surface 

 FIGURE 20.1  Schematic diagrams, hydrologic cycle. Left: Idealized representation of key com-

ponents of the hydrologic cycle, including, in part, evaporation, precipitation, snowfields, groundwa-

ter, and runoff. Right: View of application of remotely sensed imagery to acquire information concern-

ing components of the hydrologic cycle.

 TABLE 20.1 Water on the Earth

Percentage

By surface areaa By volumeb

Oceans 94.90 97.1

Rivers and lakes  0.40   0.20

Groundwater —   0.60

Permanent ice cap  4.69   2.20

Earth’s atmosphere —    0.001

Note: Data from Nace (1967).
aPercentage by area of the Earth’s total water surface.
bPercentage by volume of the Earth’s water.
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or by devices designed to gather water at specified depths. Groundwater can be studied 
by the collection of samples from wells or boreholes. Water samples can be subjected to 
chemical and physical tests to measure levels of pollutants, to detect bacteria and other 
biological phenomena, and to examine oxygen levels, sediment content, and many other 
qualities. Such measurements or samples, of course, provide information about discrete 
points within the water body, whereas the analyst usually is interested in examining 
entire water bodies or the regions that contribute to water sources. Although measure-
ments can be collected at several locations to build a record of place-to-place variation 
within the water body, such efforts are at best a piecemeal approach to studying the com-
plex and dynamic characteristics of water bodies.

Therefore, remote sensing provides a valuable resource to understand broad-scale 
dynamic patterns that can be difficult to examine in detail using point measurements 
only. Careful coordination and placement of surface samples permit establishment of 
relationships between sample data and those collected by remote sensing. Remotely 
sensed data can be especially valuable in studying phenomena over large areas. Satellite 
sensors provide the opportunity for regular observation of even very remote regions. 
Although remotely sensed images seldom replace usual sources of information concern-
ing water resources, they can provide valuable supplements to field data by revealing 
broad-scale patterns not recognizable at the surface, by recording changes over time, and 
by providing data for inaccessible regions.

20.2 REMOTE SENSING OF WATER CHARACTERISTICS

Spectral Characteristics of Water Bodies

Spectral qualities of water bodies originate from the interaction of several factors, includ-
ing radiation incident to the water surface, optical properties of water bodies, surface 
roughness, angles of observation and illumination, and in some instances, reflection 
of light from subsurface features. As incident light strikes the water surface, some is 
reflected back to the atmosphere; such reflected radiation carries little information about 
the water itself, although it may convey information about the roughness of the surface 
and therefore about wind and waves. Instead, spectral properties (i.e., “color”) of water 
bodies originate largely by energy scattered and reflected within the water body itself, 
known as volume reflection because it occurs over a range of depths rather than at the 
surface. Some of this energy is directed back toward the surface, where it again passes 
through the atmosphere and then to the sensor. This light, sometimes known as under-
light, forms the primary source of color of a water body.

Light that enters a water body is influenced by (1) absorption and scattering by 
pure water and (2) scattering, reflection, and diffraction by particles that may be sus-
pended in the water. For pure water, some of the same principles described previously for 
atmospheric scattering apply. Scattering by particles that are small relative to wavelength 
(Rayleigh scattering) causes shorter wavelengths to be scattered the most. Thus, for deep-
water bodies, we expect water (in the absence of impurities) to be blue or blue-green in 
color (Figure 20.2). Maximum transmittance of light by clear water occurs in the range 
of 0.44–0.54 μm, with peak transmittance at 0.48 μm. Because the color of water is 
determined by volume scattering rather than by surface reflection, spectral properties of 
water bodies (unlike those of land features) are determined by transmittance rather than 
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by surface characteristics alone. In the blue region, light penetration is not at its opti-
mum, but at slightly longer wavelengths, in the blue-green region, penetration is greater. 
At these wavelengths, the opportunity for recording features on the bottom of the water 
body is greatest. At longer wavelengths, in the red region, absorption of sunlight is much 
greater, and only shallow features can be detected. Finally, in the near- infrared region, 
absorption is so great that only land–water distinctions can be made.

As impurities are added to a water body, its spectral properties change. Sediments 
are introduced both from natural sources and by human activities. Such sediments con-
sist of fine- textured silts and clays eroded from stream banks, or in water running off 
disturbed land, which are fine enough to be carried in suspension by moving water. As 
moving water erodes the land surface or the shoreline, it carries small particles as sus-
pended sediment; faster- flowing streams can erode and carry more and larger particles 
than can slower- moving streams. As a stream enters a lake or ocean, the decrease in 
velocity causes coarser materials to settle from the water body. Even slow- moving rivers 
and currents can carry large amounts of fine- textured sediments, such as clays and silts, 
which can be found even in calm water bodies. Sediment- laden water is often designated 
as turbid water. Scientists can measure turbidity by sampling the water body or by using 
devices that estimate turbidity from transparency of the water. One such device is the Sec-
chi disk, a white disk of specified diameter that can be lowered on a line from the side of 
a small boat. Because turbidity decreases the transparency of the water body, the depth 
at which the disk is no longer visible can be related to sediment content. Another indica-
tion of turbidity, nephelometric turbidity units, are measured by the intensity of light that 
passes through a water sample. A special instrument uses a light beam and a sensor to 
detect differences in light intensity. Water of high turbidity decreases the intensity of the 
light in a manner that indicates sediment content.

 FIGURE 20.2  Light penetration within a 

clear water body. From Moore (1978, p.  458). 

Used by permission of the Environmental 

Research Institute of Michigan.
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Thus, as sediment concentration increases, the spectral properties of a water body 
change. First, overall brightness in the visible region increases, so the water body ceases 
to act as a “dark” object and becomes more and more like a “bright” object. Second, as 
sediment concentration increases, the wavelength of peak reflectance shifts from a maxi-
mum in the blue region toward the green. The presence of larger particles means that 
the wavelength of maximum scattering shifts toward the blue-green and green regions 
(Figure 20.3). Therefore, as sediment content increases, there tends to be a simultaneous 
increase in brightness and a shift in peak reflectance toward longer wavelengths. The 
peak itself becomes broader, so at high levels of turbidity, color becomes a less precise 
indicator of sediment content. As sediment content approaches very high levels, water 
color begins to approach that of the sediment itself. Green reflectance of turbid water 
appears as light blue on the color-infrared model image (Chapter 4), which provides a 
sharp contrast in color with the dark blue or black of clear water bodies.

Spectral Changes as Water Depth Increases

Figure 20.3 shows the spectral characteristics of sunlight as it penetrates a clear water 
body. Near the surface, the overall shape of the curve resembles the spectrum of solar 
radiation, but the water body increasingly influences the spectral composition of the light 
as depth increases. So, at a depth of 20 m, little or no infrared radiation is present because 
the water body is an effective absorber of these longer wavelengths. At this depth, only 
blue-green wavelengths remain; these wavelengths are therefore available for scattering 
back to the surface, from the water itself and from the bottom of the water body.

The attenuation coefficient (k) describes the rate at which light becomes dimmer as 
depth increases. If E0 is the brightness at the surface, then the brightness at depth z, or 
Ez, is given by:

 Ez  E0e–kz (EQ. 20.1)

 FIGURE 20.3  Effects of turbidity on spectral properties of water. From Moore (1978, p. 460). 

Used by permission of the Environmental Research Institute of Michigan.
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In hydrologic studies, the influence of atmosphere can be especially important. The atmo-
sphere, of course, alters the spectral properties of incident radiation and also influences 
the characteristics of the reflected signal. Although these influences are also present in 
remote sensing of land surfaces, they assume special significance in hydrologic studies, in 
part because such studies often depend on subtle spectral differences (easily lost in atmo-
spheric haze) and also perhaps because much of the hydrologic information is carried by 
short wavelengths that are easily scattered by the atmosphere.

Water bodies are typically dark, so the analyst must work with a rather restricted 
range of brightnesses relative to those available for study of land surfaces. As a result, 
analysts specializing in remote sensing of water bodies must devote special attention 
to the radiometric qualities of the remotely sensed data. Typically, data to be analyzed 
for hydrologic information are examined carefully to assess quality, Sun angle, and the 
effects of the atmosphere. Geometric preprocessing is used with caution, to avoid unnec-
essary alteration of radiometric qualities of the data. In some instances, analysts calculate 
average brightness over blocks of contiguous pixels to reduce transient noisy effects of 
clouds and whitecaps. Sometimes, several scenes of the same area, acquired at different 
times, can be used to isolate permanent features (e.g., shallows and shoals) from tempo-
rary features (including waves and atmospheric effects). Also, it is often advantageous to 
estimate original radiometric brightnesses from digital values as a means of accurately 
assessing differences in color and brightness.

Lidar Penetration at Different Depths

Under favorable circumstances, lidar (Chapter 9) has the ability to assess water depth and 
to differentiate among varied classes of subsurface vegetation. Lidar returns from water 
bodies have characteristic form if the water surface is calm, the water is clear, and depths 
are within limits of penetration of the signal. Lidar penetration in clear water is often 
described as reaching within two to three Secchi depths— perhaps as deep as 30 m in 
some instances. Wang and Philpot (2007), found that their analysis could correct for scan 
angle effects, assess slope of subsurface topography, and separate among classes of bot-
tom vegetation. Figure 20.4 depicts an idealized lidar waveform (i.e., the accumulated 
history of the returned signal) from a water body. The base of the waveform is formed by 
backscattering from the water column, with distinct peaks formed by returns from the 
water surface and from the subsurface topography.

Roughness of the Water Surface

Figure 20.5 shows spectra for calm and wave- roughened surfaces observed in the visible 
and the near infrared. Wave- roughened surfaces are brighter than smoother surfaces. 
Calm, smooth, water surfaces direct only volume- reflected radiation to the sensor, but 
rough, wavy water surfaces direct a portion of the solar beam directly to the sensor. As a 
result, wavy surfaces are much brighter, especially in the visible portion of the spectrum. 
McKim, Merry, and Layman (1984) described a procedure that uses polarizing filters to 
separate surface brightnesses from those of the water body itself, using high- resolution 
data.

The most intensive studies of ocean roughness have used active microwave sensors 
(Chapter 8). Sea state refers to the roughness of the ocean surface, determined by wind 
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speed and direction as they interact locally with currents and tides. Sea state is an impor-
tant oceanographic and meteorological quality because, if studied over large areas and 
over time, it permits inference of wind speed and direction— valuable information for 
research and forecasts. Radars provide data concerning ocean roughness; the backscat-
tering coefficient increases as wave height increases. Radars therefore provide a means of 
indirectly observing sea state over large areas and a basis for inferring wind speed and 
direction at the water’s surface. If the imaging radar is carried by a satellite, as was the 
case with Seasat (the first satellite designed for oceans, a synthetic aperture radar [SAR] 
system) and the shuttle imaging radar, then the analyst has the opportunity to observe 

 FIGURE 20.4  Example of a generic bathymetric lidar waveform, illustrating the contributions of 

lidar returns contributed by the water surface, water column, and shallow subsurface features. From 

Wang and Philpot (2007, p. 124). Copyright © 2007. Used by permission of Elsevier.

 FIGURE 20.5  Spectra of calm and wind- 

roughened water surfaces (from laboratory 

experiments). Adapted from McKim et al. (1984, 

p. 358). Copyright © 1984 the American Society 

for Photogrammetry and Remote Sensing. Used 

by permission.
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sea state over very large areas at regular intervals. These observations permit oceano-
graphic studies that were impractical or very difficult using conventional data. Further-
more, timely information regarding sea state has obvious benefits for marine navigation 
and can, in principle, form the basis for inferences of wind speed and direction that can 
contribute to meteorological data. Direct observation of sea state is relatively straightfor-
ward, but because ocean areas are so very large and conditions are so rapidly changeable, 
usual observations from ships in transit are much too sparse to provide reliable data.

Rigorous study of sea state by radar started soon after World War II, continuing into 
the 1950s and 1960s, culminating with the radars carried by Seasat and the U.S. space 
shuttle. Although many experiments have been conducted using a variety of microwave 
instruments, one of the most important broad-scale sea state experiments was based on 
the Seasat A project, which used several instruments to monitor the Earth’s oceans. The 
Seasat SAR and RADARSAT (a Canadian SAR satellite program designed for ocean 
monitoring) have provided an opportunity to observe large ocean areas on a repetitive 
basis. Calm ocean surfaces, with waves that are small relative to the radar wavelength, 
act as specular reflectors and appear as dark regions on the image, as energy is reflected 
away from the antenna. As wind speed increases, the ocean surface becomes rougher and 
acts more like a diffuse reflector, causing bright regions on the imagery (Figure 20.6). 
Because radar wavelength and system geometry are known, the received signal can form 
the basis for estimates of wave height and velocity.

 FIGURE 20.6  Seasat SAR image illustrating a rough ocean surface, influenced by winds and 

currents. Nantucket Shoals, August 27, 1978. From NASA, Jet Propulsion Laboratory.
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20.3 BATHYMETRY

Bathymetry refers to water depth and configuration of the ocean floor. Bathymetry is 
one of the most basic forms of hydrographic data, especially significant near coastlines, 
harbors, shoals, and banks. Accurate bathymetric data are essential where shallow water 
is common, presenting hazards to navigation, and where sedimentation, erosion, and 
scouring of channels alters underwater topography. Subsurface features are often subject 
to notable changes that are not observable at the surface, so bathymetric observations are 
often a vital component of marine navigation and mapping.

Water depth can be measured by instruments carried on vessels, especially by acous-
tic (sonar) instruments that measure depths directly below the vessel. Ideally, bathymetric 
maps should be compiled from a more or less uniform network of depth measurements 
rather than from a limited set of data from traverses. Although modern side- scanning 
sonar can yield accurate depth information, aerial imagery is an important means of 
mapping subsurface topography in shallow water.

Photogrammetry (Chapter 4) can be applied to bathymetric measurement if high- 
quality, large-scale photography is available and if the water is clear. Filters have been 
used to separate radiation in the spectral region 0.44–0.54 μm, where solar energy is 
most easily transmitted by clear water. As Figure 20.2 indicates, in principle, sunlight 
can penetrate to depths of about 20 m. Aerial photographs record information only from 
relatively shallow depths, although depths up to 16 m have been mapped using aerial 
photographs.

Special problems in applications of photogrammetry to bathymetry include estima-
tion of differences in refraction between air and water and the difficulty in acquiring 
a reliable underwater control point. Furthermore, mapping is difficult in regions far 
removed from the shoreline because of the difficulty in extending control across zones of 
deep water.

Multispectral Bathymetry

Among the many capabilities offered by Landsat and related technologies is the ability 
to examine imagery to derive bathymetric information from an overhead perspective. 
Polcyn and Lyzenga (1979) reported that, for their study region in the Bahamas, under 
optimum conditions, maximum penetration for Landsat Multispectral Scanner System 
(MSS) band 1 might be as deep as 15–20 m, and about 4–5 m for MSS band 2 (see Fig-
ure 20.7).

The ability to observe subsurface features decreases exponentially with depth (i.e., 
brightness decreases as depth increases). Thus, MSS band 1 (positioned at or near the 
spectral region of maximum penetration) is useful for estimating depth. Observed dark 
values suggest that subsurface features are deep, beyond the 20-m subsurface range repre-
sented in Table 20.2. Bright values suggest that the subsurface is near the surface (Figure 
20.8). Polcyn and Lyzenga (1979) have contributed to bathymetric analysis by defining 
an effective depth- finding algorithm. Jie et al. (1992), Gao (2009), Jawak et al. (2015a, 
2015b), are among those many researchers who have investigated this topic. And in 1985, 
Jupp et al. summarized published values as estimates of maximum penetration of solar 
radiation within clear, calm ocean water under a clear sky, often applied for examination 
of Landsat imagery:
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 FIGURE 20.7  Multispectral bathymetry 

(illustrated here using Landsat MSS green, red, 

and infrared bands). Relative brightnesses of the 

several spectral bands indicate depth classes, 

as illustrated.

 TABLE 20.2 Logarithmic Transformation of Brightness

Ln(x) Brightness Depth

 2 0.69 Dim Deep

 6 1.79

10 2.30

14 2.64

18 2.89

22 3.09

26 3.26 Bright Shallow
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MSS band 1: 15–20 m (50–60 ft)
MSS band 2: 4–5 m (13–17 ft)
MSS band 3: 0.5 m (1.5 ft)
MSS band 4: 0

Thus, MSS4, positioned at or near the spectral region of maximum penetration, is use-
ful for estimating depth. Dark values suggest that the bottom is deep, beyond the 20-m 
range represented in Table 20.2. Many depth extraction algorithms use logarithmic 
transformations of MSS 4 brightness as a means of applying our knowledge that bright-
ness decreases exponentially with depth.

More recently, Jagalingam, Akshaya, and Hegde (2015) applied Landsat 8 data to 
investigate use of bathymetry to examine its effectiveness using Landsat 8 (Figure 20.9). 
Their study examined the effectiveness of bathymetry mapping of the southwest coast of 
India (13° 0  0  N and 74°50  0  E) by applying the ratio transform algorithm on the blue 
and green bands of Landsat 8 satellite imagery. Statistical metrics such as the coefficient 
of determination (R2), root mean square error, and mean absolute error are computed 
between the algorithm’s derived value and the hydrographic chart sounding value. Their 
result reveals a good correlation between the algorithm’s derived value and hydrographic 
chart sounding values.

These procedures seem to be effective if the water body is clear (otherwise, turbid-
ity contributes to brightness) and bottom reflectance is uniform. When attenuation of 
water and bottom reflectivity are known, accuracies as high as 2.5% have been achieved, 

 FIGURE 20.8  Multispectral bathymetry. 

Deep water (below about 20 m) does not reveal 

subsurface features because light reaching such 

depths will not return to the surface. Shallow water 

(see Figure 20.7) will reflect light from the ocean 

floor back to the water surface, revealing the pres-

ence of subsurface features. Radiation reflected 

from the ocean floor may convey information con-

cerning the ocean floor and the colors of shallow 

water.
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although typical accuracies are lower. If the bottom reflectance is not uniform, then 
differences in brightness will be caused by differences not only in depth, but also in 
reflectivity from the subsurface. Because such differences are commonly present due to 
contrasting reflectances of differing sediments and vegetative cover, it is often necessary 
to adjust for differing subsurface reflectance. The effectiveness of this procedure varies 
with Sun angle (due to variations in intensity of illumination) and is most effective when 
data of high radiometric resolution are available.

In some instances, the ratios of two bands may remove differences in bottom reflec-
tivity. Lyzenga (1979) defines an index that separates differing reflectivities using differing 
spectral bands. His index, calculated for each pixel, can be applied to classify pixels into 
differing reflectivity classes, each of which can then be examined to estimate water depth.

20.4 COASTAL PROCESSES AND LANDFORMS

Worldwide, coastal zones form regions significant for settlement, marine shipping, man-
ufacturing, fishing, and more generally, interfaces between land and sea. This section 
discusses some of the processes that shape the nature of coastal landforms and processes 
that guide their form and character. Our discussion refers mainly to unconsolidated 
marine sediments and forces that position and shape coastal features.

Origins and Nature of Oceanic Waves

Although ocean waves can originate from storms, the majority of ocean waves originate 
far offshore in regions characterized by currents, unsettled weather, and prevailing winds 
(Figure 20.10). Surface waves are typically generated far from coastline zones, by prevail-
ing winds that intersect the water surface (“ocean surface waves”). The greater the wind 

 FIGURE 20.9  Multispectral bathymetry using Landsat 8 image data. Relative brightnesses of 

the several spectral bands indicate depth classes, as depicted by the color scale at the right of the 

map. The chart at the right indicates the depths of bathymetric readings plotted to indicate depths as 

assessed. From Jagalingam et al. (2015). Copyright © 2015. Used by permission of Elsevier.
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speed, the larger are the waves and the greater the duration of the wind. The broader the 
area influenced by wind (known as fetch), the larger and stronger the waves. The most 
dramatic waves (such as those of hurricanes, tsunamis, or earthquakes) have significant 
effects but are less common.

Often, rough waves are buffered by prevailing conditions, thereby reducing their size 
and motion (Figure 20.11) as they reach broader oceanic regions.

Wavelength is the lateral distance between successive wave crests.
Wave base is the subsurface depth at which wave motion ceases, assessed as half 
of wavelength.

 FIGURE 20.10  Left: U.S. Navy wave forecast for the northern Indian Ocean (the pastel region) 

and dispersal of waves to the broader oceanic zone (blue). From U.S. Navy. Right: Schematic sketch 

depicting local generation of ocean waves and their dispersal as they reach the broader ocean area.

 FIGURE 20.11  Steady winds gener-

ating ocean waves as they blow over the 

ocean’s fluid surface, far from coastlines. 

These wind waves, known as swells, travel 

for long distances before reaching coast-

lines. The shaded section in the diagram 

highlights the focus of wind effects. The 

term fetch signifies the distance traveled 

by wind, generated without obstruction. 

From Hoa Tran. Used by permission.
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At the wave base and below, wave motion is minimal. Above the wave base, water drop-
lets move in circular patterns within the water column as illustrated in Figure 20.11—
larger near the surface, smaller near the wave base. Despite appearances, wave motion 
transports the energy of wind and waves but does not transport water, which has a verti-
cal motion within the wave.

Figures 20.10–20.12 illustrate several additional features and processes related to 
ocean waves that can be characterized with remote sensing, as follows.

Waves of oscillation: Within the open ocean, ocean swell tends to suppress larger 
waves, often distant from coastlines, shallow water, and islands. Such waves are 
waves of oscillation, characteristic of the open ocean (Figure 20.10, right).
Waves of translation: As oceanic waves approach a coastline, the wave base will 
intersect shallow waters of the coastline, causing vertical motion of oceanic waves 
to cascade toward the beach, tipping forward as they approach the coastline. Such 
waves are waves of translation, characteristic of the waves we see at the beach 
(Figure 20.11).
Beach dynamics: Typically, beach waves approach a coastline at an angle, as a 
function of prevailing winds or local topography (Figure 20.12). Because breaking 
waves systematically carry sediment to the beach, tipping forward as indicated in 
Figure 20.11, wave action maintains the local form of the beach.
Swash is the forward cascade of a wave toward the beach, casting the wave several 
feet forward on the beach, to flow back to the breaking surf in a zig-zag pattern, 
as illustrated in Figure 20.12. Although each wave transports a small amount of 
sediment, the net effect is to transport substantial amounts of sediment along to 
the coastline.
Backswash (or backwash) is the return flow of a wave’s water back toward the 
edge of the shore (typically a few feet or more distant from the wave itself). Back-

 FIGURE 20.12  Swash, backswash, 

and longshore drift. Swash is the forward 

spill of waves as they reach the beach. 

Backswash is the return flow of water toward 

incoming waves, to be transported laterally 

along the coastline, as represented in the 

diagram. Beach drift is the lateral trans-

port of sediment along the coastline at the 

edges of breaking waves. Longshore drift

is the lateral flow of currents and sediment, 

offshore, parallel to the beach. From Hoa 

Tran. Used by permission.
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swash does not flow directly back to the ocean, but rather laterally along the 
beach, transporting water, and beach sand suspended in the water, to contribute 
to the form of the beach (Figure 20.12).
Longshore drift is sediment drift parallel to the coastline, as oblique waves chan-
nel water movement to flow parallel to the coastline, typically many meters off-
shore (Figure 20.12). Longshore drift contributes to the evolution of shorelines, as 
sediment, wind direction, and other influences shape the formation and evolution 
of beach systems.

These processes transport sediments parallel to the coastline, supporting the overall 
integrity of the coastal barrier that protects the coastline. Summer beach profiles, formed 
from offshore marine sediments, create sandy berms positioned above the shoreline. 
These form an elevated berm parallel to the beach, sometimes designated as “recreational 
beaches” (Figure 20.13). Equally significant are the effects of winter’s rough weather, 
which can bring offshore sediments to the shore. In brief, oceanic processes can transport 
marine deposits closer to the shore as the summer season ends, and winter storms can 
disrupt the more stable nature of the summer season.

As summer weather diminishes, winter weather can bring waves strong enough to 
bring offshore deposits close enough to the coastline to erode the summer’s beach profile 
(Figure 20.14, top). Alternatively, in some situations, winter weather can accumulate 
ample offshore sediments to form buffers large enough to shield the shoreline by inter-
cepting winter waves offshore, forcing them to break before they reach the shoreline 
(Figure 20.14, middle). Or sometimes, very shallow, gentle slopes are established far 
enough offshore to protect beaches from winter storms by intercepting large waves before 
they reach the coastline. Later, as winter weather declines, milder summer weather will 
begin to restore the beach profiles described previously, restoring berms (Figure 20.14, 
bottom).

Barrier Islands

Barrier islands are crucial for the resilience of our coastlines and are dynamic systems 
heavily influenced by ocean activity and waves. Remote sensing allows us to monitor and 
study these landforms, their changes over time, and their influence on coastal processes. 

 FIGURE 20.13  Surf zone. Cross- 

sectional sketch of the recreational beach, 

as might be observed in summer. Summer 

weather will typically allow calm waves 

to build coastal terraces, berms, and 

beaches that will endure during the sum-

mer season. From Hoa Tran. Used by per-

mission.
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In this section, we describe the barrier islands of Virginia and provide some imagery and 
illustrations. Note that barrier islands exist in many other places along the coast.

The barrier islands of Virginia form a continuous chain of elongated low-lying sand 
and scrub islands, separated by narrow inlets. Shallow marshes and tidal bays are posi-
tioned along the entire coast of Virginia’s end of the Delmarva Peninsula. The islands 
have been uninhabited since 1936, when the last remaining town (Broadwater, Virginia) 
was evacuated due to a hurricane. Several of the islands are part of the Virginia coast 
reserve, and overall the region is very important for coastal ecology. They offer Virginia’s 
coastline an important natural resilience to sea-level rise and thus are frequently moni-
tored and studied. Remote sensing offers synoptic and detailed views of their changes 
over time.

Virginia’s barrier islands terminate at their southern extent at the mouth of the Ches-
apeake Bay and are marked at the north by a barrier spit (Fenwick Island) that crosses 
the Maryland and Delaware border. In Figure 20.15 (right), land areas appear in silhou-
ette due to underexposure to record hydrographic features. As a result, the land–water 
interface is very sharply delineated. The Chesapeake Bay occupies the western portion of 
the image. Virginia’s coastal waters are visually distinct from those of the bay along the 
curved front visible at center right of the image, due to currents, surface oils, temperature, 
and wind and wave patterns.

The islands themselves are long, low strips of sand shaped by the action of both 
water and wind (Figure 20.16). At the edge of the ocean, a long beach slopes toward 
the water; the lowest sections of the beach are influenced each day by the effects of tides 

 FIGURE 20.14  Winter and summer 

beach profiles. Top: If winter storms break 

near the beach, large waves may destroy 

the beach profile formed during summer 

months. Middle: In some situations, espe-

cially if the offshore coast is shallow, waves 

may create offshore deposits that are large 

enough to cause winter waves to break 

offshore before they reach the summer 

beach, thereby retaining portions of the 

summer beach. Bottom: The summer pro-

file is formed by the persistent, but calm, 

water of the summer season. Although 

summer storms can occur in spring and 

into the summer season, the overall sum-

mer profile tends to form beaches and 

berms. Image by Susmita Sen.
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and currents. The upper, higher sections are influenced only by the highest tides and 
strongest storms, so these regions may experience major changes only once or twice a 
year, or even less often. Inland from the upper beach ridges is windblown sand formed 
into dunes that are generally above the reach of waves, although very strong storms 
may alter these regions. Dunes are reshaped by winds, but their general configuration is 
often stabilized by grasses and small shrubs that cover much of this zone. Inland from 
the dunes, elevations decrease, and water again assumes a dominant influence in shaping 
ecosystems. Water from tidal marshes between the islands and the mainland rises and 
falls with the tides but is without the strong waves that characterize the seaward side of 
the islands.

 FIGURE 20.15  Virginia’s barrier islands. Left: Map of the eastern shore of Virginia. Right: Photo-

graph taken on June 8, 1991, from the space shuttle. The Chesapeake Bay is the water body on the 

left of the image, with the Atlantic Ocean on the right. Norfolk and Virginia Beach, Virginia, are on the 

land mass in the lower left of the image. The land mass in the center of the image is most of the Virginia 

portion of the Delmarva Peninsula and the barrier islands. From NASA, no. STS-40-614-047 (right).

 FIGURE 20.16  Schematic sketch of Virginia’s barrier islands, formed from unconsolidated sedi-

ments transported southward by currents discharged by the Delaware River and other rivers to the 

north. Currents following the Atlantic shoreline carry sediments to the south, creating offshore sand-

bars.
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Thermal images of the Atlantic coast were acquired shortly after noon on July 23, 
1972, using an infrared scanner sensitive in the thermal region. The setting is depicted 
in a broader context in Figures 20.17 and 20.18; the coastline is protected by a series of 
barrier islands formed by sediment transported from the north and periodically reshaped 
by currents and storms. These tidal flats are covered with vegetation adapted to the 
brackish water; they experience tidal fluctuations and have poorly drained soils. Many 
of these features are clearly visible on the infrared images of this region (see the tops of 
Figures 20.17 and 20.18). Bright white strips along the seaward sides of the islands con-
trast sharply with the dark, cool water of the open ocean. This bright strip is, of course, 
the warm surface of the open sandy beach, which has received direct energy of the solar 
beam for several hours and now, at midday, is very hot. Inland from the beach, dunes are 
visible as slightly darker regions, with darker areas caused by shadowing formed (Figure 
20.19). The topographic structures of beach ridges are clearly visible in several regions. In 
tidal marshes, image appearance is controlled largely by vegetative cover, which provides 
a clear delineation of edges of the open channel not usually visible on other images. The 
open water in tidal lagoons has lighter tones than that of the open ocean, indicating its 
warmer temperatures. Shallow water and restricted circulation enabled water in these 
areas to absorb the solar radiation it had been receiving for several hours by the time the 

 FIGURE 20.17  Top: Thermal infrared image of the eastern shore of Virginia, July 23, 1972, 

approximately 1:50 P.M. This area is north of the image in Figure 20.19. A portion of Hog Island is vis-

ible on the top right of the image, overlapping with Figure 20.18. Swash Bay, a tidal lagoon, can be 

seen in the bottom center of the image. Thermal differences are seen in the varying brightnesses of 

the interior water bodies compared to the cool ocean on the top of the image. From NASA. Bottom: 

Schematic of the same area, with some areas of warmer water indicated.



 20. Coastal Processes and Landforms 565

images were acquired. Nonetheless, this water is still cooler than water flowing from the 
land surface; it is possible to see bright (warm) plumes of water from streams that flow 
into tidal marshes from the mainland. Finally, tidal currents are clearly visible as bright 
(warm) streams of water passing between barrier islands to enter the darker (cooler) 
water of the open ocean. This image captures the tide flowing outward toward the open 
ocean (ebb tide).

River Systems

Remote sensing is also used to monitor our river systems, including how rivers interact 
with other rivers and with coastlines, oceans, and lakes; significant impacts are often 
hidden, ignored, or neglected. Rivers, through their geographic, chemical, and geologic 
dimensions, contribute to many unrecognized physical, chemical, and biologic dimen-
sions. The flow of minor streams is likely to reach ponds or small lakes without pro-
nounced impacts, although such flow likely includes overland flow, subsurface transport, 
wetlands, and vernal pools. (See, for example, Williams [2005], The Biology of Tem-
porary Waters.) As river flows reach large bodies of open water, they can form currents 
directed offshore, then disperse into broad plumes, settle into offshore currents, or reside 
at the subsurface, sometimes far offshore. Large water bodies, if characterized by cur-
rents, can capture river flow, or some rivers may have flow powerful enough to dominate 

 FIGURE 20.18  Top: Thermal infrared image of the eastern shore of Virginia, July 23, 1972, 

approximately 1:50 P.M. Hog Island can be seen in the center near the top of the image. From NASA. 

Bottom: Schematic of the same area highlighting thermal differences in the water bodies.
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flow within a lake. (See the U.S. Geological Survey’s [USGS’s] Water Science School at 
www.usgs.gov/special- topics/water- science- school.) A detailed description of all of these 
processes is beyond the scope of this book, but readers are encouraged to view the follow-
ing works for further background.

Borneman, 2014. How Rivers Change the Landscape
Bianchi, 2013. Where the River Meets the Sea
Alizadeh et al., 2018. Effect of River Flow on the Quality of Estuarine Coastal 
Waters Using Machine Learning Models
Pilkey and Cooper, 2014. The Last Beach
Williams, 2006. The Biology of Temporary Waters

Jetties

Jetties occur in various designs and sizes but are basically barriers constructed to main-
tain river flow as it reaches the coastline of a water body such as a lake or ocean. A jetty is 
constructed as a barrier, extending along at least one side of the river channel as it leaves 
the coastline and into a water body (Figure 20.20). Construction often maintains clear 

 FIGURE 20.19  The beach at Hog Island. The sandy shore is warmer than the surrounding water, 

causing the thermal images in Figure 20.18 (top) to appear brighter on land. The cooler waves and 

larger waves of the Atlantic Ocean can be seen on the left side of the image. Photograph by Gordon 

Campbell, At Altitude Gallery. Used by permission.
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channels through the gap between jetties through “tidal scour” (allowing tidal motion to 
carry sediment to open water), or through dredging with sand pumps, augers, or vacuum 
technologies. The jetty maintains river flow on its existing trajectory, preventing lake or 
ocean currents from blocking or redirecting the river channel as it leaves the coastline.

Figure 20.21A depicts an example of a jetty directing the flow of a river into a lake 
near Kalispell, Montana. Here, the Flathead River, originating near Glacier National 
Park, winds through uplands and then travels through lower terrain near Kalispell before 
reaching lower landscapes. The area shown in Figure 20.21A illustrates the river flowing 
through agricultural landscapes, transporting sediment downstream before discharging 
into Flathead Lake. As the river enters the lake, its velocity declines, forming plumes as 
it enters the lake. Note that the jetty captures sediments on its upstream side as the lake 
currents approach the river channel, thus requiring occasional dredging or amendment. 
Without jetties, large rivers are free to change course as they reach the coastline, often 
accumulating deposits at the mouth of the river.

Numerous examples of jetties can be found along the coastline of the United States 
directing rivers into the ocean. A few examples on the east coast of the United States 
include the jetties at Virginia Beach, the Indian River Inlet in Delaware, and the Mason-
boro Inlet in North Carolina. Jetties into the oceans or very large lakes, such as the 
Great Lakes, are often significant structures with large channels and clearly visible bar-
riers (Figure 20.21B, C). In some cases, the structures are huge waterways with multiple 
jetties, canals, and rivers, and significant boat activity. A good example is the shipping 
channel in Port Arthur, Texas (the Sabine- Neches Waterway and Sabine Pass Ship Chan-
nel) (Figure 20.22). The Neches River, which passes through 400 miles in Texas, dis-
charges into the Gulf of Mexico, following the border between Louisiana and Texas. 
Long barriers on either side of the shipping channel extend far into the Gulf of Mexico, 
to prevent northbound currents from traversing across Sabine Pass and diverting the path 
of the channel.

 FIGURE 20.20  Direct channel flow at the coastline. Jetties direct river flow into a large lake with-

out blocking flow as it reaches the coastline. The diagram shows the jetty at the left as it accumulates 

sediment from the current moving from left to right along the shoreline. The two jetties confine the river 

as it enters the lake and capture sediment. Note that the right-hand side is starved of sands because 

currents on the left are diverted into deeper waters by the jetty. From Hoa Tran. Used by permission.



568 IV. APPLICATIONS

20.5 IMPACT OF HURRICANE SANDY ON MANTOLOKING, 
NEW JERSEY

In this section, we examine the impact of Hurricane Sandy on Mantoloking, New  Jersey, 
after it made landfall on October 29, 2012. Mantoloking is a borough in Ocean County 
occupying a portion of the Barnegat Peninsula, an elongated 20-mi (3.2-km) island situ-
ated at the New Jersey coastline. Its western shore forms a narrow bay facing the New 
Jersey coast; its eastern shore faces the Atlantic Ocean. The USGS Program had previ-
ously selected this region as a research site focused on examining responses of this site 
to marine effects. They had installed instruments in the Mantoloking barrier island to 
monitor local responses to tides, storms, currents, and related events. The site therefore 
was positioned to capture, in detail, the effects of the 2012 hurricane event in this region 
and to understand some of the dynamics of the storm and how the island responded to 
Hurricane Sandy.

 FIGURE 20.21  Examples of jetties. (A) The Flathead River near Kalispell, Montana, as it 

flows through agricultural landscapes to enter Flathead Lake. As the river enters the lake, its veloc-

ity declines as its course levels to create the two arrow- shaped features at either side of the river. 

Note the plumes formed as the river enters the lake, and the other lake features that are formed by 

other streams and currents. Approximate location: 48o03 30.94 N, 114o08 04.22 W. Google Earth 

Pro image from Landsat/Copernicus. (B) Jetty at Corpus Christi, Texas, using visible colors, with 

river flow directed offshore and currents originating from the east and south. Approximate location: 

27o49 20.24 N, 97o01 31.19 W. Google Earth Pro image from Data SIO (Scripps Institution of Ocean-

ography), the U.S. National Oceanic and Atmospheric Administration (NOAA), U.S. Navy, National 

Geospatial-Intelligence Agency (NGA), and the General Bathymetric Chart of the Oceans (GEBCO). 

(C) The same jetty at Corpus Christi on a different date as a color- infrared image in a different orienta-

tion and showing a narrower section,  providing a view of sediment suspended in currents and clearly 

showing the barriers extending into the Gulf of Mexico. From USGS.
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 FIGURE 20.22  USGS coastal classification of Texas Point, Jefferson County, Texas, showing an 

overhead view of the channel at Sabine Pass. Texas is the land mass on the left and Louisiana is on 

the right. At the upper left, we can see Port Arthur docks, refineries, storage, and transport facilities. 

Port Arthur is the largest U.S. oil refinery network and an important focal point for fuel transport. The 

colored stripes at the lower left of the image indicate the nature of the sand dunes, beach, structures, 

and dwellings that border the Texas coastline. Note the differences in the terrain on either side of the 

pass, an effect of the coastal transport of sediment south to north along the coastline. From USGS.
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The USGS examined details of the pre- and post-Sandy landscape using airborne 
lidar (see Chapter 9) surveys to record coastal elevations before and after Hurricane 
Sandy and to document the large barrier island breach at Mantoloking (Figure 20.23). 
The left-hand diagram depicts lidar- derived pre-storm elevations from October 26, 2012. 
The center diagram presents post-storm elevations from lidar acquired on November 1, 
2012. The right-hand diagram shows the subtraction of the two lidar- derived elevation 
layers, which illustrates elevation changes caused by the storm. Here, red tones indicate 
elevation losses, which exceed 5 m (16 ft) in some places. The center diagram records the 
effects of the overwash, including cuts through existing structures, perhaps following the 
effects of previous storms.

Mantoloking was hit especially hard by Hurricane Sandy, with the storm effects 
damaging about 90% of the properties and completely breaching the barrier island (Fig-
ures 20.24 and 20.25). More than 50 homes were demolished, accounting for almost 
10% of the housing units in the borough (as of the 2010 Census).

The instrumentation of the barrier island and the remote sensing analysis demon-
strated its value after Hurricane Sandy, as it documented the effects of breaches in the 

 FIGURE 20.23  Pre– and post– Hurricane Sandy maps of Mantoloking, New Jersey. The left-

hand diagram presents the pre-Sandy landscape, October 26, 2012. The center diagram displays 

the post-Sandy situation, November 1, 2012, depicting the effects of Sandy’s storm surge waves in 

eroded beaches and dunes, and in forming a breach cut through the 250-m-wide island, destroying 

structures, roads, and depositing overwash over large areas. The right-hand diagram illustrates the 

difference in pre- and post-Sandy elevation, where red shows areas of most significant elevation loss. 

From USGS.
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barrier islands on water quality and of tidal water levels in the estuary. Interestingly, 
analysis and models showed a decrease in residence time (i.e., the time required to com-
pletely flush the estuary) of estuarine water of 10 days because of the large breaches, 
which indicates an improvement in water quality. There was also little evidence of impact 
on the mainland shore from increased tidal waters due to the breach. This science has 
important implications for post-storm coastal resource management when considering 
whether and how to repair the breach.

20.6 LIDAR FOR COASTAL EROSION  
OF NORTH CAROLINA BEACHES

As discussed in Chapter 9, lidar contributes to several dimensions of hydrologic and 
hydrographic studies, especially for monitoring coastal features and bathymetry, and for 
examining subsurface topography. Here we examine White and Wang (2003), who inter-
preted sequential digital elevation data compiled from lidar imagery to examine changes 
in the form of North Carolina beaches over the interval from 1995 to 2005 due to erosion 
(Figure 20.26). These images show a small section of beach, with the open water of the 
Atlantic at the right, visible as the uniformly dark regions, and the white polygons rep-

 FIGURE 20.24  Elevation maps of building structural damage before and after Hurricane Sandy. 

Here we see a segment of the Mantoloking barrier island before (top) and after (bottom) Hurricane 

Sandy. Yellow and red areas identify structures before and after storm damage, marking damaged 

sites. Compare with Figure 20.25 for an aerial photograph of the same region acquired at the same 

time. From USGS.
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resenting beach houses constructed immediately adjacent to the coastline edge. The gray 
areas that form the background for the left-hand regions represent the slightly elevated 
beaches and coastal topography. These sequential images show the varied impacts of 
beach erosion and beach nourishment, with the final images in the sequence showing the 
decline of ability to protect the structures. The economy, detail, and precision provided 
by lidar imagery offer advantages over previous methods, especially for dynamic land-
forms such as coastlines.

20.7 CHALLENGES IN COASTAL COMMUNITIES—EXAMPLE 
OF MIAMI BEACH

This discussion continues the topics presented in earlier sections, such as storm dam-
age, coastal transport of sediments, and disturbance of beach features, at varied scales, 
using the example of Miami Beach, a coastal resort in Miami-Dade County, Florida. 
It is located on narrow barrier islands positioned between the Atlantic Ocean and Bis-
cayne Bay, which separates Miami Beach from the mainland city of Miami. Miami Beach 
was formed in the early 1900s through the dredging of Biscayne Bay, which created an 

 FIGURE 20.25  Aerial view, storm damage, Mantoloking, New Jersey, October 2012. Barnegat 

Bay and the New Jersey mainland are visible in the central section of the image and in the back-

ground. The storm surge imaged here damaged about 90% of the properties, including the bridge, 

which was removed from service until it was repaired. Compare with Figures 20.23 and 20.24. From 

USGS.
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improvised beach immediately offshore from mainland Miami. It eventually formed one 
of Miami’s most popular tourist destinations, recognized for its beachfront location. It is 
characterized by dense anthropogenic structures immediately adjacent to the coastline, 
and so it is subject to many destructive events, including weather systems, tides, winds, 
and rising sea levels. In this section, we review a list of features that are often present in 
such coastline communities in the context of Miami Beach (Figure 20.27):

1. Use of groins
2. Shallow depths near the beach, allowing large storm waves to break near beaches 

and hotels
3. Narrow coastlines that allow waves to approach hotels and other building struc-

tures
4. Coastlines that allow lateral transport of sediment along the coastline

Remote sensing helps identify conditions, monitor change, and predict associated risks.

 FIGURE 20.26  Lidar DEMs depicting beach erosion, Nags Head, North Carolina, 1997–2005. 

The bright rectangular shapes are beachfront homes as viewed from above; black areas to the right 

show open water of the Atlantic Ocean as observed by lidar (the top row). Lidar point data were 

collected in 1997, 1999, 2004, 2005, and later by NOAA Coastal Mapping programs hosted by the 

Coastal Service Center (CSC) of NOAA at Charleston, South Carolina. The aerial photographs show 

the same areas as do the lidar images, although specific dates and tidal cycles are different. Note that 

the 2013 aerial photo shows loss of structures at the water line. Data were derived online from the CSC 

web, downloaded and rasterized at East Carolina University. Ground reference data were collected 

between 2006 and 2008. See White and Wang (2003) and Allen and Wang (2010).
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During the last decade, the rate of sea-level rise in southern Florida has tripled, 
including regular flooding of important avenues at high tide, with some regions build-
ing higher streets and seawalls and adding pumping stations. We have previously dis-
cussed how beaches are constantly changing environments, especially subject to seasonal 
fluctuations that influence the overall structures of shorelines and alter coastal features. 
Groins, found at Miami Beach, are another type of beach structure that extends perpen-
dicularly from the shoreline, positioned across the surf zone. Their purpose is to capture 
and stabilize sands carried by wave action, as sketched in Figure 20.28. However, in 
some situations, groins can capture sands, creating cascades of sands that fill neighboring 
beach segments, fill adjacent groin areas, and distribute sand beyond the reach of groins. 
Thus, such groins can create difficulties by capturing sands that flow into neighboring 
groins, thereby contributing to downdrift beach losses.

Because Miami Beach is vulnerable to ocean risks, the city has implemented numer-
ous programs to increase its resilience. They have elevated streets, created and elevated 
seawalls, and installed pump stations in lower areas to help control flooding, which is 
common at high tide. They are also attempting to restore beaches impacted by erosion 
and to reduce erosion in the long term (Figure 20.29). The restoration of beaches, known 
as beach renourishment, involves taking sand from other places (“borrow sites”) and 
placing it on the damaged beaches. This allows for the installation of dune systems and 
a widening of the beach to create a larger buffer between hotels and other buildings and 
the coastline. The city of Miami is also attempting to preserve the coral reefs in the area, 
which provide additional fortification and protection from erosion.

 FIGURE 20.27  Two images showing Miami Beach over time. (A) Aerial image of Fontainbleau 

Hotel, constructed in 1954, which highlights the narrow beaches, shallow water, and groins. (B) The 

same area in 1970, with many more structures along the coastline. There has been subsequent mod-

est expansion of beaches focused on selected hotels. Combined, these features depict characteris-

tics regarded as unfavorable for large structures positioned near coastlines: (1) groins, now recog-

nized as largely ineffective; (2) shallow waters close to coastlines, allowing storm waves to break close 

to shore; and (3) narrow beaches, allowing storms to reach coastlines near structures. From Florida 

Memory Library.
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 FIGURE 20.28  Groins positioned at coastlines to control longshore transport of sands. In con-

cept, groins are intended to equalize the distribution of beach sands, although they may fall short of 

that objective. Here, the diagram shows erosion at the upstream sides of groins, deposition at the 

downstream sides. Sometimes, aggressive transport of sand can spill sand to cover neighboring 

groins. Image by Susmita Sen.
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 FIGURE 20.29  A beach renourishment project near Miami Beach. Left: Coastal features prior 

to the 54th Street renourishment project, later engineered for renewal and expansion. For this project, 

the U.S. Army Corps of Engineers transported beach- quality sands by truck from inland sites to renew 

and expand the beach, with costs shared by the federal government, the City of Miami, and Miami-

Dade County. Right: A beach renourishment project in progress in the foreground. The completed 

coastline now provides a wider buffer between hotels and the coastline, forming a broader beach, and 

a wider extent of shallow waters. From U.S. Army Corps of Engineers.
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In addition to shoreline erosion and sea level rise, the growth and development of 
Miami and Miami Beach have decreased the water quality of Biscayne Bay, primarily 
because of increased stormwater discharge and other pollutants. Remote sensing can 
be used to monitor these various dynamics both on land and in the water. It enables 
the assessment of sea surface temperature, turbidity, changes in photosynthetic material 
(algae), and other indicators of water quality. Figure 20.30 shows Miami Beach from 
the view of the 10-m Sentinel-2 bands (Chapter 7). The narrow beach and renourished 
area are visible in the natural- color composite (left) and can be monitored over time with 
multiple images. A version of the normalized difference turbidity index (NDTI) (i.e., [red 
– green]/[red + green]) calculated from the 10-m green and red Sentinel-2 band highlights 
the turbidity in Biscayne Bay and along the coast of the Atlantic (right). The influence 
of the two jetties connecting Biscayne Bay to the Atlantic Ocean can also be seen with 
respect to the turbidity and deposition on either side of the jetty.

 FIGURE 20.30  Miami Beach as seen from Sentinel-2 on May 5, 2020. Left: Natural- color com-

posite (Sentinel-2 bands 4, 3, 2) with two examples of beach renourishment highlighted in red boxes. 

The top box shows the 54th Street renourishment area described in Figure 20.29. Right: A version of 

the normalized difference turbidity index (red – green)/(red + green) calculated from Sentinel-2 bands 

4 and 3 showing turbidity in Biscayne Bay and along the Atlantic coast. These types of indices can 

be used to assess changes in water quality over time. The extent of the image in the left is shown in 

the red box on the right.
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20.8 SUMMARY

Hydrologic studies cover a broad range of subject matter, from the movement of currents 
in bodies of open water to evaporation of moisture from a soil surface. Such topics can 
be very challenging, especially if the goal is to examine changes in hydrologic variables as 
they occur over time and space, because the usual methods of surface observation gather 
data at isolated points or at specific times. Two of the great advantages of remote sens-
ing in this context are the synoptic view of the aerial perspective and the opportunity to 
examine dynamic patterns at frequent intervals.

Yet, remote sensing encounters difficulties when applied to hydrologic studies. Many 
of the standard sensors and analytical techniques have been developed for the study of 
land areas and are not easily applied to the special problems of understanding water 
bodies. Analyses often depend on detection of rather subtle differences in color, which 
are easily lost by the effects of atmospheric degradation of the remotely sensed energy, 
subsurface currents, and varying shadows/Sun angles. Currents and other dynamic fea-
tures may change rapidly, requiring frequent observation to record the characteristics of 
significance to the analyst. Important hydrologic variables, such as groundwater, are not 
as a rule directly visible, and others, such as evapotranspiration, are not at all visible but 
must be estimated through other quantities that may themselves be difficult to observe. 
These problems and others mean that further development of hydrologic remote sensing 
is likely to be one of the most challenging research areas in remote sensing.

REVIEW QUESTIONS

1. List qualities of water bodies that present difficulties for those who study them using only 
surface observations collected from a ship. Identify those difficulties that are at least 
partially alleviated by use of some form of remote sensing.

2. It is probably best to compile bathymetric information using directly observed surface 
data because of their significance for navigation. Yet there are some special situations in 
which use of remotely sensed data may be especially advantageous; can you identify at 
least two such circumstances?

3. Can you think of important applications of the accurate delineation of edges of water 
bodies (i.e., simple separation of land vs. open water)? Be sure to consider observations 
over time, as well as use of images from a single date.

4. Contrast SPOT and MODIS (Chapter 7) with respect to their usefulness for oceano-
graphic studies.

5. Write a short description of a design for a multispectral remote sensing system tailored 
specifically for collecting hydrologic information and accurate location of the edges of 
water bodies. Disregard all other applications. Suggest some of the factors that might be 
considered in choosing the optimum time of day for using such a system.

6. Outline the dilemma faced by scientists who wish to use preprocessing in the application 
of SPOT, Landsat, or Sentinel-2 data for bathymetric information. Describe the reasons 
a scientist would very much like to use preprocessing in some instances, as well as the 
counterbalancing reasons he or she would prefer to avoid preprocessing.
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7. Outline some of the ways that the methods of image classification might be useful for 
hydrologic studies. Also outline problems and difficulties that limit the usefulness of 
these methods for studies of water bodies.
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MAJOR TOPICS TO UNDERSTAND

Aerial Imagery for Land-Use Information

Land-Use Classification

Visual Interpretation of Land Use and Land Cover

Land-Use Change by Visual Interpretation

Historical Land Cover Interpretation for Environmental Analysis

Other Land-Use Classification Systems

Land Cover Mapping by Image Classification

Broad-Scale Land Cover Studies

Sources of Compiled Land-Use Data

21.1 INTRODUCTION

Land use describes use of the land surface by humans. Normally, use of land is defined in 
an economic context, so we think of land as it is used for agricultural, residential, com-
mercial, and other purposes. However, strictly speaking, we can seldom see the use of the 

 21 Land Use  
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land, except on the closest inspection, so we also consider land cover—the visible fea-
tures of the Earth’s surface, such as vegetative cover, structures, highways, forests, ponds, 
and such, often modified by humans (Figure 21.1). So, as a practical matter, we consider 
land use and land cover together, but we also recognize distinctions between the two.

Modern society depends on accurate land-use data for both scientific and adminis-
trative purposes. They form essential components of local and regional economic plan-
ning to ensure that various activities are positioned on the landscape in a rational manner. 
For example, accurate knowledge of land-use patterns permits planning to avoid plac-
ing residential housing adjacent to heavy industry or in floodplains. Accurate land-use 
information can ensure that residential neighborhoods are logically placed with respect 
to commercial centers and access to transportation services. In another context, land use 
is an important component of climatic and hydrologic modeling to estimate the runoff of 
rainfall from varied surfaces into stream systems. Accurate land-use data are important 
for transportation planning, so traffic engineers can estimate the flow of vehicles from 
one region to another and design highways with appropriate capacities.

Land-use patterns also reflect the character of a society’s intimate interaction with 
its physical environment. Although land-use patterns in our own society seem self- evident 
and natural, other societies often organize themselves in contrasting patterns. This fact 
becomes obvious when it is possible to observe differing economic and social systems 
occupying similar environments.

The practice of land use and analysis has a long history involving a wide variety of 
places and applications, which Philipson covers in Manual of Photographic Interpreta-
tion (1997). Philipson’s Chapter 9, “Land Use and Land Cover Inventory,” is useful for 
understanding the history of land-use and land cover analysis, much of which was pre-
pared before digital imagery was widely available.

 FIGURE 21.1  Land use versus land cover for part of Blacksburg, Virginia. Left: The 2019 land-

use categories created by the town of Blacksburg (https://sites.google.com/vt.edu/townofblacksburg-

gisdata). Land use refers to the principal economic enterprises that characterize an area of land, such 

as Commercial, Residential, Park, and University. Note the large area of “University” in the middle 

of the map. From Virginia Tech Library. Used by permission. Right: Aerial image of the same area, 

approximate location, 37o25 15.54 N, 80o25 25.80 W. Land cover indicates physical features that 

occupy the surface of the Earth. In the area designated as “University” on the left, land cover fea-

tures such as grass, bare soil, trees, buildings, and other impervious surfaces are visible on the right. 

Google Earth Pro image from Landsat/Copernicus.
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Here, we should note briefly that aerial imagery for land-use and land cover analysis 
had its origins early in civilian uses of aerial surveys but did not develop into systematic 
applications until the 1970s or so. For many years, land-use inventory was largely based 
on automobile surveys to acquire rough inventories of urban landscapes and on access to 
planning documents, with aerial surveys applicable when costs were feasible. An impor-
tant change occurred when the U.S. Geological Survey (USGS) hired James R. Anderson 
to develop systematic classification of land use and land cover as observed initially by 
aerial survey and later from Landsat imagery (Figure 21.2).

21.2 AERIAL IMAGERY FOR LAND-USE INFORMATION

Although some forms of land-use data (such as local zoning or tax data) are acquired 
through direct observation by officials who visit each site in person, the vast majority of 
land-use and land cover data is acquired through interpretation of maps, diagrams, aerial 
photography, and similar imagery. Aerial photography provides an overhead view, a spa-
tial perspective, and comprehensive detail that permits accurate, systematic, and effective 
study of land-use patterns. Early proponents of the use of aerial photography envisioned 
that it would provide a rich source of information regarding the structure of cities and 
landscapes. By the 1930s, the staff members of the Tennessee Valley Authority (TVA) 
program were among the first to pioneer methods for using aerial photography for land-
use surveys. Later, the USGS developed classification systems specifically tailored for use 

 FIGURE 21.2  James R. Anderson’s land use and land cover classification system. His contribu-

tions led to more effective analyses of aerial photography and interpretations of satellite imagery. The 

professional paper published by the USGS has been widely used throughout the United States and 

overseas.
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with aerial photography. These techniques form the foundation for today’s applications 
of satellite imagery for land-use surveys.

Remotely sensed images lend themselves to accurate land cover and land-use map-
ping in part because land cover information can be interpreted more or less directly 
from aerial images and because aerial observation allows us to view the backgrounds of 
neighboring features.

Land-use maps are routinely prepared on a wide variety of scales, typically ranging 
from 1:12,500 and larger to 1:250,000 and smaller. At one end of this spectrum (larger 
scale maps), remotely sensed imagery may itself contribute relatively little information to 
the survey; its main role may be to form a highly detailed base for recording data gath-
ered by other means. At such large scales, the land-use map may serve as a kind of refer-
ence, having little cartographic generalization. Such products are often used at the lowest 
levels of local governments, perhaps mainly in urban areas, that have requirements for 
detailed information and financial resources to acquire it (Figure 21.3).

As the scale of the survey becomes broader (i.e., as map scale becomes smaller), 
the contribution of the image to the informational content of the map becomes greater, 
although even at the smallest scale there must always be some contribution from collat-
eral information. Differing scales and levels of detail serve different purposes and differ-
ent users. For the regional planner, losses of resolution and detail at smaller scales may 
actually provide an advantage in the sense that analysts may prefer integration and sim-
plification of the information that must be examined. For medium- to small-scale land-
use surveys, the product is often a thematic map that depicts predominant land cover in 

 FIGURE 21.3  A planning official using an 

aerial photograph to discuss land-use policy 

relating to planning land use near Boston’s Logan 

Airport, 1973. Although modern displays have 

replaced such images, they are especially valu-

able for informing the public of plans for broad-

scale renewal projects. From National Archives 

and Records Administration, no. ARC548443.
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relatively homogeneous areas, delineated subject to limitations of scale, resolution, and 
other constraints accepted by users of thematic maps.

21.3 LAND-USE CLASSIFICATION

Preparation of a land-use/land cover (LULC) map requires that mapped areas be subdi-
vided into discrete parcels, each labeled with distinct, mutually exclusive nominal labels. 
That is, each parcel must be identified using a single, distinct label in a classification 
system. “Nominal” simply means that the labels are names rather than values. So, for 
example, when we use a symbol such as “22” to designate a category, we do not mean 
that it has twice the value of “11,” but simply that the separate designations convey dif-
ferent qualitative meanings, such as, for example, “urban” and “agricultural” land uses. 
Usually, we also use colors, or colors and symbols, to designate land-use classes on maps.

Perhaps the most widely used classification system for land-use and land cover data 
derived from aerial photography is the USGS’s Land Use and Land Cover classification 
system, developed during the 1970s by Anderson et al. (1976) and also referred to as the 
Anderson system (Table 21.1).

Such classification systems have many advantages over previous systems. Whereas 
previous systems did not consider the unique advantages of aerial imagery as a source 
of land-use and land cover data, the USGS system was specifically prepared for use with 
aerial photography and related imagery. It has a hierarchical design that lends itself to use 
with images of varied scales and resolutions. Level I categories (indicated with a single 
digit, 1–9), for example, are designed for broad-scale, coarse- resolution imagery (e.g., 
broad-scale satellite imagery or high- altitude aerial photography).

Although the USGS system specifies Level I and II categories, more detailed classes 
at Level III and below must be defined by the analyst to meet the specific requirements of 
a particular study and a specific region. When an interpreter defines Level III categories, 
the Level I and II categories should be used as a framework for the more detailed Level 
III classes.

21.4 VISUAL INTERPRETATION OF LAND USE AND LAND COVER

Image analysts apply the elements of image interpretation to delineate separate land cover 
classes, applied in an organized and systematic manner. Visual land-use interpretation 
proceeds by marking boundaries between categories as they occur on the imagery. Often, 
interpreters mark transparent overlays that register to the image, or digitize directly as 
the image is displayed on a computer screen. As each land-use parcel is outlined, its iden-
tity is marked with a symbol (often one to three numerals) matching to the classification 
system (Figure 21.4).

A land-use map is then prepared by delineating regions of consistent land use and 
assigning them to appropriate classes in land-use classification. An example can show an 
application of land-use mapping to an aerial photograph, using the principles outlined 
in Chapter 6 (Figure 21.5). Interpretation steps are as follows: (1) the original aerial 
photograph is examined (Figure 21.5A); (2) the land-use boundaries, as defined by a 
photointerpreter, are drawn to separate land-use parcels at Anderson Level II (Figure 
21.5B); (3) the separate parcels are then assigned to classes and symbolized with colors 
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 TABLE 21.1 USGS Land Use and Land Cover Classification

1 Urban or Built-Up Land
11 Residential
12 Commercial Services
13 Industrial
14 Transportation, Communications
15 Industrial and Commercial
16 Mixed Urban or Built-Up Land
17 Other Urban or Built-Up Land

2 Agricultural Land
21 Cropland and Pasture
22 Orchards, Groves, Vineyards, Nurseries
23 Confined Feeding Operations
24 Other Agricultural Land

3 Rangeland
31 Herbaceous Rangeland
32 Shrub and Brush Rangeland
33 Mixed Rangeland

4 Forest Land
41 Deciduous Forest Land
42 Evergreen Forest Land
43 Mixed Forest Land

5 Water
51 Streams and Canals
52 Lakes
53 Reservoirs
54 Bays and Estuaries

6 Wetland
61 Forested Wetlands
62 Nonforested Wetlands

7 Barren Land
71 Dry Salt Flats
72 Beaches
73 Sandy Areas Other than Beaches
74 Bare Exposed Rock
75 Strip Mines, Quarries, and Gravel Pits
76 Transitional Areas
77 Mixed Barren Land

8 Tundra
81 Shrub and Brush Tundra
82 Herbaceous Tundra
83 Bare Ground
84 Wet Tundra
85 Mixed Tundra

9 Perennial Snow and Ice
91 Perennial Snowfields
92 Glaciers

Note: From Anderson et al. (1976, p. 28).



588 IV. APPLICATIONS

 FIGURE 21.4  Land-use and land cover maps. (a) Large scale, fine detail; (b) small scale, coarse 

detail. Scale determines much of the information conveyed by maps, as indicated in these examples. 

Coarse detail generalizes, losing specifics. Fine detail loses spatial scope, requiring use of larger map 

surfaces.

 FIGURE 21.5  Representation of key steps in interpretation of land use from aerial photogra-

phy. (A) Aerial photograph only; (B) delineation of boundaries; (C) symbolization of principal classes; 

(D) boundaries without the backdrop of the aerial photograph; (E) map with symbols and key. From 

Jessica Dorr Perkins. Used by permission.
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or symbols (Figure 21.5C and 21.5D); and finally (4) a map is displayed with a legend 
(Figure 21.5E). LULC information must be presented to the user in a planimetrically cor-
rect form, so the imagery that is used for the interpretation must be corrected beforehand 
(e.g., as in the case of a digital orthophoto quadrangle [Chapter 4]), or the boundaries 
must later be rectified.

Identification of land cover parcels is based on the elements of image interpretation, 
as presented in Chapter 6. Although land use may sometimes be characterized by specific 
objects, usually the primary task is one of consistent delineation of uniform parcels that 
match the classification system. As an example, cropped agricultural land (as it occurs 
in midlatitude landscapes) is usually easily recognizable by the systematic division of 
fields and smooth, even textures. Tone varies with the crop and the growth stage (Fig-
ure 21.6A). Pasture (Anderson symbol 21) usually has more irregular boundaries and a 
mottled texture with medium tones and is often characterized by isolated trees or small 
groves both at edges and in the interiors of parcels (Figure 21.6B). Deciduous forest 
(Anderson symbol 41) is characterized by rough textures and medium dark tones that 
usually occur in relatively large parcels with irregular edges (i.e., there is a small patch in 
Figure 21.6B). Roads and clearings are common.

Land in transition (Anderson symbol 76) is usually recognizable by the bright tones 
characteristic of bare soil exposed during construction and irregular outlines. Sometimes 
the outlines of roadways, foundations for buildings, and partially completed structures 
are visible (Figure 21.7A, B). Transportation (Anderson symbol 14) is often recogniz-
able by linear patterns that cut across predominant land-use patterns and by distinctive 
loops of interchanges. Residential (Anderson symbol 11) land uses, especially in subur-
ban developments, are often distinctive because of the even placement of structures, the 
curving street patterns, and the even backgrounds of lawns and ornamental trees (Fig-
ure 21.7C). Commercial services (Anderson symbol 12) is characterized by bright tones 
(because of the predominance of pavement, parking lots, and rooftops), uneven textures 
(because of shadowing of buildings), and close proximity to transportation and other 
high- density land-use classes.

As a map is prepared, remember that some land-use maps have legal standing and 
that some may be intended to match data collected previously or by a neighboring juris-

 FIGURE 21.6  Agricultural land showing distinctive features that aid in visual interpretation. (A) 

Systematic fields with regular shapes and smooth, even textures; (B) two fields (top center) and open 

pasture. A small patch of trees can also be seen. From Virginia Department of Transportation. Used 

by permission.
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diction. Therefore, the analyst should not make off-the-cuff adjustments solely to address 
local interpretation problems.

Interpreters must take care to define delineations that are consistent, clear, and leg-
ible. Each parcel is completely enclosed by a boundary and is labeled with a symbol keyed 
to the classification system. The interpreter delineates only those features that occupy 
areas at the scale of the final map, so linear features (such as streams and rivers, railways, 
and powerlines) or point data are usually not mapped.

Some parcels will encompass categories other than those named by the parcel label. 
Such inclusions are permissible but must be clearly described in an accompanying report 
and must be consistent throughout the map. When several interpreters work on the same 
project, consistency is especially important. Interpreters must coordinate their work with 
those assigned to neighboring areas, so that detail is uniform throughout the mapped 
area.

The entire area devoted to a specific use is delineated on the overlay. Thus, delinea-
tion of an airfield normally includes not only the runway but also hangars, passenger 
terminals, parking areas, access roads, and, in general, features enclosed by limits of the 

 FIGURE 21.7  Visual interpretation of aerial imagery for land-use–land cover information. (A and 

B) Land in transition (Anderson symbol 76) is often characterized by bright tones, uneven texture, 

and irregular parcels; (C) residential land (Anderson symbol 11). Suburban residential land, such as 

that shown here, is often characterized by evenly spaced rooftops and systematic patterns of paved 

streets. From Virginia Department of Transportation. Used by permission.

A B

C
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perimeter fence (i.e., the outline of the parcel encompasses areas occupied by all of these 
features, even though they may not be shown individually on the map). In a similar man-
ner, delineations of interstate highways include not only the two parallel roadways, but 
also a median strip and a fenced right of way.

The example of an aerial image of a quarry can also illustrate this practice (Figure 
21.8). The quarry itself consists of several features, each of which has a distinctive appear-
ance on the aerial photograph. Even though it would be possible to individually delineate 
the transportation and loading structures, the milling and administration buildings, the 
quarries, and the spoil, these features constitute a single land use, so all the features are 
outlined and labeled as a single parcel. Only at the very largest scales, possibly required 

 FIGURE 21.8  Delineation of an entire area devoted to a given use. This quarry consists of a com-

plex of individual activities that together constitute a single enterprise, so the individual component 

need not be delineated separately. From Virginia Department of Transportation. Used by permission.
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for planning and management of the facility itself, would the individual components be 
delineated as separate features.

The issue of multiple use occurs because we assign a single label to each parcel, even 
though we know that there may in fact be several uses. For example, a forested area may 
simultaneously serve as a source of timber, a recreational area for hunters and hikers, and 
a source of runoff that supplies water for an urban region.

The interpreter must select an appropriate minimum size for the smallest parcels to 
be represented on the final map. Areas smaller than this size will be omitted. Even though 
they are visible to the interpreter, they are too small to depict legibly.

Usually, the label of each category identifies the predominant category present 
within each parcel. Although at small scales there may be unavoidable inclusions of other 
categories, the interpreter should aspire to define categories that include consistent mix-
tures of such inclusions.

21.5 LAND-USE CHANGE BY VISUAL INTERPRETATION

Land-use patterns change over time in response to economic, social, and environmental 
forces. The practical significance of such changes is obvious. For planners and admin-
istrators, they reveal the areas that require the greatest attention if communities are to 
develop in a harmonious and orderly manner. From a conceptual perspective, study of 
land-use changes permits identification of long-term trends in time and space and the 
formation of policy in anticipation of the problems that accompany changes in land use 
(Anderson, 1977; Estes and Senger, 1972; Jensen and Toll, 1982).

Remote sensing and photointerpretation provide the primary vehicles for compil-
ing land-use change maps—maps that represent changes in land use from one date to 
another. Such maps form important tools in planning land-use policy, in hydrologic man-
agement of watersheds, in transportation planning (to understand changes in the popula-
tion patterns that generate traffic flow), and in environmental studies.

The concept behind land-use and land cover change is very simple: two maps repre-
senting the same region, prepared to depict land-use patterns at different dates, are com-
pared, point by point, to summarize differences between the two dates (Figure 21.9). In 
practice, compiling land-use and land cover change requires mastery of several practical 
procedures that often reveal previously hidden difficulties.

 FIGURE 21.9  Schematic representation of compilation of land-use change using sequential 

aerial imagery. Information from two similar maps is aggregated, or extracted, to create a third map 

combining information from the two earlier maps.
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First, the two maps must use the same classification system, or at a minimum, two 
compatible systems. Compatible classifications mean that the classes can be clearly 
matched to one another without omission or ambiguity. For example, if one map rep-
resents forested land as a single category, “forest,” and a second uses three classes—
“coniferous,” “deciduous,” and “mixed coniferous/deciduous,” then the two maps are 
compatible in the sense that the three categories of the second map can be combined into 
a single forested class that is logically compatible with the “forest” class on the first map. 
As long as the classes are matched at that level of generalization, one can be confident 
that the comparisons would reveal changes in the extent of forested land.

However, if the second map employs classes such as “densely forested,” “partially 
forested,” and “sparsely forested,” we could not reasonably match these classes to the 
“forest class” on the first map; the two sets of classes are not logically compatible. The 
meanings conveyed by these classes, as represented on the two maps, are not equivalent, 
so they cannot be compared to determine whether the differences represent true change 
or simply are differences in the way the maps were prepared.

Second, the two maps must be compatible with respect to scale, geometry, and level 
of detail. Can we match one point on one map with the corresponding point on the sec-
ond and be sure that both points refer to the same place on the Earth’s surface? If not, 
we cannot conduct a change analysis using the two maps because we cannot be sure that 
differences in the two maps reflect genuine differences in land use and are not simply dif-
ferences in the projection, scale, or geometric properties of the two maps.

These two basic conditions, compatibility of the information portrayed and geomet-
ric compatibility, must be satisfied before change data can be compiled using any two 
maps or images. Often, a land-use map is prepared to meet the very specific objectives of 
the sponsoring organization. Therefore, it may be difficult to reuse that map in a land-use 
change study many years later. Objectives may have changed, or the level of detail, the 
classification system, and so forth, reflect the needs of a previous era. It is for this reason 
that land-use change studies for maps are commonly prepared at the time of the study, 
employing consistent materials, methods, and procedures, even if earlier studies already 
exist and are available.

21.6 HISTORICAL LAND COVER INTERPRETATION 
FOR ENVIRONMENTAL ANALYSIS

A special application of land-use change analysis has been developed to address the envi-
ronmental hazards arising from land-use change in regions where hazardous industrial 
materials have been abandoned. Aerial imagery is especially valuable because it provides 
a spatial perspective and has the ability both to provide a detailed historical record and 
to observe outside the visible spectrum. These capabilities allow analysts to examine 
problems over time, to detect the existence of specific environmental problems, and to 
see them in their geographical context. Image analysis can provide a historical record of 
conditions and actions at specific sites to assess the nature and severity of conditions, 
often when other sources of information are not available.

Over the decades, in industrial regions of the United States, hazardous industrial 
wastes have been deposited in varied disposal sites, including ponds, lagoons, and land-
fills, that were not designed to safely store dangerous substances. Although many of these 
areas were once positioned in rural or sparsely populated regions, urban growth has 
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brought many of them close to residential neighborhoods. As a result, many such sites 
are now near populated regions and in some instances have been converted to other uses, 
including residential housing, schoolyards, and recreational areas. Deterioration of con-
tainers has released these materials to contaminate nearby soils and to enter groundwater 
systems, migrating beyond the original site. Often, the use of the site for waste disposal 
was not properly recorded or the nature of the wastes was never documented, so remedia-
tion is limited by ignorance of the specifics of the situation.

Because of the difficulty of establishing the historical pattern of use at such sites and 
the absence or inaccuracy of official records, aerial photography has formed one of the 
most valuable resources for investigating them. For many areas in the United States, the 
archives of aerial photography extend as far back as the 1930s. Thus, it may be possible 
to assemble photographs to form a sequence of snapshots that record the use of a site over 
time. Such images, when combined with field data, official records, and health surveys, 
can permit development of an understanding of the sequence of events and assessment of 
the risks to the environment and to nearby populations. In some instances, use of pho-
tography permits estimation of the amount of waste present and even specification of the 
class of materials by identifying the kinds of containers used. Aerial photography permits 
development of an understanding of the relationship of each site with respect to drainage, 
population, economic activities, and other waste disposal sites.

A sequence of photographs (Figure 21.10) illustrates the Environmental Protection 
Agency’s (EPA’s) ability to track the history of waste disposal sites. (See https:// semspub.
epa.gov/work/04/11104345.pdf for the complete EPA report.) The sequence of the most 

 FIGURE 21.10  Aerial photographs depicting land-use changes at the Elmore/Sunnyside waste 

disposal area in Spartanburg County, South Carolina, 1955–1981. These photographs, selected from 

a longer sequence, show the active landfill (1955, left), newly constructed residential housing at the 

same site (1965, center), and the mature residential neighborhood (1981, right). Historical aerial pho-

tography permits analysts to unravel the historical sequence that otherwise is no longer visible at 

ground level for the on-site observation. From EPA, Environmental Photographic Interpretation Center.
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recent photographs for this site shows how current land use can mask evidence that 
reveals the history of the site’s use for waste disposal. These photographs show aerial 
photographs of the Elmore Waste Disposal site and the Sunnyside Dump in Spartanburg 
County, South Carolina. These sites are outlined on each photograph. The Elmore Waste 
Disposal site is about one-half acre in area, situated near an area that is now a residential 
neighborhood. The Elmore site was later designated as a superfund site, so it has been 
monitored by the EPA.

A large number of drums containing liquid wastes were placed at this site between 
1975 and 1977. In 1977, the property owner signed a consent order with the state of 
South Carolina for cleanup of the site. However, state health and environmental officials 
judged the actions taken to be inadequate for the situation and ordered the owner to cease 
use of the site. Between 1981 and 1984, state and federal EPA officials investigated the 
site and found arsenic, chromium, and other heavy metals, as well as a number of volatile 
organic compounds, in the site soils.

At various times during this interval, between 150 and 300 drums were present on-
site, as well as a 6,000-gallon tank, which was partially buried and contained contami-
nated waste. When the owner died in 1983, ownership passed to his heirs, one of whom 
continued to operate the site and accept waste drums. After many failed efforts to compel 
this owner to clean the site, in June 1986 state officials completed a state- funded removal 
of 5,500 tons of contaminated soil and 16,800 pounds of liquid waste, which were taken 
to an appropriate hazardous waste facility.

After this removal, groundwater monitoring wells and EPA’s remedial investigation 
in 1991–1992 identified a contaminated groundwater plume extending some 700 feet 
north from the site. The estimated area underlain by this plume, north of the Elmore 
property, is 6–10 acres. Although no private water wells are located near this plume, the 
groundwater discharges to a creek. Additionally, surface soil in a one- quarter- acre area 
at one end of the Elmore property was found to be contaminated by lead and arsenic at 
levels exceeding health- based residential standards for those metals.

This area and its history illustrate the value of aerial photography in providing docu-
mentation of waste disposal sites and an overview of disposal sites, residential areas, and 
the drainage systems in their spatial context.

21.7 OTHER LAND-USE CLASSIFICATION SYSTEMS

A land-use classification system is not simply a list of categories. It must organize its 
classes according to an underlying logic that defines the relationships between classes. 
The organizing logic must impose a consistent organization on the classes. Classes must 
be mutually exclusive, and subclasses must nest within each other to form the hierarchi-
cal structure that we encountered in the Anderson system, for example. Furthermore, the 
distinctions between the classes must be consistent from class to class. For example, if 
some classes are defined on the basis of economic function, then the entire classification 
structure must reflect that logic.

General-Purpose Land-Use Classification

The Andersen (USGS) land-use classification system (Table 21.1) is specifically designed 
for use with aerial photography and related imagery. It is a good example of a general- 
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purpose land-use classification system, intended to provide a comprehensive classifica-
tion of land use. General- purpose classifications are among the most widely used and are 
probably the classifications most likely to be encountered by photointerpreters. General- 
purpose land-use classification attempts to provide a classification that serves many pur-
poses, although it is not specifically tailored for any specific application.

There were several predecessors to the Andersen system, with respect to scope and 
purpose.

L. Dudley Stamp, a British economist, organized a national survey of Great Brit-
ain’s land use from 1931 to 1938. He gathered large-scale land-use information for Britain 
using volunteers who recorded land use near their residences by annotating large-scale 
topographic maps. The maps were then mailed to a central office, where information was 
edited and posted to maps at 1:63,360. Although completion of this ambitious project 
was delayed by World War II, the information was still valuable when it was used in plan-
ning Britain’s economic recovery after the war. Later, in 1950, Stamp’s work supported 
broad-scale international mapping. His campaign extended its scope over a broad reach. 
His Land Utilization Survey led Stamp to develop a strategy for a World Land Use Survey 
(Stamp, 1951).

In the United States, during the same interval, photointerpreters at the TVA 
defined procedures to interpret land use from aerial photography. TVA photointerpreters 
devised a system (no longer in use) that classified each parcel according to both its eco-
nomic use and its physical properties.

During the mid-1960s, scientists at Cornell University designed New York’s Land 
Use and Natural Resources (LUNR) Survey, a database to record land use and related 
information for the entire state of New York. Much of the information was interpreted 
from 1:24,000 panchromatic aerial photography. Photointerpreters coded information 
according to predominant land use within 1-km cells, using 100 classes defined spe-
cifically by the LUNR project. This project was one of the first computerized land data 
inventories, forming an early precedent for the geographic information systems now in 
use today.

Kreig (1970) described the approaches for LUNR and suggested best practices. 
He discussed timing of photography and scale of analysis, focusing on interpretation of 
land use at a scale of 1:24,000 and using mainly black-and-white imagery and stereo-
scopes when feasible. He proposed summer photography for agriculture and forestry (for 
northern landscapes). Larger scales (e.g., 1:6,000) create costs in time and effort, and 
so they were not favored. Kreig’s manuscript could be used as an aid for analysts in the 
New York region.

Special-Purpose Land-Use Classification

Another approach to land-use classification—special- purpose classifications—is also 
significant. Special- purpose land-use classifications are designed to address a specific 
classification issue, with no attempt to provide comprehensive scope.

A good example of a special- purpose land-use classification system, and one that 
is of practical significance to photointerpreters, is the wetlands classification developed 
by Cowardin (1979), devoted specifically to classification of wetlands (Table 21.2). Its 
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logic therefore reflects the concerns of scientists who wish to portray the distribution of 
wetlands in detail and to indicate specific characteristics of wetlands that are of signifi-
cance for the hydrologist and ecologist. For example, in the Anderson system, wetlands 
at Levels I and II are subdivided simply as the distinction between forested and nonfor-
ested wetlands, whereas in Cowardin’s system, wetlands are distinguished first by two 
hydrologic criteria (“marine,” “riverine,” etc., and “tidal,” “subtidal,” etc.), and then 
by geomorphic and ecologic criteria (“reef,” “streambed,” etc.). Special- purpose systems 
such as Cowardin’s can be seen as specialized alternatives to the general- purpose strategy, 
or in some instances, they might serve as Level III or IV within a hierarchical system such 
as the Anderson system.

It is important to select or design a system that is tailored to the needs of the client 
who will use the data. It is especially important to consider compatibility with previous 
classification systems if the results are to be compared with data from earlier dates. It is 
also important to consider compatibility with neighboring jurisdictions or with higher 
or lower units (such as state or city systems, in the case of a county survey), so that the 
classes match with these other data sets. A careful selection of classification that meets 
immediate needs may not be ideal if it does not permit comparison with data from these 
other units.

 TABLE 21.2 Wetland Classification

Systems

 1. Marine
 2. Esturaine
 3. Riverine
 4. Lacustrine
 5. Palustrine

Subsystems

 1. Subtidal
 2. Intertidal
 3. Tidal
 4. Lower perennial
 5. Upper perennial
 6. Intermittent
 7. Limnetic
 8. Littoral

Classes

 1. Rock bottom
 2. Unconsolidated bottom
 3. Aquatic bed
 4. Reef
 5. Rocky shore
 6. Unconsolidated shore
 7. Streambed
 8. Emergent wetland
 9. Scrub-Shrub wetland
10. Forested wetland
11. Moss-Lichen wetland

Note: From Cowardin et al. (1979)
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21.8 LAND COVER MAPPING BY IMAGE CLASSIFICATION

Land cover can be mapped by applying image classification techniques discussed in 
Chapter 12 to digital remote sensing images. In principle, the process is straightforward; 
in practice, many of the most significant factors are concealed among apparently routine 
considerations:

1. Selection of images. Success of classification for land cover analysis depends on 
the astute selection of images with respect to season and date. Therefore, the discussion 
in Chapter 7 of the design and interpretation of searches of image archives, though osten-
sibly mundane in nature, assumes vital significance for the success of a project. What 
season will provide the optimum contrasts between the classes to be mapped? Two or 
more dates might be required to separate all the classes of significance.

2. Preprocessing. Accurate registration of images and correction for atmospheric 
and system errors (Chapter 11) are required preliminary steps for successful classifica-
tion. Subsetting of the region to be examined requires careful thought.

3. Selection of classification algorithm. The discussion in Chapter 12 reviewed 
many of the classification algorithms available for land cover analysis. The classifica-
tion procedure should also be selected on the basis of local experience. AMOEBA, for 
example, tends to be accurate in landscapes dominated by large homogeneous patches, 
such as the agricultural landscapes of the midwestern United States, and less satisfactory 
in landscapes composed of many smaller heterogeneous parcels, such as those found in 
mountainous regions. Local experience and expertise are likely to be more reliable guides 
for selection of classification procedures than are universal declarations about their per-
formance. Even when comparative information on classification effectiveness is available, 
it is difficult to anticipate the balance among effects of the choice of classifier, selection of 
image date, characteristics of the landscape, and other factors.

4. Selection of training data. Accurate selection of training data is universally sig-
nificant for image classification, as we emphasized in Chapter 12. Training data for 
each class must be carefully examined to be sure that it is represented by an appropriate 
selection of spectral subclasses to account for variations in spectral appearance due to 
shadowing, composition, and the like. Many individual laboratories and image analysis 
software packages have applied unsupervised classification in various forms to define 
homogeneous regions from which to select training fields for supervised classification 
(e.g., Chuvieco and Congalton, 1988). Another approach to the same question is an algo-
rithm that permits the analyst to select a pixel or group of pixels that forms the focal 
point for a region that grows outward until a sharp discontinuity is encountered. This 
process identifies a region of homogeneous pixels from which the analyst may select 
training fields for that class.

5. Assignment of spectral classes to informational classes. Because of the many 
subclasses that must be defined to accurately map an area by digital classification, a 
key process is the aggregation of spectral classes and their assignment to informational 
classes. For example, accurate classification of the informational class deciduous forest 
may require several spectral subclasses, such as north- facing forest, south- facing for-
est, shadowed forest, and the like. When the classification is complete, these subclasses 
should be assigned a common symbol to represent a single informational class.



 21. Land Use and Land Cover 599

6. Display and symbolization. The wide range of colors that can be presented on 
color displays and the flexibility in their assignment provide unprecedented opportu-
nity for effective display of land cover information. Although unconventional choices 
of colors can sometimes be effective, it is probably sensible to seek some consistency in 
symbolization of land cover information to permit users to quickly grasp the meaning of 
a specific map or image without detailed examination of the legend. Therefore, the color 
symbols recommended by Anderson et al. (1976) may be useful guides. Another strat-
egy for assignment of colors to classes is to mimic the colors used for USGS 7.5-minute 
quadrangles.

Within such general strategies, it is usually effective to assign related colors to related 
classes to symbolize Level II and Level III categories. For example, subclasses of agricul-
tural land can be represented in shades of brown (using Anderson et al.’s strategy [1976] 
as a starting point), water and wetlands in shades of blue, subclasses of forest in shades 
of green, and so forth.

21.9 BROAD-SCALE LAND COVER STUDIES

The availability of multispectral Advanced Very High Resolution Radiometer (AVHRR),1 
Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imag-
ing Radiometer Suite (VIIRS) data (and data from similar meteorological satellites) on 
a regular basis has provided the capability to directly compile broad-scale land cover 
maps and data. In this context, broad scale refers to images that represent entire con-
tinents, or even entire hemispheres, based on data collected over a short period of 
time, perhaps about 10 days to 2 weeks. Previously, data for such large regions could 
be acquired only by generalizing more detailed information— a task that was difficult 
and inaccurate because of the incompleteness of coverage and the inconsistencies of the 
many detailed maps required to prepare small-scale maps. The finer- resolution data 
from the Landsat and Sentinel systems provide information that is of local and regional 
interest but is not now suitable for compilation of data at continental scales because of 
the effects of cloud cover, differences in Sun angle, and other factors that prevent con-
venient comparisons and mosaicking of many scenes into a single data set representing 
a large region.

AVHRR, MODIS, and VIIRS data, described in Chapter 7, provide coverage of 
entire continents over relatively short time periods. Accumulation of data over a period 
of a week to 10 days usually permits each pixel to be observed at least once under cloud-
free conditions. Although the scan angle varies greatly, data are acquired at such frequent 
intervals that it is often possible to select coverage of the region of interest from the cen-
tral section of each scene to reduce the effects of the extreme perspective at the edges of 
each scene.

Tucker, Townshend, and Goff (1985) examined AVHRR data for Africa using images 
acquired over a 19-month period. They examined changes in the vegetation index, with 

1 AVHRR: 1-km multispectral data from the U.S. National Oceanic and Atmospheric Adminstration 
(NOAA) satellite series (1979 to present). The NOAA 19 satellite that currently supports the AVHRR 
sensor has been degrading in orbit to the point where the nadir view is on the day–night terminator in 
its orbit.
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results clearly illustrating climatic and ecological differences between major biomes, as 
observed using the vegetation index and seasonal variations in the vegetation index. They 
condensed the many variables into a concise yet potent data set that describes both sea-
sonal and place-to-place variations in the vegetation index. Their land cover map, based 
on the first three principal components, is an extraordinary representation of key envi-
ronmental conditions over an entire continent.

21.10 SOURCES OF COMPILED LAND-USE DATA

Earlier sections have often introduced land use and land cover analysis that address 
rather localized regions of small or modest size. Once aerial imagery, multispectral satel-
lite data, and repeat coverage became available, it became feasible to conduct land use 
and land cover analyses at much broader scales.

Thus, during recent decades, remote sensing has contributed to the ability of orga-
nizations to prepare comprehensive land cover surveys of large regions. Satellite imagery, 
in particular, has provided near- simultaneous acquisition, broad areal coverage, uniform 
detail, and other qualities not available from alternative sources. In the United States, 
several governmental initiatives have exploited this capability to prepare broad-scale land 
cover surveys.

Land Use and Land Cover

In the 1970s, the USGS developed a national land cover mapping program, described 
in Anderson et al. (1976), based largely on manual interpretation of high- altitude aerial 
photography at scales of 1:60,000 and smaller. The resulting USGS LULC data files 
describe vegetation, water, natural surfaces, and cultural features for large regions of the 
United States. The USGS National Mapping Program provides these data sets and associ-
ated maps using map bases at 1:250,000. For more information, see:

https://usgs.gov/programs/national-geospatial-program/national-map

Multi-Resolution Land Characteristics Consortium

To economize acquisition of image data, in 1972 several agencies of the U.S. government 
formed a consortium to acquire satellite- based remotely sensed data to support environ-
mental monitoring. The Multi- Resolution Land Characteristics Consortium (MRLC, 
www.mrlc.gov) is a team of federal agencies that generate land management cover for all 
50 U.S. states and Puerto Rico. Initially, the MRLC supported the National Land Cover 
Database, a 30-m Landsat- based classification product encompassing all 50 states and 
Puerto Rico. Over time, the MRLC expanded to incorporate additional programs that 
support land cover mapping for five major themes of interest within the United States. 
These include (1) the National Land Cover Database (NLCD) project, for general land 
use and land cover, (2) the Coastal Change Analysis Program (C-CAP), with a focus on 
coastal wetlands, (3) the Gap Analysis project, for biodiversity, (4) the LANDFIRE proj-
ect, for vegetation conditions related to fire and fuel characteristics, and (5) the Cropland 
Data Layer (CDL), for major crop types.
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National Land Cover Database

The USGS, in partnership with several federal agencies, has developed NLCD products 
that provide spatially explicit and reliable information concerning land cover and land 
cover change at 30-m resolution. Earlier versions of this product were released first by 
decade and then roughly every 5 years (i.e., 1992, 1997, 2001, 2006, and 2011). The 
most recent generation of products, named NLCD 2019, offers eight integrated epochs of 
land cover from 2001 through 2019. NLCD 2019 released land cover products for 2001, 
2003, 2006, 2008, 2011, 2013, 2016, and 2019 and impervious surface data for some 
but not all of those years, superseding earlier products. With the release of NLCD 2016, 
several products became available for public use, including land cover, rangeland, tree 
canopy cover, urban impervious, and land cover change, all of which help monitor the 
dynamics of our nation’s resources and can be found at www.mrlc.gov/data.

Although there are some differences in the algorithmic approaches, there are general 
consistencies across the various releases of NLCD. The classification scheme is modified 
from Anderson et al. (1976) Level II classes (Table 21.1). Land cover is mapped using gen-
eral land cover classes (Figure 21.11). For example, forest is classified as either deciduous, 
evergreen, or mixed. Land cover classification is based on the Landsat data archive and 
a host of ancillary sources. NLCD was the first national land cover data set produced 
since the early 1970s, effectively replacing the land cover data known to many as LUDA 
or GIRAS.

The suite of data products from NLCD has been widely used for many environmen-
tal applications, including land-use planning, hydrological analyses, habitat assessments, 
and many others. Figure 21.12 shows an example of NLCD 2016 percentage of tree 
canopy cover (left) and percentage of impervious surface (right) for the Virginia coastline, 
including the heavily developed areas of Norfolk, Virginia Beach, and Newport News, 

 FIGURE 21.11  Left: NCLD 2011 Land Cover (2011 edition, amended 2014). Mosaic of the 48 

contiguous U.S. states, using the USGS suggested color scheme. Right: The NLCD 2011 classifica-

tion legend. From MRLC.
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as well as surrounding forested and agricultural areas. The Delmarva Peninsula and 
barrier islands are also visible. These two NLCD products (and the rangeland product) 
have continuous fields (i.e., they are percentages), as compared to the categorical NLCD 
classification shown in Figure 21.11. This has implications for how the data are analyzed 
and how change is interpreted over time. As an example, the categorical NLCD product 
can be used to assess change from one category to another (i.e., a transition from forest to 
developed). In contrast, the two examples in Figure 21.12 might show a percentage drop 
in tree canopy cover and a corresponding increase in percentage of impervious surface for 
the same type of change over time. Refer to Chapter 15 for more discussion on this topic.

Over the years, the algorithmic approaches to NLCD classification have been honed 
to increase accuracy. These strategies include using multiple images throughout the year 
to incorporate seasonal impacts; ancillary data (particularly digital elevation models to 
incorporate topographic information, that is, slope or aspect); indices such as the normal-
ized tasseled cap transformation of the data; and stratification by mapping zones of com-
mon physiography and overall landscape characteristics (Figure 21.13). Further details 
are available at www.mrlc.gov.

Coastal Change Analysis Program

The C-CAP provides 30-m maps over time for areas of the coastal United States. The 
available dates for this product vary by location. Most coastal areas have coverage start-
ing in 1996, with data updated roughly every 5 years. However, some areas have earlier 
dates, including as far back as 1975 for the Great Lakes. As with NLCD, land cover and 
change products are available. C-CAP focuses on intertidal areas, wetlands, and uplands. 
As such, it includes additional wetland water classes identifying palustrine versus estua-

 FIGURE 21.12  Sample images of NLCD 2016 Tree Canopy Cover (left) and Impervious Surface 

(right) for the Virginia coastline, United States. Note the heavily developed urban area of Norfolk and 

Newport News in the bottom center of the image, which corresponds to high percentage of impervi-

ous and low tree canopy cover. Paved road networks and other linear features can also be seen in the 

impervious layer.
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rine areas (Figure 21.14), as compared to the generic “woody wetlands” and “emergent 
herbaceous wetlands” provided in NLCD.

The primary agency responsible for C-CAP is the NOAA Office for Coastal Man-
agement. Data and additional information can be found here:

https://coast.noaa.gov/digitalcoast/data/ccapregional.html

 FIGURE 21.13  66 regions defined as parcels with consistent terrain and land-use conditions for 

the NLCD. From Homer et al. (2004).

 FIGURE 21.14  The 2016 Coastal Change Analysis Program product for the contiguous United 

States. Left: The spatial extent of the coastal area coverage. Right: A closer view of the Virginia Beach 

area with the individual classes shown. Note the increased detail in wetlands and aquatic classes as 

compared to NLCD. From NOAA.
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Gap Analysis

In the United States, a national program to assess biodiversity and threats to biodiversity 
has been based on assessment of land cover derived from multispectral Landsat data. 
The objective of gap analysis is to identify “gaps” in biodiversity by surveying land cover 
patterns to assess cover types. For example, regions with high species diversity are often 
associated with high ranges of elevations, contrasts in soil characteristics, and the pres-
ence of varied vegetation classes. Gap analysis permits identification of high priorities for 
conservation and for development and land-use policies (Scott and Jennings, 1998). The 
vegetation and land cover classes used for this project are very detailed and are jointly 
part of the GAP/LANDFIRE National Terrestrial Ecosystems data used for both the 
GAP and LANDFIRE programs.

Each state conducts its own survey, using its own classification, mapping, and 
accuracy assessment strategy, developed in collaboration with neighboring states. The 
national project is coordinated by the National Gap Analysis Program within the USGS 
Biological Resources Division (USGS-BRD). For more information, see:

www.usgs.gov/core- science- systems/science- analytics- and- synthesis/gap/science/
land-cover

LANDFIRE

The LANDFIRE program provides data to support decision making and land manage-
ment for fire. It emerged because of ongoing concern over the trends in the increasing 
frequency, severity, and size of fires over the last few decades. The primary agencies 
responsible for the program are the U.S. Department of Agriculture Forest Service and 
the U.S. Department of the Interior. As part of the program, they produce data layers 
(over 20, including such things as disturbances, fire fuel, and topographic variables), as 
well as ecological models and tools for the public. More information can be found at 
https://landfire.gov.

Cropland Data Layer

The CDL was developed to provide estimates of the acreage of major commodity crops 
in the United States to the Agricultural Statistics Board. It is part of the suite of products 
by the MRLC Consortium. As described in Section 17.12, this program produces a yearly 
national product, beginning in 1997, which has a similar classification scheme to NLCD, 
but with more than 100 crop classes. For noncrop classes, there is strong consistency with 
NLCD because the NLCD is an input into the CDL classification algorithm (Lark et al., 
2017). The CDL addresses agricultural- specific questions. The primary agency responsi-
ble is the U.S. Department of Agriculture National Agriculture Statistics Service (NASS). 
This agency also conducts validation and uncertainty analysis for the crop classes. The 
data can be accessed either directly from NASS as downloadable layers for each year or 
through a web-based service that enables viewing and some analysis of multiple dates at 
a time and crop frequency layers for specific common crops (corn, soybean, cotton, and 
wheat) (see Figure 17.23 for an example). More information, as well as the CDL data, 
can be found at:
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www.nass.usda.gov/Research_and_Science/Cropland/Release
https://nassgeodata.gmu.edu/CropScape

21.11 SUMMARY

Study of land use and land cover reveals the overall pattern of human occupation of the 
Earth’s surface and the geographic organization of their activities. At broad scales, the 
land cover map provides a delineation of the broad patterns of climate and vegetation 
that form the environmental context for human activities. At local and regional scales, 
knowledge of land use and land cover forms a basic dimension of resources available to 
any political unit; both the citizens and the leaders of any community must understand 
the land resources available to them and the constraints that limit uses of land and envi-
ronmental resources.

Although the formal study of land use and land cover dates from the early 1800s, 
systematic mapping at a large scale was not attempted until the 1920s, and aerial photog-
raphy and remote sensing were not routinely applied until the 1960s. Thus, effective land 
use mapping is a relatively recent capability. We have yet to fully assemble and evaluate 
all the data that are available and to develop the techniques for acquiring and interpret-
ing imagery.

Without the aerial images acquired by remote sensing, there can be no really practi-
cal method of observing the pattern of land cover or of monitoring changes. Systems such 
as Landsat, SPOT, Sentinel, and AVHRR have provided a capability for observing land 
cover at broad scales and at intervals that previously were not practical. Images from 
such systems have not only provided vital information but also data at new scales that 
have changed the intellectual perspective on the environment by recording broad-scale 
patterns and relationships that otherwise could not be accurately perceived or analyzed.

REVIEW QUESTIONS

1. Using aerial photographs and other information provided by your instructor, design Level 
III categories compatible with the USGS classification for a nearby region.

2. Review Chapters 7 and 11 to refresh your memory of resolutions of satellite sensors and 
the effects of mixed pixels. A typical city block is said to be about 300 ft  800 ft in size. 
Make rough assessments of the effectiveness of the Landsat and Sentinel systems for 
depicting land use and land cover in urban regions. List factors other than the sizes of 
objects that would be important in making such assessments.

3. Outline some of the difficulties that would be encountered in compiling land use and land 
cover maps if aerial photography and remotely sensed data were not available.

4. Compare the relative advantages and disadvantages of alternative aerial imagery, 
including photography, thermal imagery, and radar imagery (at comparable scales and 
resolutions), for compiling land-use and land cover maps. List advantages and problems 
that might be encountered in using all three kinds of alternative aerial images in combi-
nation.
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5. Review Section 21.5, and then prepare a diagram or flow chart that illustrates manual 
preparation of a land-use change map.

6. The following issues all require, directly or indirectly, use of accurate land-use and land 
cover information. For each, identify, in a few sentences or in short paragraphs, the role 
of accurate land-use maps and data.

a. Solid waste disposal

b. Selection of a location for a new electrical power plant

c. The boundaries of a state park or wildlife preserve

d. Zoning decisions in a suburban region near a large city

e. Abandoned toxic waste dumps

7. Some scientists have advocated development of a classification system with catego-
ries based on the appearance of features on specific kinds of remotely sensed images. 
In contrast, the approach used by Anderson et al. (1976; see Table 21.1) is based on 
the idea that remotely sensed data should be categorized using classes that remain 
the same for all forms of remotely sensed images and match those used by planners. 
Compare the advantages and disadvantages of both strategies, considering the ease 
of application to the imagery and the ease of use by those who must actually apply the 
information.

8. About 18% of urban land is devoted to streets. About 20% of the land areas of large 
cities is said to be undeveloped. Assess the ability of remotely sensed images to con-
tribute to assessing the amount and patterns of these two kinds of land use. Consider 
Landsat and Sentinel data, as well as aerial photography at 1:10,000.
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overview, 46
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land-use and land cover analysis and, 589
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motion compensation
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Geobotany, 508, 527–530. See also Vegetation
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Gypsum dunes, 519, 520f
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concerns
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HH image, 219–220
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High-altitude photography, 104–105. See also 

Aerial imagery
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earth sciences applications and, 507–508, 

509f
electromagnetic radiation and, 31–32
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interwar years (1919–1939), 8–10
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overview, 4, 20
Robert Colwell’s research and, 12, 13f, 14f
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18–19, 20t
Virginia Norwood’s contributions, 17–18

Hogbacks, 510, 511f
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Hybrid parametric classifiers, 340–342, 343f. 
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Spectroscopy
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analyses, 388
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geobotany and, 528
image cube, 381–382
overview, 378–380, 389–390, 391f
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spectral libraries, 383
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unmanned aerial vehicle (UAV) technology 
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Image acquisition platforms. See Platforms
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overview, 314–318, 347
supervised classification, 326–347
unsupervised classification, 319–326
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context and, 148–149, 157–159
digital photointerpretation, 164–166
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image interpretation keys and, 155, 156
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interpreting thermal images, 267–278
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overview, 145–148, 168–169
stereovision and, 159–163, 164f
tasks involved in, 149–150
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Image processing. See also Preprocessing

feature extraction, 291, 293–300, 301f
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402–405
radiometric corrections, 300–304
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193. See also Orbits, satellite system
India Remote Sensing (IRS) satellites, 184–185
Inertial measurement units (IMUs), 19
Inertial navigational systems (INS), 106, 231
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Infrared sensors, 429
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classification systems and, 586, 587t, 595–597
environmental hazards and, 593–595
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overview, 582–584, 605
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overview, 232–233
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unmanned aerial vehicle (UAV) technology 
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Vegetation
Leaf structure. See also Vegetation
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overview, 79–82
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Level-slice procedures. See Parallelepiped 
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applications of, 245
coastal erosion and, 571–572, 573f
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data from, 237–245, 246
earth sciences applications and, 519–520, 521f
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impact of Hurricane Sandy and, 570
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overview, 50, 231–233, 246
profiling lasers, 233, 234f
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552, 553f
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unmanned aerial vehicle (UAV) technology 

and, 68
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Lineaments, 515–519
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abundance mapping and, 383–385
spectral mixing analysis, 385–387
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enhancement
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Lines of sight, 162
Linnaean system, 425–426. See also 

Vegetation
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See also Image display and symbolization
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Local area coverage (LAC), 186
Lodging, 468–469. See also Agriculture
Longshore drift, 560f, 561
Look angle, 216, 217f
Look direction, 215–216
Low Earth orbit (LEO), 63f, 64
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also Aerial imagery
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Map viewers, 141–142
Mapping. See also Topographic mapping

aerial photography and, 109–110
broad-scale aerial mapping, 9, 108
land cover mapping by image classification, 
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land system mapping, 538–539
land-use and land cover analysis and, 585, 
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soil and landscape mapping, 533–538
vegetation and, 424–427
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Mapping unit, 535–536
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See also Supervised classification
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McNemar test, 371–373
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imagery; Data management and analysis; 
Euclidean distance; Image interpretation; 
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geometric corrections and, 304–309, 310t
image scale calculations, 166–168
measurement of map accuracy, 354, 356
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Mesa surface, 511f, 512
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Metadata, 195–199
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Microwave radiation. See also Active 
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overview, 28t, 31
World War II (1939–1945), 10–11
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agricultural applications and, 471
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overview, 187–188
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Moisture stress index (MSI), 434
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forest fires and, 493
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and, 68
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phenology and, 440
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system
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Network common data form (NetCDF), 128
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Normal orbits, 193. See also Orbits, satellite 

system
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remote sensing, 475
bitemporal spectral change detection and, 
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land surface phenology and, 441–442, 443f
leaf area index (LAI) and, 489–490, 491
overview, 471
vegetation indices (VIs) and, 437f

North Carolina beaches, 571–572, 573f
Norwood, Virginia, 17–18
No-till fields, 470. See also Agriculture
Nuclear reactions within the sun, 25
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Object-based classification, 316–318. See also 
Image classification

Oblique aerial photographs, 83, 84f, 151–152. 
See also Aerial imagery

Oceans. See also Coastal regions; Water, 
bodies of

coastal processes and landforms, 558–567, 
568f, 569f

lidar for coastal erosion and, 571–572, 573f

Miami Beach, FL example, 572–576
oceanic waves and, 558–561, 562f
overview, 547, 548f
wave-roughened water surfaces, 554
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Open water. See Coastal regions; Oceans; 
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Operational Land Imager (OLI), 178t, 181, 490
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Optical satellite data, 229, 540
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Optical spectrum, 28, 29–31. See also Visible 

spectrum
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Orbits, satellite system. See also Satellite 

systems
land observation satellite orbits, 193–195
overview, 62–65
satellite constellations and, 66
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geometric corrections and, 305
overview, 104

Oso Landslide, 521–522
Out-of-bag sample, 330–332
Overall accuracy, 369–370. See also Accuracy
Overfitting, 328
Overhead view, 148
Overlays, interpretative, 156–157. See also 

Image interpretation
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P

Palisade layer, structure of the leaf and, 430
Panchromatic imagery, 96–99, 100f
Panoramic photographs, 429
Parallax, stereoscopic. See Stereoscopic 

parallax
Parallel drainage pattern, 513, 514f. See also 

Drainage
Parallel lines of sight, 160, 162
Parallelepiped classification, 334–336. See also 

Supervised classification
Passive microwave and thermal systems, 204. 

See also Thermal passive systems
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Pattern, 153, 154f. See also Image interpretation
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Perturbed orbits, 193. See also Orbits, satellite 

system
Phase of a waveform, 26, 204
Phenology, 339–442, 443f
Photo interpretation. See Image interpretation
Photoclinometry, 532–533
Photogeology. See also Geology
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minerals, 530–532
overview, 508–509
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forestry applications and, 498
history of remote sensing and, 8–10
image interpretation and, 150
lidar and, 246
overview, 84, 105–106

Photographic infrared, 251
Photographic nadir, 85, 86f
Photography, 5–6. See also Aerial imagery
Photointerpretation. See also Image 

interpretation
agricultural applications and, 479
crop damage and, 469
digital photointerpretation, 164–166
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overview, 168–169
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Photometry, 150
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Photon-counting lidar, 235, 236. See also 

Lidar (light detection and ranging)
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31–33
Physiognomy, 426. See also Vegetation
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classification errors and, 353
digital data formats and, 125–128
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fuzzy classification and, 344–346
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spectral mixing analysis, 386–387
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Point classifiers, 316. See also Image classification
Polar orbits, 63. See also Orbits, satellite 

system
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Polarization, 46–47, 204, 219–220
Polarized lenses, 163
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See also Change detection
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errors; Image classification; 
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Precision agriculture, 475–477. See also 
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Preprocessing. See also Data management and 
analysis; Feature extraction; Geometric 
corrections; Image processing; Image 
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land cover mapping by image classification, 
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multitemporal spectral change detection, 

402–405
overview, 285–286, 311
vegetation indices (VIs) and, 436, 438
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Privacy concerns, 200
Producer’s accuracy, 367–369. See also 
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