
“The Missing Manual series is simply the most intelligent and usable series of guidebooks…”
—KEVIN KELLY, CO-FOUNDER OF WIRED

David Sawyer McFarland

CSS

4th
Edition

David Sawyer McFarland
is a web developer,
teacher, and author.
He’s been building
websites since 1995,
when he designed
an online magazine
for communication
professionals. David has
taught web design at the
UC Berkeley Graduate
School of Journalism, the
Center for Electronic Art,
the Art Institute of
Portland, and Portland
State University. Currently,
he’s a Teaching Team
Leader at the online
education site, Treehouse
http://teamtreehouse.com.

Answers found here!
CSS lets you create professional websites, but learning
its finer points can be tricky—even for seasoned web
developers. This fully updated edition provides the most
modern and effective tips, tricks, and tutorial-based
instruction on CSS available today. Learn how to use new
tools such as Flexbox and Sass to build web pages that
look great and run fast on any desktop or mobile device.
Ideal for casual and experienced designers alike.

The important stuff you need to know
n	 Start with the basics. Write CSS-friendly HTML, including the

HTML5 tags recognized by today’s browsers.

n	 Design for mobile devices. Create web pages that look great
when visitors use them on the go.

n	 Make your pages work for you. Add animations that capture
the imagination, and forms that get the job done.

n	 Take control of page layouts. Use professional design
techniques such as floats and positioning.

n	 Make your layouts more flexible. Design websites with
Flexbox that adjust to different devices and screen sizes.

n	 Work more efficiently. Write less CSS code and work with
smaller files, using Syntactically Awesome Style Sheets (Sass).

missingmanuals.com
twitter: @missingmanuals
facebook.com/MissingManuals

Web Design/CSS

ISBN: 978-1-491-91805-0

US $39.99 CAN $45.99

CSS

David Sawyer McFarland

Beijing | Boston | Farnham | Sebastopol | Tokyo

The book that should have been in the box®

CSS: The Missing Manual
by David Sawyer McFarland

Copyright © 2015 David Sawyer McFarland. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: (800) 998-
9938 or corporate@oreilly.com.

August 2006: First Edition.
August 2009: Second Edition.
December 2012: Third Edition.
August 2015: Fourth Edition.

Revision History for the Fourth Edition:

2015-08-05 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920036357 for release details.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing
Manual logo, and “The book that should have been in the box” are trademarks of
O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly Media is aware of a trademark claim, the
designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained in it.

ISBN-13: 978-1-491-91805-0

[M]

http://my.safaribooksonline.com
mailto:corporate@oreilly.com

iii

Contents

The Missing Credits . ix

Introduction . xiii
What Is CSS? . xiii
What You Need to Know . xiv
HTML: The Barebones Structure . xiv
Document Types . xiv
How HTML Tags Work . xv
HTML5: More Tags to Choose From . xvii
Software for CSS . xvii
About This Book . xviii
The Very Basics . xx
About the Online Resources . xxi
Safari® Books Online . xxii

 Part One: CSS Basics

 CHAPTER 1: HTML and CSS . 3
HTML: Past and Present . 3
Writing HTML for CSS . 5
The Importance of the Doctype . 17
How CSS Works . 19

 CHAPTER 2: Creating Styles and Style Sheets . 21
Anatomy of a Style . 21
Understanding Style Sheets .24
Internal Style Sheets . 25
External Style Sheets .26
Tutorial: Creating Your First Styles . 27

 CHAPTER 3: Selectors: Identifying What to Style . 41
Type Selectors: Styling HTML Tags .42
Class Selectors: Pinpoint Control .43
ID Selectors: Specific Page Elements .46
Styling Groups of Tags .49
Styling Tags Within Tags .50
Pseudo-Classes and Pseudo-Elements . 55

COntentsiv

Attribute Selectors .59
Child Selectors . 61
Siblings .67
The :target Selector .68
The :not() Selector .69
Tutorial: Selector Sampler .70

 CHAPTER 4: Saving Time with Style Inheritance . 85
What Is Inheritance? .85
How Inheritance Streamlines Style Sheets .86
The Limits of Inheritance .88
Tutorial: Inheritance .90

 CHAPTER 5: Managing Multiple Styles: The Cascade 97
How Styles Cascade .98
Specificity: Which Style Wins . 102
Controlling the Cascade . 105
Tutorial: The Cascade in Action . 111

 Part two: Applied CSS

 CHAPTER 6: Formatting Text . 121
Using Fonts .121
Using Web Fonts . 126
Discovering Google Web Fonts . 140
Adding Color to Text . 147
Changing Font Size .151
Formatting Words and Letters . 156
Adding Text Shadow . 160
Formatting Entire Paragraphs . 162
Styling Lists . 168
Tutorial: Text Formatting in Action . 172

 CHAPTER 7: Margins, Padding, and Borders . 185
Understanding the Box Model . 185
Controlling Space with Margins and Padding . 187
Adding Borders . 194
Coloring the Background . 198
Creating Rounded Corners . 199
Adding Drop Shadows . 201
Determining Height and Width . 204
Wrapping Content with Floating Elements . 210
Tutorial: Margins, Backgrounds, and Borders . 216

COntents v

 CHAPTER 8: Adding Graphics to Web Pages . 229
Discovering CSS and the Tag .229
Adding Background Images . 231
Controlling Repetition .234
Positioning a Background Image .236
Using Background Property Shorthand .247
Using Multiple Background Images. .249
Utilizing Gradient Backgrounds .252
Tutorial: Enhancing Images . 261
Tutorial: Creating a Photo Gallery .266
Tutorial: Using Background Images .270

 CHAPTER 9: Sprucing Up Your Site’s Navigation . 279
Selecting Which Links to Style .279
Styling Links .283
Building Navigation Bars .289
CSS-Style Preloading Rollovers .298
Styling Particular Types of Links . 300
Tutorial: Styling Links .302
Tutorial: Creating a Navigation Bar . 308

 CHAPTER 10: CSS Transforms, Transitions, and Animations 319
Transforms . 319
Transitions . 330
Animations .338
Tutorial . 349

 CHAPTER 11: Formatting Tables and Forms . 357
Using Tables the Right Way .357
Styling Tables .359
Styling Forms .366
Tutorial: Styling a Table .370
Tutorial: Styling a Form .375

 Part three: CSS Page Layout

 CHAPTER 12: Introducing CSS Layout . 385
Types of Web Page Layouts .385
How CSS Layout Works .387
Layout Strategies .392

 CHAPTER 13: Building Float-Based Layouts . 397
Applying Floats to Your Layouts . 401
Overcoming Float Problems . 405
Tutorial: Multiple-Column Layouts . 417

COntentsvi

 CHAPTER 14: Positioning Elements on a Web Page . 429
How Positioning Properties Work . 430
Powerful Positioning Strategies . 443
Tutorial: Positioning Page Elements . 448

 CHAPTER 15: Responsive Web Design . 457
Responsive Web Design Basics .457
Setting Up a Web Page for RWD .459
Media Queries . 460
Flexible Grids . 468
Fluid Images .472
Responsive Web Design Tutorial .476

 CHAPTER 16: Using a CSS Grid System . 493
How Grids Work .493
Structuring Your HTML for Grids .495
Using the Skeleton Grid System. .497
Creating and Naming Columns . 501
Tutorial: Using a Grid System . 509

 CHAPTER 17: Modern Web Layout with Flexbox . 527
Introducing Flexbox .527
Flex Container Properties .532
Flex Item Properties . 541
Tutorial: Build a Flexbox Layout .556

 Part Four: Advanced CSS

 CHAPTER 18: Improving Your CSS Habits . 569
Adding Comments .569
Organizing Styles .570
Eliminating Browser Style Interference .579
Using Descendant Selectors .582

 CHAPTER 19: More Powerful Styling with Sass . 589
What is Sass? .589
Installing Sass . 591
Sass Basics .595
Organizing Your Styles with Sass Partials . 600
Sass Variables . 603
Nesting Selectors . 607
Inheriting (or Extending) Properties . 612
Mixins . 618
Working with Media Queries .626
Troubleshooting with CSS Source Maps . 631

COntents vii

 Part Five: Appendixes

 APPENDIX A: CSS Property Reference . 637
CSS Values .637
Text Properties .642
List Properties .647
Padding, Borders, and Margins . 648
Backgrounds . 654
Page Layout Properties .657
Animation, Transform and Transition Properties .663
Table Properties . 668
Miscellaneous Properties .670

 APPENDIX B: CSS Resources . 673
References .673
CSS Help .674
CSS Tips, Tricks, and Advice .674
CSS Navigation .675
CSS Layout .676
Showcase Sites .676

Index. 677

tHe MIssInG CReDIts ix

The Missing Credits
ABOUT THE AUTHOR

David McFarland (author) is a web developer, teacher and author. He’s
been building web sites since 1995, when he designed his first website:
an online magazine for communication professionals.

He’s taught web design at the UC Berkeley Graduate School of Jour-
nalism, the Center for Electronic Art, the Art Institute of Portland, and

Portland State University.

He’s currently a Teaching Team Leader at the online education site, Treehouse (http://
teamtreehouse.com).

ABOUT THE CREATivE TEAM
Nan Barber (editor) is associate editor for the Missing Manuals series. She lives in
Massachusetts with her husband and various electronic devices. Email: nanbarber@
gmail.com.

Melanie Yarbrough (production editor and compositor) works and plays in Cam-
bridge, Massachusetts, where she bakes up whatever she can imagine and bikes
around the city. Email: myarbrough@oreilly.com.

Molly Ives Brower (proofreader) is a freelance editor and proofreader who has
loved the Internet since she got a BITNET address in 1990. These days, though, she
can be found online at http://www.mjibrower.com and on Twitter, where she goes
by @vintagereader. Email: molly@mjibrower.com.

Ron Strauss (indexer) specializes in the indexing of information technology publica-
tions of all kinds. Ron is also an accomplished classical violist and lives in Northern
California with his wife and fellow indexer, Annie, and his miniature pinscher, Kanga.
Email: rstrauss@mchsi.com.

Rich Koster (beta reader) bought his first Mac, a 17-inch MacBook Pro, in 2009, and
has never looked back toward the Dark Side (PCs). Rich served as the tech editor
of David Pogue’s iPhone: The Missing Manual, 3rd Edition. He’s a husband, a father,
and creator of the Disney Echo at http://DisneyEcho.emuck.com, which he has fun
tending daily with his MacBook Pro!

ACKNOWLEDGEMENTS
Many thanks to all those who helped with this book, including the many students
I’ve taught who always help me see complex concepts through beginner’s eyes.

http://teamtreehouse.com
http://teamtreehouse.com
http://www.mjibrower.com

tHe MIssInG CReDItsx

Thanks to my technical editors, Daniel Quinn and Jennifer Davis, who saved me
from embarrassing mistakes. We all owe a big debt of gratitude to the many web
designers who have broken new ground by using CSS in creative ways and shared
their discoveries with the web design community.

Thanks to David Pogue, who got me started, many years ago on this long adventure.
Thanks to Nan Barber for refining my writing, fixing my mistakes, and keeping me
on track.

 —David Sawyer McFarland

THE MiSSiNG MANUAL SERiES
Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features a
handcrafted index and cross-references to specific pages (not just chapters). Recent
and upcoming titles include:

• Access 2013: The Missing Manual by Matthew MacDonald

• Adobe Edge Animate: The Missing Manual by Chris Grover

• Buying a Home: The Missing Manual by Nancy Conner

• Creating a Website: The Missing Manual, Third Edition by Matthew MacDonald

• CSS3: The Missing Manual, Third Edition by David Sawyer McFarland

• Dreamweaver CS6: The Missing Manual by David Sawyer McFarland

• Dreamweaver CC: The Missing Manual, Second Edition by David Sawyer Mc-
Farland and Chris Grover

• Excel 2013: The Missing Manual by Matthew MacDonald

• FileMaker Pro 13: The Missing Manual by Susan Prosser and Stuart Gripman

• Fire Phone: The Missing Manual by Preston Gralla

• Flash CS6: The Missing Manual by Chris Grover

• Galaxy Tab: The Missing Manual by Preston Gralla

• Galaxy S5: The Missing Manual by Preston Gralla

• Google+: The Missing Manual by Kevin Purdy

• HTML5: The Missing Manual, Second Edition by Matthew MacDonald

• iMovie: The Missing Manual by David Pogue and Aaron Miller

• iPad: The Missing Manual, Seventh Edition by J.D. Biersdorfer

• iPhone: The Missing Manual, Eighth Edition by David Pogue

• iPhone App Development: The Missing Manual by Craig Hockenberry

• iPhoto: The Missing Manual by David Pogue and Lesa Snider

tHe MIssInG CReDIts xi

• iPod: The Missing Manual, Eleventh Edition by J.D. Biersdorfer and David Pogue

• iWork: The Missing Manual by Jessica Thornsby and Josh Clark

• JavaScript & jQuery: The Missing Manual, Third Edition by David Sawyer Mc-
Farland

• Kindle Fire HD: The Missing Manual by Peter Meyers

• Living Green: The Missing Manual by Nancy Conner

• Microsoft Project 2013: The Missing Manual by Bonnie Biafore

• Motorola Xoom: The Missing Manual by Preston Gralla

• NOOK HD: The Missing Manual by Preston Gralla

• Office 2011 for Macintosh: The Missing Manual by Chris Grover

• Office 2013: The Missing Manual by Nancy Conner and Matthew MacDonald

• OS X Mavericks: The Missing Manual by David Pogue

• OS X Yosemite: The Missing Manual by David Pogue

• Personal Investing: The Missing Manual by Bonnie Biafore

• Photoshop CS6: The Missing Manual by Lesa Snider

• Photoshop CC: The Missing Manual, Second Edition by Lesa Snider

• Photoshop Elements 13: The Missing Manual by Barbara Brundage

• PHP & MySQL: The Missing Manual, Second Edition by Brett McLaughlin

• QuickBooks 2015: The Missing Manual by Bonnie Biafore

• Switching to the Mac: The Missing Manual, Mavericks Edition by David Pogue

• Windows 7: The Missing Manual by David Pogue

• Windows 8: The Missing Manual by David Pogue

• WordPress: The Missing Manual, Second Edition by Matthew MacDonald

• Your Body: The Missing Manual by Matthew MacDonald

• Your Brain: The Missing Manual by Matthew MacDonald

• Your Money: The Missing Manual by J.D. Roth

For a full list of all Missing Manuals in print, go to www.missingmanuals.com/
library.html.

http://www.missingmanuals.com/library.html
http://www.missingmanuals.com/library.html

xiii

Cascading Style Sheets—CSS for short—give you creative control over the layout
and design of your web pages. With CSS, dressing up your site’s text with
eye-catching headlines, drop caps, and borders is just the beginning. You can

also arrange images with precision, create columns and banners, and highlight your
links with dynamic rollover effects. You can even make elements fade in or out of
view, move objects around the page, or make a button slowly change colors when
a visitor mouses over it.

Anything that can do all that must be pretty complicated, right? Au contraire! The
whole idea behind CSS is to streamline the process of styling web pages. In the next
few pages, you’ll learn about the basics of CSS.

What Is CSS?
CSS is a styling language. You use it to make HTML—the fundamental language of
all web pages—look good. Well, hopefully, you’ll use CSS to make your web pages
look better than good. After you read this book, you’ll be able to make your web
pages beautiful, functional, and easy to use.

Think of HTML as the basic structure of your content, and CSS as a designer who
takes your plain HTML and spruces it up with a fancy font, a border with rounded
corners, or a bright red background.

But before you start learning about CSS, you need to understand HTML.

Introduction

Css: tHe MIssInG MAnUALxiv

WHAT YOU
NEED TO

KNOW What You Need to Know
This book assumes you’ve already got some knowledge of HTML. Perhaps you’ve
built a site or two (or at least a page or two) and have some familiarity with the sea
of tags—<html>, <p>, <h1>, <table>—that make up the Hypertext Markup Language.
CSS can’t do anything without HTML, so you need to know how to create a web
page by using basic HTML.

If you’ve used HTML in the past to create web pages, but feel like your knowledge
is a bit rusty, the next section provides a basic refresher.

 TIP  If you’re just getting your feet wet learning HTML, then check out these free online tutorials: HTML Dog
(www.htmldog.com/guides/htmlbeginner) and W3Schools (www.w3schools.com/html). If you’re a printed-page
fan, then you may want to pick up a copy of HTML5: The Missing Manual, Third Edition or Head First HTML and CSS,
Second Edition (both O’Reilly).

HTML: The Barebones Structure
HTML (Hypertext Markup Language) uses simple commands called tags to define the
various parts of a web page. For example, this HTML code creates a simple web page:

<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hey, I am the title of this web page</title>
 </head>
 <body>
 <p>Hey, I am a paragraph on this web page.</p>
 </body>
</html>

It may not be exciting, but this example has all the basic elements a web page needs.
You’ll notice something called a doctype declaration at the very beginning of the
code, followed by <html> (with the brackets), a head, a body, and some stuff—the
actual page contents—inside the body, ending in a final </html>.

Document Types
All web pages begin with a doctype—a line of code that identifies what flavor of
HTML you used to write the page. Two doctypes have been used for years—HTML
4.01 and XHTML 1.0—and each of those doctypes has two styles: strict and transi-
tional. For example, the HTML 4.01 transitional doctype looks like the following (the
other doctypes for HTML 4.01 and XHTML 1.0 look similar):

 xv

HOW HTML
TAGS WORK

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.
w3.org/TR/html4/loose.dtd">

 NOTE  For examples of all various doctypes, visit www.webstandards.org/learn/reference/templates.

If you look at the code for the sample HTML page in this section, you’ll see that it
uses a much more succinct doctype:

<!doctype html>

That’s the HTML5 doctype. HTML5 is easier to use and more streamlined than its
predecessors. This book uses the HTML5 doctype, which is supported by every
popular browser (even the old Internet Explorer 6). There’s no reason to use any
doctype other than the simple HTML5 doctype.

 NOTE  Just because the HTML doctype works in older browsers doesn’t mean that those browsers understand
all HTML5 tags or features. Internet Explorer 8 and earlier, for example, don’t recognize the new HTML5 tags. To
style tags with CSS for those versions of IE, you have to employ a little JavaScript. You’ll learn how to get older
browsers up to speed in the box on page 12.

The most important thing about a doctype, however, is to always use one. Without
it, your pages will look different depending on your visitor’s browser, since browsers
display CSS differently if they don’t have a doctype for guidance.

Each doctype requires you to write your HTML in a certain way. For example, the
tag for a line break looks like this in HTML 4.01:

But in XHTML, it looks like this:

And there’s another advantage of HTML5: It accepts either one.

How HTML Tags Work
In the simple HTML example on page XIV, as in the HTML code of any web page,
most commands appear in pairs that surround a block of text or other commands.
Sandwiched between brackets, these tags are instructions that tell a web browser
how to display the web page. Tags are the “markup” part of the Hypertext Markup
Language.

The starting (opening) tag of each pair tells the browser where the instruction begins,
and the ending tag tells it where the instruction ends. Ending or closing tags always
include a forward slash (/) after the first bracket symbol (<).

Css: tHe MIssInG MAnUALxvi

HOW HTML
TAGS WORK

On any web page, you’ll usually find at least these four elements:

• The first line of a web page is the DOCTYPE declaration, discussed in the
previous section.

• The <html> tag appears once at the beginning of a web page and again (with
an added forward slash) at the end: </html>. This tag tells a web browser that
the information contained in this document is written in HTML, as opposed to
some other language. All the contents of a page, including other tags, appear
between the opening and closing <html> tags.

If you were to think of a web page as a tree, the <html> tag would be its root.
Springing from the trunk are two branches that represent the two main parts
of any web page: the head and the body.

• The head of a web page contains the title of the page (“Izzie’s Mail-Order Pen-
cils”). It may also include other, invisible information, like a page description,
that browsers and search engines use. You surround the head section with
opening and closing <head> tags.

In addition, the head section can include information that browsers use to for-
mat the page’s HTML and to add interactivity. As you’ll see, the <head> section
can contain CSS code (like the kind you’ll learn to write in this book) or a link
to another file containing CSS information.

• The body, as set apart by its surrounding <body> tags, contains all the content
that appears inside a browser window—headlines, text, pictures, and so on.

Within the <body> tag, you commonly find tags like these:

• You tell a web browser where a paragraph of text begins with a <p> (opening
paragraph tag), and where it ends with a </p> (closing paragraph tag).

• The tag marks text as important. When you surround some text with
it and its partner tag, , you get boldface type. The HTML snippet
 Warning! tells a web browser to strongly emphasize the
word “Warning!”

• The <a> tag, or anchor tag, creates a hyperlink in a web page. When clicked, a
hyperlink—or link—can lead anywhere on the Web. You tell the browser where
the link points by putting a web address inside the <a> tags. For instance, you
can type Click here!.

The browser knows that when your visitor clicks the words “Click here!” it should
go to the Missing Manual website. The href part of the tag is called an attribute,
and the URL (the Uniform Resource Locator, or web address) is the value. In this
example, http://www.missingmanuals.com is the value of the href attribute.

 xvii

SOFTWARE
FOR CSSHTML5: More Tags to Choose From

HTML5—the current version of HTML—has been around for years now. Sometimes
you’ll hear the name used to describe things other than HTML tags, like local storage
(a way to save data from a website to a visitor’s computer), geolocation (a way to
check where a visitor is in the world), and drawing to the web page using WebGL.
Strictly speaking, those technologies aren’t part of HTML, but they’re new browser
features that came onto the scene along with HTML5.

In this book, the term HTML5 always refers to the HTML5 doctype as well as the
new tags introduced as part of the HTML5 standard. HTML5 isn’t radically different
from its predecessors—it was created to make sure the Web continues to work the
way it always has. Most of the basics of HTML are the same as they’ve always been;
HTML5 adds a few new elements meant to support the way web designers currently
build websites. For example, in HTML5, the <header> tag contains the content you
usually find at the top of a page, such as a logo and sitewide navigation links; the
new <nav> tag encloses the set of links used to navigate a site; and the <footer> tag
houses the stuff you usually put at the bottom of a page, like legal notices, email
contacts, and so on.

In addition, HTML5 adds new tags that let you insert video and audio into a page,
new form tags that add sophisticated elements like sliders and pop-up date pickers,
and built-in browser support for form validation (which ensures visitors correctly
fill out your forms). You’ll see HTML5 used throughout this book, especially in the
next chapter.

Software for CSS
To create web pages made up of HTML and CSS, you need nothing more than a
basic text editor like Notepad (Windows) or TextEdit (Mac). But after typing a few
hundred lines of HTML and CSS, you may want to try a program better suited to
working with web pages. This section lists some common programs, some free and
some you have to buy.

 NOTE  There are literally hundreds of tools that can help you create web pages, so the following isn’t a
complete list. Think of it as a greatest-hits tour of the most popular programs that CSS fans are using today.

Free Programs
There are plenty of free programs out there for editing web pages and style sheets.
If you’re still using Notepad or TextEdit, give one of these a try. Here’s a short list
to get you started:

• Brackets (Windows, Mac, Linux; http://brackets.io/). Spearheaded by Adobe,
this free, open-source text editor has many tools for working with HTML and
CSS. It’s written specifically for web designers and developers.

Css: tHe MIssInG MAnUALxviii

ABOUT THIS
BOOK

• Atom (Windows, Mac, Linux; https://atom.io/). Another free, open-source text
editor created by the people behind GitHub, the hugely popular code sharing and
collaboration site. Like Brackets, this new text editor is aimed at web developers.

• jEdit (Windows, Mac, Linux; http://jedit.org). This free, Java-based text editor
works on almost any computer and includes many features that you’d find in
commercial text editors, like syntax highlighting for CSS.

• Notepad++ (Windows; http://notepad-plus.sourceforge.net). A lot of people
swear by this fast text editor. It even has built-in features that make it ideal for
writing HTML and CSS, like syntax highlighting—color-coding tags and special
keywords to make it easier to identify the page’s HTML and CSS elements.

Commercial Software
Commercial website development programs range from inexpensive text editors to
complete website construction tools with all the bells and whistles:

• EditPlus (Windows; www.editplus.com) is an inexpensive ($35) text editor that
includes syntax highlighting, FTP, autocomplete, and other wrist-saving features.

• skEdit (Mac; www.skedit.com) is an inexpensive ($30) web page editor, com-
plete with FTP/SFTP, code hints, and other useful features.

• Coda2 (Mac; www.panic.com/coda) is a full-featured web development toolkit
($99). It includes a text editor, page preview, FTP/SFTP, and graphic CSS-
creating tools for creating CSS.

• Sublime Text (Mac, Windows, Linux; www.sublimetext.com) is a powerful
text editor ($70) beloved by many web coders. You’ll find it frequently used in
web design companies.

• Dreamweaver (Mac and Windows; www.adobe.com/products/dreamweaver)
is a visual web page editor (from $19.99 per month). It lets you see how your
page looks in a web browser. The program also includes a powerful text editor
and excellent CSS creation and management tools. Check out Dreamweaver
CC: The Missing Manual for the full skinny on how to use this powerful program.

 NOTE  The various types of software discussed in this section are general-purpose programs that let you
edit both HTML and CSS. With them, you need to learn only one program for your web development needs.

About This Book
The World Wide Web is really easy to use. After all, grandfathers in Boise and first
graders in Tallahassee log onto the Web every day. Unfortunately, the rules that
govern how the Web works aren’t so easy to understand. The computer scientists
and other techie types who write the official documentation aren’t interested in ex-

 xix

ABOUT THIS
BOOK

plaining their concepts to the average Joe (or Joanne). Just check out www.w3.org/
TR/css3-transforms to get a taste of the technical mumbo-jumbo these geeks speak.

People just learning CSS often don’t know where to begin. And CSS’s finer points can
trip up even seasoned web pros. The purpose of this book is to serve as the manual
that should have come with CSS. In its pages, you’ll find step-by-step instructions
for using CSS to create beautiful web pages.

CSS: The Missing Manual is designed to help readers at every technical level. To get
the most out of this book, you should know the basics of HTML and maybe even a
sampling of CSS. If you’ve never built a web page before, then check out the tuto-
rial that starts on page 27. The primary discussions in these chapters are written
for advanced beginners or intermediates. But if you’re new to building web pages,
special boxes labeled “Up to Speed” provide the introductory information you need
to understand the topic at hand. If you’re an advanced web jockey, on the other
hand, then keep your eye out for similar boxes called “Power Users’ Clinic.” They
offer more technical tips, tricks, and shortcuts for the experienced computer fan.

About the Outline
CSS: The Missing Manual is divided into five parts; the first four each contain several
chapters while the last part contains appendixes.

• Part One, CSS Basics, shows you how to create style sheets and provides an
overview of key CSS concepts like inheritance, selectors, and the cascade.
Along the way, you’ll learn the best HTML writing practices when working with
CSS. Tutorials reinforce the part’s main concepts and give you a good taste of
the power of CSS.

• Part Two, Applied CSS, takes you into the real world of web design. You’ll learn
the most important CSS properties and how to use them to format text, create
useful navigation tools, and enhance your page with graphics. You’ll learn how
to create simple animations with CSS. This section also provides advice on how
to make attractive tables and forms.

• Part Three, CSS Page Layout, helps you with one of the most confusing, but
most rewarding, aspects of CSS—controlling the layout of your web pages. You’ll
learn how to create common designs (like two- and three-column layouts) and
how to add sidebars, and you’ll learn about floats and positioning—two com-
mon CSS techniques for controlling page layout. You’ll also learn how to craft
websites that adapt to look good on desktop, tablet, and mobile browsers, as
well as how to use flexbox, a powerful new way of laying out web pages.

• Part Four, Advanced CSS, delves into professional tips for improving your CSS,
It also provides an introduction to Sass—a powerful and efficient way of author-
ing your style sheets.

• Part Five, Appendixes, includes two sets of resources. The CSS Property Ref-
erence summarizes each CSS property in small, easy-to-digest chunks so you
can quickly learn about useful CSS properties you may not have seen before

http://www.w3.org/TR/css3-transforms
http://www.w3.org/TR/css3-transforms

Css: tHe MIssInG MAnUALxx

THE VERY
BASICS

or brush up on what you already know. The second appendix covers tools and
resources for creating and using CSS.

The Very Basics
To use this book, and indeed to use a computer, you need to know a few basics. You
should be familiar with these terms and concepts:

• Clicking. This book gives you three kinds of instructions that require you to use
your computer’s mouse or trackpad. To click means to point the arrow cursor at
something on the screen and then—without moving the cursor at all—to press
and release the clicker button on the mouse (or laptop trackpad). A right-click
is the same thing using the right mouse button. (On a Mac, press Control as you
click if you don’t have a right mouse button.)

To double-click means to click twice in rapid succession, again without moving
the cursor at all. And to drag means to move the cursor while pressing the button.

When you’re told to Ctrl-click something on a PC or c-click something on the
Mac, you click while pressing the Ctrl or c key.

• Menus. The menus are the words at the top of your screen or window: File,
Edit, and so on. Click one to make a list of commands appear, as though they’re
written on a window shade you’ve just pulled down. This book assumes that you
know how to open a program, surf the Web, and download files. You should
know how to use the Start menu (Windows) or the Dock or the Apple menu
(Mac), as well as the Control Panel (Windows) or System Preferences (Mac OS X).

• Keyboard shortcuts. Every time you take your hand off the keyboard to move
the mouse, you lose time and potentially disrupt your creative flow. That’s why
many experienced computer users use keystroke combinations instead of menu
commands wherever possible. When you see a shortcut like Ctrl+S (c-S) (which
saves changes to the current document), it’s telling you to hold down the Ctrl
or c key, and, while it’s down, type the letter S, and then release both keys.

About→These→Arrows
Throughout this book, and throughout the Missing Manual series, you’ll find sentences
like this one: “Open the System→Library→Fonts folder.” That’s shorthand for a much
longer instruction that directs you to open three nested folders in sequence, like this:
“On your hard drive, you’ll find a folder called System. Open that. Inside the System
folder window is a folder called Library; double-click it to open it. Inside that folder
is yet another one called Fonts. Double-click to open it, too.”

Similarly, this kind of arrow shorthand helps to simplify the business of choosing
commands in menus, as shown in Figure I-1.

 xxi

ABOUT THE
ONLINE

RESOURCES

FiGURE P-1
In this book, arrow nota-
tions help simplify menu
instructions. For example,
View→Developer→View
Source is a more compact
way of saying, “From
the View menu, choose
Developer; from the sub-
menu that then appears,
choose View Source.”

About the Online Resources
As the owner of a Missing Manual, you’ve got more than just a book to read. Online,
you’ll find example files so you can get some hands-on experience, as well as tips,
articles, and maybe even a video or two. You can also communicate with the Missing
Manual team and tell us what you love (or hate) about the book. Head over to www.
missingmanuals.com, or go directly to one of the following sections.

Living Examples
This book is designed to get your work onto the Web faster and more professionally.
It’s only natural, then, that half the value of this book lies on the Web.

As you read the book’s chapters, you’ll encounter a number of living examples—
step-by-step tutorials that you can build yourself, using raw materials (like graphics
and half-completed web pages) that you can download from https://github.com/
sawmac/css_mm_4e. You may not gain very much by simply reading these step-
by-step lessons while relaxing in your porch hammock. But if you work through
them at the computer, you’ll discover that these tutorials give you insight into the
way professional designers build web pages.

You’ll also find, in this book’s lessons, the URLs of the finished pages, so that you
can compare your work with the final result. In other words, you won’t just see pic-
tures of how the web pages should look; you’ll find the actual, working web pages
on the Internet.

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUALxxii

SAFARI® BOOKS
ONLINE

About MissingManuals.com
At www.missingmanuals.com, you’ll find articles, tips, and updates to CSS: The
Missing Manual. In fact, we invite and encourage you to submit such corrections
and updates yourself. In an effort to keep the book as up-to-date and accurate as
possible, each time we print more copies of this book, we’ll make any confirmed
corrections you’ve suggested. We’ll also note such changes on the website, so that
you can mark important corrections into your own copy of the book, if you like. (Go
to www.missingmanuals.com/feedback, choose the book’s name from the pop-up
menu, and then click Go to see the changes.)

Also on our Feedback page, you can get expert answers to questions that come
to you while reading this book, write a book review, and find groups for folks who
share your interest in CSS.

We’d love to hear your suggestions for new books in the Missing Manual line. There’s
a place for that on missingmanuals.com, too. And while you’re online, you can also
register this book at www.oreilly.com (you can jump directly to the registration
page by going here: www.oreilly.com/register). Registering means we can send you
updates about this book, and you’ll be eligible for special offers like discounts on
future editions of CSS: The Missing Manual.

Errata
In an effort to keep this book as up-to-date and accurate as possible, each time we
print more copies, we’ll make any confirmed corrections you’ve suggested. We also
note such changes on the book’s website, so you can mark important corrections
into your own copy of the book, if you like. Go to www.tinyurl.com/css4e-mm to
report an error and view existing corrections.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

http://missingmanuals.com
http://www.tinyurl.com/css4e-mm

CSS Basics
PART

1

CHAPTER 1:

 HTML and CSS

CHAPTER 2:

 Creating Styles and Style Sheets

CHAPTER 3:

 Selectors: Identifying What to Style

CHAPTER 4:

 Saving Time with Style Inheritance

CHAPTER 5:

 Managing Multiple Styles: The Cascade

3

CHAPTER

1

CSS isn’t anything without HTML. HTML provides web pages with content and
meaningful structure, and while it may not be pretty by itself, the web wouldn’t
exist without it. So to get the most out of your CSS training, you need to know

how to write HTML to create a solid, well-built foundation. This chapter introduces
you to the basics of CSS and shows you how to write better, more CSS-friendly HTML.

The good news is that when you use CSS throughout your site, HTML actually be-
comes easier to write. You don’t need to try to turn HTML into the design maven it
was never intended to be. Instead, CSS offers most of the graphic design touches
you’ll likely ever want, and HTML pages written to work with CSS are easier to cre-
ate, since they require less code and less typing. They’ll also download faster—a
welcome bonus your site’s visitors will appreciate (see Figure 1-1).

HTML: Past and Present
HTML provides the foundation for every page you encounter on the Web. When you
add CSS into the mix, HTML becomes simpler, because you don’t need to use HTML
tags (like the old tag) to control how a web page looks. That job is for CSS.
But before jumping into CSS, here’s a quick walk through HTML’s past (and present).

HTML Past: Whatever Looked Good
When a bunch of scientists created the Web to share technical documentation,
nobody called in the graphic designers. All the scientists needed HTML to do was
structure information for easy comprehension. For example, the <h1> tag indicates
an important headline, while the <h2> tag represents a lesser heading, usually a

 HTML and CSS

Css: tHe MIssInG MAnUAL4

HTML: PAST
AND PRESENT

subheading of the <h1> tag. Another favorite, the (ordered list) tag, creates a
numbered list for things like “Top 10 reasons not to play with jellyfish.”

FiGURE 1-1
CSS-driven web design
makes writing HTML
easier. The two designs
pictured here look similar,
but the top page is styled
completely with CSS,
while the bottom page
uses only HTML. The size
of the HTML file for the
top page is only 4k, while
the HTML-only page is
nearly four times that
size at 14k. The HTML-only
approach requires a lot
more code to achieve
nearly the same visual
effects: 213 lines of HTML
code compared with 71
lines for the CSS version.

But as soon as people other than scientists started using HTML, they wanted their
web pages to look good. So web designers started to use tags to control appear-
ance rather than structure information. For example, you can use the <blockquote>
tag (intended for material that’s quoted from another source) on any text that you
want to indent a little bit. You can use heading tags to make any text bigger and
bolder—regardless of whether it functions as a heading.

CHAPteR 1: HTML AND CSS 5

WRITING HTML
FOR CSS

In an even more elaborate workaround, designers learned how to use the <table>
tag to create columns of text and accurately place pictures and text on a page.
Unfortunately, since that tag was intended to display spreadsheet-like data—re-
search results, train schedules, and so on—designers had to get creative by using
the <table> tag in unusual ways, sometimes nesting a table within a table within a
table to make their pages look good.

Meanwhile, browser makers introduced new tags and attributes for the specific
purpose of making a page look better. The tag, for example, let you specify
a font color, typeface, and one of seven different sizes. (If you’re keeping score at
home, that’s about 100 fewer sizes than you can get with, say, Microsoft Word.)

Finally, when designers couldn’t get exactly what they wanted, they often resorted
to using graphics. For example, they’d create a large graphic to capture the exact
font and layout for web page elements and then slice the Photoshop files into smaller
files and piece them back together inside tables to recreate the original design.

While all of the preceding techniques—using tags in creative ways, taking advantage
of design-specific tag attributes, and making extensive use of graphics—provide
design control over your pages, they also add a lot of additional HTML code. More
code makes your site more difficult to build and much slower for your visitors to
download.

HTML Present: Scaffolding for CSS
No matter what content your web page holds—the fishing season calendar, driving
directions to the nearest IKEA, or pictures from your kid’s birthday party—it’s the
page’s design that makes it look like either a professional enterprise or a part-timer’s
hobby. Good design enhances the message of your site, helps visitors find what
they’re looking for, and determines how the rest of the world sees your website.
That’s why web designers went through the contortions described in the previous
section to force HTML to look good. By taking on those design duties, CSS lets HTML
go back to doing what it does best—structuring content.

Using HTML to control the look of text and other web page elements is obsolete. Don’t
worry if HTML’s <h1> tag is too big for your taste or bulleted lists aren’t spaced just
right. You can take care of that later using CSS. Instead, think of HTML as a method
of adding structure to the content you want up on the Web. Use HTML to organize
your content and CSS to make that content look great.

Writing HTML for CSS
If you’re new to web design, you may need some helpful hints to guide your forays
into HTML (and to steer clear of well-intentioned, but out-of-date HTML techniques).
Or if you’ve been building web pages for a while, you may have picked up a few bad
habits that you’re better off forgetting. The rest of this chapter introduces you to
some HTML-writing habits that will make your mom proud—and help you get the
most out of CSS.

Css: tHe MIssInG MAnUAL6

WRITING HTML
FOR CSS

Think Structure
HTML adds meaning to text by logically dividing it and identifying the role it plays on
the page: For example, the <h1> tag is the most important introduction to a page’s
content. Other headers let you divide the content into less important, but related
sections. Just like this book, a web page needs a logical structure. Each chapter
in this book has a title (think <h1>) and several sections (think <h2>), which in turn
contain smaller subsections. Imagine how much harder it would be to read these
pages if the words just ran together as one long paragraph.

 NOTE  For a tutorial on HTML, visit www.w3schools.com/html/html_intro.asp. For a quick list of all available
HTML tags, visit the detailed (but a bit technical) reference at the Mozilla Developer network: https://developer.
mozilla.org/en-US/docs/Web/HTML/Element.

HTML provides many other tags besides headers for marking up content to identify
its role. (After all, the M in HTML stands for markup.) Among the most popular are the
<p> tag for paragraphs of text and the tag for creating bulleted (non-numbered)
lists. Lesser-known tags can indicate very specific types of content, like <abbr> for
abbreviations and <code> for computer code.

When writing HTML for CSS, use a tag that comes as close as possible to match-
ing the role the content plays in the page, not the way it looks (see Figure 1-2). For
example, a bunch of links in a navigation bar isn’t really a headline, and it isn’t a
regular paragraph of text. It’s most like a bulleted list of options, so the tag is a
good choice. If you’re saying, “But items in a bulleted list are stacked vertically one
on top of the other, and I want a horizontal navigation bar where each link sits next
to the previous link,” don’t worry. With CSS magic you can convert a vertical list of
links into a stylish horizontal navigation bar, as you’ll see in Chapter 9.

More HTML Tags to Keep in Mind
HTML’s motley assortment of tags doesn’t cover the wide range of content you’ll
likely have on a web page. Sure, <code> is great for marking up computer program
code, but most folks would find a <recipe> tag handier. Too bad there isn’t one.
Fortunately, HTML provides several “structural” tags that let you better identify
and group content, and, in the process, provide “handles” that let you attach CSS
styles to different page elements. Two of those tags—<div> and —have been
around nearly since the beginning of HTML. HTML5 introduced a much wider range
of tags that let you group content that serves a particular function, like the <footer>
tag, which you can use to group supplementary information like a copyright notice,
contact information, or a list of resources.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

CHAPteR 1: HTML AND CSS 7

WRITING HTML
FOR CSS

FiGURE 1-2
Old school, new school. Before CSS,
designers had to resort to the tag
and other extra HTML to achieve certain
visual effects (top). You can achieve the
same look (and often a better one) with a
lot less HTML code (bottom). In addition,
using CSS for formatting frees you up
to write HTML that follows the logical
structure of the page’s content.

UNDERSTANDING THE <DIV> AND TAGS
The <div> and tags have been around for much of the life of the Web. They’ve
traditionally been used to organize and group content that doesn’t quite lend itself
to other HTML tags. Think of them as like empty vessels that you fill with content. A
div is a block, meaning it has a line break before it and after it, while a span appears
inline, as part of a paragraph. Otherwise, divs and spans have no inherent visual
properties, so you can use CSS to make them look any way you want. The <div>
(for division) tag indicates any discrete block of content, much like a paragraph or
a headline. But more often it’s used to group any number of other elements, so
you can insert a headline, a bunch of paragraphs, and a bulleted list inside a single
<div> block. The <div> tag is a great way to subdivide a page into logical areas, like
a banner, footer, sidebar, and so on. Using CSS, you can later position each area to
create sophisticated page layouts (a topic that’s covered in Part Three).

Css: tHe MIssInG MAnUAL8

WRITING HTML
FOR CSS

UP TO SPEED

Simple HTML Is Search Engine Friendly
Once you ignore how plain HTML looks and instead think of it
simply as the way to structure a document’s content, and CSS
as the tool for making that content look good, you’ll discover
additional benefits to writing lean, mean HTML. For one thing,
you may boost your search-engine ranking as determined by
sites like Google, Yahoo, and Bing. That’s because when search
engines crawl the Web, indexing the content on websites, they
go through all the HTML on each page to discover the actual
content. The old HTML way of using special tags (like)
and lots of tables to design a page gets in the way of the search
engine’s job. In fact, some search engines stop reading a page’s
HTML after a certain number of characters. When you use HTML
just for design, the search engine may miss important content
on the page or even fail to rank it at all.

By contrast, simple, structured HTML is easy for a search
engine to read and index. Using an <h1> tag to indicate the

most important topic of the page (as opposed to just making
the text big and bold) is a smart strategy: Search engines
give greater weight to the contents inside that tag when they
index the page.

What’s more, CSS lets you control where content appears on the
page. For example, although you may want a fancy navigation
bar, a newsletter signup form, and a Contact Us button to ap-
pear at the top of your web page, you don’t have to place that
content at the top of your HTML file. You can place the page’s
most important content at the top of the HTML and let CSS con-
trol exactly where everything appears in the browser window.

To see Google’s suggestions for building search-friendly web-
sites, download their search engine start kit at https://static.
googleusercontent.com/media/www.google.com/en//web-
masters/docs/search-engine-optimization-starter-guide.pdf.

The tag is used for inline elements: words or phrases that appear inside a
larger paragraph or heading. Treat it just like other inline HTML tags, such as the
<a> tag (for adding a link to some text in a paragraph) or the tag (for
emphasizing a word in a paragraph). For example, you could use a tag to
indicate the name of a company, and then use CSS to highlight the name by using a
different font, color, and so on. Here’s an example of these tags in action, complete
with a sneak peek of a couple of attributes—id and class—frequently used to attach
styles to parts of a page.

<div id="footer">
 <p>Copyright 2015, SuperCo.com</p>
 <p>Call customer service at 555-555-5501 for more information.</p>
</div>

This brief introduction isn’t the last you’ll see of these tags. They’re used frequently
in CSS-heavy web pages, and in this book you’ll learn how to use them in combina-
tion with CSS to gain creative control over your web pages.

ADDITIONAL TAGS IN HTML5
The <div> tag is rather generic—it’s simply a block-level element used to divide a
page into sections. One of the goals of HTML5 is to provide other, more semantic
tags for web designers to choose from. Making your HTML more semantic simply
means using tags that accurately describe the content they contain. As mentioned

https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf
https://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf

CHAPteR 1: HTML AND CSS 9

WRITING HTML
FOR CSS

earlier in this section, you should use the <h1> (heading 1) tag when placing text that
describes the primary content of a page. Likewise, the <code> tag tells you clearly
what kind of information is placed inside—programming code.

HTML5 includes many different tags whose names reflect the type of content they
contain, and can be used in place of the <div> tag. The <article> tag, for example,
is used to mark off a section of a page that contains a complete, independent com-
position, like a blog post, an online magazine article, or simply the page’s main body
of text. Likewise, the <header> tag indicates a header or banner: the top part of a
page, usually containing a logo, sitewide navigation, page title and tagline, and so on.

 NOTE  To learn more about the new HTML tags, visit HTML5 Doctor (http://html5doctor.com) and www.
w3schools.com/html/html5_intro.asp or grab a copy of the HTML5 Pocket Reference (O’Reilly).

Many HTML5 tags are intended to expand upon the generic <div> tag. Here are a
few other HTML5 tags frequently used to structure the content on a page:

• The <section> tag contains a grouping of related content, such as the chapter
of a book. For example, you could divide the content of a home page into three
sections: one for an introduction to the site, one for contact information, and
another for latest news.

• The <aside> tag holds content that is related to content around it. A sidebar
in a print magazine is an example of the type of content that would go into an
<aside>.

• The <footer> tag contains information you’d usually place in a page’s footer,
like a copyright notice, legal information, some site navigation links, and so on.
You’re not limited to just a single <footer> per page, though; you can put a
footer inside an <article>, for example, to hold related information like foot-
notes, references, or citations.

• The <nav> element is used to contain primary navigation links.

• The <figure> tag is used for an illustrative image. You can place an tag
inside it, as well as another new HTML5 tag—the <figcaption> tag, which is
used to display a caption explaining the photo or illustration within the <figure>.

 TIP  Understanding which HTML5 tag to use—should your text be an <article> or a <section>?—can
be tricky. For a handy flowchart that makes sense of HTML5’s new sectioning elements, download the PDF from
the HTML5doctor.com at http://html5doctor.com/downloads/h5d-sectioning-flowchart.pdf.

There are other HTML5 elements, and many of them simply provide a more descrip-
tive alternative to the <div> tag. This book uses both the <div> tag and the new
HTML5 tags to help organize web-page content. The downside of HTML5 is that
Internet Explorer 8 and earlier don’t recognize the new tags without a little bit of
help (see the box on page 12).

http://html5doctor.com
www.w3schools.com/html/html5_intro.asp
www.w3schools.com/html/html5_intro.asp

Css: tHe MIssInG MAnUAL10

WRITING HTML
FOR CSS

In addition to letting you feel like you’re keeping up with the latest web design
trends, using HTML5 tags provides you with clues about a page’s content, and may
boost the site’s search engine ranking. For example, using the <article> tag to
hold the main story on a web page can highlight what’s inside that tag, and is more
descriptive (that is, semantic) than a plain old <div>. Even so, many web designers
still use <div> tags even in places where an HTML5 tag makes sense, so there’s no
harm in continuing to use the <div> tag and avoiding the HTML5 sectioning ele-
ments if you like.

In addition, even with the HTML5 tags, sometimes you still need use <div> tags
simply to group other HTML tags. You’d do this to provide a way to move that group
to another spot on a page, to give the group a consistent background color, or to
draw an outline and add a drop shadow.

Keep Your Layout in Mind
While you’ll use the <h1> tag to identify the main topic of the page and the <p> tag
to add a paragraph of text, you’ll eventually want to organize a page’s content into
a pleasing layout. As you learn how to use CSS to lay out a page in Part Three, it
doesn’t hurt to keep your design in mind while you write the page’s HTML.

You can think of web page layout as the artful arrangement of boxes (see Figure 1-3
for an example). After all, a two-column design consisting of two vertical columns
of text is really just two rectangular boxes sitting side by side. A header consisting
of a logo, tagline, search box, and site navigation is really just a wide rectangular
box sitting across the top of the browser window. In other words, if you imagine the
groupings and layout of content on a page, you’d see boxes sitting on top of, next
to, and below one another.

CHAPteR 1: HTML AND CSS 11

WRITING HTML
FOR CSS

FiGURE 1-3
This basic two-column
layout includes a banner
(top), a column of main
content (middle, left), a
sidebar (middle, right),
and a footer (bottom).
These are the main
structural boxes making
up this page’s layout.

Css: tHe MIssInG MAnUAL12

WRITING HTML
FOR CSS

WORKAROUND WORKSHOP

Getting IE8 to Understand HTML5
HTML5 gives you many HTML tags to play with, from tags
that clearly describe the kind of content they hold, like the
<nav> tag, to ones that provide added functionality, like the
<video> tag for embedding videos and the <audio> tag
for embedding sound and music.

Unfortunately, Internet Explorer 8 and earlier don’t recognize
these new tags, and won’t respond to any CSS you apply to
them. That’s right—if you’re using HTML5 and viewing web
pages in IE8, this book is useless to you. Well…not exactly. There
is a way to kick those old versions of IE into gear, so they’ll
understand all the CSS that applies to HTML5 tags.

Simply place the following code before the closing </head>
tag at the top of your HTML file:

<!--[if lt IE 9]>
<script src="//html5shiv.googlecode.com/
svn/trunk/html5.js"></script>
<![endif]-->

This tricky bit of code uses what’s called an “Internet Explorer
conditional comment” (IECC for short) to embed a bit of JavaScript
code that’s only visible to versions of Internet Explorer earlier
than IE9. In other words, only IE6, 7, and 8 respond to this code,
and all other browsers (including newer versions of IE) simply
ignore it. This code makes earlier versions of IE load a small
JavaScript program that forces the browser to recognize HTML5
tags and apply the CSS that applies to those tags.

This code only affects how the browser displays and prints
HTML5 tags; it doesn’t make the browser “understand” an
HTML5 tag that actually does something. For example, IE8
and earlier don’t understand the <video> tag and can’t play
HTML5 video (even with the added JavaScript code).

If you’re wondering whether you even need to worry about
Internet Explorer 8 anymore, check out the box on page 13.

In your HTML, you create these boxes, or structural units, using the <div> tag, or
one of HTML5’s structural tags like <footer>, <header>, <article>, and <aside>.
Simply wrap the HTML tags that make up the banner area, for example, in one div,
a column’s worth of HTML in another, and so on. If you’re HTML5 savvy, you might
create the design pictured in Figure 1-3, with a <header> tag for the top banner, an
<article> tag for the main text, an <aside> or <section> tag for the sidebar, and
a <footer> tag for the page’s footer. In other words, if you plan to place a group of
HTML tags together somewhere on a page, then you’ll need to wrap those tags in a
sectioning element like a <div>, <article>, <section>, or <aside>.

As you’ll learn in Part Three, CSS provides powerful layout tools. You can literally
place HTML anywhere in the browser window; recent developments like flexbox
(Chapter 15) give you lots of freedom in how you structure your HTML. Still, it’s
always a good idea to group related content into some kind of container element
like a <div> or an HTML5 structural tag.

CHAPteR 1: HTML AND CSS 13

WRITING HTML
FOR CSS

FREQUENTLY ASKED QUESTION

Should I Care About IE8?
I know Internet Explorer 6 used to be a big headache for web
designers. What versions of Internet Explorer should I be
designing for now?

If you’re a web designer, you’ve probably got the latest ver-
sions of Internet Explorer, Firefox, Safari, Chrome, and Opera
on your computer. But you can’t depend on your audience to
update their web browsers; maybe they don’t know how, or
their computers are too old to use newer versions.

Fortunately, Internet Explorer 6 and 7 are pretty much gone
from the planet, although they still exist and are used in
pockets of China, India, and Venezuela (see www.modern.ie/
en-us/ie6countdown for more). You may also be able to find
them as part of a “history of computing” exhibit in a science
museum somewhere.

However, as of this writing, Internet Explorer 8 is still used
throughout the world. It ’s certainly not the most popular

browser, but (depending on your source) it ’s still used by
anywhere from around 2% to 19% of the world’s web users.
Two sites you can use to find browser usage are NetMarketShare
(www.netmarketshare.com/browser-market-share.aspx) and
the GlobalStats StatCounter (http://gs.statcounter.com).

However, even statistics that include the geographic region
of your site’s audience don’t truly reflect what visitors to your
site use. If you build a site aimed at tech-savvy web design-
ers, odds are that you haven’t had a visitor with IE 8 for quite
some time. However, if your site’s aimed at people in China,
you may need to deal with IE 8 (and maybe even 6 and 7). The
best way to find out how much of your traffic comes via any
browser version is to look at your web server’s log files or sign
up for Google Analytics (www.google.com/analytics) so you
can track your visitors’ browsers (among many other things).

Microsoft says it will discontinue support for Internet Explorer 8 by January 2016. At
that point, Windows fans will have more incentive to upgrade IE or switch to another
browser, like Chrome or Firefox. The biggest problem with IE8 is that it doesn’t un-
derstand HTML5 tags, which means you can’t directly format these tags with CSS.
If you’re really worried about supporting Internet Explorer 8, either skip the HTML5
tags described on page 8 for structuring your HTML and stick to <div> tags, or use
the quick JavaScript solution described in the box on page 12.

HTML to Forget
CSS lets you write simpler HTML for one big reason: There are many old HTML tags
that you should abandon (if you’re still using them). The tag is the most
glaring example. Its sole purpose is to add a color, size and font to text. It doesn’t
do anything to make the page’s structure more understandable.

Here’s a list of tags and attributes you can easily replace with CSS:

• Ditch for controlling the display of text. CSS does a much better job
with text. (See Chapter 6 for text-formatting techniques.)

• Don’t use the and <i> tags to emphasize text. If you want text to really
be emphasized, use the tag, which browsers normally display as bold.
For a slightly less emphatic point, use the tag, which browsers display as
italic. You can use CSS to make any text on a page italicized, bolded, or both.

http://www.modern.ie/en-us/ie6countdown
http://www.modern.ie/en-us/ie6countdown

Css: tHe MIssInG MAnUAL14

WRITING HTML
FOR CSS

While HTML 4 tried to phase the and <i> tags out, HTML5 has brought them
back. In HTML5 the tag is meant to merely make text bold without adding
any meaning to that text (that is, you just want the text to be bold looking but
you don’t want people to treat that text like you’re shouting it). Likewise, the
<i> tag is used for italicizing text, but not emphasizing its meaning.

 NOTE  To italicize a publication’s title, the <cite> tag kills two birds with one stone. It puts the title in
italics and tags it as a cited work for search engines’ benefit. Of course, CSS lets you do anything you want with
the tag, so if you want to reference a publication and not italicize it, you can still use the <cite> tag.

• Skip the <table> tag for page layout. Use tables only to display information
like spreadsheets, schedules, and charts. As you’ll see in Part Three, you can do
all your layout with CSS for much less time and code than the table-tag tango.

• Don’t abuse the
 tag. If you grew up using the
 tag to insert a line
break without creating a new paragraph, then you’re in for a treat. (Browsers
automatically—and sometimes infuriatingly—insert a bit of space between
paragraphs, including between headers and <p> tags. In the past, designers
used elaborate workarounds to avoid paragraph spacing they didn’t want, like
replacing a single <p> tag with a bunch of line breaks and using a tag
to make the first line of the paragraph look like a headline.) Using CSS’s mar-
gin controls, you can easily set the amount of space you want to see between
paragraphs, headers, and other block-level elements.

 NOTE  In Chapter 5, you’ll learn about a technique called a “CSS Reset,” which eliminates the gaps browsers
normally insert between paragraphs and other tags (see page 109).

As a general rule, adding attributes to tags that set colors, borders, background
images, or alignment—including attributes that let you format a table’s colors, back-
grounds, and borders—is pure old-school HTML. So is using alignment properties to
position images and center text in paragraphs and table cells. Instead, look to CSS
to control text placement (page 164), borders (page 194), backgrounds (page 231),
and image alignment (page 229).

CHAPteR 1: HTML AND CSS 15

WRITING HTML
FOR CSS

UP TO SPEED

Validate Your Web Pages
HTML follows certain rules: For example, the <html> tag
wraps around the other tags on a page, and the <title>
tag needs to appear within the <head> tag. It’s easy to forget
these rules or simply make a typo. Incorrect (or invalid, as the
pros would say) HTML causes problems like making your page
look different in different web browsers. More importantly,
even valid CSS may not work as expected with invalid HTML.
Fortunately, there are tools for checking whether the HTML in
your web pages is correctly written.

The easiest way to check—that is, validate—your pages is on
the W3C’s website at http://validator.w3.org (see Figure 1-4).
The W3C, or World Wide Web Consortium, is the organization
responsible for determining the standards for many Web
technologies and languages, including HTML and CSS. If the
W3C validator finds any errors in your page, it tells you what
they are.

The Web Developer extension for Chrome, Firefox, and Opera
(http://chrispederick.com/work/web-developer) provides a
quick way to test a page in the W3C validator.

FiGURE 1-4
The W3C HTML validator
located at http://validator.
w3.org lets you quickly
make sure the HTML in a
page is sound. You can
point the validator to an
already existing page on
the Web, upload an HTML
file from your computer,
or just paste the HTML of
a web page into a form
box and then click the
Check button.

http://validator.w3.org
http://chrispederick.com/work/web-developer
http://validator.w3.org
http://validator.w3.org

Css: tHe MIssInG MAnUAL16

WRITING HTML
FOR CSS

Tips to Guide Your Way
It’s always good to have a map to get the lay of the land. If you’re still not sure how
to use HTML to create well-structured web pages, then here are a few tips to get
you started:

• Use headings to indicate the relative importance of text. Again, think outline.
When two headings have equal importance in the topic of your page, use the
same level header on both. If one is less important or a subtopic of the other,
then use the next-level header. For example, follow an <h2> with an <h3> tag
(see Figure 1-5). In general, it’s good to use headings in order and try not to
skip heading numbers. For example, don’t follow an <h2> tag with an <h5> tag.

FiGURE 1-5
Use the headline tags (<h1>, <h2>, and so on) as you would if
you were outlining a school report: Put them in order of impor-
tance, beginning with an <h1> tag, which should shout “Listen
up! This is what this whole page is about.”

• Use the <p> tag for paragraphs of text.

• Use unordered lists () when you’ve got a list of several related items, such
as navigation links, headlines, or a set of tips like these.

• Use numbered lists () to indicate steps in a process or define the order of a
set of items. The tutorials in this book are a good example, as is a list of rankings
like “Top 10 websites popular with monks.”

• To create a glossary of terms and their definitions or descriptions, use the <dl>
(definition list) tag in conjunction with the <dt> (definition term) and <dd> (defi-
nition description) tags. (For an example of how to use this combo, visit http://
htmldog.com/guides/html/intermediate/definitionlists/.)

http://htmldog.com/guides/html/intermediate/definitionlists/
http://htmldog.com/guides/html/intermediate/definitionlists/

CHAPteR 1: HTML AND CSS 17

THE
IMPORTANCE

OF THE
DOCTYPE

• If you want to include a quotation like a snippet of text from another website,
a movie review, or just some wise saying of your grandfather’s, try the <block-
quote> tag for long passages or the <q> tag to place a short quote within a
longer paragraph, like this:

<p>Mark Twain is said to have written <q>The coldest winter I ever spent
was a summer in San Francisco</q>. Unfortunately, he never actually wrote
that famous quote.</p>

• Take advantage of obscure tags like the <cite> tag for referencing a book title,
newspaper article, or website, and the <address> tag to identify and supply
contact information for the author of a page (great for a copyright notice).

• As explained in full on page 3, steer clear of any tag or attribute aimed solely
at changing the appearance of a text or image. CSS, as you’ll see, can do it all.

• When there isn’t an HTML tag that fits the bill, but you want to identify an ele-
ment on a page or a bunch of elements on a page so you can apply a distinctive
look, use the <div> and tags (see page 7). You’ll get more advice on
how to use these in later chapters.

• Don’t overuse <div> tags. Some web designers think all they need are <div>
tags, ignoring tags that might be more appropriate. For example, to create a
navigation bar, you could add a <div> tag to a page and fill it with a bunch of
links. A better approach would be to use a bulleted list (tag), After all,
a navigation bar is really just a list of links. As discussed on page 8, HTML5
provides several new tags that can take the place of the <div> tag, like the
<article>, <section>, and <footer> tags. For a navigation bar, you could use
the HTML5 <nav> tag.

• Remember to close tags. The opening <p> tag needs its partner in crime (the
closing </p> tag), as do all other tags, except the few self-closers like
 and
.

• Validate your pages with the W3C validator (see Figure 1-4 and the box on page
15). Poorly written or typo-ridden HTML causes many weird browser errors.

The Importance of the Doctype
HTML follows certain rules. You tell a web browser which version of HTML you’re
using (and which rules you’re following) by including what’s called a doctype dec-
laration at the beginning of a web page. This doctype declaration is the first line in
the HTML file, and defines what version of HTML you’re using (such as HTML5 or
HTML 4.01 Transitional).

If you mistype the doctype declaration or leave it out, you can throw most browsers
into an altered state called quirks mode. Quirks mode is browser manufacturers’ at-
tempt to make their software behave like browsers did circa 1999 (in the Netscape 4
and Internet Explorer 5 days). If a modern browser encounters a page that’s missing

Css: tHe MIssInG MAnUAL18

THE
IMPORTANCE

OF THE
DOCTYPE

the correct doctype, then it thinks, “Gee, this page must have been written a long
time ago, in an HTML editor far, far away. I’ll pretend I’m a really old browser and
display the page just as one of those buggy old browsers would display it.” That’s
why, without a correct doctype, your lovingly CSS-styled web pages may not look
as they should, according to current standards. If you unwittingly view your web
page in quirks mode when checking it in a browser, you may end up trying to fix
display problems that are related to an incorrect doctype and not the incorrect use
of HTML or CSS.

 NOTE  For more (read: technical) information on quirks mode, visit www.quirksmode.org/css/quirksmode.
html and https://developer.mozilla.org/en-US/docs/Quirks_Mode_and_Standards_Mode.

Fortunately, it’s easy to get the doctype right. All you need to know is what version of
HTML you’re using. Almost everyone is using HTML5 now, and the doctype is simply:

<!doctype html>

Put this at the top of your HTML file and you’re good to go. If you’re still using older
versions of HTML or XHTML such as HTML 4.01 Transitional and XHTML 1.0 Transi-
tional, then the doctype is a lot more convoluted.

If you’re using HTML 4.01 Transitional, for example, type the following doctype
declaration at the very beginning of every page you create:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.
w3.org/TR/html4/loose.dtd">

The doctype declaration for XHTML 1.0 Transitional is similar. It’s also necessary
to add a little code to the opening <html> tag that’s used to identify the file’s XML
type—in this case, it’s XHTML—like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

If this entire discussion is making your head ache and your eyes slowly shut, keep
your life simple by using the HTML5 doctype. It’s short, easy to remember, works
in all browsers, and what almost all new web pages use. You can use this doctype
even if you don’t touch any of the new HTML5 tags.

 NOTE  Most visual web page tools like Dreamweaver add a doctype declaration whenever you create a new
web page, and many HTML-savvy text editors have shortcuts for adding doctypes.

http://www.quirksmode.org/css/quirksmode.html
http://www.quirksmode.org/css/quirksmode.html
https://developer.mozilla.org/en-US/docs/Quirks_Mode_and_Standards_Mode

CHAPteR 1: HTML AND CSS 19

HOW CSS
WORKSHow CSS Works

Now that you have a solid background on writing HTML for CSS, you’re ready for
what this book is all about. CSS is the styling language used to format HTML-based
web pages. While HTML provides the page’s structure, CSS works hand in hand with
the web browser to make HTML look good on screen.

For example, you might use HTML to turn a phrase into a top-level heading, indicat-
ing that it introduces the content on the rest of the page. You’d use CSS to format
that heading with, say, big and bold red type and position it 50 pixels from the left
edge of the window. In CSS, that text formatting is a style—a rule describing the ap-
pearance of a particular portion of a web page. A style sheet is a set of these styles.

You can create styles to work with any HTML tag. For example, you can create styles
specifically to format the images on a page. For instance, a style can align an image
along the page’s right edge, surround the image with a colorful border, and place a
50-pixel margin between the image and the surrounding text.

The web browser applies the styles you create to text, images, headings, and other
page elements. For example, you can create a style that applies to a single para-
graph on your page to instantly change the text’s size, color, and font within that
paragraph. You can create styles that apply to specific HTML tags, so, for example,
a browser displays every first-level heading (<h1> tag) in your site in the same way,
no matter where those headings appear. You can even create styles that apply only
to specific tags that you’ve marked up in a special way in the HTML.

Creating styles is all about determining what you want to style (a single image, every
image, every other item in a list, and so on) and how you want that selected element
or elements to look. In fact, determining what you want to style is such a big topic,
Chapters 3, 4, and 5 of this book are devoted to the subject. All of the different ways

you can make page elements look is an even bigger topic, and is covered in Part Two.

Css: tHe MIssInG MAnUAL20

HOW CSS
WORKS

UP TO SPEED

The Different Flavors of CSS
Like operating systems and iPhone models, CSS spins off
new versions continuously (well, maybe not as frequently
as iPhones). CSS1, introduced in 1996, laid the groundwork
for Cascading Style Sheets. The basic structure of a style, the
selector concept (Chapter 3), and most of the CSS properties
in this book were all in that very first version.

CSS2 added new features, including the ability to target your
CSS to different printers, monitors, and other devices. CSS2
also added new selectors and the ability to precisely position
elements on a web page.

CSS2.1, which is the currently accepted standard and imple-
mented in all browsers, incorporates all of CSS1, adds several
new properties, and corrects a few problems with the CSS2
guidelines. It wasn’t a radical change from version 2, and
most web browsers have adapted to the new rules just fine,
thank you.

However, CSS3 has been around (and parts of it implemented
in most browsers) for several years now. Unlike previous ver-

sions of CSS, CSS3 isn’t actually one single standard. As CSS has
grown in complexity, the W3C has split CSS up into separate
modules—the Selectors module, the Values and Units module,
the Box Alignment module, and so on. Since each module can
develop independently of the others, there isn’t any single
standard called “CSS3.” In fact, level 3 of the Selectors module
is complete, and work on level 4 is underway.

In other words, what’s known as CSS3 is really just a loose
collection of different modules at various states of comple-
tion. Browser manufacturers have already incorporated many
parts of these modules, but other modules aren’t supported in
many browsers. In the future, there won’t be any CSS4; there
will just be new versions of the different modules, each at a
different level of work.

For these reasons, this book covers the core CSS2.1 (which has
simply been rolled over into the various modules of CSS3), as
well as the most exciting, popular, and widely supported new
CSS properties.

21

CHAPTER

2

Even the most complex and beautiful websites, like the one in Figure 2-1, start
with a single CSS style. As you add multiple styles and style sheets, you can de-
velop fully formed websites that inspire designers and amaze visitors. Whether

you’re a CSS novice or a Style Sheet Samurai, you need to obey a few basic rules
about how to create styles and style sheets. In this chapter, you’ll start at square
one, learning the basics of creating and using styles and style sheets.

 TIP  Some people learn better by doing rather than reading. If you’d like to try your hand at creating styles
and style sheets first and then come back here to read up on what you just did, turn to page 27 for a hands-on
tutorial.

Anatomy of a Style
A single style defining the look of one element on a page is a pretty basic beast.
It’s essentially just a rule that tells a web browser how to format something on a
web page—turn a headline blue, draw a red border around a photo, or create a
150-pixel-wide sidebar box to hold a list of links. If a style could talk, it would say
something like, “Hey Browser, make this look like that.” A style is, in fact, made up
of two parts: the web page element that the browser formats (the selector) and
the actual formatting instructions (the declaration block). For example, a selector
can be a headline, a paragraph of text, a photo, and so on. Declaration blocks can
turn that text blue, add a red border around a paragraph, position the photo in the
center of the page—the possibilities are endless.

 Creating Styles and
Style Sheets

Css: tHe MIssInG MAnUAL22

ANATOMY OF A
STYLE

FiGURE 2-1
Every web page, no mat-
ter how complex-looking,
is built using the basic
building blocks of CSS.
The body for this website
(www.freshbooks.com),
for example, includes a
simple style:

body {

 font-family:
"Franklin-Book",
Helvetica, Arial,
sans-serif;

 color: #222;

}

 NOTE  Technical types often follow the lead of the W3C and call CSS styles rules. This book uses the terms
“style” and “rule” interchangeably.

Of course, CSS styles can’t communicate in nice clear English like the previous para-
graph. They have their own language. For example, to set a standard font color and
font size for all paragraphs on a web page, you’d write the following:

p { color: red; font-size: 1.5em; }

This style simply says, “Make the text in all paragraphs—marked with <p> tags—red
and 1.5 ems tall.” (An em is a unit of measurement that’s based on a browser’s normal
text size. More on that in Chapter 6.) As Figure 2-2 illustrates, even a simple style
like this example contains several components:

• Selector. As described earlier, the selector tells a web browser which element
or elements on a page to style—like a headline, paragraph, image, or link. In
Figure 2-2, the p selector refers to the <p> tag. This selector makes web brows-
ers format all <p> tags using the formatting directions in this style. With the
wide range of selectors that CSS offers and a little creativity, you’ll be able to
pinpoint any item on a page and format it just the way you want. (The next
chapter covers selectors in depth.)

http://www.freshbooks.com

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 23

ANATOMY OF A
STYLE

• Declaration Block. The code following the selector includes all the formatting
options you want to apply to the selector. The block begins with an opening
brace ({) and ends with a closing brace (}).

• Declaration. Between the opening and closing braces of a declaration block,
you add one or more declarations, or formatting instructions. Every declaration
has two parts: a property and a value. A colon separates the property name
and its value, and the whole declaration ends with a semicolon.

• Property. CSS offers a wide range of formatting options, called properties. A
property is a word—or a few hyphenated words—indicating a certain style effect.
Most properties have straightforward names like font-size, margin-top, and
text-align. For example, the background-color property sets—you guessed
it—a background color. You’ll learn about oodles of CSS properties throughout
this book. You must add a colon after the property name to separate it from
the value.

 TIP  Appendix A: CSS Property Reference (page 637) has a handy glossary of CSS properties.

• Value. Finally, you get to express your creative genius by assigning a value
to a CSS property—by making a background blue, red, purple, or chartreuse,
for example. As upcoming chapters explain, different CSS properties require
specific types of values—a color (like red, or #FF0000), a length (like 18px, 200%,
or 5em), a URL (like images/background.gif), or a specific keyword (like top,
center, or bottom).

FiGURE 2-2
A style (or rule) is made of two main parts:
a selector, which tells web browsers what to
format, and a declaration block, which lists the
formatting instructions that the browsers use to
style the selector.

You don’t need to write a style on a single line, as pictured in Figure 2-2. Many
styles have multiple formatting properties, so you can make them easier to read by
breaking them up into multiple lines. For example, you may want to put the selector
and opening brace on the first line, each declaration on its own line, and the closing
brace by itself on the last line, like so:

p {
 color: red;
 font-size: 1.5em;
}

Web browsers ignore spaces and tabs, so feel free to add them to make your CSS
more readable. For example, it’s helpful to indent properties, with either a tab or a

Css: tHe MIssInG MAnUAL24

UNDERSTANDING
STYLE SHEETS

couple of spaces, to visibly separate the selector from the declarations, making it
easy to tell which is which. In addition, putting one space between the colon and the
property value is optional but adds to the readability of the style. In fact, you can
put as much white space between the two as you want. For example, color:red,
color: red, and color : red all work.

 NOTE  Don’t forget to end each property/value pair with a semicolon:

color: red;

Leaving off that semicolon can trip up browsers, breaking your style sheet and ruining the look of your web page.
Don’t worry, this mistake is very common—just make sure you use a CSS validator, as described in the box on page 15.

Understanding Style Sheets
Of course, a single style won’t transform a web page into a work of art. It may make
your paragraphs red, but to infuse your websites with great design, you need many
different styles. A collection of CSS styles comprises a style sheet. A style sheet can
be one of two types—internal or external, depending on whether the style informa-
tion is located in the web page itself or in a separate file linked to the web page.

Internal or External—How to Choose
Most of the time, external style sheets are the way to go, since they make building
web pages easier and updating websites faster. An external style sheet collects all
your style information in a single file that you then link to a web page with just a
single line of code. You can attach the same external style sheet to every page in
your website, providing a unified design. It also makes a complete site makeover as
easy as editing a single text file.

On the receiving end, external style sheets help web pages load faster. When you
use an external style sheet, your web pages can contain only basic HTML—no byte-
hogging HTML tables or tags and no internal CSS style code. Furthermore,
when a web browser downloads an external style sheet, it stores the file on your
visitor’s computer (in a behind-the-scenes folder called a cache) for quick access.
When your visitor hops to other pages on the site that use the same external style
sheet, there’s no need for the browser to download the style sheet again. The browser
simply downloads the requested HTML file and pulls the external style sheet from
its cache—a significant savings in download time.

 NOTE  When you’re working on your website and previewing it in a browser, the cache can work against
you. See the box on the next page for a workaround.

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 25

INTERNAL
STYLE SHEETS

WORKAROUND WORKSHOP

Don’t Get Caught in the Cache
A browser’s cache is a great speed-boost for Web surfers.
Whenever the cache downloads and stores a frequently used
file—like an external CSS file or an image—it saves precious
moments traveling the highways of the Internet. Instead of
re-downloading the next time it needs the same file, the
browser can go straight to the new stuff—like a yet-to-be-
viewed page or graphic.

But what’s good for your visitors isn’t always good for you.
Because the web browser caches and recalls downloaded
external CSS files, you can often get tripped up as you work
on a site design. Say you’re working on a page that uses an
external style sheet, and you preview the page in a browser.
Something doesn’t look quite right, so you return to your web

editor and change the external CSS file. When you return to
the web browser and reload the page, the change you just
made doesn’t appear! You’ve just been caught by the cache.
When you reload a web page, browsers don’t always reload
the external style sheet, so you may not be seeing the latest
and greatest version of your styles.

To get around this snafu, you can force reload a page (which
also reloads all linked files) by pressing the Ctrl (c) key and
clicking the browser’s Reload button; Ctrl+F5 also works for
Chrome and Internet Explorer; Ctrl+Shift+R (c-Shift-R) is
Firefox’s keyboard shortcut; and Ctrl+R (c-R) works for both
Safari and Chrome for the Mac.

Internal Style Sheets
An internal style sheet is a collection of styles that’s part of the web page’s code.
It always appears between opening and closing HTML <style> tags in the page’s
<head> portion. Here’s an example:

<style>
h1 {
 color: #FF7643;
 font-family: Arial;
}
p {
 color: red;
 font-size: 1.5em;
}
</style>
</head>
<body>

<!-- The rest of your page follows... -->

Css: tHe MIssInG MAnUAL26

EXTERNAL
STYLE SHEETS

 NOTE  You can place the <style> tag and its styles anywhere after the <title> tag in the page’s head,
but web designers usually place them right before the closing </head> tag, as shown here. However, if you
also use JavaScript, the style sheet should go before the JavaScript. Many JavaScript programs rely on CSS, so by
adding your CSS first, you can make sure the JavaScript program has all the information it needs to get its job
done.

The <style> tag is HTML, not CSS. But its job is to tell the web browser that the
information contained within the tags is CSS code and not HTML. Creating an inter-
nal style sheet is as simple as typing one or more styles between the <style> tags.

Internal style sheets are easy to add to a web page and provide an immediate visual
boost to your HTML. But they aren’t the most efficient method for designing an
entire website composed of many web pages. For one thing, you need to copy and
paste the internal style sheet into each page of your site—a time-consuming chore
that adds bandwidth-hogging code to each page.

But internal style sheets are even more of a hassle when you want to update the
look of a site. For example, say you want to change the <h1> tag, which you origi-
nally decided should appear as large, green, bold type. But now you want small,
blue type in the Courier typeface. Using internal style sheets, you’d need to edit
every page. Who has that kind of time? Fortunately, there’s a simple solution to this
dilemma—external style sheets.

 NOTE  It’s also possible to add styling information to an individual HTML tag without using a style sheet.
The tutorial on page 28 shows you how to perform that maneuver by using an inline style. You shouldn’t normally
use inline styles to design your web pages; however, many JavaScript programmers do use inline styles when
dynamically adding HTML content to a web page, so it’s good know how inline styles work and how to create
them.

External Style Sheets
An external style sheet is nothing more than a text file containing all your CSS rules.
It never contains any HTML code—so don’t include the <style> tag in an external
style sheet file. In addition, always end the file name with the extension .css. You
can name the file whatever you like, but it pays to be descriptive. Use global.css,
site.css, or simply styles.css, for example, to indicate a style sheet used by every
page on the site, or use form.css to name a file containing styles used to make a
web form look good.

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 27

TUTORIAL:
CREATING

YOUR FIRST
STYLES

UP TO SPEED

Validate Your CSS
Just as you should make sure you’ve correctly written the HTML
in your web pages using the W3C HTML validator (see the box
on page 15), you should also check your CSS code to make sure
it’s kosher. The W3C provides an online tool for CSS checking
as well: http://jigsaw.w3.org/css-validator. It operates just
like the HTML validator: You can type the URL of a web page
(or even just the address to an external CSS file), upload a CSS

file, or copy and paste CSS code into a web form and submit
it for validation.

It’s easy to make a typo when writing CSS, and one small
mistake can throw all of your carefully planned designs out of
whack. When your CSS-infused web page doesn’t look as you
expect, a simple CSS error may be the cause. The W3C CSS vali-
dator is a good first step when troubleshooting your designs.

 TIP  If you have a page with an internal style sheet but want to use an external style sheet, then just cut all
of the code between the <style> tags (without the tags themselves). Then create a new text file and paste the
CSS into the file. Save the file with a .css extension—styles.css, for example—and link it to your page, as described
next.

Once you create an external style sheet, you must connect it to the web page you
wish to format. To do so, use the HTML <link> tag like this:

<link rel="stylesheet" href="css/styles.css">

The <link> tag has two required attributes:

• rel="stylesheet" indicates the type of link—in this case, a link to a style sheet.

• href points to the location of the external CSS file on the site. The value of this
property is a URL and will vary depending on where you keep your CSS file. It
works the same as the src attribute you use when adding an image to a page
or the href attribute of a link pointing to another page.

 TIP  You can attach multiple style sheets to a web page by adding multiple <link> tags, each pointing to
a different style sheet file. This technique is one way to organize your CSS styles, as you can see in Chapter 18.

Tutorial: Creating Your First Styles
The rest of this chapter takes you through the basic steps for adding inline styles,
writing CSS rules, and creating internal and external style sheets. As you work
through this book, you’ll work through various CSS designs, from simple design
elements to complete CSS-enabled web page layouts. To get started, download
the tutorial files from https://github.com/sawmac/css_mm_4e. Download the zip
archive containing the files. Each chapter’s files are in a separate folder, named 02
(for Chapter 2), 03 (for Chapter 3), and so on.

http://jigsaw.w3.org/css-validator
https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL28

TUTORIAL:
CREATING

YOUR FIRST
STYLES

 NOTE  In addition to a folder for each chapter’s tutorial, you’ll find another folder with the completed
tutorial. For example, the 02_finished folder contains the completed files for this chapter’s tutorial. You can use
this finished example if you get stuck and want to compare what you’ve written with the finished product.

Next, launch your favorite web page–editing software, whether it’s a simple text
editor like Notepad or TextEdit or a more full-featured editor like Sublime Text,
Atom, or Dreamweaver.

Creating an Inline Style
When you type a CSS rule directly into a page’s HTML, you’re creating an inline style.
Inline styles offer none of the time- and bandwidth-saving benefits of external style
sheets, so the pros hardly ever use them. Still, in a pinch, if you absolutely must change
the styling on a single element on a single page, then you may want to resort to an
inline style. (For example, when creating HTML-formatted email messages, it’s best
to use inline styles. That’s the only way to get CSS to work in Gmail, for one thing.)
And if you do, you at least want the style to work properly. The important thing is
to carefully place the style within the tag you want to format. Here’s an example
that shows you exactly how to do it:

1. In your web page–editing program, open the file 02→index.html.

This simple-but-elegant HTML5 file contains a couple of different headings, a
few paragraphs, and a copyright notice inside an <address> tag. You’ll start by
creating an inline style for the <h1> tag.

2. Click inside the opening <h1> tag and type style="color: #6A94CC;".

The tag should look like this:

<h1 style="color: #6A94CC;">

The style attribute is HTML, not CSS, so you use the equal sign after it and
enclose all of the CSS code inside quotes. Only the stuff inside the quotes is
CSS. In this case, you’ve added a property named color—which affects the
color of text—and you’ve set that property to #6A94CC, a hexadecimal code for
defining a color that’s blue. (You’ll learn more about coloring text on page 147.)
The colon separates the property name from the property value that you want.
Next, you’ll check the results in a web browser.

3. Open the index.html page in a web browser.

For example, start up your favorite web browser and choose File→Open File
(or press Ctrl+O [c-O] and select the index.html file in the 02 tutorial folder
from your computer; or just drag the file from the desktop—or wherever you’ve
saved the tutorial files—into an open browser window). Many HTML editors
also include a “Preview in Browser” function, which, with a simple keyboard
shortcut or menu option, opens the page in a web browser. It’s worth checking
your program’s documentation to see if it includes this time-saving feature.

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 29

TUTORIAL:
CREATING

YOUR FIRST
STYLES

When you view the page in a browser, the headline is now blue. Inline styles
can include more than one CSS property. You’ll add another property next.

4. Return to your HTML editor, click after the semicolon following #6A94CC, and
then type font-size: 3em;.

The semicolon separates two different property settings. The <h1> tag should
look like this:

<h1 style="color: #6A94CC; font-size: 3em;">

5. Preview the page in a web browser. For example, click your browser win-
dow’s Reload button (but make sure you’ve saved the HTML file first).

The headline is now much larger. And you’ve had a taste of how labor-intensive
inline styles are. Making all the <h1> headings on a page look like this one could
take days of typing and add acres of code to your HTML files.

6. Return to your page editor and delete the entire style property, which re-
turns the heading tag back to its normal <h1>.

Next, you’ll create a style sheet within a web page. (You’ll find a finished version
of this part of the tutorial in the 02_finished folder in a file named inline-style.
html.)

Creating an Internal Style Sheet
A better approach than inline styles is using a style sheet that contains multiple CSS
rules to control multiple elements of a page. In this section, you’ll create a style that
affects all top-level headings in one fell swoop. This single rule automatically formats
every <h1> tag on the page.

1. With the file index.html open in your text editor, click directly after the
closing </title> tag. Then hit Enter and type <style>.

The HTML should now look like the following (the stuff you’ve added is in bold):

<title>CSS:The Missing Manual -- Chapter 2</title>
<style>
</head>

The opening <style> tag marks the beginning of the style sheet. It’s always a
good idea to close a tag right after you type the opening tag, since it’s so easy
to forget this step once you jump into writing your CSS. In this case, you’ll close
the <style> tag before adding any CSS.

2. Press Enter twice and type </style>.

Now, you’ll add a CSS selector that marks the beginning of your first style.

3. Click between the opening and closing <style> tags and type h1 {.

The h1 indicates the tag to which the web browser should apply the upcoming
style.

Css: tHe MIssInG MAnUAL30

TUTORIAL:
CREATING

YOUR FIRST
STYLES

The weird bracket thingy after the h1 is called an opening brace, and it marks
the beginning of the CSS properties for this style. In other words, it says, “The
fun stuff comes right after me.” As with closing tags, it’s a good idea to type
the closing brace of a style before actually adding any style properties.

4. Press Enter twice and type a single closing brace: }.

As the partner of the opening brace you typed in the last step, this brace’s job
is to tell the web browser, “This particular CSS rule ends here.” Now time for
the fun stuff.

5. Click in the empty line between the two braces. Hit the Tab key, and type
color: #6A94CC;.

You’ve typed the same style property as the inline version—color—and set it
to #6A94CC;. The final semicolon marks the end of the property declaration.

 NOTE  Technically, you don’t have to put the style property on its own line, but it’s a good idea. With
one property per line, it’s a lot easier to quickly scan a style sheet and see all the properties for each style. Also,
the tab is another helpful visual organizing technique (you can also insert a few spaces instead). The indentation
makes it easy to discern all of your rules at a glance, since the selectors (like h1 here) line up along the left edge,
with the properties spaced a bit out of the way.

6. Press Enter again and add two additional properties, like so:

font-size: 3em;
margin: 0;

Make sure you don’t leave off the semicolon at the end of each line; otherwise,
the CSS won’t display correctly in a browser.

Each of these properties adds a different visual effect to the headline. The first
assigns a size and font to the text, while the second removes space from around
the headline. Part Two of this book covers all these properties in detail.

Congratulations—you’ve just created an internal style sheet. The code you’ve
added should look like the bolded text:

<title>CSS: The Missing Manual -- Chapter 2</title>
<style>
h1 {
 color: #6A94CC;
 font-size: 3em;
 margin: 0;
}
</style>
</head>

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 31

TUTORIAL:
CREATING

YOUR FIRST
STYLES

7. Save the page and preview it in a web browser.

You can preview the page by opening it in a web browser as described in step
3 on page 28, or, if the page is still open in a browser window, just click the
Reload button.

Next you’ll add another style.

 NOTE  Always remember to add the closing </style> tag at the end of an internal style sheet. When you
don’t, a web browser displays the CSS style code followed by a completely unformatted web page—or no web
page at all.

8. Back in your text-editing program, click after the closing brace of the h1
style you just created, press Enter, and then add the following rule:

p {
 font-size: 1.25em;
 color: #616161;
 line-height: 150%;
 margin-top: 10px;
 margin-left: 60px;
}

This rule formats every paragraph on the page. Don’t worry too much right now
about what each of these CSS properties is doing; later chapters cover these
properties in depth. For now, just practice typing the code correctly and get a
feel for how to add CSS to a page.

9. Preview the page in a browser.

The page is starting to shape up and should look like Figure 2-3. You can see
what stylistic direction the page is headed in. You can see a completed version
of this tutorial by opening the 02_finished→internal-stylesheet.html file.

The process you’ve just worked through is CSS in a nutshell: Start with an HTML page,
add a style sheet, and create CSS rules to make the page look great. In the next part
of this tutorial, you’ll see how to work more efficiently, using external style sheets.

Css: tHe MIssInG MAnUAL32

TUTORIAL:
CREATING

YOUR FIRST
STYLES

FiGURE 2-3
CSS easily formats text in
creative ways, letting you
change fonts, text colors,
font sizes, and a lot more,
as you’ll see in Chapter 6.

Creating an External Style Sheet
Since it groups all of your styles at the top of the page, an internal style sheet is a
lot easier to create and maintain than the inline style you created a few pages ago.
Also, an internal style sheet lets you format any number of instances of a tag on a
page, like every <p> tag, by typing one simple rule. But an external style sheet gets
even better—it can store all of the styles for an entire website. Editing one style in
the external style sheet updates the whole site. In this section, you’ll take the styles
you created in the previous section and put them in an external style sheet.

1. In your text-editing program, create a new file and save it as styles.css in
the same folder as the web page you’ve been working on.

External style sheet files end with the extension .css. The file name styles.css
indicates that the styles contained in the file apply throughout the site. (But
you can use any file name you like, as long as it ends with the .css extension.)

Start by adding a new style to the style sheet.

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 33

TUTORIAL:
CREATING

YOUR FIRST
STYLES

2. Type the following rule into the styles.css file:

html {
 padding-top: 25px;
 background-image: url(images/bg_page.png);
}

This rule applies to the HTML tag—the tag that surrounds all other HTML tags
on the page. The padding-top property adds space between the top of the
tag and the content that goes inside it. In other words, what you just typed will
add 25 pixels of space between the top of the browser window and the page’s
content. The background-image adds a graphic file to the page’s background.
The CSS background-image property can display the graphic in many different
ways—in this case, the graphic will tile seamlessly from left to right and top to
bottom, covering the entire browser window. You can read more about back-
ground image properties on page 231.

3. Add a second rule following after the rule you just typed to the styles.css file:

body {
 width: 80%;
 padding: 20px;
 margin: 0 auto;
 border-radius: 10px;
 box-shadow: 10px 10px 10px rgba(0,0,0,.5);
 background-color: #E1EDEB;
}

This rule applies to the <body> tag—the tag that holds all the content visible
in a web browser window. There are a lot of different things going on in this
style, and each of these properties is covered in-depth later in the book. But in
a nutshell, this style creates a box for the page’s content that’s 80 percent the
width of the browser window, has a little bit of space inside that moves text from
the edge of the box (that’s the padding property), and centers the box on the
page (that’s the margin property, and the particular trick of centering a page’s
content is discussed in the tutorial starting on page 81). Finally, the box gets a
light blue background color and a transparent black drop shadow.

Instead of recreating the work you did earlier, just copy the styles you created
in the previous section and paste them into this style sheet.

4. Open the index.html page that you’ve been working on and copy all of the
text inside the <style> tags. (Don’t copy the <style> tags themselves.)

Copy the style information the same way you’d copy any text. For example,
choose Edit→Copy or press Ctrl+C (c-C).

Css: tHe MIssInG MAnUAL34

TUTORIAL:
CREATING

YOUR FIRST
STYLES

5. In the styles.css file, paste the style information by selecting Edit→Paste
or pressing Ctrl+V (c-V).

An external style sheet never contains any HTML—that’s why you didn’t copy
the <style> tags.

6. Save styles.css.

Now you just need to clean up your old file and link the new style sheet to it.

7. Return to the index.html file in your text editor and delete the <style> tags
and all the CSS rules you typed in earlier.

You no longer need these styles, since they’re in the external style sheet you’re
about to attach. In this tutorial, you’ll take a dip into the exciting world of web
fonts. You’ll learn all about web fonts starting on page 126, but the basic idea is
that you can use nearly any font you want in a web page—even a font that your
site’s visitors don’t have installed on their own computers—simply by providing
a link to that font file. There are many different ways to use web fonts, but in
this example, you’ll use Google’s web font service.

8. In the space where the styles used to be (between the closing </title> tag
and the closing </head> tag), type the following:

<link href='http://fonts.googleapis.com/css?family=Varela+Round'
rel='stylesheet'>

Again, don’t worry about the details yet. All you need to know for now is that
when a web browser encounters this link, it downloads a font named Varela
Round from a Google server, and your CSS styles can freely use it.

Next, you’ll link to the external style sheet you created earlier.

9. After the <link> tag you added in the previous step, type:

<link href="styles.css" rel="stylesheet">

The <link> tag specifies the location of the external style sheet. The rel attribute
simply lets the browser know that it’s linking to a style sheet.

 NOTE  In this example, the style sheet file is in the same folder as the web page, so using the file’s name
for the href value provides a simple “document-relative” path. If it were in a different folder from the page,
then the path would be a bit more complicated. In either case, you’d use a document- or root-relative path to
indicate where the file is. The routine is the same as when you create a link to a web page or set a path to an
image file when using the HTML tag. (For a brief primer on document- and root-relative links, visit www.
kirupa.com/html5/all_about_file_paths.htm.)

10. Save the file and preview it in a web browser.

You’ll see the same text styles for the <h1> and <p> tags that you created in
the internal style sheet on page 29. In addition, there’s now a speckled, tan
background (the background image you applied on the <html> tag), as well as

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 35

TUTORIAL:
CREATING

YOUR FIRST
STYLES

a light-colored, greenish-blue box. That box is the <body> tag, and its width is
80 percent that of the browser window. Try resizing the browser window and
notice that the box changes width as well. There’s also a drop shadow on the
box; you can see through the drop shadow to the speckled background. That’s
thanks to a special color type—rgba color—that includes a transparency setting
(you’ll read about it on page 149). Also notice that the corners of the box are
rounded, thanks to the border-radius property.

 NOTE  If the web page doesn’t have any formatting (for example, the top headline isn’t big, bold, and dusty
brown), then you’ve probably mistyped the code from step 6 or saved the styles.css file in a folder other than the
one where the index.html file is. In this case, just move the styles.css into the same folder.

Now, you’ll use the web font you linked to in step 8.

11. In your text editor, return to the styles.css file. For the h1 style, add the
following two lines:

font-family: 'Varela Round', 'Arial Black', serif;
font-weight: normal;

The finished style should look like this (additions in bold):

h1 {
 font-family: 'Varela Round', 'Arial Black', serif;
 font-weight: normal;
 color: #6A94CC;
 font-size: 3em;
 margin: 0;
}

If you preview the page now, you’ll see the new font, Varela Round, for the
headline.

 NOTE  If you don’t see the new font—it should have rounded tips on the ends of all the letters as pictured
in Figure 2-4—then one of a couple of things could be wrong. If you’re not connected to the Internet, you won’t
be able to download the font from Google; second, you may have mistyped either the <link> tag (see step 8
on the previous page), or the font-family declaration (line 2 above).

To demonstrate how useful it can be to keep your styles in their own external
file, you’ll attach the style sheet to another web page.

12. Open the file 02→another_page.html.

This page contains some of the same HTML tags—h1, h2, p, and so on—as the
other web page you’ve been working on.

13. Click after the closing </title> tag and press Enter.

You’ll now link to both the web font and the external style sheet.

Css: tHe MIssInG MAnUAL36

TUTORIAL:
CREATING

YOUR FIRST
STYLES

14. Type the same <link> tags you did in steps 8 and 9.

The web page code should look like this (the code you just typed appears in
bold):

<title>Another Page</title>
 <link href='http://fonts.googleapis.com/css?family=Varela+Round'
rel='stylesheet'>
 <link href="styles.css" rel="stylesheet">
</head>

15. Save the page and preview it in a web browser.

Ta-da! Just two lines of code added to the web page is enough to instantly
transform its appearance. To demonstrate how easy it is to update an external
style sheet, you’ll do so by editing one style and adding another.

16. Open the styles.css file and add the CSS declaration font-family: "Palatino
Linotype", Baskerville, serif; at the beginning of the p style.

The code should look like this (the bold text is what you’ve just added):

p {
 font-family: "Palatino Linotype", Baskerville, serif;
 font-size: 1.25em;
 color: #616161;
 line-height: 150%;
 margin-top: 10px;
 margin-left: 60px;
}

In this case, you’re not using a web font, but relying on the site visitor to already
have one of the fonts listed on his machine (you’ll learn all about using fonts on
page 121). Next, create a new rule for the <h2> tag.

17. Click at the end of the p style’s closing }, press Enter, and add the follow-
ing rule:

h2 {
 color: #B1967C;
 font-family: 'Varela Round', 'Arial Black', serif;
 font-weight: normal;
 font-size: 2.2em;
 border-bottom: 2px white solid;
 background: url(images/head-icon.png) no-repeat 10px 10px;
 padding: 0 0 2px 60px;
 margin: 0;
}

Some of these CSS properties you’ve encountered already. Some are new—like
the border-bottom property for adding a line underneath the headline. And

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 37

TUTORIAL:
CREATING

YOUR FIRST
STYLES

some—like the background property—provide a shortcut for combining several
different properties—in this case, the background-image and background-
repeat—into a single property. Don’t worry about the specifics of these
properties; you’ll learn them all in great detail in upcoming chapters (Chapter
6 covers font properties; Chapter 8 covers backgrounds; Chapter 7 covers
padding and margins).

The styles you’ve created so far affect mainly tags—the h1, h2, and p—and they
affect every instance of those tags. In other words, the p style you created
formats every single paragraph on the page. If you want to target just one
paragraph, you need to use a different kind of style.

18. Click at the end of the h2 style’s closing }, press Enter, and add the follow-
ing rule:

.intro {
 color: #666666;
 font-family: 'Varela Round', Helvetica, sans-serif;
 font-size: 1.2em;
 margin-left: 0;
 margin-bottom: 25px;
}

If you preview the index.html page in a web browser, you’ll see that this new
style has no effect…yet. This type of style uses a class selector, which formats
only the specific tags you apply the class to. In order for this new style to work,
you need to edit some HTML.

19. Save the file styles.css and switch to the index.html file in your text editor.
Locate the opening <p> tag following the <h1> tag and add class="intro"
so the opening tag looks like this:

<p class="intro">

You don’t have to add a period before the word intro as you did when you
created the style in step 18 (you’ll learn why in the next chapter). This little extra
HTML applies the style to the first paragraph (and only that one paragraph).

Repeat this step for the another_page.html file—in other words, add
class="intro" to the first <p> tag on that page.

20. Save all the files and preview both the index.html and another_page.html
files in a web browser.

Notice that the appearance of both pages changes, based on the simple edits
you made to the CSS file. Close your eyes and imagine your website has a
thousand pages. Aaaahhhhhhh, the power.

You’ve got one last change to make. If you look at the very bottom of the page
in your browser, you’ll see the copyright notice. It’s a little small, and it isn’t lined
up with the paragraphs above. Also, it would look better if it shared the same
formatting as the other paragraphs.

Css: tHe MIssInG MAnUAL38

TUTORIAL:
CREATING

YOUR FIRST
STYLES

21. In your text editor, return to the styles.css file. Locate the style that has the
p selector. Type a comma, a space, and address.

The style looks like this:

p, address {
 font-family: "Palatino Linotype", Baskerville, serif;
 font-size: 1.25em;
 color: #616161;

 line-height: 150%;
 margin-top: 10px;
 margin-left: 60px;
}

You haven’t changed any of the style’s properties—you’ve just changed the
selector. In fact, you’ve just created a group selector. A group selector is a very
efficient way to apply the same styling to a bunch of different page elements,
and you’ll learn more about them on page 49. In this case, the style applies to
two tags: the <p> tag and the <address> tag.

22. Close styles.css file and reload the index.html file in your web browser.

The finished page should now look like Figure 2-4. (You’ll find a completed
version of this tutorial in the 02_finished folder.)

For added practice, spend a few minutes playing around with the styles.css file.
Try different values for the style sheet properties. For example, try a different
number for the width property of the body style, or try different numbers for
the font sizes.

CHAPteR 2: CREATING STYLES AND STYLE SHEETS 39

TUTORIAL:
CREATING

YOUR FIRST
STYLES

FiGURE 2-4
Using an external style
sheet, you can update an
entire site’s worth of web
pages by editing a single
CSS file. In addition, by
moving all of the CSS code
out of an HTML document
and into a separate file,
you cut down on the file
size of your web pages,
so they load faster.

41

CHAPTER

3

Every CSS style has two basic parts: a selector and a declaration block. (And
if that’s news to you, go back and read the previous chapter.) The declaration
block carries the formatting properties—text color, font size, and so on—but

that’s just the pretty stuff. The ability to focus your styling on specific items lies in
those first few characters at the beginning of every rule—the selector. By telling CSS
what you want it to format (see Figure 3-1), the selector gives you full control of
your page’s appearance. If you’re into sweeping generalizations, then you can use a
selector that applies to many elements on a page at once. But if you’re a little more
detail oriented (OK, a lot more), other selectors let you single out one specific item
or a collection of similar items. CSS selectors give you a lot of power; this chapter
shows you how to use them.

FiGURE 3-1
The first part of a style, the selector, indicates the element
or elements of a page to format. In this case, h1 stands for
“every heading 1, or <h1>, tag on this page.”

 NOTE  If you’d rather get some hands-on experience before studying the ins and outs of CSS selectors, then
jump to the tutorial on page 70.

 Selectors: Identifying
What to Style

Css: tHe MIssInG MAnUAL42

TYPE
SELECTORS:

STYLING HTML
TAGS Type Selectors: Styling HTML Tags

Selectors used to style particular HTML tags are called type or element selectors.
They are extremely efficient styling tools, since they apply to every occurrence of
that tag on a web page. With them, you can make sweeping design changes to a
page with very little effort. For example, when you want to format every paragraph
of text on a page, using the same font, color, and size, you merely create a style
using p (as in the <p> tag) as the selector. In essence, a type selector redefines how
a browser displays a particular tag.

Prior to CSS, in order to format text, you had to wrap that text in a tag. To
add the same look to every paragraph on a page, you often had to use the
tag multiple times. This process was a lot of work and required a lot of HTML, making
pages slower to download and more time-consuming to update. With type selec-
tors, you don’t actually have to do anything to the HTML—just create the CSS rule,
and let the browser do the rest.

Type selectors are easy to spot in a CSS rule, since they bear the exact same name
as the tag they style—p, h1, table, img, and so on. For example, in Figure 3-2, the
h2 selector (top) applies some font styling to all <h2> tags on a web page (bottom).

FiGURE 3-2
A type selector affects every
instance of the tag on the page.
This page has three <h2> tags
(indicated by the black labels
at the left edge of the browser
window). A single CSS style
with a selector of h2 controls
the presentation of every <h2>
tag on the page.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 43

CLASS
SELECTORS:

PINPOINT
CONTROL

 NOTE  As Figure 3-2 makes clear, type selectors don’t get the less than (<) and greater than (>) symbols that
surround HTML tags. So when you’re writing a rule for the <p> tag, for example, just type the tag’s name: p.

Type selectors have their downsides, however. What if you want some paragraphs to
look different from other paragraphs? A simple type selector won’t do, since it doesn’t
provide enough information for a web browser to identify the difference between
the <p> tags you want to highlight in purple, bold, and large type from the <p> tags
you want to leave with normal, black text. Fortunately, CSS provides several ways
to solve this problem—the most straightforward method is called a class selector.

Class Selectors: Pinpoint Control
When you want to give one or more elements a look that’s different from related
tags on the page—for example, give one or two images on a page a red border while
leaving the majority of other images unstyled—you can use a class selector. If you’re
familiar with styles in word-processing programs like Microsoft Word, then class
selectors will feel familiar. You create a class selector by giving it a name and then
applying it to just the HTML tags you wish to format. For example, you can create
a class style named .copyright and then apply it only to a paragraph containing
copyright information, without affecting any other paragraphs.

Class selectors also let you pinpoint an exact element, regardless of its tag. Say
you want to format a word or two inside a paragraph, for example. In this case,
you don’t want the entire <p> tag affected, just a single phrase inside it. You can
use a class selector to indicate just those words. You can even use a class selector
to apply the same formatting to multiple elements that have different HTML tags.
For example, you can give one paragraph and one second-level heading the same
styling—perhaps a color and a font you’ve selected to highlight special information,
as shown in Figure 3-3. Unlike type selectors, which limit you to the existing HTML
tags on the page, you can create as many class selectors as you like and put them
anywhere you want.

 NOTE  When you want to apply a class selector to just a few words contained inside another tag (like the
middle paragraph in Figure 3-3), you need a little help from the tag. See the box on page 47 for more
detail.

You’ve probably noticed the period that starts every class selector’s name—such as
.copyright and .special. It’s one of a few rules to keep in mind when naming a class:

• All class selector names must begin with a period. That’s how web browsers
spot a class selector in the style sheet.

• CSS permits only letters, numbers, hyphens, and underscores in class names.

Css: tHe MIssInG MAnUAL44

CLASS
SELECTORS:

PINPOINT
CONTROL

FiGURE 3-3
Class selectors let you make highly targeted design changes.
For example, you can stylize one instance of an <h2> head-
ing (“Wet Sod is Heavy Sod”). The class selector .special
tells the browser to apply the style to just that single <h2>
tag. Once you’ve created a class selector, you can use it on
other tags, like the top paragraph on this page.

• After the period, the name must always start with a letter. For example,
.9lives isn’t a valid class name, but .crazy8 is. You can have classes named
.copy-right and .banner_image, but not .-bad or ._as_bad.

• Class names are case-sensitive. For example, CSS treats .SIDEBAR and .side-
bar as two different classes.

Apart from the name, you create class styles exactly like tag styles. After the class
name, simply slap on a declaration block containing all the styling you desire:

.special {
 color:#FF0000;
 font-family:"Monotype Corsiva";
}

Because type selectors apply across the board to all tags on a web page, you merely
have to define them in your style sheet: The HTML tags that make them work are

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 45

CLASS
SELECTORS:

PINPOINT
CONTROL

already in place. The extra freedom you get with class styles, though, comes with
a little more work. Using class selectors is a two-step process. After you create a
class rule, you must then indicate where you want to apply that formatting. To do
so, you add a class attribute to the HTML tag you wish to style.

Say you create a class .special that you’ll use to highlight particular page elements.
To add this style to a paragraph, add a class attribute to the <p> tag, like so:

<p class="special">

 NOTE  In the HTML, as part of the class attribute, you don’t put a period before the class name. The period
is only required for the class selector name in a style sheet.

When a web browser encounters this tag, it knows to apply the formatting rules
contained in the .special style to the paragraph. You can also apply class format-
ting to only part of a paragraph or heading by adding a tag. For example, to
highlight just one word in a paragraph using the .special style, you could write this:

<p>Welcome to Café Soylent Green,
the restaurant with something a little different.</p>

Once you create a class style, you can apply it to just about any tag on the page. In
fact, you can apply the same class to different tags, so you can create a .special
style with a specific font and color and apply it to <h2>, <p>, and tags.

One Tag, Multiple Classes
Not only can you apply the same class to different tags, you can also apply multiple
classes to the same tag. While it may sound like a lot of extra work to create multiple
classes and add multiple class names to the same tag, it’s a common approach.

Here’s an example of when you might apply multiple classes to the same tag: Imagine
that you’re designing an interface to manage a visitor’s shopping cart. The interface
requires a variety of buttons, each of which does something different. One button
may be used to delete a product from the shopping cart, another button to add an
item, and a third button to edit the quantity.

Being a good designer, you want the buttons to share some similarities, like rounded
corners and the same font, but also have their own unique looks: red for the delete
button, green for the add button, and so on. To achieve consistency and uniqueness,
you can create two classes. One class will apply to all of the buttons, and the other
classes will apply to certain types of buttons.

To start, you’d create a .btn (short for button) class:

.btn {
 border-radius: 5px;
 font-family: Arial, Helvetica, serif;
 font-size: .8 em;
}

Css: tHe MIssInG MAnUAL46

ID SELECTORS:
SPECIFIC PAGE

ELEMENTS
Then you could create additional classes for each type of button:

.delete {
 background-color: red;
}
.add {
 background-color: green;
}

.edit {
 background-color: grey;
}

Then, by applying more than one class to a tag, you can combine styles and create
both a consistency across the buttons and a unique appearance for each type of
button:

<button class="btn add">Add</button>
<button class="btn delete">Delete</button>
<button class="btn edit">Edit</button>

Web browsers and HTML have no problem handling multiple classes applied to a
single element. In the HTML tag, just add the class attribute, and, for the value, add
each class name, separated by a space. The browser will combine the properties
from the various classes and apply the final, combined set of styles to the element.
So in the current example, all of the buttons will have rounded corners and use the
Arial font at .8 ems. But the Add button will be green, the Delete button red, and
the Edit button gray.

The benefit of this approach is that if you decide that buttons should no longer have
rounded corners, or they should use a different font, you only need to change the.
btn style to update the look of each of the buttons. Likewise, if you decide that the
Edit button should be yellow instead of gray, changing the .edit style will affect
only that one button, not any of the others.

ID Selectors: Specific Page Elements
CSS reserves the ID selector for identifying a unique part of a page, like a banner,
navigation bar, or the main content area. Just as with a class selector, you create an
ID by giving it a name in CSS, and then you apply it by adding the ID to your page’s
HTML code. So what’s the difference? As explained in the box on page 48, ID selec-
tors have some specific uses in JavaScript-based or lengthy web pages. Otherwise,
compelling reasons to use IDs over classes are few.

 NOTE  There’s a growing trend in the web design community to abandon ID selectors in CSS. The reasoning
requires greater knowledge of CSS than you’ve learned so far. You won’t find IDs much in this book, and you’ll
learn why ID selectors are often not a good idea on page 48.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 47

ID SELECTORS:
SPECIFIC PAGE

ELEMENTS

UP TO SPEED

Divs and Spans
Chapter 1 introduced you to <div> and , two generic
HTML tags that you can bend to your CSS wishes. When there’s
no HTML tag that exactly delineates where you want to put a
class or ID style you’ve created, use a <div> or to
fill in the gaps.

The <div> tag identifies a logical division of the page, like a
banner, navigation bar, sidebar, or footer. You can also use it
to surround any element that takes up a chunk of the page,
including headings, bulleted lists, or paragraphs. (Program-
mer types call these block-level elements because they form a
complete “block” of content, with line breaks before and after
them.) The <div> tag works just like a paragraph tag: Type
the opening <div>, add some text, a photo, or some other
content inside it, and then end it with the closing </div>.

The <div> tag can contain several block-level elements,
making it a great way to group tags that are logically related,
such as the logo and navigation bar in a page’s banner or a
series of news stories that compose a sidebar. Once grouped
in this way, you can apply specific formatting to just the tags
inside the particular div or move the entire <div>-tagged
chunk of content into a particular area, such as the right side
of the browser window (CSS can help you control the visual
layout of your pages in this manner, as described in Part Three
of this book).

For example, say you added a photo and an accompanying
caption to a web page. You could wrap a <div> tag (with a
class applied to it) around the photo and the caption to group
both elements together:

<div class="photo">
<img src="holidays.jpg"
 alt="Penguins getting frisky"/>
<p>Mom, dad and me on our yearly trip to
Antarctica.</p>
</div>

Depending on what you put in the declaration block, the
.photo class can add a decorative border, background color,
and so on to both photo and caption. Part Three of this book
shows you even more powerful ways to use <div> tags—in-
cluding nested divs.

The latest version of HTML includes many block-level tags that
work like divs but are intended for more specific types of con-
tent. For example, you can use the <figure> tag to display
an image and a caption instead of using a <div>. However,
because IE8 doesn’t understand those HTML5 tags (see the box
on page 12), many designers still use divs when they wish to
group several HTML tags into a single unit.

In addition, the new HTML5 tags are intended to add “mean-
ing” to your HTML. For example, the <article> tag is used
to indicate a self-contained block of text, like an article in a
magazine. Not all markup is meaningful, however, so you’ll
often still use divs simply to group together elements for
stylistic reasons.

A tag, on the other hand, lets you apply a class or ID
style to just part of a tag. You can place tags around
individual words and phrases (often called inline elements)
within paragraphs to format them independently. Here, a
class called .companyName styles the inline elements
“CosmoFarmer.com,” “Disney,” and “ESPN”:

<p>Welcome to
CosmoFarmer.com, the parent
company of such well-known corporations
as Disney
 and
ESPN...well, not really.</p>

Although web designers don’t use ID selectors as much as they once did, it’s good
to know what they are and how they work. Should you decide to use an ID selector,
creating one is easy. Just as a period indicates the name of a class selector, a pound
or hash symbol (#) identifies an ID style. Otherwise, follow the exact same naming

Css: tHe MIssInG MAnUAL48

ID SELECTORS:
SPECIFIC PAGE

ELEMENTS
rules used for classes (page 43). This example provides a background color and a
width and height for the element:

#banner {
 background: #CC0000;
 height: 300px;
 width: 720px;
}

Applying IDs in HTML is similar to applying classes but uses a different attribute
named, logically enough, id. For example, to apply the style above to a <div> tag,
you’d write this HTML:

<div id="banner">

Likewise, to indicate that the last paragraph of a page is that page’s one and only
copyright notice, you can create an ID style named #copyright and add it to that
paragraph’s tag:

<p id="copyright">

 NOTE  As with class styles, you use the # symbol only when naming the style in the style sheet. You leave
the # off when using the ID’s name as part of an HTML tag: <div id="banner">.

POWER USERS’ CLINIC

Proper IDs
ID attributes in HTML have a few powers that class attributes
lack. These benefits actually have nothing to do with CSS, so
you may never need an ID. But if you’re curious:

• One easy way for JavaScript programmers to locate and
manipulate parts of a page is by applying an ID to a page
element, and then using JavaScript to reference that ID.
For example, programmers often apply an ID to a form
element like a text box for collecting a visitor’s name. The
ID lets JavaScript access that form element and work its
magic—like making sure the field isn’t empty when the
visitor clicks Submit.

• IDs also let you link to a specific part of a page, making
long web pages quicker to navigate. If you have an
alphabetic glossary of terms, then you can use an ID

selector to create links to the letters of the alphabet.
When your visitors click “R,” they jump immediately to
all the “R” words on the page. You don’t actually need to
create any CSS for this—it works purely with HTML. First,
add an ID attribute to the spot on the page you wish to
link to. For example, in a glossary you can add an <h2>
tag with a letter from the alphabet followed by the
glossary listings—perhaps in a definition list or a series
of paragraphs. Just add an appropriate ID to each of those
<h2> tags: <h2 id="R">R</h2>. To create the link
in HTML, add the # symbol and the ID name to the end of
the URL, followed by the ID name—index.html#R. This
link points directly to an element with the ID of #R on the
page index.html. (When used this way, the ID behaves just
like a named anchor—R—in HTML.)

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 49

STYLING
GROUPS OF

TAGSStyling Groups of Tags
Sometimes you need a quick way to apply the same formatting to several different
elements. For example, maybe you’d like all the headers on a page to share the same
color and font. Creating a separate style for each header—h1, h2, h3, h4, and so on—is
way too much work, and if you later want to change the color of all of the headers,
then you have six different styles to update. A better approach is to use a group
selector. Group selectors let you apply a style to multiple selectors at the same time.

Constructing Group Selectors
To work with selectors as a group, simply create a list of selectors separated by
commas. So to style all the heading tags with the same color, you can create the
following rule:

h1, h2, h3, h4, h5, h6 { color: #F1CD33; }

This example consists of only type selectors, but you can use any valid selector
(or combination of selector types) in a group selector. For example, here’s a group
selector that applies the same font color to the <h1> tag, the <p> tag, any tag styled
with the .copyright class, and the tag with the #banner ID:

h1, p, .copyright, #banner { color: #F1CD33; }

 TIP  If you want a bunch of page elements to share some but not all of the same formatting properties, then
you can create a group selector with the shared formatting options and also create individual rules with unique
formatting for each individual element. In other words, two (or more) different styles can format the same tag.
The ability to use multiple styles to format a single element is a powerful CSS feature. See Chapter 5 for details.

The Universal Selector (Asterisk)
Think of a group selector as shorthand for applying the same style properties to
several different page elements. CSS also gives you a sort of über group selector—
the universal selector. An asterisk (*) is universal selector shorthand for selecting
every single tag.

For example, say you want all the tags on your page to appear in bold type. Your
group selector might look something like the following:

a, p, img, h1, h2, h3, h4, h5 ...yadda yadda... { font-weight: bold; }

The asterisk, however, is a much shorter way to tell CSS to select all HTML tags on
the page:

* { font-weight: bold; }

You can even use the universal selector as part of a descendant selector, so you
can apply a style to all the tags that descend from a particular page element. For
example, .banner * selects every tag inside the page element to which you’ve ap-
plied the banner class. (You’ll read about descendant selectors next.)

Css: tHe MIssInG MAnUAL50

STYLING TAGS
WITHIN TAGS

Since the universal selector doesn’t specify any particular type of tag, it’s hard to
predict its effect on an entire website’s worth of pages all composed of a variety of
different HTML tags. To format many different page elements, web page gurus rely
on inheritance—a CSS trait discussed in depth in the next chapter.

However, some web designers use the universal selector as a way to remove all space
around block-level elements. As you’ll read on page 187, you can add space around
an element using the CSS margin property, and add space between the border of an
element and the content inside using the padding property. Browsers automatically
add varying amounts of space for different tags, so one way to start with a clean
slate and remove all space around tags is with this style:

* {
 padding: 0;
 margin: 0;
}

Styling Tags Within Tags
Choosing whether to style your page with type selectors or class selectors is a
tradeoff. Type selectors are fast and easy, but they make every occurrence of a tag
look the same, which is fine—if you want every <h2> on your page to look exactly
like all the rest. Class and ID selectors give you the flexibility to style individual page
elements independently, but creating class or ID styles also requires you to add the
appropriate class or ID to the HTML tags you wish to style. Not only does this add
more work for you, but it also adds code to your HTML file. What you need is a way
to combine the ease of type selectors with the precision of classes and IDs. CSS has
just the thing—descendant selectors.

You use descendant selectors to format a whole bunch of tags in a similar manner
(just like type selectors), but only when they’re in a particular part of a web page. It’s
like saying, “Hey you <a> tags in the navigation bar, listen up. I’ve got some format-
ting for you. All you other <a> tags, just move along; there’s nothing to see here.”

Descendant selectors let you format a tag based on its relationship to other tags. To
understand how it works, you need to delve a little bit more deeply into HTML. On
the bright side, the concepts underlying descendant selectors help you understand
several other selector types, too, as discussed later in this chapter.

 NOTE  Descendant selectors can be confusing at first, but they’re among the most important techniques for
efficiently and accurately applying CSS. Take the time to master them.

The HTML Family Tree
The HTML that forms any web page is akin to a family tree, where the HTML tags
represent various family members. The first HTML tag you use on a page—the <html>

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 51

STYLING TAGS
WITHIN TAGS

tag—is like the grandpappy of all other tags. The <html> tag surrounds the <head>
tag and the <body> tag, which makes <html> the ancestor of both. Similarly, a tag
inside of another tag is a descendant. The <title> tag in the following example is
the <head> tag’s descendant:

<html>
 <head>
 <title>A Simple Document</title>

 </head>
 <body>
 <h1>Header</h1>
 <p>A paragraph of importanttext.</p>
 </body>
</html>

You can turn the above HTML code into a diagram, like the one in Figure 3-4, showing
the relationships between the page’s tags. First there’s the <html> tag; it’s divided
into two sections represented by the <head> and <body> tags. Those two tags contain
other tags that in turn may contain other tags. By seeing which tags appear inside
which other tags, you can diagram any web page.

FiGURE 3-4
HTML consists of nested tags—tags within tags within even more tags.
The relationship between these tags—how they’re nested within each
other—forms a kind of family tree.

Tree diagrams help you figure out how CSS sees the relationship of one element
on a page to another. Many of the selectors in this chapter, including descendant
selectors, rely on these relationships. The most important relationships are:

• Ancestor. As explained at the beginning of this chapter, an HTML tag that wraps
around another tag is its ancestor. In Figure 3-4, the <html> tag is an ancestor
of all other tags, while the <body> tag is an ancestor for all of the tags inside of
it—the <h1>, <p>, and tags.

• Descendant. A tag inside one or more tags is a descendant. In Figure 3-4, the
<body> tag is a descendant of the <html> tag, while the <p> tag is a descendant
of both the <body> and <html> tags.

Css: tHe MIssInG MAnUAL52

STYLING TAGS
WITHIN TAGS

• Parent. A parent tag is the closest ancestor of another tag. In Figure 3-4, a
parent is the first tag directly connected to and above another tag. Thus, the
<html> tag is the parent of the <head> and <body> tags, but of no other tags.
And in this diagram, the <p> tag is the parent of the tag.

• Child. A tag that’s directly enclosed by another tag is a child. In Figure 3-4,
both the <h1> and <p> tags are children of the <body> tag, but the
tag isn’t. Since the tag is directly wrapped inside the <p> tag, it’s a
child of the <p> tag.

• Sibling. Tags that are children of the same tag are called siblings, just like
brothers and sisters. In an HTML diagram, sibling tags are next to each other
and connected to the same parent. In Figure 3-4, the <head> and <body> tags
are siblings, as are the <h1> and <p> tags.

Thankfully, that’s where CSS draws the line with this family metaphor, so you don’t
have to worry about aunts, uncles, or cousins. (Though rumor has it CSS10 will
include in-laws.)

Building Descendant Selectors
Descendant selectors let you take advantage of the HTML family tree by formatting
tags differently when they appear inside certain other tags or styles. For example,
say you have an <h1> tag on your web page, and you want to emphasize a word
within that heading with the tag. The trouble is, most browsers display both
heading tags and the tag in bold, so anyone viewing the page can’t see
any difference between the emphasized word and the other words in the headline.
Creating a type selector to change the tag’s color and make it stand out
from the headline isn’t much of a solution: You end up changing the color of every
 tag on the page, like it or not. A descendant selector lets you do what
you really want—change the color of the tag only when it appears inside
of an <h1> tag.

The solution to the <h1> and dilemma looks like this:

h1 strong { color: red; }

Here any tag inside an h1 is red, but other instances of the tag
on the page aren’t affected. You could achieve the same result by creating a class
style—.strongHeader, for example—but you’d then have to edit the HTML by add-
ing class="strongHeader" to the tag inside the header. The descendant
selector approach adds no HTML and no more work beyond creating the style!

Descendant selectors style elements that are nested inside other elements, following
the exact same pattern of ancestors and descendants as the tags in the HTML family
tree. You create a descendant selector by tacking together selectors according to
the part of the family tree you want to format, with the most senior ancestor on the
left and the actual tag you’re targeting on the far right. For example, in Figure 3-5,
notice the three links (the <a> tag) inside the bulleted list items and another link

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 53

STYLING TAGS
WITHIN TAGS

inside the paragraph. To format the bulleted links differently than the other links on
the page, you can create the following descendant selector:

li a { font-family: Arial; }

FiGURE 3-5
This simple tree diagram (right)
represents the structure of the
web page pictured to the left.
Every tag on a web page is a
descendant of the <html> tag,
since <html> wraps around
them all. A tag can descend
from multiple tags. For example,
the first <a> tag listed in this
diagram is a descendant of the
, <p>, <body>, and
<html> tags.

This rule says, “Format all links (a) that appear inside a list item (li) by using the
Arial font.” A descendant selector can contain more than just two elements. The fol-
lowing are all valid selectors for the <a> tags inside of the bulleted lists in Figure 3-5:

ul li a
body li a
html li a
html body ul li a

These four selectors—all of which do the same thing—demonstrate that you don’t
have to describe the entire lineage of the tag you want to format. For instance, in
the second example, body li a, the ul isn’t needed. This selector works as long
as there’s an <a> tag that’s a descendant (somewhere up the line) of an tag
(which is also a descendant of the <body> tag). This selector can just as easily ap-
ply to an <a> that’s inside an tag, that’s inside a tag, that’s inside an
 tag, and so on.

In general, you should use the shortest descendant selector that gets the job done.
Because all tags are inside the <html> and <body> tags, there’s no reason to include
them in a descendant selector.

 NOTE  The number of selectors you include in a descendant selector affects how the style interacts with
other, conflicting styles. This system is called specificity and you’ll read all about it in Chapter 5.

Css: tHe MIssInG MAnUAL54

STYLING TAGS
WITHIN TAGS

You’re not limited to just type selectors, either. You can build complex descendant
selectors combining different types of selectors. For example, suppose you want
your links to appear in yellow only when they’re inside an introductory element
(which you’ve designated with a class style named intro). The following selector
does the trick:

.intro a { color: yellow; }

Quick translation: Apply this style to every link (a) that’s a descendant of another
tag that has the intro class applied to it.

Creating Modules
Descendant selectors are often used to format a module of code—that is, a collection
of HTML that serves a particular function on a page. For example, say you had a <div>
on the page, used for listing the latest company news. You might have HTML like this:

<div>
 <h2>Our company is great!</h2>
 <p>More information about why our company is so great</p>
 <h2>Another news item</h2>
 <p>Information about the other news item...</p>
 <h2>...and so on...</h2>
 <p>... and so on... </p>
</div>

If you simply slap a class on that opening <div> tag—<div class="news">—then
you can create descendant selectors that format the HTML tags within the news
section differently. For example,

.news h2 { color: red; }

.news p { color: blue; }

Now the <h2> tags within the news section will be red, and the paragraphs will be
blue. It’s even possible (and common) to create descendant selectors with multiple
class names. For example, say you’re building a page that provides a directory of
addresses for members of an organization. You might wrap each contact in its own
div, and further refine the elements inside that div with a class like this:

<div class="contact">
 <p class="name">John Smith</p>
 <p class="phone">555-555-1234</p>
 <p class="address">1234 Elem St</p>
 </div>

Then you could create several descendant selectors to style just those contact ele-
ments like this:

.contact .name { font-weight: bold; }

.contact .phone { color: blue;}

.contact .address { color: red; }

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 55

PSEUDO-
CLASSES AND

PSEUDO-
ELEMENTS

 NOTE  In a style sheet, you may sometimes see something like this:

p.intro

This may look like a descendant selector—since there is both an HTML tag and a class—but it’s not. There’s no
space between the p and the .intro, which means that the intro class must be applied specifically to a <p>
tag (<p class="intro">) for this style to work. If you add a space, you get a different effect:

p .intro { color: yellow; }

This seemingly slight variation selects any tag styled with the .intro class, which is itself a descendant of
a <p> tag. In other words, it doesn’t select a paragraph, it selects another tag inside a paragraph. In general,
to keep your class styles as flexible as possible, it is better to leave off the HTML tag (in other words use just
.intro instead of p.intro).

Pseudo-Classes and Pseudo-Elements
Sometimes you need to select parts of a web page that don’t have tags per se, but
are nonetheless easy to identify, like the first line of a paragraph or a link as you
move your mouse over it. CSS gives you a handful of selectors for these doohick-
eys—pseudo-classes and pseudo-elements.

Styles for Links
Four pseudo-classes let you format links in four different states based on how a
visitor has interacted with that link. They identify when a link is in one of the fol-
lowing four states:

• a:link selects any link that your guest hasn’t visited yet, while the mouse isn’t
hovering over or clicking it. This style is your regular, unused web link.

• a:visited is a link that your visitor has clicked before, according to the web
browser’s history. You can style this type of link differently than a regular link
to tell your visitor, “Hey, you’ve been there already!” (See the box on page 280
for the limitations surrounding this selector.)

• a:hover lets you change the look of a link as your visitor passes the mouse over
it. The rollover effects you can create aren’t just for fun—they can provide useful
visual feedback for buttons on a navigation bar.

You can also use the :hover pseudo-class on elements other than links. For
example, you can use it to highlight text in a <p> or <div> when your guests
mouse over it. In that case, instead of using a:hover (which is for links) to add
a hover effect, you can create a style named p:hover to create a specific ef-
fect when someone mouses over any paragraph. If you just want to style tags
with a specific class of highlight applied to them, then create a style named
.highlight:hover.

Css: tHe MIssInG MAnUAL56

PSEUDO-
CLASSES AND

PSEUDO-
ELEMENTS

• a:active lets you determine how a link looks as your visitor clicks. In other
words, it covers the brief nanosecond when someone’s pressing the mouse
button, before releasing it.

Chapter 9 shows you how to design links by using these selectors to help your visi-
tors click their way around your site.

 NOTE  You can live a long, productive life without reading about the selectors in the next few sections. The
selectors you’ve learned so far—tag, class, ID, descendant, group, and so on—let you build absolutely beautiful,
functional, and easily maintained websites. If you’re ready for the fun stuff—designing web pages—then skip to
the tutorial on page 70. You can always finish reading this discussion some cold, rainy night by the fire.

Styling Paragraph Parts
The typographic features that make books and magazines look cool, elegant, and
polished didn’t exist in the early web era. (After all, when did scientists ever worry
about looking cool?) CSS provides two pseudo-elements—:first-letter and
:first-line—that give your web pages the design finesse that print has enjoyed
for centuries.

The :first-letter pseudo-element lets you create a drop cap—an initial letter that
jumps out from the rest of the paragraph with bigger or bolder font formatting, as
at the beginning of a book chapter.

Styling the :first-line of a paragraph in a different color keeps your reader’s eye
moving and makes text appear appealing and fresh. (If you’re intrigued, Chapter 6 is
all about formatting text, and page 166 covers these two pseudo-elements in depth.)

 NOTE  The latest version of CSS changes the syntax for pseudo-elements. In CSS 2.1, pseudo-elements begin
with a single colon, like this:

:first-letter

CSS3 adds an additional colon to differentiate pseudo-classes like :hover from pseudo-elements. So :first-
letter and :first-line are now ::first-letter and ::first-line. Fortunately, to maintain
support with older sites, browsers will continue to support the single colon version of pseudo-elements. That’s a
good thing, since Internet Explorer 8 doesn’t understand the double-colon syntax, so stick with the single colon
for now, since all other browsers still use that as well.

More Pseudo-Classes and Pseudo-Elements
The CSS guidelines define several powerful pseudo-class and pseudo-element
selectors besides the ones covered so far. Support for these selectors in all but the
oldest browsers is very good.

:FOCUS
The :focus pseudo-class works much like the :hover pseudo-class. While :hover
applies when a visitor mouses over a link, :focus applies when the visitor does

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 57

PSEUDO-
CLASSES AND

PSEUDO-
ELEMENTS

something to indicate her attention to a web page element—usually by clicking or
tabbing into it. In programmery lingo, when a visitor clicks in a text box on a web
form, she puts the focus on that text box. That click is a web designer’s only clue as
to where the visitor is focusing her attention.

The :focus selector is mostly useful for giving your visitor feedback, like changing
the background color of a text box to indicate where she’s about to type. (Single-line
text fields, password fields, and multi-line <textarea> boxes are common targets
for the :focus selector.) This style, for example, adds a light yellow color to any text
box a visitor clicks or tabs into:

input:focus { background-color: #FFFFCC; }

The :focus selector applies only while the element is in focus. When a visitor tabs
into another text field or clicks anywhere else on the page, she takes the focus—and
the CSS properties—away from the text box.

 TIP  One good resource for seeing which browsers support which CSS selector is http://caniuse.com/.

:BEFORE
The :before pseudo-element does something no other selector can: It lets you add
content preceding a given element. For example, say you wanted to put “HOT TIP!”
before certain paragraphs to make them stand out, like the boxes in this book that
say “UP TO SPEED” and “POWER USERS’ CLINIC.” Instead of typing that text in your
page’s HTML, you can let the :before selector do it for you. This approach not only
saves on code, but also if you decide to change the message from “HOT TIP!” to,
say, “Things to know,” then you can change every page on your site with one quick
change to your style sheet. (The downside is that this special message is invisible
to browsers that don’t understand CSS or don’t understand the :before selector.)

First, create a class (.tip, say) and apply it to the paragraphs that you want to
precede with the message, like so: <p class="tip">. Then, add your message text
to the style sheet:

.tip:before {content: "HOT TIP!" }

Whenever a browser encounters the tip class it dutifully inserts the text “HOT TIP!”
just before the tag with that class.

The technical term for text you add with this selector is generated content, since
web browsers create (generate) it on the fly. In the page’s HTML source code, this
material doesn’t exist. Whether you realize it or not, browsers generate their own
content all the time, like the bullets in bulleted lists and numbers in ordered lists. If
you want, you can even use the :before selector to define how a browser displays
its bullets and numbers for lists.

Internet Explorer 8 and up as well as all other major browsers support the :before
selector (and the :after selector coming up next).

Css: tHe MIssInG MAnUAL58

PSEUDO-
CLASSES AND

PSEUDO-
ELEMENTS

:AFTER
Exactly like the :before selector, the :after pseudo-element adds generated con-
tent—but after the element, not before. You can use this selector, for example, to
add closing quotation marks (") after quoted material.

 NOTE  Both :before and :after are pseudo-elements like :first-line and :first-letter. As
mentioned in the note on page 56, the latest version of CSS adds double colons to pseudo-elements, so :before,
and :after are written as ::before and ::after. Fortunately, browsers support the older notation, so you
can continue to use :before and :after, which have the added benefit of working in Internet Explorer 8.

::SELECTION
This CSS3 selector refers to items that a visitor has selected on a page. For example,
when a visitor clicks and drags over text, the browser highlights that text, and the
visitor can then copy the text. Normally, browsers add a blue background behind
the text. Internet Explorer changes the text color to white. However, you can control
the background color and text color by defining this selector. For example, if you
wanted to make selected text white with a violet background you could add this
style to a page’s style sheet:

::selection {
 color: #FFFFFF;
 background-color: #993366;
}

The only properties you can set with this selector are color and background-
color, so you can’t go wild and change the font size, fonts, margins, or other visual
changes that would surely drive your site visitors crazy. (Thanks for protecting us
from ourselves, CSS!)

 NOTE  There’s no single-colon version of the selection pseudo-element, so you must use the double colon.
In other words, ::selection works, but :selection won’t.

This selector doesn’t work in Internet Explorer 8, Firefox, or iOS Safari, but it does
work in all other current browsers. You can, however, add support for Firefox by
adding what’s called a vendor prefix to the selector, like this:

::-moz-selection {
 color: #FFFFFF;
 background-color: #993366;
}

To get this to work in Firefox and the other browsers, you need to have both styles
in your style sheet—just place one after the other. (You’ll learn more details about
vendor prefixes are and why you need them in the box on page 321.)

If you really want to go crazy, you can specify a different background color just
for text selected inside a particular element. For example, to make only text inside

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 59

ATTRIBUTE
SELECTORS

paragraphs red with a pink background, just add the p element selector before
::selection, like this:

p::selection {
 color: red;
 background-color: pink;
}

 TIP  Learning how to write selectors can sometimes feel like learning hieroglyphics. To translate a selector
into straightforward language, visit the Selectoracle at http://gallery.theopalgroup.com/selectoracle. This great
resource lets you type in a selector, and then it spits out a clear description of which page elements on a page
the style affects.

Attribute Selectors
CSS provides a way to format a tag based on any HTML attributes it has. For example,
say you want to place borders around the images on your page—but only around
the important photos. You don’t want to include your logo, buttons, and other little
doodads that also have an tag. Fortunately, you realize that you’ve given all
the photos descriptions using the title attribute, which means you can use an at-
tribute selector to identify just the important images.

With attribute selectors, you can single out tags that have a particular property. For
example, here’s how to select all tags with a title attribute:

img[title]

The first part of the selector is the name of the tag (img) while the attribute’s name
goes in brackets: [title].

CSS doesn’t limit attribute selectors to tag names: You can combine them with
classes, too. For example, .photo[title] selects every element with the .photo
class style and an HTML title attribute.

To get more specific, you can select elements that not only share a particular at-
tribute, but also have an exact value set for that attribute. For example, when you
want to highlight links that point to a particular URL, create an eye-catching attribute
selector, like so:

a[href="http://www.cafesoylentgreen.com"]{
 color: green;
 font-weight: bold;
}

Adding a value to an attribute selector is very useful when working with forms. Many
form elements have the same tag, even if they look and act differently. The checkbox,
text box, submit button, and other form fields all share the <input> tag. The type

Css: tHe MIssInG MAnUAL60

ATTRIBUTE
SELECTORS

attribute’s value is what gives the field its form and function. For example, <input
type="text"> creates a text box, and <input type="checkbox"> creates a checkbox.

To select just text boxes in a form, for example, use this selector:

input[type="text"]

The attribute selector is very versatile. It lets you not only find tags that have a specific
value for an attribute (for example, find all form fields with a type of checkbox) but
even select elements with an attribute value that begins with, ends with, or contains
a specific value. While this might sound like overkill, it’s actually quite handy.

For example, suppose you want to create a specific style to highlight external links
(links that point outside of your own website) to indicate, “Hey, you’ll leave this site
if you click this.” Assuming you don’t use absolute links to link to any pages in your
own site, you can assume that any external link begins with http://—the first part
of any absolute link.

If that’s the case, the selector would look like this:

a[href^="http://"]

The ^= translates to “begins with,” so you can use this selector to format any link
that begins with http://. You can use it to style a link that points to http://www.
google.com as well as a link to http://www.sawmac.com. In other words, it selects
any external link.

 NOTE  This selector won’t work for any secure connections over SSL—that is, any links that begin with
https://. To create a style that affects those as well, you could create a group selector (page 49) like this:

a[href^="http://"], a[href^="https://"]

Similarly, there are times when you want to select an element with an attribute that
ends in a specific value. Again, links are handy for this task. Say you want to add
a little document icon next to any links that point to a PDF file. Since PDF docu-
ments end in .pdf, you know a link pointing to one of those files will end in .pdf—for
example, . So to select just those types of
links, you’d create a selector like this:

a[href$=".pdf"]

The full style might look something like this:

a[href$=".pdf"] {
 background: url(doc_icon.png) no-repeat;
 padding-left: 15px;
};

http://www.google.com
http://www.google.com
http://www.sawmac.com

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 61

CHILD
SELECTORS

Don’t worry too much about the particular properties in this style—you’ll learn about
padding on page 187 and background images on page 231. Just pay attention to that
cool selector: $= translates to “ends with.” You can use this selector to format links
that point to Word docs ([a href$=".doc"]), movies (a [href$=".mp4"]), and so on.

Finally, you can even select elements with attributes that contain another value. For
example, say you like to highlight photos of your employees throughout the site. You
might want all of those photos to have a common style, like a thick green border
and a gray background. One way to do this is to create a class style—.headshot, for
example—and manually add a class attribute to the appropriate tags. However,
if you name the photos consistently, then there’s a faster method.

For example, say you name each of those images with the word headshot in them—
for example, mcfarland_headshot.png, mccord_headshot.jpg, headshot_albert.
jpg, and so on. Each of these files has the word headshot somewhere in the file, so
the src attribute of the tag used to insert each image also contains the word
headshot. You can create a selector for just those images like this:

img[src*="headshot"]

This translates to “select all images whose src attribute has the word headshot
somewhere in it.” It’s a simple, elegant way to format just those images.

Child Selectors
Similar to the descendant selectors described earlier in this chapter, CSS lets you
format the children of another tag with a child selector. The child selector uses an
additional symbol—an angle bracket (>) to indicate the relationship between the
two elements. For example, the selector body > h1 selects any <h1> tag that’s a
child of the <body> tag.

Unlike a descendant selector, which applies to all descendants of a tag (children,
grandchildren, and so on), the child selector lets you specify which child of which
parent you mean. For example, in Figure 3-6, there are two <h2> tags. Using a plain
old descendant selector—body h2—selects both <h2> tags. Even though both <h2>
tags are inside of the <body> tag, only the second one is a child of the <body> tag. The
first <h2> is directly inside of a <div> tag, so its parent is the <div>. Since the two <h2>
tags have different parents, you can use a child selector to get at them individually.
To select only the first <h2> tag, your child selector looks like this: body > h2. If you
want the second <h2> tag, then you must use this child selector instead: div > h2.

Css: tHe MIssInG MAnUAL62

CHILD
SELECTORS

FiGURE 3-6
The diagram (right) shows the
relationship between HTML tags
(left).

CSS also includes some very specific pseudo-classes for selecting child elements.
They let you fine-tune your selectors for many different arrangements of HTML.

:FIRST-CHILD
Going back to the HTML family tree analogy for a moment, recall what a child tag is:
any tag directly enclosed by another tag. (For example, in Figure 3-6, <h1>, <div>,
<h2>, and are all children of the <body> tag.) The :first-child pseudo-element
lets you select and format just the first of however many children an element may
have.

In Figure 3-6, if you want to select the first <h1> tag on the page, create a selector
like this:

h1:first-child

This selector applies to any <h1> tag that is a first child. In Figure 3-6, the results are
obvious: There’s only one <h1> tag, and it’s the first tag on the page. Therefore, it’s a
child of the <body> element. However, :first-child can be confusing. For example,
if you change the <h2> tag inside the <div> pictured in Figure 3-6 to an <h1> tag,
then h1:first-child would select both the <h1> directly inside the <body> tag and
the <h1> inside the div (since that <h1> is the first-child of the div).

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 63

CHILD
SELECTORS

:LAST-CHILD
This is like :first-child discussed earlier, but just with the last child of an element.
For example, to style the last item in a list, you use the li:last-child selector (see
Figure 3-7).

FiGURE 3-7
CSS’s wide range of child
selectors gives you a vari-
ety of ways to select child
elements. These selectors
are great when you want
to highlight the first, last,
or an alternating number
of items in a list.

:ONLY-CHILD
There’s also a selector for an element that’s the only child of another element. For
example, say you have this style in your style sheet:

p:only-child {
 color: red;
}

This style sets the text color to red, but only if there’s a single paragraph inside the
element. For example, if you have a <div> tag with three paragraphs inside it, then
this style wouldn’t apply—because there are three children inside that div. However,
if you deleted two of the paragraphs, leaving just one paragraph in the div, that
paragraph would then be red.

To make things more confusing, however, this style only works when the specific
tag is the only child inside another tag. In other words, it’s not enough that the tag
is the only one of its kind. If there’s another tag that’s a sibling to the specified tag,

Css: tHe MIssInG MAnUAL64

CHILD
SELECTORS

this selector won’t work. If you added a tag inside <div> along with the <p>,
then the paragraph is no longer an only child. That tag is also a child, so the
p:only-child would no longer apply!

:NTH-CHILD
This complex selector is very useful. With it, you can easily style every other row in
a table, every third list item, or any combination of alternating child elements (see
Figure 3-7). This selector requires a value to determine which children to select. The
easiest option is a keyword—either odd or even—which lets you select alternating
odd or even child elements. For example, if you want to provide one background
color for each even row in a table and another color in the background of each odd-
numbered row, you can write two styles like this:

tr:nth-child(odd) { background-color: #D9F0FF; }
tr:nth-child(even) { background-color: #FFFFFF; }

Now that’s a really simple way to color alternating table rows (see Figure 3-8). But
:nth-child() has even more power up its sleeve.

You can pinpoint a specific child by supplying a number. For example, if you want
to style the fifth item in a list, you’d provide the number 5 to the :nth-child selec-
tor, like this:

li:nth-child(5)

That style selects only a single child. If you want to select, say, every third item in a
list, use the number (3, in this case) followed by the letter n, like this:

li:nth-child(3n)

Then n indicates a multiplier, so 3n is every third child beginning with the third child
(see Figure 3-7).

But what if you want to select every third child element in a series, starting with
the second child element? For example, suppose you want to highlight every third
table cell (<td> tag) inside a row, starting with the second table cell (see Figure 3-8).
Here’s a style to achieve that:

td:nth-child(3n+2) { background-color:#900; }

The number before the n represents a multiple: 3n means every third element, 4n
means every fourth element, and so on. The plus sign followed by a number (+2 in
this example) indicates which element to start at, so +2 means start at the second
child element, while +5 means start at the fifth child element. So :nth-child(5n+4)
selects every fifth child element starting at the fourth child element.

You can even use a negative n value, which will cycle through the child elements
backwards. For example the last list in Figure 3-7 uses the following selector:

li:nth-child(-n+3)

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 65

CHILD
SELECTORS

which translates to “start at the third list item, then select every list item before it.”
As you can see, the nth-child selector is confusing, but powerful enough to let you
select an endless variety of child elements.

FiGURE 3-8
Table-striping the easy
way: with child selectors.
You can even stripe
alternating columns by
targeting every other
<td> tag within a row,
or, as in this case, every
third column beginning
with the second one. Now
that’s precision!

Child Type Selectors
CSS includes a selector that works much like the child selectors in the previous sec-
tion but applies to children with a specific type of HTML tag. For example, say you
want to format the first paragraph inside a sidebar in a particular way, but on some
pages, that sidebar starts with an <h2> tag, and on other pages, it starts with a <p>
tag. You can’t use :first-child to select that paragraph, since in some cases it’s
the second child (following the <h2>). However, it’s always the first paragraph (<p>
tag) in that sidebar, even if other tags come before it, so you can select it with a
type selector called :first-of-type.

 NOTE  :last-child, :first-of-type, and :nth-child() are supported in all modern browsers
including Internet Explorer 9 and above. Alas, these don’t work in IE8.

:FIRST-OF-TYPE
This selector works just like :first-child, but applies to a child that has a particular
tag. For example, say you have a sidebar element with the class sidebar. To style
the first paragraph in that sidebar, use this selector:

.sidebar p:first-of-type

Notice the p in p:first-of-type. It indicates the tag you’re going to format.

:LAST-OF-TYPE
This selector works like :last-child, but applies to the last instance of a particular
type of tag. For example, if you want to format the last paragraph in the sidebar div
in a particular way, but you’re not sure whether there are other tags coming after
the paragraph (like a bulleted list, headline, or image). Here’s the style:

.sidebar p:last-of-type

Css: tHe MIssInG MAnUAL66

CHILD
SELECTORS

 NOTE  Remember, these type selectors also have to be children of a particular tag. So p:first-of-type
means “the first child that is a paragraph tag.”

:NTH-OF-TYPE
Works like :nth-child(), but it applies to alternating children that have a specific
tag. You may find this selector handy if you have something like a big paragraph of
text that’s peppered with photos. The tag is an inline tag, so you can have a
<p> tag with a bunch of <image> tags inside it. And say you want to alternately float
the images left and right, as shown in Figure 3-9. You can do so with these two styles:

img:nth-of-type(odd) { float: left; }
img:nth-of-type(even) { float: right; }

FiGURE 3-9
With the :nth-of-type()
selector, you can easily select
every other image inside a tag,
alternating between left and
right alignment.

As you can see, you use the same keywords (odd or even) and formula (here, 2n+1)
for :nth-of-type() as you do for :nth-child().

In fact, you can use :nth-of-type() to select alternating table rows as well:

tr:nth-of-type(odd) { background-color: #D9F0FF; }

tr:nth-of-type(even) { background-color: #FFFFFF; }

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 67

SIBLINGS
In the case of CSS selectors, there’s always more than one way to skin an HTML
tag—there are usually five or more!

FREQUENTLY ASKED QUESTION

Making Lists Look Great
When would I ever use a child selector? Just from reading this
chapter, I already know enough selectors to get at just about
any page element, so why learn another?

There’s one design challenge where child selectors can’t be
beat—and it comes up in more websites than you think. Any
time you have an unordered list with one or more unordered
lists nested inside (as in Figure 3-6), you can use child selec-
tors to visually organize these categories and subcategories
of information. You can format the first level of list items one
way, and the second level of list items another way. Content
presented in this manner looks neat, professional, and readable
(and your visitors will love you for it).

First, create a class style for the outermost nested level in
your list and call it, say, .mainList. For this top level, you
might use a sans-serif font, a little larger than your other text,
perhaps in bold or a different color. Subsequent categories can
be smaller, in a serif font like Times for easiest reading. When

you have a lot of text, styling each subcategory level a bit
differently helps visually orient your visitors in the material.

Apply the .mainList class style to the first tag: <ul
class="mainList">. Then use a child selector (ul.
mainList > li) to select just the first set of list items,
and add your desired text styling for the first subcategory. This
styling applies to the tags that are children of the
tag with the .mainList style applied to it. Then, to style the
child tags of any subsequent nested tags, use this
selector, ul.mainList > li > ul > li. (A descendant
selector like ul li, by contrast, selects the list items of all
unordered lists on the page—nested ones and all.)

You’ll need to keep a concept you’ll learn in the next chapter—
inheritance—in mind. Basically, certain CSS properties applied
to one tag are inherited by tags inside them. So even if you use
a child selector to target the children of one tag, properties may
pass on to other tags inside that child. The :not() selector,
discussed on page 69, is one way to avoid this.

Siblings
Parent-child relationships aren’t the only ones in the HTML family tree. Sometimes
you need to select a tag based not on its parent tag but on its surrounding siblings—
the tags that share a common parent. A tag that appears immediately after another
tag in HTML is called an adjacent sibling. In Figure 3-6, the <div> tag is the adjacent
sibling of the <h1> tag, the <p> tag is the adjacent sibling of the <h2> tag, and so on.

Using an adjacent sibling selector, you can, for example, give the first paragraph
after each heading different formatting from the paragraphs that follow. Suppose
you want to remove the margin that appears above that <p> tag so that it sits right
below the heading without any gap. Or perhaps you want to give the paragraph a
distinct color and font size, like a little introductory statement.

The adjacent sibling selector uses a plus sign (+) to join one element to the next. So
to select every paragraph following each <h2> tag, use this selector: h2 + p (spaces
are optional, so h2+p works as well). The last element in the selector (p, in this case)
is what gets the formatting, but only when it’s directly after its brother <h2>.

Css: tHe MIssInG MAnUAL68

THE :TARGET
SELECTOR

There’s another sibling selector called the general sibling combinatory selector (say
that three times fast). It’s simply a ~ (tilde) and it means “select all siblings of this
type.” For example, while h2 + p selects a single <p> tag that immediately follows
an <h2> tag, h2 ~ p selects all <p> tags that are siblings (that is, on the same level)
of the h2. To be honest, you may never find a good use for this selector, but CSS is
nothing if not thorough.

The :target Selector
The :target() selector is fun. It can let you create some really interesting effects,
like applying a style to a page element after another element is clicked. That’s the
kind of interactivity usually reserved for JavaScript. The :target() selector relies
on a particular use of ID attributes, as described in the box on page 48; you use IDs
to link to a particular spot on a page.

For example, say you have a web page called index.html. On that page, you have a
div with the ID of signupForm. If you have a link on this page (or another page) that
points to index.html#signupForm, then the web browser jumps to that div. If that
div is at the bottom of a very long web page, then the browser scrolls the page until
that div is in view. These are sometimes called in page links, and they’re often used
on glossary-style web pages where visitors can click a letter and jump to the spot
on the page where the glossary words beginning with that letter appear.

But you don’t have to use this feature to jump to another spot on the page. Whenever
a URL in the browser’s location bar includes a # followed by an ID, the element with
that ID becomes the target, so you can apply a specific style to an element only
when the ID for that element is in the URL.

Here’s an example of HTML showing how the :target selector works. Imagine this
code appears near the top of a web page:

<button>
 Sign up for our newsletter
</button>
<form id="signupForm">
 <label for="email">What's your email address?</label>
 <input type="email" id="email">
 <input class="btn" type="submit" value="Sign up">
</form>

When a visitor clicks the link—the <a> tag—the form is targeted. In other words, you
can apply one style to the form in its regular state and another style when a visitor
clicks that link. For example, you could start off by hiding the form (you’ll learn more
about CSS visibility properties on page 439) using this rule:

#signupForm {
 display: none;
}

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 69

THE :NOT()
SELECTOR

This rule hides the form, so when the page loads, the visitor can’t see it. But when
the visitor clicks the “Sign up for our newsletter” button and the form is targeted,
you can show it like this:

#signupForm:target {
 display: block;
}

In other words, if the URL in the browser’s location bar is just the filename—index.
html, for example—then the browser applies the first style and hides the form. But
if the location looks like this—index.html#signupForm—then the target style applies
and the form is made visible. Cool stuff.

 NOTE  For a really cool use of the :target selector, check out this all-CSS gallery: http://benschwarz.
github.io/gallery-css/.

The :not() Selector
The :not() selector, also called the negation pseudo-class, lets you select something
that’s not something else. For example, say you apply a class to a paragraph—<p
class="classy">—and create a CSS class selector to format it, like this:

.classy { color: red; }

But what if you want to select all paragraphs except the classy paragraphs? That’s
where the :not() selector comes in. You put a CSS selector inside the parentheses
to indicate what you don’t want to select. For example:

p:not(.classy) { color: blue; }

This style makes the text color blue for all paragraphs that don’t have the classy class.

The :not() selector can come in handy when you’re using the attribute selectors
discussed on page 59. For example, you saw on page 59 that you can use an attribute
selector to pick all links that point outside your website, like this:

a[href^="http://"]

As you’ve probably noticed, that selector doesn’t specifically select all links that
point outside your site; it simply selects all links that use absolute URLs—that is,
URLs beginning with http://. For many sites, that’s the same thing. Many sites use
document- or root-relative links to point to other pages within the site, and absolute
URLs to link to other sites. However, in some cases, you may use absolute URLs to
point to pages within your site.

For example, many content management systems (WordPress, for example) use
absolute URLs to point to blog posts within the site. In this case, if you want to style
links that point outside your site, you need to refine the basic attribute selector by
also employing the :not() selector. For example, say your site’s domain name is

http://benschwarz.github.io/gallery-css/
http://benschwarz.github.io/gallery-css/

Css: tHe MIssInG MAnUAL70

TUTORIAL:
SELECTOR
SAMPLER

mysite.com. To select links that point outside your site, you’ll want to select all abso-
lute links that don’t point to the domain mysite.com. Here’s how you would do that:

a[href^="http://"]:not([href^="http://mysite.com"])

Translated into English, this selector says “Select all links whose href attribute begins
with http://, but not ones that begin with http://mysite.com.” As you’ll recall from
page 60, in an attribute selector, ^= means “begins with.” A shorter way to write
the same thing would be this:

a[href^="http://"]:not([href*="mysite.com"])

In an attribute selector, *= means “contains,” so this line would exclude any absolute
URL that contains mysite.com. This would include http://www.mysite.com as well
as http://mysite.com.

There are some limitations to the :not() selector:

• You can only use simple selectors with the :not() selector. In other words you
can use element selectors (like html or p), the universal selector (* [see page 49]),
classes (.footer, for example), IDs (#banner, for example), or pseudo-classes
(:hover, :checked, :first-child, and so on). So the following are all valid:

.footnote:not(div)
img:not(.portrait)
div:not(#banner)
li:not(:first-child)

• You can’t use descendant selectors (like div p a, pseudo-elements (like ::first-
line), group selectors, or combinators (like the adjacent sibling selector h2 + p).

• You can’t string multiple :not() selectors together. For example, the following
is invalid:

a[href^="http://"]:not([href*="google.com"]):not([href="yahoo.com])

In other words, you can only use :not() once with a selector.

Tutorial: Selector Sampler
In the rest of this chapter, you’ll create a variety of selector types and see how each
affects a web page. This tutorial starts with the basic selector types and then moves
on to more advanced styles.

To get started, you need to download the tutorial files located on this book’s com-
panion website at https://github.com/sawmac/css_mm_4e. Click the tutorial link
and download the files. All of the files are enclosed in a zip archive, so you’ll need to
unzip them first. The files for this tutorial are contained inside the folder named 03.

https://github.com/sawmac/css_mm_4e

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 71

TUTORIAL:
SELECTOR
SAMPLER

INDIGNANTLY ASKED QUESTION

Keeping It Internal
Hey, what’s up with the internal style sheet in this tutorial?
Chapter 2 recommends using external style sheets for a bunch
of reasons.

Think you’re pretty smart, eh? Yes, external style sheets usually
make for faster, more efficient websites, for all the reasons
mentioned in Chapter 2. However, internal style sheets make
your life easier when you’re designing a single page at a time,
as in this tutorial. You get to work in just one web page file
instead of flipping back and forth between the external style
sheet file and the web page.

Furthermore, you can preview your results without constantly
refreshing your browser’s cache; flip back to the box on page
25 for more on that quirkiness.

So, yes, you should use external style sheets for your sites. And
if you were going to use the styles you created in this tutorial
on more than just the single tutorial HTML file, you would. But
just to keep things fast and simple as you learn CSS, you’ll use
a single HTML file and an internal style sheet for this exercise.

But, that was an excellent question! Keep up the good work.

1. In your favorite text editor, open 03→selector_basics.html.

This page is made of very basic HTML tags (see Figure 3-10). But you’ll liven
things up in this tutorial. First, you’ll link to a Google font—the same one you
used back on page 36.

2. In the empty line below the closing </title> tag, type:

<link href='http://fonts.googleapis.com/css?family=Varela+Round'
rel='stylesheet'>

As described on page 36, this tag links to an external style sheet that Google
hosts on its web servers. It downloads the Varela Round font and so you can
use it on the page. (You’ll learn more about using web fonts like this one from
Google on page 140.) Next, you’ll add the internal style sheet.

3. After the <link> tag you added in the last step, hit Return and type <style>.
Press Enter twice and then type </style>.

These are the opening and closing style tags—it’s a good idea to type both tags
at the same time, so you don’t accidentally forget to add the closing </style>
tag. Together, these two tags tell a web browser that the information between
them is Cascading Style Sheet instructions. The HTML should now look like this
(the stuff you added is in bold):

<title>Selector Basics</title>
<link href='http://fonts.googleapis.com/css?family=Varela+Round'
rel='stylesheet'>
<style>

</style>

Css: tHe MIssInG MAnUAL72

TUTORIAL:
SELECTOR
SAMPLER

Type selectors—like the one you’re about to create—are the most basic kind of
selector. If you completed the tutorial in the last chapter, you’ve already created
a few. Here, you’ll add a background color to the page.

FiGURE 3-10
Plain HTML looks cold and
monotonous in a web
browser. But with a little
CSS, you can turn drab
(shown here) into fab
(Figure 3-11) in 31 easy
steps.

4. Click between the opening and closing style tags you just added and type
body { , hit Enter twice, and type the closing }.

It’s a good idea to always add the closing brace immediately after typing the
opening brace, just so you don’t forget. To create a tag selector, simply use the
name of the HTML tag you wish to format. This style applies to the <body> tag.
Now you can set the background color and the margin of space around the page.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 73

TUTORIAL:
SELECTOR
SAMPLER

5. Click between <body> style’s opening and closing braces ({ }) and add the
following three CSS properties to supply the style’s formatting—color, size,
font, and left indent (as set by the padding):

body {
 background-color: rgb(50,122,167);
 padding: 0 20px 20px 20px;
 margin: 0;

}

Press Enter to place each CSS property on its own line. It’s also a good idea to
visually organize your CSS code by indenting each property with the Tab key
(some designers use two spaces instead of a tab—it’s up to you).

The properties here change the background color of the page: rgb() is one
way to specify a color’s red, green, and blue values. In this case, the color is a
dark blue. This background makes the black text hard to read, so you need to
change the color of the paragraph tags.

 NOTE  These property names and their values may look unfamiliar. For now, just type them as is so you can
get a taste of padding and margins work. You’ll learn much more about these properties in Chapter 6.

6. Add another style below the body style you just created:

p {
 color: rgba(255,255,255,.6);
 font-size: 1em;
 font-family: "Varela Round", Arial, Helvetica, sans-serif;
}

With four CSS properties, this style supplies formatting for all paragraphs (all
<p> tags)—color, size, and font. This time, the color is determined by an rgba()
color value. With an extra “a” after the usual “rgb,” this versatile value lets you
create a color that’s partially transparent. In this case, you’ve set the paragraph’s
text to white (which is 255,255,255 in rgb), but only 60 percent opaque (that’s
the .6 part). A bit of the blue background color shows through, so the paragraph
text appears light blue.

Time for a look-see.

7. Open the page in a web browser to preview your work.

Unless you tinker with the preference settings, most browsers display black text
in a standard serif font like Times. If your CSS style works properly, then you
should see seven paragraphs using the Varela Round font in a light blue color.

Creating a Group Selector
Sometimes you’ll want several different elements on a page to share the same look.
For instance, you may want all your headings to have the same font and color for a

Css: tHe MIssInG MAnUAL74

TUTORIAL:
SELECTOR
SAMPLER

consistent style. Instead of creating separate styles and duplicating the same prop-
erty settings for each tag—<h1>, <h2>, and so on—you can group the tags together
into a single selector.

1. Return to your text editor and the selector_basics.html file.

Let’s add a new style below the <p> tag style you just created.

2. Click at the end of the closing brace of the p tag selector, press Enter to start
a new line, and the following code:

h1, h2, h3 {

}

As explained earlier in this chapter, a group selector is simply a list of selectors
separated by commas. This rule applies the same formatting, which you’ll add
next, to all <h1>, <h2>, and <h3> tags on the page.

3. Click in the empty line between the opening { and closing } and add five
CSS properties:

color: rgb(255,255,255);
font-family: Arial, "Palatino Linotype", Times, serif;
border-bottom: 2px solid rgb(87,185,178);
padding-top: 10px;
padding-bottom: 5px;

There’s a lot going on here, but basically you’re setting the color and font type
for the headlines, adding a border line below the headlines for visual interest,
and controlling the top and bottom spacing by using the padding property. The
padding property adds space from the edges of an element without affecting
a background or border—you’re adding a bit of space above the headline, and
inserting a bit of space between the bottom of that text and the border line
below it.

4. Save the file, and preview it in a web browser.

The <h1> heading near the top of the page and the <h2> and <h3> headings
lower on the page all have the same font and font color as well as a greenish-
blue border below them (see Figure 3-11). The <h1> tag looks a bit small, but
you can easily bump up its size.

5. Go back to your text editor and the selector_basics.html file. Add another
style below the group selector style you just created:

h1 {
 font-size: 2em;
}

This style increases the size of the font. An em is the default browser font-size,
so 2em is twice the normal text size. Notice, as well, that it’s possible to have

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 75

TUTORIAL:
SELECTOR
SAMPLER

more than one style apply to an element at the same time—the h1, h2, h3 rule
and the h1 rule in this case. Both the group selector and this new type selector
apply to h1 tags on this page. This process is the cascade in Cascading Style
Sheets. You’ll learn all about how styles interact in Chapter 5.

FiGURE 3-11
A simple type selector
can completely transform
the appearance of every
instance of a tag, making
quick work of styling all
the paragraphs of text on
a page. And in this case, a
group selector does even
more by formatting every
instance of three different
headline tags!

Creating and Applying an ID Selector
ID selectors are used to style a single tag. You create the style and add an ID attribute
to a tag on the page, and then the properties from that style are applied to that single
tag. You’ll frequently use IDs to identify form elements, to create in-page links in a
page (see the box on page 48), and to use JavaScript to control elements on a page.

Css: tHe MIssInG MAnUAL76

TUTORIAL:
SELECTOR
SAMPLER

Although many web designers now shy away from ID selectors (you’ll learn exactly
why on page 108), it’s still good to know how to use them.

In this exercise, you’ll create a style that controls the look of the text that appears
at the very top of the page: “CSS: The Missing Manual.” This text is considered the
page’s logo, and you’ll create a special ID style to format it.

1. Return to your text editor and the selector_basics.html file.

You’ll add a new style below the h1 class style you created before.

2. Click after the previous style’s closing bracket (}), hit Enter to create a new
line, and then type #logo {.

ID selectors always begin with the pound symbol (#). The style’s name indicates
that you’ll apply this to a page element that’s considered the site’s logo.

3. Hit Enter again, and then type:

font-family: Baskerville, Palatino, sans-serif;
font-size: 2em;
color: rgba(255,255,255,.8);
font-style: italic;
text-align: center;
margin-bottom: 30px;
background-color: rgb(191,91,116);
border-radius: 0 0 10px 10px;
padding: 10px;

It looks like a long list of properties, but all it does it set some font properties,
background color, and spacing for the logo text.

4. Finish the style by typing the closing brace. The whole thing should look
like this:

#logo {
 font-family: Baskerville, Palatino, sans-serif;
 font-size: 2em;
 color: rgba(255,255,255,.8);
 font-style: italic;
 text-align: center;
 margin-bottom: 30px;
 background-color: rgb(191,91,116);
 border-radius: 0 0 10px 10px;
 padding: 10px;
}

If you save the file and preview it in a web browser, you won’t see any difference.
That’s because this style doesn’t do anything until you apply it. So you’ll add an
ID attribute to the page’s HTML, indicating where you want the ID style to apply.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 77

TUTORIAL:
SELECTOR
SAMPLER

5. Find the <div> tag near the opening <body> tag—it has the text “CSS: The Miss-
ing Manual” in it. Add id="logo" to the opening div so the HTML looks like this:

<div id="logo">
 CSS: The Missing Manual
</div>

The <div> tag now reflects the formatting defined in the #logo style. As with
all things CSS, there are many ways to arrive at the same destination: You could
instead use a class style and apply it to the <div> tag. But in this case you’re
using an ID selector, since the point of this style—identifying the logo on the
page—is in keeping with the general notion of ID selectors.

6. Save the page, and preview it in a browser.

Now the “CSS: The Missing Manual” text is centered, light-colored, and inside
a small box at the top of the page (Figure 3-12).

FiGURE 3-12
ID selectors are one way to style
unique elements, like the logo bar
at the top of this page.

Css: tHe MIssInG MAnUAL78

TUTORIAL:
SELECTOR
SAMPLER

Creating and Applying a Class Selector
Type selectors are quick and efficient, but they’re a bit indiscriminate in how they
style a page. What if you want to style a single <p> tag differently than all the other
<p> tags on a page? A class selector is the answer.

1. Return to your text editor and the selector_basics.html file.

Add a new style below the ID selector style you just created.

2. Click at the end of the closing brace of the #logo selector, press Enter, and
then type

.note {

}

This style’s name, .note, indicates its purpose: to highlight paragraphs that
contain extra bits of information for your site’s visitors. Once you create a class
style, you can apply it wherever these notes appear—like the third paragraph
in this page.

3. Click in the empty line between the opening { and closing } and add the
following list of properties to the style:

color: black;
border: 2px solid white;
background-color: rgb(69,189,102);
margin-top: 25px;
margin-bottom: 35px;
padding: 20px;

Notice that you’re not using the rgb() color values to color the font and border.
CSS has several different ways to specify a color, including keywords like white,
black, or orange. You’ll learn about those on page 147.

If you preview the page now, you see no changes. Like ID selectors, class
selectors don’t have any effect on a web page until you apply the style in the
HTML code.

4. In the page’s HTML, there are two <p> tags that begin with the word “Note”
inside tags.

To apply a class style to a tag, simply add a class attribute, followed by the class
selector’s name—in this case, the note style you just created.

5. Click just after the p in the first <p> tag, and then type a space followed by
class="note". The HTML should now look like this (what you just typed is
in bold):

 <p class="note">NOTE:

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 79

TUTORIAL:
SELECTOR
SAMPLER

Be sure not to type class=".note". In CSS, the period is necessary to indicate
a class style name; in HTML, it’s verboten. Repeat this step for the second para-
graph (it’s just above the <h3> tag with the text “Not Me!”).

 NOTE  There’s no reason you can’t add this class to other tags as well, not just the <p> tag. If you happen
to want to apply this formatting to an <h2> tag, for example, then your HTML would look like this:

<h2 class="note">

6. Save and preview the web page in a browser.

The note paragraph is nicely highlighted on the page (see Figure 3-13).

FiGURE 3-13
You can make detailed
formatting changes
with class selectors. A
class style gives selected
paragraphs different
formatting from all other
paragraphs on the page.
The distinctive note box
pictured here uses a class
style to stand out from
the crowd.

Css: tHe MIssInG MAnUAL80

TUTORIAL:
SELECTOR
SAMPLER

 NOTE  If your page doesn’t look like Figure 3-13, then you may have mistyped the name of a property or
its value. Double-check your code with the steps above. Also, make sure to end each declaration (property:
value combination) with a semicolon and conclude the style with a closing brace at the very end. When your
style is not working correctly, missing semicolons and closing braces are frequent culprits.

Creating a Descendant Selector
On the selectors_basics.html page, you applied the note class to two paragraphs.
Each of those paragraphs begins with the word “Note:” in bold—actually the word
is wrapped inside the HTML tag, which all browsers display as bolded text.
But what if you want to format those bolded words in bright orange? You could
create a tag style for the tag, but that would affect all tags on
the page, and you only want to change the strong tag inside those note boxes. One
solution would be to create a class style—.noteText, for example—and apply it to
each of the tags inside the note boxes. But that’s a lot of work, and you
might forget to apply the class if you have a lot of pages with those notes.

A better method is to create a descendant selector (page 50), which targets only the
 tag when it’s inside one of these note boxes. Fortunately, that’s easy to do.

1. Return to your text editor and the selector_basics.html file. Create a new
empty line for the descendant selector style.

If you just completed the previous steps, click after the closing brace of the
.note style, and then hit Enter.

2. Type .note strong {.

The last tag in the selector—strong—is the element you ultimately want to
format. In this case, the style formats the tag only when it’s inside
another tag with the class note applied to it. It has no effect on tags
inside other paragraphs, lists, or heading tags, for example.

3. Hit Enter, type color: #FC6512;, and then hit Enter again to create another
blank line. Finish the style by typing the closing brace character.

The finished style should look like this:

.note strong {
 color: #FC6512;
}

4. Save the page and preview it in a web browser.

The word “Note:” should appear in orange in each of the note boxes on the page.

Descendant selectors are among the most powerful CSS tools. Professional web
designers use them extensively to target particular tags without littering the HTML
with CSS classes. You’ll learn a lot more about descendant selectors as they’re used
throughout this book.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 81

TUTORIAL:
SELECTOR
SAMPLER

Finishing Touches
The text on this page expands to fill the browser window. To see this in effect,
preview the page and resize your browser window. You’ll see the lines of text get
wider as you stretch the window. If you have a large monitor, you’ll see that the
text becomes pretty hard to read past a certain width: The lines of text are too long
to read comfortably. Fortunately, you can set a width for the page’s content, so it
doesn’t get too wide to read.

1. Return to your text editor and the selector_basics.html file. Create a new
empty line for a new style.

If you just completed the previous steps, click after the closing brace of the
.note strong descendant selector style, and then hit Enter.

2. Add another style:

article {
 max-width: 760px;
}

This is another type selector. It applies to the HTML5 <article> tag, which
is used to define the content that makes up an article like a blog post, or the
content on this page.

The max-width property sets the maximum width for the tag, meaning that the
article tag will never get wider than 760 pixels. Save the file and preview it in
a browser. If you widen the browser window, you’ll notice that past 760 pixels,
the window gets wider and the blue background of the page appears, but the
text no longer expands.

On the other hand, if you make the browser window smaller than 760 pixels,
the text lines do get shorter. That’s the power of the max-width property, which
sets a maximum width, but no minimum. This property is extremely useful when
you’re designing sites that need to work on a variety of screen sizes—desktop
computers, laptops, tablets, and smart phones. It’s an important part of respon-
sive design, which you’ll learn about in Chapter 17.

Now that you’ve limited how far the text can expand, it would be nice to keep
the content centered on the screen instead of sticking to the left edge as the
browser window expands.

3. Add one more property to the article style so it looks like this (addition
in bold):

article {
 max-width: 760px;
 margin: 0 auto;
}

Css: tHe MIssInG MAnUAL82

TUTORIAL:
SELECTOR
SAMPLER

The margin property sets the space between an element and other elements
around it. You’ll read more about margins on page 187, but here this line sets
the left and right margins to auto, which tells the web browser to automatically
figure out how much space to add to the left and right sides of the article tag.
Once the browser window gets past 760 pixels, the article element gets no
wider, so the browser basically adds empty space to both the left and right of
the tag, in essence centering it in the middle of the browser window.

For fun, you’ll add one more advanced style—an adjacent sibling selector dis-
cussed on page 67—to format the paragraph immediately following the first
headline on the page. (You can achieve the same effect by creating a class style
and applying it to that paragraph, but the adjacent sibling selector requires no
changes to your HTML.)

4. Add one last style:

h1+p {
 color: rgb(255,255,255);
 font-size: 1.2em;
 line-height: 140%;
}

This style will apply to any paragraph that immediately follows an <h1> tag—in
other words, the first paragraph after the top headline on the page. It won’t
apply to the second or any subsequent paragraphs. This selector provides an
easy way to create a unique look for an introductory paragraph to set it off
visually and highlight the beginning of an article.

The style changes the font color and size. The line-height property (which
you’ll read about on page 163) controls the space between lines in a paragraph
(also known as leading).

If you preview the page now, you’ll see that the top paragraph is white and its
text is larger, and there’s more space between each line of text (see Figure 3-14).
If you actually deleted this paragraph in the HTML, you’d see that the remaining
paragraph would suddenly be white with larger text, since it would be the new
adjacent sibling of the <h1> tag.

And there you have it: a quick tour through various selector types. You’ll get familiar
with all of these selectors (and more) as you go through the tutorials later in the
book, but by now, you should be getting the hang of the different types and why
you’d use one over the other.

 NOTE  You can see a completed version of the page you’ve just created in the 03_finished folder.

CHAPteR 3: SELECTORS: IDENTIFYING WHAT TO STYLE 83

TUTORIAL:
SELECTOR
SAMPLER

FiGURE 3-14
The page has really come
together. The set width
and the typographic
details have really
improved the look of the
boring HTML page you
started with.

85

CHAPTER

4

Children inherit traits from their parents—eye color, height, male-pattern bald-
ness, and so on. Sometimes we inherit traits from more distant ancestors, like
grandparents or great-grandparents. As you saw in the previous chapter, the

metaphor of family relations is part of the structure of HTML as well. And just like
humans, HTML tags can inherit CSS properties from their ancestors.

What Is Inheritance?
Inheritance is the process by which some CSS properties applied to one tag are
passed on to nested tags. For example, a <p> tag is always nested inside of the
<body> tag, so properties applied to the <body> tag get inherited by the <p> tag. Say
you created a type selector style (page 41) for the <body> tag that sets the color
property to a dark red. Tags that are descendants of the <body> tag—that is, the ones
inside the <body> tag—will inherit that color property. That means that any text in
those tags—<h1>, <h2>, <p>, or whatever—will appear in that same dark red color.

Inheritance works through multiple generations as well. If a tag like the or
 tag appears inside of a <p> tag, then the and the tags also
inherit properties from any style applied to the <body> tag.

 NOTE  As discussed in Chapter 3, any tag inside of another tag is a descendant of that tag. So a <p> tag
inside the <body> tag is a descendant of the <body>, while the <body> tag is an ancestor of the <p> tag.
Descendants (think kids and grandchildren) inherit properties from ancestors (think parents and grandparents).

 Saving Time with
Style Inheritance

Css: tHe MIssInG MAnUAL86

HOW
INHERITANCE
STREAMLINES
STYLE SHEETS

Although this may sound confusing, inheritance is a really big timesaver. Imagine if
no properties were passed onto nested tags and you had a paragraph that contained
other tags like a tag, an tag to emphasize text and an <a> tag to add
a link. If you created a style that made the paragraph text white and 32 pixels tall,
using the Varela Round font, it would be weird if all the text inside the ,
and <a> tags reverted to its regular, “browser boring” style (see Figure 4-1). You’d
then have to create another style to format the tag to match the appearance
of the <p> tag. What a drag.

Inheritance doesn’t just apply to tag styles. It works with any type of style, so when
you apply a class style (see page 43) to a tag, any tags inside that tag inherit prop-
erties from the styled tag. The same holds true for ID styles, descendant selectors,
and the other types of styles discussed in Chapter 3.

How Inheritance Streamlines Style Sheets
You can use inheritance to your advantage to streamline your style sheets. Say you
want all the text on a page to use the same font. Instead of creating styles for each
tag, simply create a tag style for the <body> tag. (Or create a class style and apply it
to the <body> tag.) In the style, specify the font you wish to use, and all of the tags
on the page inherit the font:

body {
 font-family: Arial, Helvetica, sans-serif;
}

You can also use inheritance to apply style properties to a section of a page. For
example, like many web designers, you may use the <div> tag (page 47) to define
an area of a page like a banner, sidebar, or footer; or if you’re using HTML5 elements,
you might use one of the sectioning elements like <header>, <aside>, <footer>, or
<article>. By applying a style to that outer tag, you can specify particular CSS
properties for all of the tags inside just that section of the page. If you want all the
text in a sidebar to be the same color, you’d create a style setting the color property,
and then apply it to the <div>, <header>, <article>, or other sectioning element.
Any <p>, <h1>, or other tags inside inherit the same font color.

CHAPteR 4: SAVING TIME WITH STYLE INHERITANCE 87

HOW
INHERITANCE
STREAMLINES
STYLE SHEETS

FiGURE 4-1
Inheritance lets tags copy
properties from the tags that
surround them.

Top: The paragraph tag is
set with a specific font fam-
ily, size, and color. The tags
inside each paragraph—the
, <a>, and
tags circled—inherit those
properties so they look like
the rest of the paragraph.

Bottom: If inheritance didn’t
exist, the same page would
look like this figure. Notice
how the , ,
and <a> tags inside the
paragraph (circled) retain the
font-family, size, and color
defined by the browser. To
make them look like the rest
of the paragraph, you’d have
to create additional styles—a
big waste of time.

Css: tHe MIssInG MAnUAL88

THE LIMITS OF
INHERITANCE The Limits of Inheritance

Inheritance isn’t all-powerful. Many CSS properties don’t pass down to descendant
tags at all. For example, the border property (which lets you draw a box around an
element) isn’t inherited, and with good reason. If it were, then every tag inside an
element with the border property would also have a border around it. For example, if
you added a border to the <body> tag, then every bulleted list would also have a box
around it, and each bulleted item in the list would also have a border (Figure 4-2).

 NOTE  There’s a list of CSS properties in Appendix A, including details on which ones get inherited.

Here are examples of times when inheritance doesn’t strictly apply:

• As a general rule, properties that affect the placement of elements on the page
or the margins, background colors, and borders of elements aren’t inherited.

• Web browsers use their own inherent styles to format various tags: Headings
are big and bold, links are blue, and so on. When you define a font size for the
text on a page and apply it to the <body> tag, headings still appear larger than
paragraphs, and <h1> tags are still larger than <h2> tags. It’s the same when
you apply a font color to the <body>; the links on the page still appear in good
old-fashioned web-browser blue.

 NOTE  It’s usually a good idea to eliminate these built-in browser styles—it’ll make designing sites that
work consistently among different browsers easier. In Chapter 5, on page 109, you’ll learn how to do that.

• When styles conflict, the more specific style wins out. In other words, when
you’ve specifically applied CSS properties to an element—like specifying the
font size for an unordered list—and those properties conflict with any inherited
properties—like a font-size set for the <body> tag—the browser uses the font
size applied to the tag.

 NOTE  These types of conflicts between styles are very common, and the rules for how a browser deals with
them are called the cascade. You’ll learn about that in Chapter 5.

CHAPteR 4: SAVING TIME WITH STYLE INHERITANCE 89

THE LIMITS OF
INHERITANCE

FiGURE 4-2
Fortunately, not all
properties are inherited.
The border applied to the
body of this page (the
thick red outline around
the content) in the image
at top isn’t inherited by
the tags inside the body.
If they were, you’d end up
with an unattractive mess
of boxes within boxes
within boxes (bottom).

Css: tHe MIssInG MAnUAL90

TUTORIAL:
INHERITANCE Tutorial: Inheritance

In this three-part tutorial, you’ll see how inheritance works. First, you’ll create a
simple tag selector and watch it pass its characteristics on to nested tags. Then, you’ll
create a class style that uses inheritance to alter the formatting of an entire page.
Finally, you’ll see where CSS makes some welcome exceptions to the inheritance rule.

To get started, you need to download the tutorial files located at https://github.com/
sawmac/css_mm_4e. Click the tutorial link and download the files. All of the files
are enclosed in a zip archive, so you’ll need to unzip them first. (Detailed instructions
for unzipping the files are on the website.) The files for this tutorial are contained
in the folder named 04.

A Basic Example: One Level of Inheritance
To see how inheritance works, start by adding a single tag style and see how it af-
fects the tags nested inside. The next two parts of this tutorial will build upon your
work here, so save the file when you’re done.

1. Open the file inheritance.html in your favorite text editor.

This file already has an internal style sheet, with one type selector giving the
<body> tag a background color.

 NOTE  In general, it’s better to use external style sheets for a website, for reasons discussed in Chapter 2
(page 26). But for a simple tutorial like this, it’s easier to just work with one file.

2. Add another style after the <body> style in the style sheet:

p {
 color: rgb(92,122,142);
}

As you’ve seen in the previous tutorials, the color property sets the color of
text. Your style sheet is complete.

3. Open the page in a web browser to preview your work.

The color of the page’s four paragraphs has changed from black to a slate blue
color (see Figure 4-3).

But notice how this <p> tag style affects other tags: Tags inside of the <p> tag also
change color. For example, the text inside the and tags inside each
paragraph also changes from black to slate blue while maintaining its italic and bold
formatting. This kind of behavior makes a lot of sense. After all, when you set the
color of text in a paragraph, you expect all the text in the paragraph—regardless of
any other tags inside that paragraph—to be the same color.

Without inheritance, creating style sheets would be very labor intensive. If the
and tags didn’t inherit the color property from the <p> tag selector, then

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

CHAPteR 4: SAVING TIME WITH STYLE INHERITANCE 91

TUTORIAL:
INHERITANCE

you’d have to create additional styles—perhaps descendant selectors like p em and
p strong—to correctly format the text.

However, you’ll notice that the link at the end of the first paragraph doesn’t change
color—it retains its link-blue color. As you’ll learn on page 109, browsers have their
own styles for certain elements, so inheritance doesn’t apply. You’ll learn more about
this behavior in Chapter 5.

Using Inheritance to Restyle an Entire Page
Inheritance works with class styles as well—any tag with any kind of style applied
to it passes CSS properties to its descendants. With that in mind, you can use in-
heritance to make quick, sweeping changes to an entire page.

1. Return to your text editor and the inheritance.html file.

You’ll add a new style below the <p> tag style you created.

2. Click at the end of the closing brace of the p selector. Press Enter to create
a new line, and then type .content {. Hit Enter twice, and type the closing
brace: }.

You’re about to create a new class style that you’ll apply to the <body> tag,
which surrounds the other tags on this page.

3. Click between the two braces, and then add the following list of properties
to the style:

font-family: "Helvetica Neue", Arial, Helvetica, sans-serif;
font-size: 18px;
color: rgb(194,91,116);
max-width: 900px;
margin: 0 auto;

The whole thing should look like this:

.content {
 font-family: “Helvetica Neue”, Arial, Helvetica, sans-serif;
 font-size: 18px;
 color: rgb(194,91,116);
 max-width: 900px;
 margin: 0 auto;
}

This completed class style sets a font, font size, and color. It also sets a width
and centers the style on the page (you saw this trick in the previous tutorial on
page 81 for creating a fixed, centered area for a page’s content).

Css: tHe MIssInG MAnUAL92

TUTORIAL:
INHERITANCE

FiGURE 4-3
Inheritance in action!
Tags inside of a styled
tag—the bold, italicized
text—display the same
color applied to the <p>
tag surrounding them.
But what’s that? The link
at the end of the first
paragraph is still blue
(circled). You’ll learn why
in the next chapter.

4. Find the opening <body> tag (just below the closing </head> tag), and then
type class="content".

The tag should now look like this: <body class="content">. It applies the class
to the <body> tag. Thanks to inheritance, all tags inside of the <body> tag (which
are also all the tags visible inside a browser window) inherit this style’s proper-
ties and therefore use the same font.

5. Save and preview the web page in a browser.

As you can see in Figure 4-4, your class style has created a seamless, consistent
appearance throughout all text in the body of the page. Both headings and
paragraphs inside the <body> tag have taken on the new font styling.

CHAPteR 4: SAVING TIME WITH STYLE INHERITANCE 93

TUTORIAL:
INHERITANCE

The page as a whole looks great, but now look more closely: The color change af-
fected only the headings and the bulleted list on the page, and even though the style
specified an exact font size, the headline text is a different size than the paragraphs.
How did CSS know that you didn’t want your headings to be the same 18-pixel size
as the body text? And why didn’t the nested <p> tags inherit your new color styling
from the <body> tag?

 NOTE  Why use a class—content—instead of a tag style—body—to redefine the look of the page? Well,
in this case, a tag style would work fine. But applying a class to the <body> tag is a great way to customize the
look of different pages on your site. For example, if all pages on your site share the same external style sheet, a
body tag style would apply to the <body> tag of every page on your site. By creating different classes (or IDs)
you can create a different style for the <body> tag for different sections of the site or different types of pages.

You’re seeing the “cascading” aspect of Cascading Style Sheets in action. In this
example, your <p> tags have two color styles in conflict—the <p> tag style you cre-
ated in step 2 on page 90 and the class style you created here. When styles collide,
the browser has to pick one. As discussed on page 80, the browser uses the more
specific styling—the color you assigned explicitly to the <p> tag. You’ll learn much
more about the rules of the cascade in Chapter 5.

FiGURE 4-4
A style applied to the
<body> tag passes its
properties onto all the
tags you see in the web
browser, making it easy
to apply global format-
ting effects to a page.

Css: tHe MIssInG MAnUAL94

TUTORIAL:
INHERITANCE

Inheritance Inaction
Inheritance doesn’t always apply, and that isn’t necessarily a bad thing. For some
properties, inheritance would have a negative effect on a page’s appearance. You’ll
see another example of inheritance in action in the final section of this tutorial.
Margins, padding, and borders (among other properties) don’t get inherited by
descendant tags—and you wouldn’t want them to, as you’ll see in this example.

1. Return to your text editor and the inheritance.html file.

You’ll expand on the p tag style you just created.

2. Locate the p style, click at the end of the color property (color:
rgb(50,122,167);), and then press Enter (Return) to create a new line.

You’ll indent the paragraphs on the page by adding a left margin.

3. Add two properties to the style so it looks like this:

p {
 color: rgb(50,122,167);
 padding-left: 20px;
 border-left: solid 25px rgba(255,255,255,.5);
}

These changes add a border to the left side of every paragraph, and move
the text so that it doesn’t touch the border: The padding property indents the
paragraph text 20 pixels from the border.

4. Save the file and preview it in a web browser.

Notice that all of the <p> tags have a thick light border on the left. However, the
tags inside the <p> tag (for example, the tag) don’t have any additional
indentation or border (see Figure 4-5). This behavior makes sense: It would look
weird if there were an additional thick border and 20px of space to the left of
each and each tag inside of a paragraph!

To see what would happen if those properties were inherited, edit the p selec-
tor so that it looks like this: p, p *, which makes it into a group selector (page
49). The first part is just the p selector you already created. The second part—p
*—means “select all tags inside of a <p> tag and apply this style to them.” (The
*, or universal selector, is described on page 49.)

CHAPteR 4: SAVING TIME WITH STYLE INHERITANCE 95

TUTORIAL:
INHERITANCE

FiGURE 4-5
While most properties
are inherited (like color),
there are plenty—like
margins, padding, and
borders—that don’t pass
on to nested tags. The
CSS Property Reference
in Appendix A indicates
which properties are and
are not inherited.

 NOTE  You can find a completed version of the page you created in this tutorial in the 04_finished folder.

97

CHAPTER

5

As you create increasingly complex style sheets, you’ll sometimes wonder
why a particular element on a page looks the way it does. CSS’s inheritance
feature, as discussed in Chapter 4, creates the possibility that any tag on a

page is potentially affected by any of the tags that wrap around it. For example, the
<body> tag can pass properties on to a paragraph, and a paragraph may pass its
own formatting instructions on to a link within the paragraph. In other words, that
link can inherit CSS properties from both the <body> and the <p> tag—essentially
creating a kind of Frankenstyle that combines parts of two different CSS rules.

Then there are times when styles collide—the same CSS property is defined in mul-
tiple rules, all applying to a particular element on the page (for example, a <p> tag
style in an external style sheet and another <p> tag style in an internal style sheet).
When that happens, you can see some pretty weird stuff, like text that appears bright
blue, even though you specifically applied a class style with the text color set to
red. Fortunately, there’s actually a system at work: a basic CSS mechanism known
as the cascade, which governs how styles interact and which styles get precedence
when there’s a conflict.

 NOTE  This chapter deals with issues that arise when you build complex style sheets that rely on inheritance
and more sophisticated types of selectors like descendant selectors (page 50). The rules are all pretty logical, but
they’re about as fun to master as the tax code. If that’s got your spirits sagging, consider skipping the details
and doing the tutorial on page 111 to get a taste of what the cascade is and why it matters. Or jump right to the
next chapter, which explores fun and visually exciting ways to format text. You can always return to this chapter
later, after you’re comfortable with the basics of CSS.

 Managing Multiple
Styles: The Cascade

Css: tHe MIssInG MAnUAL98

HOW STYLES
CASCADE How Styles Cascade

The cascade is a set of rules for determining which style properties get applied to an
element. It specifies how a web browser should handle multiple styles that apply to
the same tag and what to do when CSS properties conflict. Style conflicts happen in
two cases: through inheritance, when the same property is inherited from multiple
ancestors; and when one or more styles apply to the same element (maybe you’ve
applied a class style to a paragraph and also created a <p> tag style, so both styles
apply to that paragraph).

Inherited Styles Accumulate
As you read in the last chapter, CSS inheritance ensures that related elements—like
all the words inside a paragraph, even those inside a link or another tag—share
similar formatting. It spares you from creating specific styles for each tag on a page.
But since one tag can inherit properties from any ancestor tag—a link, for example,
inheriting the same font as its parent <p> tag—determining why a particular tag is
formatted one way can be a bit tricky. Imagine a font family applied to the <body>
tag, a font size applied to a <p> tag, and a font color applied to an <a> tag. Any <a>
tag inside of a paragraph would inherit the font from the body and the size from
the paragraph. In other words, the inherited styles combine to form a hybrid style.

The page shown in Figure 5-1 has three styles: one for the <body>, one for the <p>
tag, and one for the tag. The CSS looks like this:

body { font-family: Verdana, Arial, Helvetica, sans-serif; }
p { color: #F30; }
strong { font-size: 24px; }

FiGURE 5-1
Thanks to inheritance, it’s possible for
multiple styles to affect the appearance
of one tag. Here the tag has
a specific color, font family, and font size,
even though only a single property is
applied directly to that tag. The other two
formatting options were inherited from
the tag’s ancestors: the <body> and the
<p> tags.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 99

HOW STYLES
CASCADE

The tag is nested inside a paragraph, which is inside the <body> tag. That
 tag inherits from both of its ancestors, so it inherits the font-family
property from the body and the color property from its parent paragraph. In ad-
dition, the tag has a bit of CSS applied directly to it—a 24px font size. The
final appearance of the tag is a combination of all three styles. In other words, the
 tag appears exactly as if you’d created a style like this:

strong {

 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #F30;
 font-size: 24px;
}

Nearest Ancestor Wins
In the previous example, various inherited and applied tags smoothly combined to
create an overall formatting package. But what happens when inherited CSS prop-
erties conflict? Think about a page where you’ve set the font color for the <body>
tag to red and the paragraph tag to green. Now imagine that within one paragraph,
there’s a tag. The tag inherits from both the <body> and <p> tag
styles, so is the text inside the tag red or green? Ladies and gentlemen, we
have a winner: the green from the paragraph style. That’s because the web browser
obeys the style that’s closest to the tag in question.

In this example, any properties inherited from the <body> tag are rather generic. They
apply to all tags. A style applied to a <p> tag, on the other hand, is more narrowly
defined. Its properties apply only to <p> tags and the tags inside them.

In a nutshell, if a tag doesn’t have a specific style applied to it, then, in the case of
any conflicts from inherited properties, the nearest ancestor wins (see Figure 5-2,
number 1).

Here’s one more example, just to make sure the concept sinks in. If a CSS style
defining the color of text were applied to a <table> tag, and another style defining
a different text color were applied to a <td> tag inside that table, then tags inside
that table cell (<td>)—such as a paragraph, headline, or unordered list—would use
the color from the <td> style, since it’s the closest ancestor.

The Directly Applied Style Wins
Taking the “nearest ancestor” rule to its logical conclusion, there’s one style that
always becomes king of the CSS family tree—any style applied directly to a given tag.
Suppose a font color is set for the body, paragraph, and strong tags. The paragraph
style is more specific than the body style, but the style applied to the tag
is more specific than either one. It formats the tags and only the
tags, overriding any conflicting properties inherited from the other tags (see Figure
5-2, number 2). In other words, properties from a style specifically applied to a tag
beat out any inherited properties.

Css: tHe MIssInG MAnUAL100

HOW STYLES
CASCADE

This rule explains why some inherited properties don’t appear to inherit. A link
inside a paragraph whose text is red still appears browser-link blue. That’s because
browsers have their own predefined style for the <a> tag, so an inherited text color
won’t apply.

FiGURE 5-2
Here’s how web browsers figure out which proper-
ties to display when inherited properties conflict:
The tag in the first paragraph (1) inherits
the font family and color from both the <body>
tag and the paragraph. But since the body and
paragraph have different fonts and colors applied
to them, the tag uses the font and color
specified for its closest ancestor—the <p> tag.
When a style applies directly to a tag—the font
family and color are specified for the
tag (2)—browsers ignore conflicting inherited
properties.

 NOTE  You can learn how to overcome preset styles for the <a> tag and change link colors to your heart’s
content. See page 279.

One Tag, Many Styles
Inheritance is one way that a tag can be affected by multiple styles. But it’s also pos-
sible to have multiple styles apply directly to a given tag. For example, say you have
an external style sheet with a <p> tag style and attach it to a page that has an internal
style sheet that also includes a <p> tag style. And just to make things really interesting,
one of the <p> tags on the page has a class style applied to it. So for that one tag, three
different styles directly format it. Which style—or styles—should the browser obey?

The answer: It depends. Based on the types of styles and the order in which they’re
created, a browser may apply one or more of them at once. Here are a few situations
in which multiple styles can apply to the same tag:

• The tag has both a tag selector and a class style applied to it. For example,
a tag style for the <h2> tag, a class style named .leadHeadline and this HTML:

<h2 class="leadHeadline">Your Future Revealed!</h2>

Both styles apply to this <h2> tag.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 101

HOW STYLES
CASCADE

 NOTE  Hold onto your hat if you’re worried about what happens when these multiple styles conflict; details
to follow.

• The same style name appears more than once in the style sheet. For example,
you might have two styles—a group selector (page 49), like .leadHeadline,
.secondaryHeadline, .newsHeadline and a class style .leadHeadline—in the
same style sheet. Both of these rules define how any element with a class of
leadHeadline looks.

• A tag has both a class and an ID style applied to it. Maybe it’s an ID named
#banner, a class named .news, and this HTML: <div id="banner" class="news">.
Properties from both the banner and news styles apply to this <div> tag.

• There’s more than one style sheet containing the same style name attached
to a page. The same-named styles can arrive in an external style sheet and
an internal style sheet. Or the same style can appear in multiple external style
sheets that are all linked to the same page.

• There are complex selectors targeting the same tag. This situation is com-
mon when you use descendant selectors (page 50). For example, say you have
a <div> tag in a page (like this: <div id="mainContent">), and inside the div
is a paragraph with a class applied to it: <p class="byline">. The following
selectors apply to this paragraph:

#mainContent p
#mainContent .byline
p.byline
.byline

If more than one style applies to a particular element, then a web browser combines
the properties of all those styles, as long as they don’t conflict. An example will make
this concept clearer. Imagine you have a paragraph that lists the name of the web
page’s author, including a link to his email address. The HTML might look like this:

<p class="byline">Written by Jean Graine
de Pomme</p>

Meanwhile, the page’s style sheet has three styles that format the link:

a { color: #6378df; }
p a { font-weight: bold; }
.byline a { text-decoration: none; }

The first style turns all <a> tags powder blue; the second style makes all <a> tags
that appear inside a <p> tag bold; and the third style removes the underline from
any links that appear inside an element with the byline class applied to it.

All three styles apply to that very popular <a> tag, but since none of the proper-
ties are the same, there are no conflicts between the rules. The situation is similar
to the inheritance example (page 98): The styles combine to make one überstyle

Css: tHe MIssInG MAnUAL102

SPECIFICITY:
WHICH STYLE

WINS
containing all three properties, so this particular link appears powder blue, bold,
and underline-free.

 NOTE  Your head will really start to ache when you realize that this particular link’s formatting can also be
affected by inherited properties. For example, it would inherit any font family that’s applied to the paragraph. A
few tools can help sort out what’s going on in the cascade. (See the box on page 104.)

Specificity: Which Style Wins
The previous example is pretty straightforward. But what if the three link styles
above each had a different font specified for the font-family property? Which of
the three fonts would a web browser pay attention to?

As you know if you’ve been reading carefully so far, the cascade provides a set of
rules that helps a web browser sort out any property conflicts; namely, properties
from the most specific style win. But as with the styles listed above, sometimes it’s
not clear which style is most specific. Thankfully, CSS provides a formula for deter-
mining a style’s specificity that’s based on a value assigned to the style’s selector—a
tag selector, class selector, ID selector, and so on. Here’s how the system works:

• A tag selector is worth 1 point.

• A class selector is worth 10 points.

• An ID selector is worth 100 points.

• An inline style (page 28) is worth 1,000 points.

 NOTE  The math involved in calculating specificity is actually a bit more complicated than described here.
But this formula works in all but the weirdest cases. To read how web browsers actually calculate specificity, visit
www.w3.org/TR/css3-selectors/#specificity.

The bigger the number, the greater the specificity. So say you create the following
three styles:

• A tag style for the tag (specificity = 1)

• A class style named .highlight (specificity = 10)

• An ID style named #logo (specificity = 100)

Then, say your web page has this HTML: <img id="logo" class="highlight"
src="logo.gif" />. If you define the same property—such as the border property—in
all three styles, then the value from the ID style (#logo) always wins out.

 NOTE  A pseudo-element (like ::first-line for example) is treated like a tag selector and is worth 1
point. A pseudo-class (:link, for example) is treated like a class and is worth 10 points. (See page 55 for the
deal on these pseudo-things.)

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 103

SPECIFICITY:
WHICH STYLE

WINS
Since descendant selectors are composed of several selectors—#content p, or h2
strong, for example—the math gets a bit more complicated. The specificity of a
descendant selector is the total value of all of the selectors listed (see Figure 5-3).

FiGURE 5-3
When more than one style applies to
a tag, a web browser must determine
which style should “win out” in
case style properties conflict. In CSS,
a style’s importance is known as
specificity and is determined by the
type of selectors used when creating
the style. Each type of selector has a
different value, and when multiple
selector types appear in one style—
for example, the descendant selector
#banner p—the values of all the
selectors used are added up.

 NOTE  Inherited properties don’t have any specificity. So even if a tag inherits properties from a style with
a large specificity—like #banner—those properties will always be overridden by a style that directly applies to
the tag.

The Tiebreaker: Last Style Wins
It’s possible for two styles with conflicting properties to have the same specificity.
(“Oh brother, when will it end?” Soon, comrade, soon. The tutorial is coming up.) A
specificity tie can occur when you have the same selector defined in two locations.
You may have a <p> tag selector defined in an internal style sheet and an external
style sheet. Or two different styles may simply have equal specificity values. In case
of a tie, the style appearing last in the style sheet wins.

Here’s a tricky example using the following HTML:

<p class="byline">Written by <a class="email" href="mailto:jean@cosmofarmer.
com">Jean Graine de Pomme</p>

In the style sheet for the page containing the above paragraph and link, you have
two styles:

p .email { color: blue; }
.byline a { color: red; }

Both styles have a specificity of 11 (10 for a class name and 1 for a tag selector) and
both apply to the <a> tag. The two styles are tied. Which color does the browser
use to color the link in the above paragraph? Answer: Red, since it’s the second (and
last) style in the sheet.

Css: tHe MIssInG MAnUAL104

SPECIFICITY:
WHICH STYLE

WINS

FREQUENTLY ASKED QUESTION

Get a Little Help
My head hurts from all of this. Isn’t there some tool I can use to
help me figure out how the cascade is affecting my web page?

Trying to figure out all the ins and outs of inherited properties
and conflicting styles confuses many folks. Furthermore, doing
the math to figure out a style’s specificity isn’t your average
web designer’s idea of fun, especially when there are large
style sheets with lots of descendant selectors.

All current web browsers have built-in help in the form of an
inspector. The fastest way to inspect an element on a page
and all the CSS that affects it is to right-click (Control-click on a
Mac) the element (the headline, link, paragraph, or image), and
choose Inspect Element from the contextual menu. A panel will
open (usually beneath the web page) showing the page’s HTML,
with your selected element’s HTML highlighted. (To get this to
work in Safari, you first need to turn on the Show Developer
Menu option in the Preferences window→Advanced.)

On the right side of the panel, you’ll see the styles applied
to the element. There’s usually a “computed” style—the sum
total of all the CSS properties applied to the element through
inheritance and the cascade, or the element’s “Frankenstyle.”
Below that you’ll find the style rules that apply to the element,
listed in order of most specific (at the top) to least specific (at
the bottom).

In the listing of styles, you’ll probably see some properties
crossed out—this indicates that the property either doesn’t
apply to the element, or that it ’s been overridden by a
more specific style. For a couple of short tutorials on using
Chrome’s Developer’s Tools for analyzing CSS, visit https://
developer.chrome.com/devtools/docs/elements-styles and
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/
faster-htmlcss-workflow-with-chrome-developer-tools/.

Now suppose the two styles swap position: the style sheet now looks like this:

.byline a { color: red; }
p .email { color: blue; }

In this case, the link would be blue. Since p .email appears after .byline a in the
style sheet, its properties win out.

What happens if you’ve got conflicting rules in an external and an internal style
sheet? In that case, the placement of your style sheets (within your HTML file) be-
comes very important. If you first add an internal style sheet by using the <style>
tag (page 25) and then attach an external style sheet farther down in the HTML by
using the <link> tag (page 26), then the style from the external style sheet wins.
(In effect, it’s the same principle at work that you just finished reading about: The
style appearing last wins.) The bottom line: Be consistent in how you place external
style sheets. It’s best to list any external style sheets first, and only use an internal
style sheet when you absolutely need one or more styles to apply to a single page.

https://developer.chrome.com/devtools/docs/elements-styles
https://developer.chrome.com/devtools/docs/elements-styles
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/
http://webdesign.tutsplus.com/tutorials/workflow-tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 105

CONTROLLING
THE CASCADE

TROUBLESHOOTING MOMENT

Overruling Specificity
CSS provides a way of overruling specificity entirely. You can
use this trick when you absolutely, positively want to make
sure that a particular property can’t be overridden by a more
specific style. Simply insert !important after any property
to shield it from specificity-based overrides.

For example, consider the two following styles:

.nav a { color: red; }
a { color: teal !important; }

Normally, a link inside an element with the class of nav would
be colored red since the .nav a style is more specific than
the a tag style.

However, including !important after a property value
means that property always wins. So in the above example,
all links on the page—including those inside an element with
the nav class—are teal.

Note that !important works on an individual property, not
an entire style, so you need to add !important to the end of
each property you wish to make invincible. Finally, when two
styles both have !important applied to the same property,
the more specific style’s !important rule wins.

Be careful using !important. Because it’s so powerful, if you
use it too often, your styles won’t follow the normal rules of the
cascade, leading to an “escalation” of the !important arms
race. In other words, to overcome the power of !important
in one style, you might add another !important in another
style; then to overcome the second !important property,
you might need to add !important to the same property
in yet another style. So use !important infrequently, and
before you do, try to figure out whether there’s another way
to overcome the conflict: Renaming or reordering styles in a
style sheet might be all you need to do.

Controlling the Cascade
As you can see, the more CSS styles you create, the greater the potential for format-
ting snafus. For example, you may create a class style specifying a particular font
and font size, but when you apply the style to a paragraph, nothing happens! This
kind of problem is usually related to the cascade. Even though you may think that
directly applying a class to a tag should apply the class’s formatting properties, it
may not if there’s a style with greater specificity.

You have a couple of options for dealing with this kind of problem. First, you can use
!important (as described in the box above) to make sure a property always applies.
The !important approach is a bit heavy-handed, though, since it’s hard to predict
that you’ll never, ever, want to overrule an !important property someday. Read on
for two other cascade-tweaking solutions.

Changing the Specificity
The top picture in Figure 5-4 is an example of a specific tag style losing out in the
cascade game. Fortunately, most of the time, you can easily change the specificity of
one of the conflicting styles and save !important for real emergencies. In Figure 5-4
(top), two styles format the first paragraph. The class style—.intro—isn’t as specific
as the #sidebar p style, so .intro’s properties don’t get applied to the paragraph. To
increase the specificity of the class, add the ID name to the style: #sidebar .intro.

Css: tHe MIssInG MAnUAL106

CONTROLLING
THE CASCADE

FiGURE 5-4
Even though a class is ap-
plied to a specific tag—like
the first paragraph in the top
image—its properties may
not always have an effect.
In this case, the paragraph
is inside a <div> tag with
an ID of #sidebar, so the
descendant selector #side-
bar p is more specific
than the .intro class. The
solution: Make the .intro
class more specific by adding
the ID before it—#sidebar
p.intro—as in the bottom
example.

However, simply tacking on additional selectors to make a style’s properties “win”
can lead to what’s been called specificity wars, where you end up with style sheets
containing very long and convoluted style names like: #home #main #story h1. In
fact, as you’ll read on page 108, you should try to avoid these types of styles and
aim to keep your selectors as short as possible.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 107

CONTROLLING
THE CASCADE

 NOTE  If you’re into math, the #sidebar p style has a specificity of 101 (100 for the ID, and 1 for the tag
selector), while the .intro style has a specificity of 10 (10 points for a class selector). Since 101 is greater than
10, #sidebar p takes precedence. Changing .intro to #sidebar .intro changes its specificity to 110.

Selective Overriding
You can also fine-tune your design by selectively overriding styles on certain pages.
Say you’ve created an external style sheet named styles.css that you’ve attached to
each page in your site. This file contains the general look and feel for your site—the
font and color of <h1> tags, how form elements should look, and so on. But maybe
on your home page, you want the <h1> tag to look slightly different than the rest of
the site—bolder and bigger, perhaps. Or the paragraph text should be smaller on the
home page, so you can wedge in more information. In other words, you still want
to use most of the styles from the styles.css file, but you simply want to override a
few properties for some of the tags (<h1>, <p>, and so on).

One approach is to simply create an internal style sheet listing the styles that you
want to override. Maybe the styles.css file has the following rule:

h1 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 24px;
 color: #000;
}

You want the <h1> tag on the home page to be bigger and red. So just add the fol-
lowing style in an internal style sheet on the home page:

h1 {
 font-size: 36px;
 color: red;
}

In this case, the <h1> tag on the home page would use the font Arial (from the
external style sheet) but would be red and 36 pixels tall (from the internal style).

 TIP  Make sure you attach the external style sheet before the internal style sheet in the <head> section of
the HTML. This ensures that the styles from the internal style sheet win out in cases where the specificity of two
styles are the same, as explained on page 103.

Another approach would be to create one more external style sheet—home.css for
example—that you attach to the home page in addition to the styles.css style sheet.
The home.css file would contain the style names and properties that you want to
overrule from the styles.css file. For this to work, you need to make sure the home.
css file appears after the styles.css file in the HTML, like so:

<link rel="stylesheet" href="css/styles.css"/>
<link rel="stylesheet" href="css/home.css"/>

Css: tHe MIssInG MAnUAL108

CONTROLLING
THE CASCADE

 TIP  Another way to fine-tune designs on a page-by-page basis is to use different class names for the <body>
tag of different types of pages—for example .review, .story, .home—and then create descendant selectors
to change the way tags on these types of pages look. This technique is discussed on page 582.

Avoiding Specificity Wars
Many web designers these days avoid ID selectors in favor of classes. One reason:
ID selectors are very powerful, and therefore require more power to override. This
often leads to specificity wars in which style sheets get loaded with unnecessarily
long-winded and complicated selectors. This problem is best explained by example.
Say, for instance, your page has this snippet of HTML:

<div class="article">
<p>A paragraph</p>
<p>Another paragraph</p>
<p class="special">A special paragraph</p>
</div>

You decide that you want to color the paragraphs inside the article div red, so
you create a descendant selector like this:

#article p { color: red; }

But you want that one paragraph with the class of special to be blue. If you simply
create a class selector, you won’t get what you want.

.special { color: blue; }

As you read on page 102, when determining which properties to apply to a tag, a web
browser uses a simple mathematical formula to deal with style conflicts: Browsers
give an ID selector a value of 100, a class selector a value of 10, and a tag selector a
value of 1. Because the selector #article p is composed of one ID and one element
(a total of 101 specificity points), it overrides the simple class style—forcing you to
change the selector:

#article .special {color: blue; }

Unfortunately, this change causes two more problems. First, it makes the selector
longer, and second, now that blue color is applied only when the special class ap-
pears inside something with an ID of article. For example, if you copy the HTML <p
class="special">A special paragraph</p> and paste it elsewhere in the page, it
will no longer be blue. In other words, the use of the ID makes your selectors both
longer and less useful.

Now look what happens if you simply replace all IDs with classes. The previous
HTML would change to:

<div class="article">
<p>A paragraph</p>
<p>Another paragraph</p>
<p class="special">A special paragraph</p>
</div>

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 109

CONTROLLING
THE CASCADE

And you could change the CSS to this:

.article p { color: red; }
p.special { color: blue; }

The first style—.article p—is a descendant selector worth 11 points. The second
style—p.special—is also worth 11 points (one tag and one class), and means “apply
the following properties to any paragraph with the special class.” Now if you cut that
HTML and paste it anywhere else on the page, you’d get the blue styling you’re after.

This is just one example, but it’s not hard to find style sheets with ridiculously long
selectors like #home #article #sidebar #legal p and #home #article #sidebar
#legal p.special.

IDs can be useful. For example, many CMSes (Content Management Systems) use
IDs to identify unique page elements, so using ID selectors makes sense. And the
more powerful specificity they offer can make overriding other styles easier. But be
careful using too many ID selectors. In most cases they don’t provide anything that
you can’t accomplish with a simple class selector or tag selector, and their powerful
specificity can lead you to unnecessarily complex style sheets.

 NOTE  For a detailed discussion of why you should avoid ID selectors all together, visit http://csswizardry.
com/2011/09/when-using-ids-can-be-a-pain-in-the-class.

Starting with a Clean Slate
Browsers apply their own styles to tags: For example, <h1> tags are bigger than
<h2> tags, and both are bold, while paragraph text is smaller and isn’t bold; links are
blue and underlined; and bulleted lists are indented. There’s nothing in the HTML
standard that defines any of this formatting: Web browsers just add this formatting
to make basic HTML more readable. However, even though browsers treat all tags
roughly the same, they don’t treat them identically.

For example, Chrome and Firefox use the padding property to indent bulleted lists,
but Internet Explorer uses the margin property. Likewise, you’ll find subtle differences
in the size of tags across browsers, and an altogether confusing use of margins among
the most common web browsers. Because of these inconsistencies, you can run into
problems where, for instance, Firefox adds a top margin, while Internet Explorer
doesn’t. These types of problems aren’t your fault—they stem from differences in
the built-in browser styles.

To avoid cross-browser inconsistencies, it’s a good idea to start a style sheet with
a clean slate. In other words, erase the built-in browser formatting and supply your
own. The concept of erasing browser styling is called CSS reset. This section gives
you a working introduction.

In particular, there’s a core set of styles you should include at the top of your style
sheets. These styles set a baseline for properties that commonly are treated differ-
ently across browsers.

http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class
http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class

Css: tHe MIssInG MAnUAL110

CONTROLLING
THE CASCADE

Here’s a bare-bones CSS reset:

html, body, div, span, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote,
pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd,
q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt,
dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot,
thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption,
footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark,

audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 vertical-align: baseline;
}

article, aside, details, figcaption, figure, footer, header, hgroup, menu,
nav, section {
 display: block;
}
body {
 line-height: 1.2;
}
ol {
 padding-left: 1.4em;
 list-style: decimal;
}
ul {
 padding-left: 1.4em
 list-style: square;
}
table {
 border-collapse: collapse;
 border-spacing: 0;
}

 NOTE  The above CSS reset is adapted from Eric Meyer’s well-known and influential CSS reset, which you
can find at http://meyerweb.com/eric/tools/css/reset.

The first style is a very long group selector (page 49) that takes the most common
tags and zeros them out—removing all the padding and margins, setting their base
text size to 100%, and removing bold text formatting. This step makes your tags
look pretty much identical (see Figure 5-5), but that’s the point—you want to start
at zero and then add your own formatting so that all browsers apply a consistent
look to your HTML.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 111

TUTORIAL: THE
CASCADE IN

ACTION
The second selector (article, aside, detail, and so on) is another group selector
that helps older browsers correctly display the new HTML5 tags. The third selector
(body) style sets a consistent line-height (space between lines in a paragraph).
You’ll learn about the line-height property in the next chapter.

 NOTE  You don’t have to type all this code yourself. You’ll find a file named reset.css in the 05 tutorial folder
that contains a basic CSS reset file. Just copy the styles from this file and paste them into your own style sheets.
Another approach to resets is normalize.css, a free, open-source style sheet that makes different browsers display
the same tags in a consistent manner. It’s widely used by web designers. You can find it at: http://necolas.github.
io/normalize.css/.

The fourth and fifth styles (the ol and ul tag styles) set a consistent left margin and
style (page 168 introduces list styling), and the last style makes adding borders to
table cells easier (you’ll learn why this style is useful on page 363).

Tutorial: The Cascade in Action
In this tutorial, you’ll see how styles interact and how they can sometimes conflict
to create unexpected results. First, you’ll look at a basic page that has the CSS reset
styles mentioned above plus a couple of other styles that provide some simple layout.
Then you’ll create two styles and see how some properties are inherited and how
others are overruled by the cascade. Then you’ll see how inheritance affects tags
on a page, and how a browser resolves any CSS conflicts. Finally, you’ll learn how
to troubleshoot problems created by the cascade.

To get started, you need to download the tutorial files located at https://github.
com/sawmac/css_mm_4e. Click the tutorial link and download the files. All of the
files are enclosed in a zip archive, so you’ll need to unzip them first. The files for this
tutorial are contained inside the folder named 05.

Resetting CSS and Styling from Scratch
First, take a look at the page you’ll be working on.

1. In a web browser, open the file 05→cascade.html (Figure 5-5).

The page doesn’t look like much—two columns, one with a blue background
and a lot of same-looking text. There are a few styles already applied to this
file, so open the CSS up in a text editor and have a look.

2. Using your favorite text or web page editor, open the file 05→styles.css.

This file is the external style sheet that the cascade.html file uses. It has several
styles already in it—the first group is the CSS reset styles discussed on the
previous page. They eliminate the basic browser styles, which is why all of the
text currently looks the same. (You’ll create your own styles to make this page
look great soon.)

https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL112

TUTORIAL: THE
CASCADE IN

ACTION
The last two styles—the class styles .main and .sidebar—create the two columns
you see in Figure 5-5. The HTML is divided into two <div> tags, each with its
own class. The class styles here essentially position the two divs so they appear
side by side as columns (you’ll learn how to control page layout and create
columns in Part Three).

You’ll first add a couple of styles to improve the page’s basic appearance and
its top headline.

FiGURE 5-5
The basic “CSS
reset” styles on this page
eliminate the subtle dif-
ferences in how different
browsers display basic
HTML tags. They also
eliminate any difference
between how the tags
look. Your job is to take
this empty canvas and
style the tags so they
look the way you want
them to.

3. In the styles.css file, add these two styles at the bottom of the style sheet
following the last } of the .sidebar style:

body {
 color: #B1967C;
 font-family: "Palatino Linotype", Baskerville, serif;
 padding-top: 115px;
 background: #CDE6FF url(images/bg_body.png) repeat-x;
 max-width: 800px;
 margin: 0 auto;
}
h1 {
 font-size: 3em;
 font-family: "Arial Black", Arial, sans-serif;
 margin-bottom: 15px;
}

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 113

TUTORIAL: THE
CASCADE IN

ACTION
The first style adds a background image and color to the page, and also sets a
maximum width for the page. If you save this file and preview the cascade.html file
in a web browser (see Figure 5-6), you’ll notice that these attributes aren’t inherited
by the other tags—the same image, for example, isn’t repeated behind the heading
or paragraph tags.

FiGURE 5-6
Inheritance and the cas-
cade in action: the <h1>
tag at the top of this page
inherits its font color from
the <body> tag style,
but gets its size and font
family from the specific
<h1> tag style.

The font-family and color properties, on the other hand, are inherited, so other
tags on the page now use that font and have a brownish color. However, you’ll see
that although the top headline is the same color as the other text on the page, it uses
a different font—here’s the cascade in action. The h1 tag style doesn’t have a color
assigned to it, so that the heading inherits the brown color applied to the <body>
tag. But since the h1 tag style specifies a font family, it overrides the inherited font
from the <body> tag style.

Creating a Hybrid Style
In this example, you’ll create two styles. One style formats all the second-level
headlines of the page; another, more specific style reformats just those headings in
the larger, main column of the page.

1. In the styles.css file, add the following style to the end of the style sheet:

h2 {
 font-size: 2.2em;
 color: #AFC3D6;
 margin-bottom: 5px;
}

Css: tHe MIssInG MAnUAL114

TUTORIAL: THE
CASCADE IN

ACTION
This style simply changes the text color and increases the size of the <h2> tag
and adds a little bit of space below it. If you view the file in a web browser,
you’ll see that the <h2> tags in the main column and the one <h2> tag in the
right sidebar now look alike.

Next, you’ll create a style to format just the second-level headlines in the main
column.

2. Return to your web page editor and the styles.css file. Click directly after
the end of the new <h2> tag style, and then press Enter to create an empty
line. Add the following style:

.main h2 {
 color: #E8A064;
 border-bottom: 2px white solid;
 background: url(images/bullet_flower.png) no-repeat;
 padding: 0 0 2px 80px;
}

You’ve just created a descendant selector that formats all <h2> tags that appear
inside a tag with a class of main applied to it. The two columns of text on this
page are enclosed in <div> tags with different class names applied to them.
The larger, left-hand column has the class main, so this particular style will only
apply to the <h2> tags in that div.

This style is similar to the one you created in the tutorial for Chapter 2 in Step
17 on page 36—it adds an underline and a simple flower icon to the headline.
This style also specifies an orange color for the text.

3. Save the style sheet and preview the page once again in a web browser
(Figure 5-7).

You’ll notice that all of the heading 2 tags (the two in the main column and one
in the sidebar) are the same size, but the two in the main column also have the
underline and flower icon.

Because the .main h2 style is more specific than the simple h2 style, if there
are any conflicts between the two styles—the color property, in this case—the
.main h2 properties win out. So, although the second-level headlines in the
main column get a blue text color from the h2 style, the orange color from the
more specific .main h2 style wins out.

However, since the .main h2 style doesn’t specify a font size or bottom margin,
the headlines in the main column get those properties from the h2 style.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 115

TUTORIAL: THE
CASCADE IN

ACTION

FiGURE 5-7
A tale of two styles:
Both the h2 and .main
h2 styles apply to the
second-level headlines
in the left column of
this page. However, the
.main h2 style applies
to just those headlines
inside the main (left)
column. Also, since that
style is more powerful
than the basic <h2> tag
style, it overrides any
conflicts between the
two styles, in this case,
using an orange text color
instead of the blue color
of the <h2> tag style.

Overcoming Conflicts
Because of how CSS properties sometimes conflict when several styles apply to
the same tag, you’ll sometimes find your pages don’t look exactly as you planned.

When that happens, you’ll need to do a little work to find out why, and rejigger your
CSS selectors to make sure the cascade is working to produce the results you want.

1. Return to your web page editor and the styles.css file.

You’ll now create a new style to format just the paragraphs in the main column
of the page.

2. Add the following style to the end of the style sheet:

.main p {
 color: #616161;
 font-family: "Palatino Linotype", Baskerville, serif;
 font-size: 1.1em;
 line-height: 150%;
 margin-bottom: 10px;
 margin-left: 80px;
}

Css: tHe MIssInG MAnUAL116

TUTORIAL: THE
CASCADE IN

ACTION
Preview the page in a web browser and you’ll see that this new style changes the
color, size, and font of the text, spreads the lines of text out (the line-height
property), and adjusts the bottom and left margins of the paragraphs.

Next, you’ll make the first paragraph bigger and bolder so that it makes a more
powerful message. One way to style just that one paragraph is to create a class
style and apply it to that paragraph.

3. Add one last style to the end of the style sheet:

.intro {
 color: #6A94CC;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 1.2em;
 margin-left: 0;
 margin-bottom: 15px;
}

This style changes the color, font, and size, and adjusts the margins a bit. All
you have to do is apply the class to the HTML.

4. Open the cascade.html file in your web page editor. Locate the <p> tag that
appears after <h1>CSS: The Missing Manual</h1> and directly below <div
class="main">, and then add the following class attribute:

<p class="intro">

5. Preview the page in a web browser.

And…the paragraph is completely unchanged. What gives? Following the rules
of the cascade, .intro is a basic class selector, while the .main p is a descendant
selector composed of both a class and a tag name. These add up to create a
more specific style, so its style properties overrule any conflict between it and
the .intro style.

In order to make the .intro style work, you need to give it a little juice by mak-
ing its selector more powerful.

6. Return to the styles.css file in your web page editor and change the name
of the style from .intro to p.intro.

Make sure there’s no space between the p and .intro. You’ve basically created
a tie—.main p—is one class and one tag selector, and p.intro is one tag and
one class. They both have a specificity value of 11, but because p.intro appears
after .main p in the style sheet, it wins the battle, and its properties apply to
the paragraph. (You could have created an even more specific style—.main
.intro—to overcome the conflict.)

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 117

TUTORIAL: THE
CASCADE IN

ACTION
7. Preview the page in a web browser (see Figure 5-8).

Voila! The paragraph changes to blue, with bigger text, a different font, and
no left margin. If you didn’t have a clear understanding of the cascade, you’d
be scratching your head wondering why that class style didn’t work the first
time around.

In this and the previous four chapters, you’ve covered the basics of CSS. Next, in Part
Two, it’s time to take that knowledge and apply it to real design challenges—making
web pages look great.

FiGURE 5-8
Even in a simple page
like this one, with just a
handful of styles, the look
of any one tag is often a
combination of properties
from various styles.

Applied CSS
PART

2

CHAPTER 6:

 Formatting Text

CHAPTER 7:

 Margins, Padding, and Borders

CHAPTER 8:

 Adding Graphics to Web Pages

CHAPTER 9:

 Sprucing Up Your Site’s Navigation

CHAPTER 10:

 CSS Transforms, Transitions, and Animations

CHAPTER 11:

 Formatting Tables and Forms

121

CHAPTER

6

Most websites still rely on words to get their messages across. Sure, people like
to look at photos, movie clips, and animations, but it’s the reading material
that keeps ’em coming back. People are hungry for Facebook updates, news,

gossip, how-to articles, recipes, FAQs, jokes, information lists, and even 140-character
tweets. With CSS, you can—and should—make your headlines and body text grab
a visitor’s attention as compellingly as any photo.

CSS offers a powerful array of text-formatting options, which let you assign fonts,
color, sizes, line spacing, and many other properties that can add visual impact to
headlines, bulleted lists, and regular old paragraphs of text (see Figure 6-1). This
chapter reveals all, and then finishes up with a tutorial where you can practice as-
sembling CSS text styles and put them to work on an actual web page.

Using Fonts
The first thing you can do to make text on your website look more exciting is to apply
different fonts to headlines, paragraphs, and other written elements on your pages.
To apply a font to a CSS style, you use the font-family property and specify the
font you wish to use. For example, say you want to use the Arial font for paragraphs
on a page. You can create a p tag style and use the font-family property like this:

p {
 font-family: Arial;
}

 Formatting Text

Css: tHe MIssInG MAnUAL122

USING FONTS

FiGURE 6-1
Good web typography makes sites that are easy
to read and enjoyable to look at. Using too many
fonts or too many typographic flourishes often
leads to confusing and difficult to understand
web pages (top). Using different type sizes,
subtle style choices, and only a couple font
variations makes a page easy to scan, and fun to
read (bottom).

CHAPteR 6: FORMATTING TEXT 123

USING FONTS
Originally, the font-family property only worked if your site’s visitors had the
same font installed on their computers. In other words, using the above example, if
someone visiting your site didn’t have the Arial font on their computer, the page’s
paragraphs would display with the web browser’s default font (usually some variant
of Times New Roman). Because of this, web designers were limited to a handful of
fonts that come preinstalled on most computers.

More recently, web browsers began supporting web fonts—fonts that the browser
downloads and uses while viewing your site. Web fonts use the font-family property
as well, but require an additional CSS command called the @font-face directive,
which instructs a web browser to download the specified font. Web fonts open up
many exciting design possibilities, letting you choose from a wild array of typefaces.
But, as you’ll learn on page 126, they also come with their own set of challenges.

As a web designer, you can choose to stick with the tried-and-true font method—
selecting fonts from the basic set installed on most computers—or use web fonts
for greater design choice (at the cost of more work). You’re not limited to one ap-
proach or the other, either. Many web designers mix the two—using standard fonts
in some cases (like the main body text of a page) and web fonts in other cases (to
create eye-catching headlines, for instance).

Choosing a Common Font
When you use the font-family property to specify a font, visitors to your site won’t
necessarily see the font you choose—they must either have it installed on their com-
puters already or, in the case of web fonts, temporarily download the font to view
the site. Because you can’t always know whether your preferred font is available
to a particular visitor, it’s common practice to specify not only your main font, but
also a couple of backup choices: This list of font options is called a font stack. If your
viewer’s computer has your first-choice font, then that’s what she’ll see. But when
the first font isn’t installed, the browser looks down the list until it finds a font that
is. The idea is to specify a list of similar-looking fonts that are common to a variety
of operating systems, like so:

font-family: Arial, Helvetica, sans-serif;

In this example, a web browser first looks to see if the Arial font is installed. If it is,
then that font is used; if not, the browser next looks for Helvetica, and if that isn’t
installed, then it finally settles for a generic font—sans-serif. When you list a generic
font type (like sans-serif or serif), the viewer’s browser gets to choose the actual
font. But at least you can define its basic character.

 NOTE  In your code, when you put a CSS property into action, you must, of course, include a selector and a
set of braces to create a valid CSS rule. For example:

p { font-family: Arial, Helvetica, sans-serif; }

When you see examples in this book like font-family: Arial, Helvetica, sans-serif;, remember
that’s just the property in isolation, distilled down for your book-reading benefit.

Css: tHe MIssInG MAnUAL124

USING FONTS
Also, if the font’s name is made up of more than one word, you must enclose it in
quote marks:

font-family: "Times New Roman", Times, serif;

Here are some often-used combinations of commonly installed fonts organized by
the type of font, including a generic font type at the end of each list.

SERIF FONTS
Serif fonts are best for long passages of text, as it’s widely believed that the ser-
ifs—those tiny “feet” at the end of a letter’s main strokes—gently lead the eye from
letter to letter, making text easier to read. Examples of serif fonts are Times, Times
New Roman, and Georgia.

• “Times New Roman”, Times, serif

• Georgia, “Times New Roman”, Times, serif

• Baskerville, “Palatino Linotype”, Times, serif

• “Hoefler Text”, Garamond, Times, serif

Examples of these fonts are in Figure 6-2.

FiGURE 6-2
Fonts don’t always display
the same on Mac (left)
and Windows (right). The
two systems come with
different built-in fonts.
In addition, antialiasing,
which makes onscreen
text look smoother, is
better on the Mac than
on Windows. Windows
includes a technology
called ClearType, which can
improve the look of text on
a screen. The quality of text
on Windows depends on
which ClearType settings
your Windows computer
has. You can learn more
about ClearType at www.
microsoft.com/typography/
cleartype.

 TIP  The website CSS Font Stack (www.cssfontstack.com) provides a long list of fonts that are commonly
installed on Macs and Windows computers, including detailed percentage breakdowns for each operating system.
For example, you’ll find the font Courier New on 99.73% of Windows computers and 95.68% of Macs.

http://www.microsoft.com/typography/cleartype
http://www.microsoft.com/typography/cleartype
http://www.microsoft.com/typography/cleartype
http://www.cssfontstack.com

CHAPteR 6: FORMATTING TEXT 125

USING FONTS
SANS-SERIF FONTS

Sans-serif fonts are often used for headlines, thanks to their clean and simple ap-
pearance. Examples of sans-serif fonts include Arial, Helvetica, and Verdana. The
text in this book is set in a sans-serif font.

• Arial, Helvetica, sans-serif

• Verdana, Arial, Helvetica, sans-serif

• Geneva, Arial, Helvetica, sans-serif

• Tahoma, “Lucida Grande”, Arial, sans-serif

• “Trebuchet MS”, Arial, Helvetica, sans-serif

• “Century Gothic”, “Gill Sans”, Arial, sans-serif

Examples of sans-serif fonts are shown in Figure 6-3.

FiGURE 6-3
Sans-serif fonts on Mac
(left) and Windows
(right). Some people
believe that you should
use only sans-serif fonts
on web pages because
they think the delicate
decorative strokes of serif
fonts don’t display well
on the coarse resolution
of a computer screen.
However, high-density
screens—newer screens
that pack more pixels in
per inch—don’t have that
problem. Their ultra-tiny
pixels do an excellent job
displaying small details
like serifs. In the end,
your aesthetic judgment
is your best guide. Pick
the fonts you think look
best.

MONOSPACED AND FUN FONTS
Monospaced fonts are often used to display computer code like the CSS snippets
you see throughout this book. Each letter in a monospaced font is the same width
(like the ones manual typewriters used).

Css: tHe MIssInG MAnUAL126

USING WEB
FONTS

• “Courier New”, Courier, monospace

• “Lucida Console”, Monaco, monospace

• “Copperplate Light”, “Copperplate Gothic Light”, serif

• “Marker Felt”, “Comic Sans MS”, fantasy

Examples of these font lists are pictured in Figure 6-4.

FiGURE 6-4
Monospaced fonts on
Mac (left) and Windows
(right). Courier New
is the most common
monospaced font, but
you’re far from limited to
it. Lucida Console is very
common on Windows,
and Monaco is installed
on every Mac.

ADDITIONAL FONTS TO CONSIDER
There are literally thousands of fonts, and every operating system ships with many
more fonts than are listed here. However, a few fonts are very common on both
Macs and PCs, so you might want to give these a go:

• “Arial Black”

• “Arial Narrow”

• Impact

Be careful with Arial Black and Impact: They only have a single weight and don’t
include an italic version. Accordingly, if you use these fonts, make sure to set the
font-weight and the font-style (coming up on page 156) to normal. Otherwise, if
the text is bolded or italicized, the browser will make its best (read: ugly) guess at
what the text should look like.

Using Web Fonts
The traditional way of using fonts in CSS is straightforward: Just specify the font
you want, using the font-family property. However, you’re limited to fonts your
visitors are likely to have installed on their computers. Fortunately, as mentioned
earlier, all major browsers now support web fonts. With web fonts, browsers actually
download the font from a web server and use it to display text on the web page.

CHAPteR 6: FORMATTING TEXT 127

USING WEB
FONTS

The CSS part of web fonts is pretty basic and requires just two CSS commands:

• The @font-face directive is responsible for telling a web browser both the
name of the font and where to download the font from. You’ll learn how this
CSS command works on page 131, but for now just keep in mind that this is how
you tell a browser to download the font.

• The font-family property is used with web fonts in the same manner as the
already installed fonts described on page 121. In other words, once the @font-
face directive instructs the browser to download the font, you can then assign
that font to any CSS style by using the font-family property.

In theory, web fonts aren’t all that difficult to use. However, when you dig into the
details, you’ll need to understand a few unique requirements to use them properly.

 NOTE  Google offers a really easy method of using web fonts. Page 140 goes into all the details.

Font File Types
Believe it or not, Internet Explorer has had support for web fonts since version 5
(released over 15 years ago!). Unfortunately, it required a unique and difficult method
to create font formatting. That is, you couldn’t just take a regular font from your
computer, slap it up on a web server, and be done. Instead, you needed to take a
regular font and convert it to EOT—Embedded OpenType—format. That’s still true
for versions up through IE8.

There are still other font formats used for web fonts—some of which work in some
browsers but not others. To make sure the largest number of visitors to your site
can enjoy the fonts you specify, you’ll need to provide those fonts in a variety of
formats (you’ll find the details on page 129).

Here’s a list of the different font types and which browsers they work in.

• EOT. Embedded OpenType fonts work only in Internet Explorer. You need a
special tool to convert a regular font to EOT format, but sites like FontSquirrel
(page 129) can do this for you.

• TrueType and OpenType. If you look in your computer’s Fonts folder, you’ll
probably find fonts in .ttf (TrueType) or .otf (OpenType), the most common
formats for computer fonts. You can use them for word processing and desktop
publishing as well as for web pages. This font type was once the most common
font type used for web fonts and is still supported by most browsers. However,
it’s been passed by a leaner font format—WOFF.

• WOFF. Web Open Font Format was designed specifically for the Web. WOFF
fonts are basically compressed versions of TrueType or OpenType fonts, which
means they’re generally smaller in file size and download more quickly than
other fonts. WOFF format has wide browser support as well, including IE9 and
later, Firefox, Chrome, Safari, Opera, BlackBerry Browser, iOS Safari version 5
and later, and Android Browser 4.4 and later.

Css: tHe MIssInG MAnUAL128

USING WEB
FONTS

 NOTE  WOFF2 is a newer version of WOFF with up to 30 percent better compression, for even smaller, faster-
loading fonts. However, at the time of this writing, it’s not supported by Internet Explorer, Firefox, or Safari: http://
caniuse.com/#search=woff2.

• SVG. Scalable Vector Graphic format isn’t a font format, per se. It’s actually a
way to create vector graphics—graphics that can scale without losing quality.
Support for SVG fonts is very limited: Internet Explorer, Chrome, Opera, and
Firefox don’t support SVG fonts. Another problem with SVG is that it produces
files that are often twice the size of TrueType and three times the size of WOFF
fonts. The only real benefit of SVG is that it’s the only font format understood
by older versions of iOS running Safari version 4.1 or earlier, as well as Android
Browser 4.3 and 4.1. If you’re not targeting those older mobile devices, then
you can skip SVG fonts.

You don’t have to select just one font type and ignore all other browsers. As you’ll
read on the next page, you can (and usually will) specify multiple formats and let
the browser download the one that works for it. In addition, you can download a
font that’s already been converted to formats, or even convert a regular TrueType
font into these multiple formats.

 NOTE  A single font file contains just one weight and style for that font. In other words, if you want text
to be bold, italic, or bold and italic, you must download separate font files for each variation of the font. Some
fonts, especially fun display fonts, only include one variant and are best used for headlines or text where you
won’t need italic or bold versions. See page 156 for more information on different font weights and styles.

Legal Issues with Web Fonts
The second hurdle to using web fonts is a legal issue. Individuals and companies
create and sell fonts, like other software, to make their livelihood. When you upload
a TrueType font to your web server for visitors to use while viewing your site, anyone
can simply download the font and start using it on her own website or in her com-
puter’s word processing or page layout program. Most font companies don’t like the
idea of people pirating their creations, so many fonts have licenses that specifically
prohibit their use on the Web.

In other words, even if you buy a font from Adobe, you can’t simply start using it on
your website. Many font companies are now offering different kinds of licenses (at
different prices) to allow for use on the Web. This even applies to fonts that come
supplied with your computer. You’re allowed to use them with the programs you
install on your computer, but you may not be allowed to place those same font files
on your web server to use as a web font. If you don’t know whether a font allows Web
use, you’re better off not using it and finding a font that can be used on the Web.

 NOTE  To sidestep any legal issues, you can use a font service like Google Fonts (page 140) or TypeKit, a
commercial web font service from Adobe (see the box on page 148).

http://caniuse.com/#search=woff2
http://caniuse.com/#search=woff2

CHAPteR 6: FORMATTING TEXT 129

USING WEB
FONTS

Finding Web Fonts
When looking for web fonts, you’re confronted with two issues: finding fonts that
are legal to use on the Web and finding fonts in the font formats your visitor’s web
browsers need (EOT, WOFF, TrueType, and SVG). While some font companies have
begun to offer web licenses for fonts you purchase, there is a wide assortment of free
fonts available for web use. Here are a few of the many sources for free web fonts:

• The League of Moveable Type (www.theleagueofmoveabletype.com). Com-
posed of a group of designers, this site was one of the first to offer free, hand-
crafted fonts for web use. Their font, League Gothic, is widely used on the Web.

• Exljbris font foundry (www.exljbris.com). Provides classic, free fonts: Museo,
Museo Sans, and Museo Slab.

• The Open Font Library (http://openfontlibrary.org). Over 400 free fonts (at the
time of this writing) are available and all of them can be used on your websites
(just don’t use all 400 at once).

• Font Squirrel (www.fontsquirrel.com). A landmark site in the web font world
offering more than a thousand fonts. In addition, Font Squirrel offers an online
tool for converting a TrueType or OpenType font to other font formats includ-
ing EOT, SVG, WOFF, and even WOFF2. You’ll learn how to use this tool in the
next section.

• Google Fonts (www.google.com/fonts). Google provides a simple and free
way to include web fonts on your sites. You’ll learn how to use this service on
page 140.

Generating Multiple Font Formats
Most of the sites offering free fonts provide the font in a single format (usually
TrueType (.ttf) or OpenType (.otf). While many browsers support TrueType and
OpenType, not all do. In addition, the WOFF format is supported by all modern
browsers and has the advantage of being smaller in file size than TrueType. The
newer WOFF2 font is supported by a few browsers now, and will be adopted by all
browsers at some point.

There are several approaches you can take when using web fonts on your own
sites. First, you can be conservative and use fonts that work for old browsers and
older mobile devices. This means including an EOT font (for IE8), TrueType fonts
for older desktop browsers, WOFF fonts for current browsers, and SVG fonts for
older phones and tablets.

Alternatively, since the WOFF file format is well supported by all modern browsers,
you could simply use just WOFF fonts. Older browsers viewing the page will just
skip the WOFF font, and choose the next font in the font stack (page 123).

And, finally, you can use just EOT and WOFF files. The EOT file will be for Internet
Explorer 8, which is still in use (see the box on page 13). The WOFF file will be for
all others current browsers (including IE9 and later.)

http://www.theleagueofmoveabletype.com
http://www.exljbris.com
http://openfontlibrary.org
http://www.fontsquirrel.com
http://www.google.com/fonts

Css: tHe MIssInG MAnUAL130

USING WEB
FONTS

However you proceed, you’ll need to create the font files. Fortunately, Font Squir-
rel provides a very useful online tool to help generate the required font formats.
The Webfont Generator (located at http://www.fontsquirrel.com/tools/webfont-
generator) provides a simple method for creating not only the proper fonts, but
also a sample HTML file and a basic CSS style sheet.

To use Font Squirrel’s Webfont Generator:

1. Locate a TrueType (.ttf) or OpenType (.otf) font.

Use one of the sites listed in the previous section, or find a font from another
site. Just make sure that the font is licensed for use as a web font. If it’s not, or
you’re not sure, then skip it and find another font.

2. Go to the Web font Generator at www.fontsquirrel.com/tools/webfont-
generator.

It’s a simple page with just a few options (see Figure 6-5).

3. Click the Upload Fonts button (#1 in Figure 6-5).

Your browser opens a “Select files” dialog box.

4. Select one or more fonts from your computer, and then click the Open button.

Your browser uploads the file or files to the Font Squirrel server.

5. Select a conversion option (#2 in Figure 6-5).

• Basic simply converts the font to EOT, WOFF, and SVG formats.

• Optimal is a better choice, since it not only converts the font but also makes
other enhancements to improve the performance and speed of the fonts.

• Expert lets you tweak every last setting for the conversion. For example, it
lets you create a subset of the font—that is, just a handpicked set of charac-
ters. In other words, you could exclude from the font file certain characters
you’re not using, like the semicolon, exclamation mark, or letters that use
diacritical marks such as ü, é, or õ. In addition, you can use Expert to get
just certain formats, like WOFF or WOFF2.

6. Turn on the “Yes, the fonts I’m uploading are legally eligible for web em-
bedding” checkbox (#3 in Figure 6-5).

As mentioned on page 128, fonts are intellectual property, and just slapping
one up on a web server promotes software piracy. Make sure your fonts can be
used on the Web; most of the ones listed in this section can.

7. Click the Download Your Kit button (#4 in Figure 6-5).

Depending on the number of fonts you’re converting and their complexity, the
download process may take a while. The Font Squirrel server needs to take the
font and perform its magic to generate each font format. When it’s done, you’ll
download a folder containing the various font format files, a demo file, a CSS

http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator

CHAPteR 6: FORMATTING TEXT 131

USING WEB
FONTS

file, and a few other miscellaneous files. The most important are the font files
you want to use (for example, .eot, .ttf, .woff, or .svg files).

Now that you’ve got the fonts you wish to use, it’s time to learn how to use them
with CSS’s @font-face directive.

FiGURE 6-5
Unless you know what
you’re doing, stick with
Font Squirrel’s Optimal
conversion setting. It
generates all the font
formats you’ll need
and makes a few other
adjustments to make the
fonts load faster and look
better onscreen. But for
ultimate control, choose
the Expert option, and
you’ll see a list of nearly
a dozen settings you can
use to alter how the fonts
are generated.

Using the @font-face Directive
Once you’ve downloaded the proper font files, it’s time to use them. First, copy the
files to the location on your computer where you keep the files for your website.
Many web designers create a dedicated folder at the site root folder named fonts,
_fonts, or web fonts. Alternatively, if you have a folder for your CSS files, you can
place the font files there. It doesn’t really matter where you put these files on your
site, but it helps to be organized.

The secret to web fonts is a CSS command called the @font-face directive. This
command at its most basic names the font and tells the browser where to find the
font file for download. You place the @font-face directive in your style sheet, just
like a regular style. For example, say you’re using the League Gothic font. You have
a TrueType file named League_Gothic-web font.ttf inside a fonts folder on your site.
You’d instruct a browser to download this font by adding the @font-face directive
to your style sheet, like this:

@font-face {
 font-family: "League Gothic";
 src: url('fonts/League_Gothic-web font.woff');
}

Css: tHe MIssInG MAnUAL132

USING WEB
FONTS

The first property, font-family, you’ve seen before, but here it has a different pur-
pose. When used inside an @font-face directive, font-family assigns a name to
the font. You then use that font name when you want to apply that font to a style.
For example, say you want to use the League Gothic font for all paragraphs on a
page. You could use this style:

p {
 font-family: "League Gothic";

}

 NOTE  You use one @font-face directive for each font you wish to use. If you have three fonts—for
example, regular, italic, and bold versions of a font—you need three @font-face directives. It’s a good idea to
keep them grouped together and place them at the top of your style sheet, so the browser can begin downloading
them immediately.

The second attribute—the src property—tells the browser where to look for the
font file on the server. You place the path from the style sheet to the font file on the
system inside quote marks and inside url(). The path works just like other HTML
file paths, like paths to images, links, and JavaScript files. For example, say you had
a style sheet inside a folder named _styles, and a font file named my_font.woff
inside a folder named _fonts. Both folders are in the root of your site. So the path
from the style sheet to the font file is ../_fonts/my_font.woff. You’d write an @
font-face directive for that font like this:

@font-face {
 font-family: "My Font";
 src: url('../_fonts/my_font.woff');
}

You’ve probably noticed that in the examples above, there’s only a single font file—
a WOFF font. That makes it easy to see how @font-face works in general, before
jumping into more detail. As discussed earlier, @font-face lets you specify multiple
files with different font types.

Unfortunately, if you want to support older browsers, phones, and tablets, the
syntax that is a bit complicated. For example, say you want to use all the different
font formats for League Gothic on your site. Here’s how to rewrite the above code:

@font-face {
 font-family: 'League Gothic';
 src: url('fonts/League_Gothic-webfont.eot');
 src: url('fonts/League_Gothic-webfont.eot?#iefix') format('embedded-
opentype'),
 url('fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('fonts/League_Gothic-webfont.woff') format('woff'),
 url('fonts/League_Gothic-webfont.ttf') format('truetype'),
 url('fonts/League_Gothic-webfont.svg') format('svg');
}

CHAPteR 6: FORMATTING TEXT 133

USING WEB
FONTS

This all looks messy, and unfortunately, due to a bug in IE, it’s unnecessarily com-
plicated. Here’s how it breaks down:

• Line 2 is the same as before. The font-family property supplies the name of
the font—the same name you’ll use when applying the font to your CSS styles.

• Line 3 is for Internet Explorer 9, but only when it’s in Compatibility mode—a
mode where IE9 acts like it’s IE8. This weird feature was added to IE9 so that
websites designed to correctly accommodate the bugs in IE 8 and earlier would
look okay in IE9. A user has to purposely switch to compatibility mode in IE9,
so you’re probably safe leaving this out.

• Line 4 begins a second src property, which according to the rules of the @font-
face directive, can have multiple font types specified. The first font is the .eot
font again, but this time you’ll see that at the end of the .eot file, you need to
add ?#iefix. This is to accommodate yet more IE bugs—this time for IE6–8. If
you don’t add that little bit to the URL following the .eot, then the font may not
display in IE8 or earlier correctly.

You’ll also notice that after the URL there’s some new code:

format('embedded-opentype')

This indicates the font format, and you add this after each URL for a different
font format.

• Lines 5–8 simply identify additional font formats. This is actually just one
property—the src property—split over several lines for greater readability. For
each font type you specify for the src property, you add a URL, a format, and
a comma (for all but the last font):

url('fonts/League_Gothic-web font.woff') format('woff'),

 NOTE  At the end of the list of files for the src property, you add a semicolon to note that you’ve reached
the end of the src property (line 7 above). Don’t forget this final semicolon, or the @font-face directive
won’t work.

Even though a browser may understand different types of fonts (for example,
Chrome can use WOFF2, WOFF, TrueType, and SVG fonts), it won’t download
all the font files. Instead, as it reads through the list of font types, the browser
downloads only the first one it understands. In other words, if Chrome encoun-
tered the above code, it would skip the .eot file since it doesn’t understand that
font format, but it would download the .woff2 file. It would then skip the Tru-
eType and SVG files entirely. That means the order in which you list the fonts is
important. WOFF is generally preferred, since it’s a smaller file that downloads
more quickly. WOFF2 is an optimized version of WOFF, and thus has the small-
est file size—but it’s only supported in a few browsers. SVG is generally a much
larger file. So you want to make sure that you list the fonts in a specific order to
make sure browsers download the smallest font file that works for them: .eot,
.woff2, .woff, .ttf, and .svg.

Css: tHe MIssInG MAnUAL134

USING WEB
FONTS

If you just need to support Internet Explorer 8 and more modern browsers, you can
safely use just EOT, WOFF2, and WOFF files. In fact, if you’re no longer worried about
Internet Explorer 8 (see the box on page 13), you can get away with just WOFF files!
Here are two alternative ways to specify the same @font-face directive as above:

@font-face {
 font-family: 'League Gothic';
 src: url('fonts/League_Gothic-webfont.eot?#iefix') format('embedded-

opentype'),
 url('fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('fonts/League_Gothic-webfont.woff') format('woff');
}

And, if you’re not worried about Internet Explorer 8 or earlier, you can simplify this
even more:

@font-face {
 font-family: 'League Gothic';
 src: url('fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('fonts/League_Gothic-webfont.woff') format('woff');
}

This book uses the last example, which aims to support only modern web browsers.
But if you find that a significant portion of your website visitors use Internet Explorer
8, then you might wish to use the version that includes the .eot file as well. Likewise,
if you need to support the older phones and tablets listed on page 132, you’ll need
to use the much more complex syntax shown on page 132.

 NOTE  Just because you don’t include web fonts for older browsers (like .svg, .ttf, or .eot) doesn’t mean those
older browsers won’t see the content on your site. Remember, you’ll use a font stack (page 123) when specifying
a font, so that browsers that don’t have an appropriate web font will use a fallback font—one that looks similar
to the web font. Most of the time, it’s all right if your site doesn’t look exactly the same on every browser.

Creating Styles Using Web Fonts
The hardest part of web fonts is getting the font files in the proper format and
setting up the @font-face directives. Once that’s done, you use web fonts just as
you would the preinstalled fonts discussed on page 121. In other words, when you
create a new style, you simply use the font-family property and supply the name
for the font you used in the @font-face directive. For example, in the previous code,
the @font-face directive names the new font League Gothic. This is the name you
use when applying this font to a style. To make all <h1> tags use the League Gothic
font, you could write this style:

h1 {
 font-family: 'League Gothic';
 font-weight: normal;
}

CHAPteR 6: FORMATTING TEXT 135

USING WEB
FONTS

Notice that there’s a new property—font-weight—listed here. Browsers normally
display <h1> tags as bold. Most browsers will artificially bold a web font when a
bold version is required. This results in an ugly boldface. Setting the font-weight
to normal tells the browser to just use the League Gothic font “as-is,” and avoids
trying to bold it. In the next section, you’ll learn more about how to deal with font
variants like bold and italic with web fonts.

It’s also a good idea to include a list of backup, preinstalled fonts, in case the
browser can’t load the web font. This is the same technique described on page 123.
For example:

h1 {
 font-family: 'League Gothic', Arial, sans-serif;
 font-weight: normal;
}

 TIP  You can use fonts that contain symbols and icons on a web page, too. So rather than creating a graphic
of a warning sign (for example) and placing it inside a paragraph of text, you can use the @font-face direc-
tive to load a font containing the warning sign icon and just use a simple letter (mapped to the icon in the font).
However, before using icon fonts, you may want to check out the vast number of Unicode symbols that are really
graphical icons, or use SVG (scalable vector graphics) for icons. You can learn more about those options at https://
developers.google.com/web/fundamentals/media/images/use-icons?hl=en.

Dealing with Bold and Italic Font Variants
The common fonts installed on computers include variations in style and weight, so
when you apply a tag in HTML, a web browser uses the bold version of that
font. Likewise, when you apply an tag to text, the browser uses an italicized
version of that font; and if you combine both tags, you’ll see a bold and italic ver-
sion of the font. These are actually different fonts contained in different font files.
With the original method of using fonts in web pages (described on page 121), you
never have to worry about these different fonts, since the browser uses the correct
version automatically.

However, with web fonts, you need separate font files for each font variant. So for
body text you’ll need at least a regular version of a font, a bold version, an italic
version, and a bold/italic version. Keep this in mind when finding a web font for your
site; some fonts only have a single weight and no italic version. This could be fine
for a headline, but not much use for long paragraphs of text, which most likely will
have some italic and bold text. In addition, you must create separate @font-face
directives for each font variant.

You have two choices when working with italic/bold versions of web fonts. One
method is easier to implement, but doesn’t work on Internet Explorer 8 or earlier
(or IE9 in compatibility mode); the other is more labor intensive, but works on older
versions of Internet Explorer.

Css: tHe MIssInG MAnUAL136

USING WEB
FONTS

THE EASY WAY TO ADD BOLD AND ITALIC
The easiest way to add bold and italic variants of your fonts is to add font-weight
and font-style properties to the @font-face directive. Normally, the CSS font-
weight property (page 156) tells a browser to display a font in bold, normal, or one
of several other weights, while the font-style property (page 156) tells a browser
to display a font as italic or normal. However, when used within the @font-face
directive, font-style tells a browser to apply the font when the style asks for a
particular variant of the font.

Say you have a font named PTSans. You start with the normal, non-bold, non-italic
version of the font. The various font formats begin with PTSansRegular. In your style
sheet, you’d add this @font-face directive:

 @font-face {
 font-family: 'PTSans';
 src: url('PTSansRegular.woff2') format('woff2'),
 url('PTSansRegular.woff') format('woff'),
 font-weight: normal;
 font-style: normal;

}

 NOTE  In the code above, no .eot font (required by IE8) is included, because this technique doesn’t work
with that browser. This example also ignores older versions of desktop, mobile, and tablet browsers. However, it
will work with all current browsers, including Internet Explorer 9.

Notice the following:

• You use a generic name for the font family—PTSans in line 2 above—instead of
the specific name for that font file—PTSansRegular.

• The font-weight is set to normal, since this isn’t a bold version of the font (line 8).

• The font-style is set to normal, since this isn’t an italic version of the font (line 9).

 NOTE  The code examples here assume that the font files PTSansRegular.eot, PTSansBold.eot, and so on are
in the same folder as the style sheet. If they were in different folders, you’d need to adjust the URL to accurately
point to the location of the font files in relation to the style sheet.

Now, say you had an italicized version of the font—the file name begins with PTSansItalic.
You’d then add this to your style sheet:

@font-face {
 font-family: 'PTSans';
 src: url('PTSansItalic.woff2') format('woff2'),
 url('PTSansItalic.woff') format('woff');
 font-weight: normal;
 font-style: italic;
}

CHAPteR 6: FORMATTING TEXT 137

USING WEB
FONTS

You use the same font-family name in line 2—PTSans. However, you change the
font-style to italic (line 6). This tells the browser that the font you’re specifying is
the italic version of the PTSans font. You’d add similar @font-face directives for the
bold and the bold/italic versions like this:

@font-face {
 font-family: 'PTSans';
 src: url('PTSansBold.woff2') format('woff2'),

 url('PTSansBold.woff') format('woff');
 font-weight: bold;
 font-style: normal;
}

@font-face {
 font-family: 'PTSans';
 src: url('PTSansBoldItalic.woff2') format('woff2'),
 url('PTSansBoldItalic.woff') format('woff');
 font-weight: bold;
 font-style: italic;
}

In other words, you need four @font-face directives to cover all variants of bold,
italic, and regular text. Notice that the font-family name is the same in each case;
only the src properties change (to point to the different files) and the font-weight
and font-style properties change.

The benefit of this method is that you can apply the regular font to text, apply
 and tags to your HTML, and let the browser worry about which font
file to load and use. In this example, if you want to use the PTSans font on all your
paragraphs, you’d simply add this style to your style sheet:

p {
 font-family: PTSans;
}

Then you can mark up your paragraph tags with HTML. For example, you might
have a paragraph like this:

<p>When I was younger, I could remember anything, whether it had hap-
pened or not -- Mark Twain
</p>

When the web browser reads the style sheet (with the four @font-face directives
and the p tag style), it would display most of the paragraph using the PTSans-
Regular font. However, the word “anything” contained inside the tags would
use the PTSansItalic font; the word “not” inside the tags would use the
PTSansBold font; and “Mark Twain” inside both and tags would use
the PTSansBoldItalic font.

Css: tHe MIssInG MAnUAL138

USING WEB
FONTS

These directives even work for headlines. If you created a style to format all h1 tags
with PTSans, you could create this style:

h1 {
 font-family: PTSans;
}

With this style in place, a web browser would actually use the bold version of PT-
Sans, since headlines are normally displayed in bold. (When you use this technique
involving multiple variations of a font, you should not add font-weight: normal;,
as described on page 136.)

Unfortunately, Internet Explorer 8 and earlier don’t understand this method and
will use the PTSansRegular font for all of the text. IE will create faux-italic and faux-
bold for the and tags; that is, it will slant the PTSansRegular font on
screen for italic, and make the PTSansRegular font thicker for bold. The resulting
computer-generated bold and italic usually look pretty bad.

ADDING BOLD AND ITALIC AND SUPPORTING INTERNET EXPLORER 8
If you’re still supporting Internet Explorer 8 (or earlier), the previous solution to bold
and italic won’t work. You can get font variants to work in IE8, but it requires a bit more
work. To begin with, you still create four @font-face directives, one for each variant
of the font. However, instead of giving them the same font-family name (PTSans,
for example), you give each one its unique name (PTSansRegular, PTSansItalic, and
so on). In other words, you’d rewrite the four @font-face directives like this:

@font-face { font-family: 'PTSansRegular';
 src: url('PTSansRegular.eot?#iefix') format('embedded-opentype'),
 url('PTSansRegular.woff2') format('woff2'),
 url('PTSansRegular.woff) format('woff');
}

@font-face { font-family: 'PTSansItalic';
 src: url('PTSansItalic.eot?#iefix') format('embedded-opentype'),
 url('PTSansItalic.woff2') format('woff2'),
 url('PTSansItalic.woff) format('woff');
}

@font-face { font-family: 'PTSansBold';
 src: url('PTSansBold.eot?#iefix') format('embedded-opentype'),
 url('PTSansBold.woff2') format('woff2'),
 url('PTSansBold.woff') format('woff');
}

@font-face { font-family: 'PTSansBoldItalic';
 src: url('PTSansBoldItalic.eot?#iefix') format('embedded-opentype'),
 url('PTSansBoldItalic.woff2') format('woff2'),
 url('PTSansBoldItalic.woff') format('woff');
}

CHAPteR 6: FORMATTING TEXT 139

USING WEB
FONTS

Notice that each @font-face directive has its one family name—one that matches
the font variant: PTSansRegular, PTSansItalic, PTSansBold, and PTSansBoldItalic.

In addition, notice that the font-weight and font-style properties used in the
examples on pages 136–138 are gone. You don’t need them here.

The hard part comes when it’s time to apply the font. In the example on page 137,
you merely applied the font-family to the style like this:

p {
 font-family: PTSans;
}

Now, unfortunately, you have to apply the different font names to the various tags—p
for regular, em for italic, strong for bold, and a descendant selector to handle the
case of bold and italic. So to get the different variants of the PTSans font to work,
you need to create four styles, involving many lines of code, like this:

p {
 font-family: PTSansRegular;
 font-size: 48px;
 font-style: normal;
 font-weight: normal;
}

p em {
 font-family: PTSansItalic;
 font-style: normal;
 font-weight: normal;
}

p strong {
 font-family: PTSansBold;
 font-style: normal;
 font-weight: normal;
}

p strong em, p em strong {
 font-family: PTSansBoldItalic;
 font-weight: normal;
 font-style: normal;
}

First, notice there are four styles: the p style applies the PTSansRegular font; p em is
a descendant selector that applies to an tag that’s inside a <p> tag—that style
applies the PTSansItalic font; p strong is another descendant selector, which ap-
plies the PTSansBold font to the tag when it appears inside a paragraph;
and finally, there’s a group selector composed of two descendent selectors. The first
descendant selector applies to an tag that’s inside a tag that’s inside

Css: tHe MIssInG MAnUAL140

DISCOVERING
GOOGLE WEB

FONTS
a <p> tag, whereas the second applies to a tag inside an that’s inside
a <p>. You need both because you can nest tags inside of tags and
vice versa. You could end up with HTML like this:

<p>
 Hey!
 I'm talking to
 you

</p>

The single p strong em selector won’t work for the “Hey!” above, since it’s a
tag inside an tag.

 NOTE  In HTML5, the (for bold) and <i> (for italic) tags are back. You should use them merely for
presentational purposes—when you want text to be italic, but not add any real emphasis to the meaning of the
text. For example, the titles of books are often italicized, so using the <i> tag is recommended:

<i>CSS: The Missing Manual</i>

Using would emphasize the text and cause screen readers to read the text aloud in a different way than
other text. At any rate, if you intended to use and <i>, make sure you create styles that use the italic and
bold variants of the font (again, you only need worry about that if you’re using the IE8–safe way of specifying
italics, not if you’re using the method discussed on page 138).

Another thing to notice is that you have to set the font-weight and font-style to
normal for all these styles. If you don’t, many browsers (not just Internet Explorer) will
try to bold the already bolded font, and italicize the already italic version of the font.

This second technique for supporting bold and italic variants is obviously a lot of
work. It becomes even more work if you use more than one font with bold and italic
versions on the same site. Which technique you use really depends on how important
Internet Explorer 8 support is for you. At the time of this writing, IE 8 is still quite
popular, ranging from 3.71% (http://gs.statcounter.com/#browser_version_par-
tially_combined-ww-monthly-201401-201501) to 19% (http://www.netmarketshare.
com) of web browsers in use.

 NOTE  Here’s another approach to the problem of supporting bold and italic for IE8. Try the first method
(page 136), and see how it looks in IE8. Some fonts, usually sans-serif fonts, don’t always look that bad when IE
does its faux-italic and -bold thing to them. You might find that the difference isn’t that noticeable, and you can
use the first method without much of a problem. Also, remember that IE8’s market share will continue to decline
as people buy new computers, switch to Chrome or another browser, or upgrade their operating systems.

Discovering Google Web Fonts
If the instructions for using web fonts discussed in the previous section sound too
daunting to you, there’s an easier way—although one with fewer font options. In

http://gs.statcounter.com/#browser_version_partially_combined-ww-monthly-201401-201501
http://gs.statcounter.com/#browser_version_partially_combined-ww-monthly-201401-201501
http://www.netmarketshare.com
http://www.netmarketshare.com

CHAPteR 6: FORMATTING TEXT 141

DISCOVERING
GOOGLE WEB

FONTS
addition to search, maps, email, and all the many services it offers, Google provides
an easy-to-use web fonts service. Rather than downloading fonts, converting them
to proper formats, and then placing them onto your web server, you simply include
a single link to an external style sheet that indicates which fonts you’d like to use.
Google’s server sends the proper fonts to the visitor’s web browser. No muss, no fuss.

Your only responsibilities are finding the fonts you want to use on the Google Fonts
site, copying the necessary code (which Google provides) and adding it to your web
page, and creating CSS styles using those fonts. Start by visiting the Google Fonts
site at www.google.com/fonts (see Figure 6-6).

FiGURE 6-6
The Google Fonts site lists
the fonts Google offers.
Some fonts have multiple
styles, such as bold, italic,
thin, ultra-thin, and so
on. To see all variants for
a particular font, click the
“Show all styles” link in
the left sidebar (circled).
Alternatively, to see just
the different variants for
a particular font, click the
“See all styles” button
(#1). To get started using
a font right away, click
the “Quick Use”(#2) but-
ton, which loads the Use
panel described on page
144; the “Pop-out” button
(#3) opens a new window
with more information
on the font as well as a
specimen sheet demon-
strating every letter in
the font (it’s a good way
to see what the entire
alphabet looks like and
also to make sure that it
has all the characters you
need—such as unusual
symbols or punctuation
marks); lastly, the “Add
to Collection” button (#4)
adds the font to your col-
lection. (A collection lets
you select several fonts
that you’d like to add to
your site.)

http://www.google.com/fonts

Css: tHe MIssInG MAnUAL142

DISCOVERING
GOOGLE WEB

FONTS
Finding and Selecting Fonts
You select the fonts you wish to use by creating a collection. It’s as easy as finding a
font you like and clicking the “Add to Collection” button (see Figure 6-6). To find a
font, you can scroll down the main web fonts page and see examples of the available
fonts, but with over 670 fonts to choose from, it might take you a while to locate
one you like. If you have a specific look already in mind, like a bold sans-serif font for
headlines, use one of the filtering options on the left side of the page (see Figure 6-7).

• Search by name. If you know the name of the font you’re interested in, then
just type the name (or part of the name) in the Search field (#1 in Figure 6-7).
The page then filters the list of fonts to show you the ones that match.

• Filter by category. The category menu (#2 in Figure 6-7) lets you show fonts
that match one, two, three, four, or five categories: Serif, Sans Serif, Display,
Handwriting, and Monospace. Just uncheck a box to hide that type of font, or
turn on the box to show it. Display fonts are generally bold and stylish; they’re
not really good for long passages of text, but can make short headlines really
jump out of the page. Handwriting fonts, or script fonts, look like someone
wrote the text with a pen. They vary from elegant, wedding invitation-like
scripts, to a hand-scrawled, “Give me the money if you want your cat back”
ransom-note look.

• Physical style. Three sliders let you identify physical characteristics of fonts
(#3 in Figure 6-7). The thickness slider lets you find fonts made of very thin
lines (delicate lines that are often hard to read unless displayed at a large font
size) to very thick lines (bold and chunky). The Slant slider identifies fonts with
a “lean” to them: Generally this means italic versions of fonts, but also is rel-
evant for handwritten fonts, which generally have a pronounced lean toward
the right. Finally, use the Width slider to find fonts that are either narrower or
more spread out. With wider fonts, you fit fewer letters on a single line but often
make a bold statement in a headline.

• Alphabet. Lastly, the Script menu (#4 in Figure 6-7) lets you specify fonts for
use with other languages. English and many European languages use the Latin
alphabet, but if you need a font for Russian text, for example, you would choose
Cyrillic. Pick the one that matches the language your text will appear in.

 TIP  To see a showcase of some of the best fonts available from Google, check out http://hellohappy.org/
beautiful-web-type/.

http://hellohappy.org/beautiful-web-type/
http://hellohappy.org/beautiful-web-type/

CHAPteR 6: FORMATTING TEXT 143

DISCOVERING
GOOGLE WEB

FONTS

FiGURE 6-7
To help find the fonts that match your design, you can search Google’s
font directory, or filter down the list of fonts by specifying various
criteria. If you try to use all of these filters, you’ll most likely end up
with no results. If so, click the “Reset all filters/search” link (circled) to
return to the full list of Google web fonts.

Css: tHe MIssInG MAnUAL144

DISCOVERING
GOOGLE WEB

FONTS
As you find fonts that you’d like to use, you can click the “Add to Collection” button
(#1 in Figure 6-8). The collection is kind of like a shopping cart, so you can add fonts
to it and remove fonts from it.

FiGURE 6-8
To see the fonts you’ve
added to your collection,
click the disclosure arrows
(#2). You can remove a
font from the collection
by clicking the X (delete)
button to the right of the
font name (#3). The Re-
view button (circled) lets
you compare the fonts
in your collection and
retrieve more in-depth
information. For example,
you can see the complete
character set for each font
(that is, each letter and
symbol), test drive a font
by adding your own text
and changing the font
size, and even create an
overlay comparison of all
the fonts in your collec-
tion (if you’re truly type
obsessed).

Using Google Fonts
Once you’ve created a collection of fonts, you’re ready to retrieve the code neces-
sary to use them.

1. At the bottom right of the Google Fonts screen (#1 in Figure 6-9), click the
Use button.

A page opens with several options as well as the code you need to copy.

2. Choose the style you want to use (#2 in Figure 6-9).

Some fonts include italic, bold, and other variants of the regular font. For body
text, you’ll usually want at least regular, italic, and bold. In the case of a headline,
you can usually get away with just one font. You’ll notice also that there’s a “speed
dial” on the right of this page. As you add more styles and fonts, the speed dial
rotates clockwise indicating that it will take more time to download the fonts.

CHAPteR 6: FORMATTING TEXT 145

DISCOVERING
GOOGLE WEB

FONTS
That’s one drawback of web fonts. Since your site’s visitors need to download
them (as well as the web page, external style sheets, graphics, and other ele-
ments that make up your page), be careful not to go crazy and use too many
fonts. Otherwise, people will have to wait a long time for the fonts to appear.
The number on the dial indicates the number of milliseconds (on average) it
will take to download the font files.

3. Optionally, choose the character sets you want.

This step isn’t required and may not be available for all fonts. In addition, if
you selected a character set other than Latin (see the last bullet point on page
142), then you may see other options besides Latin and Latin Extended. Latin
Extended is a good choice if your text contains words in a language that uses
particular accent characters like Turkish, Welsh, and Hungarian. For most Latin-
based languages like French and Spanish, the normal Latin alphabet is all you
need. You’re better off not using the extended Latin if you don’t need it, since
using it adds file size and download time to the font.

 NOTE  To see a list of the extra characters available in Latin Extended visit http://en.wikipedia.org/wiki/
Latin_Extended-A.

4. Copy the code in the “Add this code to your website” box (#3 in Figure 6-9).

You have three options here.

• Standard provides a <link> tag that points to an external style sheet (this
is the same as linking to any external style sheet, as described on page
26). However, this is actually a special link that points to Google’s web
server and provides the information Google needs to deliver the proper
fonts. For instance:

<link href='http://fonts.googleapis.com/css?family=Lato:300,400,300ital
ic, 400italic|Oswald:400,700' rel='stylesheet' type='text/css'>

Notice that at the end of the href attribute, the fonts and their styles are
listed. In this example, the fonts are Lato and Oswald. And Google will load
several styles of Lato: 300, 400, 300italic and 700italic.Those numbers are
a way of indicating the weight (or thickness) of the font and are discussed
in step 6 on page 147. In addition, a number plus “italic” (for example,
“300italic”) indicates an italicized version of that weight for that font.

 NOTE  Even though the Google Fonts site suggests using "type='text/css'" as part of the <link> tag,
you can leave it out. It’s not needed in HTML5.

• Another option is @import. Click the @import tab under step 3 on the web
page (see Figure 6-9) to see the code needed to use the @import directive.
The benefit of this approach is that you can add @import to the beginning

http://en.wikipedia.org/wiki/Latin_Extended-A
http://en.wikipedia.org/wiki/Latin_Extended-A

Css: tHe MIssInG MAnUAL146

DISCOVERING
GOOGLE WEB

FONTS
of another style sheet. For example, say you have a single external style
sheet for your site, and you’ve linked all the pages in your site to it. The
standard <link> method requires you to add that code to every page on
your site. However, with the @import method, you can add the code to your
single external style sheet and you’re done.

FiGURE 6-9
When you’re ready to
use the Google fonts that
you’ve added to your col-
lection, click the Use but-
ton in the bottom right
(#1), and then choose the
styles you want (#2) and
the method you’d like to
use to attach those fonts
to a page (#3). The most
common way is to simply
link to a style sheet that
loads the fonts from
Google’s servers.

• Finally, you can choose a JavaScript approach. This book doesn’t cover
this method, since it requires a lot of code, and unless you know JavaScript
really well, it’s easy to make a mistake. In addition, it doesn’t offer much
benefit over the other options.

CHAPteR 6: FORMATTING TEXT 147

ADDING COLOR
TO TEXT

5. Paste the code on your site’s web pages.

In the case of the <link> method described in the previous step, you must paste
the code onto every page you wish to use the fonts on. If you’re just beginning
the process of building your site, this isn’t such a big deal, but if you already have
lots of pages, this may end up being quite a bit of work. In that case, consider
the @import method: You can place the @import code at the top of your site’s
external style sheet, and then all the pages that link to that style sheet will also
download the proper fonts.

 NOTE  The @import method can have a slight effect on your website’s performance; that is, it can slow
download speed.

6. Create styles using the fonts.

Now that the fonts are loading, you can use them much like any other font.
Just create a style, add the font-family property, and list the font. Google’s
Web Fonts page shows the font’s name at the bottom of the Use page (#4 in
Figure 6-9).

If you’re using multiple styles of a font, then you also need to add the font-
weight and font-style properties to the style. Google doesn’t use the regular
normal or bold keywords to indicate a font’s weight. Instead, it uses a numeric
scale from 100 to 900. A value of 700 is bold, 400 is normal, and the other
numbers indicate variations in thickness. For example, say you want to apply
the regular italic version of the Gentium Book Basic font to the tag. You
can write this style:

em {
 font-family: "Gentium Book Basic", Palatino, serif;
 font-weight: 400;
 font-style: italic;
}

Adding Color to Text
Black and white is great for Casablanca and Woody Allen films, but when it comes
to text, a nice sky blue looks snazzier than drab black. Coloring your text with CSS
is easy. In fact, you’ve used the color property in a few tutorials already. You have
several different ways to define the exact color you want, but they all follow the
same basic structure. You type color: followed by a color value:

color: #3E8988;

In this example, the color value is a hexadecimal number indicating a muted shade
of teal (more in a moment on what hexadecimal is).

Css: tHe MIssInG MAnUAL148

ADDING COLOR
TO TEXT

UP TO SPEED

TypeKit, a Google Alternative
Because of the technical and legal requirements for using web
fonts, several companies have sprouted up that handle all the
heavy lifting for you. Google Web Fonts is one example, but
there are others. These font services let you select from a large
collection of fonts hosted on their own web servers. In other
words, you don’t put the fonts on your server; you simply
reference their servers by using a snippet of CSS or JavaScript.
These services take care of sending the proper font format
(EOT to IE8 and earlier, for example) to your visitors’ browsers.

A commercial service from Adobe called TypeKit also provides
a wide selection of fonts, but for a fee. Because it’s part of
Adobe (which makes fonts in addition to all the other software

they create), you have access to a wide range of professionally
created fonts. With TypeKit, you create individual kits, or col-
lections of fonts, and assign them to a website. You then add a
snippet of JavaScript code to each page on your site. This code
connects with the TypeKit servers, and delivers the fonts you
requested to your site’s visitors. TypeKit is a commercial service,
though it does offer a free, limited trial version. Depending on
how many fonts you want access to and how many people visit
your website each month, you can end up spending from $24 a
year up. You can also get access to these fonts if you subscribe
to Adobe’s Creative Cloud service: https://www.adobe.com/
creativecloud.html.

Every graphics program from Fireworks to Photoshop to the GIMP lets you select a
color using hexadecimal or RGB values. Also, the color pickers built into Windows
and Mac let you use a color wheel or palette to select the perfect color and translate
it into a hexadecimal or RGB value.

 NOTE  If your color design sense needs some help, you can find lots of attractive, coordinated collections
of colors as well as great color-related resources at www.colourlovers.com. Another site, http://paletton.com,
provides a handy web-based color and palette creation tool.

Hexadecimal Color Notation
The oldest color system used by web designers is hexadecimal notation. A color
value like #6600FF actually contains three hexadecimal numbers—in this example
66, 00, FF—each of which specifies an amount of red, green, and blue, respectively.
As in the RGB color system described next, the final color value is a blend of the
amounts of red, green, and blue specified by these numbers.

 TIP  You can shorten the hexadecimal numbers to just three characters if each set contains the same two
numbers. For example, shorten #6600FF to #60F, or #FFFFFF to #FFF.

RGB
You can also use the RGB—red, green, blue—method used in computer graphics
programs. The color value consists of three numbers representing either percentages
(0–100 percent) or numbers between 0–255 for each hue (red, green, and blue). So

https://www.adobe.com/creativecloud.html
https://www.adobe.com/creativecloud.html
http://www.colourlovers.com
http://paletton.com

CHAPteR 6: FORMATTING TEXT 149

ADDING COLOR
TO TEXT

when you want to set the text color to white (perhaps to set it off from an ominous
dark page background), you can use this:

color: rgb(100%,100%,100%);

or

color: rgb(255,255,255);

 NOTE  If all these numbers and digits have your head spinning, then you can always fall back on the classic
HTML color keywords. (Just don’t expect your site to win any awards for originality.) There are 17 colors—aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow.
In CSS, you add them to your style like so: color: fuchsia;. In addition, most browsers support 147 SVG
colors (also called X11 colors), so if you really want to show off, start using colors like linen, chocolate, khaki, and
whitesmoke. You can find these colors listed at https://developer.mozilla.org/en-US/docs/Web/CSS/color_value.
And you can find a list of the colors organized by hue at http://html-color-codes.info/color-names/.

RGBA
To add depth to a page, consider one of the newer color methods. RGBA stands for
Red, Green, Blue, Alpha, and it works just like the RGB colors, with the addition of an
alpha channel. That is, you can specify a level of opacity so that the color isn’t solid,
but see-through (see Figure 6-10). To the RGB colors, you add one last number: a
value between 0 and 1. A value of 0 makes the color invisible, while 1 renders the
color totally opaque (that is, you can’t see through it):

color: rgba(255, 100, 50, .5);

You can create interesting visual effects by placing RGBA colored text over back-
ground images. For example, you can make the images seep through the color of
the text a little (by using a high value like .9) or a lot (by using a low value like .1).

 TIP  RGBA works particularly well with the text-shadow property discussed on page 160 and the box-
shadow property discussed on page 201. Using RGBA, you can create even more subtle drop shadow effects by
letting more of the background show through the shadow.

The downside? Internet Explorer 8 and earlier don’t understand RGBA color. One
solution is to declare a solid color first using hexadecimal notation, and then a second
color property with RGBA color, like this:

color: rgb(255,100,50); /* for IE8 */

color: rgba(255,100,50,.5); /* for newer browsers */

All browsers interpret the first line; the second line overrides the first line, but only
for browsers that understand RGBA color. In other words, IE8 applies the first color
declaration and ignores the second, while IE9 and other browsers apply the RGBA
color. You just won’t get the transparency effect in IE8.

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
http://html-color-codes.info/color-names/

Css: tHe MIssInG MAnUAL150

ADDING COLOR
TO TEXT

FiGURE 6-10
RGBA colors aren’t just
for text. You can use
RGBA color with any CSS
property that accepts a
color value, like the back-
ground color of the search
box in the top-right of
this image, or the color of
the navigation buttons:
Home, Archives, Authors,
and so on.

HSL AND HSLA
HSL stands for hue, saturation, and lightness (also sometimes labeled luminance). It’s
yet another way to specify color. It’s not supported by Internet Explorer 8 or earlier,
but works in all other browsers. If you’re used to RGB or hex colors, you may find
the HSL syntax a bit unusual. Here’s an example of a bright red color:

color: hsl(0, 100%, 50%);

You supply three values inside hsl(). The first is a degree value from 0 to 360, which
maps to a circle of hues. If you remember the order of the colors in a rainbow—red,
orange, yellow, green, blue, indigo, and violet (ROYGBIV)—then you’ve got a basic
idea of the values you’ll need to specify a color. Red is 0 (it’s also 360, since that’s one
full rotation around a circle), yellow is around 50, orange around 100, green around
150, and so on. Each color is separated by about 51 degrees.

The second is the saturation, or how pure the color is. You specify saturation in a
percentage from 0% to 100%. A value of 0% is no saturation at all, or a dull gray. In
fact, no matter what hue you specify, 0% will produce the same gray hue. A value
of 100% is the pure color—bright and vibrant. The third value is the lightness value,
specified in a percentage from 0% (completely black) to 100% (completely white). If
you want to have a pure color, then you use a value of 50%.

CHAPteR 6: FORMATTING TEXT 151

CHANGING
FONT SIZE

HSL is supposed to be more intuitive then RGB or hexadecimal color values, but if
you don’t find it easy to understand, you don’t have to use it. Instead, use a program
like Fireworks or Photoshop or an online color picker to make picking an RGB or
hex value easy.

 NOTE  If you’re interested in using HSL, you’ll find an easy-to-use HSL color picker at http://hslpicker.com.

Just as RGB has its companion format, RGBA, HSL supports opacity with the HSLA
format. It works similarly to RGB, described on page 148. You specify an opacity
value from 0 (invisible) to 1 (totally opaque) to set the opacity value. This will create
a bright red color with 50% opacity:

color: hsla(0, 100%, 50%, .5);

The examples in this book mostly stick with RGB and RGBA, but if you find HSL
easier to understand, then use it!

Changing Font Size
Varying the size of text on a web page is a great way to create visual interest and
direct your visitors’ attention to important areas of a page. Headlines in large type
sizes capture attention, while copyright notices displayed in small type subtly recede
from prominence.

The font-size property sets text size. It’s always followed by a unit of measure-
ment, like so:

font-size: 1em;

The value and unit you specify for the font size (in this example, 1em) determine the
size of the text. CSS offers a dizzying selection of sizing units: keywords, ems, exes,
pixels, percentages, picas, points, and even inches, centimeters, and millimeters.

Units of measurement commonly used with printed materials—picas, points, inches,
and so on—don’t work well on web pages because you can’t predict how they’ll look
from one monitor to the next. But you may have occasion to use points when creating
style sheets for printer-friendly pages. Only a few of the measurement units—pixels,
keywords, ems, rems, and percentages—make sense when you’re sizing text for a
computer monitor. The rest of this section explains how they work.

Using Pixels
Pixel values are the easiest to understand, since they’re completely independent
from any browser settings. When you specify, for example, a 36-pixel font size for
an <h1> tag, the web browser displays text that’s 36 pixels tall, period. Web design-
ers cherish pixel values because they provide consistent text sizes across different
types of computers and browsers.

Css: tHe MIssInG MAnUAL152

CHANGING
FONT SIZE

To set a pixel value for the font-size property, type a number followed by the ab-
breviation px:

font-size: 36px;

 NOTE  Don’t include a space between the number and the unit type. For example, 36px is correct, but 36 px isn’t.

UP TO SPEED

Pixels and Retina Displays
When Apple introduced the iPhone with Retina display, iPhone
owners rejoiced at the clarity and sharpness of the images.
Apple’s Retina display provides its clear image by cramming
more pixels into a square inch. While regular computer displays
range from 72–100 pixels per inch, the new Retina displays
boast upward of 224 pixels per inch.

Apple has since added Retina displays to iPads and laptops.
Other tablet and computer manufacturers are also jumping
on the bandwagon, offering considerably more pixels per inch
than older screens. What does this mean for web designers?
Quite a bit. As you’ll read in the box on “When Is a Pixel Not a
Pixel?”, these screens have considerable effect on images, and
you’ll need to do a bit of work to make great looking images
for dense pixel displays.

When it comes to the pixels mentioned above, browsers on
devices with Retina displays actually multiply a pixel value by
2. That is, if you specify text to be 16 pixels, a Retina-enabled
web browser will actually use 32 pixels on the screen to draw
the text. This is a good thing. If the browser only used 16 of its
super-tiny pixels to display the text, then no one could read
what you have to say.

In other words, although more dense displays are entering
both the mobile and desktop computing world, they won’t
suddenly make the pixel-based type on your web pages appear
microscopically small.

Using Keywords, Percentages, and Ems
Three ways of sizing text with CSS—keywords, percentages, and ems—work by either
adding to or subtracting from the text size already on the viewer’s browser screen.
In other words, if you don’t specify a text size using CSS, a web browser falls back
on its preprogrammed settings. In most browsers, text inside a non-header tag is
displayed 16px tall—that’s called the base text size.

Web surfers can adjust their browsers by pumping up or dropping down that base
size; however, changing the base font size requires fiddling with the browser’s pref-
erence settings, a step most folks won’t bother with.

 NOTE  Most browsers have a zoom function that makes text, graphics, and the entire page smaller or larger.
This setting doesn’t really change the base text size as much as it magnifies the entire page. Ctrl++ (c-+) on
most browsers zooms in on a page, while Ctrl+- (c--) zooms out. Pressing the Ctrl (Control) key and using the
scroll wheel on a mouse also lets you zoom in and out of a page.

CHAPteR 6: FORMATTING TEXT 153

CHANGING
FONT SIZE

When you resize text with CSS, the browser takes the base text size (whether it’s the
original 16 pixels or some other size the viewer ordered) and adjusts it up or down
according to your keyword, em, or percentage value.

KEYWORDS
CSS provides seven keywords that let you assign a size that’s relative to the base
text size: xx-small, x-small, small, medium, large, x-large, and xx-large. The CSS
looks like this:

font-size: large;

The medium option is the same as the browser’s base font size. Each of the other op-
tions decreases or increases the size by a different factor. In other words, while each
size change is supposed to be a consistent increase or decrease from the previous
size, it isn’t. Basically, xx-small is the equivalent of 9 pixels (assuming you haven’t
adjusted the base font size in your browser); x-small is 10 pixels, small is 13 pixels,
large is 18 pixels; x-large is 24 pixels, and xx-large is 32 pixels.

Keywords are pretty limited: You have only seven choices. When you want more
control over the size of your text, turn to one of the other font-sizing options dis-
cussed next.

PERCENTAGES
Like keywords, percentage values adjust text in relationship to the font size defined
by the browser, but they give you much finer control than just large, x-large, and
so on. Every browser has a preprogrammed base text size, which in most browsers
is 16 pixels. You can adjust this base size in your browser’s preferences. Whatever
setting has been chosen, the base text size for a particular browser is equivalent to
100%. In other words, for most browsers, setting the CSS percentage to 100% is the
same as setting it to 16 pixels.

Say you want to make a particular headline appear two times the size of average
text on a page. You simply set the font size to 200%, like so:

font-size: 200%;

Or, when you want the text to be slightly smaller than the default size, use a value
like 90% to shrink the font size down a bit.

The above examples are pretty straightforward, but here’s where it gets a little tricky:
Font size is an inherited property (as discussed in Chapter 4), so any tags inside of
a tag that has a font size specified inherit that font size. So the exact size of 100%
can change if a tag inherits a font-size value.

For example, at the lower left of Figure 6-11, there’s a <div> tag that has its font
size set to 200%. That’s two times the browser’s base text size, or 32 pixels. All tags
inside that <div> inherit that text size and use it as the basis for calculating their
text sizes. In other words, for tags inside that <div>, 100% is 32 pixels. So the <h1>
tag inside the <div> that has a font size of 100% displays at two times the base-text
size for the page, or 32 pixels.

Css: tHe MIssInG MAnUAL154

CHANGING
FONT SIZE

FiGURE 6-11
The three most common
units for sizing text are
pixels, ems, and percent-
ages. Watch out for
inherited text sizes when
using ems or percentages,
as explained on the next
page. If you notice that
some text on a page looks
unusually large or small,
then check to see if the
offending text isn’t inside
a tag that inherits a font
size from another tag.
Also consider using the
rem value described on
the next page.

EMS
Once you understand percentages, you know everything you need to understand
ems. The two work exactly the same way, but many web designers use ems because
of its roots in typography.

The word em comes from the world of printed (as in paper) typography, where it
refers to the size of a capital letter M for a particular font. As it’s worked its way into
the Web world, an em in CSS no longer means the same thing as in typography.
Think of it as referring to the base text size. That is, a value of 1em means the same
thing as a value of 100 percent, as described in the previous section. You can even
say it the opposite way: A percentage value is just an em multiplied by 100: .5em is
50 percent, .75em is 75 percent, 3em is 300 percent, and so on.

CHAPteR 6: FORMATTING TEXT 155

CHANGING
FONT SIZE

For example, this CSS does the exact same thing as font-size: 200%;:

font-size: 2em;

 NOTE  As with pixel values, there’s no space between the number and the word em. Also, even if you specify
more than one em, you never add an s to the end: 2.5em, never 2.5ems.

When it comes to inheritance, ems also work just like percentage values (see the
top-right of Figure 6-11 for an example). The bottom paragraph is set to .75em, which,
since the <p> tag inherits the 2em (32px) setting from the <div> tag, works out to .75
x 32, or 24 pixels. Inside the <p> tag are two other tags that also have a font-size
setting of .75em. The innermost tag, a tag, is set to .75em or, in essence,
75 percent of its inherited size. There’s a lot of math to this one: 32 pixels (inherited
from the <div> tag) x .75 (inherited from the <p> tag) x .75 (inherited from the
tag) x .75 (the tag’s own font size). The result of this brainteaser is a text
size of roughly 14 pixels.

Inherited font-size values can cause problems for nested lists. You can see an example
in the bottom-right square of Figure 6-11. If you create a style like ul { font-size:
75% }, then a nested list (a tag inside of another tag) is set to 75 percent
of 75 percent—making the text in the nested list smaller than the rest of the list.

To get around this conundrum, create an additional descendant selector style like this:
ul ul {font-size: 100%}. This style sets any ul tag inside of a ul to 100 percent;
in other words, 100 percent of the surrounding ul tag’s font size. In this example,
it keeps any nested lists to 75 percent of the base text size. There’s another way
to prevent this hall-of-mirrors, shrinking-text effect: the rem unit (discussed next).

REMS
CSS includes another measurement unit called rem. No, it’s not named after sleep
patterns or a band. It stands for root em—meaning its value is based on the text
size of the root element. In most cases this just means the base text size, so you can
change the .75em shown in Figure 6-11 to this:

font-size: .75rem;

This style makes the font size .75 of the base text size, not the inherited font size (as
is the case with ems). The root element in HTML is actually the html element you
find at the beginning of a web page. When using rem values, you can set the base
text size of the html element and then use rem units to set text to a size relative to
that. For example, you can set the base text size to 20 pixels like this:

html {
 font-size: 20px;
}

Css: tHe MIssInG MAnUAL156

 FORMATTING
WORDS AND

LETTERS
Then use rem units to create fonts in relation to that 20-pixel base text size. For
example, to then make all paragraphs 15 pixels in size, add this style:

p {
 font-size: .75rem;
}

The rem unit avoids the problems associated with inherited percentage and em font
sizes. Percentages and ems are based on the font size of their parent element. A
percentage font size applied to multiple nested elements will compound, making
each successive font size a percentage of the previous element’s font size. However,
rem units are always based on the font size of the html element; in other words, a
rem is always the same value even when nested inside elements that inherit differ-
ent font sizes.

You should be aware, however, that while most browsers now understand the rem
unit, Internet Explorer 8 and earlier don’t.

 TIP  You can make type stand out on a page in many different ways. Making certain words larger than others
or making some text darker, lighter, or brighter visually sets them apart from the surrounding text. Contrast is
one of the most important principles of good graphic design; it can help highlight important messages, guide a
reader’s eye around a page, and generally make understanding a page easier. For a quick overview of typographic
contrast, check out this page: www.creativepro.com/article/dot-font-seven-principles-of-typographic-contrast.

Formatting Words and Letters
Although you’ll spend a lot of time fine-tuning the color, size, and fonts of the text
on your web pages, CSS also lets you apply other common text-formatting proper-
ties (like bold and italic) as well as some less common ones (like small caps and
letter spacing).

 NOTE  CSS lets you combine multiple text properties, but don’t get carried away. Too much busy formatting
makes your page harder to read. But worse, your hard work loses its impact.

Italicizing and Bolding
Web browsers display type inside the and <i> tags in italicized type, and text
inside the , , <th> (table header), and header tags (<h1> and so on) in
bold type. But you can control these settings yourself—either turn off bold for a
headline or italicize text that normally isn’t—using the font-style and font-weight
properties.

To italicize text, add this to a style:

font-style: italic;

http://www.creativepro.com/article/dot-font-seven-principles-of-typographic-contrast

CHAPteR 6: FORMATTING TEXT 157

 FORMATTING
WORDS AND

LETTERS
Alternatively, you can make sure text isn’t italicized, like so:

font-style: normal;

 NOTE  The font-style property actually has a third option—oblique—which works identically to
italic.

The font-weight property lets you make text bold or not. In fact, according to the
rules of CSS, you can actually specify nine numeric values (100–900) to choose
subtle gradations of boldness (from super-extra-heavy [900] to nearly invisible-
light [100]). Of course, the fonts you use must have nine different weights for these
values to have any visible effect for your website’s visitors. The only way to use the
numeric values is with the web fonts discussed on page 126. In fact, Google Fonts
(page 126) use the numeric values exclusively for specifying font weights.

 NOTE  When using web fonts, you’ll find that making text bold and italic requires a few other steps. See
page 126 for the details.

To make text bold:

font-weight: bold;

And to make text un-bold:

font-weight: normal;

 NOTE  Since headlines are already displayed as bold type, you may want to find another way of highlighting
a word or words that are strongly emphasized or bolded inside a headline. Here’s one way:

h1 strong { color: #3399FF; }

This descendant selector changes the color of any tags (usually displayed as bold) that appear
inside a <h1> tag.

Capitalizing
Capitalizing text is pretty easy—just hit the caps lock key and start typing, right?
But what if you want to capitalize every heading on a page, and the text you’ve
copied and pasted from a Word document is lowercase? Rather than retyping the
headline, turn to the CSS text-transform property. With it, you can make text all
uppercase, all lowercase, or even capitalize the first letter of each word (for titles
and headlines). Here’s an example:

text-transform: uppercase;

For the other two options, just use lowercase or capitalize.

Css: tHe MIssInG MAnUAL158

 FORMATTING
WORDS AND

LETTERS
Because this property is inherited, a tag that’s nested inside a tag with text-transform
applied to it gets the same uppercase, lowercase, or capitalized value. To tell CSS not
to change the case of text, use the none value:

text-transform: none;

SMALL CAPS
For more typographic sophistication, you can also turn to the font-variant property,
which lets you set type as small-caps. In small cap style, lowercase letters appear as
slightly downsized capital letters, like so: pomp and circumstance. While difficult to read
for long stretches of text, small caps lend your page an old-world, bookish gravitas
when used on headlines and captions. To create small-cap text:

font-variant: small-caps;

Decorating
CSS also provides the text-decoration property to add various enhancements to
text. With it, you can add lines over, under, or through the text (see Figure 6-12), or
for real giggles, you can make the text blink like a No Vacancy sign. Use the text-
decoration property by adding one or more of the following keywords: underline,
overline, line-through, or blink. For example, to underline text:

text-decoration: underline;

FiGURE 6-12
The text-decoration property in ac-
tion. If this is what the people at CSS
headquarters call “decorations,” you’d
best not ask for their design help on
your next home remodel.

CHAPteR 6: FORMATTING TEXT 159

 FORMATTING
WORDS AND

LETTERS
You can also combine multiple keywords for multiple effects. Here’s how to add a
line over and under some text:

text-decoration: underline overline;

But just because you can add these not-so-decorative decorations to text doesn’t
mean you should. For one thing, anyone who’s used the Web for any length of time
instinctively associates any underlined text with a link and tries to click it. So it’s not
a good idea to underline words that aren’t part of a link. And blink is like a neon
sign flashing “Amateur! Amateur! Amateur!” (That’s probably why most browsers
don’t make text blink even if you ask for it.)

 NOTE  You can get a similar effect to underlining and overlining by adding a border to the bottom or top of
an element (see page 194). The big advantage of borders is that you can control their placement, size, and color
to create a more attractive design that doesn’t look like a link.

The overline option simply draws a line above text, while line-through draws a
line right through the center of text. Some designers use this strike-through effect to
indicate an edit on a page where text has been removed from the original manuscript.

Finally, you can turn off all decorations by using the none keyword like this:

text-decoration: none;

Why do you need a text-decoration property that removes decorations? The most
common example is removing the line that appears under a link. (See page 283.)

Letter and Word Spacing
Another way to make text stand out from the crowd is to adjust the space that ap-
pears between letters or words (see Figure 6-13). Reducing the space between let-
ters using the CSS letter-spacing property can tighten up headlines, making them
seem even bolder and heavier while fitting more letters on a single line. Conversely,
increasing the space can give headlines a calmer, more majestic quality. To reduce
the space between letters, you use a negative value like this:

letter-spacing: -1px;

A positive value adds space between letters:

letter-spacing: .7em;

Likewise, you can open up space (or remove space) between words using the word-
spacing property. This property makes the space between words wider (or narrower)
without actually affecting the spacing between the letters inside a word:

word-spacing: 2px;

With either of these properties, you can use any type of measurement you’d use
for text sizing—pixels, ems, percentages—with either positive or negative values.

Css: tHe MIssInG MAnUAL160

ADDING TEXT
SHADOW

FiGURE 6-13
Use word and letter spac-
ing judiciously. Too much
or too little of either can
make text difficult, if not
impossible, to read.

Unless you’re going for some really far-out design effect—in other words, totally
unreadable text—keep your values small. Too high a negative value, and letters and
words overlap. To keep the message of your site clear and legible, use both letter
and word spacing with care.

Adding Text Shadow
CSS includes a property that lets you add drop shadows to text to add depth and
interest to headlines, lists, and paragraphs (see Figure 6-14).

The text-shadow property requires four pieces of information: the horizontal offset
(how far to the left or right of the text the shadow should appear), the vertical offset
(how far above or below the text the shadow should appear), the blurriness of the

CHAPteR 6: FORMATTING TEXT 161

ADDING TEXT
SHADOW

shadow, and the color of the drop shadow. For example, here’s the text-shadow
property that creates the effect at the top of Figure 6-14:

text-shadow: -4px 4px 3px #999999;

FiGURE 6-14
Text shadows are a great way to add subtle (or, if you insist, not so
subtle) depth to headlines and other text. While the text-shadow
property works in all current browsers, it doesn’t work in Internet
Explorer 9 or earlier.

The first value, 4px, means “place the shadow 4 pixels to the left of the text.” (A posi-
tive value here would place the shadow to the right of the text.) The second value,
4px, places the shadow 4 pixels below the text. (A negative value would place the
shadow above the text.) The 3px value defines how blurry the shadow should be.
A 0px value (no blur) results in a sharp drop shadow; the larger the value, the more
blurry and indistinct the shadow. Finally, the last value is the drop shadow’s color.

You can even add multiple drop shadows for more complex effects (see the bot-
tom image in Figure 6-14): Just add a comma followed by additional drop shadow
values, like this:

text-shadow: -4px 4px 3px #666, 1px -1px 2px #000;

There’s no limit (except good taste) to the number of shadows you can add this way.
Sadly, this effect doesn’t work in Internet Explorer 9 or earlier. It does, however,
work in all other current browsers (including later versions of Internet Explorer). In
other words, don’t rely on this effect to make text readable. The bottom image in
Figure 6-14 shows you what not to do: The text color is white, and it’s readable only
because the drop shadows define the outline of the text. In Internet Explorer 9 and
earlier, the text would be invisible—white text on a white background.

 NOTE  For some examples of beautiful ways to use text shadows, visit http://webexpedition18.com/articles/
css3-text-shadow-property/. You can also see a great example using multiple text shadows to create a 3-D text
effect at http://markdotto.com/playground/3d-text/.

http://webexpedition18.com/articles/css3-text-shadow-property/
http://webexpedition18.com/articles/css3-text-shadow-property/
http://markdotto.com/playground/3d-text/

Css: tHe MIssInG MAnUAL162

FORMATTING
ENTIRE

PARAGRAPHS Formatting Entire Paragraphs
Some CSS properties apply to chunks of text rather than individual words. You can
use the properties in this section on complete paragraphs, headlines, and so on.

Adjusting the Space Between Lines
In addition to changing the space between words and letters, CSS lets you adjust
the space between lines of text using the line-height property. The bigger the line
height, the more space that appears between each line of text (see Figure 6-15).

FiGURE 6-15
The line-height property lets
you spread a paragraph’s lines
apart or bring them closer together.
The normal setting is equivalent to
120 percent, so a smaller percentage
tightens up the lines (top), while
a larger percentage pushes them
apart (bottom).

LINE SPACING BY PIXEL, EM, OR PERCENTAGE
Just as with the font-size property, you can use pixels, ems, or percentages to set
the size of line height:

line-height: 150%;

CHAPteR 6: FORMATTING TEXT 163

FORMATTING
ENTIRE

PARAGRAPHS
In general, percentages or ems are better than pixels, because they change accord-
ing to, and along with, the text’s font-size property. If you set the line height to 10
pixels and then later adjust the font size to something much larger (like 36 pixels),
because the line height remains at 10 pixels, your lines then overlap. However, using
a percentage (150% percent, say) means the line-height spacing adjusts propor-
tionally whenever you change the font-size value.

The normal line-height setting for a browser is 120%. So, when you want to tighten
up the line spacing, use a value less than 120%; to spread lines apart, use a value
greater than that.

 NOTE  To determine the amount of space that appears between lines of text, a web browser subtracts the
font size from the line height. The result—called leading—is the amount of space between lines in a paragraph.
Say the font size is 12 pixels, and the line height (set to 150%) works out to 18 pixels. 18 - 12 = 6 pixels, so the
browser adds 6 pixels of space between each line.

LINE SPACING BY NUMBER
CSS offers another measurement method specific to line height, which is simply a
number. You write it like this:

line-height: 1.5;

There’s no unit (like em or px) after this value. The browser multiplies this number by
the font size to determine the line height. So if the text is 1em and the line-height
value is 1.5, then the calculated line height is 1.5em. In some cases, the effect may
be no different from specifying a value of 1.5em or 150%.

However, because nested tags inherit the line-height value of their parent, you
can often run into problems using an em or percentage value.

For example, say you set the line-height property of the <body> tag to 150%. All
tags inside the page would inherit that value. However, it’s not the percentage that’s
inherited; it’s the calculated line height. So, say the font size for the page is set to
10 pixels; 150 percent of 10 is 15 pixels. Every tag would inherit a line height of 15
pixels, not 150 percent. So if you happened to have a paragraph with large, 36 pixel
text, then its line height—15 pixels—would be much smaller than the text, making
the lines squish together in a hard-to-read mess.

In this example, instead of using a line-height of 150% applied to the <body> tag,
you could have all tags share the same basic proportional line height by setting the
line-height to 1.5. Every tag, instead of inheriting a precise pixel value for line height
from the body style, simply multiplies its font size by 1.5. So in the above example
of a paragraph with 36-pixel text, the line height would be 1.5 x 36 or 54 pixels.

In other words, it’s best to skip the ems and percentages for line heights and just
use a simple numeric value.

Css: tHe MIssInG MAnUAL164

FORMATTING
ENTIRE

PARAGRAPHS
Aligning Text
One of the quickest ways to change the look of a web page is with paragraph align-
ment. Using the text-align property, you can center a paragraph on a page, align
the text along its left or right edge, or justify both left and right edges (like the
paragraphs in this book). Normally, text on a page is left aligned, but you may want
to center headlines to give them a formal look. Languages that read from right to
left, like Hebrew and Arabic, require right-alignment. To change the alignment of
text, use any of the following keywords—left, right, justify, center:

text-align: center;

Justified text looks great on a printed page—mainly because the fine resolution
possible with printing allows for small adjustments in spacing, and because most
programs used to lay out printed material can hyphenate long words (thus attempting
to equally distribute the number of characters per line). This prevents large, unsightly
gaps or rivers of white space flowing through the paragraphs. Web pages are limited
to much coarser spacing because of the generally low resolution of monitors, and
because web browsers don’t know how to hyphenate long words. So when you use
the justify option, the space between words can vary significantly from line to
line, making the text harder to read. When you want to use the justify option on
your web pages, test it thoroughly to make sure the text is attractive and readable.

Indenting the First Line and Removing Margins
In many books, the first line of each paragraph is indented. This first-line indent marks
the beginning of a paragraph when there are no spaces separating paragraphs. On
the Web, however, paragraphs don’t have indents but are instead separated by a
bit of space—like the paragraphs in this book.

If you have a hankering to make your web pages look less like other web pages and
more like a handsomely printed book, take advantage of the CSS text-indent and
margin properties. With them, you can add a first-line indent and remove (or increase)
the margins that appear at the beginnings and ends of paragraphs.

FIRST-LINE INDENTS
You can use pixel and em values to set the first-line indent like this:

text-indent: 25px;

or

text-indent: 5em;

A pixel value is an absolute measurement—a precise number of pixels—while an
em value specifies the number of letters (based on the current font size) you want
to indent.

CHAPteR 6: FORMATTING TEXT 165

FORMATTING
ENTIRE

PARAGRAPHS
 TIP  You can use negative text-indent values to create what’s called a hanging indent, where the first
line starts further to the left than the other lines in the paragraph. (Think of it as “hanging” off the left edge.)
You’ll usually use a negative text indent along with a position margin value, so that the negative text indent
doesn’t stick outside the left side of a page, column, or layout box.

You can also use a percentage value, but with the text-indent property, percent-
ages take on a different meaning than you’ve seen before. In this case, percentages
aren’t related to the font size; they’re related to the width of the element containing
the paragraph. For example, if the text-indent is set to 50%, and a paragraph spans
the entire width of the web browser window, then the first line of the paragraph
starts half the way across the screen. If you resize the window, both the width of
the paragraph and its indent change. (You’ll learn more about percentages and how
they work with the width of elements in the next section.)

POWER USERS’ CLINIC

A Shorthand Method for Text Formatting
Writing one text property after another gets tiring, especially
when you want to use several different text properties at once.
Fortunately, CSS offers a shorthand property called font,
which lets you combine the following properties into a single
line: font-style (page 156), font-variant (page 158),
font-weight (page 156), font-size (page 151), line-
height (page 163), and font-family (page 121). For
example, consider the following declaration:

font: italic bold small-caps 18px/1.5
Arial, Helvetica, sans-serif;

It creates bold, italicized type in small caps, using 18px Arial
(or Helvetica or sans-serif) with a line height of 150 percent.
Keep these rules in mind:

• You don’t have to include every one of these properties,
but you must include the font size and font family:

font: 1.5em Georgia, Times, serif;

• Use a single space between each property value. You use
a comma only to separate fonts in the list at the end of
the value like this:

Arial, Helvetica, sans-serif

• When specifying the line height, add a slash after the font
size followed by the line-height value, like this:

1.5em/1.5

The last two properties must be font-size (or font-
size/line-height) followed by font-family, in that
order. All the other properties may be written in any order. For
example, these two declarations are the same:

font: italic bold small-caps 1.5em Arial;
font: bold small-caps italic 1.5em Arial;

Finally, omitting a value from the list is the same as setting that
value to normal. Say you create a <p> tag style that formats
all paragraphs in bold, italics, and small caps with a line height
of 2000 percent (not that you’d actually do that). You can then
create a class style named .specialParagraph with the
following font declaration:

font: 1.5em Arial;

When you apply this style to one paragraph on the page, then
that paragraph would not inherit the italic, bold, small caps,
or line height. Omitting those four values in the .special-
Paragraph style is the same as writing this:

font: normal normal normal 1.5em/normal
Arial;

Css: tHe MIssInG MAnUAL166

FORMATTING
ENTIRE

PARAGRAPHS
CONTROLLING MARGINS BETWEEN PARAGRAPHS

Many designers hate the space that every browser throws in between paragraphs.
Before CSS, there was nothing you could do about it. Fortunately, you can now tap
into the margin-top and margin-bottom properties to remove (or, if you wish, expand)
that gap. To totally eliminate a top and bottom margin, write this:

margin-top: 0;
margin-bottom: 0;

To eliminate the gaps between all paragraphs on a page, create a style like this:

p {
 margin-top: 0;
 margin-bottom: 0;
}

As with text-indent, you can use pixel or em values to set the value of the margins.
You can also use percentages, but as with text-indent, the percentage is related to
the width of the paragraph’s containing element. Because it’s confusing to calculate
the space above and below a paragraph based on its width, it’s easier to stick with
either em or pixel values.

 NOTE  Because not all browsers treat the top and bottom margin of headlines and paragraphs consistently,
it’s often a good idea to simply zero out (that is, eliminate) all margins at the beginning of a style sheet. To see
how this works, turn to page 109.

For a special effect, you can assign a negative value to a top or bottom margin. For
example, a –10px top margin moves the paragraph up 10 pixels, perhaps even visually
overlapping the page element above it. (See step 4 on page 183 for an example.)

Formatting the First Letter or First Line of a Paragraph
CSS also provides a way of formatting just a part of a paragraph by using the ::first-
letter and ::first-line pseudo-elements (see Figure 6-16). Technically, these
aren’t CSS properties, but types of selectors that determine what part of a paragraph
CSS properties should apply to. With the ::first-letter pseudo-element, you can
create an initial capital letter to simulate the look of a hand-lettered manuscript.
To make the first letter of each paragraph bold and red you could write this style:

p::first-letter {
 font-weight: bold;
 color: red;
}

To be more selective and format just the first letter of a particular paragraph, you
can apply a class style to the paragraph—.intro, for example:

<p class="intro">Text for the introductory paragraph goes here...</p>

Then you could create a style with a name like this: .intro::first-letter.

CHAPteR 6: FORMATTING TEXT 167

FORMATTING
ENTIRE

PARAGRAPHS
The ::first-line pseudo-element formats the initial line of a paragraph. You
can apply this to any block of text, like a heading (h2::first-line) or paragraph
(p::first-line). As with ::first-letter, you can apply a class to just one para-
graph and format only the first line of that paragraph. Say you want to capitalize
every letter in the first line of the first paragraph of a page. Apply a class to the
HTML of the first paragraph—<p class="intro">—and then create a style like this:

.intro::first-line { text-transform: uppercase; }

FiGURE 6-16
The ::first-letter
pseudo-element formats
the first letter of the
styled element, like the
initial caps to the left. The
::first-line selector, on
the other hand, styles the
first line of a paragraph.
Even if your guest resizes
the window (bottom), the
browser still styles every
word that appears on a
paragraph’s first line.

Css: tHe MIssInG MAnUAL168

STYLING LISTS
 NOTE  For some strange reason, neither Chrome nor Safari understands the text-transform property
(page 157) when it’s used with the ::first-line pseudo-element. In other words, you can’t use CSS to
capitalize the letters of a paragraph’s first line in Chrome or Safari.

Styling Lists
The and tags create bulleted and numbered lists, like lists of related items
or numbered steps. But you don’t always want to settle for the way web browsers
automatically format those lists. You may want to swap in a more attractive bullet,
use letters instead of numbers, or even completely eliminate the bullets or numbers.

Types of Lists
Most web browsers display unordered lists (tags) using round bullets, and num-
bered lists (tags) using…well…numbers. With CSS, you can choose from among
three types of bullets—disc (a solid round bullet), circle (a hollow round bullet), or
square (a solid square). There are also six different numbering schemes—decimal,
decimal-leading-zero, upper-alpha, lower-alpha, upper-roman, or lower-roman (see
Figure 6-17). You select all these options using the list-style-type property, like so:

list-style-type: square;

or

list-style-type: upper-alpha;

Most of the time, you use this property on a style that’s formatting an or
 tag. Typical examples include an ol or ul tag style—ul { list-style-type:
square; }—or a class you’re applying to one of those tags. However, you can also
apply the property to an individual list item (tag) as well. You can even apply
different types of bullet styles to items within the same list. For example, you can
create a style for a tag that sets the bullets to square, but then create a class
named .circle that changes the bullet type to circle, like this:

li {list-style-type: square; }
.circle { list-style-type: circle; }

You can then apply the class to every other item in the list to create an alternating
pattern of square and circular bullets:

Item 1
<li class="circle">Item 2
Item 3
<li class="circle">Item 4

CHAPteR 6: FORMATTING TEXT 169

STYLING LISTS

FiGURE 6-17
CSS provides many differ-
ent ways to mark bulleted
and numbered lists, from
a handful of geometric
shapes to many different
numbering systems. If
you feel like rushing a
fraternity or sorority, you
can also replace numbers
with Greek letters—ά, β,
χ—using the lower-greek
option. In fact, there are a
number of other number-
ing schemes including
Armenian, Georgian,
Katakana, and other re-
gional variations. You can
find out about them at
https://developer.mozilla.
org/en-US/docs/Web/CSS/
list-style-type.

Or, using the nth-of-type selector (page 66) you could skip the class name entirely:

li {list-style-type: square; }

li:nth-of-type(odd) { list-style-type: circle; }

At times you’ll want to completely hide bullets, like when you’d rather use your own
graphic bullets (see page 171). Also, when a site’s navigation bar is a list of links, you
can use an list, but hide its bullets (see the example on page 290). To turn off
the bullets, use the keyword none:

list-style-type: none;

Positioning Bullets and Numbers
Web browsers usually display bullets or numbers hanging to the left of the list
item’s text (Figure 6-18, left). With CSS, you can control the position of the bullet
(somewhat) using the list-style-position property. You can either have the bullet
appear outside of the text (the way browsers normally display bullets) or inside
the text block itself (Figure 6-18, right):

list-style-position: outside;

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type

Css: tHe MIssInG MAnUAL170

STYLING LISTS
or

list-style-position: inside;

 TIP  You can adjust the space between the bullet and its text—increase or decrease that gap—by using the
padding-left property. To use it, you create a style that applies to the tags. This technique works
only if you set the list-style-position property to the outside option (or don’t use list-style-
position at all).

In addition, if you don’t like how web browsers indent a list from the left edge, then
you can remove that space by setting both the margin-left and padding-left
properties to 0 for the list. To remove the indent from all lists, you can create this
group selector:

ul, ol {
 padding-left: 0;
 margin-left: 0;
}

Or you can create a class style with those properties and apply it to a particular
or tag. The reason you need to set both the padding and margin properties
is that some browsers use padding (Firefox, Mozilla, Safari) and some use margin
(Internet Explorer) to control the indent. (You’ll learn more about the margin and
padding properties in the next chapter.)

FiGURE 6-18
Using the list-
style-position
property, you can control
the position of bullets
and numbers in a list. The
outside option (left)
emphasizes the “listness”
of your list. Use the
inside option (right) if
you need to maximize the
width of your list.

CHAPteR 6: FORMATTING TEXT 171

STYLING LISTS
Browsers normally display one bulleted item directly above another, but you can
add space between list items using the margin-top or margin-bottom properties
on the particular list items. These properties work for spacing list items exactly the
same way they work for spacing paragraphs, as explained on page 166. You just
need to make sure that the style applies to the tags by creating a class style
and applying it individually to each tag. Or, better yet, create an tag style
or descendant selector. The style should not apply to the or tag. Adding
margins to the top or bottom of those tags simply increases the space between
the entire list and the paragraphs above or below it—not the space between each
item in the list.

Graphic Bullets
If you’re not happy with squares and circles for your bullets, create your own. Us-
ing an image-editing program like Photoshop or Fireworks, you can quickly create
colorful and interesting bullets. Clip art collections and most symbol fonts (like
Webdings) provide great inspiration.

The CSS list-style-image property lets you specify a path to a graphic on your
site, much as you specify a file when adding an image to a page by using the src
attribute of the HTML tag. You use the property like this:

list-style-image: url(images/bullet.gif);

The term url and the parentheses are required. The part inside the parentheses—im-
ages/bullet.gif in this example—is the path to the graphic. Notice that, unlike HTML,
you don’t have to use quotation marks around the path (though you can, if you like).

 NOTE  When specifying a graphic in an external style sheet, the path to the image is relative to the style
sheet file, not the web page. You’ll learn more about how this works in the box on page 237, as you start to use
images with CSS.

While the list-style-image property lets you use a graphic for a bullet, it doesn’t
provide any control over its placement. The bullet may appear too far above or below
the line, requiring you to tweak the bullet graphic until you get it just right. A better
approach—one you’ll learn in Chapter 8—is to use the background-image property.
That property lets you very accurately place a graphic for your bulleted lists.

 NOTE  As with the font property (see the box on page 165), there’s a shorthand method of specifying list
properties. The list-style property can include a value for each of the other list properties—list-style-
image, list-style-position, and list-style-type. For example, ul { list-style: circle
inside; } formats unordered lists with the hollow circle bullet on the inside position. When you include both
a style type and style image—list-style: circle url(images/bullet.gif) inside;—web
browsers use the style type (circle in this example) if the graphic can’t be found.

Css: tHe MIssInG MAnUAL172

TUTORIAL:
TEXT

FORMATTING
IN ACTION

FREQUENTLY ASKED QUESTION

Customizing List Bullets and Numbers
I’d like the numbers in my numbered lists to be bold and red
instead of boring old black. How do I customize bullets and
numbers?

CSS gives you a few ways to customize the markers that appear
before list items. For bullets, you can use your own graphics, as
described previously. The cool, “I’m so CSS-savvy” way is to use
what’s called generated content. Basically, generated content is
just stuff that isn’t actually typed on the page but is added by
the web browser when it displays the page. A good example
is bullets themselves. You don’t type bullet characters when
you create a list; the browser adds them for you. With CSS, you
can have a browser add content, and even style that content,
before each tag. You read about generated content on
page 57, but just so you have the code at hand if you want to
make regular bullets next to the list items red, add this CSS
to your style sheet:

ul li {
 list-style-type: none;

}
ul li:before {
 content: counter(item, disc) " ";
 color: red;
}

And, if you wanted to make the items in a numbered list red,
you can add this CSS:

ol li {
 list-style-type: none;
 counter-increment: item;
}
ol li:before {
 content: counter(item) ". ";
 color: red;
}

For a more in-depth explanation of styling numbered lists
visit http://blog.teamtreehouse.com/customize-ordered-
lists-pseudo-element.

Tutorial: Text Formatting in Action
In this tutorial, you’ll gussy up headlines, lists, and paragraphs of text, using CSS’s
powerful formatting options.

To get started, you need to download the tutorial files from https://github.com/
sawmac/css_mm_4e. Click the tutorial link and download the files. All of the files
are enclosed in a zip archive, so you’ll need to unzip them first. The files for this
tutorial are contained inside the folder named 06.

Setting Up the Page
First, you’ll get your style sheet started, add the @font-face directive to load some
web fonts, and add styles to format the body text.

1. Launch your web browser and open the file 06→text.html (see Figure 6-19).

It’s not much to look at—just a collection of headlines, paragraphs and a lone
bulleted list—but you’ll turn it into something far better looking.

http://blog.teamtreehouse.com/customize-ordered-lists-pseudo-element
http://blog.teamtreehouse.com/customize-ordered-lists-pseudo-element
https://github.com/sawmac/css_mm_4e
https://github.com/sawmac/css_mm_4e

CHAPteR 6: FORMATTING TEXT 173

TUTORIAL:
TEXT

FORMATTING
IN ACTION

2. Open the file text.html in your favorite text editor.

You’ll use a Google font as well as your own font files for this project. Start by
adding a link to a Google font.

FiGURE 6-19
The page begins with
nothing but basic, drab,
HTML.

3. In the <head> of the web page, click directly after the closing </title> tag.
Hit Enter (Return), and then type:

<link href="http://fonts.googleapis.com/css?family=Slabo+27px"
rel="stylesheet">

This line tells Google to send you a font named Slabo 27px—a serif display font.
Next, you’ll link to an external style sheet that will hold the styles for this tutorial.

4. After the <link> tag you just added, type the following line of code:

<link href="css/styles.css" rel="stylesheet">

You’ve linked to an external style sheet in a folder named css. That folder holds
an external style sheet and your web fonts.

5. Open the file css→styles.css. This style sheet has a basic set of reset styles
(see page 109).

If you preview the text.html file in a web browser now, you’ll see that all of the
text on the page (headlines, paragraphs, and so on) looks nearly the same—in
other words, all the basic HTML formatting the browser applied has been re-
moved, so you can start with a clean slate.

Next, you’ll add the necessary @font-face directives to load four web fonts.
Actually, they are all the same font—PTSans—but include the bold, italic, and
bold-italic variants.

Css: tHe MIssInG MAnUAL174

TUTORIAL:
TEXT

FORMATTING
IN ACTION

6. Add the following code to the top of the styles.css file (before the reset
styles). (If you’d rather not type all this code, you can open the at-font-
face.css file in the tutorial folder and just copy and paste that code into
the styles.css file.)

@font-face {
 font-family: 'PTSans';
 src: url('fonts/PTSansRegular.woff2') format('woff2'),

 url('fonts/PTSansRegular.woff') format('woff');
 font-weight: normal;
 font-style: normal;
}
@font-face {
 font-family: 'PTSans';
 src: url('fonts/PTSansItalic.woff2') format('woff2'),
 url('fonts/PTSansItalic.woff') format('woff');
 font-weight: normal;
 font-style: italic;
}
@font-face {
 font-family: 'PTSans';
 src: url('fonts/PTSansBold.woff2') format('woff2'),
 url('fonts/PTSansBold.woff') format('woff');
 font-weight: bold;
 font-style: normal;
}
@font-face {
 font-family: 'PTSans';
 src: url('fonts/PTSansBoldItalic.woff2') format('woff2'),
 url('fonts/PTSansBoldItalic.woff') format('woff');
 font-weight: bold;
 font-style: italic;
}

In a nutshell, you’ve created a new font family named PTSans. You’ll be able to
use it in any new styles you create. You’re using the method described on page
136 to add the bold-italic variants of the font. This method means that whenever
you apply a normal bolded tag to text (like a headline, or the tag), the
browser will automatically swap in the bold version of the font.

You placed the @font-face directive at the beginning of the external style sheet.
That’s not a requirement, though—it just feels neater to put all the fonts at the
top and all of the regular styles after.

Next, you’ll create a style that defines some general properties for all text on
the page.

CHAPteR 6: FORMATTING TEXT 175

TUTORIAL:
TEXT

FORMATTING
IN ACTION

7. At the bottom of the style sheet, after the reset styles, add a new line and
type html {.

This is a basic tag selector that applies to the <html> tag. As discussed in
Chapter 4, other tags inherit the properties of this tag. You can set up some
basic text characteristics like font, color, and font size for later tags to use as
their starting point.

8. Press Enter again, and then add the following two properties:

font-family: PTSans, Arial, sans-serif;
font-size: 62.5%;

These two instructions set the font to PTSans (or Arial if the browser can’t
download PTSans), and the font size to 62.5 percent.

 NOTE  Why set the page’s base font to 62.5 percent? It just so happens that 62.5 percent times 16 pixels
(the normal size of text in most web browsers) equals 10 pixels. With 10 pixels as a starting point, it’s easy to
compute what other text sizes will look like on the screen. For example, 1.5em would be 1.5 x 10 or 15 pixels. 2em
is 20 pixels, and so on—easy multiples of ten. You can also use the rem unit (see page 155), which is similar to
the em, but avoids the problem associated with nested inherited em units.

9. Complete this style by pressing Enter and typing a closing bracket to mark
the end of the style.

At this point, your completed style should look like this:

html {
 font-family: PTSans, Arial, sans-serif;
 font-size: 62.5%;
}

Your style sheet is complete.

10. Save the styles.css file, and open the text.html file in a web browser to
preview your work.

The text on the page changes font…it also gets really small. Don’t worry, that’s the
62.5 percent font size you set in step 8. That’s just the starting point for all text,
and you’ll easily increase the size of text by defining em sizes for the other tags.

Formatting the Headings and Paragraphs
Now that the basic text formatting is done, it’s time to refine the presentation of
the headlines and paragraphs.

1. Return to your text editor and the styles.css file. Click at the end of the clos-
ing brace of the HTML tag selector, add a new line, and then type .main h1 {.

This is a descendant selector (page 50). It provides more specific direction than
a basic HTML tag selector. In this case, the selector tells the web browser “ap-
ply the following formatting to any <h1> tag inside another tag with the class

Css: tHe MIssInG MAnUAL176

TUTORIAL:
TEXT

FORMATTING
IN ACTION

name main.” If you look at the page’s HTML, you’ll see that there’s a <div> tag
with a class of main (<div class="main">). As you’ll learn later, it’s very com-
mon in CSS-based designs to group HTML tags inside of <div> tags. You can
then position individual <div> tags to create columns and other complex page
layouts. It’s also common to use descendant selectors like this one to pinpoint
your formatting choices by affecting just the tags in certain areas of the page.

2. Hit Enter, and then type these three CSS properties:

color: rgb(249,212,120);
font-family: "Arial Black", Arial, Helvetica, sans-serif;
font-size: 4em;

You’ve just changed the color of the <h1> tag as well as the font. This time,
instead of using a web font, you’re specifying a font that visitors must have
installed on their computers. Many computers have Arial Black, but if the one
visiting this page doesn’t, it will fall back to Arial or Helvetica or just a generic
sans serif. You’ve also set the font size to 4em, which for most browsers (unless
the visitor has tweaked his browser’s font settings) comes out to 40 pixels tall.
That’s all thanks to the 62.5% size you set for the body back at step 7. That
smooth move made the base font size 10 pixels tall, so 4 × 10 comes out to 40
pixels. Next you’ll add a text shadow to the headline.

3. Complete this style by hitting Enter, adding the code in bold below (don’t
forget the closing brace):

.main h1 {
 color: rgb(249,212,120);
 font-family: "Arial Black", Arial, Helvetica, sans-serif;
 font-size: 4em;
 text-shadow: 4px 4px 6px rgba(0,0,0,.75);
}

Here, you’ve added a text shadow (page 160), which is offset 4 pixels to the
right, 4 pixels below, and is feathered out 6 pixels. In addition, you’re using the
RGBA color (page 149) to set the shadow to black with 75 percent transparency.

4. Save the file and preview the text.html file in a web browser.

Next, spruce up the appearance of the other headings and paragraphs.

 NOTE  Once a browser opens a file, it saves it in a type of easily accessible storage called a cache. If the
browser needs that same file again, it plucks the cached version instead of wasting time downloading the file
a second time. However, the cache can be a pain when designing locally. The browser may load the old version
of your external style sheet from the cache instead of loading the one with your new changes. If the web page
doesn’t seem to get updated when you update an external style sheet, pressing F5 or Ctrl-Shift-R (c-Shift-R)
will usually force the browser to load the new version of the file.

CHAPteR 6: FORMATTING TEXT 177

TUTORIAL:
TEXT

FORMATTING
IN ACTION

5. Return to your text editor and the styles.css file. Click after the closing brace
of the .main h1 tag, hit Enter, and add the following style:

.main h2 {
 font: normal 3.5em "Slabo 27px", Garamond, Times, serif;
 color: rgb(37,76,143);
 border-bottom: 1px solid rgb(200,200,200);
 margin-top: 25px;

}

Here you have another descendant selector that only applies to <h2> tags inside
another tag with the class main (you’re probably getting the hang of these now).
The font property used here is shorthand that combines the more long-winded
font-weight, font-size, and font-family (see the box on page 165). In other
words, this one line makes the headline bold, 3.5ems tall, and specifies the
Google font you linked to earlier.

In addition, this style adds a decorative border below the headline and a bit of
space between the headline and the tag above it (in other words, it adds some
space between the “CSS The Missing Manual” and the “Exploring Typographic
Possibilities” headlines). You’ll read more about borders and margins in the
next chapter.

Time to tackle more headlines.

6. Add another style below the one you added in the last step:

.main h3 {
 color: rgb(241,47,6);
 font-size: 1.9em;
 font-weight: bold;
 text-transform: uppercase;
 margin-top: 25px;
 margin-bottom: 10px;
}

This style dishes out some of the usual formatting—color, size, boldness—and
also uses the text-transform property (page 157) to make all of the text in the
<h3> headlines uppercase. Finally, it adds a bit of space above and below the
headlines by using the margin properties.

Next, you’ll improve the look of the paragraphs.

7. Add one more style to the page:

.main p {
 font-size: 1.8em;
 line-height: 1.5;
 margin-left: 150px;
 margin-right: 50px;
 margin-bottom: 10px;
}

Css: tHe MIssInG MAnUAL178

TUTORIAL:
TEXT

FORMATTING
IN ACTION

This style introduces the line-height property, which sets the spacing between
lines. The number 1.5 is a multiplier: It calculates the line height by multiplying
the font size (1.75em) and 1.5. Basically, it sets the line height to 1.5x or 150 per-
cent of the font size. This adds a little more space between lines in a paragraph
than you’d normally see in a web browser. This extra breathing room gives the
text a lighter, airier quality and makes the sentences a little easier to read (but
only if you speak Latin).

The style also increases the font size to 1.8em (18 pixels for most browsers) and
indents the paragraph from the left and right edges of the page. You’ll notice
that there’s a lot of typing going on for the margin properties—fortunately, as
you’ll read on page 189 in the next chapter, there’s a margin shortcut property
that requires much less typing to control the four margins of an element.

Time to try out a more advanced selector type.

8. Add the following style to your style sheet:

.main p::first-line {
 font-weight: bold;
 color: rgb(153,153,153);
}

The ::first-line pseudo-element (page 56) affects just the first line of a
paragraph. In this case, just the first line of text for each of the paragraphs
inside the main div will be bold and gray.

9. Save the styles.css file and open the text.html file in a web browser to
preview your work.

At this point, the page should look like Figure 6-20.

Formatting Lists
This page has a single bulleted list. The plan is to move the list over to the right
edge of the page and have the text following it wrap around it. CSS makes this little
trick easy.

1. Return to your text editor and the styles.css file. Add the following style at
the end of the style sheet:

.main ul {
 margin: 50px 0 25px 50px;
 width: 25%;
 float: right;
}

When formatting lists, you’ll usually create styles for two different elements:
the list itself (either the tag for bulleted lists or the tag for numbered
lists) and the individual list items (the tag). This style controls the entire list.

CHAPteR 6: FORMATTING TEXT 179

TUTORIAL:
TEXT

FORMATTING
IN ACTION

FiGURE 6-20
The page is starting
to come together. The
headlines, paragraphs,
and basic text settings are
in place. Depending on
which fonts you have on
your computer, you may
notice slight differences
between your design
and the one pictured
here. For example, if your
computer doesn’t have
Arial Black, the headline,
CSS The Missing Manual,
might not be as bold as is
pictured here.

There are a few things happening in this style. First, the margin property uses the
shorthand method. This one line sets all four margins around the list, replacing
the four individual margin properties (margin-top, margin-right, and so on).
The four values are ordered like this: top, right, bottom, left. So for this style,
50 pixels of space get added above the list, 0 space on the right, 25 pixels on
the bottom, and 50 pixels on the left.

The width property (discussed in detail on page 204) makes the entire list
25% the width of the browser window. If any particular list item has more text
than will fit within that space, it wraps to another line. The float property is the
real magic—in this case, float: right means “move the list over to the right
edge of the page.” This property also causes the text following the list to wrap
around the left side of the list. It’s a cool trick, and you’ll learn a lot more about
floats on page 210.

Css: tHe MIssInG MAnUAL180

TUTORIAL:
TEXT

FORMATTING
IN ACTION

You’ll control the look of the individual list items next.

2. Add one more style to the style sheet:

.main li {
 color: rgb(32,126,191);
 font-size: 1.5em;
 margin-bottom: 7px;
 }

Nothing new here: just changing the color and size and adding space below
each list item. Time to check out your progress.

 NOTE  If you want to add space between list items, you need to add top or bottom margins to the
tag. Adding margins to the or tags simply adds space around the entire list.

3. Save the page and preview it in a web browser.

The page should now look like Figure 6-21.

FiGURE 6-21
The float property
gives you some interest-
ing design options. In
this case, the bulleted
list is floated to the right
edge of the page. In fact,
the float property is
so useful, you’ll see that
it’s the main ingredient
of CSS-based layouts,
like the ones you’ll learn
about in Chapter 12.

CHAPteR 6: FORMATTING TEXT 181

TUTORIAL:
TEXT

FORMATTING
IN ACTION

Fine-Tuning with Classes
Sometimes you want even more control over how a style is applied. For example,
while you might want most paragraphs in one section of the page to look the
same, you might also want one or two paragraphs to have their own unique look.
In this tutorial, the paragraph of text near the top of the page—“November 30 Rod
Dibble”—contains some unique information: a publication date and author. You
want it to stand out from the other paragraphs, so you’ll add a class to the HTML
and create a class style.

1. Open the text.html file in your text editor. Locate the HTML for that para-
graph— <p>november 30 Rod Dibble</p>—and add
class="byline" to the opening <p> tag. The HTML should look like this:

<p class="byline">november 30 Rod Dibble</p>

Now it’s a simple matter of creating a class style that overrides the generic
formatting of the other paragraphs on the page.

2. Open the styles.css file in your text editor. At the bottom of the style sheet,
add a style for that paragraph:

.main .byline {
 font-size: 1.6em;
 margin: 5px 0 25px 50px;
}

This style tweaks the size and placement of just that one paragraph. Note that
if you’d just named that style .byline—a basic class selector—it wouldn’t work.
Thanks to the rules of the cascade described in the last chapter, .byline is less
specific (less powerful) than the .main p style you created in step 7 on page
177, so it wouldn’t be able to override the size and margins specified by .main
p. However, .main .byline is more specific.

That paragraph still needs some work. It would be great if the name stood out
more. The HTML in this case provides just the hook you need.

3. Add another style to the style sheet:

.main .byline strong {
 color: rgb(32,126,191);
 text-transform: uppercase;
 margin-left: 11px;
}

If you look at the HTML in step 1 above, you’ll see that the name—Rod Dibble—is
inside a tag. The tag is used to emphasize text and mark
it as important. But that doesn’t mean you have to let it be bold, the way web
browsers normally display that tag. Instead, this descendant selector targets
the tag, but only when it appears inside another tag with the class

Css: tHe MIssInG MAnUAL182

TUTORIAL:
TEXT

FORMATTING
IN ACTION

.byline, and only if all of that is inside yet another tag with the class main—
whew, that’s pretty specific.

This style turns the text blue, makes it uppercase, and adds a bit of space on
the left side (nudging the name over just a bit from the “November 30” text).

Adding the Finishing Touches
For the last bit of design, you’ll incorporate a few design touches that format the
page and that main div so they both look better. Then you’ll finish up with a cool
bit of text formatting.

1. Return to your text editor and the styles.css file.

First, you’ll add a background color and image to the page.

2. Locate the html style in the external style sheet—the first style that appears
after the CSS reset rules—and add one new property so that it looks like
this (changes are in bold):

html {
 font-family: PTSans, Arial, sans-serif;
 font-size: 62.5%;
 background: rgb(225,238,253) url(../images/bg_body.png) repeat-x;
}

The background property is a powerful tool for any web designer. You’ve already
used it a couple of times in earlier tutorials; it lets you add color and insert and
control the placement of an image to the background of any tag. You’ll learn
the ins and outs of this property on page 231, but for now this line changes the
background color of the page to light blue and adds a dark blue stripe to the
top of the page.

Next you’ll spruce up the main div.

3. Add another style in between the html style and the .main h1 style:

.main {
 max-width: 740px;
 margin: 0 auto;
 padding: 0 10px;
 border: 4px solid white;
 background: transparent url(../images/bg_banner.jpg) no-repeat;
}

In other words, click after the closing } for the html style, hit Enter, and type
the code above. You don’t necessarily have to put the style in that spot for it
to work, but for organizational purposes, putting the style that controls the div
before the other styles that format tags inside that div makes sense.

The max-width property sets a maximum overall width for this div. That is, the
div could shrink to be smaller—great if a visitor is using a screen that’s less than

CHAPteR 6: FORMATTING TEXT 183

TUTORIAL:
TEXT

FORMATTING
IN ACTION

740 pixels wide—but it will never stretch wider than 740 pixels. The margin
property values—0 auto—put 0 pixels of space above and below the div and
set the left and right margins to auto, which centers the div in the middle of
the browser window. The padding property adds space inside the box, pushing
content inside the div away from the border line. Finally, you’ve placed an image
into the background of the div.

Those last two styles didn’t have anything to do with text formatting, but if you
preview the page, you’ll see that they make it look a lot better…except for those
two top headlines. The first headline isn’t bold enough, and the second should
fall below the newly added graphic.

4. Add one last style right after the .main h1 style:

.main h1 strong {
 font-size: 150px;
 color: white;
 line-height: 1;
 margin-right: -.5em;
}

The HTML for the headline looks like this:

<h1>CSS The Missing Manual</h1>

The “CSS” is enclosed inside tags, so this descendant selector formats
only that text (in that sense, it’s like the style you added in step 3 on page 181
that took advantage of a tag embedded within a paragraph). The text
size is pumped way up, its color is changed, and the line height is adjusted so
that it fits inside the top of the page. You’ll notice that the line height is set to
1, so in this case, the line height will translate to 150 pixels—that’s 1 times the
font size of this style.

The one cool trick is the margin-right property, which is set to a negative
value: –.5em. Since a positive margin pushes elements away, a negative margin
actually pulls elements on top of each other. In this case, the rest of the text in
the headline—“The Missing Manual”—is scooted over .5 em, which is .5 times
the font size (150 pixels), on top of the “CSS” text.

 NOTE  Negative margins are perfectly legal (although tricky) CSS.

5. Save the styles.css file and preview the text.html file in a web browser.

It should look like Figure 6-22. You can compare your work to the finished text.
html page located in the 06_finished folder.

Congratulations! You’ve explored many of the text formatting properties offered by
CSS and turned ho-hum HTML into an attractive, attention-getting design. In the

Css: tHe MIssInG MAnUAL184

TUTORIAL:
TEXT

FORMATTING
IN ACTION

next chapter, you’ll explore graphics, borders, margins, and other powerful CSS
design options offered by CSS.

FiGURE 6-22
With a little CSS, you
can turn plain text
into a powerful design
statement that helps
guide readers through the
information on your site.

185

CHAPTER

7

Every HTML tag is surrounded by a world of properties that affect how the tag
appears in a web browser. Some properties—like borders and background
colors—are immediately obvious to the naked eye. Others, though, are invis-

ible—like padding and margin. They provide a bit of empty space on one or more
sides of a tag. By understanding how these properties work, you can create attractive
columns and decorative sidebars and control the space around them (what designers
call white space) so your pages look less cluttered, lighter, and more professional.

Taken together, the CSS properties discussed in this chapter make up one of the
most important concepts in CSS—the box model.

Understanding the Box Model
You probably think of letters, words, and sentences when you think of a paragraph
or headline. You also probably think of a photo, logo, or other picture when you
think of the tag. But a web browser treats these (and all other) tags as little
boxes. To a browser, any tag is a box with something inside it—text, an image, or
even other tags containing other things, as illustrated in Figure 7-1.

Surrounding the content are different properties that make up the box:

• padding is the space between the content and the content’s border. Padding is
what separates a photo from the border that frames the photo.

• border is the line that’s drawn around each edge of the box. You can have a
border around all four sides, on just a single side, or any combination of sides.

 Margins, Padding,
and Borders

Css: tHe MIssInG MAnUAL186

UNDERSTANDING
THE BOX MODEL

• background-color fills the space inside the border, including the padding area.

• margin is what separates one tag from another. The space that commonly ap-
pears between the tops and bottoms of paragraphs of text on a web page, for
example, is the margin.

For a given tag, you can use any or all of these properties in combination. You can
set just a margin for a tag or add a border, margins, and padding. Or you can have
a border and margin but no padding, and so on. If you don’t adjust any of these
properties, then you’ll end up with the browser’s settings, which you may or may not
like. For example, although browsers usually don’t apply either padding or borders
to any tags on a page, some tags (like headings and paragraphs) have a preset top
and bottom margin.

FiGURE 7-1
The CSS box model includes the content inside a
tag (for example, several sentences of text) plus
padding, borders, and margins. The area within
the border, which includes the content and pad-
ding, may also have a background color. Actually,
the background color is drawn underneath the
border, so when you assign a dashed or dotted
border, the background color appears in the gaps
between the dots or dashes.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 187

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

 NOTE  As discussed on page 109, because different browsers apply different amounts of padding and margin
to the same tags, it’s common to “zero-out” padding and margin values for all tags. In other words, use a set
of simple styles—called a CSS reset—to remove padding and margins from HTML tags. Then, when you create
additional styles that add margins and padding, you can be assured that you’ll have a consistent cross-browser
presentation.

Controlling Space with Margins and
Padding

Both margins and padding add space around content. You use these properties to
separate one element from another—for example, to add space between a left-hand
navigation menu and the main page content on the right—or to inject some white
space between content and a border. You may want to move the border away from
the edge of a photo (see Figure 7-2).

FiGURE 7-2
Each photo on this page has a 10-pixel margin,
so the gap separating two photos is 20 pixels.
Padding separates the images from their borders
and exposes a gray background color. You can set
the border, margin, and padding independently
for each edge. Notice the larger padding applied to
the bottom edge of each photo.

Padding and margin function similarly, and unless you apply a border or background
color, you can’t really tell whether the space between two tags is caused by padding
or by a margin. But if you have a border around an element or a background behind
it, then the visual difference between the two properties is significant. Padding adds
space between the content and the border, and keeps the content from appearing
cramped inside the box; it also includes the background area, so the space taken
up by padding might be empty of content (like text or a photo), but it will still be
filled with a background color or image. Margins, on the other hand, add white

Css: tHe MIssInG MAnUAL188

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

space (often called a gutter) between elements, giving the overall look of the page
a lighter appearance.

You can control each side of the margin or padding for an element independently.
Four properties control margin edges: margin-top, margin-right, margin-bottom,
and margin-left. Similarly, four properties control padding: padding-top, padding-
right, padding-bottom, and padding-left. You can use any valid CSS measurement
to define the size of a margin or padding, like so:

margin-right: 20px;
padding-top: 3em;
margin-left: 10%;

Pixels and ems are commonly used and act just as they do with text (see page 151).
A 20-pixel margin adds 20 pixels of space, and 3 ems of padding adds space equal
to 3 times the font size of the styled element.

Percentage values are also commonly used. They let you add margins and padding
that are flexible and change based on the width of the browser window, which makes
them ideal for responsive designs (see Chapter 15).

 NOTE  To remove all the space for a margin or padding, use 0 (margin-top: 0 or padding-bottom:
0, for example). To remove space around all four edges of the browser window—to let a banner or logo or other
page element butt right up to the edge without a gap—give the <body> tag a margin of 0 and a padding of 0:
margin: 0; padding 0;.

POWER USERS’ CLINIC

Margins, Padding, and Percentages
When you use percentages, web browsers calculate the amount
of space based on the width of the containing element. On a
simple web page, the containing element is the body of the
page, and it fills the browser window. In this case, the percent-
age value is based on the width of the browser window at any
given time. Say the window is 760 pixels wide. In that case, a
10% left margin adds 76 pixels of space to the left edge of the
styled element. But if you resize the browser window, then that
value changes. Narrowing the browser window to 600 pixels
changes the margin to 60 pixels (10 percent of 600).

However, the containing element isn’t always the width of
the browser window. As you’ll see in later chapters, when

you create more sophisticated layouts, you can introduce new
elements that help organize your page.

You may want to add a <div> tag to a page in order to group
related content into a sidebar area. (You’ll see an example of
this in the tutorial on page 223.) That sidebar might have a
specified width of 300 pixels. Tags inside the sidebar consider
the <div> tag their containing element. So a tag in the sidebar
with a right margin of 10% will have 30 pixels of empty space
to its right.

To make matters more confusing, top and bottom percentage
values are also calculated based on the width of the containing
element, not its height. So a 20% top margin is 20 percent of
the width of the styled tag’s container.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 189

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

Margin and Padding Shorthand
You’ll frequently want to set all four sides of a style’s margin or padding. But typing
out all four properties (margin-right, margin-left, and so on) for each style gets
tedious. Fear not: You can use the shortcut properties named margin and padding
to set all four properties quickly:

margin: 0 10px 10px 20px;
padding: 10px 5px 5px 10px;

 NOTE  If the value used in a CSS property is 0, then you don’t need to add a unit of measurement. For
example, just type margin: 0; instead of margin: 0px;.

The order in which you specify the four values is important. It must be top, right,
bottom, and left. If you get it wrong, you’ll be in trouble. In fact, the easiest way to
keep the order straight is to remember to stay out of TRouBLe—top, right, bottom,
and left.

If you want to use the same value for all four sides, it’s even easier—just use a single
value. If you want to remove margins from all <h1> tags, you can write this style:

h1 {
 margin: 0;
}

Similarly, use shorthand to add the same amount of space between some content
and its border:

padding: 10px;

 NOTE  When you’re using the same value for both top and bottom and another value for both left and
right, you can use two values. margin: 0 2em; sets the top and bottom margins to 0 and the left and right
margins to 2 ems. Likewise, if the top and bottom margins (or padding) differ, but the left and right remain the
same, you can use three values. For example, margin: 0 2em 1em; sets the top margin to 0, the left and
right margins to 2 ems, and the bottom margin to 1 em.

Colliding Margins
When it comes to CSS, two plus two doesn’t always equal four. You could run into
some bizarre math when the bottom margin of one element touches the top margin
of another. Instead of adding the two margins together, a web browser applies the
larger of the two margins (Figure 7-3, top). Say the bottom margin of an unordered
list is set to 30 pixels, and the top margin of a paragraph following the list is 20
pixels. Instead of adding the two values to create 50 pixels of space between the list
and the paragraph, a web browser uses the largest margin—in this case 30 pixels.
If you don’t want this to happen, then use top or bottom padding instead (Figure
7-3, bottom).

Css: tHe MIssInG MAnUAL190

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

FiGURE 7-3
When two vertical margins meet, the smaller one
collapses. Although the top headline has a bottom
margin of 20 pixels, and the paragraph has a top
margin of 15 pixels, a web browser adds only 20
pixels of space between the two elements. To get
the full 35 pixels’ worth of space that you want, use
padding instead of margins, as shown in the bottom
headline. Here, the heading has 20 pixels of bottom
padding. Those 20 pixels get added to the 15-pixel
top margin of the paragraph to form a 35-pixel gap.

Things get even weirder when one element is inside another element. This situation
can lead to some head-scratching behavior. For example, say you add a “warning”
box to a page (like a div tag to hold a warning message inside it). You add a 20-pixel
top and bottom margin to separate the warning box from the heading above it and
the paragraph of text below it. So far so good.

But say you insert a heading inside the warning box, and to put a little room between
it and the top and bottom of the div, you set the heading’s margin to 10 pixels. You
may think you’re adding 10 pixels of space between the heading and the top and
bottom of the div, but you’d be wrong (Figure 7-4, top). Instead, the margin appears
above the div. In this case, it doesn’t matter how large a margin you apply to the
headline—the margin still appears above the div.

 NOTE  In the lingo of CSS, this phenomenon is known as collapsing margins, meaning two margins actually
become one.

You have two ways around this problem: Either add a small amount of padding
around the <div> tag or add a border to it. Since border and padding sit between
the two margins, the margins no longer touch, and the headline has a little breathing
room (Figure 7-4, bottom).

 NOTE  Horizontal (left and right) margins and margins between floating elements don’t collapse in this way.
Absolutely and relatively positioned elements—which you’ll learn about in Chapter 15—don’t collapse either.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 191

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

Removing Space with Negative Margins
Most measurements in CSS have to be a positive value—after all, what would text
that’s negative 20 pixels tall (or short) look like? Padding also has to be a positive
value. But CSS allows for many creative techniques using negative margins.

FiGURE 7-4
Holy shrinking margins, Batman! Top:
Whenever vertical margins touch, even
when one element is inside another ele-
ment (like the <h2> tag inside this div),
the margins collapse. Bottom: To solve this
dilemma, add a little padding or a border
around the containing element (1 pixel of
top and bottom padding on the <div>,
in this case).

Instead of adding space between a tag and elements around it, a negative margin
removes space. So you can have a paragraph of text overlap a headline, poke out
of its containing element (a sidebar or other layout <div>), or even disappear off
an edge of the browser window. And, hey, you can even do something useful with
negative margins.

Even when you set the margins between two headlines to 0, there’s still a little space
between the text of the headlines (thanks to the text’s line height, as described on
page 163). That’s usually a good thing, since it’s hard to read sentences that bunch
together and touch. But, used in moderation, tightening the space between two
headlines can produce some interesting effects. The second headline of Figure
7-5 (the one that begins “Raise Tuna”) has a top margin of –10px applied to it. This
moves the headline up 10 pixels so it slightly overlaps the space occupied by the
headline above it. Also, the left and right borders of the “Extra! Extra!” headline
actually touch the letters of the larger headline.

You can also use a negative margin to simulate negative padding. In the third headline
of Figure 7-5, the one that begins with “The Extraordinary Technique,” a line appears
directly under the text. This line is actually the top border for the paragraph that
follows. (You’ll learn how to add borders on page 194.) But because that paragraph
has a negative top margin, the border moves up and under the headline. Notice how

Css: tHe MIssInG MAnUAL192

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

the descending tail for the letter Q in the headline actually hangs below the border.
Since padding—the space between content (like that letter Q) and a border—can’t
be negative, you can’t move a bottom border up over text or any other content. But
you get the same effect by applying a border to the following element and using a
negative margin to move it up.

FiGURE 7-5
In this example, to make the last
paragraph’s top border look like
it’s actually the bottom border for
the headline above it, add a little
padding to the paragraph. Around
5 pixels of top padding moves the
paragraph down from the border,
while 4ems of left padding indents
the paragraph’s text, still allowing
the top border to extend to the left
edge.

 TIP  You can actually use a negative top margin on the paragraph or a negative bottom margin on the
headline. Both have the same effect of moving the paragraph up close to the headline.

Inline, Block, and Other Display Settings
Although web browsers treat every tag as a kind of box, not all boxes are alike. CSS
has two different types of boxes—block boxes and inline boxes—that correspond
to the two types of tags—block-level and inline tags.

A block-level tag creates a break before and after it. The <p> tag, for example, creates
a block that’s separated from tags above and below. Headlines, <div> tags, tables,
lists, and list items are other examples of block-level tags.

Inline tags don’t create a break before or after them. They appear on the same
line as the content and tags beside them. The tag is an inline tag. A word
formatted with this tag happily sits next to other text—even text wrapped in other
inline tags like . In fact, it would look pretty weird if you emphasized a single
word in the middle of a paragraph with the tag and that word suddenly
appeared on its own line by itself. Other inline tags are for adding images, <a>
for creating links, and the various tags used to create form fields.

In most cases, CSS works the same for inline boxes and block boxes. You can style
the font, color, and background and add borders to both types of boxes. However,

CHAPteR 7: MARGINS, PADDING, AND BORDERS 193

CONTROLLING
SPACE WITH

MARGINS AND
PADDING

when it comes to margins and padding, browsers treat inline boxes differently. Al-
though you can add space to the left or right of an inline element using either left
or right padding or left or right margins, you can’t increase the height of the inline
element with top or bottom padding or margins. In the top paragraph in Figure
7-6, the inline element is styled with borders, a background color, and 20 pixels of
margin on all four sides. But the browser only adds space to the left and right sides
of the inline element.

FiGURE 7-6
Adding top or bottom margins
and padding doesn’t make an
inline element any taller, so you
can run into some weird format-
ting. In the middle paragraph,
the background and borders of
a link overlap the text above
and below. The background
appears on top of the line
before the styled inline text, but
underneath the line following it
because the browser treats each
line as if it’s stacked on top of
the previous line. Normally, that
isn’t a problem since lines of
text don’t usually overlap. If you
want top and bottom margins
and padding to work for an
inline element, you can use the
display:inline-block
instruction (bottom). This leaves
the item inline, but treats it
like a box so padding, margins,
borders, and width and height
are all applied (and obeyed).

 NOTE  One exception to the rule that inline elements don’t get taller when padding or margins are added
is the tag (even though it’s an inline tag). Web browsers correctly expand the height of the image’s box
to accommodate any padding and margins you add.

At times, you may wish an inline element behaved more like a block-level element
and vice versa. Bulleted lists present each item as its own block—each list item is
stacked above the next. You may want to change that behavior so the list items ap-
pear side by side, all on a single line, as in a navigation bar (you can see an example
of one in Figure 9-4 on page 290). Finally, you may want to treat an inline element
like a block-level element. Maybe you want an image embedded in a paragraph to
be on its own line, with space above and below.

Css: tHe MIssInG MAnUAL194

ADDING
BORDERS

Fortunately, CSS includes a property that lets you do just that—the display property.
With it, you can make a block-level element act like an inline element:

display: inline;

Or you can make an inline element, like an image or link, behave like a block-level
element:

display: block;

Finally, you can make an element act both like a block and an inline element. The
inline-block setting makes an element sit on the same line as tags on either side
of it, but also makes the element obey top and bottom margin and padding settings
as well as height settings:

display: inline-block;

 NOTE  The display property has a myriad of possible options, some of which don’t work in all browsers.
The inline-block value works in current browsers (see Figure 7-6). Another value, none, works in most
browsers and has many uses. It does one simple thing—completely hides the styled element so it doesn’t appear
in a web browser. With a dab of JavaScript programming, you can make an element hidden in this way instantly
become visible, simply by changing its display back to either inline or block. You can even make an element
with a display of none suddenly appear using CSS.

Adding Borders
A border is simply a line that runs around an element. As shown back in Figure 7-1,
it sits between any padding and margins you set. A border around every edge can
frame an image or mark the boundaries of a banner or other page element. But
borders don’t necessarily have to create a full box around your content. While you
can add a border to all four edges, you can just as easily add a border to just the
bottom or any combination of sides. This flexibility lets you add design elements
that don’t necessarily feel like a border. For example, add a border to the left of an
element, make it around 1em thick, and it looks like a square bullet. A single border
under a paragraph can function just like the <hr> (horizontal rule) by providing a
visual separator between sections of a page.

You control three different properties of each border: color, width, and style. The
color can be any of the CSS color values discussed starting on page 148, such as a
hexadecimal number, a keyword, or an RGB (or RGBA) value. A border’s width is
the thickness of the line used to draw the border. You can use any CSS measure-
ment type (except percentages) or the keywords thin, medium, and thick. The most
common and easily understood method is pixels.

Finally, the style controls the type of line drawn. There are many different styles, as
you can see in Figure 7-7. You specify the style with a keyword. For example, solid
draws a solid line and dashed creates a line made up of dashes. CSS offers these

CHAPteR 7: MARGINS, PADDING, AND BORDERS 195

ADDING
BORDERS

styles: solid, dotted, dashed, double, groove, ridge, inset, outset, none, and hidden.
(None and hidden work the same way: They remove the border entirely. The none
value is useful for turning off a single border.)

FiGURE 7-7
CSS offers nine different
border styles. Solid is the
plainest, but if you want
to go for other visual
effects, you can make
the border dotted or
dashed, or simulate a 3D
frame with the groove,
ridge, inset, and
outset values. You can
even apply a different
border style to each side
of the element, with a
solid top border and dot-
ted borders on the other
three sides.

Border Property Shorthand
If you’ve ever seen a list of the different border properties available in CSS, you may
think borders are really complex. After all, there are 20 different border properties,
which you’ll meet in the following sections, plus a couple that apply to tables. But
all these properties are merely variations on a theme that provide different ways
of controlling the same three properties—color, width, and style—for each of the
four borders. The most basic and straightforward property is border, which simply
adds four borders:

border: 4px solid rgb(255,0,0);

Css: tHe MIssInG MAnUAL196

ADDING
BORDERS

The above style creates a solid, red, 4-pixel border. You can use this property to
create a basic frame around a picture, navigation bar, or other item that you want
to appear as a self-contained box.

 NOTE  The order in which you write the properties doesn’t matter: border: 4px solid
rgb(255,0,0); works as well as border: rgb(255,0,0) solid 4px;.

Formatting Individual Borders
You can control each border individually using the appropriate property: border-
top, border-bottom, border-left, or border-right. These properties work just like
the regular border property, but they control just one side. The following property
declaration adds a 2-pixel, red, dashed line below the style:

border-bottom: 2px dashed red;

You can combine the border property with one of the edge-specific properties
like border-left to define the basic box for the entire style but customize a single
border. Say you want the top, left, and right sides of a paragraph to have the same
type of border, but you want the bottom border to look slightly different. You can
write four lines of CSS, like this:

border-top: 2px solid black;
border-left: 2px solid black;
border-right: 2px solid black;
border-bottom: 4px dashed #333;

Or, you can achieve the same effect as the previous four lines of CSS with just two
lines:

border: 2px solid black;
border-bottom: 4px dashed #333;

The first line of code defines the basic look of all four borders, and the second line
redefines just the look of the bottom border. Not only is it easier to write two lines
of CSS instead of four, but it also makes changing the style easier. If you want to
change the color of the top, left, and right borders to red, then you only have to edit
a single line, instead of three:

border: 2px solid red;
border-bottom: 4px dashed #333;

When you use this shortcut method—defining the basic look of all four borders us-
ing the border property and then overriding the look of a single border with one of
the edge-specific properties like border-left—it’s crucial that you write the code
in a specific order. The more general, global border setting must come first, and the
edge-specific setting second, like so:

border: 2px solid black;
border-bottom: 4px dashed #333;

CHAPteR 7: MARGINS, PADDING, AND BORDERS 197

ADDING
BORDERS

Because the border-bottom property appears second, it overrides the setting of the
border property. If the border-bottom line came before the border property, then
it would be cancelled out by the border property, and all four borders would be
identical. The last property listed can overrule any related properties listed above
it. This behavior is an example of the CSS cascade you read about in Chapter 5.

You can also use this shortcut method to turn off the display of a single border with
the none keyword. Say you want to put a border around three sides of a style (top,
left, and bottom) but no border on the last side (right). Just two lines of code get
you the look you’re after:

border: 2px inset #FFCC33;
border-right: none;

The ability to subtly tweak the different sides of each border is the reason there
are so many different border properties. The remaining 15 properties let you define
individual colors, styles, and widths for the border and for each border side. For
example, you could rewrite border: 2px double #FFCC33; like this:

border-width: 2px;
border-style: double;
border-color: #FFCC33;

Since you’re using three lines of code instead of one, you’ll probably want to avoid
this method. However, each border edge has its own set of three properties, which
are helpful for overriding just one border property for a single border edge. The
right border has these three properties: border-right-width, border-right-style,
and border-right-color. The left, top, and bottom borders have similarly named
properties—border-left-width, border-left-style, and so on.

You can change the width of just a single border like this: border-right-width: 4px;.
One nice thing about this approach is that if you later decide the border should be
solid, you need to edit only the generic border property by changing dashed to solid.

In addition, you can specify individual values for each side of the border by us-
ing the border-width, border-style, and border-color properties. For example,
border-width: 10px 5px 15px 13px; applies four different widths to each (top,
right, bottom, and left) side.

Imagine that you want to have a 2-pixel, dashed border around the four edges of
a style, but you want each border to be a different color. (Perhaps you’re doing a
website for kids.) Here’s a quick way to do that:

border: 2px dashed;
border-color: green yellow red blue;

This set of rules creates a 2-pixel dashed border around all four edges, while mak-
ing the top edge green, the right edge yellow, the bottom edge red, and the left
edge blue.

Css: tHe MIssInG MAnUAL198

COLORING THE
BACKGROUND

 NOTE  You usually add padding whenever you use borders. Padding provides space between the border and
any content, such as text, images, or other tags. Unless you want to put a border around an image, borderlines
usually sit too close to the content without padding.

Coloring the Background
It’s a cinch to add a background to an entire page, an individual headline, or any
other page element. Use the background-color property followed by any of the valid
color choices described starting on page 148. If you want, add a shockingly bright
green to the background of a page with this line of code:

body { background-color: rgb(109,218,63); }

Alternatively, you can create a class style named, say, .review with the background-
color property defined, and then apply the class to the <body> tag in the HTML, like
so: <body class="review">.

 NOTE  You can also place an image in the background of a page and control that image’s placement in many
different ways. You’ll explore that in the next chapter. In addition, you can add a color gradient to the background
of any element, another cool trick that you’ll learn in the next chapter.

Background colors come in handy for creating many different visual effects. You
can create a bold-looking headline by setting its background to a dark color and its
text to a light color. Background colors are also a great way to set off part of a page
like a navigation bar, banner, or sidebar.

And, don’t forget about the RGBA color method described on page 149. With it, you
can make the background partially transparent, letting underlying colors, textures, or
images from other objects show through. For example, you can set the background
color of the page to a tan color. Then, say you want a <div> tag inside that to be a
lighter shade of that tan. Instead of placing a solid color in the background of that
div, you can add the color white and then control the opacity of that color, so that
various degrees of the tan color show through:

body {
 background-color: rgb(247,226,155);
}
.special-div {
 background-color: rgba(255,255,255,.75);
}

CHAPteR 7: MARGINS, PADDING, AND BORDERS 199

CREATING
ROUNDED
CORNERS

 NOTE  When you use background colors and borders, keep the following in mind: If the border style is either
dotted or dashed (see Figure 7-7), the background color shows in the empty spaces between the dots or dashes.
In other words, web browsers actually paint the background color under the borderline. However, you can get
around that behavior by using the background-clip property and setting its value to padding-box like
this:

background-clip: padding-box;

Creating Rounded Corners
As mentioned earlier, web browsers treat all elements as stark rectangular boxes.
That becomes obvious when you put a border around a paragraph or div. Fortunately,
you can soften the hard edges of those boxes by adding a rounded corner to your
styles (see Figure 7-8). CSS includes the border-radius property to let designers
add curves to one or more corners of an element. At its simplest, the border-radius
property accepts a single value, which it then applies to all four corners of an element:

.specialBox {
 background-color: red;
 border-radius: 20px;
}

The browser uses the supplied radius value to draw a circle at each corner of the
element. The value equals the distance from the center of the circle to its edge—its
radius—as pictured in Figure 7-9. Pixels and ems are the most common measure-
ments you’ll use, but you can use percentages as well (though they behave a little
differently than you might expect, as discussed in Figure 7-9).

FiGURE 7-8
CSS lets you apply rounded
corners to any element.
Make sure you have a
background color or border
on the element, or else you
won’t be able to see any of
that awesome rounded-
ness.

With a single value, the browser draws the same radius for each corner of the ele-
ment. For example, the top-left image in Figure 7-8 uses the following declaration:

border-radius: 30px;

Css: tHe MIssInG MAnUAL200

CREATING
ROUNDED
CORNERS

However, you’re not limited to the same value for each corner. You can supply sepa-
rate values for each corner by providing four values. For example, the top-right box
in Figure 7-8 has four different corners. The declaration is:

border-radius: 0 30px 10px 5px;

The numbers start at the top-left of the box and work their way around clockwise.
In other words, the first value (0 in the example in Figure 7-8) applies to the top-
left, the second (30px) to the top-right, the third (10px) to the bottom-right, and
the fourth (5px) to the bottom-left corner. You can also supply just two values, in
which case the first number applies to the top-left and bottom-right corners, while
the second number applies to the top-right and bottom-left corners.

FiGURE 7-9
You can create either circular corners (top) or elliptical corners
(bottom) by supplying either a single value—border-radius:
20px—or a combination of two values separated by /—border-
radius: 40px/20px;. If you use a single percentage value, you’ll
most likely end up with an elliptical corner. That’s because the browser
calculates the horizontal radius by using a percentage of the element’s
width, and the vertical radius, using a percentage of the element’s
height. So, if you write something like border-radius: 20%,
unless the element is a perfect square, the browser will calculate an
elliptical corner more like this: border-radius: 20px/40px;.

In addition to the perfectly round (that is, circular) corners you’ve seen so far, it’s
also possible to apply an elliptical corner, like the ones in the two bottom examples
in Figure 7-8. An elliptical path requires two radius values: The first is the radius from
the center of the path to one of the left or right edges, while the second number
is the distance from the center of the path to one of the top or bottom edges. For
example, to add corners like the one pictured in the bottom-left corner in Figure
7-8, you’d create this declaration:

border-radius: 40px/20px ;

The 40px value is the horizontal radius; the 20px value is the vertical radius. The slash
between them lets a browser know that you’re creating an elliptical path. You can
make all four corners have different oblong shapes by providing four values for each
radius of the ellipsis. This is a bit confusing: You first provide the four values for the
horizontal radius of each corner (starting in the top-left corner); then a forward slash
(/) followed by four values for the vertical radius of each corner, like this:

border-radius: 40px 10px 20px 10px / 20px 30px 40px 20px;

CHAPteR 7: MARGINS, PADDING, AND BORDERS 201

ADDING DROP
SHADOWS

To mix and match elliptical and circular corners you need to use this same syntax.
Circular corners will have the same horizontal and vertical radii:

border-radius: 10px 10px 20px 10px / 10px 30px 40px 10px;

Finally, if you want to go the longhand route, you can use separate properties to
define the appearance of each corner. For example:

border-radius: 1em 2em 1.5em .75em;

can also be written as:

border-top-left-radius: 1em;
border-top-right-radius: 2em;
border-bottom-right-radius: 1.5em;
border-bottom-left-radius: .75em;

 NOTE  Internet Explorer versions 8 and earlier don’t understand the border-radius property, so they’ll
display square corners instead.

Adding Drop Shadows
As you read on page 160, you can create subtle (or not so subtle) drop shadows
to text to make it pop from the page. The box-shadow property lets you add drop
shadows to an element’s bounding box so you can, for example, make a <div> ap-
pear to float above the page (see Figure 7-10). There are a few more options than
with the text-shadow property. For example, you can make a shadow appear inside
the box as at the bottom in Figure 7-10.

The basic syntax for the box-shadow property is pictured in Figure 7-11. The first value
is a horizontal offset; that is, this value moves the shadow to the element’s right or
the left. A positive number moves the shadow to the right (Figure 7-10, top), and a
negative number moves the shadow to the left.

The second value is the vertical offset—the position of the shadow either above
or below the element. A positive element positions the shadow below the bottom
edge of the box (Figure 7-10, top), while a negative value moves the shadow above
the top edge of the box.

 NOTE  You must use pixels or ems for the drop shadow values. Percentages will not work.

Css: tHe MIssInG MAnUAL202

ADDING DROP
SHADOWS

FiGURE 7-10
The box-shadow property lets you
add shadows to your elements
to make them appear as though
they’re floating above the page.
This property works in most current
browsers, including Internet Explorer
9. Unfortunately, IE9 draws the shad-
ows noticeably thinner than do other
browsers. In addition, IE8 and earlier
simply ignore the property and won’t
draw any shadows on elements.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 203

ADDING DROP
SHADOWS

The third value is the radius of the shadow. It determines how blurry and wide the
shadow is. A value of 0 creates no blur, so the edges of the shadow are sharp. A
large value creates more blur and a thicker shadow. Finally, the last value is the drop
shadow’s color. You can use any CSS color value, but RGBA values look particularly
good since you can control the color’s opacity to make it appear more translucent
and shadow-like.

FiGURE 7-11
The most basic drop shadow
positions a colored shadow
either to the left (using a
negative value as pictured
here) or right (positive value)
and above the top (negative
value) or below the bottom
(positive value) of the ele-
ment, and blurs the shadow
with a specified blur radius.

The box-shadow property includes two optional values: inset and a spread value.
The inset keyword tells a browser to draw the shadow inside the box (Figure 7-10,
bottom). Simply add inset as the first value of the box-shadow property to create
an inset shadow:

box-shadow: inset 4px 4px 8px rgba(0,0,0,.75);

You can also add a spread as a fourth value (between the shadow radius and shadow
color). The spread expands the shadow by the specified amount. In other words,
if you add a spread value of 10px, a browser expands the shadow 10 pixels in each
direction (basically making it 20 pixels wider and 20 pixels taller). The value also
dictates when the blur radius is applied; when you add a spread value, the blurring
of the shadow doesn’t begin until after the spread value is applied. This is particu-
larly useful when you want to add a shadow around the entire element—what a lot
of image-editing programs call glow.

box-shadow: 2px 2px 10px #000000;

For example, at the second-from-top box in Figure 7-10, both the horizontal and
vertical offsets are set to 0; the shadow radius is 8px; and the spread is 2px. The
spread value pushes the shadow outward 2 pixels on all four sides of the box, and
then the 8 pixels of shadow radius extends the blurring another 8 pixels. You can
even use the spread value to create a second, different-colored border around an
existing border. Here’s an example of that:

Css: tHe MIssInG MAnUAL204

DETERMINING
HEIGHT AND

WIDTH
border: 10px solid rgb(100,255,30);
box-shadow: 0 0 0 10px rgb(0,33,255);

Finally, you can even apply multiple shadows to a style (Figure 7-10, second from
bottom). Just add a comma after the first set of shadow settings, and then add
another shadow:

box-shadow: 10px 5px 8px #FF00FF,
 -5px -10px 20px 5px rgb(0,33,255);

You can add as many shadows as you want (and as common design sense allows).

 NOTE  Drop shadows can force browsers to do a lot of re-rendering and redrawing. Use drop shadows
carefully, and make sure you test the performance of pages with drop shadows in mobile devices, which lack the
powerful CPUs of a desktop or laptop computer.

Determining Height and Width
Two other CSS properties that form part of the CSS box model are useful for assign-
ing dimensions to an object, such as a table, column, banner, or sidebar. The height
and width properties assign a height and width to the content area of a style. You’ll
use these properties often when building the kinds of CSS layouts described in Part
Three of this book, but they’re also useful for more basic design chores like assigning
the width to a table, creating a simple sidebar, or creating a gallery of thumbnail
images (like the one described in the steps on page 266).

Adding these properties to a style is very easy. Just type the property followed by
any of the CSS measurement systems you’ve already encountered. For example:

width: 300px;

width: 30%;
height: 20em;

Pixels are, well, pixels. They’re simple to understand and easy to use. They also
create an exact width or height that doesn’t change. An em is the same as the text
size for the styled element. Say you set the text size to 24px; an em for that style is
24px, so if you set the width to 2em, then it would be 2 x 24 or 48 pixels. If you don’t
set a text size in the style, the em is based on the inherited text size (see page 152).

For the width property, percentage values are based on the percentage of the width
of the style’s containing element. If you set the width of a headline to 75% and that
headline isn’t inside any other elements with a set width, then the headline will be
75 percent of the width of the browser window. If the visitor adjusts the size of his
browser, then the width of the headline will change. However, if the headline is
contained inside a div (maybe to create a column) that’s 200 pixels wide, the width
of that headline will be 150 pixels. Percentage values for the height property work
similarly, but are based on the containing element’s height, instead of width.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 205

DETERMINING
HEIGHT AND

WIDTH
Calculating a Box’s Actual Width and Height
While the width and height properties seem pretty straightforward, there are a
few nuances that can throw you for a loop. First of all, there’s a difference between
the value you set for a style’s width and height and the amount of space that a web
browser actually uses to display the style’s box. The width and height properties
set the width and height of the content area of the style—the place where the text,
images, or other nested tags sit. (See Figure 7-1 for a refresher on where the content
area sits within the overall box model.) The actual width—that is, the amount of
screen real estate given by the web browser—is the total of the widths of the margins,
borders, padding, and width properties, as illustrated in Figure 7-12.

Say you’ve set the following properties:

width: 100px;
padding: 15px;
border-width: 5px;
margin: 10px;

When the width property is set, you always know how much room is allocated just
for your content—the words and images that fill the space—regardless of any other
properties you may set. You don’t need to do any math because the value of the
width property is the room for your content (in the previous example, 100 pixels). Of
course, you do have to perform a little math when you’re trying to figure out exactly
how much space an element will take up on a web page. In the preceding example,
the width that a web browser allocates for the style’s box is 160 pixels: 20 pixels for
the left and right margins, 10 pixels for the left and right borders, 30 pixels for the
left and right padding, and 100 pixels for the width.

FiGURE 7-12
Calculate the actual width of a styled
element’s box by adding up its margin,
border, padding, and width properties.
The height occupied on the screen by the ele-
ment is calculated in the same way—the total
of the height property, the top and bottom
margins, the top and bottom borders, and the
top and bottom padding.

Css: tHe MIssInG MAnUAL206

DETERMINING
HEIGHT AND

WIDTH
The general rule of thumb for setting heights on page elements is don’t! A lot of bud-
ding CSS designers try to set heights on everything in an attempt to get pixel-perfect
control. But unless you’re totally sure of the exact dimensions of the content inside
a tag, you can run into some unwanted results (see Figure 7-13). In this example, a
pull-quote box used to highlight an interesting comment from an article has a set
width and height of 100 pixels. When more text than fits into the 100-pixel height is
added to the box, its contents spill out the bottom. Even if you make sure that the
text you put inside a box with a fixed height fits, if a visitor increases the font size
in her browser, the text might resize to a height larger than the box.

The height property is useful for controlling the height of a div containing images,
for example, because you can correctly determine the height of the images; how-
ever, if you use the height for elements that have text, make sure to not only test
your pages in the major browsers, but also test the page with different font sizes
by increasing the font size in the web browser.

 TIP  The banner area of a page is another good candidate for a set height. Usually, the banner has limited
content: a logo, search box, maybe some navigation buttons. Frequently, banners have a fair amount of white
space (empty areas that help draw a visitor’s attention to the key elements in the banner like the navigation
bar), so specifying a height for a banner doesn’t usually cause problems.

FiGURE 7-13
When you set the height of an element
(like the right sidebar div here), but the
content inside is taller than the element,
browsers simply let the content spill out
the bottom of the element below its
edges.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 207

DETERMINING
HEIGHT AND

WIDTH
Redefining Box Width with Box-Sizing
As mentioned on page 205, web browsers traditionally calculate the width of an
element by adding together the border, padding, and width properties. Not only
does this force you to (heaven forbid) do math to figure out an element’s actual
display width, it can cause other problems as well. This is especially true when you
create float-based layouts using percentages. You’ll learn the details of float layouts
later in this book, but in a nutshell, CSS lets you place elements side by side using
the float property, which lets you create multiple column layouts.

When using percentages with multiple columns, you can run into some weird prob-
lems. Say you have two columns (really, two tags, such as <div> tags), and you want
each to be 50 percent of the width of the window. So you set the two columns to
a width of 50%; however, the moment you add padding or a border to one of the
columns, you’ll increase its width to more than 50% (to be exact, it will be 50% plus
the amount of left and right padding and the width of the left and right borders). In
most cases, this will force the second column to drop below the first.

Fortunately, CSS offers a property that lets you change how a browser calculates
the screen width (and height) of an element. The box-sizing property provides
three options:

• The content-box option is the way browsers have always defined the screen
width and height of an element, as described on page 205. That is, the browser
adds the border widths and padding thicknesses to the values set for the width
and height properties to determine the tag’s onscreen width and height. Since
this is the default behavior, you don’t need to specify anything for content-box.

• The padding-box option tells a browser that when you set a style’s width or
height property, it should include the padding as part of that value. For ex-
ample, say you give an element 20 pixels of left and right padding and set the
width of the element to 100 pixels. The browser will consider the padding part
of that 100-pixel value. In other words, the content area will be only 60 pixels
wide (100 – 20 [left padding] – 20 [right padding]).

• The border-box value includes both the padding and the border thickness as
part of the width and height values. This setting solves the problem of using
percentage values for widths discussed above. For example, with the box-
sizing property set to border-box, when you set an element’s width to 50%,
that element will take up 50 percent of the space, even if you add padding and
borders to that element.

If you don’t like the standard way browsers calculate element widths and heights,
go with the border-box value. (Unless, of course, you have some unusual reason
why you’d want to include the padding but not the border as part of the calcula-
tion.) To use the box-sizing property, simply supply one of the three values from
the list. For example:

box-sizing: border-box;

Css: tHe MIssInG MAnUAL208

DETERMINING
HEIGHT AND

WIDTH
Many web designers find the border-box setting so useful that they create a universal
selector (page 49) style to apply it to every element on a page:

* {
 box-sizing: border-box;
}

As you’ll read on page 416, the border-box property is very useful in overcoming
common problems with certain types of CSS.

Controlling the Tap with the Overflow Property
When the content inside a styled tag is larger than the style’s defined width and
height, some weird things happen. As shown in Figure 7-13, browsers let the content
spill out of the box (past the borders and often over other content).

Fortunately, you can control what a browser should do in this situation with the
overflow property. Overflow accepts four keywords that control how content that
overflows the edges of a box should be displayed:

• visible. This option is what browsers do normally. It’s the same as not setting
the property at all (Figure 7-14, top).

• scroll. Lets you add scroll bars (Figure 7-14, middle). It creates a kind of mini-
browser window in your page and looks similar to old-school HTML frames,
or the HTML <iframe> tag. You can use scroll to provide a lot of content in a
small amount of space. Unfortunately, scroll bars always appear when you use
this option, even if the content fits within the box.

• auto. To make scroll bars optional, use the auto option. It does the same thing
as scroll but adds scroll bars only when needed.

• hidden. Hides any content that extends outside the box (Figure 7-14, bottom).
This option is a bit dangerous—it can make some content disappear from the
page.

Maximum and Minimum Heights and Widths
In case you haven’t yet realized it, CSS offers a lot of flexibility. In addition to the
standard width and height properties, you’ll find four variations:

• The max-width property, not surprisingly, sets the maximum width for an ele-
ment. That element can be thinner than the setting, but it can’t be any wider
than that setting. This option comes in handy when you want your page to
resize to fit different display widths, but you don’t want the page to get so
wide that it’s too hard to read on a really large monitor. For example, say you
add this style to a page:

body {
 max-width: 1200px;
}

CHAPteR 7: MARGINS, PADDING, AND BORDERS 209

DETERMINING
HEIGHT AND

WIDTH
This style lets the page reflow to fit the width of smaller displays like smart-
phones and tablets. But on a really large desktop monitor, the page won’t get
wider than 1200 pixels, so the page can’t grow unreadably wide.

FiGURE 7-14
The overflow property gives you three basic ways to deal with
text that doesn’t fit inside a box: visible displays the content
anyway (top); scroll and auto add scroll bars (middle); and
hidden just doesn’t show anything that doesn’t fit (bottom).

Css: tHe MIssInG MAnUAL210

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

• The max-height property works much like max-width, except it’s for the element’s
height. As mentioned on page 206, however, it’s usually best not to mess with
the height of an element.

• The min-width property sets an element’s minimum width. The element can
stretch wider than the minimum width value, but it can never get thinner. If, for
example, you notice that when you resize your browser window, the element’s
so thin that the layout falls apart, you can set a minimum width like this:

body {
 min-width: 760px;
}

If a visitor shrinks his browser window so it’s only 500 pixels wide, then the
browser will add a scrollbar rather than let the elements on the page get too
narrow.

• The min-height property works like min-width, except for height. This prop-
erty can solve the problem pictured in Figure 7-13. With a minimum height,
you’re telling a web browser to make the element at least a certain height. If
the content inside the element is taller, then the browser will make the entire
element taller as well.

Wrapping Content with Floating Elements
HTML normally flows from the top of the browser window down to the bottom, one
headline, paragraph, or block-level element on top of another. This word-processor–
like display is visually boring (Figure 7-15, top), but with CSS, you’re far from stuck
with it. You’ll learn lots of new methods for arranging items on a web page in Part
3, but you can spice up your pages plenty with one little CSS property—float.

The float property moves an element to either the left or right. In the process, con-
tent below the floated element moves up and wraps around the float (Figure 7-15,
bottom). Floating elements are ideal for moving supplemental information out of
the way of the page’s main text. Images can move to either edge, letting text wrap
elegantly around them. Similarly, you can shuttle a sidebar of related information
and links off to one side.

Although you can use floats in some complex (and confusing) ways, as you’ll see in
Chapter 13, the basic property is very simple. It takes one of three keywords—left,
right or none—like so:

float: left;

• left. Slides the styled element to the left while content below wraps around
the right side of the element.

• right. Slides the element to the right.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 211

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

• none. Turns off the float and returns the object to its normal position. This prop-
erty represents the element’s normal behavior, so you’ll only set this property if
you want to override a left or right float that’s applied from another style. (See
Chapter 5 for rules about how multiple styles interact.)

FiGURE 7-15
The regular flow of HTML is left to right, top
to bottom, with one block-level element—
headline, paragraph, div, and so on—stacked
on top of the next. By letting you break up
this uniformity, the float property is one
of CSS’s most powerful tools. Its uses range
from simply moving an image to one side
of a paragraph to providing complete layout
control over banners, sidebars, navigation
bars, and other page elements.

Css: tHe MIssInG MAnUAL212

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

Floated elements move to the left or right edge of their containing element. In
some cases, this just means that the element moves to the left or right edge of the
browser window. However, if you float an element that’s inside another tag with a
set width or position on a web page, then the float will go to the left or right edge
of that tag—the floated element’s “container.” For example, you may have a box
on the page whose width is 30 percent of the browser window. That box is floated
to the right edge of the browser window. Inside that box, you’ve got an image that
floats to the left. That image slides to the left edge of that box—not the left edge
of the browser window.

You can even use the float property with an inline element, such as the tag.
In fact, floating a photo to the left or right using CSS is a very common use of the
float property. A web browser treats a floated inline element just like a block-level
element, so you don’t run into the problems with padding and margin that normally
trouble inline elements (see page 192).

You can also float a block-level element like a headline or paragraph. A common
technique is to float a <div> tag (or one of the HTML5 elements like <article>,
<section>, or <aside>) containing other HTML tags and page content to create a
kind of containing box. In this way, you can create sidebars, pull quotes, and other
self-contained page elements. (You’ll see an example of this in this chapter’s tuto-
rial.) When you float block-level elements, you should also set the width property
for that element (in fact, CSS rules require setting the width for floated elements for
all tags except images). This way, you can control how much horizontal space the
block takes up and how much space is available for the content below it to move
up and wrap around the block.

 NOTE  The source order—the order in which you write your HTML—has a big impact on the display of floated
elements. The HTML for the floated tag must appear before the HTML of any content that wraps around the floated
element. Say you’ve created a web page composed of an <h1> tag followed by a <p> tag. Toward the end of
that <p> tag, you’ve also inserted a photo using the tag. If you float that photo to the right, say, then
the <h1> tag and most of the content inside that <p> tag will still appear above the photo; only content that
follows the tag will wrap around the left side of the image.

Backgrounds, Borders, and Floats
To the frustration of many web designers, backgrounds and borders don’t react to
floated elements the same way content does. Say you float an element—a sidebar for
example—to the right. The content below the sidebar moves up and wraps around
it, just as it should. But if that content has a background or border set on it, then
that background or border actually appears underneath the floated sidebar (Figure
7-16, left). In essence, a web browser wraps the text around the float, but not the
border or background. Believe it or not, this is absolutely kosher and (according to
the rules) how it’s supposed to work. Of course, you may not want to follow these
rules; you might want to have the border or background stop when it reaches the
floated element (Figure 7-16, right). With a little CSS magic, you can do it.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 213

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

First, you need to add one rule to the style that has background or borders running
underneath the float. Once you locate the style, add this line: overflow: hidden;.
The overflow property (page 407) makes any background or border that extends
underneath the float disappear.

Another approach is to add a borderline around the floated element; when you make
the borderline thick enough and match its color to the background color of the page,
the border looks just like empty space—even though it’s covering and hiding the
background color and borderlines that are extending below it.

FiGURE 7-16
In this example, there’s
an <h1> tag with a
background color and
an <h2> tag with a
border (left). Adding
overflow: hidden;
to the style for the <h1>
tag (right) prevents the
headline from appearing
under the floating ele-
ment (sidebar).

Stopping the Float
Sometimes you need a way to tell a tag to ignore a floated element. For example,
you may have a copyright notice that should always appear at the bottom of the
browser window. If you have a particularly tall sidebar that’s floated to the left side
of the page, the copyright notice might actually be drawn up the page and wrap
around the float. Instead of appearing at the bottom of the page, the copyright is
sitting farther up the page next to the sidebar. You want the copyright notice part of
your page to refuse to wrap around the floated element and instead drop below it.

Other problems occur when you have several floated items close together. If the
floated items aren’t very wide, they float up and next to each other, and if they’re
of varying heights they can get into an unattractive logjam (see Figure 7-17, top). In
this case, the floated elements shouldn’t float next to each other. CSS provides the
clear property for just these types of problems.

The clear property instructs an element to not wrap around a floated item. By
clearing an element, you essentially force it to drop down below the floated item.
Also, you can control which type of float (left or right) is cleared or force a style to
simply ignore both types of floats.

Css: tHe MIssInG MAnUAL214

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

The clear property accepts the following options:

• left. The style will drop below elements that are floated left, but will still wrap
around right-floated objects.

• right. Forces a drop below right-floated objects, but still wraps around left-
floated objects.

• both. Forces a drop below both left- and right-floated elements.

• none. Turns off clearing altogether. In other words, it makes an item wrap around
both left- and right-floated objects, which is how web browsers normally work.

In the case of a copyright notice that must appear at the bottom of the page, you’d
want it to clear both left- and right-floated objects—it should always be below other
content, and should never wrap to the left or right of any other item. Here’s a class
style that would do just that:

.copyright {
 clear: both;
}

Figure 7-17 shows how the clear property can prevent floated items of varying
heights from clumping together. All three photos in that figure have a right float
applied to them. In the top figure, the photo of the tomatoes (1) is the first image
on the page and appears at the far right edge. The second image (2) obeys the float
set on the first image and wraps up to the left of it. The last photo (3) is too wide
to sit next to the second photo (2) but still tries to wrap around both (1) and (2). It
gets stuck in the process.

Using clear: right; on the images prevents the photos from sitting next to each
other (Figure 7-17, bottom). The clear applied to the second photo prevents it from
wrapping up next to the first image, while the last image’s right clear property
forces it to appear below the second image.

 NOTE  This business of left floats, right floats, and how to clear them sounds complicated—and it is. This
section gives you a basic introduction. You’ll see the subject again in Chapter 13 and eventually learn how to use
floats in more sophisticated ways.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 215

WRAPPING
CONTENT WITH

FLOATING
ELEMENTS

FiGURE 7-17
Top: Sometimes you don’t want an element to wrap around a
floated object. Bottom: Applying the clear property (in this
case clear: right;) to each image prevents them from
sitting next to each other. The clear applied to photo (2) pre-
vents it from wrapping up next to image (1). Applying clear:
right; to photo (3) forces it to appear below photo (2).

Css: tHe MIssInG MAnUAL216

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS Tutorial: Margins, Backgrounds, and

Borders
In this tutorial, you’ll explore elements of the CSS box model, adjust the spacing
around objects on a page, add colorful borders to items on a page, and control the
size and flow of page elements.

To get started, you need to download the tutorial files located on this book’s com-
panion website at https://github.com/sawmac/css_mm_4e. Click the tutorial link
and download the files. (All of the files are enclosed in a zip archive.

See detailed instructions for unzipping the files on the website.) The files for this
tutorial are contained inside the 07 folder.

Controlling Page Margins and Backgrounds
You’ll start with a very basic HTML file containing an internal style sheet with a basic
CSS reset style. It’s not much to look at right now (see Figure 7-18).

FiGURE 7-18
This web page is
barebones HTML, with a
single style that removes
much of the built-in web
browser styling. It’ll look
a lot better with a box
model makeover.

https://github.com/sawmac/css_mm_4e

CHAPteR 7: MARGINS, PADDING, AND BORDERS 217

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

 NOTE  For a sneak preview of the final result, check out Figure 7-21.

1. In your favorite text editor, open 07→main.css.

This style sheet is already linked to the index.html file, so the styles you add here
will apply to that web page. The styles here (the same set of styles discussed on
page 109) basically remove all margins, padding, and font size from the most
common block-level elements and eliminate many of the cross-browser display
problems you’ll encounter related to these properties.

Probably the most important properties are the margin and padding settings
in the first style. There’s enough cross-browser weirdness related to those two
properties that many designers zero them out and start fresh. Another common
alternative is a style sheet that eliminates cross-browser display differences, but
still keeps some basic margins in place: normalize.css (http://necolas.github.io/
normalize.css/) is one common choice.

You’ll start with something simple: a background color.

2. At the bottom of the main.css file, click directly after the CSS comment /* end
reset styles */ and add a tag selector style:

html {
 background-color: rgb(253,248,171);
}

This style adds a light yellow background color to the page. If you want to color
the background of a web page, you can add the background-color property to
either the <html> tag or the <body> tag. Next, you’ll add some margins, borders,
and other properties to the <body> tag.

 NOTE  You may be used to using hexadecimal colors (like #FDF8AB) instead of RGB colors. You can use
a tool like the online convertor at www.colorhexa.com to convert between the two. Using RGB is a good idea
because RGBA colors, with their optional transparency (page 149), are so useful, and it’s easier to just stick with
one color model (RGB) instead of mixing two (RGB and hex).

3. Add another style to the style sheet:

body {
 background-color: rgb(255,255,255);
 border: 3px solid rgb(75,75,75);
}

This style adds a white background color to the <body> tag and a 3-pixel dark
gray border. Because the <body> tag sits inside the <html> tag, a web browser
considers it to be “on top” of the <html> tag, so the white background will cover
the yellow color you added in the previous step. Next you’ll give the <body> tag
a width and adjust its padding and margins.

http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/
http://www.colorhexa.com

Css: tHe MIssInG MAnUAL218

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

 TIP  Normally, if you add a background color property to the <body> tag, that color fills the entire browser
window; however, if you also add a background color to the <html> tag, the body’s background color fills only
the area that has content. To see this in action, just preview the web page after completing step 4 above; then
delete the html tag style, and preview the page again. A weird, but useful, bit of CSS trivia.

4. Edit the body style you just created by adding five new properties (changes
are in bold):

body {
 background-color: rgb(255,255,255);
 border: 3px solid rgb(75,75,75);
 max-width: 760px;
 margin-top: 20px;
 margin-left: auto;
 margin-right: auto;
 padding: 15px;
}

The max-width property constrains the body so that it never gets more than 760
pixels wide: If a visitor’s browser window is wider than 760 pixels, then he’ll see
the background color from the html style and a 760-pixel box with the white
background of the <body> tag. However, the browser window can get smaller
than that, and the body will then shrink to fit the window, which makes viewing
the page on a small tablet or phone easier.

The margin-top property adds 20 pixels of space from the browser window’s
top edge—nudging the <body> tag down just a bit—while the left and right
margin settings center the body in the middle of the browser window. “Auto”
is just another way of telling a browser, “You figure it out,” and since that auto
value is applied to both the left and right margins, a browser simply provides
equal space on the left and right side.

 NOTE  You could also use the margin shorthand property (page 189) to condense those three lines of
margin settings to just one, like this:

margin: 20px auto 0 auto;

Finally, to keep the content inside the <body> tag from touching the border
line, 15 pixels of space are added to the inside of the body by using the padding
property—in other words, the image and text are indented 15 pixels from all four
edges. Next, you’ll add a glow around the box using the box-shadow property.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 219

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

5. Edit the body style you just created by adding one last property after the
border but before the width (changes are in bold):

body {
 background-color: rgb(255,255,255);
 border: 3px solid rgb(75,75,75);
 box-shadow: 0 0 15px 5px rgba(44,82,100,.75);
 max-width: 760px;

 margin-top: 20px;
 margin-left: auto;
 margin-right: auto;
 padding: 15px;
}

This style adds a glow to the box by creating a 15-pixel shadow placed directly
behind the box (the 0 0 part at the beginning indicates that the shadow isn’t
offset to the left/right or top/bottom; it’s simply in the background). The 5px
value is the spread value (page 203), and it pushes the shadow out 5 pixels
around all four edges. Finally, the rgba value sets the color to a dark blue that’s
only 75 percent solid (that is, you can see through to the background yellow).

Your style sheet is pretty far along, and you’re ready to check the page.

6. Save the file and preview the page in a web browser.

You should see a white box with an image, a bunch of text, and a gray outline
with a bluish glow floating in a sea of yellow (see Figure 7-19). The text needs
some loving attention. You’ll take care of that next.

Adjusting the Space Around Tags
Since the CSS reset styles pretty much stripped the text on this page of all format-
ting, you’ll need to create styles to make the headings and paragraphs look great.
You’ll start with the <h1> tag at the top of the page.

1. Return to your text editor and the main.css file. Click at the end of the clos-
ing brace of the <body> tag selector, press Enter (Return) to create a new
line, and then add the following style:

h1 {
 font-size: 2.75em;
 font-family: Georgia, “Times New Roman”, Times, serif;
 font-weight: normal;
 text-align: center;
 letter-spacing: 1px;
 color: rgb(133,161,16);
 text-transform: uppercase;
}

Css: tHe MIssInG MAnUAL220

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

This style uses many of the text-formatting properties discussed in the previ-
ous chapter—the top headline is 2.75 ems tall (44 pixels in most browsers) and
all uppercase, uses the Georgia font, and has a green color, with a little space
between each letter. The text-align property makes sure the text is centered
in the middle of the box. The real fun is adding a background color to really
highlight the headline.

FiGURE 7-19
Setting the left and
right margins to auto
for any element with
a set width centers it.
In this case, setting a
width for the body and
adding margin-left:
auto; and margin-
right: auto; places
it smack dab in the center
of the browser window.
Unfortunately, to center
an element vertically
(with equal space above
and below it) you need to
use something more than
margin properties. For a
great overview of vertical
(and horizontal) centering
tricks, check out https://
css-tricks.com/centering-
css-complete-guide/.

 TIP  Save the file and preview it in a web browser after each step in this tutorial. That way, you’ll get a better
understanding of how these CSS properties affect the elements they format. You may need to press the Ctrl or
c key as you reload the web page to force the browser to reload the main.css file and not use the version that
the browser stored in its cache. (See page 25 for more on how a browser’s cache works).

https://css-tricks.com/centering-css-complete-guide/
https://css-tricks.com/centering-css-complete-guide/
https://css-tricks.com/centering-css-complete-guide/

CHAPteR 7: MARGINS, PADDING, AND BORDERS 221

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

2. Add one new property to the h1 tag style so that it looks like this (changes
in bold):

h1 {
 font-size: 2.75em;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-weight: normal;
 text-align: center;

 letter-spacing: 1px;
 color: rgb(133,161,16);
 text-transform: uppercase;
 background-color: rgb(226,235,180);
}

If you preview the page now, you’ll see that the headline has a light green back-
ground. When applied to a block-level element like a headline, the background
fills the entire horizontal space available (in other words, the color doesn’t just
sit behind the text “The Amazing World of CSS,” but extends all the way to the
right edge of the box).

The headline text is a little cramped—the “T” that begins the headline touches
the edge of the background. With a little padding, you can fix this.

3. Add another property to the h1 tag style so that it looks like this (changes
in bold):

h1 {
 font-size: 2.75em;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-weight: normal;
 text-align: center;
 letter-spacing: 1px;
 color: rgb(133,161,16);
 text-transform: uppercase;
 background-color: rgb(226,235,180);
 padding: 5px 15px 2px 15px;
}

The padding shorthand property provides a concise way to add padding around
all four sides of the content—in this case, 5 pixels of space are added above
the text, 15 pixels to the right, 2 pixels to the bottom, and 15 pixels to the left.

There’s one other problem with the headline: Because of the padding added to
the <body> tag (see step 4 on page 218), the headline (including its background
color) is indented 15 pixels from the left and right edges of the gray border
surrounding the body. The headline would look better if its background color
touched the gray border. No problem; negative margins to the rescue.

Css: tHe MIssInG MAnUAL222

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

4. Add one last property to the h1 tag style so that it looks like this (changes
in bold):

h1 {
 font-size: 2.75em;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-weight: normal;
 text-align: center;

 letter-spacing: 1px;
 color: rgb(133,161,16);
 text-transform: uppercase;
 background-color: rgb(226,235,180);
 padding: 5px 15px 2px 15px;
 margin: 0 -15px 20px -15px;
}

Here, the margin shorthand sets the top margin to 0, the right margin to –15
pixels, the bottom margin to 20 pixels, and the left margin to –15 pixels. The
bottom margin just adds a bit of space between the headline and the paragraph
that follows. The next trick is the use of negative values for the left and right
margins. You can assign a negative margin to any element. This property pulls
the element out toward the direction of the margin—in this case, the headline
extends 15 pixels to the left and 15 pixels to the right, actually expanding the
headline and pulling it out over the <body> tag’s padding.

5. Now, you’ll add some formatting of the <h2> tags. Add the following style
after the h1 tag style:

h2 {
 font-size: 1.5em;
 font-family: "Arial Narrow", Arial, Helvetica, sans-serif;
 color: rgb(249,107,24);
 border-top: 2px dotted rgb(141,165,22);
 border-bottom: 2px dotted rgb(141,165,22);
 padding-top: 5px;
 padding-bottom: 5px;
 margin: 15px 0 5px 0;
}

This style adds some basic text formatting and a dotted border above and below
the headline. To add a bit of space between the headline text and the lines, it
puts a small bit of padding at the top and bottom. Finally, the margin property
adds 15 pixels above the headline and 5 pixels below it.

6. Save the file and preview the page in a web browser.

The headlines are looking good (see Figure 7-20). Next, you’ll create a sidebar
on the right side of the page.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 223

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

FiGURE 7-20
With just a few styles,
you can add background
colors, control margins
throughout the page,
and adjust the space
between headlines and
paragraphs.

Building a Sidebar
Sidebars are common elements in most types of print publications like magazines,
books, and newspapers. They compartmentalize and highlight small chunks of in-
formation like a resource list, contact information, or a related anecdote. But to be
effective, sidebars shouldn’t interrupt the flow of the main story. They should, like
the name says, sit unobtrusively off to one side, which you can easily make happen
with CSS.

Css: tHe MIssInG MAnUAL224

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

1. Return to your text editor and open the index.html file.

First, you must isolate the region of the page that makes up the sidebar. The
<div> tag is the perfect tool. You can enclose any amount of HTML into its own
self-contained chunk by wrapping it in a <div> tag.

2. Scroll down the page into the HTML and click before the first <h2> tag (the
one with the “NOTE” headline). Then type <div class="sidebar">, and
press Enter (Return).

This HTML marks the beginning of the sidebar and applies a class to it. You’ll
create the .sidebar class style soon, but first you need to indicate the end of
the sidebar by closing the <div>.

3. Click after the closing </p> tag that immediately follows the <h2> tag (this is
the </p> that appears just before <h2>Who Knew CSS Had Such Power?</h2>).
Press Enter, and then type </div>.

You’ve just wrapped a headline and paragraph inside a <div> tag. Next, you’ll
create a style for it.

4. Return to the main.css file. Add the following style below the h2 style you
created earlier:

.sidebar {
 width: 30%;
 float: right;
 margin: 10px;
}

This style sets the width of the content area (where the text appears) to 30
percent. In this case, the sidebar’s width is 30 percent of the width of the con-
tainer. The container is the <body> tag and its width will be up to 760 pixels (see
step 4 on page 18.) The float property moves the sidebar to the right side of
the box, and the margin property adds 10 pixels of space around the sidebar.

If you preview the page in a browser, you’ll see that the basic shape and place-
ment of the sidebar are set, but there’s one problem: The borders from the <h2>
tags appear underneath the box. Even though the floated sidebar moves the text
of the headlines out of the way, floats don’t displace borders or backgrounds.
Those just appear right under the floated sidebar. One way to fix this problem is
to simply add a background color to the sidebar, so you can’t see the h2 borders.
(There’s another technique, as well, which you’ll use in step 9 on page 226.)

5. Add two other properties to the .sidebar style so it looks like this (changes
in bold):

.sidebar {
 width: 30%;
 float: right;
 margin: 10px;

CHAPteR 7: MARGINS, PADDING, AND BORDERS 225

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

 background-color: rgb(250,235,199);
 padding: 10px 20px;
}

These properties add a light orangish color to the sidebar and indents the text
from the sidebar’s edges so it won’t touch the borders you’re about to add.

6. Add two more properties to the .sidebar style so it looks like this (changes
in bold):

.sidebar {
 width: 30%;
 float: right;
 margin: 10px;
 background-color: rgb(250,235,199);
 padding: 10px 20px;
 border: 1px dotted rgb(252,101,18);
 border-top: 20px solid rgb(252,101,18);
}

Here’s an example of the handy technique described on page 197. If you want
most of the borders around an element to be the same, you can first define a
border for all four edges—in this case a 1-pixel, dotted, orange line around the
entire sidebar—and then supply new border properties for the specific edges
you want changed—in this example, the top border will be 20 pixels tall and
solid. This technique lets you use just two lines of CSS code instead of four
(border-top, border-bottom, border-left, and border-right).

Next, you’ll add rounded corners and a drop shadow to really make this sidebar
stand out.

7. Finally, add two more properties to the .sidebar style so it looks like this
(changes in bold):

.sidebar {
 width: 30%;
 float: right;
 margin: 10px;
 background-color: rgb(250,235,199);
 padding: 10px 20px;
 border: 1px dotted rgb(252,101,18);
 border-top: 20px solid rgb(252,101,18);
 border-radius: 10px;
 box-shadow: 5px 5px 10px rgba(0,0,0,.5);
}

The border-radius property (page 199) lets you create rounded corners. In this
case, the 10-pixel setting provides a prominent-looking curve. The box-shadow
property here adds a drop shadow below and to the right of the box, making it
look as though it’s floating above the page. You’re almost done.

Css: tHe MIssInG MAnUAL226

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

The headline inside the sidebar doesn’t look quite right. It uses the same prop-
erties as the other <h2> tags (because of the h2 tag style you created in step
4). The border is distracting and the top margin pushes the headline down too
much from the top of the sidebar. Fortunately, you can use a descendant selec-
tor to override those properties.

8. After the .sidebar style, in the main.css style sheet, add a descendant
selector:

.sidebar h2 {
 border: none;
 margin-top: 0;
 padding: 0;
}

Because of the .sidebar, this style is more powerful—that is, it has greater
specificity as described on page 102—than the basic h2 style. It erases the border
from the original h2 tag style, along with the top margin and all the padding.
However, since this style doesn’t have a font size, color, or font family, those
properties from the h2 style still apply—it’s the cascade in action!

The page is looking good, but the borders on the <h2> tags still run up to and
behind the sidebar. That just doesn’t look good, but you can fix it easily.

9. Locate the <h2> style and add the overflow property, like so:

h2 {
 font-size: 1.5em;
 font-family: "Arial Narrow", Arial, Helvetica, sans-serif;
 color: rgb(249,107,24);
 border-top: 2px dotted rgb(141,165,22);
 border-bottom: 2px dotted rgb(141,165,22);
 padding-top: 5px;
 padding-bottom: 5px;
 margin: 15px 0 5px 0;
 overflow: hidden;
}

Setting the overflow property to hidden hides the borders that pass beyond
the headline text and under the floating element.

10. Save the file and preview the web page in a browser.

The page should look like Figure 7-21.

CHAPteR 7: MARGINS, PADDING, AND BORDERS 227

TUTORIAL:
MARGINS,

BACKGROUNDS,
AND BORDERS

FiGURE 7-21
A handful of CSS styles
add design elegance to
ho-hum HTML. Notice how
the floated sidebar both
attracts attention and
moves it out of the way of
the main body of text.

Going Further
To try out your newfound skills, try this exercise on your own: Create a p tag style
to add some pizzazz to the paragraphs on the page—try out some margin settings,
font color, and so on. Next, create a class style for formatting the copyright notice
that appears at the bottom of the index.html page (called, say, .copyright). In this
style, add a border above the copyright notice, change its text color, shrink its font
size, and change the type to uppercase. (Hint: Use the text-transform property
discussed on page 157.) After you’ve created the style, add the appropriate class
attribute to the <p> tag in the HTML.

229

CHAPTER

8

No matter how much you gussy up your text or fiddle with borders and mar-
gins, nothing affects the appearance of your site more than the images you
add to it. And once again, CSS gives you more image control than HTML ever

dreamed of. You can work with graphics in CSS on two fronts: the tag and
the background-image property (which lets you place an image in the background
of any tag on a page).

This chapter delves into some of the creative ways you can deploy images with CSS.
The best way to learn how to use graphics in CSS is to see them in action, so this
chapter has three—count ’em, three—tutorials. By creating a photo gallery web page
and using images for overall page styling, you’ll be an image-slinging pro in no time.

Discovering CSS and the Tag
The venerable tag has been the workhorse of photo-heavy websites since the
beginning of the World Wide Web. Even sites without photos use it to add logos,
navigation buttons, and illustrations. While CSS doesn’t have any properties specifi-
cally aimed at formatting images, you can take advantage of the CSS properties
you’ve already learned to enhance your site’s graphics. For example, the border
property is a quick and simple way to frame an image or unify the look of a gallery
of photos. Here’s a rundown of the CSS properties most commonly used with images:

 Adding Graphics
to Web Pages

Css: tHe MIssInG MAnUAL230

DISCOVERING
CSS AND THE

 TAG
• Borders. Use one of the many border properties (page 194) to frame an image.

You’ll see an example of this in the tutorial on page 261. Since each border side
can be a different color, style, and width, you’ve got lots of creative options.

• Padding. The padding property (page 187) adds space between a border and
an image. By putting a little breathing room between a photo and its frame,
padding simulates the fiberboard mat that’s used in traditional picture frames
to surround and offset the image. And by setting a background color, you can
even change the color of the mat.

• Float. Floating an image moves it to either the left or right edge of the page,
or—if the image is contained in another layout element such as a sidebar—to
the left or right edge of the image’s containing element. Text and other page
elements then wrap around the image. You can even float multiple images to
create a flexible, multi-row image gallery. You’ll see an example of this technique
in the tutorial on page 266.

• Margins. To add space between an image and other page content, use the
margin property. When you float an image, the text that wraps around it is usu-
ally uncomfortably close to the image. Adding a left margin (for right-floated
images) or right margin (for left-floated images) adds space between text and
the graphic.

• Border-radius. The border-radius property (which you learned about on page
199) lets you round the corners of elements, including images. It lets you take
a rectangular photo and display it as if it has rounded, not square, corners.

In most cases, you won’t create a style for the tag itself. Formatting this tag
is using too broad a brush, since it formats all images on your page—even those
with very different functions, such as the logo, navigation buttons, photos, and even
graphic ads. You wouldn’t, after all, want the same black frame around all of those
images. Instead, you should use a class style, such as .galleryImage or .logo, to
apply the style selectively.

Another approach is to use a descendant selector to target images grouped together
in one section of a page. If you have a gallery of photos, you can place all the photos
inside a <div> tag with a class name of gallery, and then create a style for just the
images inside that <div>, like this: .gallery img.

 TIP  Set the border-radius property to 50% to make an image appear to be circular. For example, you can
create a class named round and apply it to any images you’d like to appear as circles:

.round { border-radius: 50%; }

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 231

ADDING
BACKGROUND

IMAGESAdding Background Images
The background-image property is the key to making visually stunning websites. Learn
how to use it and its cousin properties, and you can make your site stand head and
shoulders above the rest. For an example of the power of background images, check
out www.csszengarden.com (Figure 8-1). The HTML for both the pages shown in
Figure 8-1 is exactly the same; the most striking visual differences are accomplished
by using different background images. How’s that for CSS power?

If you’ve built a few websites, you’ve probably used an image for the background
of a page—perhaps a small graphic that repeats in the background of the browser
window creating a (hopefully) subtle pattern. That time-honored HTML method used
the <body> tag’s background attribute. But CSS does the same job better.

 NOTE  In the next few pages, you’ll meet three background image properties by learning the individual CSS
code for each one. Later in the chapter, you’ll learn a shorthand method that’ll save you a lot of typing.

The background-image property adds a graphic to the background of an element.
To put an image in the background of a web page, you can create a style for the
<body> tag:

body {
 background-image: url(images/bg.png);
}

The property takes one value: the keyword url, followed by a path to the graphic file
enclosed in parentheses. You can use an absolute URL like this—url(http://www.
cosmofarmer.com/image/bg.png)—or a document- or root-relative path like these:

url(../images/bg.png) /* document-relative */
url(/images/bg.png) /* root-relative */

As explained in the box on page 237, document-relative paths provide directions
in relation to the style sheet file, not the HTML page you’re styling. These will be
one and the same, of course, if you’re using an internal style sheet, but you need
to keep this point in mind if you’re using an external style sheet. Say you’ve got a
folder named styles (containing the site’s style sheets) and a folder named images
(holding the site’s images). Both these folders are located in the site’s main folder
along with the home page (Figure 8-2). When a visitor views the home page, the
external style sheet is also loaded (step 1 in Figure 8-2). Now, say the external style
sheet includes a style for the <body> tag with the background image property set to
use the graphic file bg.png in the images folder. The document-relative path would
lead from the style sheet to the graphic (step 2 in Figure 8-2). In other words, the
style would look like this:

body {
 background-image: url(../images/bg.png);
}

http://www.csszengarden.com

Css: tHe MIssInG MAnUAL232

ADDING
BACKGROUND

IMAGES
This path breaks down like this: ../ means “go up one level” (that is, up to the folder
containing the styles folder); images/ means “go to the images folder”; and bg.png
specifies that file.

FiGURE 8-1
CSSzengarden.com showcases
the power of CSS by demonstrat-
ing how you can transform a
single HTML file into two utterly
different-looking pages. The real
secret to making each of the
wonderful designs look unique is
the extensive use of background
images. (In fact, when you look
at these pages’ HTML code, you’ll
see there isn’t a single
tag in it.)

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 233

ADDING
BACKGROUND

IMAGES

UP TO SPEED

GIFs, JPEGs, PNGs, and SVGs: The Graphics of the Web
Computer graphics come in hundreds of different file formats,
with a mind-numbing assortment of acronyms: JPEG, GIF, TIFF,
SVG, PNG, PICT, BMP, EPS, and so on.

Fortunately, graphics on the Web are a bit simpler. Today’s
web browsers work with three main bitmap graphics formats:
GIF, JPEG, and PNG, each of which provides good compression.
Through clever computer manipulation, compression reduces
the graphic’s file size so it can travel more rapidly across the
Internet. Which you choose depends on the image you wish
to add to your page.

GIF (Graphics Interchange Format) files provide good com-
pression for images that have areas of solid color: logos,
text, simple banners, and so on. GIFs also offer single-color
transparency, meaning that you can make one color in the
graphic disappear, permitting the background of a web page
to show through part of the image. In addition, GIFs can include
simple animations.

A GIF image can contain a maximum of only 256 shades, how-
ever, which generally makes photos look posterized (patchy
and unrealistically colored, like a poster). In other words, that
radiant sunset photo you took with your digital camera won’t
look so good as a GIF. (If you don’t need to animate an image,
the PNG8 format discussed later is a better choice than GIF.)

JPEG (Joint Photographic Experts Group) graphics, on the other
hand, pick up where GIFs leave off. JPEG graphics can contain
millions of different colors, making them ideal for photos. Not
only do JPEGs do a better job on photos, they also compress
multicolored images much better than GIFs, because the JPEG
compression algorithm considers how the human eye perceives
different adjacent color values. JPEG is the format many cam-
eras use to save photos. When your graphics software saves a
JPEG file, it runs a complex color analysis to lower the amount
of data required to accurately represent the image. On the
downside, JPEG compression makes text and large areas of
solid color look blotchy.

Finally, the PNG (Portable Network Graphics) format includes
the best features of GIFs and JPEGs, but you need to know which
version of PNG to use for which situation. PNG8 is basically a
replacement for GIF. Like GIF, it offers 256 colors and basic
one-color transparency. However, PNG8 usually compresses
images to a slightly smaller file size than GIF, so PNG8 images
download a tiny bit faster than the same image saved in the
GIF format. In other words, use PNG8 over GIF.

PNG24 and PNG32 (which is basically PNG24 with alpha trans-
parency) offer the expanded color palette of JPEG images,
without any loss of quality. This means that photos saved as
PNG24 or PNG32 tend to be higher quality than JPEGs. But before
you jump on the PNG bandwagon, JPEG images do offer very
good quality and a much smaller file size than either PNG24 or
PNG32. In general, JPEG is a better choice for photos and other
images that include lots of colors.

Finally, PNG32 offers one feature that no other format does: 256
levels of transparency (also called alpha transparency), which
means that you can actually see the background of a web page
through a drop shadow on a graphic, or even make a graphic
that has 50 percent opacity (meaning you can see through it)
to create a ghostly translucent effect.

One more graphic format, SVG, is different from PNG, GIF, and
JPEG, in that it’s not a bitmapped image. Instead of being
composed of tiny little pixels placed side by side and row upon
row to create an image, SVG (or Scalable Vector Graphic), is
defined by a set of mathematical instructions that describe
how to draw the image on the screen. SVG and other vector
format files aren’t suitable photos or pictures, but instead are
used for line art graphics like logos and icons. You can use
Adobe Illustrator or a similar drawing program to create SVG
files. The benefit of these files is that they are generally small
in file size, but can be scaled up to any size and retain their
sharpness and clarity. For a good list of SVG resources, visit:
https://css-tricks.com/mega-list-svg-information/.

https://css-tricks.com/mega-list-svg-information/

Css: tHe MIssInG MAnUAL234

CONTROLLING
REPETITION

In the examples so far, the path isn’t enclosed in quotes as in HTML, but quotes are
fine, too. In CSS, all three of the following code lines are kosher:

background-image: url(images/bg.png);
background-image: url(“images/bg.png”);
background-image: url(‘images/bg.png’);

 NOTE  You can use SVG files as background images in all browsers except Internet Explorer 8. Just store the
SVG file on your site and reference it like any other graphic file:

background-image: url(images/icon.svg);

FiGURE 8-2
Document-relative paths are calculated in relation to the style sheet,
not the web page being styled.

Controlling Repetition
If you use the background-image property by itself, the graphic always tiles, filling
up the entire background of a web page. Fortunately, you can use the background-
repeat property to specify how (or if) an image tiles:

background-repeat: no-repeat;

The property accepts four values: repeat, no-repeat, repeat-x, and repeat-y:

• repeat is the normal setting for background images that you want to display from left
to right and top to bottom until the entire space is filled with a graphic (Figure 8-3).

• no-repeat displays the image a single time, without tiling or repetition. It’s a
very common option, and you’ll frequently use it when placing images into the
background of tags other than <body>. You can use it to place a logo in the upper
corner of a page or to use custom graphics for bullets in lists, to name a couple
of examples. (You’ll see the bullet example in action in the tutorial on page 274.)

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 235

CONTROLLING
REPETITION

• repeat-x repeats an image horizontally along the x-axis (the horizontal width of
the page, if your geometry is rusty). It’s perfect for adding a graphical banner
to the top of a web page (Figure 8-4, left) or a decorative border along the top
or bottom of a headline.

FiGURE 8-3
Be careful when tiling
images in the background
of a web page. Choose
an image without a lot of
contrast that tiles seam-
lessly (left). An image
with too much contrast
(right), makes text hard
to read.

• repeat-y repeats an image vertically along the y-axis (the vertical length of
the page). You can use this setting to add a graphic sidebar to a page (Figure
8-4, right) or to add a repeating drop shadow to either side of a page element
(like a sidebar).

FiGURE 8-4
Add graphic backgrounds
to the banners and
sidebars of a page by
taking advantage of the
tiling control offered by
the repeat-x (left)
and repeat-y (right)
options.

Css: tHe MIssInG MAnUAL236

POSITIONING A
BACKGROUND

IMAGE
• round tiles an image like the repeat option, but it never clips the image. The

images are scaled to fit side by side and row upon row with no clipping (see
left image in Figure 8-5). Browsers will distort the image copies to make this
happen, so the aspect ratio of the graphic is not preserved.

• space tiles an image like the repeat option, but it prevents the image from ever
being clipped at the top or bottom. In other words, the space option always
displays an image in its entirety. Accordingly, the browser will introduce space
between the tiled copies of the image (see right image in Figure 8-5).

FiGURE 8-5
The round (left) and
space (right) settings
for the background-
repeat pattern make
sure the browser doesn’t
clip any part of the
repeated images. This
combination of settings
forces the browser to
distort the aspect ratio of
the image (left) or add
extra space between the
tiled images (right).

Positioning a Background Image
Placing and tiling a background image is just half the fun. With the background-
position property, CSS lets you control the exact placement of an image in a number
of ways. You can specify both the horizontal and vertical starting points for a graphic
in three ways—keywords, exact values, and percentages.

Keywords
You get two sets of keywords to work with. The first one controls the three hori-
zontal positions—left, center, right—and the second controls the three vertical
positions—top, center, bottom (Figure 8-6). Suppose you want to place a graphic
directly in the middle of a web page. You can create a style like this:

body {
 background-image: url(bg_page.jpg);
 background-repeat: no-repeat;
 background-position: center center;
}

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 237

POSITIONING A
BACKGROUND

IMAGE

UP TO SPEED

URL Types
In CSS, you need to specify a URL when you add a background
image. A URL, or Uniform Resource Locator, is a path to a file
located on the Web. There are three types of paths: absolute
path, root-relative path, and document-relative path. All three
simply indicate where a web browser can find a particular file
(like another web page, a graphic, or an external style sheet).

An absolute path is like a postal address—it contains all the
information needed for a web browser located anywhere in
the world to find the file. An absolute path includes http://, the
hostname, and the folder and name of the file. For example:
http://www.cosmofarmer.com/images/bluegrass.jpg.

A root-relative path indicates where a file is located relative to
a site’s top-level folder—the site’s root folder. A root-relative
path doesn’t include http:// or the domain name. It begins with
a / (slash) indicating the root folder of the site (the folder the
home page is in). For example /images/bluegrass.jpg indicates
that the file bluegrass.jpg is located inside a folder named
images, which is itself located in the site’s top-level folder. An
easy way to create a root-relative path is to take an absolute
path and strip off the http:// and the host name.

A document-relative path specifies the path from the current
document to the file. When it comes to a style sheet, this means
the path from the style sheet to the specified file, not the path
from the current web page to the file.

Here are some tips on which type to use:

• If you’re pointing to a file that’s not on the same server
as the style sheet, you must use an absolute path. It’s the
only type that can point to another website.

• Root-relative paths are good for images stored on your
own site. Since they always start at the root folder, you can
move the style sheet around without affecting the path
from the root to the image on the site. However, they’re
difficult to use when first building your designs: You can’t
preview root-relative paths unless you’re viewing your
web pages through a web server—either your web server
out on the Internet or a web server you’ve set up on your
own computer for testing purposes. In other words, if
you’re just opening a web page off your computer using
the browser’s File→Open command, then you won’t see
any images placed using root-relative paths.

• Document-relative paths are the best when you’re
designing on your own computer without the aid of a web
server. You can create your CSS files and then review them
in a web browser simply by opening a web page stored
on your hard drive. These pages will work fine when you
move them to your actual, living, breathing website on
the Internet, but you’ll have to rewrite the URLs to the
images if you move the style sheet to another location
on the server.

Css: tHe MIssInG MAnUAL238

POSITIONING A
BACKGROUND

IMAGE

FiGURE 8-6
You can use keywords to position an image in the
background. The order in which you specify the
keywords doesn’t matter—top center and
center top both have the same effect.

To move that graphic to the top-right corner, just change the background position
to this:

background-position: right top;

 NOTE  If you’ve decided to tile an image (by setting background-repeat to one of the values listed in
the previous section), then the background-position property controls the starting point of the first tile.
So, for example, if you use the repeat option, you’ll still see the entire background filled by the image. It’s just
that the position of the first tile changes based on which background-position setting you used.

Keywords are really useful when you want to create vertical or horizontal banners.
If you wanted a graphic that’s centered on a page and tiled downwards in order to
create a backdrop for content (Figure 8-7, left), then you’d create a style like this:

body {
 background-image: url(background.jpg);
 background-repeat: repeat-y;
 background-position: center top;
}

Likewise, using the bottom, center, or top keywords, you can position a horizontally
repeating image by using repeat-x (shown back in Figure 8-4, left) in a particular
place on the page (or within a styled element).

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 239

POSITIONING A
BACKGROUND

IMAGE

FiGURE 8-7
Use the background-
position property
when tiling an image
either vertically (left) or
horizontally (right). In the
left image, the graphic
is a wide white box with
drop shadows on the
left and right edges. The
page’s background color
is gray, so the text of the
page looks like it’s on
a white piece of paper
floating above the screen.

 TIP  You can actually add a background image to both the <html> and <body> tags. If you tile both images
horizontally and place the <body> tag’s image at the top and the <html> tag’s image on the bottom, you can
achieve the effect of two stripes cutting across the top and bottom of the page—no matter how tall the page is.

BROWSER BUG

Bottoming Out
When displaying an image in the background of a web page,
most browsers don’t always vertically position the image in the
way you’d expect. For example, if you set the vertical position
to bottom, the image doesn’t always appear at the bottom
of the browser window. This happens when the content on a
page is shorter than the browser window is tall.

If the web page has only a couple of paragraphs of text and it’s
displayed on a really large monitor, most browsers treat the
height as the bottom of the last paragraph, not the bottom of
the browser window. If you run into this annoyance, then just
add this style to your style sheet:

html { height: 100%; }

Precise Values
You can also position background images by using pixel values or ems. You use two
values: one to indicate the distance between the image’s left edge and the container’s
left edge, and another to specify the distance between the image’s top edge and the
style’s top edge. (Put another way, the first value controls the horizontal position,
and the second value controls the vertical position.)

Say you want custom bullets for a list. If you add a background image to the
tag, the bullets often don’t line up exactly (see Figure 8-8, top). So you can just
nudge the bullets into place by using the background-position property (Figure

Css: tHe MIssInG MAnUAL240

POSITIONING A
BACKGROUND

IMAGE
8-8, bottom). If the list would look better with, say, the bullets 5 pixels farther to
the right and 8 pixels farther down, then add this declaration to the style defining
the background image:

background-position: 5px 8px;

You can’t specify distances from the bottom or right by using pixel or em measure-
ments, so if you want to make sure an image is placed in the exact bottom-right corner
of the page or a styled element, then use keywords (bottom right) or percentages,
as discussed next. However, you can use negative values to move an image off the
left edge or above the top edge, hiding that portion of the image from view. You
may want to use negative values to crop out part of a picture. Or, if the background
image has lots of extra white space at the top or left edge, you can use negative
values to eliminate that extra space.

FiGURE 8-8
Using custom images for bullets
sometimes requires careful positioning,
so that the bullet graphic appears the
correct distance from, and perfectly
centered on, the list item’s text.

Percentage Values
Finally, you can use percentage values to position a background image. Using per-
centages in this manner is tricky, and if you can achieve the effect you’re after with
the keyword or precise values discussed previously, then use them. But you have
to use percentages to position an element in a spot that’s proportional to the width
of an element—say, if you want to place a graphic three-quarters of the way across
a headline and you don’t know the width of the element.

As with pixel or em values, you supply two percentages: one to indicate the horizon-
tal position and the second to indicate the vertical position. What the percentage
is measuring is a little tricky: In a nutshell, a percentage value aligns the specified
percentage of the image with the same percentage of the styled element. What?

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 241

POSITIONING A
BACKGROUND

IMAGE
The best way to understand how percentage values work is to look at a few examples.
To position an image in the middle of a page (like the one shown in the center of
Figure 8-9) you’d write this:

background-position:50% 50%;

This declaration places the point on the image that’s 50 percent from its left edge
directly on top of the point that’s 50 percent from the left edge of the page (or
whatever element you’ve styled with the background image). The declaration also
aligns the point on the image that’s 50 percent from its top with the point that’s 50
percent from the top edge of the page or styled element. In other words, the center
of the image is aligned with the center of the element. This means that when using
percentages, the exact point on the image that’s being aligned can be a moving
target. (That’s because your styled element’s positioning percentages can change
if your visitors resize their browsers.)

FiGURE 8-9
Each of these four images has been positioned
on this web page (represented by the large black
box) by using percentage values. When using
percentage values, first identify an anchor point
on the image—the place on the image at which
you want to pin it down. In this example, 50%
50% marks the center of the middle image as
its anchor point. Next, identify the 50/50 point
on the page itself: again, that would be directly
in the center of the page. That spot is where
the image’s anchor point gets placed. The three
other images are all positioned in the same way.

 NOTE  Positioning an image vertically in the background of a page by using percentages won’t necessarily
put the image in the correct spot if the page content doesn’t fill the entire height of the browser window. See
the box on page 239 for the solution to this problem.

Css: tHe MIssInG MAnUAL242

POSITIONING A
BACKGROUND

IMAGE
As with pixel and em values, you can specify negative percentage values, although
the results can be hard to predict. You can also mix and match pixel/em values with
percentage values. For example, to place an image that’s 5 pixels from the element’s
left edge, but placed in the middle of the element’s height, you could use this:

background-position: 5px 50%;

 NOTE  Although background images can raise the visual quality of your web pages, they usually don’t show
up if your visitor prints the page. Most browsers can print out the backgrounds, but it usually requires extra work
on your visitor’s part. If you plan to have your visitors print pages from your site, then you may want to keep
using the tag to insert mission-critical images like your site logo or a map to your store.

Fixing an Image in Place
Normally, if there’s a background image on a web page and the visitor has to scroll
down to see more of the page, the background image scrolls as well. As a result,
any pattern in the background of the page appears to move along with the text.
Furthermore, when you have a nonrepeating image in the background, it can po-
tentially scroll off the top of the page out of view. If you’ve placed the site’s logo or
a watermark graphic in the background of the page, then you may not want it to
disappear when visitors scroll.

The CSS solution to such dilemmas is the background-attachment property. It has
two options—scroll and fixed. Scroll is the normal web browser behavior; that is,
it scrolls the background image along with the text and other page content. Fixed,
however, keeps the image in place in the background (see Figure 8-10). So if you
want to place your company’s logo in the upper-left corner of the web page, and
keep it there even if the viewer scrolls, then you can create a style like this:

body {
 background-image: url(images/logo.gif);
 background-repeat: no-repeat;
 background-attachment: fixed;
}

The fixed option is also very nice when using a repeating, tiled background. When
you have to scroll, the page’s text disappears off the top, but the background doesn’t
move: The page content appears to float gracefully above the background.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 243

POSITIONING A
BACKGROUND

IMAGE

FiGURE 8-10
Looking for a way to nail
down a site logo (like the
CosmoFarmer 2.0 image) so
when viewers scroll down
the page the logo stays in
place? Using the fixed op-
tion for the background-
attachment property,
you can lock a background
image in place. That way,
even if the page is very long
and the visitor has to scroll
down, the image remains
visible on the web page
(bottom).

Defining the Origin and Clipping for a Background
CSS includes the ability to tell a browser where the background image should begin
in relation to the border, padding, and content of an element. For example, normally
when you tile an image, it starts in the upper-left corner of the padding of an element
(see the top, middle image in Figure 8-11). However, you can reposition that image’s
starting point, using the background-origin property. It takes one of three values:

• border-box places the image in the upper-left corner of the area assigned to
the border (top-left in Figure 8-11).

Css: tHe MIssInG MAnUAL244

POSITIONING A
BACKGROUND

IMAGE

FiGURE 8-11
The background-
clip property also
applies to background
colors. If you’ve added
a non-solid border (like
dotted, dashed, or
double), the background
color normally shows
behind the border in the
empty areas. However, to
limit that color to just in-
side the border you would
simply set the element’s
background-clip
property to padding-
box.

• padding-box places the image in the upper-left corner of the area assigned to
the padding (top-middle in Figure 8-11). This is normally where a browser places
a background image.

• content-box places the image in the upper-left corner of the area assigned to
the content (top-right in Figure 8-11).

Of course, this setting doesn’t matter if there’s neither a border nor any padding
around an element; in addition, the effect can be very subtle, especially if you have
a seamlessly tiling pattern.

 NOTE  Neither the background-origin nor the background-clip properties work in Internet
Explorer 8 and earlier.

However, it can be noticeable if you’re not repeating an image. For example, if you
choose the no-repeat option (page 234) and the background image appears only a
single time, you could place that image in the upper-left corner of the content area
(inside any padding) like this:

background-image: url(logo.png);
background-repeat: no-repeat;
background-origin: content-box;

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 245

POSITIONING A
BACKGROUND

IMAGE
In addition, the background-origin property can be used effectively with another
property—background-clip. The background-clip property limits the area where
the background image appears. Normally, background images fill the entire area
of an element including behind borders and padding areas (bottom-left in Figure
8-10). However, you can specify where the image appears with one of three values:

• border-box lets the image appear behind the content all the way behind any
borders. You’ll notice this only if you have borders with visible gaps like a dashed
line (bottom-left in Figure 8-11). This is normally what browsers do, so there’s
no real reason to use this setting.

• padding-box limits any background to just the padding area and the element’s
content (bottom-middle in Figure 8-11). This is useful if you have a border that’s
dotted or dashed and you don’t want the image to appear in the border’s gaps.

• content-box limits the background to just the content area. The padding and the
area behind the border will be free of any image (bottom-right in Figure 8-11).

By combining background-origin and background-clip, you can make sure that
an image begins in the upper-left of the content area and appears only behind
content like this:

background-origin: content-box;
background-clip: content-box;

Scaling Background Images
Normally, an image placed in the background of a page element is place at the size
you created it. However, the background-size property lets you control the size of a
background image. You have the option of using values or keywords to set the size:

• Supply a height and width value to set the size of the image. You can use an
absolute value like a pixel value:

background-size: 100px 200px;

This code sets the background image to 100 pixels wide and 200 pixels tall.
You can also set the value of just the width or height and set the other to auto:

background-size: 100px auto;

In this case, the background image is 100 pixels wide, and the browser auto-
matically sets the height to keep the aspect ratio of the image intact (so it isn’t
distorted). You can also use percentage values. If you want the image to scale
to completely fit the background, you can use 100% for both settings (Figure
8-11, left):

background-size: 100% 100%;

Css: tHe MIssInG MAnUAL246

POSITIONING A
BACKGROUND

IMAGE
• The contain keyword forces the image to resize to fit the background space of

the page element while maintaining the aspect ratio of the image (Figure 8-10,
middle). Depending on the shape of the image and the element, the image is
stretched to fit either the width or height of the element.

background-size: contain;

• The cover keyword forces the width of the image to fit the width of the element
and the height of the image to fit the height of the element, without changing
the aspect ratio of the image. (Figure 8-1, right).

background-size: cover;

The background-size property almost always ends up resizing the original image:
If the image is smaller than the elements, the browser scales the image up, usually
resulting in noticeable pixelation and degradation of the image (as with the back-
ground images in Figure 8-12).

FiGURE 8-12
The background-
size property is the
only way to change the
size of a background
image. Keep in mind that
while most browsers
understand this prop-
erty, Internet Explorer 8
doesn’t, so use it with
care. (Or, if you don’t care
about IE8, then use it with
reckless abandon).

 TIP  Using the background-size property can be especially helpful when you’re working with elements
that are sized using percentages, such as the responsive designs discussed in Chapter 14. For example, if you put
an image into the background of a banner that’s 960 pixels when viewed on a desktop monitor but shrinks down
to 480 when viewed on a phone, you can place a large background image in the banner and use this setting:

background-size: 100% auto;

This forces the web browser to resize the image to fit as the banner shrinks to a thinner size.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 247

USING
BACKGROUND

PROPERTY
SHORTHAND

POWER USERS’ CLINIC

Bring Special Effects to Background Images
If you’re a power user of photo-editing software like Photo-
shop, you’ve probably taken a look at the blend modes that
let you transform how two layers interact visually. Here’s an
example of how they work: Imagine you have a photo placed
in the background of an element. You’ve also set a background
color for that element. Normally, any image that doesn’t have
any transparency will cover up the background color beneath.

But what if you could blend the image and background
together? For example, say you wanted to let the background
color show through but only in the white parts of the photo. The
relatively new background-blend-mode lets you do just
that. You apply the property to an element with a background
color and image. The property takes one of 16 different blend
mode values, each with a different effect on the mixture.

In another example, say you had a photo of a tomato placed
into the background of a div and you want the orange color

to mix with the photo. You could set the background color to
orange and then set the blend mode like this:

background-image: url(tomato.png);
background-color: orange;
background-blend-mode: screen;

You can even use blend modes with multiple image back-
grounds (page 249) to create some very interesting visual
effects.

For a video explaining how blend-modes work in Photoshop,
check out www.youtube.com/watch?v=Bnl1CJV17q4. Even
though this video is talking about Photoshop, they are the same
blend modes with the same effects as the CSS background-
blend-mode property.

For a visual demonstration on how blend modes work in
CSS, visit http://sarasoueidan.com/blog/compositing-and-
blending-in-css/. (No version of Internet Explorer supports
this property yet.)

Using Background Property Shorthand
As you can see from the examples in the previous section, to really take control of
background images you need to harness the power of several different background
properties. But typing out each property—background-image, background-attachment,
and so on—again and again can really take its toll on your hands. Fortunately, there’s
an easier way—the background shorthand property.

You can actually bundle all the background properties (including the background-
color property) into a single line of streamlined CSS. Simply type background fol-
lowed by the values for background-image, background-position, background-size,
background-repeat, background-origin, background-clip, background-attachment,
and background-color.

 NOTE  Internet Explorer 8 does not understand the background-size, background-origin, and
background-clip properties. If you use them in the shorthand background property, IE8 will ignore the
rule and not apply any background properties to the element.

http://www.youtube.com/watch?v=Bnl1CJV17q4
http://sarasoueidan.com/blog/compositing-and-blending-in-css/
http://sarasoueidan.com/blog/compositing-and-blending-in-css/

Css: tHe MIssInG MAnUAL248

USING
BACKGROUND

PROPERTY
SHORTHAND

The following style adds a graphic in the center of the page, resizes the image to
50% its size, places just one image (no-repeat), fixes the image into place (so if the
page scrolls, the image stays) and sets the background color to white:

body {
 background: url(bullseye.gif) center center / 50% no-repeat fixed #FFF;
}

If you specify a position (the center center, for example, in the code example di-
rectly above) and a background-size property (the 50% in the example), you separate
them with a / character.

You don’t need to specify all the property values either, and you usually won’t. You
can use one or any combination of them. For example, background: yellow is the
equivalent of background-color: yellow. Any property value you leave out simply
reverts to its normal behavior, so say you specify only an image:

background: url(image/bullseye.gif);

That’s the equivalent of this:

background: url(image/bullseye.gif) left top / 100% repeat scroll border-box
border-box transparent;

This behavior of resetting non-defined values to their default values can lead you to
some unexpected results. For example, say you add these two declarations to a style:

background-color: yellow;
background: url(image/bullseye.gif) no-repeat;

You may expect to see a single bull’s-eye image sitting atop a yellow background
color. But you won’t, because a browser resets the background-color to transparent
(invisible) when it encounters the background property with no color specified. To get
around this predicament, you need to specify the background-color second, like this:

background: url(image/bullseye.gif) no-repeat;
background-color: yellow;

In addition, when multiple styles apply to the same element, you can inadvertently
end up wiping out background images. For example, say you want to add a back-
ground image to every paragraph on a page, so you create a style like this:

p {
 background: url(icon.png) left top no-repeat rgb(0,30,0);
}

You then decide you’d like the first paragraph after every h2 to have a blue back-
ground, so you create this:

h2 + p {
 background: blue;
}

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 249

USING
MULTIPLE

BACKGROUND
IMAGES

This second style uses the shorthand, which resets all the other background proper-
ties to their defaults. In the case of an image, the default is no image at all, so rather
than simply adding a blue background to the paragraph and leaving the image in
place, this style actually erases the image!

In other words, the background shorthand property can help you write less code,
but it can also get you into trouble, so just keep this behavior in mind.

FREQUENTLY ASKED QUESTION

Finding Free Imagery
I’m not an artist. I can’t draw, can’t paint, don’t even own a
digital camera. Where can I find artwork for my site?

Thank goodness for the Web. It’s the one-stop shop for cre-
ative geniuses who couldn’t paint themselves into a corner
if they tried. There are plenty of pay-to-download sites for
stock photos and illustrations, but there are also quite a few
completely free options.

Foter (http://foter.com) claims to let you access of 228 millions
free stock photos. This site aggregates Creative Commons
licensed photos from around the web. It even provides a free
WordPress plug-in to make it easy to add stock images to your
blogs. Unsplash (https://unsplash.com) doesn’t have millions
of photos, but the ones you find there are stunning—beautiful
photos of nature, architecture, and animals for free.

morgueFile (www.morguefile.com), despite the grisly name,
has many wonderful photos supplied free of charge by people
who love to take pictures. Free Images (www.freeimages.com)
is yet another excellent photographic resource. Openphoto
(http://openphoto.net) also supplies images based on Creative
Commons licenses, and you can use the search engine on the
Creative Commons website to find images (and video and
music) that can be used in personal and commercial projects:

http://search.creativecommons.org. In addition, you can use
Flickr (www.flickr.com/creativecommons) to search for im-
ages that have a Creative Commons license applied to them.
(Although they don’t cost money, not all photos on these sites
can be used in commercial projects. Make sure you read the
fine print for any photo you wish to use.)

If you’re looking for bullets to add to lists, icons to supercharge
your navigation bar, or patterns to fill the screen, there are
plenty of sites to choose from. Flaticon (http://www.flaticon.
com) claims to provide access to the largest database of free
vector icons available for use in illustration programs, but you
can also use them in your web pages as PNG and SVG files. Some
Random Dude (no, really, that’s the name of the website) offers
a set of 121 icons free of charge: www.somerandomdude.com/
work/sanscons/. And if you’re looking for interesting tiling
patterns, check out the patterns on these sites: ColourLovers.
com (www.colourlovers.com/patterns), Pattern4u (www.koll-
ermedia.at/pattern4u), and Squidfingers (http://squidfingers.
com/patterns). Or make your own tiled backgrounds with
these online pattern creators: BgPatterns (http://bgpatterns.
com), Stripe Generator 2.0 (www.stripegenerator.com), and
PatternCooler (www.patterncooler.com).

Using Multiple Background Images
While one background image is fine, being able to layer multiple images in a back-
ground has its uses. For example, say you want to add a background image to a
sidebar to make it look like a scroll (Figure 8-13). If you simply place a single image
in the background, it might work at first (top-left in Figure 8-13), but if you add a
lot of text inside that sidebar, it won’t look so good (top-right in Figure 8-13). That’s
because the image is one size and it won’t grow or shrink to accommodate the size
of the sidebar.

http://foter.com
https://unsplash.com
http://www.morguefile.com
http://www.freeimages.com
http://openphoto.net
http://search.creativecommons.org
http://www.flickr.com/creativecommons
http://www.flaticon.com
http://www.flaticon.com
http://www.somerandomdude.com/work/sanscons/
http://www.somerandomdude.com/work/sanscons/
http://www.colourlovers.com/patterns
http://www.kollermedia.at/pattern4u
http://www.kollermedia.at/pattern4u
http://squidfingers.com/patterns
http://squidfingers.com/patterns
http://bgpatterns.com
http://bgpatterns.com
http://www.stripegenerator.com
http://www.patterncooler.com

Css: tHe MIssInG MAnUAL250

USING
MULTIPLE

BACKGROUND
IMAGES

FiGURE 8-13
Note that multiple
background images don’t
work in Internet Explorer
8.

Fortunately, you can add multiple images to the background of an element. In the
scroll example, you can use three background images: one for the top of the scroll,
one for the bottom of the scroll, and one for its text area. That last image is a seam-
lessly tiling image, so as the sidebar gets taller, the image simply tiles to fit the space.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 251

USING
MULTIPLE

BACKGROUND
IMAGES

Of course, you can use multiple images for simpler tasks as well. For example, say
you want to add a colorful, richly textured image to the background of an element,
and you also want to add a two-color logo. As discussed in the box on page 233,
JPEG is a better format when an image has lots of colors, while PNG8 is better for
areas of solid color like a logo. In this case, you can have the best of both worlds by
using a JPEG for the colorful background and a PNG8 for the logo.

For multiple background images, simply use the background-image property with
a comma-separated list of images, like this:

background-image: url(scrollTop.jpg),
 url(scrollBottom.jpg),
 url(scrollMiddle.jpg);

 NOTE  In this example code, each URL is listed on its own line, but you don’t have to do it that way. You
could type this all out in one single (really long) line. However, most designers find it easier to read if you place
each image on its own line and use spaces (or tabs) to indent the following lines to line up. Just keep in mind
that you need a comma after each image specified, except the last, which requires the usual semicolon necessary
to end a declaration.

Because background images normally tile, you’ll usually need to include a back-
ground-repeat property as well (if you don’t, then the images would just tile one
on top of the other, hiding all images underneath.) You can add other background
properties as well, with a similarly comma-separated set of values, like this:

background-repeat: no-repeat,
 no-repeat,
 repeat-y;

When using multiple values like this, the first value (no-repeat in this example) goes
with the first image listed in the background-image property (scrollTop.png); the
second goes with the second image listed, and so on. Because this can get confus-
ing quickly, many web designers use the shorthand method to specify multiple
images, like this:

background: url(scrollTop.jpg) center top no-repeat,
 url(scrollBottom.jpg) center bottom no-repeat,
 url(scrollMiddle.jpg) center top repeat-y;

 NOTE  Multiple background images stack on top of one another, like layers in an image-editing program.
The order in which you list the background images determines which image appears on top. The first image
listed is on the element’s top layer, the second is on the second layer, and the last is on the bottom layer. In the
preceding example code, the top of the scroll (scrollTop.jpg) is above the bottom of the scroll (scrollBottom.jpg),
which in turn sits above the text area of the scroll (scrollMiddle.jpg).

Css: tHe MIssInG MAnUAL252

UTILIZING
GRADIENT

BACKGROUNDS Utilizing Gradient Backgrounds
Gradients—smooth transitions of color from blue to red or black to white—are com-
mon staples of any image-editing program. Creating subtle shifts from one similar
color to another creates a kind of misty quality; Apple uses gradients on buttons
and other user interface elements in their OS X and iPhone software. It used to be
that you had to open Photoshop and create a huge image file with the gradient you
were after. Now you can let the browser create gradients for you.

CSS supports background gradients, which are, basically, images created on the fly
by a web browser. In fact, you use the usual background-image property to create
the gradient. You have several types of gradients to choose from.

Linear Gradients
The most basic type of gradient is a linear gradient. It moves along a straight line
drawn across the element, transitioning from one color to another (see Figure 8-14).
You specify a direction in either degrees, or using the keyword to followed by the
keyword top, bottom, right, left, or a combination, like to bottom left.

FiGURE 8-14
Linear gradients let you
bypass the old method
of adding gradients to an
element’s background of
an element: Create the
gradient as a graphic in
Photoshop or Fireworks,
and then use the
background-image
property to place that
graphic in the background
of the element.

For example, to create a gradient that starts out with black on the left edge of an
element and then transitions to white on the far right, you’d write this:

background-image: linear-gradient(to right, black, white);

To make the gradient start black at the top of the element and transition to white
at the bottom of the element, use the to bottom keywords, like this:

background-image: linear-gradient(to bottom, black, white);

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 253

UTILIZING
GRADIENT

BACKGROUNDS
You can also paint a transition at an angle by using keywords like to bottom right
to indicate the direction of the gradient. For example to draw a gradient that starts
as orange in the top left of the element, then ends as red in the bottom right of the
element, you’d write this:

background-image: linear-gradient(to bottom right, orange, red);

You can create a gradient by using any CSS color value (page 148), such as keywords
like white or black, hexadecimal values like #000000, RGB values like rgb(0,0,0),
and so on.

You’re not limited to keywords, either. You can specify a degree value that speci-
fies the direction of the gradient. Degrees are written with a number from 0 to 360
followed by deg and indicate where the transition ends (Figure 8-15). For example,
0deg is the top of the element, so the gradient starts at the bottom and ends at the
top. In other words, this:

background-image: linear-gradient(to top, black, white);

is the same as:

background-image: linear-gradient(0deg, black, white);

The degree values continue clockwise, so 90deg is the right edge of the element (the
same as to right), 180deg is the bottom of the element (the same as to bottom),
and 270deg is the left side of the element (the same as to left).

When using a degree value, a browser draws an imaginary line through the middle
of the element. The angle you specify is the angle of that line and also indicates
where the gradient ends. For example, the gradient pictured in Figure 8-15, has a
degree value of 48deg. The browser draws an imaginary line through the middle of
the element, pointing to the 48-degree mark. This means the gradient starts at the
element’s bottom left, and moves upward to the top right.

 For example, the gradient created in the bottom-left image in Figure 8-13 uses this
declaration:

background-image: linear-gradient(135deg, rgb(0,0,0), rgb(204,204,204));

Css: tHe MIssInG MAnUAL254

UTILIZING
GRADIENT

BACKGROUNDS

FiGURE 8-15
The degree value you
supply for a linear gradi-
ent is used to create a line
that passes through the
middle of an imaginary
point in the center of the
element. The gradient is
drawn along this line. The
value dictates the slope
of the gradient and where
the gradient stops. You
can use the interactive
demo at http://codepen.
io/thebabydino/full/
qgoBL to see how differ-
ent degree values affect a
gradient.

COLOR STOPS
The gradients you’ve seen so far use only two colors, but you can add as many as
you like. The additional colors are called color stops, and they let the background
transition from one color to a second color, then from that second color to a third
color, and so on, until the final color ends the gradient. To add color stops, simply
add more color values to the gradient. For example, the bottom-right image in Figure
8-14 contains three colors: black to white to black:

background-image: linear-gradient(to right, black, white, black);

http://codepen.io/thebabydino/full/qgoBL
http://codepen.io/thebabydino/full/qgoBL
http://codepen.io/thebabydino/full/qgoBL

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 255

UTILIZING
GRADIENT

BACKGROUNDS
Of course, you can use any color values (expressed as keywords, hexadecimal, or
RGB) and even mix and match them, so you can even write the preceding line of
code like this:

background-image: linear-gradient(to right, black, rgb(255,255,255), #FFFFFF,
HSL(0,0%,0%));

Web browsers evenly spread out the colors, so in this example the far left starts
out black; the background of the middle of the element is white; and then the far
right of the element is black. However, you can place the different color stops at
more specific locations in the background by adding a second value after the color.

 TIP  You can get some really wild effects if you add the background-position property to an element
with a gradient background. Essentially, you can change what the browser considers to be the starting point for
the gradient. Try it out.

For example, say you want to start at a deep red, then quickly ramp up to a burnt
orange about 10 percent into the element, stay at that orange color for most of the
element, and then quickly ramp back down to deep red, like the top image in Figure
8-16. To do this, you’d use four color stops—red, orange, orange and red—and specify
where the two white stops should be positioned:

background-image: linear-gradient(to right, #900, #FC0 10%, #FC0 90%, #900);

Notice that the 10% applies to the second color (the orange): This tells the browser
that it needs to get to this color at 10 percent of the width of the element. Likewise,
the 90% indicates that the browser needs to stay at that orange color until it’s 90
percent across the element, and then begin the transition to the deep red at the far
right of the element.

 NOTE  You don’t have to use percentages to place color stops. You can use pixels or ems as well. However,
percentages are more flexible and adapt as the width or height of an element changes. One exception is the
repeating linear gradients discussed on page 257. Pixel values for stops are very useful for creating these types
of tiled gradients.

You don’t need to use any values for the first or last color, since the browser as-
sumes that the first color starts at 0% and the last color ends at 100%. However, if you
wanted to keep a solid starting color further into the element, you could provide a
value after the first color. For example, the bottom image in Figure 8-16 is created
with this declaration:

background-image: linear-gradient(to right, #900 20%, #FC0 30%, #FC0 70%, #900
80%);

Notice that the first color—#900—also has a position of 20%. This means that the first
20 percent of the element (from left to right) should be a solid red color. Then, at
the 20 percent point, the gradient should begin transitioning to the orange color
at 30 percent.

Css: tHe MIssInG MAnUAL256

UTILIZING
GRADIENT

BACKGROUNDS
 TIP  You can use the keyword transparent for any color in a gradient if you want to see through the
gradient to whatever lies below—like a background color set on the element, or even another linear gradient.
Remember, you can have multiple background images on an element, so you can have multiple gradients on an
element as well. For example, try out this code for an amazing effect:

background-image:
 linear-gradient(cyan,transparent),
 linear-gradient(225deg, magenta, transparent),
 linear-gradient(45deg, yellow, transparent);

FiGURE 8-16
You can specify where the color stops appear in a linear gradient.
In the top example, a dark red color transitions quickly from the
left to an orange color at 10 percent of the width of the element.
To create a large solid color area in the middle, you need two
color stops with the same color value. Basically, a gradient from
one color to the same color is no gradient at all.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 257

UTILIZING
GRADIENT

BACKGROUNDS
INTERNET EXPLORER SUPPORT

Gradients are not supported in Internet Explorer 9 and earlier. If you do choose to
use gradients, then you should provide a backup color for IE9 and earlier. Find a solid
color that matches the general tone of your gradient and declare it first, followed
by the gradient declarations, like this:

background-color: #FC0;
background-image: linear-gradient(to bottom, #900, #FC0, #900);

IE9 will apply the background color, and since it doesn’t understand linear gradients,
it will skip the other declarations. Other browsers will apply the background color,
but also create a gradient that covers the background color. If you’re using RGBA
colors with some level of transparency, then you won’t want the background color
to show through. In this case, use the background shorthand property instead, and
the background-color will be overridden (thanks to the peculiar behavior of the
background shorthand property discussed on page 247). So you can use this code
for RGBA colors:

background-color: #FC0;
background: linear-gradient(to bottom, rgba(153,0,0,.5), #FC0,
rgba(153,0,0,.5));

Repeating Linear Gradients
Normally, a linear gradient fills the entire element with the first color at one point
and the last color at the opposite edge of the element. However, it’s possible to
create repeating gradients so you can create gradient patterns. In essence, you
define a gradient with specified color stops; the browser draws the gradient, and
then repeats that pattern, tiling it in the background of the element. For example, to
get the repeating gradient of the left image in Figure 8-17 you can write this code:

background-image: repeating-linear-gradient(45deg, #900 20px, #FC0 30px, #900
40px)

In cases like this, using pixel values for the color stops is very useful. In essence, the
browser draws a gradient that starts at bottom-left; it starts with 20 pixels of deep
red, then transitions to an orange at 30 pixels, and then goes back to deep red at 40
pixels. Once it’s drawn that gradient, the browser simply tiles it in the background
like a tiled image.

 NOTE  There’s plenty of room for experimentation with gradients. To see just a few of the amazing things
that are possible, visit the CSS3 pattern gallery at http://lea.verou.me/css3patterns/, www.standardista.com/
cssgradients/, the amazing use of gradients to create flags of the world at www.standardista.com/CSS3gradients/
flags.html, and a see some amazing gradients used with the background-blend mode property discussed
in the box on page 247 at http://bennettfeely.com/gradients/.

http://lea.verou.me/css3patterns/
http://www.standardista.com/cssgradients/
http://www.standardista.com/cssgradients/
http://www.standardista.com/CSS3gradients/flags.html
http://www.standardista.com/CSS3gradients/flags.html
http://bennettfeely.com/gradients/

Css: tHe MIssInG MAnUAL258

UTILIZING
GRADIENT

BACKGROUNDS
You can even use repeating gradients to create solid stripes without any of the fancy
and subtle transitions between colors. For example, the image on the right in Figure
8-16 is created with this declaration:

background-image: repeating-linear-gradient(45deg, #900 0, #900 10px, #FC0
10px, #FC0 20px);

Here, you start with deep red (#900) at the 0 point, and go to red again at the 10px
point. Since you’re transitioning between the same colors, the browser draws this as
a solid color. Next, you transition to orange (#FC0) at 10 pixels. Since that’s the same
spot at which the red ends, that’s not a subtle transition; the pattern just goes from
red to orange. Finally, the transition goes to the same orange at 20 pixels, creating
another solid line. Because this is a repeating linear gradient, the browser simply
tiles that pattern to fill the background of the element.

Again, repeating linear gradients work in most browsers, but not in IE9 and earlier.
So it’s a good idea to add a fallback background color:

background-color: #FC0;
background: repeating-linear-gradient(to bottom left, #900 20px, #FC0 30px,
#900 40px)

FiGURE 8-17
You can create striped
patterns using CSS’s re-
peating linear gradients.
You can make stripes that
form sharp lines, or that
are fuzzy at the edges,
by using different color
stops.

Radial Gradients
CSS also provides a way of creating radial gradients—gradients that radiate outward
in a circular or elliptical pattern (see Figure 8-18). The syntax is similar to linear
gradients and at its most simple, you need only to provide a beginning color (the
color at the middle of the gradient) and an ending color (the color at the end of the
gradient). For example, the top-left image in Figure 8-18 is created with this code:

 background-image: radial-gradient(red, blue);

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 259

UTILIZING
GRADIENT

BACKGROUNDS
This creates an elliptical shape that fits the height and width of the element, with the
center of the gradient (the beginning red) in the center of the element.

You can also make circular gradients by adding a circle keyword before the colors.
For example, the top-right image in Figure 8-19 is created with this code:

background-image: radial-gradient(circle, red, blue);

While a browser normally draws the center of a radial gradient in the center of the
element, you can position the gradient’s center by using keyword at followed by
the same positioning keywords and values you use for the background-position
property (page 236). For example, in the middle-left image in Figure 8-17, the radial
gradient begins 20 percent over from the left edge of the element and 40 percent
from the top of the element. The positioning values go before the color and shape
keyword, like this:

background-image: radial-gradient(circle at 20% 40%, red, blue);

To dictate the size of the gradient, you can use one of four keywords:

• The closest-side keyword tells the browser to make the gradient extend from
the center only as far as the side that’s closest to the center. For example, in the
middle-left image in Figure 8-18, the closest side to the center of the gradient
is the top edge, so the radius of the circle travels from the center of the circle
to this edge. This keeps the entire gradient within the element. Here is the code
to produce this gradient:

background-image: radial-gradient(closest-side circle at 20% 40%, red,
blue);

When closest-side is applied to an elliptical gradient, both closest sides (that
is, the top or bottom and the left or right sides) are used to calculate the x and
y radii of the ellipse.

• The closest-corner keyword measures the width of the gradient from its center
to the corner of the element that’s closest (middle-right in Figure 8-18). This
can mean that the gradient may overflow the element. For example, the circle
drawn on top of the middle-right image in Figure 8-17 demonstrates the actual
size of the gradient. Part of the gradient extends beyond the element:

background-image: radial-gradient(closest-corner circle at 20% 40%, red,
blue);

• The farthest-side keyword measures the radius of a circle from its middle to
the side of the element that’s farthest away. In the case of an elliptical gradi-
ent, it’s the distance from the center to either the farthest top or bottom side
and the farthest left or right side. Here is the code to produce the image in the
bottom-left of Figure 8-18:

background-image: radial-gradient(farthest-side circle at 20% 40%, red,
blue);

Css: tHe MIssInG MAnUAL260

UTILIZING
GRADIENT

BACKGROUNDS
• The farthest-corner keyword measures the radius of a circle from its middle

to the corner of the element that’s farthest away. Here is the code to produce
the image in the bottom-right of Figure 8-18:

background-image: radial-gradient(farthest-corner circle at 20% 40%, red,
blue);

FiGURE 8-18
Radial gradients are ellip-
tical (top-left) or circular
(top-right) gradients. You
can control the placement
of the gradient within the
background of the ele-
ment, as well as control
how large the gradient is.

As with linear gradients, you can use multiple color stops and set the placement of
those color stops. For example, say you want a circular gradient that was composed
of a bright red, an orange, and a yellow. You want the red to appear for a while before
it transitions to orange, and then the orange lasts a while longer until the yellow ap-
pears at the end. You can use percentage values to dictate where the colors appear:

background-image: radial-gradient(circle at 20% 40%, red 20%, orange 80%, yel-
low);

Of course, as with linear gradients you can use any valid CSS color values, so you
can rewrite this code as:

background-image: radial-gradient(circle at 20% 40%, rgb(255,0,0) 20%,
rgb(255,165,0) 80%, #FFFF00);

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 261

TUTORIAL:
ENHANCING

IMAGES
As with linear gradients, Internet Explorer 9 and earlier won’t know what you’re talk-
ing about if you use a radial gradient. You should add a backup background color:

background-color: red;
background: radial-gradient(circle at 20% 40%, red 20%, orange 80%, yellow);

Repeating Radial Gradients
As with linear gradients, you can create radial gradients that repeat—perfect for
that bull’s eye look, or when you wish to hypnotize your website visitors. You need
to make sure you add either percentages or actual pixel or em values for the various
color stops so the browser knows the size of a single radial gradient and can then
repeat it. For example:

background-image: repeating-radial-gradient(circle, red 20px, orange 30px,
yellow 40px, red 50px);

Note that to create a smooth-looking repeating radial gradient, you should end with
the same color you start with (red, in this example). This provides a smooth color
change back to the original color. If you don’t (for example, if you just ended with
the yellow color in the above code), then there’s a sharp line where the last color
ends and the first color of the repeated gradient begins.

 TIP  Because web browsers treat linear and radial gradients simply as background images, you can use the
other properties of background images, like background-size, background-position, and so on
with them. In addition, you can have multiple comma-separated gradients on a single style, just as you can have
multiple background images (page 249). In fact, you can mix images with gradients in the same element.

Tutorial: Enhancing Images
A photo gallery is a perfect example of an eye-catching web page. This tutorial
brings together a variety of image styling techniques. You’ll format images with
frames and captions, create a photo gallery that’s flexible enough to look great in
a variety of window sizes, and use the box-shadow property (page 201) to create
professional-looking drop shadows.

To get started, you need to download the tutorial files located on this book’s com-
panion website at https://github.com/sawmac/css_mm_4e. Click the tutorial link
and download the files. All of the files are enclosed in a zip archive, so you need to
unzip them first. (There are detailed instructions on the website.) The files for this
tutorial are in the 08 folder.

Framing an Image
You’ll be working on a basic web page from the fictional (just in case you thought
it was real) website CosmoFarmer.com (Figure 8-19). In this case, there’s already
an external style sheet attached to the page, adding some basic text formatting.

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL262

TUTORIAL:
ENHANCING

IMAGES
1. Launch a web browser and open the file 08→01_image_ex→image.html.

FiGURE 8-19
Before and after—CSS,
that is. If you rely just
on HTML, images take
up lots of space (top).
With a little CSS (bottom)
you can nicely frame an
image and move it out of
the way.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 263

TUTORIAL:
ENHANCING

IMAGES
2. Open the file styles.css in the 01_image_ex folder in your favorite text editor.

This file is the external style sheet used by the image.html file. You’ll start by
adding a class style to this style sheet, and then applying a class to the
tag in the HTML file.

3. Scroll to the bottom of the file, and then type the following:

img.figure {

}

The selector img.figure targets any tag with the figure class applied to
it. You’ll use this to selectively format only the images you want. (You could
also just name the style .figure—the only difference is that that style would
then apply to any tag with the class figure, not just images.)

4. Add float and margin properties to the style you just created, like so:

float: right;
margin: 10px;

The right float moves the image to the right side of the page, letting the text
move up and wrap around the photo’s left edge. The margins give the photo a
little breathing room and move it away from the text, the side of the page, and
the headline above. Next, you’ll add a border, a background color, and some
padding to make the image look more like a real snapshot.

5. Add border, background color, and padding, so that the finished style looks
like this:

img.figure {
 float: right;
 margin: 10px;
 border: 1px solid #666;
 background-color: #CCC;
 padding: 10px;
}

If you save this file and then preview the web page right now, you won’t see a
change, since the class style has no effect until you’ve added the class to a tag.

6. Save and close the styles.css file and open the image.html file. Locate the
 tag and add class="figure" so the tag looks like this:

<img src="../images/grass.jpg" alt="Apartment Grass" width="200"
height="200" class="figure">

Now that image takes on all of the formatting properties you defined for the
.figure class style.

Css: tHe MIssInG MAnUAL264

TUTORIAL:
ENHANCING

IMAGES
7. Preview the page in a web browser. It should look like the bottom image

in Figure 8-19.

A picture may be worth a thousand words, but sometimes you still need a few
words to explain a picture. So in the next part of this tutorial, you’ll add a cap-
tion below the photo.

You’ll frequently want to add a caption to an image or photo to provide more
information about the subject, where the photo was taken, and so on. Instead
of just floating the image, as you did in the previous exercise, you want the
caption text to float as well. The best way to float both is to wrap the image
and the text in a container that’s floated as a single unit. This method keeps the
photo and its related text together. If you decide later that you want to change
their layout—perhaps float them to the left—no problem: You simply change
the formatting for the entire container.

Fortunately, HTML includes two tags for just such a requirement: The <figure>
tag is intended to enclose an image that’s meant to be an illustrative figure. In
addition, the <figcaption> tag can be used to enclose—you guessed it—a figure
caption. First, you need to adjust some of the HTML.

8. Return to your text editor and the image.html file. Locate the tag
in the code and remove the class="figure" that you added in step 6. Add
<figure> before the tag.

This marks the beginning of the container. Now you’ll add the caption and close
the <figure> to indicate the end of the container.

9. After the tag, add the code in bold below, so the HTML looks like this:

<figure>
<img src="../images/grass.jpg" alt="Creeping Bentgrass" width="200"
height="200">
<figcaption>Figure 1: Creeping Bentgrass is best suited for outdoor use
andshould be avoided by the indoor farmer.
</figcaption>
</figure>

10. Return to the styles.css file. Scroll to the bottom of the file and delete the
img.figure style you created earlier.

You’ll add a new style for the figure element.

11. Add this style to the styles.css file:

figure {
 float: right;
 width: 222px;
 margin: 15px 10px 5px 10px;
}

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 265

TUTORIAL:
ENHANCING

IMAGES
You’ve already used the float: right; property in the previous tutorial, and
the margin adds a little white space around all four edges of the <figure> tag.
But what’s the width for, you ask. Although the photo has a set width (200 pix-
els), the caption paragraph doesn’t. When you don’t set a width, the paragraph
makes the <figure> expand wider than the photo. In this case, you want the
caption to be just as wide as the photo and its frame.

The 222-pixel value comes from a little math used to calculate the entire area
taken up by the photo on the page: The photo is only 200 pixels wide. But in
the next step you’ll create a style that adds 10 pixels of left and right padding,
as well as a 1-pixel left border and 1-pixel right border, to make the entire width
of the photo 222 pixels from border to border (see page 204 for a refresher on
how to calculate the width of an element).

12. Add this style to the styles.css file:

figure img {
 border: 1px solid #666;
 background-color: #CCC;
 padding: 10px;
}

This descendant selector affects any tag inside a <figure> tag. Since
you’re using a descendant selector here, you don’t need to add a class to the
 tag. Next, you’ll style the caption.

13. Add the following style to the styles.css style sheet:

figcaption {
 font: bold 1em/normal Verdana, Arial, Helvetica, sans-serif;
 color: #333;
 text-align: center;
}

This style uses some of the properties you learned about in Chapter 6 to create
a center-aligned, bold, and gray caption using the Verdana font. Fortunately, the
font shorthand property in the first line lets you roll four different properties
into a single style declaration.

To make the caption stand out even more, add a background color and border.

14. Add three properties to the figcaption style, like so:

figcaption {
 font: bold 1em/normal Verdana, Arial, Helvetica, sans-serif;
 color: #333;
 text-align: center;
 background-image: linear-gradient(to bottom, #e6f3ff, white);
 border: 1px dashed #666;
 padding: 5px;
}

Css: tHe MIssInG MAnUAL266

TUTORIAL:
CREATING
A PHOTO
GALLERY

The purpose of the background-image, border, and padding properties should
be clear—to create a colored box around the caption. We’re using the linear
gradient feature of the background-image property (page 231) to create a gra-
dient that changes from light blue to white in the background of the caption.
Now it’s time to preview your work.

15. Save both the image.html and styles.css files and preview the image.html
file in a web browser.

Now you see one reason why it’s easier to develop a design using an internal
style sheet—you need to work in and save only one file instead of two. The page
should look like Figure 8-20. (You can find a completed version of this page in
the 08_finished→01_image_ex folder.)

FiGURE 8-20
With the use of a contain-
ing <figure> tag, a
right float, and a little
style, it’s easy to add
captions to photos.

Tutorial: Creating a Photo Gallery
Folks used to rely on the HTML <table> tag to create rows and columns for holding
the pictures in a photo gallery. But you can achieve the same effect with a little CSS
and far less HTML.

1. Open the file 08→02_gallery_ex→gallery.html.

First, a quick review of the HTML used to construct the photo gallery. The page
contains six photos and photo captions. Each photo and caption is contained

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 267

TUTORIAL:
CREATING
A PHOTO
GALLERY

in a <figure>. The photo itself is an tag and the caption is inside a <fig-
caption> tag.

<figure>
 <img src="../images/dandelion.jpg" alt="Dandelion" height="200"
width="200"/>
 <figcaption>Figure 6: The dandelion: scourge of the apartment farmer.
</figcaption>

</figure>

If you preview the page now, you’ll see a series of photos stacked one on top of
the next—not very attractive. The gallery would look nicer if the photos sat next
to each other in rows upon rows. You can accomplish that with just a few styles.

2. Open the styles.css file.

This style sheet already contains a basic CSS reset and a few styles for the
headline and other text. First you’ll add a couple of styles for the photos and
their captions.

3. At the bottom of the styles.css file, add two new styles, as follows:

figure img {
 border: 1px solid #666;
 background-color: #FFF;
 padding: 4px;
}

figcaption {
 font: 1.1em Arial, Helvetica, sans-serif;
 text-align: center;
 margin: 10px 0 0 0;
}

These two styles add a border to each image in the gallery, and set the font,
alignment, and margins of the captions. The first is a descendant selector to
target just the images inside the figures.

Next, place the photos side by side.

4. Add the following style to the style sheet:

figure {
 float: left;
 width: 210px;
 margin: 0 10px 10px 10px;
}

This style floats each photo/caption pair to the left. In effect, it places the photos
side by side until there’s no more room in the row. The browser then drops the
next photos down a row, until all of the photos are displayed one row on top of

Css: tHe MIssInG MAnUAL268

TUTORIAL:
CREATING
A PHOTO
GALLERY

the next. The width is the total width of the photo plus padding and borders.
In this example, it’s 200 pixels for the photo, 8 pixels for left and right padding,
and 2 pixels for left and right borders.

5. Save the styles.css file and preview the gallery.html page in a web browser.
It should look like the left image in Figure 8-21.

Adjust the width of your browser window to make it thinner and wider and
watch how the images reflow into the space. Aha—something’s not quite right.
The second row of images has two empty spaces where photos should be. This
problem occurs because the caption for the second image on the first line is
taller than the other captions on the line. Images that jump down to another row
bump into that caption and can’t get by it. (You can read more about this float
property snafu on page 414.) Fortunately, there’s a simple fix to this dilemma.

FiGURE 8-21
Floating elements next
to each other is one way
to simulate the column
and row appearance of
a table. But it doesn’t
work well if the elements
are of varying heights
(left). Using display:
inline-block is
another way to force
elements to sit side by
side (right) without the
nasty dropping behavior
pictured in the left image.

6. Return to your text editor and the styles.css file. Locate the figure style.
Remove the float:left and add display: inline-block; vertical-align:
top. The finished style should look like this:

figure {
 display: inline-block;
 vertical-align: top;
 width: 210px;
 margin: 0 10px 10px 10px;
}

The display: inline-block property (page 192) treats each image/caption
pair as a block (a box with height and width) but also as an inline element (so
the blocks can sit side by side). In addition, the vertical-align property set
to top makes sure that each <figure> tag aligns to the top of all the other
<figure> tags in a row.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 269

TUTORIAL:
CREATING
A PHOTO
GALLERY

7. Save the file and preview the page in a web browser. See the right side of
Figure 8-21.

If you resize the browser window, the gallery reformats itself. With a wider
window you can fit four or even five images on a row, but if you make it smaller
you’ll see only one or two images per row.

Adding Drop Shadows
Your gallery looks good, but you can make it even more impressive. Adding drop
shadows under each photo lends the page an illusion of depth and a realistic 3-D
quality. But before you fire up Photoshop, you’ll be glad to know there’s no need
to add individual drop shadows. Instead, you can make CSS automatically add a
shadow to any image you want.

1. In a text editor, return to the styles.css file you’ve been working on.

You’ll update the img style you created before.

2. Add box-shadow: 2px 2px 4px rgba(0,0,0,.5); at the end of the figure img
style so it looks like this (changes in bold):

figure img {
 border: 1px solid #666;
 background-color: #FFF;
 padding: 4px;
 box-shadow: 2px 2px 4px rgba(0,0,0,.5);
}

You learned about the box-shadow property back on page 201. Here you’ve
added a shadow that extends 2 pixels to the right of the image, 2 pixels below
the image, and which spreads out 4 pixels. Using an RGBA color (page 149),
you can set the shadow to 50 percent transparent black color.

3. Save the file and preview the page. It should look like Figure 8-22.

Each image has its own drop shadow, and you didn’t even have to open Pho-
toshop!

You can find a completed version of this tutorial in the 08_finished→02_gallery_ex
folder.

Css: tHe MIssInG MAnUAL270

TUTORIAL:
USING

BACKGROUND
IMAGES

FiGURE 8-22
Adding drop shadows to
photos gives a page a 3D
look and increases the vi-
sual appeal of any photo
gallery. Fortunately,
using CSS you can easily
add a drop shadow to
any picture without even
touching Photoshop.

Tutorial: Using Background Images
The CSS background-image property is the secret weapon of modern web design. It
can turn a ho-hum, text-heavy web page into a dazzling swirl of imagery (see Figure
8-23). Since you can use it to add an image to the background of any HTML tag,
the designs you can create are limited only by your imagination. The drop shadow
example in the previous tutorial is just one example of creative background image
use. Other common background image frills include applying a page background
and adding custom bullets to unordered lists. You’ll explore some of these common
tasks in this tutorial.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 271

TUTORIAL:
USING

BACKGROUND
IMAGES

Adding an Image to the Page Background
Whether it’s an intricate pattern, a logo, or a full-screen photograph, images appear
in the background of many web pages. In fact, adding an image to the background of
a page is probably the most common application of the background-image property.

1. In your text editor, open the file 08→03_bg_ex→bg_images.html.

This page is a basic two-column layout: a very simple page, with some text
formatted on a white background (Figure 8-23, left). To start, you’ll add a lin-
ear gradient to the page. The page has an external style sheet with the basic
formatting. You’ll use that style sheet to add new styles.

FiGURE 8-23
Using background images,
you can make an already
well-organized page
(left) look much spiffier
(right). Since you can add
images to the background
of any tag on a page, the
possible placement of
graphics on a page are
nearly limitless.

2. Open the styles.css file. At the bottom of the page, add the following style:

html {
 background-image: linear-gradient(to bottom, rgb(176,194,213), white
700px);
}

This code adds a linear gradient (page 252) that transitions from a blue color
at the top of the browser window to white 700px from the top.

3. Save the CSS file and preview the bg_images.html file in a web browser.

Something weird is happening here. The gradient runs from blue to white, then
repeats again, blue to white, which is not what you want. To prevent the im-
age from tiling, you can tell the browser to make the HTML tag fill the browser
window by setting its height to 100%.

4. In the styles.css file add one more property (addition in bold):

html {
 height: 100%;
 background-image: linear-gradient(to bottom, rgb(176,194,213), white
700px);
}

Css: tHe MIssInG MAnUAL272

TUTORIAL:
USING

BACKGROUND
IMAGES

Now, if you save the CSS file and preview the bg_images.html file, the back-
ground graphic’s blue gradient drips down the page but doesn’t repeat. Not
bad looking, but the blue also appears in the text’s background. You can make
the text pop by giving its background a different color.

5. Return to your text editor and the style.css file. Add another style for the
<div> containing the content of the page:

.wrapper {

 background-color: #FFF;
}

The wrapper div is a fixed width, centered in the middle of the page, containing
all of the page’s text. This style gives it a white background, but with the help
of an image, you can do better than that.

6. Edit the style you created in step 5 by adding a background image:

.wrapper {
 background-color: #FFF;
 background-image: url(images/bg_main.jpg);
 background-position: left top;
 background-repeat: no-repeat;
}

These three lines of code add a background image to the top-left of the <div>;
the no-repeat option for the background-repeat property means the image
only appears a single time. If you save the file and preview it in a web browser,
you’ll now see the picture of a hand acting like it’s holding the page. Very cool.
The only problem is the text is too far up, covering up the image. You’ll next
push down the top headline and the left sidebar.

7. Add two more styles to the style sheet:

.banner {
 margin-top: 48px;
}
.announcement {
 margin-top: 115px;
}

The first line just adds a bit of padding, pushing down the banner containing the
headline until it just touches the top of the white page, while the second style moves
the left sidebar down enough to clear the picture of the hand. The page should now
look like Figure 8-24.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 273

TUTORIAL:
USING

BACKGROUND
IMAGES

FiGURE 8-24
CSS lets you combine a
background color and a
background image, which
comes in really handy in
this example. The main
text area has a white
background color that
helps separate the text
from the fading gradation
in the page’s background.
In addition, a graphic of
a hand holding a piece of
paper adds depth to the
design.

Replacing Borders with Graphics
The border property is a useful tool in your design arsenal, but the limited number
of border styles CSS offers can get boring. A hand-drawn line with a little texture
would catch your visitors’ attention better than a plain, straight one. You can skip
the border property and add any kind of line you want as a background image—easy
as pie. In this part of the tutorial, you’ll replace the underline below each <h2> tag in
the main text area with a custom graphic that looks like a hand-drawn line.

1. Return to your text editor and the styles.css file. Add a style for the <h2>
tags inside the main <div> tag:

.main h2 {
 background-image: url(images/underline.png);
 background-repeat: no-repeat;
}

The background-image property specifies which graphic to use in the back-
ground of <h2> tags inside any tag with a class of main, whereas the no-repeat
value makes sure the graphic only appears a single time.

If you preview the file now, you’ll see that the underline doesn’t exactly line up.
In fact, it isn’t under at all. It’s above the headlines!

2. Add the following style declaration to the .main h2 style below the back-
ground-repeat property:

background-position: left bottom;

Css: tHe MIssInG MAnUAL274

TUTORIAL:
USING

BACKGROUND
IMAGES

You’ve changed the graphic’s starting location so it appears at the left edge
and bottom of the <h2> tags. If you preview the page now, though, you may not
notice much improvement. The underline runs into the headline text.

But there’s an easy fix. Since the bottom value used here puts the graphic at
the bottom of the block created by the <h2> tag, you need only to increase
the overall height of the block to move the line down a bit. You’ll do this with
a little bottom padding.

3. Edit the .main h2 style one last time, so that it looks like this:

.main h2 {
 background-image: url(images/underline.png);
 background-repeat: no-repeat;
 background-position: left bottom;
 padding-bottom: 7px;
}

Padding, as you’ll recall from page 187, is the space between the border (the
edge of the background as well) and the content. It also increases the overall
height of the box—in this case, by adding 7 pixels of bottom padding. Now, the
line graphic is placed at the bottom of the h2 block, but in the empty space
created by the bottom padding.

4. Save the style sheet and preview the bg_images.html file in a web browser.

Each <h2> tag has the hand-drawn underline. Next you’ll tackle the sidebar box,
making it look a little less boxy and jazzing up the bulleted lists.

Using Graphics for Bulleted Lists
The average bullet used for unordered lists is a black dot—not very inspiring. But you
can use the background-image property to replace those drab bullets with any image
you want. The first step is to hide the bullets that normally appear beside list items.

1. Return to your text editor and the styles.css file. Add a style for formatting
the list items in the left sidebar.

.announcement li {
 list-style: none;
}

The bulleted list is inside a <div> with a class of announcement, so this descendant
selector targets just the list items (tags) inside that div. The style removes
the bullet. Now add the graphic.

 NOTE  Applying list-style: none; to a style affecting the or tags will also remove all
of the bullets (or numbers) from list items.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 275

TUTORIAL:
USING

BACKGROUND
IMAGES

2. Add the following two properties to the .announcement li style:

background-image: url(images/bullet.png);
background-repeat: no-repeat;

You’ve seen these two properties before. They add an image to the background
and turn off repeating so that the graphic appears only once.

If you preview the page, you’ll see that the bullets currently overlap the list
text and the list items are a little jammed together (Figure 8-25, top). A little
padding and margin will fix this.

3. Add two more properties to the .announcement li style:

padding-left: 25px;
margin-bottom: 10px;

The left padding adds empty space, effectively moving the text out of the way
in order to display the new bullet icon. The bottom margin adds just a bit of
breathing room between each list item (Figure 8-25, middle).

There’s just one final flaw. The bullet image is a tad too high on the line, causing
the tip of the icon to stick out too far above the text. But you can easily fix that
with the background-position property.

4. Finish this style by adding background-position: 0px 4px;. The completed
style should look like this:

.announcement li {
 list-style: none;
 background-image: url(images/bullet.png);
 background-repeat: no-repeat;
 background-position: 0 4px;
 padding-left: 25px;
 margin-bottom: 10px;
}

This last style declaration positions the bullet icon to the far left (that’s the 0)
and 4 pixels from the top (4px) of the list item. It moves the icon down just a
smidgen, enough to make the bullet look perfect.

 NOTE  As discussed on page 171, this kind of exact positioning is precisely why you should use the back-
ground property instead of the list-style-image property for adding graphic bullets to your lists.

5. Save the file and preview the page in your browser.

The list should now have 3D tabs with red exclamation marks instead of dreary
black circles (Figure 8-25, bottom).

Css: tHe MIssInG MAnUAL276

TUTORIAL:
USING

BACKGROUND
IMAGES

FiGURE 8-25
Replacing regular black bullets with your own graphics is easy. Just a
few extra steps ensure the bullets and text are placed in the correct
location.

Giving the Sidebar Personality
At this point, the sidebar looks pretty good. The text is nicely formatted, and the
bullets look great, but the sidebar gets a little lost in the sea of white. Adding a
background image can make the sidebar stand out in a whimsical way. You could
use a single image—the scroll image pictured in the right image of Figure 8-23—in
the background of the <div> tag, but in order to make sure the text fits exactly on
the scroll, you’d have to limit the amount of content you put in the sidebar. Too much
text and it won’t fit on top of the single image (like at top-left, back in Figure 8-12);
too little, and there will be too much empty space on the graphic.

CHAPteR 8: ADDING GRAPHICS TO WEB PAGES 277

TUTORIAL:
USING

BACKGROUND
IMAGES

A more flexible approach would let the image grow as the sidebar acquires more
content (bottom-right in Figure 8-12). Fortunately, since CSS allows multiple back-
ground images, this trick is easy to pull off.

1. Return to your text editor and the styles.css file. Locate the .announcement
style you added in Step 7 on page 272 and add one additional property:

.announcement {
 background: url(images/scroll_top.jpg) no-repeat center top,
 url(images/scroll_bottom.jpg) no-repeat center bottom,
 url(images/scroll_middle.jpg) repeat-y center top;
 margin-top: 115px;
}

Yes, that’s only one property—the background property—but it has three dif-
ferent images. The order in which you list these images is important, since they
stack on top of each other. In this case, the first image is the top of the scroll;
it only appears once (no-repeat) at the top and center. The second image is
the bottom of the scroll; it also only appears once, but at the bottom of the
div. Finally, the middle part of the scroll—scroll_middle.jpg—will be layered
underneath the other two images (since it appears last in the list), and it’s
repeated along the y-axis (up and down), so if the <div> gets taller, the image
simply tiles to fill the space.

If you preview the page, you’ll see a few problems. First, the text appears on top
of the rolled up top and bottom parts of the scroll. A little padding will fix that.

2. Update the .announcement style to add top and bottom padding. Make the
changes listed in bold below:

.announcement {
 background: url(images/scroll_top.jpg) no-repeat center top,
 url(images/scroll_bottom.jpg) no-repeat center bottom,
 url(images/scroll_middle.jpg) repeat-y center top;
 padding: 70px 0 60px 0;
 margin-top: 115px;
}

Another problem is that the bulleted list sticks out on both the left and right
sides of the sidebar image. To make the bulleted list fit on the scroll, you need
to add some left and right margin.

Css: tHe MIssInG MAnUAL278

TUTORIAL:
USING

BACKGROUND
IMAGES

3. Locate the .announcement li style you created earlier and add two proper-
ties to the end so it looks like this:

.announcement li {
 list-style: none;
 background-image: url(images/bullet.png);
 background-repeat: no-repeat;
 background-position: 0 4px;

 padding-left: 25px;
 margin-bottom: 10px;
 margin-left: 30px;
 margin-right: 40px;
}

These properties move both the left and right edges of each bulleted item in
enough to clear the edges of the background image.

4. Save the file and preview it in a web browser.

The page should look like the right image in Figure 8-23. With just a few images
and some CSS magic it’s easy to bring boring web pages to life.

279

CHAPTER

9

It’s safe to say that without links there’d be no Web. The ability to be on one page,
and then click something onscreen and suddenly see a page on a computer half
a world away is what makes the Web so useful. Links are also how your visitors

navigate their way around your website. That’s why web designers agonize over
making their links look good and work properly.

In this chapter, you’ll learn how to style links to make them stand out from other
text. You can also make your links provide visual cues so your site’s visitors can
see where they are—and where they’ve been. You’ll learn how to use CSS to create
onscreen buttons and navigation bars just like the pros use. And in the tutorial sec-
tion, you’ll get some hands-on experience creating a full set of navigation features
that work in all browsers.

Selecting Which Links to Style
As always in CSS, you have to select something before you can style it. For links,
you need to tell CSS not only what you want to style, but also when you want that
style to apply. Web browsers keep track of how a visitor interacts with links, and
then displays that link differently depending on the link’s status, or state. When you
use a CSS link selector, you can target a specific link state as well.

Understanding Link States
Most browsers recognize four basic link states: an unvisited link, a link that’s been
visited already (meaning the URL is stored in the browser’s history), a link that the
visitor’s mouse is poised over, and a link that’s being clicked. As described in Chapter

 Sprucing Up Your
Site’s Navigation

Css: tHe MIssInG MAnUAL280

SELECTING
WHICH LINKS

TO STYLE
3, CSS gives you four pseudo-class selectors to accompany these states—:link,
:visited, :hover, and :active. Using them, you can apply different formatting to
each state, so there’s no doubt in your visitors’ minds whether they’ve been there
or done that.

 NOTE  Browsers also recognize a pseudo-class called :focus. Links get :focus when visitors use the
keyboard to tab to them. This pseudo-class is also fun to use with form text fields, as you’ll see in the forms
tutorial on page 375.

Suppose you want to change the text color for an unvisited link from boring browser
blue to vivid orange. Add this style:

a:link { color: #F60; }

Once someone has clicked that link, its state changes to visited, and its color
changes to the purple used by most browsers. To change that color to deep red,
use this style:

a:visited { color: #900; }

 TIP  When you want to provide a style that applies to all link states—for example, use the same font and
font size for all link states—then style the HTML <a> tag by creating a generic a selector. You can then use the
specific link state styles—a:visited, for example—to change the color or in some other way customize the
look of just that state.

WORD TO THE WISE

Limits on Visitation
Due to privacy concerns, browsers place severe limits on which
CSS properties you can apply to the :visited pseudo class.
As it turns out, years ago some nefarious types had figured out
how to use JavaScript to read changes in the style of :vis-
ited links to determine which sites people had visited. For
example, by loading a new background image for visited links,
you can determine whether a visitor has been to Paypal.com,

eBay.com, BankofAmerica.com, or not-safe-for-work.com.
Because of that potential problem, you’re limited to styling
the color, background-color, and border-color of
visited links—and only if you’ve already given the normal states
of those links a color, background color, or border color. In other
words, you can’t do much with the :visited pseudo-class.

The :hover pseudo-class offers many creative possibilities; you’ll learn quite a few
later in this chapter. It lets you completely alter the look of a link when a visitor moves
her mouse over it. If you’ve used cumbersome JavaScript to make graphic buttons
change when a mouse hovers over them, you’ll love being able to create the same
effect with CSS alone. But to start with a simple example, this style changes the
color of a link as a mouse passes over it:

a:hover { color: #F33; }

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 281

SELECTING
WHICH LINKS

TO STYLE
 TIP  Be careful when adding CSS properties to the :hover pseudo-class. Properties that change the size
of the hovered element might affect other elements around it. For example, if you increase the font size of a
hovered text link, when moused over, the link text will grow, pushing other elements out of the way. The effect
can be jarring.

And finally, if you’re one of those obsessive-compulsive designers who leave no de-
sign stone unturned, you can even change the look of a link for the few milliseconds
when a visitor is actually clicking it. Here’s how:

a:active {color: #B2F511; }

In most cases, you’ll probably have a generic a style, :visited, and :hover styles
in your style sheets. For maximum design control you may want to style all the dif-
ferent states. But for that to work, you must specify the links in a particular order:
link, visited, hover, and active. Use this easy mnemonic to remember it: LoVe/
HAte. So here’s the proper way to add all four link styles:

a:link { color: #F60; }
a:visited { color: #900; }
a:hover { color: #F33; }
a:active {color: #B2F511; }

If you change the order, the hover and active states won’t work. For example, if you
put a:hover before a:link and a:visited, then the color change won’t take effect
when hovering.

 NOTE  Why does the order matter? That would be thanks to our friend the cascade (see Chapter 5). All those
styles have the same specificity, so the order in which they appear in the code determines the style that wins
out. A link can be both unvisited and hovered over. So if the a:link style comes last in the code, then it wins,
and the color from a:hover never gets applied.

Targeting Particular Links
The styles in the previous section are basic <a> tag styles. They target certain link
states, but they style all links on a page. What if you want to style some links one
way and some links another way? A simple solution is to apply a class to particular
link tags. Say you have a bunch of links within the body of an article, some of which
point to sites that you want to highlight (for example, links to websites belonging
to your friends, business associates, or sponsors). You may want to identify these
links so people know they’re special and are more likely to click them. In this case,
you can apply a class to these external links, like this:

Visit this great
resource

Css: tHe MIssInG MAnUAL282

SELECTING
WHICH LINKS

TO STYLE
To style this link in its own way, you’d create styles like this:

a.sponsor { font-family: Arial, sans-serif; }
a.sponsor:link { color: #F60; }
a.sponsor:visited { color: #900; }
a.sponsor:hover { color: #F33; }
a.sponsor:active {color: #B2F511; }

Leaving off the a and only specifying the class works too:

.sponsor { font-family: Arial, sans-serif; }

.sponsor:link { color: #F60; }

.sponsor:visited { color: #900; }

.sponsor:hover { color: #F33; }

.sponsor:active {color: #B2F511; }

Now only those links with a class of “sponsor” will get this formatting.

 NOTE  These examples change only the links’ colors, but that’s just to make it simple for demonstration
purposes. You can use any CSS property to format links (except :visited links, as explained in the box on page
280). As you’ll see in the next section, you have lots of creative ways to style links.

Grouping links with descendant selectors
If a bunch of links appear together in one area of a page, you can also save time by
using descendant selectors. Say you have five links that lead to the main sections
of your site. They represent your main navigation bar, so you want to give them a
distinctive look. Just wrap those links in the HTML <nav> tag. Now you have an easy
way to identify and format just those links:

nav a { font-family: Arial, sans-serif; }
nav a:link { color: #F60; }
nav a:visited { color: #900; }
nav a:hover { color: #F33; }
nav a:active {color: #B2F511; }

Alternatively, you can use a <div> tag and add a class to that div: <div
class="mainNav">:

.mainNav a { font-family: Arial, sans-serif; }

.mainNav a:link { color: #F60; }

.mainNav a:visited { color: #900; }

.mainNav a:hover { color: #F33; }

.mainNav a:active {color: #B2F511; }

Using descendant selectors, it’s easy to style links differently for different areas of
a web page. (See page 582 in Chapter 18 for a thorough discussion of the power of
descendant selectors.)

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 283

STYLING LINKS
 TIP  It’s very common to use bulleted lists to present links (you’ll see an example of this technique on page
289). In this case, you can add an ID or class to the tag for the list—<ul class="mainNav">, for
example—then create descendant selectors like .mainNav a:link to style them.

Styling Links
Now that you know how to create a selector that targets links, how should you style
them? Any way you want! There aren’t any CSS properties intended just for links. You
have access to all CSS properties, so you’re limited only by your imagination. Just
make sure your links look like links. Not that they need to be blue and underlined,
but links must look different from non-link text so visitors know they can click them.

If you make a link look like a button—adding a border, including a background, and
making it change color when moused over—most people will understand they can
click it. Or use a linear gradient (page 252) to add texture and depth to a link. Like-
wise, links that appear in long passages of text should look clearly distinct. You can
make links stand out by bolding the text, keeping the traditional underline, coloring
the background, or adding a hover style. You can even add a graphic (like an arrow)
that provides a clear visual cue that clicking the text takes you somewhere else.

Underlining Links
Since the beginning of the Web, vibrant blue, underlined text has signaled, “Click here
to go there.” But that underline and color are often the first two things a designer
wants to change. Underlines are such a common way to mark a link that they’re
boring (#1 in Figure 9-1). Fortunately, you can do several things to eliminate or im-
prove on the standard underline, while still ensuring that your links are identifiable:

• Remove the underline entirely. To eliminate the regular underline, use the
text-decoration property and the none value:

a {text-decoration: none;}

Of course, removing the underline completely can confuse your visitors. Unless
you provide other visual cues, your links look exactly the same as all the other
text (#2 in Figure 9-1). So if you go this route, then make sure you highlight the
links in some other way, like making link text bold (#3 in Figure 9-1), coloring
the background, adding an informative graphic, or making the link look like a
button (page 285).

• Underline when mousing over. Some designers remove underlines for all links,
highlight them in some other way, and then add the underlines back when the
visitor moves his mouse over the link (#4 in Figure 9-1). To do so, simply remove
the underline for links, and then reintroduce it using the :hover pseudo-class:

Css: tHe MIssInG MAnUAL284

STYLING LINKS
a {
 text-decoration: none;
 background-color: #F00;
 }
a:hover {
 background-color: transparent;
 text-decoration: underline;
}

FiGURE 9-1
You have plenty of ways to make the boring
line (1) under links more exciting. Start by
removing the link entirely (2, 3) and replac-
ing it only when the visitor mouses over the
link (4). Better yet, create a more stylized
link by using the border property (5) or a
background image (6).

• Use a bottom border. You can’t control the color, width, or style of a regular
link underline. It’s always a solid, 1-pixel line in the same color as the link text.
For greater variety, use the border-bottom property instead (#5 in Figure 9-1).
Hiding the normal underline and adding a dashed-line border looks like this:

a {
 text-decoration: none;
 border-bottom: dashed 2px #9F3;
}

You can alter the style, width, and color of the border. To put more space be-
tween the text and the border, use the padding property.

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 285

STYLING LINKS
• Use a background image. You can customize the look of links even further by

using a graphical line. For example, #6 in Figure 9-1 uses a graphic that looks
like a hand-drawn line. There’s a similar technique for underlining headlines in
the Chapter 8 tutorial (page 273). Start by creating an underline graphic using
a program like Fireworks or Photoshop, which have brush tools that simulate
the look of a crayon, felt-tip marker, or whatever. Next, create a style for the link
that removes the normal underline and adds a background image. Make sure the
graphic repeats horizontally and is positioned at the bottom of the link. You may
also need to add a little bottom padding to position the line. Here’s an example:

a {
 text-decoration: none;
 background: url(images/underline.gif) repeat-x left bottom;
 padding-bottom: 5px;
}

Creating a Button
You can also make links look like the buttons in the dialog boxes and toolbars you
see in desktop programs. Buttons look great in navigation bars, but you can also
use them for any small (one- or two-word) links on your pages. Your main allies in
this task are the border, background-color, and padding properties. With them, it’s
easy to create a wide range of boxy-looking buttons (see Figure 9-2).

Say you added a class to a link that you’d like to style as a button: <a href="stale.
html" class="button">Free Donuts Here!. To add a basic black outline around
this link (like the top-left image in Figure 9-2), you’d create this style:

a.button {
 border: solid 1px rgb(0,0,0);
}

You can get fancier by adding a background color as well, like so:

a.button {
 border: solid 1px rgb(0,0,0);
 background-color: rgb(51,51,51);
}

 NOTE  In these examples, both a.button or .button would work for style names. In the case of
a.button, the style only applies to <a> tags with the class button, while .button applies to any tag with
that class name. If you want to make sure the style only applies to a particular tag, then add the tag name to
the beginning. Adding the tag name is also a helpful reminder when looking over your CSS code—it provides a
valuable clue as to what the style is intended to format. When you see a.button, it’s clear that the style is
aimed at particular links.

Css: tHe MIssInG MAnUAL286

STYLING LINKS

FiGURE 9-2
Use the border,
background, and pad-
ding properties to turn
a link into an obviously
clickable button. Simply
adding a border (top left)
can be enough to get the
point across. Or you can
create more sophisticated-
looking buttons by
combining different
borders of varying colors,
styles, and widths with the
background-color
property (page 231).
And, for those browsers
that support linear-
gradient (page 252),
text-shadow (page
160), box-shadow
(page 201), and rounded
corners with border-
radius (page 199), you
can achieve some truly
remarkable effects (bot-
tom row).

Mind you, all four borders don’t need to be the same width, type, or color. You don’t
even have to have four borders. One common design technique is to add a beveled
look to a button using four different border colors, as shown at top right in Figure
9-2. Creating the beveled look isn’t difficult, but you need to remember what makes
something look three-dimensional—the light source. Imagine a light shining on one
of the four sides: That side is the lightest, while the side opposite is the darkest
(since the raised button is blocking the light and putting that side into a “shadow”).
The other two sides should have shades in between the “lit” and “shadow” borders.
Here’s the CSS used to create the beveled design in the top-right corner of Figure 9-2:

a.button {
 background: #B1B1B1;
 color: #FFF;
 font-weight: bold;
 border-width: 4px;
 border-style: solid;
 border-top-color: #DFDFDF;
 border-right-color: #666;

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 287

STYLING LINKS
 border-bottom-color: #333;
 border-left-color: #858585;
}

Keep in mind that you can (and probably should) create a :hover state for your but-
tons as well. That way, your buttons can react when a visitor moves her mouse over
the link, providing useful visual feedback. In the case of a beveled button, reversing
the various colors—make a dark background lighter, a light border darker, and so
on—is very effective.

Using linear gradients, rounded corners, or box and text shadows can really add
depth to a button. For example, the button in the bottom middle of Figure 9-2 is
created with this code:

background-color: #ee432e;
background-image: -webkit-linear-gradient(top, #ee432e 0%, #c63929 50%,
#b51700 50%, #891100 100%);
background-image: -moz-linear-gradient(top, #ee432e 0%, #c63929 50%, #b51700
50%, #891100 100%);
background-image: -o-linear-gradient(top, #ee432e 0%, #c63929 50%, #b51700
50%, #891100 100%);
background-image: linear-gradient(top, #ee432e 0%, #c63929 50%, #b51700 50%,
#891100 100%);
border: 1px solid #951100;
border-radius: 5px;
box-shadow: inset 0px 0px 0px 1px rgba(255, 115, 100, 0.4), 0 1px 3px #333333;
padding: 12px 20px 14px 20px;
text-decoration: none;
color: #fff;
font: bold 20px/1 "helvetica neue", helvetica, arial, sans-serif;
text-align: center;

text-shadow: 0px -1px 1px rgba(0, 0, 0, 0.8);

Line 1 sets a deep red background color; this color is provided for browsers that don’t
understand linear gradients (IE9 and earlier as well as other older browsers). Lines
2–5 set up a linear gradient for various browsers. Line 6 adds a simple border, while
line 7 creates the rounded corners and line 8 adds a subtle inset shadow and a second
drop shadow below the button; in other words, it applies two drop shadows, which
is perfectly legal, as described on page 249. Line 9 adds padding to provide space
around the button text and the button border, while line 10 removes the underline
that normally appears below links. The last lines set properties for the text in the
button, including its color, font, alignment, and text shadow.

 TIP  Creating great-looking buttons often involves piling on the CSS properties (as you can tell from the above
code). If you need a little help creating all that code, check out the not-so-humble Best CSS Button Generator at
http://www.bestcssbuttongenerator.com. To see other great examples of CSS buttons, visit http://www.freshdesign-
web.com/css3-buttons.html and http://tympanus.net/codrops/2012/01/11/css-buttons-with-pseudo-elements/.

http://www.bestcssbuttongenerator.com
http://www.freshdesignweb.com/css3-buttons.html
http://www.freshdesignweb.com/css3-buttons.html
http://tympanus.net/codrops/2012/01/11/css-buttons-with-pseudo-elements/

Css: tHe MIssInG MAnUAL288

STYLING LINKS
Using Graphics
Adding graphics to links is one of the easiest and most visually exciting ways to
spruce up your site’s navigation. There are any number of possible techniques and
designs, but none of the good ones involve an HTML tag. Instead, you can
easily add attractive and informative imagery to any link using the CSS background-
image property. You can see several examples in Figure 9-3. (You’ll also learn more
advanced techniques for using images to create graphical buttons and rollovers
starting on page 298.)

FiGURE 9-3
Even a simple graphic can
enliven a link and make its
purpose clearer. A globe
icon (bottom left) is one
way to indicate an external
link.

If you need a refresher on background-image and related properties, flip back to page
231. Meanwhile, here are a few things to keep in mind when you use images with links:

• Don’t forget no-repeat. Normally a background graphic tiles repeatedly in the
background. With many graphics, that effect looks awful for links (top right,
Figure 9-3). Unless you’re using a subtle pattern like a gradient fill, remember to
set the repeat option to stop the tiling like this: background-repeat: no-repeat;.

• Control placement with background-position. To place an image accurately in
the background, use the background-position property (page 236). When you
want to place an image on the far-right edge of a link but centered vertically on
the line, use this CSS: background-position: right center.

For more accurate placement, use a specific value such as pixels or ems. These
units of measurement make it easy to scoot a graphic a couple of pixels away
from the left edge of the link. By combining these units with a percentage value,
you can easily center a graphic vertically within a link but place it an exact amount
away from the left edge: background-position: 10px 50%;.

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 289

BUILDING
NAVIGATION

BARS
 TIP  In positioning background images, the first value is the horizontal placement (left to right); the second
is vertical placement (top to bottom).

Unfortunately, there’s no way to exactly place an image from the right or bottom
edges. So if you want to move an image in from the right edge a bit, then you
have two options: First, in your image-editing program, you can add empty space
to the right edge of the graphic. The amount of empty space you add should be
equivalent to how much you want to indent that graphic from the right. Once
you’ve created the graphic, use the background-position property to place the
graphic on the right edge of the element: for example, background-position:
right top;. Or you can use percentage values: background-position: 90% 75%;
places the point that lies 90 percent from the left edge of the image on top of the
point 90 percent from the left edge of the styled element. As you can imagine,
this method doesn’t provide complete accuracy, so you’ll need to experiment
a little. (See page 236 for more on how percentage positioning works.)

• Padding gives you room. If you’re using an image or icon to mark a link, then
make sure to add padding on the side the image is on to move the link text out
of the way. For instance, the third example in Figure 9-3 has 30 pixels of left
padding to prevent the word “Home” from overlapping the picture of the house,
while a little right padding makes room for the globe in the bottom-left image.

 NOTE  Since the <a> tag is an inline element, adding top and bottom padding (or, for that matter, top and
bottom margins) has no effect. See page 192 for the reason why. You can, however, turn a link into a block-level
element (display: block) so it can accept top and bottom padding and margins, or use the inline-block
setting (display: inline-block). You’ll see both of these techniques later in this chapter.

• Use the pseudo-classes. Don’t forget the :hover and :visited pseudo-
classes. They can add great dynamic effects and provide helpful feedback
about your links. You can swap in a different background graphic for any of
these pseudo-classes. So you could, for example, have a dim lightbulb graphic
in the background of a normal link but change that graphic to a lit bulb when
the mouse travels over it.

Should you decide to use a graphic for a link’s :hover state, keep in mind that
browsers don’t download the graphic until your visitor’s mouse actually hovers
over the link, so there’ll be a noticeable delay before the graphic appears. Once
the graphic is downloaded, however, the delay goes away. See page 298 for a
technique to prevent this awkward problem.

Building Navigation Bars
Every site needs good navigation features to guide visitors to the information they’re
after—and help them find their way back. Most sites are organized in sections, such
as Products, Contact Info, Corporate Blog, and so on. This structure lets visitors know

Css: tHe MIssInG MAnUAL290

BUILDING
NAVIGATION

BARS
what information to expect and where they can find it. Much of the time, you find
links to a site’s principal sections in a navigation bar. CSS makes it easy to create a
great-looking navigation bar, rollover effects and all.

Using Unordered Lists
At heart, a navigation bar is nothing more than a bunch of links. More specifically,
it’s actually a list of the different sections of a site. Back in Chapter 1, you learned
HTML’s mission is to provide meaningful structure to your content. Accordingly, you
should always use a tag that’s appropriate to the meaning of that content. For a
list of items, that’s the or unordered list tag—the same one you use to create
bulleted lists. It doesn’t matter whether you want your list to have no bullets or to
stretch horizontally across the top of the page: You can do all that by styling the
 tag with CSS. Figure 9-4 shows an example.

FiGURE 9-4
Using CSS, you can bend
ordinary HTML tags to
your will and turn them into
either vertical or horizontal
navigation bars. To paraphrase
a classic movie line, “We don’t
need no stinkin’ bullets.”

The HTML for a nav bar is straightforward. There’s a single link inside each individual
list item. Also, you need a way to style just that unordered list. (You don’t want
actual lists of items to look like navigation bars.) Applying a class or id to the
tag is a good approach:

<ul class="nav">
Home
News
Reviews

The CSS varies a bit depending on whether you want a horizontal or vertical naviga-
tion bar. In either case, you need to do two things:

• Remove the bullets. Unless the navigation bar is supposed to look like a bul-
leted list, remove the bullets by setting the list-style-type property to none:

ul.nav {
 list-style-type: none;
}

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 291

BUILDING
NAVIGATION

BARS
• Eliminate padding and margins. Since browsers indent list items from the left,

you need to remove this added space as well. Some browsers do the indenting
using padding, and others use margin, so you need to set both to 0:

ul.nav {
 list-style-type: none;
 padding-left: 0;
 margin-left: 0;
}

These two steps essentially make each list item look like any plain old block-level
element, such as a paragraph or headline (except that a browser doesn’t insert mar-
gins between list items). At this point, you can begin styling the links. If you want a
vertical navigation bar, read on; for horizontal nav bars, see page 293.

Vertical Navigation Bars
A vertical navigation bar is just a bunch of links stacked one on top of the next.
Removing the bullets, left margin, and padding (as explained in the previous sec-
tion) gets you most of the way there, but you need to know a few additional tricks
to get things looking right:

1. Display the link as a block.

Since the <a> tag is an inline element, it’s only as wide as the content inside it.
Buttons with different length text (like Home and Our Products) are different
widths. The staggered appearance of different width buttons stacked on top
of each other doesn’t look good, as you can see in #1 in Figure 9-5. In addition,
top and bottom padding and margins have no effect on inline elements. To get
around these limitations, style the link as a block element:

ul.nav a {
 display: block;
}

The block value not only makes each button the same width, but it also makes
the entire area of the link clickable. That way, when your visitors click areas where
there’s no link text (like the padding around the link), they still trigger the link.

2. Constrain the width of the buttons.

Making links block-level elements also means they’re as wide as the tag they’re
nested in. So when they’re just sitting in a page, those links stretch the width of
the browser window (#2 in Figure 9-5). You have several ways to make them a
little narrower. First you can just set the width of the <a> tag. If you want each
button to be 8 ems wide, for example, then add that to the width property:

ul.nav a {
 display: block;
 width: 8em;
}

Css: tHe MIssInG MAnUAL292

BUILDING
NAVIGATION

BARS

FiGURE 9-5
In just a few easy steps, you can turn an
unordered list of links into an attractive
navigation bar.

Setting a width for any of the tags that wrap around those links—such as the
 or tags—also works.

If the button text occupies only one line, you can also center the text vertically
so there’s equal space above and below the link text. Just add a height to the
link and set its line-height property to the same value:

a {
 height: 1.25em;
 line-height: 1.25em;
}

 NOTE  You may not need to set an explicit width if the nav bar is inside a page layout element that itself
has a width. As you’ll read in Part Three, it’s easy to create a sidebar that hugs the left (or right) edge of a page.
The sidebar has a set width, so plopping the unordered list nav bar inside it automatically constrains the width
of the buttons.

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 293

BUILDING
NAVIGATION

BARS
Now that all this busywork is out of the way, you can style the buttons to your heart’s
content. Add padding, background colors, margins, images, or whatever tickles your
artistic fancy. If you want to spread the buttons out so they don’t touch, then add
a bottom (or top) margin to each link.

Horizontal Navigation Bars
CSS lets you turn a set of stacked list items into a side-by-side presentation of links,
like the one shown back in Figure 9-4. This section shows you two common ways to
create a horizontal navigation bar from a list. The first—using the display: inline
property—is easy, but it usually leads to a small gap between buttons. There’s a way
around this, but it involves fussing with your HTML. If you want a horizontal nav bar
where buttons touch, then turn to the floated method described on page 296.

WORKAROUND WORKSHOP

When Borders Bump
In a vertical navigation bar, if the buttons touch, you’ll see
a double border between two buttons. In other words, the
bottom border from one button touches the top border of
the next button.

To get around this, add the border to only the top of each link.
That way, you’ll get just one border line where the bottom from
each button touches the top from the next.

This workaround, however, leaves the entire nav bar border-
less below the last link. To fix that problem, you can create a
class with the correct bottom border style and apply it to the
last link—but that makes you add more code to your HTML.

There are two better ways: first, you can add a bottom border
to the tag that encloses the nav bar. Or, you can use
the :last-of-type selector to format the bottom of just
that last link (you’ll see an example of this technique in the
tutorial on page 311).

The same holds true when you have horizontal links. In this
case the right and left borders of adjacent buttons touch. Just
turn off the left borders on the buttons and add a left border
to the containing tag—the tag, for example—or use the
:first-of-type selector to select the first link in the bar
and add a border to its left side.

Whichever method you use, start by removing the bullets and left space from the
 tag, as illustrated in #1 in Figure 9-6.

USING DISPLAY: INLINE AND DISPLAY: INLINE-BLOCK
The simplest method of creating a horizontal navigation bar involves changing the
display property of the list items from block to inline. It’s easy to do using CSS.

1. Create a style for the unordered list to remove any padding, margins, and
bullets.

ul.nav {
 margin-left: 0px;
 padding-left: 0px;
 list-style: none;

 border-bottom: 1px dashed #000;
}

Css: tHe MIssInG MAnUAL294

BUILDING
NAVIGATION

BARS
In this case, you’ve also added a bottom border, which will appear under the
buttons (see #1 in Figure 9-6).

FiGURE 9-6
Creating a horizontal menu from an unordered
list of links requires just a few steps. However,
using the inline and inline-block method
results in a noticeable gap between the buttons
(circled). The reason for this gap is described in
step 3.

2. Make the list items inline elements.

Inline elements don’t create a line break before or after them as block-level
elements do. Setting the display property of the tags to inline makes
them appear one beside the other (#2 in Figure 9-6).

.nav li { display: inline; }

You need to make sure you don’t have too many buttons, though. If they don’t
all fit side by side, some will drop down below the first row.

3. Style the links.

You can remove the underline beneath the links and add a border around them
instead. You can also add background color or a background image to provide
visual depth. Add padding if you need more room around each link’s text. If
you want some space between each button, then apply a right margin. The fol-
lowing style gives links a button-like appearance, as shown in #3 in Figure 9-6:

.nav a {
 display: inline-block;
 border: 1px dashed #000;
 border-bottom: none;
 padding: 5px 15px 5px 15px;
 background-color: #EAEAEA;
 text-decoration: none;
 color: #333;
}

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 295

BUILDING
NAVIGATION

BARS
First, you need to set the display property of the links to inline-block. This
makes sure that top and bottom padding and margins are obeyed (as described
on page 192, normally inline elements ignore top and bottom padding and
margins as well as width and height values). Then you can style the buttons
to your heart’s content. Here, you’ve added a border to the links and removed
the bottom border so it doesn’t double up on the bottom border applied to
the unordered list.

 TIP  You can make the buttons all equal in size by setting the width of the links.

To make this horizontal nav bar appear in the center of the page, add text-align:
center; to the tag’s style. In fact, this is one benefit of this technique over the
float technique described next—when you use inline and inline-block, you can
center your nav bar, which you can’t do with floats.

You will, however, notice that the buttons don’t touch (see the circled area in Figure
9-6). That has to do with the way web browsers treat the white space between the
 tags. For example, take this example HTML:

<ul class="nav">
Home
News
Reviews

Web browsers treat any white space (a tab, carriage return, or space character)
between a closing and the next as a space. There are a couple of ways
to remove this space:

• Put the closing and opening on the same line like this:

<ul class="nav">
Home
News
Reviews

This kind of code isn’t normally written this way, and a program like Dream-
weaver definitely wouldn’t write it this way. To remove the space, you have to
get in and change the code by hand.

• Add a negative right margin to the list items. For example, you could change
the li style in step 2 above to this:

.nav li {
 display: inline;
 margin-right: -5px;
}

Css: tHe MIssInG MAnUAL296

BUILDING
NAVIGATION

BARS
The negative margin value basically pulls the following list item over 5 pixels to
close up the gap between the buttons. The problem with this technique is that
the exact value you use will vary depending upon the size of the text—5 pixels
may or may not work—so you’ll need to experiment to get the proper value.

USING FLOATS FOR HORIZONTAL NAVIGATION
Another more popular technique is to float the list items. This method also places
the links side by side. In addition, this technique doesn’t suffer from the spacing
problem of the inline method.

 NOTE  Nav bars made up of floated elements are hard to center horizontally in the middle of a page. When
you need to do that, the inline method described above or the flexbox method demonstrated on page 557
are better.

1. Float the list items.

Adding a left float to the tags removes them from the normal top-down
flow of elements:

.nav li { float: left; }

The floated list items (along with their enclosed links) slide right next to each
other, just like the images in the photo gallery tutorial on page 266. (You can
just as easily float them right if you want those buttons to align to the right
edge of the screen or containing sidebar.)

FREQUENTLY ASKED QUESTION

Pop-up Menus
How do I create those cool pop-up menus that display a sub-
menu of links when someone rolls his mouse over a button?

Navigation bars that have multiple levels of menus that pop
up or slide out are extremely popular. They’re a perfect way
to cram a lot of link options into a compact navigation bar. You
can create them in a couple of ways.

First, there’s the CSS-only approach. You can find a basic tuto-
rial on the process at http://blog.teamtreehouse.com/create-
simple-css-dropdown-menu. For a spiffy CSS menu that uses
CSS transitions to animate the appearance and disappearance
of the drop-down menus, check out www.red-team-design.
com/css3-animated-dropdown-menu.

If you’re not the do-it-yourself type, or if you’re just in a hurry,
you can use the free Pure CSS Menu generator—a wizard-like
web page that produces the necessary HTML and CSS for you:
http://purecssmenu.com.

The one disadvantage to most approach to CSS menus: sub-
menus disappear instantly if your visitor’s mouse strays. You
can hope that all your visitors have excellent reflexes, or you
can try a different approach. For an excellent tutorial that also
includes how to use JavaScript to make your drop-down menus
even more responsive, check out https://css-tricks.com/drop-
down-menus-with-more-forgiving-mouse-movement-paths.

http://blog.teamtreehouse.com/create-simple-css-dropdown-menu
http://blog.teamtreehouse.com/create-simple-css-dropdown-menu
http://www.red-team-design.com/css3-animated-dropdown-menu
http://www.red-team-design.com/css3-animated-dropdown-menu
http://purecssmenu.com
https://css-tricks.com/dropdown-menus-with-more-forgiving-mouse-movement-paths
https://css-tricks.com/dropdown-menus-with-more-forgiving-mouse-movement-paths

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 297

BUILDING
NAVIGATION

BARS
2. Add display: block to the links.

Links are inline elements, so width values (as well as top and bottom padding
and margins) don’t apply to them. Making a browser display the links as block
elements lets you set an exact width for the button and add a comfortable
amount of white space above and below each link:

.nav a { display: block; }

3. Style the links.

Add background colors, borders, and so on.

4. Add a width.

If you want the nav buttons to have identical widths, set a width for the <a> tag.
The exact width you use depends on how much text is in each button. Obviously
for a link like Corporate Philosophy, you need a wider button.

If you want each button to be simply the width of the text inside, don’t set
a width. You can, however, add left and right padding to give the text some
breathing room.

 TIP  To center the text in the middle of the button, add text-align: center; to the links’ style.

5. Add overflow: hidden to the tag style.

If it has a border, background color, or image, you should need to “contain the
float”—that is, the floated list items inside the will appear to pop out of
the bottom of the list (and outside the tags border or background color).

.nav {
 overflow: hidden;
}

Here are the styles required to create the navigation bar pictured in Figure 9-7. Notice
that the buttons are the same width, and the button text is centered.

.nav {
 margin: 0px;
 padding: 0px;
 list-style: none;
 border-bottom: 3px solid rgb(204,204,204);
 overflow: hidden;
}

.nav li {
 float: left;
}

Css: tHe MIssInG MAnUAL298

CSS-STYLE
PRELOADING
ROLLOVERS

.nav a {
 width: 12em;
 display: block;
 border: 3px solid rgb(204,204,204);
 border-bottom: none;
 border-radius: 5px 5px 0 0;
 padding: 10px;
 margin-right: 5px;
 background-color: rgb(95,95,95);
 background-image: -webkit-linear-gradient(rgb(175,175,175), rgb(95,95,95));
 background-image: -moz-linear-gradient(rgb(175,175,175), rgb(95,95,95));
 background-image: -o-linear-gradient(rgb(175,175,175), rgb(95,95,95));
 background-image: linear-gradient(rgb(175,175,175), rgb(95,95,95));
 text-decoration:none;
 color: white;
 text-align: center;
 font-family: Arial, Helvetica, sans-serif;
 font-weight: bold;
}

FiGURE 9-7
Floating list items let you
create equal-width but-
tons for a navigation bar
like this one. You can see
the actual CSS that created
this bar above.

CSS-Style Preloading Rollovers
In the bad old days, making a graphical link change to another graphic when moused
over required JavaScript. With CSS, you can achieve similar effects with the :hover
pseudo-class and a background image. However, there’s one problem with the CSS
method: Unless your visitor has already downloaded the rollover graphic, there’s a
noticeable delay while the browser sucks down the new graphic and displays it. The
delay happens only the first time the visitor hovers over the link, but still, waiting
for graphics to load is very 20th century.

The JavaScript solution can avoid this problem thanks to a technique called preload-
ing, which automatically downloads the rollover graphic well before it’s needed. But
CSS doesn’t give you that option, so you need to enlist another clever maneuver
called CSS sprites, which utilizes a single graphic to create different states for the
same button.

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 299

CSS-STYLE
PRELOADING
ROLLOVERS

 NOTE  CSS Sprites are used widely by companies like Yahoo and Google, not just for rollover effects but also
to optimize the download speed of websites. You can learn more about them at http://coding.smashingmagazine.
com/2009/04/27/the-mystery-of-CSS-sprites-techniques-tools-and-tutorials/. And for a list of tools, best practices
and helpful applications for working with sprites, visit http://webdesign.tutsplus.com/articles/css-sprite-sheets-
best-practices-tools-and-helpful-applications--webdesign-8340.

Here’s how to implement the method:

1. In your favorite image-editing program, create one image with different
versions of the button.

You might create a regular state, a rollover state, and maybe even a “you are
here” state. Place the images one on top of the other, with the regular link im-
age on top and the rollover image below.

 NOTE  There are many online tools to help you do this: SpritePad (http://spritepad.wearekiss.com and Sprite
Cow (www.spritecow.com) are two examples.

2. Measure the distances from the top of the entire graphic to the top of each
image.

In Figure 9-8 (top), the rollover image’s top edge is 39 pixels from the top of
the graphic.

3. Create a CSS style for the regular link. Include the image in the background
and place it at the left top of the style (Figure 9-8, middle).

Your style may look something like this:

a { background: #E7E7E7 url(images/pixy.png) no-repeat left top; }

4. Create the :hover style.

Here’s the trick: Use the background-position property to shift the graphic
upwards, so the first image disappears and the rollover image becomes visible
(Figure 9-9, bottom).

a:hover { background-position: 0 -39px; }

Besides preventing the dreaded download delay, this technique helps you keep your
navigation graphics organized in a single file.

 NOTE  Some websites take this technique to the extreme. Yahoo, Amazon, and Google (among many others)
often put together dozens of little images into a single file and display only the portion of the file containing
the desired button. You can see an example from Amazon here: www.flickr.com/photos/mezzoblue/3217540317.
Sites with millions of daily viewers benefit from complex sprites, since it’s easier and faster for a web server to
send a single (albeit bigger) image file than dozens of smaller files.

http://coding.smashingmagazine.com/2009/04/27/the-mystery-of-CSS-sprites-techniques-tools-and-tutorials/
http://coding.smashingmagazine.com/2009/04/27/the-mystery-of-CSS-sprites-techniques-tools-and-tutorials/
http://webdesign.tutsplus.com/articles/css-sprite-sheets-best-practices-tools-and-helpful-applications--webdesign-8340
http://webdesign.tutsplus.com/articles/css-sprite-sheets-best-practices-tools-and-helpful-applications--webdesign-8340
http://spritepad.wearekiss.com
http://www.spritecow.com
http://www.flickr.com/photos/mezzoblue/3217540317

Css: tHe MIssInG MAnUAL300

STYLING
PARTICULAR

TYPES OF
LINKS

FiGURE 9-8
Using the CSS sprites
method, you can avoid
an annoying delay while
the browser downloads
a rollover image for the
first time. By combining
all of the different link
state graphics into a single
image, you can display a
different state simply by
adjusting the positioning
of the background image.

Styling Particular Types of Links
Web designers link to all sorts of things: other web pages on their sites, web pages
on other sites, PDFs, Word documents, and zip archive files, to name a few. To help
guide your site’s visitors, you might want to supply clues to let them know where
a link leads before they click it. Advanced selectors are a great way to do just that.

Links to Other Websites
You can easily create a style that identifies links to other websites using an attribute
selector. As you read on page 59, attribute selectors let you style HTML tags that
have a particular attribute—for example, an tag with the alt attribute set to
Our Company. You can also style tags whose attributes contain certain values. Any
link that points outside your site must be an absolute URL (see the box on page
237), meaning it must begin with either http:// or https://—for example, https://
css-tricks.com.

 NOTE  All major companies now use SSL (secure socket layer) on their sites, so links to those sites will always
begin with https://. In fact, it’s now considered an industry best practice for all sites to use SSL, so you probably
now see more links that begin with https:// than with http://.

Because you need to account for both http:// and https:// there are two approaches,
each with a possible drawback. First, you can search the beginning of the href
property for http, like this:

a[href^='http']

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 301

STYLING
PARTICULAR

TYPES OF
LINKS

This will match URLs that begin with both http:// and https://. However, it will also
select relative links that point to http.html, or http-information.html. If you don’t plan
on linking to any pages within your site that begin with http, then this will work fine.

Another method is to use the contains selector to look for :// anywhere within the
URL like this:

a[href^='://']

This will match both http:// and https://, and because you won’t have :// anywhere
else in an href property, it should work for all external links.

You could style these any way you’d like, but one common technique is to add a
small image next to the link—an icon indicating an external link. You’ll see this in
action on page 305 of this chapter’s tutorial.

If you happen to use absolute links to point to other pages in your site, then you’ll
probably not want that same styling to appear for them. Fortunately, CSS’s nega-
tion pseudo-class—:not()—makes this easy. With it, you can select absolute links
that are not in your site:

 a[href*='://']:not(a[href*='www.mysite.com']) {
 background: url(images/globe.png) no-repeat center right;
 padding-right: 15px;
}

Email Links
Email links are another special kind of link. Normally, email links look just like any
other link—blue and underlined. However, they don’t act like any other link. Click-
ing one launches a visitor’s email program, and some people find starting up a new
program while browsing a website really distracting, so let ’em know it’s for email.

The same basic technique described for external links above applies. Since all email
links begin with mailto:, you can create a selector like the following to create a style
to format just email links:

a[href^='mailto:']

You’ll see an example of this in action in the tutorial on page 305.

Links to Specific Types of Files
Some links point to files, not other web pages. You often see a company’s annual
report online as a downloadable PDF file or a zip archive of files (like the tutorials
for this book) on a website. Links to those types of files usually force the browser
to download the file to the visitor’s computer, or, for PDF files, launch a plug-in that
lets you view the file within the browser. It can be a real drag to click a link, only to
find out that it’s actually started a 100MB download!

Css: tHe MIssInG MAnUAL302

TUTORIAL:
STYLING LINKS

You can identify specific file types in much the same way as external links or email
links. But instead of looking for specific information at the beginning of the link’s
URL, you can find it at the end. For example, a link to a PDF document might look
like this , while a link to a zip archive could look like
this: . In each case, the specific file type is identified by
an extension at the end of the URL—.pdf or .zip.

CSS provides an attribute selector that lets you find attributes that end with specific
information. So to create a style for links to PDF files, use this selector:

a[href$='.pdf']

$= means “ends in,” so this selector means “select all links whose href attribute ends
in .pdf.” You can create similar styles for other types of files as well:

a[href$='.zip'] /* zip archive */
a[href$='.doc'] /* Word document */

You’ll see examples of this technique in the tutorial on page 307.

Tutorial: Styling Links
In this tutorial, you’ll style links in a variety of ways, like adding rollovers and back-
ground graphics.

To get started, download the tutorial files from this book’s companion website at
https://github.com/sawmac/css_mm_4e. Click the tutorial link and download the
files. All the files are enclosed in a zip archive, so you need to unzip them first. The
files for this tutorial are contained inside the 09 folder.

Basic Link Formatting
1. Launch a web browser and open the file 09→links→links.html.

This page contains a variety of links (circled in Figure 9-9) that point to other
pages on the site, links to pages on other websites, and an email address. Start
by changing the color of the links on this page.

2. Open links.html in a text editor and place your cursor between the opening
and closing <style> tags.

The page already has an external style sheet attached to it with some basic
formatting, plus the <style> tags for an internal style sheet.

 NOTE  For this exercise, you’ll put the styles in an internal style sheet for easy coding and previewing. But
if you were creating the CSS for an entire site, you’d place the styles into a separate CSS file.

https://github.com/sawmac/css_mm_4e

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 303

TUTORIAL:
STYLING LINKS

3. Add a new style to the internal style sheet:

<style>
a {
 color: #207EBF;
}
</style>

This style is about as generic as it gets. It will apply to all <a> tags on the page.
It’s a good place to start, since it sets up the overall look of links for the page.
You’ll add more styles that will let you pinpoint links in specific areas of the
page. Now, time to remove that boring old underline beneath the link.

4. Add text-decoration: none; to the style you just created.

This removes the underline, but also makes the link less visible on the page.
Remember, you should always do something to make links stand out and seem
clickable to your site’s visitors.

FiGURE 9-9
Here’s a basic web page with
links in their standard browser
configuration—underlined and
blue (or purple, if they’re links
to previously visited pages).
In this case, some links point
to other pages on the site,
some point to other sites, and
one is an email address. In
this tutorial, you’ll style each
of these links differently.

Css: tHe MIssInG MAnUAL304

TUTORIAL:
STYLING LINKS

5. Add font-weight: bold; to the a style.

Now links appear in bold (other text may appear bold, too). Next you’ll replace
the underline, but you’ll do it a bit more creatively, using a border instead of
the text-decoration property.

6. Add a border declaration to the style, so it looks like this:

a {

 color: #207EBF;
 text-decoration: none;
 font-weight: bold;
 border-bottom: 2px solid #F60;
}

The links really stand out, and using a border instead of the normal underline
applied to links lets you change the line’s color, size, and style (Figure 9-10, left).
Now you’ll change the look of visited links.

7. Add a :visited pseudo-class style for visited links:

a:visited {
 color: #6E97BF;
}

This style changes the look of visited links to a lighter, grayer shade of the main
link color—a subtle way to draw attention away from an already visited page.
If you preview the page, click one of the links (try one in the middle part of the
page) and then return to the links.html page. You should see the link get lighter
in color. You’ll also notice that it stays bold and continues to have the orange
underline you assigned to the a style in step 6. That’s the cascade in action
(Chapter 5)—the a:visited style is more specific than a plain a selector, so its
color property overrides the color assigned by the a style.

Time to take it a step further by adding a rollover effect, so the link’s background
changes color when the mouse moves over it.

8. Add a :hover pseudo-class style to the style sheet:

a:hover {
 color: #FFF;
 background-color: #6E97BF;
 border-bottom-color: #6E97BF;
}

This pseudo-class applies only when the mouse is over the link. The interactive
quality of rollovers lets visitors know the link does something (Figure 9-10).

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 305

TUTORIAL:
STYLING LINKS

FiGURE 9-10
With a couple of styles, you can change the look of any link. With the
:hover pseudo-class, you can even switch to a different style when
the mouse moves over the link.

Adding a Background Image to a Link
The email link at the bottom of the page looks no different than the other links on
the page (Figure 9-11, top). You have other plans for that mailto: link, however. Since
it points to an email address, clicking it doesn’t take a visitor to another page, but
instead launches an email program. To provide a visual cue emphasizing this point,
you’ll add a cute little email icon.

1. Add a descendant selector to the internal style sheet of the links.html file:

a[href^="mailto:"] {
 color: #666666;
 border: none;
 background: url(images/email.gif) no-repeat left center;
}

This is an advanced attribute selector, which selects any links that begin with
mailto: (in other words, it selects email links). The border: none setting removes
the underline defined by the a style you created in step 6—you’re going for a
subtle look here. The background property adds an image on the left edge of
the link. Finally, the no-repeat value forces the graphic to appear just a single
time. Trouble is, the graphic lies directly underneath the link, so it’s hard to read
the text (circled in the middle image in Figure 9-11).

2. Add 20 pixels of left padding to the attribute style you just created:

padding-left: 20px;

Remember that padding adjusts the space between content and its border.
So adding some left padding moves the text over 20 pixels but leaves the
background in place. One last touch: Move the entire link a little away from the
copyright notice.

Css: tHe MIssInG MAnUAL306

TUTORIAL:
STYLING LINKS

3. Add 10 pixels of left margin to the style, so it finally ends up like this:

a[href^="mailto:"] {
 color: #666666;
 border: none;
 background: url(images/email.gif) no-repeat left center;
 padding-left: 20px;
 margin-left: 10px;
}

This small visual adjustment makes it clear that the icon is related to the link
and not part of the copyright notice (Figure 9-11, bottom).

Highlighting Different Links
At times you may want to indicate that a link points to another website. In this way,
you can give your visitors a visual clue that there’s additional information elsewhere
on the Internet or warn them that they’ll exit your site if they click the link. Also, you
may want to identify links that point to downloadable files or other non-web-page
documents.

FiGURE 9-11
Just a few subtle touches can
help make a link’s purpose
obvious. In this case, a plain
link (top) becomes clearly
identifiable as an email link
(bottom).

On the web page you’re working on, the right-hand “Resources” sidebar contains
different types of links that you’ll highlight with icons—a different icon for each type
of link. First, you’ll set up a basic style that applies to all of those links.

1. Add this style to the links.html internal style sheet:

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 307

TUTORIAL:
STYLING LINKS

.resources a {
 border-bottom: none;
}

Since all of the links you want to format are inside a div with the class resources,
the descendant selector .resources a targets just those links. This style gets
rid of the underline that the generic link style added.

Next, you’ll add an icon next to external links.

2. Add another style at the end of the links.html internal style sheet:

.resources a[href*='://'] {
 background: url(images/globe.png) no-repeat right top;
}

This is a descendant selector style that uses the advanced attribute selector
discussed on page 59. Basically, it targets any link that contains :// (but only
those that are also inside the element with the class resources). As with the
email link style you created earlier, this style adds a background image. It places
the image at the right side of the link.

However, this style has a similar problem as the email link style—the image sits
underneath the link’s text. Fortunately, the solution is the same—just add some
padding to move the image out of the way of the text. In this case, though,
instead of adding left padding, you’ll add right padding (since the icon appears
on the right side of the link). In addition, since every link in the resources box
will have a similarly sized icon, you can save some code by adding the padding
to the .resources a style you created in Step 1.

3. Edit the .resources a style so that it looks like this:

.resources a {

 border-bottom: none;
 padding-right: 22px;
}

If you save the page and preview it in a web browser, you’ll see small globe icons
to the right of the bottom two links in the sidebar. Time to format the other links.

4. Add three more styles to the internal style sheet:

.resources a[href$='.pdf'] {
 background: url(images/acrobat.png) no-repeat right top;
}
.resources a[href$='.zip'] {
 background: url(images/zip.png) no-repeat right top;
}
.resources a[href$='.doc'] {
 background: url(images/word.png) no-repeat right top;
}

Css: tHe MIssInG MAnUAL308

TUTORIAL:
CREATING A
NAVIGATION

BAR
These three styles look at how the href attribute ends; identify links to either
Adobe Reader files (.pdf), zip archives (.zip), or Word documents (.doc); and
assign a different icon in each case.

5. Finally, add a hover state for the resources links:

.resources a:hover {
 color: #000;
 background-color: rgba(255,255,255,.8);

}

This style both changes the color of the text and adds a background color (see
Figure 9-12).

You can find a finished version of this tutorial in the 09_finished/links/links.
html file.

FiGURE 9-12
Using advanced attribute selectors, you can easily identify and style
different types of links—external links and links to PDF files, Word
docs, and zip files.

Tutorial: Creating a Navigation Bar
In this exercise, you’ll turn a plain old list of links into a spectacular navigation bar,
complete with rollover effects and a “You are here” button effect.

1. In a text editor, open 09→nav_bar→nav_bar.html.

As you can see, there’s not much to this file yet. There’s an internal style sheet
with the basic reset styles discussed on page 109, and one rule setting up some
basic properties for the <body> tag. The HTML consists of an unordered list with
six links. It looks like example #1 in Figure 9-13. Your first step is to add some
HTML so you can target your CSS to format the links in this list.

2. Locate the opening tag and add class=”mainNav” to it, so it looks like
this:

<ul class=”mainNav”>

The class attribute identifies this list as the main navigation area. Use this class
to build descendant selectors to format only these links—and not just any old
link on the page.

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 309

TUTORIAL:
CREATING A
NAVIGATION

BAR
3. Below the body style in the internal style sheet, add a new style:

.mainNav {
 margin: 0;
 padding: 0;
 list-style: none;
}

This style applies only to a tag with a class of mainNav—in this case, the
tag. It removes the indent and bullets that browsers apply to unordered lists,
as shown in #2 in Figure 9-13. Next, you’ll start formatting the links.

FiGURE 9-13
While it may feel like a lot of
steps, transforming a plain
unordered list of links into a
sophisticated navigation bar
requires only a few styles.

4. Add a descendant selector to format the links in the list:

.mainNav a {
 color: #000;
 font-size: 11px;
 text-transform: uppercase;
 text-decoration: none;
}

This style defines the basic text formatting for the links. It sets the color and
font size, makes all letters uppercase, and removes the line usually found un-
derneath links (#3 in Figure 9-13). Now start making the links look like buttons.

5. To the .mainNav a style, add the following border and padding properties:

border: 1px dashed #999;
padding: 7px 5px;

Css: tHe MIssInG MAnUAL310

TUTORIAL:
CREATING A
NAVIGATION

BAR
If you preview the file now, you’ll see a few problems (#4 in Figure 9-13): The
borders overlap and the boxes aren’t the same width. That’s because the <a>
tag is an inline element, so the width of the box is just as wide as the text in the
link. In addition, top and bottom padding don’t add any height to inline boxes,
so the borders overlap. (See page 192 for a discussion of inline boxes.) You can
fix these problems by changing how a browser displays these links.

6. Add display: block; to the .mainNav a style.

You’ve changed the basic display of the <a> tag so it acts like a paragraph or
other block-level element, with the links neatly stacked one on top of the other.
The only problem now is that they also extend the full length of the browser
window—a little too wide for a button. You can fix this by constraining the width
of the tag’s style.

7. In the internal style sheet, locate the .mainNav style and add width: 175px;
to it:

.mainNav {
 margin: 0;
 padding: 0;
 list-style: none;
 width: 175px;
}

With the list’s width now set to 175 pixels, the links still expand, but they’re limited
to the width of their container (the tag). In many cases, you’ll have a list of
links inside some layout element (like a sidebar) that already has a set width, so
you’ll be able to skip this step. (You’ll learn how to add sidebars in Part Three.)

Now for the fun part.

8. Add background properties to the .mainNav a style, like so:

.mainNav a {
 color: #000;
 font-size: 11px;
 text-transform: uppercase;
 text-decoration: none;
 border: 1px dashed #999;
 padding: 7px 5px;
 display: block;
 background-color: #E7E7E7;
 background-image: url(images/nav.png);
 background-repeat: no-repeat;
 background-position: 0 2px;
}

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 311

TUTORIAL:
CREATING A
NAVIGATION

BAR
These lines add a gray background color to the links and a non-repeating im-
age at the left edge of each button (#5 in Figure 9-13). You still have a couple
of things to fix: The link text overlaps the icon, and the border between each
button is 2 pixels thick. (Technically, the borders are still just 1 pixel thick, but
the bottom and top borders of adjoining links are creating a 2-pixel line.)

 TIP  Using the background shorthand property, you can write the code in step 8 like this: background:
#E7E7E7 url(images/nav.png) no-repeat 0 2px;.

9. Remove the bottom border and adjust the padding for the .mainNav a style,
so it looks like this:

.mainNav a {
 color: #000;
 font-size: 11px;
 text-transform: uppercase;
 text-decoration: none;
 border: 1px dashed #999;
 border-bottom: none;
 padding: 7px 5px 7px 30px;
 display: block;
 background-color: #E7E7E7;
 background-image: url(images/nav.png);
 background-repeat: no-repeat;
 background-position: 0 2px;
}

The text of each link sits clear of the icon and the borders look great…except for
one thing. The last link’s bottom border is now gone. (Sometimes CSS feels like
two steps forward, one step back!) But you have a few ways to fix this snafu.
One way is to apply a bottom border to the tag containing the list of links.
(Since there’s no padding on that tag, there’s no space separating the top of the
 from the top of that first link.) But another way is to use the :last-of-type
pseudo-class (page 65). You just need to select the link that’s inside the last list
item in the navigation bar, and give it a bottom border.

10. Add the following style between .mainNav and the .mainNav a styles:

.mainNav li:last-of-type a {
 border-bottom: 1px dashed #999;
}

This descendant selector styles the link (a) that’s inside the last list item
(li:last-of-type) or the navigation list (.mainNav).

There you have it: a basic navigation bar using borders, padding, background
color, and images (#6 in Figure 9-13).

Css: tHe MIssInG MAnUAL312

TUTORIAL:
CREATING A
NAVIGATION

BAR
Adding Rollovers and Creating “You Are Here” Links
Now it’s time to add some interactive and advanced features to this nav bar. First,
you’ll add a rollover effect to the buttons in your main navigation bar. That way, the
buttons change to show your visitor which button she’s about to click.

It’s also considerate to let your visitor know which page of your site she’s on. Us-
ing the same HTML nav bar you already have, you can make this bit of interactivity
happen automatically. You simply make the button’s format change to match the
page’s section. Sounds simple, but it does require a little planning and setup, as
you’ll see in the following steps.

The rollover effect is easy, so get that out of the way first:

1. In the nav_bar.html file, add the following style to the end of the style sheet:

.mainNav a:hover {
 font-weight: bold;
 background-color: #B2F511;
 background-position: 3px 50%;
}

This style sets the button’s hover state. It makes the text inside the button bold,
and changes the background color to a vibrant green. In addition, it uses the
CSS sprites technique discussed on page 298. The same image is used as in
step 8 on page 310—however, that image actually holds three different icons
(see Figure 9-14). In this case, the image is centered within the button, display-
ing the middle icon in the file.

Now, moving the mouse over any of the buttons instantly changes its look.
(Open the page in your web browser and try it yourself.)

FiGURE 9-14
With some basic CSS, it’s easy to
create interactive rollover effects for
navigation buttons. You can even
automatically highlight the section of
the site in which the current page is
located. To speed up the download of
your navigation bar graphics, you can
use the CSS sprites method described
on page 298. Basically, you use one
image (circled at top right) and adjust
its position for different states of each
button (bottom row).

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 313

TUTORIAL:
CREATING A
NAVIGATION

BAR
Next, make your navigation bar more informative by highlighting the button
that matches the section in which the page is located. To do so, you need to
identify two things in the nav bar’s HTML: the section a page belongs to and
the section each link points to. For this example, assume that the page you’re
working on is the home page.

 NOTE  Alternatively, you can create a class style that changes the appearance of a link and apply it to the
link representing the page’s section. For a horoscope page, you’d apply the class to the Horoscope link in the nav
bar: Horoscopes.

2. Locate the <body> tag, and then add class="home", like so:

<body class="home">

Now that you know what section this page belongs to, you can use a descendant
selector to create special CSS rules that apply only to tags on pages within the
Features section. Next, you need to identify the section each link applies to,
which you accomplish by adding some classes to those links.

3. In the nav bar’s HTML code, locate the Home link, and then add
class="homeLink" so the tag looks like this:

Home

This class identifies this link, providing the information you need to create a
style that applies only to that link.

You need to add a class to the other links in the navigation bar as well.

4. Repeat step 3 for each of the other links using the following classes: fea-
tureLink, expertLink, quizLink, projectLink, and horoscopeLink.

You’re done with the HTML part of this exercise. Now it’s time to create some
CSS. Because you’ve provided classes to identify the different links, it’s easy
to create a descendant selector to highlight the Home link.

5. Add another style to the page’s style sheet:

.home .homeLink {
 background-color: #FFFFFF;
 background-position: 97% 100%;
 padding-right: 15px;
 padding-left: 30px;
 font-weight: bold;
}

You’ve seen all these properties before. Again, you’re using the CSS sprites
method to adjust the position of the background image. This time, the image is
moved over to the right 97 percent (that is, the point 97 percent across the image
is matched up with the point 97 percent across the button), and the bottom of
the image is placed at the bottom of the button. In other words, it displays the

Css: tHe MIssInG MAnUAL314

TUTORIAL:
CREATING A
NAVIGATION

BAR
icon at the bottom of the image (see Figure 9-14). See page 240 for a discussion
of how percentage values work with background-images.

The most interesting part is the selector—.home .homeLink. It’s a very specific
selector that applies only to a link with a class of homeLink that’s also inside a
<body> tag with a class of home. If you change the class of the page to quiz, for
example, the link to the Home page is no longer highlighted.

Preview the page in a browser to see the effect: The Home link now has a white
background and a paper clip icon. To make this work for the other links, you
need to expand this selector a little…OK, make that a lot.

6. Edit the selector for the style you just added, like so:

.home .homeLink,

.feature .featureLink,

.expert .expertLink,

.quiz .quizLink,

.project .projectLink,

.horoscope .horoscopeLink{
 background-color: #FFFFFF;
 background-position: 97% 100%;
 padding-right: 15px;
 padding-left: 30px;
 font-weight: bold;
}

Yes, that’s a lot of CSS. But your setup work here has a big payoff. This style
now applies to every link in the nav bar, but only under certain conditions, which
is exactly how you want it to behave. When you change the class attribute of
the <body> tag to quiz, the link to the Quiz gets highlighted instead of the link
to the Features section. Time to take your work for a test drive.

 NOTE  This long-winded selector is an example of the group selector discussed on page 49.

7. Change the class attribute of the <body> tag to feature like this:

<body class="feature">

Preview the page, and wham! The Feature link is now highlighted with a white
background and a paper clip icon (Figure 9-14). The secret at this point is to
just change the class in the <body> tag to indicate which section of the site a
page belongs to. For a horoscope page, change the class to class="horoscope"
in the <body> tag.

 NOTE  Ready to take this design further? Try adding a rollover effect to complement the style you created
in step 6. (Hint: Use the :hover pseudo-class as part of the selector like this: .quiz .quizLink:hover.)
Also try adding a different graphic for the Home link. (You have a home.png file in the images folder to use.)

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 315

TUTORIAL:
CREATING A
NAVIGATION

BAR
To see the completed version of this navigation bar, see the file 09_finished→nav_
bar→nav_bar_vertical.html.

From Vertical to Horizontal
Suppose you want a horizontal navigation bar that sits at the top of the page. No
problem—you did most of the hard work in the last part of this tutorial. Just modify
that page a little to spread the buttons along a single line. (You’ll use the nav_bar.
html file you just completed, so if you want to keep the vertical nav bar, then save
a copy of the file before proceeding.)

1. Make sure you’ve completed all the steps above to create the vertical navi-
gation bar, and have the file nav_bar.html open in your text editor.

Now you’ll see how easy it is to change the orientation of a navigation bar. Start
by cleaning up some of the work you already did. You need to remove the width
you set for the tag in step 7 on page 310. That width prevented the nav
buttons from spanning the entire length of the page. But since the needs to
spread out much wider to contain the side-by-side buttons, this width has to go.

2. Find the .mainNav style, and then remove the width: 175px; declaration.

And now it’s time for the big secret of horizontal nav bars—placing the buttons
side by side.

3. Add a new style to your style sheet (directly below the .mainNav style is a
good spot):

.mainNav li {
 float: left;
 width: 12em;
}

This style applies to the tag (the list items that hold each link). The first
declaration floats the tag to the left. In this way, each tag attempts to wrap
around to the right side of the previous tag. Also, setting the width of the
 tag defines the width of each button. Here, a value of 12 ems provides
enough space to contain the longest link name—Horoscopes. When you’re
working with longer links, you need to increase this value.

If you preview the page now, you’ll see the basics are complete. All that’s left
are some cosmetic enhancements (see the circled areas of #1 in Figure 9-15).
Currently, there’s no bottom border below the buttons, and the border where
buttons touch doubles up (because the right border of one button combines
with the left border of the link next to it), so you’ll fix those issues next.

Css: tHe MIssInG MAnUAL316

TUTORIAL:
CREATING A
NAVIGATION

BAR

FiGURE 9-15
Changing a vertical stack
of navigation buttons into
the much shorter, side-by-
side format of a horizontal
navigation bar only takes
a couple of steps. Most of
your effort involves tweak-
ing styles for cosmetic
considerations such as
borders and background
image placement.

4. In the .mainNav a style, change border-bottom: none; to border-right:
none;.

This change removes the right border so the borders don’t double up between
buttons, and at the same time restores the border to the bottom of each button.
But now the border on the right side of the last navigation button is missing (#2
in Figure 9-15). You can use the :last-of-type selector to fix that—you already
have that style in place from the previous part of this tutorial.

5. Change the border-bottom property of the .mainNav li:last-of-type a style
to border-right like this:

.mainNav li:last-of-type a {
 border-right: 1px dashed #999;
}

This change adds a right border, but only to the last link in the navigation bar
(#3 in Figure 9-15). Finally, that paper clip aligned to the right edge of the “You
are here” button looks odd (#3 in Figure 9-15). You’ll switch its position to the
left edge of the button.

6. Locate the “You are here” style you created in step 6 on page 314. (It’s the
one with the crazy, long-winded selector.) Change its background position
from 97% 100% to 3px 100%. The style should now look like this:

.home .homeLink,

.feature .featureLink,

.expert .expertLink,

.quiz .quizLink,

.project .projectLink,

.horoscope .horoscopeLink
{

CHAPteR 9: SPRUCING UP YOUR SITE’S NAVIGATION 317

TUTORIAL:
CREATING A
NAVIGATION

BAR

 background-color: #FFFFFF;
 background-position: 3px 100%;
 padding-right: 15px;
 padding-left: 30px;
 font-weight: bold;
}

Preview the page, and you’ll find a fully functional horizontal navigation bar
(#4 in Figure 9-15).

To see the finished version, open the file 09_finished→nav_bar→nav_bar_horizontal.
html.

 NOTE  You may want to center the text inside each button. If so, you need to do two things: Add text-
align: center; to the .mainNav a style, and adjust that style’s left-padding until the text looks
absolutely centered.

319

CHAPTER

10

For the short history of the Web, designers have had a few options for adding
animation to their websites. The humble, goofy-looking animated GIF is perhaps
the simplest way to provide basic animation within an image. Adobe Flash was

once the number one tool for creating complex animations, and even games and
web applications, but it has a number of drawbacks: Its learning curve was steep;
it can’t interact with the other HTML on your page, like the images, headlines, and
paragraphs that make up most web content; and because Flash isn’t available on
many mobile devices, it’s no longer as popular as it once was. JavaScript lets you
animate anything on a web page, but at the cost of learning a full-fledged program-
ming language. Fortunately, CSS provides a way to move, transform, and animate
any HTML element on a page, without resorting to any of these other technologies.

Transforms
CSS includes several properties that transform a web page element, by either rotating
it, scaling it, moving it, or distorting it along its horizontal and vertical axes (a process
called skewing). You can use a transform, for example, to provide a slight tilt (rota-
tion) to a navigation bar, or make an image get twice as big when a visitor mouses
over it. You can even combine multiple transformations for some wild visual effects.

The basic CSS property to achieve any of these changes is the CSS transform prop-
erty. You use this property by supplying the type of transformation you want and a
value indicating how much to transform the element. For example, to rotate an ele-
ment, you supply the keyword rotate, followed by the number of degrees to turn it:

transform: rotate(10deg);

 CSS Transforms,
Transitions, and
Animations

Css: tHe MIssInG MAnUAL320

TRANSFORMS
The above declaration rotates the element 10 degrees clockwise.

Browser support for transforms is very good: Internet Explorer 9, Safari, Chrome,
Firefox, and Opera all support transforms. However, to get transforms to work in
Safari and Internet Explorer 9, you need to add a vendor prefix, as shown in the first
two lines of the following code (also see the box on the opposite page):

-webkit-transform: rotate(10deg);
-ms-transform: rotate(10deg);

transform: rotate(10deg);

One strange feature of CSS transforms is that they don’t affect other elements around
them. In other words, if you rotate an element 45 degrees, it may actually overlap
elements above, below, or to the side. Web browsers actually start by setting aside
the space the element would normally take up (before the transformation), and then
they transform the element (rotate it, enlarge it, move it, or skew it). This process
is readily apparent when you increase the size of an element by using a transform:
scale function (page 332). If you increase an element’s size two times, the browser
enlarges the transformed element but doesn’t move any of the surrounding content
out of the way, usually causing parts of the page to overlap (Figure 10-1). In other
words, the web browser preserves all the other parts of the page just as they would
appear if the element wasn’t enlarged.

FiGURE 10-1
Get out of my way…or not.
Transformed elements are
pretty much ignored by
other elements around
them. Enlarging the
<div> here (the big
square) simply makes
it overlap the headline
above and below it. The
box in the middle, with the
dotted outline, represents
the <div> before it was
scaled up by two.

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 321

TRANSFORMS

UP TO SPEED

Vendor Prefixes
CSS is an always-evolving set of rules. Even as you build web
pages today, there are smart people at the W3C (World Wide
Web Consortium) working on new CSS properties, and other
smart people adding support for new CSS properties in the
web browsers they build. In fact, sometimes browser mak-
ers themselves come up with a new CSS property they think
would be cool and add it to their browser. Other times, the
W3C thinks up new CSS properties that the browser vendors
gradually adopt.

During this period when new CSS properties and standards
are developing, browser manufacturers move cautiously.
They don’t want to completely commit to CSS properties that
may change. Likewise, as they experiment with CSS properties
of their own design, browser makers hesitate to claim that
they’ve come up with an agreed-upon standard. To mark a CSS
property as experimental or not-yet-completely-agreed-upon,
a browser manufacturer uses a prefix before the property
name. Each of the major browser makers has its own prefix:

• -webkit- is used by Chrome, Safari, Opera, and other
WebKit-based browsers

• -moz- is used by Mozilla Firefox

• -ms- is used by Microsoft Internet Explorer

When a property is in flux, a browser may support a vendor-
prefixed version. For example, when the border-radius
property was first proposed, Firefox supported a -moz-
border-radius property, while Safari supported the
-webkit-border-radius property.

When a property requires a vendor prefix, you usually write
several lines of code to create the same effect: one for each
vendor, and finally one with the non-prefixed version like this:

• ::-webkit-input-placeholder { color:
red; }

• ::-moz-placeholder { color: red; }

• :-ms-input-placeholder { color: red; }

• :placeholder-shown { color: red; }

Usually, if the W3C CSS Working Group adopts a property and
finalizes enough of its details, vendors drop the extension. For
example, all major browsers simply support the border-
radius property with no required vendor prefix. As you’ll
read throughout this book, the final details for some CSS
properties are still being hammered out, so you may need
to use a vendor prefix with them. This book will let you know
when you need these prefixes and how to use them with a
particular property.

Rotate
The transform property’s rotate function is easy to understand: You give it a degree
value from 0 to 360, and the browser rotates that element the specified number of
degrees around a circle (see Figure 10-2). To specify a degree value, use a number
followed by deg. For example, to rotate an element 180 degrees, add this declaration:

transform: rotate(180deg);

 NOTE  To save space, these examples don’t include all the vendor prefixes here, but when you put this code
into a style sheet, you need to add the -webkit-transform, -moz-transform, -o-transform, and
-ms-transform properties as well.

Css: tHe MIssInG MAnUAL322

TRANSFORMS
You can even use negative numbers to rotate the element counter-clockwise. For
example, the element in the top middle of Figure 10-2 is rotated 45 degrees counter-
clockwise like this:

transform: rotate(-45deg);

The value 0deg provides no rotation, while 360deg is one complete rotation, and
720deg is two complete rotations. Of course, looking at an element that’s been rotated
once, twice, or three times will look just like an element that hasn’t been rotated at
all (top-left and bottom-right in Figure 10-2), so you’re probably wondering why
you’d ever use a value of 360 or higher. CSS provides a mechanism for animating
changes in CSS properties. So, for example, you can make a button spin around four
times when a visitor mouses over it by starting with an initial rotation of 0deg and
adding a :hover style for that button that has a rotation of 1440deg.

FiGURE 10-2
Turn your page on its
head. With the rotate
function you can make
any page element—div,
button, banner, photo,
or footer—rotate ever so
slightly or completely
wildly. As always, keep
your audience in mind
and make sure your page
is still legible whenever
you apply any type of CSS
transform.

Scale
You can also resize an element, making it bigger or smaller using the scale func-
tion (see Figure 10-3). For example, to make an element twice as big, you add this
declaration:

transform: scale(2);

The number you supply inside the parentheses is a scaling factor—a number that’s
multiplied by the element’s current size. For example, 1 is no scaling, .5 is half the
current size, and 4 is four times the current size. In other words, a number between

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 323

TRANSFORMS
0 and 1 shrinks an element, while a number larger than 1 makes it bigger (a value of
0 actually renders the element invisible on the page).

FiGURE 10-3
Use the scale function
to increase the size of any
page element. Mind you,
when you enlarge an ele-
ment, the browser doesn’t
move other elements on
the page out of the way. In
fact, whenever you scale
up an element, it will most
likely overlap other items
(the box in the top right,
for example).

The element and everything inside it is scaled by this number. For example, if you
scale a <div> tag up by a factor of two, not only would that div be twice as wide and
tall, but also the text inside would be twice as big, as would any images inside it.

Of course, you may be wondering why you’d ever use this. After all, you could just
as easily increase or decrease the width and height of the element using the CSS
width and height properties, and you can scale text size up or down using the font-
size property. The most common use for scale is to make a visual change to an
element dynamically on the page. For example, mousing over a button may make
that button momentarily bigger. You could achieve this effect with the :hover state.

For example, say you have a link on a page with the .button class applied. You can
create a simple style like this to format that button:

.button {
 font: .9em Arial, Helvetica, sans-serif;
 border-radius: .5em;
 background-color: rgb(34,255,23);
 border: 1px solid rgba(0,0,0,.5);
 padding: .5em;
}

Css: tHe MIssInG MAnUAL324

TRANSFORMS
To really emphasize that button, you can make it get slightly bigger when a visitor
mouses over it, like this:

.button:hover {
 -webkit-transform: scale(1.2);
 -ms-transform: scale(1.2);
 transform: scale(1.2);
}

When the visitor mouses off the button, the transform is removed and the button
returns to its regular size. On page 330, you’ll even learn how you can animate this
change in size by using CSS transitions.

 TIP  You can use a similar idea for images. Display a gallery of small images, and then add a :hover style
to them so that when a visitor mouses over the image, it grows larger. To make this look good, you should insert
the final, enlarged version of the image inside the HTML, but set its size smaller by using either CSS or the
tag’s width and height properties.

You can even scale the horizontal and vertical dimensions separately. To do this,
supply two values separated by a comma inside the parentheses; the first number
is the horizontal scale, and the second is the vertical scale. For example, to make
an element half as wide but twice as tall, use this declaration:

transform: scale(.5,2);

You can see the effect at bottom left in Figure 10-3.

CSS also provides separate functions for horizontal and vertical scaling: scaleX scales
along the horizontal axis, while scaleY scales vertically. For example, to make an
element twice as tall without changing its width, you’d write this:

transform: scaleY(2);

 NOTE  Again, to save space, this example shows only the un-prefixed version of the transform property. For
this to work in Safari and Internet Explorer 9, you’ll need to add the proper prefixes -webkit- and -ms-.

But to make an element three and a half times as wide, but not taller or shorter,
you’d use:

transform: scaleX(3.5);

There’s another visual trick that scaling offers: the ability to flip an element upside
down and backwards. No one’s quite sure what branch of mathematics the W3C
used to come up with this system, but if you use a negative number with scale, you
actually flip an element around. For example, here’s how to flip an element upside
down and left to right:

transform: scale(-1);

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 325

TRANSFORMS
This produces the image pictured in Figure 10-4, left. You can also flip the element
on only one axis. In the middle image in Figure 10-4, the image is flipped only on its
horizontal axis. Flipping the element along its vertical axis produces the middle image:

transform: scale(-1,1);

It produces the effect of a mirror held to the side of the element, or like you’ve flipped
the element over and are looking through its back. What fun!

FiGURE 10-4
There’s no end to the ways
you can use CSS to confuse
and enrage your website’s
visitors. The box at left is
flipped on the horizontal
axis, the box in the
middle is flipped on the
vertical axis, and at right
it’s flipped both ways.
Of course, if you want to
create a tribute site to
Leonardo DaVinci (www.
mos.org/sln/Leonardo/
LeonardoRighttoLeft.html),
creating a mirror image of
all the text on a page may
be just the thing!

Translate
The transform property’s translate function simply moves an element from its
current position a set amount left or right and up or down. By itself, it’s really not
that useful. As you read on page 320, when a web browser transforms an element,
it doesn’t rearrange the page; it lays the page out as if the element had no trans-
formation. Accordingly, when you move a div or other tag using the translate
function, the browser leaves an empty space where the tag would normally appear,
and then draws the element in its new position (see Figure 10-5). If you simply want
to position an element on the page, you can use absolute or relative positioning, as
described in Chapter 14.

Css: tHe MIssInG MAnUAL326

TRANSFORMS

FiGURE 10-5
The translate function
moves an element a set
number of pixels, ems,
or a percentage from its
normal spot on a page.
This often leaves an
empty space: The blank
area between the two
headlines is where the
outlined <div> tag would
normally appear.

However, translate does come in handy when you want to make subtle movements
in response to a hover or click. For example, in many user interface designs, when
you click a button, it moves slightly down and to the left, simulating the look of a
real 3D button being pressed into a keypad. You can simulate this effect using the
translate function and the :active state of a link:

.button:active {
 -webkit-translate(1px,2px);
 -ms-translate(1px,2px);
 translate(1px,2px);
}

The translate function takes two values: The first specifies the horizontal movement,
and the second the vertical movement. In this example, clicking an element with the
.button class moves that element one pixel to the right and two pixels down. Use a
negative number for the first value to move the element to the left; use a negative
number for the second value to move the element up.

You’re not limited to pixel values, either. Any valid CSS length value—px, em, %, and
so on will work.

CSS also provides two additional functions for moving an element just to the left or
right—translateX—and up or down—translateY. For example, to move an element
up .5 ems, use the translateY function like this:

transform: translateY(-.5em);

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 327

TRANSFORMS
The real fun with the translate function is when used with CSS transitions. With
the CSS transition, you can then animate the movement of the element, so that it
travels across the screen. You’ll learn how to do that on page 330.

Skew
Skewing an element lets you slant it on its horizontal and vertical axes; this can give
an element a three-dimensional feel (see Figure 10-6). For example, to slant all the
vertical lines so that they lean to the left 45 degrees (as in the first image in Figure
10-6), you’d write this code:

transform: skew(45deg, 0);

To do the same along the y-axis (middle image in Figure 10-6), you’d write this:

transform: skew(0,45deg);

You can skew an element on both axes at once. For example, here is the code used
to produce the third image in Figure 10-6:

transform: skew(25deg,10deg);

The first value is a degree value from 0deg to 360deg, proceeding in a counter-
clockwise direction from the top of the element. For example, in the first image in
Figure 10-6, the 45 degrees are represented by a line drawn from the center of the
element and rotated 45 degrees counter-clockwise (bottom-left).

FiGURE 10-6
The skew function is one
way to simulate a 3D
look. However, as you’ll
see in the box on page
330, CSS actually offers
another way to simulate
three dimensions: with 3D
transforms.

 NOTE  Remember to add browser-prefixed versions of the transform property to your finished CSS:
-webkit-transform, -ms-transform.

Css: tHe MIssInG MAnUAL328

TRANSFORMS
The second value is also a degree value from 0deg to 360deg. But this one proceeds
in a clockwise position from the right of the element. So the middle image in Figure
10-6 shows a 45-degree slant of all of the horizontal lines.

 TIP  Visit http://westciv.com/tools/transforms/index.html to play with an online tool for visualizing CSS
transforms.

As with translate and scale, CSS offers separate functions for the x- and y-axes:
skewX and skewY.

 NOTE  CSS provides yet another transformation method called a matrix. A matrix is an array of numbers, as
used in advanced algebra. They’re pretty mind-bending and not at all intuitive unless you’re Stephen Hawking.
But if you want to learn how they work, visit https://dev.opera.com/articles/understanding-the-css-transforms-
matrix/ for as lucid an explanation as possible.

Multiple Transformations
You’re not limited to just a single transformation. You can both scale an image and
skew it; rotate it and translate it; or use any of the four different transform func-
tions simultaneously. Simply add additional functions to the transform property,
each separated by a space. For example, here’s how you can rotate an element 45
degrees and enlarge it to twice its normal size:

transform: rotate(45deg) scale(2);

Here’s an example with all four transformations applied at the same time:

transform: skew(45deg,0deg) scale(.5) translate(400px,500px) rotate(90deg);

The order in which you place the transform functions is the order in which the
browser applies these effects. For example, in the second example, the element
is first skewed, then scaled, then translated, and finally rotated. The order doesn’t
really matter unless you’re using translate. Since translate actually moves the
element, if you place it before a rotate, for example, the browser first moves the
element and then rotates it. Since the element moved first, the point around which it
rotates has changed. On the other hand, if you rotate it first, you’re then moving the
rotated element a certain amount from its center (which is now in a new location).

Origin
Normally, when you apply a transformation to an element, the web browser uses the
center of the element as the transformation point. For example, when you rotate an
element, the browser rotates it around its center point (Figure 10-7, left). However,
CSS lets you change that transformation point, using the transform-origin property.
It works just like the background-position property (page 236); you can supply
keyword values, absolute values in pixels, and relative values in ems and percentages.

http://westciv.com/tools/transforms/index.html
https://dev.opera.com/articles/understanding-the-css-transforms-matrix/
https://dev.opera.com/articles/understanding-the-css-transforms-matrix/

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 329

TRANSFORMS
For example, to rotate a div around its top-left point (Figure 10-7, middle), you can
use the left and top keywords, like this:

transform-origin: left top;

You can also use pixel values:

transform-origin: 0 0;

Or percentages:

transform-origin: 0% 0%;

Likewise, to rotate an element around its bottom-right corner (Figure 10-7, right),
use the right and bottom keywords:

transform-origin: right bottom;

Which is also equivalent to:

transform-origin: 100% 100%;

When using pixel, em, or percentage values, the first number is the horizontal posi-
tion, and the second is the vertical position.

 NOTE  The transform-origin property has no effect on elements that are only moved using the
translate function.

FiGURE 10-7
Setting the transform-
origin property changes
the point on the element
where the transformation
is applied. The default
origin is the middle of the
element (left), but you can
change it to the top left
(middle) or bottom right
(right). The dotted squares
represent the element if
it hadn’t been rotated (its
regular position on the
page).

Css: tHe MIssInG MAnUAL330

TRANSITIONS

POWER USERS’ CLINIC

3D Transforms
CSS also offers a much more complex type of transformation.
3D transforms let you simulate a three-dimensional space on
the flat screen of a monitor, tablet, or phone.

For a short introduction to 3D transforms, visit http://coding.
smashingmagazine.com/2012/01/06/adventures-in-the-
third-dimension-css-3-d-transforms/ and for a more detailed
explanation with lots of examples, check out http://desandro.
github.io/3dtransforms/. To see some great examples of 3D
transforms in action, visit these sites:

• Apple’s Morphing Power Cubes page (www.webkit.org/
blog-files/3d-transforms/morphing-cubes.html), one of
the first examples of the power of 3D transformations,
demonstrates a rotating cube, which you can change into
a rotating set of tiles.

• Here’s an example of a 3D “flip” effect: http://davidwalsh.
name/css-flip—an animated effect that looks like you’re
turning over a card to show its back.

Transitions
While transforms can be fun (especially the rotate function), they really bring your
page to life when coupled with a CSS transition. A transition is simply an animation
from one set of CSS properties to another set over a specific amount of time. For
example, you can make a banner rotate 360 degrees over the course of two seconds.

To make a transition work, you need a few things in place:

• Two styles. One style represents the beginning look of the element—a red
nav button, for example—while the second style is the ending look—a blue nav
button. The web browser will take care of the process of animating the change
between the two styles (changing the button from red to blue, for example).

• The transition property. CSS adds the transition property—the secret sauce
that makes the animation possible. In general, you apply the transition prop-
erty to the original style, the style that defines the look of an element before
the animation begins.

• A trigger. The trigger is the action that causes the change between the two
styles. With CSS, you can use several pseudo-classes to trigger an animation.
The most common is the :hover pseudo-class. With it, you can animate the
change between an element’s normal appearance and how it looks when a
visitor mouses over it. You’ll see an example of that in just a minute. In addition,
you have :active (when the mouse is clicked on an element), :target (when
an element is the target of link), and :focus (when a link is tabbed to, or a
form field is clicked into or tabbed to). Beyond that, you can use JavaScript to
dynamically change the style of any tag (see the box on page 335).

http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://desandro.github.io/3dtransforms/
http://desandro.github.io/3dtransforms/
www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
www.webkit.org/blog-files/3d-transforms/morphing-cubes.html
http://davidwalsh.name/css-flip
http://davidwalsh.name/css-flip

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 331

TRANSITIONS
When the trigger no longer applies—when the visitor mouses off a navigation
button, for example—then the browser returns the tag to its previous style and
animates the entire process. In other words, you only need to set a transition
to an element once, and the browser takes care of animating from one style to
another and back to the original style.

A web browser can’t animate every single CSS property, but you still have a long
list of properties to choose from. In addition to the rotate, scale, translate, and
skew transformations you just read about, you can also animate color, background-
color, border-color, border-width, font-size, height, width, letter-spacing,
line-height, margin, opacity, padding, and word-spacing; the positioning prop-
erties—top, left, right, and bottom—which you’ll learn about in Chapter 15; and
many other properties. You can find a complete list at www.w3.org/TR/css3-
transitions/#animatable-properties.

 NOTE  CSS transitions work in most browsers. Unfortunately, when it comes to Internet Explorer, only ver-
sion 10 and later understand CSS transitions. If you’re still concerned about IE and earlier, use transitions simply
as a way to add visual excitement. Mostly, this is just fine: IE9 and earlier will, in most cases, be able to switch
between two styles (for example, show a :hover style) without animating that change.

Adding a Transition
At the heart of CSS transitions are four properties that control which properties
to animate, how long the animation takes, the type of animation used, and an op-
tional delay before the animation begins. Here’s a simple example. Say you want a
navigation button’s background color to change from orange to blue when a visitor
mouses over it. First, you start with the two styles needed to switch between these
two colors. For example, you can apply a class of .navButton to the link and then
create two styles, like this:

.navButton {
 background-color: orange;
}

.navButton:hover {
 background-color: blue;
}

These styles will work in any browser; hovering over the nav button will change its
background from orange to blue. However, the change is instantaneous. To make
the color animate over one second, add two new properties to the .navButton
style, like this:

.navButton {
 background-color: orange;
 transition-property: background-color;
 transition-duration: 1s;
}

http://www.w3.org/TR/css3-transitions/#animatable-properties
http://www.w3.org/TR/css3-transitions/#animatable-properties

Css: tHe MIssInG MAnUAL332

TRANSITIONS

.navButton:hover {
 background-color: blue;
}

The transition-property specifies which properties to animate. You can specify
a single property (as in the above example), use the keyword all to animate all
CSS properties that change, or use a comma-separated list to specify more than
one (but not all) properties. For example, say you create a :hover style so the text
color, background color, and border color all change. You list out all three of those
properties like this:

transition-property: color, background-color, border-color;

Or, to make it simple, use the all keyword, like this:

transition-property: all;

In most cases, using all works well, since every CSS change is animated, which
creates a pleasing visual effect.

To specify how long the animation takes to complete, use the transition-duration
property. This property takes a value in either seconds or milliseconds (thousandths
of a second). For example, to make a transition take half a second to complete, you
can use either:

transition-duration: .5s;

Or:

transition-duration: 500ms;

It’s even possible to set separate timings for each animated property. For example,
when a visitor mouses over a button, you may want the text color to change rapidly,
the background color to change a little more slowly, and the border color to change
really slowly. To do so, you need to list the animated properties, using transition-
property and then list the times, using transition-duration, like this:

transition-property: color, background-color, border-color;
transition-duration: .25s, .75s, 2s;

The order in which you list the times must match the order in which you list the
properties. So, in the above example, .25s goes with the color property, .75s with
the background-color property, and 2s with the border-color property. If you move
the properties around, then their timing changes.

Transition Timing
To have a working, animated transition, you only need to set transition-property
and transition-duration. However, you can control the rate of the animation by
using the transition-timing-function property. This property can be a little con-
fusing: It doesn’t control how long the animation takes (that’s what the transition-
duration property is for). Instead it controls the speed during the animation. For

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 333

TRANSITIONS
example, you can begin the animation slowly and then quickly complete it, creating
an effect where the background color changes almost imperceptibly at first, and
then quickly completes its color change.

The transition-timing-function property can take one of five keywords: linear,
ease, ease-in, ease-out, and ease-in-out. If you don’t specify a timing function,
the browser uses the ease method, which begins the animation slowly, speeds up
in the middle, and slows down at the end, providing a more organic change. The
linear option provides a steady change along the entire length of the animation.
No option is really any better than the other: they just provide different looks, so
try them out to see which one you like best.

To use it, simply add the transition-timing-function property and the method
you’d like to use:

transition-timing-function: ease-in-out;

 NOTE  It’s a lot easier to see the different timing functions than to describe them. Visit www.the-art-of-web.
com/css/timing-function/ to see an excellent side-by-side comparison of the five timing methods.

You can also use what’s called a cubic-bezier value for the transition-timing-
function property. The Bezier curve plots the progress of the animation over time
(see Figure 10-8). If you’ve used a drawing program like Adobe Illustrator, you’re
probably familiar with Bezier curves. By adjusting two control points you can control
how the line curves: the steeper the line, the faster the animation; the flatter the line,
the slower. For example, the Bezier curve pictured in Figure 10-8 starts off steep (the
animation begins quickly), then flattens in the middle (the animation slows down),
and then grows steep again (the animation rapidly progresses to its final state). To
create this kind of animation, add this line of code:

transition-timing-function: cubic-bezier(.20, .96, .74, .07);

Cubic Bezier curves aren’t something you can come up with off the top of your head.
You’re better off using one of the many online tools for creating and testing different
timing functions. Mathew Lein’s Ceaser tool is one of the best: http://matthewlein.
com/ceaser/.

As with the transition-duration property, you can apply different timings to dif-
ferent properties.

http://www.the-art-of-web.com/css/timing-function/
http://www.the-art-of-web.com/css/timing-function/
http://matthewlein.com/ceaser/
http://matthewlein.com/ceaser/

Css: tHe MIssInG MAnUAL334

TRANSITIONS

FiGURE 10-8
Creating a cubic Bezier
curve lets you create a
wide range of interesting
timing functions for your
animations. You can make
them start really slowly
and end quickly, or vice
versa. The online Ceaser
tool makes creating cubic
Bezier curves a breeze:
Just grab the control
handle on the bottom-left
point and drag to change
the slope of the line, and
then drag the control point
on the top-right point. The
steeper the line, the faster
the progress of the anima-
tion at that stage. In this
example, the line starts
off relatively flat, meaning
the animation will move
slowly at first, then ramps
up steeply at the end,
meaning the animation
will quickly progress to
the finish at the end of the
transition’s duration.

Delaying a Transition’s Start
Finally, you can prevent a transition from animating right away with the transition-
delay property. For example, if you want to wait a half second before the animation
begins, you can add this code:

transition-delay: .5s;

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 335

TRANSITIONS

POWER USERS’ CLINIC

Using JavaScript to Trigger Transitions
CSS transitions are easy-to-use animations built right into
web browsers (at least, most web browsers). You can create
complex effects simply by defining a set of CSS properties to
begin with, and a set of CSS properties to end with, and then
step out of the way and let the web browser handle the rest.

Unfortunately, you’re limited to just a handful of CSS selectors
for triggering those transitions. Most commonly, you’ll use
the :hover pseudo-class to make an element change when
moused over. You can also use the :focus pseudo-class on
a form element to make it animate when a user clicks inside
it (for example, you can make a multiline text area grow in
height when focused, then shrink to just a few lines when a
visitor clicks out of it).

For example, CSS doesn’t have a :click pseudo-class, so
if you want to trigger a transition when someone clicks on
an element, you can’t do it with CSS. Likewise, if you want to
hover over one element but trigger an animation on another
element, you’re out of luck…if you’re only using CSS. But CSS

transitions work anytime a CSS property changes, even if you
change the CSS property using JavaScript.

JavaScript is a programming language that lets you add
interactivity to web pages, build dynamic user interfaces,
and loads of other things. But you can also use JavaScript to
simply add or remove a class from an element, or change any
CSS property you’d like. Using JavaScript, you can add a class
to an image when a visitor clicks a “Show bigger image” link.
That new class simply scales up the image (using the scale
transform discussed on page 322). By adding a transition to
the image, you’ll have an instant animation.

JavaScript is a big topic worthy of its own book… there just so
happens to be JavaScript & jQuery: The Missing Manual by this
author that’s worth a read. But if you want to get started with
the simplest way to use CSS transitions triggered by JavaScript,
read this short tutorial: https://css-tricks.com/controlling-css-
animations-transitions-javascript/.

Most of the time, you won’t want to use a delay for all properties, since it kind of
undermines the transition’s potential for interactivity. After all, it’s more like a cruel
trick to make your visitors wait a second before they see any visual changes when
they mouse over your button. However, if you’re animating several properties, you
may want to make one property wait until the others finish before its animation
starts. For example, say you have a button whose background color and text color
you want to change, and then have its border color change suddenly after the other
two properties have finished. Here’s how you might do that:

.navButton {
 color: black;
 background-color: #FF6603;
 border: 5px solid #660034;
 transition-property: color, background-color, border-color;
 transition-duration: 1s, 1s, .5s;
 transition-delay: 0, 0, 1s;
}

.navButton:hover {
 color: white;
 background-color: #660034;

https://css-tricks.com/controlling-css-animations-transitions-javascript/
https://css-tricks.com/controlling-css-animations-transitions-javascript/

Css: tHe MIssInG MAnUAL336

TRANSITIONS
 border-color: #FF6603;
}

As with the transition-duration property, you can specify different delay values for
each property. The order in which you list the times must match the order of the
properties listed for transition-property. For instance, in the preceding code,
there’s no delay for the transition between the color and background color, but
there’s a one-second delay before the border color changes.

 TIP  Usually you put the transition properties into the starting style (for example, .navButton on page
331), not the final style (.navButton:hover). However, here’s a trick for use with CSS drop-down menus (see
the box on page 296). One problem with drop-down menus in CSS is that they usually disappear very quickly
if you accidentally mouse off the menu. However, you can make the menu appear quickly but disappear slowly
using the transition-delay property. To do so, you add the following code to the original style:

transition-delay: 1s;

Then add no delay to the :hover style:

transition-delay: 0;

It’s somewhat counterintuitive, but this code basically makes the :hover transition happen immediately, with
no delay. But to return to the regular style (where the menu disappears) takes 1 second. During that time, a visitor
has enough time to move his errant mouse back over the menu before it disappears.

Transition Shorthand
Writing out all the different properties—transition-property, transition-dura-
tion, transition-timing-function, and transition-delay—can get pretty tiring.
Especially when you consider you need to also create vendor-prefixed versions of
each of those as well. Fortunately, there’s a faster way to create transitions—the
transition property.

This property bundles all of the other properties into one. To use it, simply list the
property, duration, timing function, and delay in a space-separated list. For example,
to animate all CSS properties for one second using the ease-in timing function, with
a half-second delay, write the following:

transition: all 1s ease-in .5s;

You need to list either all or a single CSS property and a duration, but the timing
function and delay are optional. By default, the timing function is ease, and there’s
no delay. So if you simply want to animate the transition of all CSS properties for
one second, then write this:

transition: all 1s;

If you only want to animate the change in the background color, then list that
property:

transition: background-color 1s;

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 337

TRANSITIONS
You can only list a single CSS property here, so if you wish to animate multiple
CSS properties (but not all), then you can write a comma-separated list of space-
separated transition properties. Take the example from page 335, where the border-
color property is animated separately from the color and background color. You
can rewrite that code like this:

transition: color 1s, background-color 1s, border-color .5s 1s;

To make the code easier to read, many web designers put each transition on a
separate line, like this:

transition: color 1s,
 background-color 1s,
 border-color .5s 1s;

This is perfectly legal as long as you remember to separate them with a comma and
end the whole shebang with a semicolon.

POWER USERS’ CLINIC

Getting Smoother Animations
Animating many different properties can take a toll on a web
browser. Whether you’re using CSS transitions or CSS anima-
tions, browsers need to do a lot of work to animate changes in
CSS properties. Too many animations and transitions going on
at once can bring a browser to a crawl and even crash it. This is
particularly true with mobile devices and tablets, which have
significantly slower CPUs than desktop and laptop computers.

However, there are four things that browsers can animate
without a lot of CPU power: opacity (page 671), and the
translate, scale, and rotate options of the trans-
form property (page 319). These four properties are treated
more efficiently than other CSS properties, so any transitions
or animations you create with them will be smoother. (To find
out the technical details, check out: http://www.html5rocks.
com/en/tutorials/speed/high-performance-animations/).

In addition, you can also force animations to be moved to
a computer’s GPU, or graphic processing unit. GPUs are re-
ally super-fast computers, and they can do specific types of
calculations much more quickly than the computer’s CPU. You
can trick the browser into handing a style to the GPU by adding
a 3D transform property to the style. For example, if you plan
to animate the background color of an element when a visitor
mouses over it, you could create the style with the original
background color, like this:

. highlight {
 background-color: rgb(231,0,23);
 transition: background-color 1s;
 transform: translateZ(0);
}
.highlight:hover {
 background-color: rgb(0,0,255);
}

The transform: translateZ(0) line doesn’t do
anything visually. It tells the browser to move the element 0
pixels along a three dimensional z-axis; in other words, move
it not at all. However, because it uses a 3D transformation,
browsers give this style to the GPU to process. The upshot is
that the animation might appear to play back more smoothly
because of the GPU’s greater horsepower.

But before you start slapping transform: trans-
lateZ(0) on every style, be aware that the GPU can only
handle so much, and piling too many visual effects for it to
handle can slow the browser to a crawl.

In addition, too many animations and transitions can have a
very negative effect on a page’s performance, especially on
mobile devices. Make sure you test all of your transition and
animation effects in multiple browsers and on a mobile phone
to make sure your page works well.

http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/

Css: tHe MIssInG MAnUAL338

ANIMATIONS Animations
CSS provides another, more feature-rich mechanism for creating animations. With
CSS transitions, you can only animate from one set of CSS properties to another.
CSS animations let you animate from one set of properties to another set to another
set, and so on. In addition, you can have an animation repeat, pause when a visitor
mouses over it, and even reverse itself once the animation reaches its end.

CSS animations are a bit more complicated than transitions, but they have the added
benefit of not necessarily needing a trigger to begin the animation. While you can
add an animation to a :hover state so the animation plays when the mouse hovers
over an element, you can also have an animation start when the page loads. This
effect lets you draw attention to a banner or logo by animating it across the page
when a visitor first enters your site.

 NOTE  CSS animations, like transitions, don’t work in Internet Explorer 9 or earlier. They’re well supported
in all current browsers, however.

The first step in creating an animation is creating a set of keyframes. In animation,
a keyframe is a single frame of an animation that dictates how the scene looks.
Suppose the first keyframe shows a ball on one side of a soccer field. By adding a
second keyframe, you can define an ending point for the animation—like the ball
inside the goal on the other side of the soccer field. A web browser then provides the
animation between the two keyframes by drawing all of the intermediate steps—the
ball traveling across the field on its way to the goal.

If you’re thinking transitions use a similar idea, you’re right. In a transition, you define
two styles and let the browser animate the change from one style to another. In this
way, you could think of each of those styles as a keyframe. However, CSS animations
let you define multiple keyframes, so you can create much more complex animated
effects: a soccer ball traveling from one side of the field, to a player, to another
player, and then into the goal, for example.

There are two steps in creating an animation:

1. Define the animation.

This involves setting up keyframes that list the CSS properties to animate.

2. Apply the animation to an element.

Once defined, you can apply the animation to any number of elements on a page.
You can even set up separate timings, delays, and other animation properties
for each element. So you can use the same animation with slightly different
settings multiple times on a page.

Defining Keyframes
The first step is to set up your keyframes. The syntax involved may look kind of
strange, but here’s the basic structure:

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 339

ANIMATIONS
@keyframes animationName {
 from {
 /* list CSS properties here */
 }

 to {
 /* list CSS properties here */
 }
}

You start with @keyframes, followed by a name. The name is what you call the anima-
tion. You’ll end up using that name later when you apply the animation to an element
on the page, so make it descriptive, like “fadeOut” or “fadeIn.”

 NOTE  The term @keyframes isn’t a CSS property, it’s called an at rule. Other at rules in CSS include the
@import statement for loading an external style sheet from another style sheet, and @media to define styles
for different types of media such as a printer or different screen sizes and resolutions (page 465).

You then add at least two keyframes. In the current example, the keywords from
and to are used to create the beginning keyframe (from) and the final keyframe
(to). Inside each keyframe you add one or more CSS properties—just as if you were
creating a style. In fact, you can think of each keyframe as just a CSS style filled with
one or more CSS properties. For example, say you want to create an animation that
fades an element into view. You could start with an opacity value of 0 (invisible),
and end with a value of 1 (fully visible):

@keyframes fadeIn{
 from {
 opacity: 0;
 }

 to {
 opacity: 1;
 }
}

You’re not limited to just two keyframes, either. You can use percentage values to
define multiple keyframes. The percentage represents where in the overall length
of the animation the change should occur. For example, say you want to create an
effect where the background of an element changes from yellow to blue to red.
You can write this:

@keyframes backgroundGlow {
 from {
 background-color: yellow;
 }
 50% {
 background-color: blue;

Css: tHe MIssInG MAnUAL340

ANIMATIONS
 }
 to {
 background-color: red;
 }
}

In this case, the blue background will appear halfway through the animation. If you
want the yellow to last longer and the blue to appear after three-quarters of the
animation is complete, use 75% instead of 50%. You can continue to add additional
keyframes this way (for example, at 25%, 66%, and so on).

 NOTE  You can replace the from keyword with 0% and the to keyword with 100%.

Nor are you limited to a single CSS property. You can place any number of animat-
able properties (page 331) inside each keyframe—background-color, opacity, width,
height, and so on:

 @keyframes growAndGlow {
 from {
 background-color: yellow;
 }

 50% {
 transform: scale(1.5);
 background-color: blue;
 }

 to {
 transform: scale(3);
 background-color: red;

 }

}

In the above example, not only does the background color cycle through three colors,
it also scales up in size until it’s three times its original size.

You can also get pretty tricky with the percentage values by adding multiple percent-
age values for one set of CSS properties. This is useful in a couple of cases: First, it’s
good if you want to animate to a certain point, pause, and then continue. For example,
say you’d like to begin with a yellow background color for a <div> tag. Then you’d
like to change that color to blue, stay at blue for a while, and then finish with a red
color. In other words, you want a sort of pause in the middle while the background
color stays constant before changing again. You can do that with this code:

@keyframes glow {
 from {
 background-color: yellow;

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 341

ANIMATIONS
 }
 25%, 75% {
 background-color: blue;
 }
 to {
 background-color: red;
 }
}

Notice the 25%, 75% in line 5. That means 25% of the way through the animation,
the background color of the element should be blue. However, it should be blue
75% of the way through as well. In other words, from the 25% mark to the 75% mark,
the background will remain solid blue, before finally turning red. If this animation
ran for 4 seconds, then for the middle 2 seconds of the animation, the element’s
background would remain solid blue.

You can also use percentages when you want to use the same set of CSS proper-
ties for different parts of the animation. For example, say you want to animate the
background color again, but this time go from yellow to blue to orange to blue to
orange to red. Blue and orange appear twice, so instead of writing their background-
color properties multiple times, you can instead do this:

@keyframes glow {
 from {
 background-color: yellow;
 }
 20%, 60% {
 background-color: blue;
 }
 40%, 80% {
 background-color: orange;

 }
 to {
 background-color: red;
 }
}

In this case, the background color will turn blue at the 20% mark, orange at the 40%
mark, then blue again at the 60% mark, and orange one last time at the 80% mark
before finally turning red.

Unfortunately, as of this writing, to use CSS animations in Chrome, Safari, and Opera,
you must also use the -webkit- vendor prefix (see the box on page 321). In other
words, you need to create one animation for those browsers, and another animation
(without any vendor prefix) for Firefox and Internet Explorer 10 and above:

@-webkit-keyframes fadeIn {
 from {
 opacity: 0;

Css: tHe MIssInG MAnUAL342

ANIMATIONS
 }
 to {
 opacity: 1;
 }
}

@keyframes fadeIn{
 from {
 opacity: 0;
 }
 to {
 opacity: 1;
 }
}

Notice the two hyphens—one between the @ and the vendor prefix and one between
the vendor prefix and the word keyframes.

Applying an Animation
Once you’ve completed a set of keyframes, the animation is ready. However, to make
it work, you need to apply it to an element on your page. You can add an animation
to any style for any element on a page. If you simply add the animation to a style
that applies immediately to an element—for example, an h1 tag style—the animation
will apply when the page loads. You can use this technique to add an introductory
animation to a page that makes a logo zoom into place in the page’s upper-left, or
make a particular box of content glow to draw attention to it.

In addition, you can apply an animation to one of the pseudo-classes, including
:hover, :active, :target, or :focus to make an animation run when a visitor mouses
over a link, for example, or clicks into a form field. Finally, you can apply the anima-
tion to a class style and use JavaScript to dynamically apply that class in response
to a visitor clicking a button or some other page element (see the box on page 335).

CSS provides a handful of animation-related properties to control how and when
an animation plays back (as well as a shorthand version that encompasses all the
individual properties). At a minimum, to get an animation running, you need to sup-
ply the name you gave the original animation (in the @keyframes rule as discussed
on page 338), and a duration for the animation.

Here’s a simple example. Say you want a div with an important announcement to fade
into view when the page loads. You’ve given that div a class name of announcement:
<div class="announcement">.

1. Create the fade-in animation with the @keyframes rule:

@keyframes fadeIn {
 from { opacity: 0; }
 to { opacity: 1; }
}

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 343

ANIMATIONS
 TIP  If you’re only animating a single property, it can be easier to read to if you put the keyframes on a single
line:

from { opacity: 0; }

However, if you’re animating many properties, it’s easier to read (and type) if you spread that code over several
lines:

from {
 opacity: 0;
 color: red;
 width: 50%;
}

2. Apply that animation to the style for the <div> tag:

.announcement {
 animation-name: fadeIn;
 animation-duration: 1s;
}

The animation-name property simply tells the browser which animation to use.
It’s the same name you provided when you created the animation in step 1. The
animation-duration property sets the time the animation takes from start to
finish. In this example, these are the only two animation properties listed, but
you can (and probably will) put other non-animation properties in the style as
well. For example, in the real world, you’d probably add properties such as width,
background-color, border, and so on to this .announcement style.

 NOTE  Putting the animation’s name inside quotes—'fadeIn'—isn’t technically required, and it’s not
done in this example, but doing so can prevent any conflicts that might arise if you use a CSS keyword for an
animation name.

As with the @keyframes rule, each of the animation properties require the -webkit-
vendor prefix to work in Chrome, Safari, and Opera, so the above .announcement style
would need to be written like the following to work in as many browsers as possible:

.announcement {
 -webkit-animation-name: fadeIn;
 -webkit-animation-duration: 1s;
 animation-name: fadeIn;
 animation-duration: 1s;
}

It may seem a bit of a pain to define the animation in one place with the @keyframes
rule and then apply it in another (the style); however, once you’ve defined the
animation, you’re free to use it any number of times in any number of styles. For
example, you can create a generic fade-in type of animation and apply it to differ-
ent elements. What’s more, you can control the animation independently for each

Css: tHe MIssInG MAnUAL344

ANIMATIONS
style—for example, make the header fade in over the course of half a second, but
make another page element fade in for five seconds.

In addition, you can apply more than one animation to an element. Say you create
one animation named fadeIn to make an element fade in and another animation
named blink to make the background color blink wildly. To apply both animations
to the element, you provide a comma-separated list of names like this:

animation-name: fadeIn, blink;

To give the animations separate timings, provide a list of comma-separated times:

animation-name: fadeIn, blink;
animation-duration: 1s, 3s;

The order in which you place the times applies to the animation name in the same
order. For example, the first animation gets the first time listed. In the above example,
fadeIn takes one second to complete, while blink takes three seconds.

You can apply several other useful animation properties as well. Read on.

Timing the Animation
You’ve already seen that the animation-duration property lets you control an ani-
mation’s length. As with transitions, you can use milliseconds (750ms, for example)
or seconds (.75s, for example) to specify the duration.

As with transitions, you can also set a specific type of timing function to control
the rate of the animation throughout that duration. For example, you can start the
animation slowly and end it quickly, using a cubic-Bezier curve (page 333) or using
one of the built-in keyword methods: linear, ease, ease-in, ease-out, or ease-in-
out. These work the same as the transition-timing-function property discussed
on page 332.

You can use the animation-timing-function to control the entire animation or
just specific keyframes. For example, to apply the ease-out timing function for the
fadeIn animation presented earlier (step 1 on page 342), add the timing function to
the .announcement style (step 2 on page 345):

.announcement {
 animation-name: fadeIn;
 animation-duration: 1s;
 animation-timing-function: ease-out;
}

However, you can also control the timing function for the animation between key-
frames. For example, say you create an animation that has three keyframes with
three different background colors. The web browser will animate from one color
to another and then to a third. Perhaps you want it to slowly move from the first to
the second color using a cubic Bezier curve, and then move in a uniform time from
the middle to the end. You can do that by adding two timing functions, one to the

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 345

ANIMATIONS
first keyframe (which controls the animation from keyframe 1 to 2), and one at the
second keyframe to control the animation from keyframe 2 to 3:

@keyframes growAndGlow {
 from {
 background-color: yellow;
 animation-timing-function: cubic-bezier(1, .03, 1, .115);
 }

 50% {
 transform: scale(1.5);
 background-color: blue;
 animation-timing-function: linear;
 }
 to {
 transform: scale(3);
 background-color: red;
 }
}

You can also delay the beginning of the animation using the animation-delay prop-
erty. It works the same as the transition-delay property for transitions (page 334),
and simply waits a specific number of milliseconds or seconds before the animation
begins. For example, if you want to wait one second before the “announcement” div
fades into view, you can rewrite that .announcement class like this:

.announcement {
 animation-name: fadeIn;
 animation-duration: 1s;
 animation-delay: 1s;
}

Adding a delay to an animation is a great way to catch people’s attention and add
surprise to a page.

 NOTE  The animation-timing-function and animation-delay properties require the
-webkit- vendor prefix for Chrome, Safari, and Opera, so make sure you add the appropriate -webkit-
animation-timing-function, and so on to your animated styles.

Finishing the Animation
With CSS, you can control a few additional aspects of an animation, including
whether to repeat an animation, which direction the animation runs if it’s animated
more than once, and how the browser should format the element when the anima-
tion is complete.

Transitions are animations that only run once—mouse over a button and the button
grows, for example. Animations, however, can run once, twice, or continuously, thanks

Css: tHe MIssInG MAnUAL346

ANIMATIONS
to the animation-iteration-count property. If you want an animation to run 10
times (fade in and out 10 times, perhaps), add this code to the style you’re animating:

animation-iteration-count: 10;

Normally a browser only plays the animation once, and if that’s all you’re after, then
leave off this iteration count property. If you want the animation to play continu-
ously, the animation-iteration-count property accepts one keyword: infinite.
So to run the fadeIn animation an infinite number of times on the announcement
div, you can create this style:

.announcement {
 animation-name: fadeIn;
 animation-duration: .25s;
 animation-iteration-count: infinite;
}

That, however, would annoy your visitors to no end, so please don’t do it. However,
you could use a style like this for a simple “pulsing” effect where a “sign up today”
button gently glows (by animating the box-shadow property discussed on page 201).

Normally, when an animation runs more than once, a web browser literally starts
the animation over from the beginning. So if you animated a background color from
yellow to blue and repeated it twice, the browser would show a yellow box turning
blue, and then suddenly the yellow box would return and then animate to blue once
again. This effect can be pretty jarring. In this case, it would look better if, for the
second time through the animation, the browser simply reversed the effect. That’s
how transitions work. For example, when you mouse over an element, the browser
animates the transition from the regular state to the rollover state. When you move
the mouse off the element, the browser simply reverses the animation to return to
the regular state. To make an animation move forward on odd runs and backward
on even runs, use the animation-direction property and the alternate keyword.
For example, to make an element fade out and then back in again, you can create
an animation called fadeOut, like this:

@keyframes fadeOut {
 from { opacity: 1; }
 to { opacity: 0; }
}

Then, play that animation twice, reversing its direction on the second time:

.fade {
 animation-name: fadeOut;
 animation-duration: 2s;
 animation-iteration-count: 2;
 animation-direction: alternate;
}

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 347

ANIMATIONS
This code tells the web browser to run the fadeOut animation on any element with
the class of fade. The animation should run for two seconds and then repeat. Be-
cause of the alternate value for animation-direction, the animation will fade out
the first time (go from totally opaque—an opacity of 1—to invisible—an opacity of
0), but will run backwards the second time (from 0 to 1 opacity), which makes it
fade back into view.

 TIP  To have an animation run a number of times but end up back at the beginning state, use an even number
of iterations and set the animation-direction property to alternate.

No matter how many times you have a web browser run an animation, once the
animation is completed, the browser displays the animated element in its original,
pre-animation state. For example, say you animate an image so it slowly grows to
twice its size. Once the animation is completed, the web browser snaps the image
back down to its original size, creating a jarring visual effect. Fortunately, you can
tell the browser to keep the animated element formatted the same as when the
animation ended by setting the animation-fill-mode property to forwards.

animation-fill-mode: forwards;

Apply this property to the element you’re animating, along with the animation-name,
animation-duration, and other animation properties.

Animation Shorthand
As you can see, there are a lot of animation properties, and writing all of them out in
addition to all of the vendor-prefixed versions is a recipe for carpal tunnel syndrome.
While you still need vendor-prefixed versions, you can simplify things by using the
animation shorthand property. This single property combines animation-name,
animation-duration, animation-timing-function, animation-iteration-count,
animation-direction, animation-delay, and animation-fill-mode into a single
property. For example, you can take this code:

.fade {
 animation-name: fadeOut;
 animation-duration: 2s;
 animation-timing-function: ease-in-out;
 animation-delay: 5s;
 animation-iteration-count: 2;
 animation-direction: alternate;
 animation-fill-mode: forwards;
}

And rewrite it like this:

.fade {
 animation: fadeOut 2s ease-in-out 5s 2 alternate forwards;
}

Css: tHe MIssInG MAnUAL348

ANIMATIONS
That’s one line of code instead of seven! You should list the property values in the
order used above: name, duration, timing function, count, direction, delay, and fill-
mode. In addition, make sure each value is separated by a space. Only the name
and duration are actually required. The other values are optional.

If you want to apply more than one animation to an element, simply use comma-
separated lists of animation properties. For example, to apply two animations (say
fadeOut and glow) to the .fade style, write this:

.fade {
 animation: fadeOut 2s ease-in-out 5s 2 alternate forwards,
 glow 5s;
}

Of course, in real usage you’d need to use the -webkit- vendor prefix as well:

.fade {
 -webkit-animation: fadeOut 2s ease-in-out 5s 2 alternate forwards,
 glow 5s;
 animation: fadeOut 2s ease-in-out 5s 2 alternate forwards,
 glow 5s;
}

In general, you should opt to use the animation shorthand—it’s much more concise
and gentler on your fingers and the keyboard.

Pausing an Animation
CSS includes another animation property—animation-play-state—to control an
animation’s playback. It accepts only one of two keywords: running or paused. To
pause an animation, simply apply this declaration to a style:

animation-play-state: paused;

There’s only one way to really apply that using CSS, however—a pseudo-class. As
with transitions, you need some kind of trigger to pause an animation. One way to
do this is to pause any animation when a visitor mouses over the animation. Here’s
an example using the .fade class style:

.fade {
 animation: fadeOut 2s ease-in-out 2 alternate 5s forwards,
 glow 5s;
}

This code runs two animations—fadeOut and glow—on any element with the fade
class applied to it. Say you want to let visitors pause this animation simply by mous-
ing over it. You’d only need to add one more style:

.fade:hover {
 animation-play-state: paused;
}

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 349

TUTORIAL
Of course, you’ll need all the -webkit- vendor prefixed version as well: -webkit-
animation-play-state.

A more powerful way to pause an animation would be to dynamically apply the
animation-play-state property to the element using JavaScript. In this way, you
can create a complex animation and add a Pause button that pauses the animation
when clicked. See the box on page 335 for more on JavaScript and CSS animations.

Animating on Hover
So far, the animations you’ve seen here would all run when the page loads. You have
a few other options, including several pseudo-classes and using JavaScript, to trigger
a CSS animation. The most common pseudo-class for animation is :hover. With it,
you can run an animation when a visitor mouses over any element; for example, you
can make a logo do fancy gymnastics, move off the page, and then move back again.

To animate an element when a visitor’s mouse hovers over it, start by creating an
animation with the @keyframes rule (step 1 on page 342). Then, create a :hover
pseudo-class for whatever element you wish to animate. In that style, you simply
add the animation properties (step 2 on page 343). Now the animation runs only
when the visitor hovers over the element.

Tutorial
In this exercise, you’ll add transformations, animation, and transitions to a banner.

To get started, download the tutorial files from this book’s companion website at
https://github.com/sawmac/css_mm_4e. Click the tutorial link and download the
files. All the files are enclosed in a zip archive, so you need to unzip them first. (You’ll
find detailed instructions on the website.) The files for this tutorial are contained
inside the 10 folder.

1. In a text editor, open 10→styles.css.

The banner.html file includes a banner with a logo graphic, headline, and set
of navigation buttons (see Figure 10-9). The styles.css file is the style sheet at-
tached to the banner.html page. First, you’ll add a transformation so that when
a visitor mouses over a button it scales up in size.

FiGURE 10-9
A normal, static banner
just waiting to come to life
with animation, transfor-
mations, and transitions.

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL350

TUTORIAL
2. At the bottom of the styles.css file add the following rule:

nav a:hover {
 -webkit-transfrom: scale(1.5);
 -ms-transform: scale(1.5);
 transform: scale(1.5);
}

The buttons on the page are contained inside an HTML nav element. This de-
scendant selector targets links inside the <nav> tag in their hover state (that is,
when a visitor mouses over the link). The style applies the scale function (page
322) to make the button slightly larger. Unfortunately, you need to add the
-webkit- and -ms- vendor-prefixed versions for Safari and Internet Explorer 9.

3. Save styles.css and preview the banner.html file in a web browser. Mouse
over the links below the headline.

When you mouse over a button, it grows larger, almost popping off the page
(Figure 10-10). Very cool, but it would look even better if you added an anima-
tion to the effect.

FiGURE 10-10
Pop goes the button. By adding a scale transforma-
tion to a button’s hover state, you can make it almost
pop off the page. The enlarged button doesn’t affect
any of the content around it (for example, it doesn’t
push the other buttons out of the way). This is a unique
aspect of all CSS transformations.

4. Add another style before the nav a:hover style you just created:

nav a {
 transition: all .5s;
}

Here, you’re instructing the web browser to animate all changes to the CSS
properties of the <a> tags inside the <nav> element, and to make the animation
last half a second. To make things more interesting, you’ll add a background
color to the hover state.

5. Locate the nav a:hover style and add background-color: red;, so the fin-
ished style looks like this:

nav a:hover {
 background-color: red;
 -webkit-transform:scale(1.5);
 -ms-transform: scale(1.5);
 transform: scale(1.5);
}

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 351

TUTORIAL
If you save the page and preview it now, you’ll see that not only do the buttons
grow larger when hovered over, they also fade to red. But now you’ll add separate
timings to these transitions, so the button first grows larger and then turns red.

6. Delete the code inside the nav a style and add two new properties:

nav a {
 -webkit-transition: -webkit-transform .5s,
 background-color 1s ease-in .5s;
 transition: transform .5s,
 background-color 1s ease-in .5s;
}

You need to add two properties: one for Safari and one for all other browsers. Even
though Safari understands the transition property (without a vendor prefix),
you have to use the -webkit- vendor prefix because you’re using the –webkit-
transform property, and that wouldn’t make sense to any other browser.

The second property—the plain transition property—is for all other browsers.

The first part—transform .5s—informs the browser that you want to animate
any changes in the transform property over the course of half a second. The
second part—background-color 1s ease-in .5s—indicates that you wish to
animate the background color change over the course of one second, using the
ease-in timing method (page 332), but wait half a second before starting. That
.5s at the end is important, since it matches the .5s of the transform animation.
In other words, the browser will wait until the transform transition is complete
before changing the background color.

7. Save styles.css and preview the banner.html file in a web browser.

Mouse over a button. First, the button gets larger. Keep the mouse over the
button, and it then turns red. You can of course, tweak the timing—for example,
remove the delay for the background-color transition, and the color change
will begin at the same time as the size change. However, since the color change
lasts for one second, it will continue after the button has reached its final size.

Adding an Animation
Now it’s time to try out CSS animations. You’ll begin by simply spinning and scaling
the logo image. The first step in creating a CSS animation is to use the @keyframes
rule to set up the keyframes of the animation. This example starts you off with a
simple animation and just two keyframes.

 TIP  Because CSS animations require a fair amount of code, it’s a good idea to start by using only the vendor-
prefix for the browser you most often use. Test the page in that browser, and once you’ve perfected the animation,
then add the code for the other browsers. This example uses code that will work in Chrome, Safari, and Opera. If
you prefer Firefox or Internet Explorer 10 or later, then leave off the -webkit- part for now.

Css: tHe MIssInG MAnUAL352

TUTORIAL
1. Open the styles.css file and add the following style to the bottom of that

file, after the nav a:hover style:

@-webkit-keyframes logo {
 from {
 -webkit-transform: rotate(0) scale(.5);
 }
 to {

 -webkit-transform: rotate(-720deg) scale(1);
 }
}

This example uses the WebKit syntax, which means it’ll work in Chrome, Safari
and Opera. If you’re using Firefox or Internet Explorer (10 or later) as your main
browser, replace @-webkit-keyframes with @keyframes.

This code is telling the browser that it should start the element with no rotation—
rotate(0)—and at half its size—scale(.5). It should then animate the change
from that to the animation’s “to” state—in this case rotating it –720 degrees,
which is three counter-clockwise rotations—and scaling it back up to its normal
size. In other words, this animation will spin an element and make it grow.

Now, you need to apply it to any element on the page.

2. Create a new style after the one you just added:

.logo {
 -webkit-animation: logo 1s;
}

The logo in the banner has a class of logo applied to it, so this class selector
adds an animation to it. The animation property can take many values, but you
only need the name and duration. Here, you’re specifying the animation you
created in the last step—logo—and telling a web browser to make the anima-
tion last one second.

3. Save the styles.css file and preview banner.html in your browser.

The logo should spin, grow in size, and then stop. If it doesn’t, double-check
your code and make sure you’re previewing the page in the proper browser. If
all goes according to plan, this animation should look great, but it would be even
better if it moved in from off the page and then stopped in its proper spot in
the banner. To do that, you’ll simply animate the element’s position on the page.

4. Edit the @keyframes rule so it looks like this (addition in bold):

@-webkit-keyframes logo {
 from {
 -webkit-transform: rotate(0) scale(.5);
 left: 120%;
 }

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 353

TUTORIAL
 to {
 -webkit-transform: rotate(-720deg) scale(1);
 left: 0;
 }
}

Here you begin the logo’s position to the right of the banner and navigation
buttons at the edge of the screen (basically, you’re placing the logo’s left edge
1.2x the width of the banner). To get this to work, you need to take advantage
of the CSS position property. You’ll learn about it in-depth in Chapter 15, but
for now you just need to know that CSS gives you the power to position any
element anywhere in the browser window—even outside the browser window.
The final keyframe places the logo at the 0 position, where it normally would
appear on the page at the left side of the banner.

5. Save the styles.css file and preview the banner.html file in Chrome or Safari.

Looking good. But you can still do better. Add another keyframe so the logo
rolls into place and then rotates in the opposite direction as it gets bigger.

6. Change the code you added in step 4 to look like this:

@-webkit-keyframes logo {
 from {
 -webkit-transform: rotate(0) scale(.5);
 left: 120%
 }
 50% {
 -webkit-transform: rotate(-720deg) scale(.5);
 left: 0;
 }
 to {
 -webkit-transform: rotate(0) scale(1);
 }

}

Now you have three keyframes: one at the beginning, another right in the middle,
and a third at the end. The browser will animate the properties as they change
from frame 1 to frame 2 to frame 3.

The first keyframe is the same as in step 4: The logo is unrotated, half its size,
and placed off to the right side. The second keyframe keeps the logo at the
same size, rotates it three times, and moves it to the left side of the banner.
Finally, once the logo is in the place, the browser scales it up while rotating it
back from the –720 degree position to the 0 degree position; in other words,
the logo now spins three times clockwise.

Css: tHe MIssInG MAnUAL354

TUTORIAL
7. Save the style sheet and preview the web page in Chrome or Safari.

The logo should roll in from the right side of the banner to the left, stop, grow,
and spin clockwise. If it’s not working, double-check your code against the code
in step 6. At this point, though, the animation is a bit too fast. That’s an easy fix.

8. Edit the .logo style so the animation lasts for three seconds instead of one:

.logo {

 -webkit-animation: logo 3s;
}

Now you just need to duplicate this code and remove the -webkit- vendor
prefix to have it work in Firefox and Internet Explorer 10 and later. You’ll tackle
the @keyframes rule first.

9. Copy the vendor-prefixed @keyframes rule and paste a duplicate just below
it. Remove the -webkit- prefix, so your code looks like this:

@-webkit-keyframes logo {
 from {
 -webkit-transform: rotate(0) scale(.5);
 left: 120%
 }
 50% {
 -webkit-transform: rotate(-720deg) scale(.5);
 left: 0;
 }
 to {
 -webkit-transform: rotate(0) scale(1);
 }
}
@keyframes logo {
 from {
 transform: rotate(0) scale(.5);
 left: 120%
 }

 50% {
 transform: rotate(-720deg) scale(.5);
 left: 0;
 }

 to {
 transform: rotate(0) scale(1);
 }
}

CHAPteR 10: CSS TRANSFORMS, TRANSITIONS, AND ANIMATIONS 355

TUTORIAL
At some point, in a beautiful future, all the browsers will use the single non-
prefixed @keyframes rule and a non-prefixed transform property. But at this
point, you’re stuck duplicating a lot of code.

Fortunately, adding the @keyframes rule is the hardest part. Adding the anima-
tion to the .logo style isn’t nearly as much work.

10. Edit the .logo style by adding one new line:

.logo {
 -webkit-animation: logo 3s;
 animation: logo 3s;
}

11. Save styles.css and check it out in Firefox or Internet Explorer.

The logo should roll along the page and enlarge on all of those browsers. Of
course, in Internet Explorer 9 and earlier, you won’t see any animation. However,
the logo will still be correctly placed and the page will look just fine. You’ll find
a finished version of this tutorial in the 10_finished folder.

To take this further, add an animation that makes one of the navigation buttons
glow when the mouse is positioned over it. (Hint: create an animation that cycles
through different box shadow values. Use the inset value to add the shadow
inside the box as described on page 201. Then add that animation to the nav
a:hover style so it only plays when the mouse hovers over a button.)

FiGURE 10-11
Books can do a lot, but
they can’t, unfortunately,
show you the amazing
animation that you just
created. Here’s what the
page should look like
when the animation has
run its course and you
mouse over the Home
button.

357

CHAPTER

11

The formatting powers of CSS go way beyond text, images, and links. You can
make tables of information like schedules, sports scores, and music playlists
easier to read by adding borders, backgrounds, and other visual enhancements.

Similarly, you can use CSS to organize the elements of a form to help your visitors
through the process of ordering items, signing up for your newsletter, or using your
latest web application.

This chapter shows you how to display tables and forms with HTML and how to lay
out and style them using CSS. In two tutorials at the end of the chapter, you’ll create
a table and a form, using the tricks you’ve learned along the way.

Using Tables the Right Way
HTML tables have seen a lot of use in the short history of the Web. Originally cre-
ated to display data in a spreadsheet-like format, tables became a popular layout
tool. Faced with HTML’s limitations, designers got creative and used table rows and
columns to position page elements like banner headlines and sidebars. As you’ll see
in Part Three of this book, CSS does a much better job of laying out web pages. You
can concentrate on using (and formatting) tables for their original purpose—display-
ing data (Figure 11-1).

 Formatting Tables
and Forms

Css: tHe MIssInG MAnUAL358

USING TABLES
THE RIGHT WAY

FiGURE 11-1
You can do all of your page
layout and design with CSS
and use tables for what
they were intended—dis-
playing rows and columns
of information. CSS cre-
ated the attractive fonts,
borders, and background
colors in this table about
indoor lawn mowers, but
the underlying structure is
all thanks to HTML.

HTML (and XHTML) has a surprising number of tags dedicated to table building. This
chunk of HTML creates the very simple table pictured in Figure 11-2.

<table>
<caption align="bottom">
 Table 1: CosmoFarmer.com's Indoor Mower Roundup
</caption>
<colgroup>
 <col class="brand" />
 <col class="price" />
 <col class="power" />
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Brand</th>
 <th scope="col">Price</th>
 <th scope="col">Power Source</th>

CHAPteR 11: FORMATTING TABLES AND FORMS 359

STYLING
TABLES

 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Chinook Push-o-matic Indoor Mower</td>
 <td>$247.00</td>
 <td>Mechanical</td>
 </tr>
 <tr>
 <td>Sampson Deluxe Apartment Mower</td>
 <td>$370.00</td>
 <td>Mechanical</td>
 </tr>
 </tbody>
</table>

Even with only three rows and three columns, the table uses nine unique HTML tags:
<table>, <caption>, <colgroup>, <col>, <thead>, <tbody>, <tr>, <th>, and <td>. In
general, more HTML isn’t a good thing, and you don’t need all of these tags: You
can get away with just the <table>, <tr>, and <td> tags (and usually <th> as well).
However, a table’s various tags give you lots of useful hooks to hang CSS styles on.
The headers of each column—the <th> tags—can look different from other table
cells if you create a <th> tag style, and you can use the <colgroup> tag as an easy
way to set the width of a table column. This saves you the hassle of having to create
lots of classes—like .tableHeader—and then apply them by hand to individual table
cells. In the next section, you’ll see examples of how you can use these different
tags to your advantage.

FiGURE 11-2
Data tables, like this one, usually have
headers created with the <th> tag.
Header cells announce what type of
information appears in a row or column.
Price tells you that you’ll find the cost
of each lawn mower listed in the cells
below. The actual data presented in a
table is enclosed in <td> tags.

Styling Tables
You can use many of the CSS properties you’ve read about to dress up the appear-
ance of a table and its contents. You can use the color property, for example, to set
a table’s text color, just like anywhere else. You’ll find a few properties, however,

Css: tHe MIssInG MAnUAL360

STYLING
TABLES

that are particularly useful with tables, as well as a couple aimed specifically at
formatting tables.

Because tables are composed of several HTML tags, it helps to know which tag to
apply a particular CSS property to. Applying padding to a <table> tag, for example,
has no effect. The next few sections cover CSS properties for formatting tables and
which HTML tags they get along with.

Adding Padding
As you read on page 187, padding is the space between an element’s border and
its content. You can use padding to provide a little space between the edges of a
paragraph’s text and its border. When it comes to tables, the borders are the edges
of a cell, so padding adds space around any content you’ve placed inside of a table
cell (see Figure 11-2). Using padding, you can individually control space between a
cell’s content and each of its four edges.

You apply padding to either a table header or a table cell tag, but not to the <table>
tag itself. So, to add 10 pixels of space to the inside of all table cells, use this style:

td, th { padding: 10px; }

You can also control the spacing separately for each edge. To add 10 pixels of space
to the top of each table data cell, 3 pixels to the bottom of that cell, and 5 pixels on
both the left and right sides, create this style:

td {
 padding-top: 10px;
 padding-right: 5px;
 padding-bottom: 3px;
 padding-left: 5px;
}

Or, use the padding shortcut property:

td {
 padding: 10px 5px 3px 5px;
}

Adjusting Vertical and Horizontal Alignment
To control where content is positioned within a table cell, use the text-align and
vertical-align properties.

Text-align controls horizontal positioning and can be set to left, right, center,
and justify (see Figure 11-3). It’s an inherited property. (See Chapter 4 for more
on inheritance.) When you want to right-align the contents of all table cells, create
a style like this:

table { text-align: right; }

CHAPteR 11: FORMATTING TABLES AND FORMS 361

STYLING
TABLES

This property comes in handy with <th> tags, since browsers usually center-align
them. A simple style like th { text-align: left; } makes table headers align
with table cells.

FiGURE 11-3
You can control which edge of a
table cell its content aligns with
by using the text-align
property. Be careful with the
justify option, however.
Browsers aren’t very good at
aligning text to both the left
and right edges of an element.
The result is often big, distract-
ing chunks of empty space in
the text.

Table cells have a height as well. Web browsers normally align content vertically in
the middle of a table cell (see the middle example in Figure 11-4). You can control
this behavior by using the vertical-align property. Use one of these four values:
top, baseline, middle, or bottom. Top pushes content to the top of the cell; middle
centers content; and bottom pushes the bottom of the content to the bottom of the
cell. Baseline works just like top, except the browser aligns the baseline of the first
line of text in each cell in a row (Figure 11-4). Unless you’re a real perfectionist, you
won’t even notice the subtlety of the baseline option. More importantly, neither will
your visitors. Unlike text-align, the vertical-align property isn’t inherited, so you
can use it only on styles that apply directly to <th> and <td> tags.

 NOTE  So far, the table formatting you’ve learned applies to all your tables. When you want to style individual
tables (or table cells), change the selector you use. To apply a special design to a certain table, give it a class
name—<table class="stocks">—and create descendant selectors like .stocks td or stocks .th
to uniquely format individual cells. If you want to style a particular cell differently than other cells in a table, then
apply a class to the tag—<td class="subtotal">—and create a class style to format that cell.

Css: tHe MIssInG MAnUAL362

STYLING
TABLES

FiGURE 11-4
When padding is applied to a cell, the
content never actually aligns to the any
of the cell borders: There’s always a gap
equal to the padding setting.

Creating Borders
The CSS border property (page 194) works pretty much the same with tables as
with other elements, but you need to keep a couple of things in mind. First, apply-
ing a border to a style that formats the <table> tag outlines just the table, not any
of the individual cells. Second, applying borders to cells—td { border: 1px solid
black; }—leaves you with a visual gap between cells, as shown in Figure 11-5, top.
To gain control of how borders appear, you need to understand how web browsers
normally draw table cells and the CSS border-collapse property.

• Controlling the space between table cells. Unless instructed otherwise, brows-
ers separate table cells by a couple of pixels. This gap is really noticeable when
you apply a border to table cells. CSS gives you the border-spacing property
to control this space. Apply this property to the table itself, and if you wish to
remove the space that browsers normally place between cells, then set the
border-spacing property to 0:

table {
 border-spacing: 0;
}

Of course, if you like space between the cells, then add space:

table {
 border-spacing: 2px;
}

CHAPteR 11: FORMATTING TABLES AND FORMS 363

STYLING
TABLES

• Eliminating double borders. Even if you eliminate the cell spacing of a table,
borders applied to table cells double up. That is, the bottom border of one cell
adds to the top border of the underhanging cell, creating a line that’s twice as
thick as the border setting (Figure 11-5, middle). The best way to eliminate this
(and eliminate cell spacing at the same time) is to use the border-collapse
property. It accepts two values: separate and collapse. The separate option
is normally how tables are displayed, with the cell spaces and doubled borders.
Collapsing a table’s borders eliminates the gaps and doubled borders (Figure
11-5, bottom). Apply the collapse value to a style formatting a table, like so:

table { border-collapse: collapse; }

 NOTE  If you set the border-collapse property to collapse, border-spacing has no effect.

• Rounded corners. You can use the border-radius property (page 199) to add
rounded corners to table cells (but not to tables themselves). For example, if
you want to outline table cells and give them rounded corners, you can create
this style:

td {
 border: 1px solid black;
 border-radius: 5px;
}

Note that if you set the border-collapse property to collapse, then browsers
ignore any border-radius you’ve set for table cells; they’ll just draw regular
square corners.

 NOTE  You can even apply the box-shadow property (page 201) to tables and to cells. If you apply it to a
table, the shadow will appear outside the entire table, but if you apply the shadow to individual cells, then each
cell will have its own drop shadow.

Styling Rows and Columns
Adding stripes (like the ones in Figure 11-6) is a common table design technique. By
alternating the appearance of every other row of data, you make it easier for people
to spot the data in each row. Fortunately, CSS does offer a way to do that. Using
the nth-of-type selector, which you read about on page 64, you can add different
backgrounds to odd and even rows:

tr:nth-of-type(odd) { background-color: red; }
tr:nth-of-type(even) { background-color: blue; }

If you don’t want to apply the same background to the odd rows of all of your tables,
simply add a class name to the table you wish to target (products, for a table with
product information, for example), then use a descendant selector, like this:

.products tr:nth-of-type(odd) { background-color: red; }

.products tr:nth-of-type(even) { background-color: blue; }

Css: tHe MIssInG MAnUAL364

STYLING
TABLES

FiGURE 11-5
Browsers normally insert space between each
table cell. (You probably won’t notice this
extra space unless you’ve added a border,
as shown here at the top.) If you set the
border-spacing property to 0 to remove
the extra space, you’re left with double
borderlines where adjoining borders touch
(middle). The border-collapse property
solves both dilemmas (bottom).

You’re not limited to colors either. You can use background images (see page 231)
or even linear gradients (page 252) to create more sophisticated looks like the slight
gradation in the table header row of Figure 11-6. (You’ll see a similar example of this
in the tutorial on page 374.) You can use a descendant selector to target cells in that
row as well. This technique is great for when you style all of the cells in one column
with their own look: <td class="price">, for example.

 NOTE  The nth-of-type selector isn’t supported in Internet Explorer 8 or earlier.

Formatting columns is a bit trickier. HTML provides the <colgroup> and <col> tags
to indicate groups of columns and individual columns, respectively. You include one
<col> tag for each column in the table and can identify them with either a class or
ID. (See the HTML code on page 358.) Only two sets of properties work on these
tags: width and the background properties (background-color, background-image,
and so on). But they can come in mighty handy. When you want to set the width

CHAPteR 11: FORMATTING TABLES AND FORMS 365

STYLING
TABLES

of all of the cells in a column, you can skip any HTML attributes and just style the
column, using a style applied to the <col> tag. For example, say you have this bit
of HTML: <col class="price">. You can add this style to a style sheet to set the
width of each cell in that column to 200 pixels:

.price { width: 200px; }

FiGURE 11-6
Alternating the back-
ground color from row to
row in a table makes it
easier to quickly identify
the data for each row.

To highlight a column, you can use the background properties. Again, assume you
have a <col> tag with a class of price applied to it:

.price { background-color: #F33; }

Keep in mind, however, that backgrounds for columns appear under table cells, so if
you set a background color or image for <td> or <th> tags, the column’s background
won’t be visible.

 NOTE  Typically, web browsers display the border and background color of any empty table cell. If you want
to hide those empty cells, CSS lets you. Just add empty-cells:hide to a style applied to a table:

table {
 empty-cells: hide;
}

One caveat, however: If you set the border-collapse property (page 363) to collapse, browsers ignore
the empty-cells property and show the borders and backgrounds of even empty cells.

Css: tHe MIssInG MAnUAL366

STYLING
FORMS Styling Forms

Web forms are the primary way visitors interact with a website. By supplying
information on a form, you can join a mailing list, search a database of products,
update your personal profile on Facebook, or order that Star Wars Lego set you’ve
had your eye on.

There’s no reason your forms need to look like all the others on the Internet. With a
little CSS, you can style form fields to share the same formatting as other site ele-
ments like fonts, background colors, and margins. There only a few CSS properties
specific to forms, but you can apply just about any property in this book to a form
element.

UP TO SPEED

Staying True to Form
There are good reasons to tread lightly when altering the
look of universally recognized interface elements like submit
buttons and pull-down menus. Most web surfers are already
very familiar with how forms look and work. The generic look
of a submit button is the same from site to site. When people
see it, they instantly know what that button does and how to
use it. If you alter the look of a form too much, you may make
it harder for visitors to fill out your form correctly.

Adding a dotted border to a form field can turn an easily
recognizable text field into an easily skipped box. (See the
examples at the bottom right and bottom center of Figure 11-7.)
If that text box is intended to capture email addresses for your
newsletter, you may lose a few visitors who skip right over it.
At the very least, make sure people can recognize the forms
on your sites as forms.

 TIP  For a great roundup of form designs, check out www.sanwebe.com/2014/08/css-html-forms-designs.

HTML Form Elements
A variety of HTML tags help you build forms. You can format some of them (like text
fields) more successfully than others (radio buttons). Here are a few common form
tags and the types of properties they get along with:

• Fieldset. The <fieldset> tag groups related form questions. Most browsers do
a good job of displaying background colors, background images, and borders
for this tag. Padding places space from the edges of the fieldset to the content
inside it.

• Legend. The <legend> tag follows the HTML for the <fieldset> tag and provides
a label for the group of fields. The legend appears vertically centered on the top
borderline of a fieldset. If the form elements for collecting a shipping address
appear inside the fieldset, you might add a legend like this: <legend>Shipping
Address</legend>. You can use CSS to change the <legend> tag’s font proper-
ties, add background colors and images, and add your own borders.

CHAPteR 11: FORMATTING TABLES AND FORMS 367

STYLING
FORMS

• Text fields. The <input type="text">, <input type"password">, and <textarea>
tags create text boxes on a form. These tags give you the most consistent cross-
browser CSS control. You can change the font size, font family, color, and other
text properties for text boxes, as well as add borders, background colors, and
images. You can set the width and height of these fields using the CSS width
and height properties.

• Buttons. Form buttons—like <input type="submit">—let your visitors submit a
form, reset its contents, or set off some other action. Most browsers let you go
wild with text formatting, borders, backgrounds, drop shadows, and rounded
corners. You can also align the button’s text to the left, middle, or right using
the text-align property. Linear gradients (page 252) look especially good on
buttons.

• Drop-down menus. Drop-down menus created by the <select> tag also give
you a fair amount of styling control. Most other browsers also let you set the
font, font size, background color, image, and borders. However, backgrounds
and background images aren’t always added to the drop-down menu when it
expands to show all of the menu’s options.

• Checkboxes and radio buttons. Most browsers don’t allow formatting of these
elements, and the ones that do aren’t consistent, so it’s best to leave them alone.

POWER USERS’ CLINIC

Attribute: The Ultimate Form Field Selector
When it comes to styling forms, tag styles just don’t cut the
mustard. After all, text boxes, radio buttons, checkboxes,
password fields, and buttons all share the same HTML tag—
<input>. While a width of 200 pixels makes sense for a
text box, you probably don’t want your checkboxes to be
that big, so you can’t use the <input> tag to format width.
For now, the most cross-browser–friendly way of formatting
only text fields would be to add a class name to each text
field—like <input type="text" class="textfield"
name="email">—and then create a class style to format it.

However, you can take advantage of the attribute selector
(page 59) to fine-tune your form styling without resorting
to classes.

An attribute selector targets an HTML tag based on one of the
tag’s attributes. The type attribute is responsible for deter-
mining what kind of form element the <input> tag produces.
The type value for a form text field is text. To create a style
that makes the background color of all single-line text fields
blue, you’d create this selector and style:

input[type="text"] {
 background-color: blue;
}

Changing text in the above example to submit creates a
style for submit buttons only, and so on.

All current browsers, even Internet Explorer 7, understand at-
tribute selectors, so feel free to use them to style your forms
with precision.

Laying Out Forms Using CSS
All it takes to create a form is adding a bunch of labels and other form elements to
a web page. Visually, though, you may end up with a chaotic mess (see Figure 11-7,

Css: tHe MIssInG MAnUAL368

STYLING
FORMS

left). Forms usually look best when the questions and form fields are organized into
columns (Figure 11-7, right).

You can achieve this effect in a couple of ways. The easiest approach is with an
HTML table. Although form labels and fields aren’t strictly table data, they lend
themselves beautifully to a row/column format. Just put your labels (“First Name,”
“Phone Number,” and so on) in one column, and form fields in a second column.

Using CSS, you can also create a two-column form like Figure 11-7 (with the added
benefit of less HTML code). Here’s the basic approach:

1. Wrap each label in a tag.

The obvious choice for a tag is <label>, since it’s designed to identify form
labels. But you can’t always use <label> tags for all labels. Radio buttons usu-
ally have a question like “What’s your favorite color?” followed by separate
<label> tags for each button. So what tag do you use for the question? In this
case, you must resort to wrapping the question in a tag: What's
your favorite color?. Then add a class to each of these tags—<span
class="label">—and also add the class to just those <label> tags you want to
appear in the left-hand column (in Figure 11-8, that would be the labels for “First
name,” “Last name,” and so on, but not the <label> tags for the radio buttons).

FiGURE 11-7
The different shapes and
sizes of text boxes, radio
buttons, and other form
objects don’t naturally
align well with text, often
causing an ungainly zigzag
pattern. This form isn’t
just ugly; it’s hard to read
(left). The solution is to
organize your forms into
columns (right), using
either an HTML table or
CSS styles.

CHAPteR 11: FORMATTING TABLES AND FORMS 369

STYLING
FORMS

2. Set the display property to inline-block, and set a width.

Normally the <label> and tags are inline elements, which ignore many
of the settings available to block elements, including width, height, and text-
align. However, if you make the label an inline-block, it can still sit next to
(that’s the “inline” part) the form field. The width value should provide enough
space to accommodate the entire label on one line if possible. You can create
a class style that looks something like this:

.label {
 display: inline-block;
 width: 20em;
}

The width and inline-block settings turn the labels into little evenly sized blocks
and provide a clean left edge to which all the form fields align.

3. Adjust the style.

Just a couple more enhancements complete the job. You want to set the
vertical-align property (page 360) to top, so the top of the label text aligns
with the top of the form field. You also should align the label text to the right,
so each label appears next to each form field. Finally, by adding a little bit of
right margin, you can create a nice gutter of white space between the labels
and form fields.

.label {
 float: left;
 width: 20em;
 vertical-align: top;
 text-align: right;
 margin-right; 15px;
}

At this point, you’ve got yourself a simple, neat form. You can make other en-
hancements if you wish, like making the labels bold and a different color. The
tutorial that starts on the next page provides a step-by-step example of this
technique.

Css: tHe MIssInG MAnUAL370

TUTORIAL:
STYLING A

TABLE

POWER USERS’ CLINIC

Form Pseudo-Classes
There are a handful of pseudo-classes aimed at styling forms.
The :focus pseudo-class lets you create a selector that
changes the way a text field looks when a visitor clicks or
tabs inside it (this is called giving the field focus). You can use
this to change the size, background color, font, and other CSS
properties of the field. You’ll see an example of it in action in
the tutorial on page 381.

The :checked pseudo-class works with radio buttons and
checkboxes. It ’s intended to let you style those elements,
but web browsers generally keep a tight visual rein on these
fields, and most CSS properties do not apply. However, if you
want to give them a try, you can simply create a style named
:checked and add some CSS properties to it. Realize it will
only apply to the radio buttons and checkboxes of a form. If
you want to style a particular checkbox when it’s checked, you
can create a class style:

.special:checked

And then apply that class to just that checkbox:

<input type="checkbox" class="special" ...

Form elements can also be enabled or disabled. When disabled,
the field can’t be changed: For example, you can’t type into

a disabled text field, or turn on a disabled checkbox. You can
only change the state of a form element (from disabled to
enabled, for example) using JavaScript, so you’ll need to learn
that to really take advantage of the :enabled or :dis-
abled pseudo-classes. However, they can come in handy.
For example, say you have an order form with both “billing”
and “shipping” address fields. If you added a “same as billing
address” checkbox next to the shipping address fields, a visitor
can click this box. Using JavaScript, you can disable the shipping
address fields so no one accidentally types into them. To make
it clear that the user can’t fill them out, you can change their
style so they look “dimmed,” or grayed out, like this:

:disabled {
 background-color: #333;
}

There are even more pseudo-classes intended to work with
some of HTML’s special form features, like built-in form
validation or other special properties. To learn about these,
visit http://html5doctor.com/css3-pseudo-classes-and-
html5-forms /.

Tutorial: Styling a Table
HTML is great for building tables, but you need CSS to give them style. As you can
see on page 358, it takes quite a bit of HTML to construct a simple table. Lucky for
you, this book comes with a prebuilt HTML table for you to practice your CSS on. In
this tutorial, you’ll format the table’s rows, columns, and cells, and give it an attrac-
tive font and background color.

To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e. Click the tutorial link and download
the files. All the files are enclosed in a zip archive, so you need to unzip them first.
(Go to the website for detailed instructions.) The files for this tutorial are in the
11→table folder.

https://github.com/sawmac/css_mm_4e

CHAPteR 11: FORMATTING TABLES AND FORMS 371

TUTORIAL:
STYLING A

TABLE
1. Launch a web browser and open the file 11→table→table.html.

This page contains a simple HTML table. It has a caption, a row of table head-
ers, and nine rows of data contained in table cells (Figure 11-8). In addition, the
<col> tag is used three times to identify the three columns of data. As you’ll
see in a bit, <col> is a handy tag to style, since it will let you set the width of
all cells in a column.

FiGURE 11-8
Formatting a table with
borders, background
colors, and other CSS
properties not only makes
a drab HTML table (top)
look great, but also makes
the table’s data easier to
read (bottom).

2. Open the file 11→table→css→main.css in a text editor.

This external style sheet is attached to the table.html file. You’ll start by creating
a style that sets the table’s width and text font. This table has a class of inven-
tory applied to it, so you can use a class selector to format just this one table.

 NOTE  Browsers cache files, so if you make a change to the main.css file and it doesn’t seem to be working,
you may need to refresh you browser’s cache. Check out this site, dedicated to teaching you just how to do that:
www.refreshyourcache.com/en/home/.

http://www.refreshyourcache.com/en/home/

Css: tHe MIssInG MAnUAL372

TUTORIAL:
STYLING A

TABLE
3. At the bottom of the main.css file add the following style:

.inventory {
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 width: 100%;
 margin-top: 25px;
}

Unless you set the width of a table, it grows and shrinks to fit the size of the
content inside it. In this case, you’ve set a 100 percent width, so the table
stretches to fit the entire width of its container. (In this case, it’s the <body> tag
itself, with a set width and auto left and right margins to center it in the browser
window.) Setting the font family in the <table> uses inheritance to give all of
the tags inside the table the same font—<caption>, table headers (<th>), table
cells (<td>), and so on. Finally, the margin-top property scoots the table down
from the headline above it.

Next you’ll style the table’s caption.

4. Add another style below the table style you just created:

.inventory caption {
 text-align: right;
 font-size: .85em;
 margin-bottom: 10px;
}

This descendant selector only affects the <caption> tag that appears inside
another tag with the class of inventory (that’s the <table> on this page). A
<caption> tag indicates what a table is about. In this case, it shouldn’t be the
focus of attention, so you’ve kept the text small and moved it to the right edge,
out of the way. The bottom margin adds a bit of space between the caption
and the table.

When you read information across a table row, it’s easy to lose track of which
row you’re looking at. Good visual guides are essential. Adding borders around
the cells, which you’ll do next, visually delineates the information.

5. Add the following group style to the style sheet:

.inventory td, .inventory th {
 font-size: 1.1em;
 border: 1px solid #DDB575;
}

This group selector formats the table header (<th>) and table cell (<td>) tags
of this table with larger type and draws a border around each header and each
cell. Browsers normally insert space between each cell, so at this point there are
small gaps between the borders (Figure 11-9, circled). Between the gaps and
the borders, the whole table looks too boxy. You’ll fix that next.

CHAPteR 11: FORMATTING TABLES AND FORMS 373

TUTORIAL:
STYLING A

TABLE
6. Add the border-collapse property to the table style you created in step 3

so that it looks like this:

.inventory {
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 width: 100%;
 margin-top: 25px;
 border-collapse: collapse;
}

The border-collapse property removes the spacing between cells. It also
merges borders that touch, which prevents thick, unattractive borders. Without
border-collapse, the bottom border of a table header and the top border of
the table cell would double up to make a 2-pixel border.

If you preview the table now, you’ll see the data is better organized visually, but
the information in each cell looks a little cramped. Add some padding to fix that.

7. Add padding to the group selector you created in step 5:

.inventory td, .inventory th {
 font-size: 1.1em;
 border: 1px solid #DDB575;
 padding: 3px 7px 2px 7px;
}

Although the top table-header row stands out because of its boldface text,
there are a few things you can do to make it stand out even more and improve
its appearance.

8. Create a new style below the .inventory td, .inventory th style for for-
matting just table head cells:

.inventory th {
 text-transform:uppercase;
 text-align: left;
 padding-top: 5px;
 padding-bottom: 4px;
}

This style is a perfect example of effective cascading. The group selector td,
th defines common formatting properties between the two types of cells. By
introducing this th-only style, you can further tweak the look of just the table
headers. For example, the padding-top and padding-bottom settings here over-
ride those same settings defined in the selector in step 7. However, since you
don’t override the left or right padding settings, the <th> tags will retain the
seven pixels of left and right padding defined in step 7. This style also turns all
of the text to uppercase and aligns it to the left edge of the table cell.

Css: tHe MIssInG MAnUAL374

TUTORIAL:
STYLING A

TABLE
The table headers still don’t have enough oomph, and the table seems to re-
cede into the background of the page. A background graphic can provide the
necessary boost.

FiGURE 11-9
When a browser displays
a table, it normally
inserts space between
each cell (top). It also lets
borders double up where
cells touch. Setting the
border-collapse
property to collapse
solves both problems
(bottom).

9. Edit the th style by adding a linear gradient to the background and chang-
ing the text color:

.inventory th {
 text-transform:uppercase;
 text-align: left;
 padding-top: 5px;
 padding-bottom: 4px;
 background: rgb(229,76,16);
 background: linear-gradient(to bottom, rgb(229,76,16), rgb(173,54,8));
 color: white;
}

You start by simply adding an RGB color to the background; that way, Internet
Explorer 9 and earlier (which don’t understand gradients) at least have a solid
color. The next three lines add the vendor-prefixed versions of the linear gradi-
ent, while the second-to-last line is the official linear-gradient syntax. Finally,
the text color is changed to white.

CHAPteR 11: FORMATTING TABLES AND FORMS 375

TUTORIAL:
STYLING A

FORM
When tables have lots of data stuffed into many rows and columns, it’s some-
times hard to quickly identify which data belongs to each row. Thankfully, you
can use the nth-of-type selector to quickly target alternating rows.

10. Add another style to the main.css file:

.inventory tr:nth-of-type(even){
 background-color: rgba(255,255,255,.1);
}

.inventory tr:nth-of-type(odd){
 background-color: rgba(229,76,16,.1);
}

As you can read on page 66, the nth-of-type selector is used to select child
elements that follow a numeric pattern; for example, every fifth paragraph. In
this case, the first style selects every even <tr> tag, while the second selects
every odd <tr> tag.

Finally, you’ll adjust the width of the cells that fall under the Price and Rating
columns. One technique is to meticulously add class names to those cells and
create a class style with a set width. A better approach, however, is to take
advantage of the <col> tag, which lets you assign a class or ID to a column’s
worth of cells. As you can see in Figure 11-8, those two columns have an ID of
price and rating. You can easily set the width for these two columns with one
group selector.

11. Add one more style to the main.css file:

#price, #rating {
 width: 15%;
}

Save the style sheet and preview the table.html file in a web browser to see the
results. Your page should look like the bottom image in Figure 11-8. You’ll also find
the completed exercise in the 11_finished→table folder.

Tutorial: Styling a Form
This tutorial gives you some practice using CSS to organize a form and make it
more attractive. If you open 11→form→form.html in a web browser, then you’ll see
it contains a simple form for subscribing to the fictitious website, CosmoFarmer.com
(Figure 11-10). The form asks several questions and uses a variety of form elements
for input, including text boxes, radio buttons, and a pull-down menu.

As subscription forms go, it looks fine, but a little bland. In the steps on the following
pages, you’ll spruce up the fonts, line up the questions and boxes better, and add
a few other improvements.

Css: tHe MIssInG MAnUAL376

TUTORIAL:
STYLING A

FORM
1. Open the file 11→form→global.css in a text editor.

You’ll add your new styles to an external style sheet that’s linked to the form.html
file. Start by increasing the size of the type in the form to make it more readable.

2. At the bottom of the style sheet, add the following style:

.subform {
 font-size: 1.2em;

 color: white;
 font-family:Tahoma, Geneva, sans-serif;
}

The subscription form has a class of subform applied to it, so this style sets the
text size, color, and font for all text between the opening and closing <form> tags.

Time to work on the layout. To better align the form elements, you’ll create the
appearance of two columns—one for the questions (labels) and another for the
answers (form fields).

FiGURE 11-10
While the HTML <table>
tag is one way to organize
the questions of a form,
you can also use CSS to
make a disorganized
jumble of labels and
form fields (like the ones
pictured here) and make a
form’s layout clearer and
more attractive.

3. Add another style to the style sheet:

.subform .label {
 display: inline-block;
 width: 200px;
 vertical-align: top;
}

This descendant selector identifies any element with a class of .label within
this form. The style changes the labels from inline elements (which won’t ac-
cept width values) to inline-block elements. The width setting sets the label
area to 200 pixels wide, while the vertical align setting makes sure the label
text aligns with the top of the form fields next to them. As a result, when you

CHAPteR 11: FORMATTING TABLES AND FORMS 377

TUTORIAL:
STYLING A

FORM
apply this style to each of the questions in the form, you create an even-width
column. But in order to see the effect, you must first apply the class to the ap-
propriate page elements.

4. Open the file form.html. Locate the code <label for="name"> and add
class="label", so the tag looks like this:

<label for="name" class="label">

You must do the same for each question in the form, so…

5. Repeat step 4 for the following pieces of HTML code: <label for="email">,
<label for="refer">, <label for="comments">.

There’s one additional question on the form—Rate your apartment farming
skills. It isn’t inside a label tag, since its purpose is to introduce a series of radio
buttons, each of which has its own label. You need to add a tag to this
text so you can apply the label style to it.

6. Find the text Rate your apartment farming skills, and then wrap it in a
tag with a class of label, like so:

Rate your apartment farming skills

Now the questions appear to be in a single column (Figure 11-11, top). But they’d
look better if they stood out more and lined up with the corresponding form
fields.

7. In the global.css file, edit the .subform .label style you created in step 3,
so it looks like this:

.subform .label {
 display: inline-block;
 width: 200px;
 vertical-align: top;
 text-align: right;
 margin-right: 10px;
 font-weight: bold;
 color: rgba(255,255,255,.5);
}

Preview the page in a web browser. The form should look like the bottom im-
age in Figure 11-11.

The form is shaping up, but that Subscribe button looks out of place over at the
left edge. You’ll align it with the other form elements next.

Css: tHe MIssInG MAnUAL378

TUTORIAL:
STYLING A

FORM

FiGURE 11-11
Sometimes small and
subtle changes can make
a form more readable.
Making the questions
on the form bold and
aligning them with their
corresponding form
elements (bottom) imme-
diately improves the look
of the form.

8. Add another style to the global.css file:

.subform input[type="submit"] {
 margin-left: 220px;
}

Since submit buttons are created by adding type="submit" to an <input> tag,
you can simply use an attribute selector (page 59) to target them. This frees
you from having to create a class style and applying it to the submit button.

CHAPteR 11: FORMATTING TABLES AND FORMS 379

TUTORIAL:
STYLING A

FORM
Most browsers let you style buttons in other ways, too, so…

9. Edit the Submit button style by adding a few more properties:

.subform input[type="submit"] {
 margin-left: 220px;
 padding: 10px 25px;
 font-size: 1em;
 color: white;
}

Padding adds space between the text inside the button and the edges of the
button, while the font-size and color properties affect the text on the button.
Now you can get more creative and add a gradient to the button.

10. Edit the Submit button style again:

.subform input[type="submit"] {
 margin-left: 220px;
 padding: 10px 25px;
 font-size: 1em;
 color: white;
 background: rgb(0,102,153);
 background: linear-gradient(to bottom, rgba(255,255,255,.1) 40%,
rgba(255,255,255,.5));
}

Here you set a standard background color (for IE9 and earlier) followed by a
linear gradient. There are two color stops: The first color runs from the top to
40 percent of the way into the button, then the gradient begins (for a recap of
gradients and color stops, turn to page 252).

Finally, you’ll tweak the look just a bit. You’ll remove the standard border, round
the corners, and add a glow around the box.

11. Edit the Submit button style one last time (changes in bold):

.subform input[type="submit"] {
 margin-left: 220px;
 padding: 10px 25px;
 font-size: 1em;
 color: white;
 background: rgb(0,102,153);
 background: linear-gradient(to bottom, rgba(255,255,255,.1) 40%,
rgba(255,255,255,.5));
 border-radius: 5px;
 box-shadow: 0 0 4px white;
}

Setting the border to none removes the border browsers normally draw around
the button, while the border-radius property (page 199) rounds the button’s

Css: tHe MIssInG MAnUAL380

TUTORIAL:
STYLING A

FORM
corners. Finally, by adding a drop shadow with no horizontal or vertical offset
(that’s the 0 0 part), you can add a glow to an element. In this case, it looks like
a slight white glow coming from behind the button.

 NOTE  You can take this button design even farther. Try creating a rollover style for it—.subform
input[type="submit"]:hover—and change the background color. You can even animate that transition
using what you learned in the previous chapter!

You’ve got the text labels and Subscribe button looking great, but why stop
there? Time to jazz up the form fields. Begin by changing their font and back-
ground colors.

12. Add a style for the form’s Select menu:

.subform select {
 font-size: 1.2em;
}

This just pumps the text size up a bit. You could choose a font, add a background
color, and make other changes. However, some browsers (like Safari) don’t really
let you style the drop-down menus much, so make sure you test out any style
changes you make to drop-down menus.

Now it’s time to change the text fields.

13. Create a new group selector for styling the three text boxes in the form:

.subform input[type="text"], .subform textarea {
 border-radius: 5px;
 border: none;
 background-color: rgba(255,255,255,.5);
 color: rgba(255,255,255,1);
 font-size: 1.2em;
 box-shadow: inset 0 0 10px rgba(255,255,255,.75);
}

This group style selects all input elements with the type of text as well as the
multiline text boxes (the <textarea> tag). This adds various properties that you
should be familiar with by now, like border-radius, background-color, font
size, and box-shadow. The text boxes look a little small, so you’ll set their widths
and add a little bit of padding.

14. Edit the style you just created by setting a width and padding (changes in
bold):

.subform input[type="text"], .subform textarea {
 font-size: 1.2em;
 border-radius: 5px;
 border: none;
 background-color: rgba(255,255,255,.5);

CHAPteR 11: FORMATTING TABLES AND FORMS 381

TUTORIAL:
STYLING A

FORM
 color: rgba(255,255,255,1);

 font-size: 1.2em;
 box-shadow: inset 0 0 10px rgba(255,255,255,.75);
 width: 500px;
 padding: 5px;
}

You can make your form easier for your visitors to fill out by highlighting the
active form element with the special :focus pseudo-class (page 56). You’ll add
that in the next step.

15. At the end of the internal style sheet, add one last style for the pull-down
menu and the three text fields:

.subform input[type="text"]:focus, .subform textarea:focus {
 background-color: white;
 color: black;
}

Preview the page in a web browser. It should now look like Figure 11-12. You can find
a completed version of this tutorial in the 11_finished→form folder.

FiGURE 11-12
Using the :focus
pseudo-class, you can
make your forms more
interactive by highlighting
the form fields the visitor
uses. Here, you can see
you’re about to type in the
Comments field because of
its white background color.

CSS Page Layout
PART

3

CHAPTER 12:

 Introducing CSS Layout

CHAPTER 13:

 Building Float-Based Layouts

CHAPTER 14:

 Positioning Elements on a Web Page

CHAPTER 15:

 Responsive Web Design

CHAPTER 16:

 Using a CSS Grid System

CHAPTER 17:

 Modern Web Layout with Flexbox

385

CHAPTER

12

CSS leads a double life. As great as it is for formatting text, navigation bars, im-
ages, and other bits of a web page, its truly awesome power comes when you’re
ready to lay out entire web pages. While HTML normally displays onscreen

content from top to bottom, with one block-level element stacked after another, CSS
lets you create side-by-side columns and position images or text anywhere on the
page (even layered on top of other page elements), so you can create much more
visually interesting web pages.

There’s a lot to CSS layout. This section of the book covers the most important
CSS techniques in detail. This chapter provides a brief overview of the principles
behind CSS layout and a handful of useful guidelines for approaching your own
layout challenges.

Types of Web Page Layouts
Being a web designer means dealing with the unknown. What kind of browsers do
your visitors use? Are they viewing your site on an Android phone or an iPad? The
biggest issue designers face is creating attractive designs for different display sizes.
Monitors vary in size and resolution, from 15-inch, 640×480 pixel notebook displays
to 30-inch monstrosities displaying, oh, about 5,000,000×4,300,000 pixels. Not to
mention the petite displays on mobile phones, and the small- to mid-range screens
of tablets.

Web layouts offer several basic approaches to this problem. Nearly every page
design you see falls into one of two types—fixed-width or liquid. Fixed-width de-
signs give you the most control over how your design looks but can inconvenience

 Introducing CSS Layout

Css: tHe MIssInG MAnUAL386

TYPES OF WEB
PAGE LAYOUTS

visitors using devices that don’t match the resolution of the screen you’re designing
for. Folks with really small monitors have to scroll to the right to see everything, and
those with large monitors end up with wasted space that could be showing more of
your excellent content. In addition, smartphone owners need to pinch and zoom to
get to the content they’re after. Liquid designs, which grow or shrink to fit browser
windows, make controlling the design more challenging, but offer the most effec-
tive use of the browser window. A powerful approach to building web pages, called
responsive web design, seeks to solve the problem of wildly varying screen widths,
but at the cost of added complexity.

• Fixed Width. Some designers prefer the consistency of a set width, like the
page in Figure 12-1, top. Regardless of the browser window’s width, the page
content’s width remains the same. In some cases, the design clings to the left
edge of the browser window, or, more commonly, it’s centered in the middle.
With the fixed-width approach, you don’t have to worry about what happens
to your design on a very wide (or small) monitor.

Many fixed-width designs are below 1,000 pixels wide, letting the window and
the space taken up by scrollbars and other parts of the browser’s “chrome” fit
within a 1024×768-pixel monitor. A very common width is 960 pixels. It used to
be that most websites were fixed width, but that’s changed significantly in the
last few years, thanks to the widespread adoption of smartphones and tablets,
which are often much narrower than the average fixed-width web page design.
Because of that, fixed-width designs are falling out of favor and replaced with
the responsive designs discussed next.

 NOTE  For an example of a fixed-width design, visit www.nytimes.com using a deskop browser. (The New
York Times website provides a different version of the site for mobile devices, so use the desktop site for this
example.)

• Liquid. Sometimes it’s easier to roll with the tide instead of fighting it. A liquid
design adjusts to fit the browser’s width—whatever it may be—by assigning
percentage widths instead of absolute pixel values. Your page gets wider or
narrower as your visitor resizes the window (Figure 12-1, middle). While this
type of design makes the best use of the available browser window real estate,
it gives you the additional challenge of making sure your design looks good
at different window sizes. On very large monitors, these types of designs can
look ridiculously wide, creating very long, difficult to read lines of text. There
are several different ways to implement liquid designs, such as floats (Chapter
13) and CSS flexbox (Chapter 14).

 NOTE  For an example of a liquid layout, check out http://maps.google.com.

www.nytimes.com
http://maps.google.com

CHAPteR 12: INTRODUCING CSS LAYOUT 387

HOW CSS
LAYOUT
WORKS

• Responsive web design (RWD). Responsive web design, championed by web
designer Ethan Marcotte, offers another way to address the problem presented
by the wildly different screen sizes of smartphone, tablet, and desktop web
browsers. Instead of presenting a single layout for all devices, responsive web
design compensates for different browser widths by changing its presentation.
For example, a responsive web page may shrink down from a wide, multicolumn
layout for desktop monitors to a single-column layout for smartphones. In this
way, responsive web design is very much like liquid layouts—the design uses
percentages to grow or shrink in response to the width of the browser window.
However, it goes one step further by using some tricky CSS—called media
queries—to send different designs to different-width browsers, letting you cre-
ate very different looking layouts depending on the device viewing the page.

In the tutorials at the end of the next chapter, you’ll create a fixed-width design
and a liquid design. In Chapter 15, you’ll learn about a relatively new CSS property
called flexbox. In Chapter 17, you’ll dive into the techniques for creating responsive
web designs.

 NOTE  The max-width and min-width properties offer a compromise between fixed and liquid designs.
See page 208.

How CSS Layout Works
As discussed in Chapter 1, in the early days of the Web, HTML’s limitations forced
designers to develop clever ways to make websites look good. The most common
tool was the <table> tag, which was originally intended to create a spreadsheet-like
display of information composed of rows and columns of data. Designers used HTML
tables to build a kind of scaffolding for organizing a page’s contents (see Figure
12-2). But because the <table> tag wasn’t meant for layout, designers often had to
manipulate the tag in unusual ways—like placing a table inside the cell of another
table—just to get the effect they wanted. This method was a lot of work, added a
bunch of extra HTML code, and made it very difficult to modify the design later. But
before CSS, that’s all web designers had.

HTML tables have one thing going for them: They provide a well-organized grid
with a unified structure of individual cells. For CSS design, you use individual tags
to contain content that you want to position in one area of the page. By grouping
content into lots of individual containers and positioning those containers, you can
create complex designs made up of columns and rows. The most common tag used
to achieve this goal is the <div> tag.

Css: tHe MIssInG MAnUAL388

HOW CSS
LAYOUT
WORKS

FiGURE 12-1
You have several ways to
deal with the uncertain
widths of web browser
windows and browser
font sizes. You can simply
ignore the fact that
your site’s visitors have
different resolution moni-
tors and force a single,
unchanging width for your
page (top), or create a liq-
uid design that flows to fill
whatever width window
it encounters (middle). A
responsive design literally
reformats itself depending
upon the browser window
width. The Boston Globe
(www.bostonglobe.com)
site, for example, goes
from one column (left),
to two columns (middle),
to three columns (right)
as the browser window
expands.

The <div> Tag
Web page layout involves putting chunks of content into different regions of the
page. With CSS, one element commonly used for organizing content is the <div>
tag. As you read on page 47, the <div> tag is an HTML element that has no inherent
formatting properties (besides the fact that browsers treat the tag as a block with
a line break before and after it). Instead, it’s used to mark a logical grouping of ele-
ments or a division on the page.

You’ll typically wrap a <div> tag around a chunk of HTML that belongs together. The
elements that contain the logo and navigation bar in Figure 12-2 occupy the top of
the page, so it makes sense to wrap a <div> tag around them. At the very least, you
would include <div> tags for all the major regions of your page, such as the banner,
main content area, sidebar, footer, and so on. But it’s also possible to wrap a <div>

http://www.bostonglobe.com

CHAPteR 12: INTRODUCING CSS LAYOUT 389

HOW CSS
LAYOUT
WORKS

tag around one or more additional divs. One common technique is to wrap the HTML
inside the <body> tag in a <div>. Then you can set some basic page properties by
applying CSS to that wrapper <div>. You can set an overall width for the page’s
content, set left and right margins, center all of the page’s content in the middle of
the screen, and add a background color or image to the main column of content.

FiGURE 12-2
Correctly putting together the HTML nec-
essary to convert a Photoshop mockup
into HTML and CSS reality involves
seeing the underlying structure and
wrapping related groups of HTML within
<div> tags. Sometimes, it can take a lot
of divs to make a design come to life.

Css: tHe MIssInG MAnUAL390

HOW CSS
LAYOUT
WORKS

Once you’ve got your <div> tags in place, add either a class or ID to each one; that
becomes your handle for styling each <div> separately. The <div> tag for a page’s
banner area might look like this: <div class="banner">. You can also use an ID,
but you can use the same ID only once per page, so when you have an element that
appears multiple times, use a class. If you have several divs that position photos
and their captions, for example, you can wrap those tags in a div and add a class,
like this: <div class="photo">. (For more on knowing when to use a div, read the
box on page 47.) In addition, when it comes to the cascade (Chapter 5), IDs are very
powerful and easily override other styles, often forcing you to create long-winded
selectors like #home #banner #nav a just to override previously created selectors
using IDs. For this reason, many web designers avoid IDs and stick with classes.

Once you have the divs in place and have accurately identified them with IDs or
class names, you can then create CSS styles to position those divs on the page us-
ing floats (Chapter 13).

WORD TO THE WISE

A Delicate Balancing Act
Although divs are critical to CSS layout, don’t go crazy pelting
your page with divs. A common trap is to believe you must
wrap everything on a web page in a <div> tag. Say your
main navigation bar is an unordered list of links (like the one
described on page 290). Because it’s an important element,
you may be tempted to wrap a <div> around it: <div
class="mainNav">…</div>.

But there’s no reason to add a <div> when the tag
is just as handy. As long as the contains the main
navigation bar links, you can simply add your class to that
tag: <ul class="mainNav">. An additional <div> is
just unnecessary code.

Likewise, it doesn’t make sense to use a <div> when another,
more logical HTML tag is at hand. For example, say you want
to add a pull quote to a long passage of text—a box aligned to
the right edge of the page displaying an exciting quote pulled
from the page. In this case, you can skip an extra <div> and

simply use the HTML <blockquote> tag. You can position
the blockquote tag using the float property as discussed
on page 210.

That said, don’t be afraid of divs either. Adding a few extra
divs to a page is not going to substantially change the file
size or slow the page’s download speed. If a div helps you get
the job done, and no other HTML tag makes sense, then by all
means, use a div. Also, a div is the only way to go when you
want to group a bunch of different HTML tags into a cohesive
unit. In fact, it’s not at all uncommon to see one div surround
one or more other divs.

The basic rule of thumb is you should try to keep the amount of
HTML on a page down to a minimum, but use as much HTML as is
needed. If adding a few divs makes sense for the design—go for
it. Alternatively, you can try the sectioning elements described
in the next section.

HTML5 Sectioning Elements
Before HTML5, divs were the main way designers organized content. But the most
recent version of HTML includes many HTML tags that are intended to group certain
types of content. For example, the <article> tag is intended for content that makes
up a single, self-contained composition—a blog post, for example. Likewise, the
<header> tag is intended to provide headline, navigational aids, and other introduc-
tory material for a page or a section of page. Then there’s the <footer> tag that’s

CHAPteR 12: INTRODUCING CSS LAYOUT 391

HOW CSS
LAYOUT
WORKS

meant to contain concluding information like the copyright notice, the name of the
website’s creator, the date the page was published, and so on. In a nutshell, these
tags take over the job of the <div> tag for specific types of content. (Visit www.
adobe.com/devnet/dreamweaver/articles/understanding-html5-semantics.html for
a quick introduction to these sectioning elements.)

Sectioning tags are intended to add semantics to a web page. That is, the name of
the tag—<header>, for example—imparts identifying information about what’s inside
that tag. The <figure> tag is intended to enclose—you guessed it—a figure. In other
words, if you want to enclose a particular type of content inside a tag, see if there’s
a tag that fits the bill. If the content is your page’s footer, then use the <footer>
tag instead of the plain old <div>. The <div> tag is still perfectly valid to use. But
these days, it’s generally used to group content for stylistic reasons—for example,
if you’d like to add a border around a group of tags or move them over to the left
side of the page using a float, then enclose those tags in a <div>. (You’ll learn how
to do just that in Chapter 13.)

That all said, beyond bragging rights at your next web designer meetup, there’s no
direct benefit to using these sectioning elements right now. In the future, software
might look through your HTML and identify individual articles based on the pres-
ence of the <article> tag, or use these sectioning tags in some other way to better
analyze your web page. However, if you’ve grown up using <div>, it’s all right to just
stick with the <div> tag for now.

Techniques for CSS Layout
The vast majority of web pages use the CSS float property for layout (see the box
on page 393 for other CSS layout options). You’ve already encountered this seem-
ingly simple property in Chapter 8, where the float property was introduced as a
way of positioning an image within a column of text by either floating the image to
the left or right side. The same concept applies to other tags: By setting the width
of an element and floating it to the left or right, you can create a column (the text
following the element ends up wrapping around the floated element as if it were
another column). By using the float property with multiple divs or other tags, you’re
able to achieve multicolumn layouts. Taking this technique further, you can quickly
create complex, multicolumn layouts by placing floated divs within floated divs.

Another CSS technique, absolute positioning, lets you place an element anywhere
on the page with pixel-level accuracy. You can place an element 100 pixels from the
top edge of the browser window and 15 pixels in from the left edge, for example.
Desktop publishing programs like Adobe InDesign or Apple Pages work this way.
Unfortunately, the fluid nature of web pages and some of the weird characteristics
of absolute positioning make it difficult to achieve total layout control with this
technique. As you’ll read in Chapter 14, it is possible to lay out a page by using
absolute positioning, but in general, this technique is better suited to smaller tasks
like positioning a logo in a particular location on the page.

Don’t worry if this sounds rather abstract right now—you’ll see all of these techniques
in action in the next three chapters.

http://www.adobe.com/devnet/dreamweaver/articles/understanding-html5-semantics.html
http://www.adobe.com/devnet/dreamweaver/articles/understanding-html5-semantics.html

Css: tHe MIssInG MAnUAL392

LAYOUT
STRATEGIES Layout Strategies

Web page layout with CSS is more of an art than a science; there’s no one formula to
follow for marking up your content with HTML and creating your CSS. What works for
one design might not for another. Although that might not be a comforting thought—
“Hey, I bought this book to learn this darn stuff”—CSS layout is something you’ll
learn through experience, learning how the different CSS properties work (especially
floats and absolute positioning), reading about different layout techniques, following
tutorials like the ones in the next two chapters, and practicing—a lot.

However, there are definitely some strategies you can adopt as you approach CSS
layout. These are more like guidelines than hard-and-fast rules, but as you begin
to see your projects through the initial visual design, start with these tips in mind.

Start with Your Content
Many designers like to jump right into the good stuff—colors, fonts, icons, and im-
ages. But beginning with the visual design is putting the cart before the horse. The
most important elements of a web page are the contents: headlines, paragraphs of
text, stunning photographs, navigational links, videos, and such are what people will
come to your site for. They want to read, learn, and experience what your site has
to offer. Content is king, so think of what you want to say before you tackle how it
should look. After all, it won’t do you much good to create a fantastic, 3D–looking
sidebar box if you don’t have anything meaningful to put in it.

In addition, a page’s message should dictate its design. If you decide that your
home page needs to sell the services of your company and highlight the excellent
customer service you offer, you might decide that a large photo of your friendly
staff is important, as well as a quote from a satisfied customer. Since both of these
elements are important to the page’s message, you can craft the visual message by
making both the picture and the quote prominent and compelling.

Mobile First
Along the same lines, the rise of smartphones and tablets has driven designers to
think long and hard about winnowing down their content to just the key message
and facts. This Mobile First movement is based on the limited screen size of smart-
phones as well as the limited attention of people on the go. Mobile-first design is
about starting with your content, but it’s also about getting rid of extraneous noise—
including supplementary information that fits fine on a large desktop screen, but
merely gets in the way on the smaller screen and detracts from the key information
you’re hoping to deliver.

Keep in mind that if your site will be visited by a significant number of people using
smartphones or small tablets, not everyone will want to scroll through a long page of
information (or pinch and zoom to see everything available on a page). Rather than
trying to fill every last square inch of a 32” desktop monitor, think about simplifying
your content so it’s clear, direct, and easy to take in.

CHAPteR 12: INTRODUCING CSS LAYOUT 393

LAYOUT
STRATEGIES

 NOTE  The term Mobile First was coined by Luke Wroblewski. In fact, he wrote a fantastic short treatise on
the subject: www.abookapart.com/products/mobile-first. For another short, but more recent, article explaining
the Mobile First design approach, read: www.sitepoint.com/making-case-mobile-first-designs/.

POWER USERS’ CLINIC

Other CSS Layout Options
Web designers initially used tables to create multicolumn
layouts. Then the CSS float property came onto the scene and
provided another, less code-intensive method to lay out a web
page. And while most designers still use the float property
to implement their designs, there are other options: some you
can use today, and one that will be available in the future.

The CSS working group at the W3C is busily finalizing plans
for several other techniques for CSS layout. For example, the
CSS multicolumn layout module provides a way to take a long
column of text and display it across multiple side-by-side
columns. You’ll learn about it in the next chapter, on page 409.

The flexible box, or flexbox, layout module provides yet an-
other way to arrange boxes of content—vertically, horizontally,

and in different directions and orders. And remarkably, this
module is pretty well supported in many browsers today. You’ll
learn about flexbox in Chapter 15.

Finally, the CSS grid layout module is perhaps the most ambi-
tious attempt to change how designers lay out web pages. This
method lets you break up a page into a set of rows and columns,
then accurately attach page elements to that grid. It’s intended
to make building web applications easier and more like building
desktop programs. The CSS grid is pretty complicated and, at
the time of this writing, not yet supported by most browsers.
Surprisingly, Internet Explorer does support the grid, and was
the first browser to do so. You can read more about the CSS
grid layout module at http://hugogiraudel.com/2013/04/04/
css-grid-layout/.

Start with a Sketch
Once you’ve figured out your content, you can think about organizing that content
visually. Some designers start by hand-coding the HTML: creating divs, adding
<header>, <article>, <footer> tags, and so on. This is a fine approach, often called
“designing in the browser,” since it gives you a head start on building your site by
jumping right into the HTML.

However, before taking the leap into HTML, you should at least sketch out the place-
ment of your content. You don’t need anything fancy—paper and pencil work fine.
Since web design is about placing content inside of boxes (divs and other HTML
tags) and placing them on the page, simply sketching out a bunch of boxes, draw-
ing columns, and so on, is a fast and easy way to try out different page layouts. You
can quickly get a feel for where content should go, how big it should be, and the
general color tone (light or dark).

 TIP  Yahoo offers a free Stencil Kit (http://developer.yahoo.com/ypatterns/wireframes) that you can use in
Illustrator, Visio, OmniGraffle, and other graphics programs to create web page mock-ups. The supplied user-
interface elements, like buttons, form fields, windows, and navigation buttons can make sketching out a page
layout as simple as dragging and dropping icons.

http://www.abookapart.com/products/mobile-first
http://www.sitepoint.com/making-case-mobile-first-designs/
http://hugogiraudel.com/2013/04/04/css-grid-layout/
http://hugogiraudel.com/2013/04/04/css-grid-layout/
http://developer.yahoo.com/ypatterns/wireframes

Css: tHe MIssInG MAnUAL394

LAYOUT
STRATEGIES

If you’re comfortable with a graphics program like Photoshop, Illustrator, or Fire-
works, you can use that to create a visual design. If you’re not a whiz with graphics
programs, even just drawing boxes to indicate different placement of page elements
can help you refine your thinking about how the page should be laid out. It’s a lot
easier to change a two-column design to a four-column design by resizing boxes in
Illustrator than by rewriting HTML and CSS.

However, if you do use a graphics program, don’t spend too much time refining
the graphic design. It’s a lot of work to create the look of many CSS properties in
Photoshop or Illustrator, and you’ll only have to recreate that look using CSS code.
In other words, try to refine a “lo-fi” look for your site on paper or in a graphics
program, and then jump to your text editor to create the HTML to fit your content
and use the CSS properties you’ve learned in this book to test out different styles.

Identify the Boxes
Once you’ve created a visual mock-up, it’s time to think of how to create the HTML
markup and CSS to achieve your design goal. This process usually involves envision-
ing the different structural units of a page and identifying elements that look like
individual boxes. For example, in Figure 12-2, there are quite a few elements that look
like boxes: most obviously, the three announcement boxes near the bottom (marked
as A in Figure 12-2). Each box is usually a good candidate for a separate <div> tag
(unless there’s a more appropriate HTML tag, as discussed in the box on page 390).

Often a visual clue in your mock-up can help you decide if a div is needed. For
example, a border line drawn around a headline and several paragraphs of text
indicates you’ll need to surround that group of HTML tags with a <div> tag that has
a border applied to it.

In addition, whenever you see chunks of text sitting side by side (like the three
chunks of content in the footer in Figure 12-2), you know you’ll need to have each
group in its own <div> tag—HTML tags don’t usually sit side by side, so you have
to use some layout mojo (like the float technique covered in the next chapter) to
make that happen.

It’s also common to group divs (or other tags) that sit side by side in columns within
another div. For example, in the bottom half of Figure 12-2, you can see the basic set
of <div> tags that provide the page’s structure. The “news” <div> and the <footer>
tag are containers for their own set of divs. While this isn’t always a necessity, it
can provide flexibility. For example, you can reduce the main area (the photo of
the hand and the tagline) in width and move the news div to the right side to form
its own column. The news items could then be stacked on top of each other rather
than sitting side by side.

CHAPteR 12: INTRODUCING CSS LAYOUT 395

LAYOUT
STRATEGIES

Go with the Flow
Tags don’t normally sit side by side or layer on top of each other. Normally, HTML tags
act pretty much like text in a word-processing program: filling the entire width of the
page and flowing from top to bottom. Each block-level tag—headline, paragraph,
bulleted list, and so on—stacks on top of the next block-level tag. Since that’s the
“business as usual” approach of HTML tags, you usually don’t have to do any kind
of positioning if you plan on stacking one div on the next.

For example, in Figure 12-2, four elements—the <header> tag, the “main” div, the
<section> tag, and the <footer> tag—span the entire width of their container (the
<body> tag) and sit one on top of the other. Because this is the normal way block-
level tags work, you don’t need to do anything special with the CSS for those four
divs to stack on top of each other.

Remember Background Images
You’ve no doubt seen tiled images filling a web page’s background, or subtle
gradients adding depth to a banner. But the background-image property provides
another way to add photos to a page without resorting to the tag. Not only
does putting an image into the background of an existing HTML tag save the few
bytes of data required by the tag, but it also simplifies some layout challenges.

For example, in Figure 12-2, the central image of the hands holding the Chia Pet (B)
is actually just a background image. This makes placing another div—the one with
the tagline “Compassionate care…” (C) really easy, since it’s just sitting on top of
the background of its parent div. Likewise, the picture of the doctor at the lower
right of the page is just a background image placed in that div—adding some right
padding pushes the text in that div out of the way of the photo.

 NOTE  There are downsides to using photos in the background of divs (or any HTML tag). First, web browsers
usually don’t print backgrounds—so if you’ve got a page with a map containing driving directions to your business,
insert the map with the tag and not as a background image. Likewise, search engines don’t search CSS,
so if you think the image can help attract traffic to your site, use an tag and include a descriptive alt
attribute.

Pieces of a Puzzle
This tip can be filed under “creative problem solving” or “if I stare at this design
long enough I’ll come up with some crazy solution.” Often, what looks like a single,
unified whole is actually composed of multiple pieces.

You can see a simple example of this in Figure 12-2, even though at first glance it
looks like one big white box full of content. Actually there are four stacked divs, each
with a white background. So, if you’re having trouble seeing how to put together
one large element on a page—a very large graphic, a rainbow that spans several
columns, or just a solid background color that appears to span multiple areas of a
page—think about how you could achieve the same look by breaking the large unit
into smaller pieces that are joined like parts in a jigsaw puzzle.

Css: tHe MIssInG MAnUAL396

LAYOUT
STRATEGIES

Layering Elements
If you’re a Photoshop, Illustrator, or Fireworks fan, you’re probably used to the notion
of layers. Layers let you create separate canvases that float on top of each other to
build one unified image. In these programs, it’s easy to make a logo float on top of
a headline of text, or place a photo over another photo. If you want a web page that
has this kind of effect, you have a couple of choices.

Often the easiest way to layer something on top of a photo is to put the image into
the background of another tag. Because the background image is behind the tag,
anything inside that tag—text, another photo—will sit on top of the photo.

But what if you want to layer a photo on top of some text? In that case, you’ll turn
to the only CSS property that lets you layer elements—the position property. You’ll
learn all about that property in Chapter 14, since to position something on top of
something else requires absolute positioning.

Don’t Forget Margins and Padding
Finally, sometimes the simplest solution is the best. You don’t always need fancy CSS
to move a page element into place. Remember that padding and margins (page 187)
are just empty space, and by using those properties, you can move elements around
the page. For example, the tagline box (C in Figure 12-2) is positioned simply by set-
ting the top and left padding of the parent div. As you can see in the diagram in the
bottom half of Figure 12-2, the tagline is placed inside another div (<div id="main">).
That div doesn’t actually have any content besides the tagline—the photo is just a
background image—so adding padding moves the tagline div down and to the right.

397

CHAPTER

13

Float-based layouts take advantage of the float property to position elements
side by side and create columns on a web page. As described in Chapter 7
(page 210), you can use this property to create a wraparound effect for, say, a

photograph, but when you apply it to a <div> tag, float becomes a powerful page-
layout tool. The float property moves a page element to one side of the page (or
other containing block). Any HTML that appears below the floated element moves
up on the page and wraps around the float.

The float property accepts one of three different values—left, right, and none. To
move an image to the right side of the page, you could create this class style and
apply it to the tag:

.floatRight { float: right; }

The same property applied to a <div> tag full of content can also create a sidebar:

.sidebar {
 float: left;
 width: 25%;
}

Figure 13-1 shows these two styles in action.

 NOTE  The none value turns off any floating and positions the element like a normal, unfloated element. It’s
useful only for overriding a float that’s already applied to an element. You may have an element with a particular
class such as .sidebar applied to it, with that element floating to the right. But on one page you may want an
element with that class to not float, but to be placed within the flow of the page, like this Note box. By creating
a more specific CSS selector (see page 102) with float: none, you can prevent that element from floating.

 Building Float-
Based Layouts

Css: tHe MIssInG MAnUAL398

FiGURE 13-1
You can use the float prop-
erty to lay out a web page
with multiple columns. On
this page, a block of content
is floated to the left edge.
The sidebar has a set width,
but the main content doesn’t,
which makes this design a
liquid layout. The main section
of the page simply expands to
fill the width of the browser
window. In the upper right,
the bathtub photo is floated
to the right.

A simple two-column design like Figure 13-1 requires just a few steps:

1. Wrap each column in a <div> tag with an ID or class attribute.

In Figure 13-1, the news items listed in the left sidebar are wrapped in one div—
<div class="news">—and the main content in another div—<div class="main">.

2. Float the sidebar div either right or left.

When you work with floats, the source order (the order in which you add HTML
to a file) is important. The HTML for the floated element must appear before
the HTML for the element that wraps around it.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 399

Figure 13-2 shows three two-column layouts. The diagrams on the left side show
the page’s HTML source order: a <div> for the banner, followed by a <div> for
the sidebar, and lastly, a <div> for the main content. On the right side, you see
the actual page layout. The sidebar comes before the main content in the HTML
so it can float either left (top, bottom) or right (middle).

FiGURE 13-2
Creating a two-column layout is a simple
matter of floating a <div> tag to the left
(top). To make a sidebar move from the left
to the right side of the page (middle), just
change the sidebar’s CSS styling to float:
right. You don’t need to make any other
changes to your CSS or HTML.

Css: tHe MIssInG MAnUAL400

3. Set a width for the floated sidebar.

Unless you’re floating an image with a predefined width, you should always
give your floats a width. This way, you create a set size for the floated element,
letting the browser make room for other content to wrap into position.

The width could be a fixed size like 170px or 10em. You can also use percentages
for a flexible design that’s based on the width of the browser window. (See
page 151 for more about the pros and cons of the different measurement units.)
If the sidebar is 20 percent wide, and the browser window is 700 pixels wide,
then the sidebar will be 140 pixels wide. But if your visitor resizes the window
to 1000 pixels, then the sidebar grows to 200 pixels. Fixed-width sidebars are
easier to design for, since you don’t have to consider all the different widths
the sidebar might stretch to.

However, percentages let you maintain the same proportions between the two
columns, which can be more visually pleasing. In addition, percentages make
your designs more flexible, since the overall proportion of the page can adjust
to fit the screen size, something that’s important when creating responsive web
designs, which you’ll learn about in the next chapter.

 NOTE  When the overall page design is a fixed width (as described on page 386), percentage width values
for the sidebar are based on the fixed-width containing element. The width isn’t based on the window size and
won’t change when the browser window changes size.

4. Add a left margin to the main content.

If the sidebar is shorter than the other content on the page, the text from the
main column wraps underneath the sidebar, ruining the look of two side-by-side
columns (see Figure 13-2 for an example). Adding a left margin that’s equal to
or greater than the width of the sidebar indents the main content of the page,
creating the illusion of a second column:

.main { margin-left: 27%; }

By the way, it’s usually a good idea to make the left margin a little bigger than
the width of the sidebar. This creates some empty space—a white gutter—be-
tween the two elements. So when you use percentages to set the width of the
sidebar, use a slightly larger percentage value for the left margin.

Avoid setting a width for the main content div. It’s not necessary, since brows-
ers simply expand it to fit the available space. Even if you want a fixed-width
design, you don’t need to set a width for the main content div, as you’ll see in
the next section.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 401

APPLYING
FLOATS TO

YOUR LAYOUTSApplying Floats to Your Layouts
Now that you’ve learned a basic two-column liquid layout, you can adapt it in count-
less ways. Converting it to a fixed-width layout is a snap. Simply wrap all the tags
within the page’s body inside another <div> (like <div class="wrapper">). Then
create a style for that new container element that has a set width, such as 960
pixels (see Figure 13-2, bottom). That width setting constrains everything inside
the container box.

 TIP  It’s also possible to create a fixed-width page without resorting to the extra wrapper div: set a width
on the <body> tag. You already saw an example of this technique in the tutorial on page 33.

Expanding it into a three-column design isn’t difficult, either (Figure 13-3). First, add
another <div> between the two columns and float it to the right. Then add a right
margin to the middle column, so that if the text in the middle column runs longer
than the new right sidebar, it won’t wrap underneath the sidebar.

The rest of this section explores more CSS layout techniques that use float-based
layouts.

FiGURE 13-3
A three-column design uses the same
concepts used to create a two-column design.
In this case, you float both the left and right
sidebars and add both left and right margins
to the center column. The left-hand diagram
shows the order of the HTML; the right side
shows what the web page looks like.

Floating All Columns
It’s perfectly possible to float every column, not just the left and right sidebars. You
could float the first sidebar to the left, the middle column to the left, and the right
sidebar to the right, as shown in Figure 13-4, top. This approach lets you put more
than three columns in your design. You can float four or more columns, as long as
there’s room for all the floats to fit side by side.

When you float all columns in a design, you need to pay close attention to the widths
of each column. If the total width of all the columns is more than the space avail-
able—for example, if the browser window is smaller or the columns are placed inside

Css: tHe MIssInG MAnUAL402

APPLYING
FLOATS TO

YOUR LAYOUTS
another <div> with a set width—then the last column drops down below the others.
(You can read a solution to this dropping float problem on page 414.)

In addition, floating more than just the sidebars lets you change the order of your
divs in the HTML. Take, for example, the left diagram in Figure 13-3, which shows the
order of the <div> tags for that page. Because of the way floated elements work,
they must appear before any content that wraps around them, so in this example,
the main content area must go after the sidebars.

UP TO SPEED

You Don’t Have to Reinvent the Wheel
If terms like liquid layout and containing element sound a little
intimidating, don’t give up. First of all, the tutorials beginning
on page 417 walk you step by step through the process of laying
out web pages with CSS. But there’s no law saying you have to
create your own CSS layouts from scratch. On the Web, you’ll
find plenty of pre-built and tested designs you can make your
own. The LayoutGala site offers40 different CSS designs that
work in all common browsers (http://blog.html.it/layoutgala/).
The designs are just basic skeletons consisting of <div> tags
and the CSS that positions them. All you need to do is fill them
with your own design touches like font styling and imagery.

For a bit more style, visit Templated (http://templated.co),
which offers a collection of over 800 free CSS and HTML tem-

plates. These modern designs include images, background
colors, and typographic touches to jumpstart your next site.

There are also quite a few layout generators—online tools
that let you customize basic requirements like the number of
columns you want, whether you’re after a liquid or fixed layout,
and so on. The Layout Generator (http://www.pagecolumn.
com) provides a simple tool for creating a complex multicolumn
designs. You can then download HTML and CSS files with the
code created for you. In chapter 16, you’ll learn how to use a grid
system—a CSS file with specific method for laying out multiple
column grids—to create complex page designs.

The order of the <div> tags in the HTML may not seem like a big deal until you try to
browse the web page without CSS, which is the case for many alternative browsers,
including screen readers that read a page’s content aloud to visually impaired visitors.
Without CSS, all the sidebar material (which often includes navigational elements,
ads, or other information that’s not relevant to the main topic of the page) appears
before the content the visitor came to read in the first place. The inconvenience of
having to scroll past the same sidebar content on each page will turn off some visi-
tors. Furthermore, your page is less accessible to vision-impaired visitors, who have
to listen to their screen readers read off a long list of links and ads before coming
to any real information.

And if that doesn’t sway you, you’ve got the search engines to worry about. Most
search engines limit the amount of HTML they read when searching a site. On a
particularly long web page, they simply stop at a certain point—possibly missing
important content that should be indexed by the search engine. Also, most search
engines give greater value to the HTML near the beginning of the file. So if you’re
worried about getting good placement in search engine results, it’s in your best
interest to make sure the important content is as close as possible to the top of the
page’s HTML code.

http://blog.html.it/layoutgala/
http://templated.co
http://www.pagecolumn.com
http://www.pagecolumn.com

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 403

APPLYING
FLOATS TO

YOUR LAYOUTS
In the top-left diagram in Figure 13-4, the main content’s HTML is between the left
and right sidebars, which is better than having it after both sidebars. You can even
put the main content before both sidebars’ HTML by wrapping the main content and
left sidebar in one <div>, floating that <div> left, and then floating the main content
right and the left sidebar left within that <div> (Figure 13-4, bottom). Voilà—the main
column’s HTML falls before the other <div> tags.

Floats Within Floats
The bottom diagram in Figure 13-4 illustrates another useful technique—floating
elements within floats. Imagine that the main content (3) and the left sidebar (4)
divs didn’t exist, and only the column wrapper (2) and the right sidebar (5) were
left. You’d have just a basic two-column design, with one column floated left and
another floated right. In fact, it’s still a two-column design even with the two divs
(3 and 4) placed back inside the column-wrapper div. The difference is that the left
column is itself divided into two columns.

FiGURE 13-4
There’s more than one way to float a page.
CSS’s flexibility provides many ways to
create a multicolumn layout. Using different
methods of floating, you can easily change
the source order of the HTML for the page, as
you can see in the diagrams at left. Right-side
diagrams represent final web page layout.

Css: tHe MIssInG MAnUAL404

APPLYING
FLOATS TO

YOUR LAYOUTS
Although this arrangement is a bit confusing, it’s also helpful in a number of instances.
First, it lets you add columns within a column. The three-column layout at the top of
Figure 13-5 shows a small Tips box in the middle column that also has two columns
inside it. By nesting floats inside floats, you can create some very complex designs.

FiGURE 13-5
Top: Create columns within columns by
floating elements inside other floated
elements. In the middle column, the
Tips box provides a simple two-column
note that adds visual interest to the
page. Bottom: It doesn’t matter which
direction the container is floated (in
this instance, to the right)—you simply
float the two additional columns left
and right.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 405

OVERCOMING
FLOAT

PROBLEMSOvercoming Float Problems
As you get more adventurous with CSS, you’ll probably encounter—like many web
designers before you—some of the weird intricacies of working with floats. This
section describes a few common problems and their solutions.

Clearing and Containing Floats
Floats are powerful design tools because they let content flow around them. Floating
a photo lets text below it move up and wrap around the image (Figure 13-1). When
you’re creating float-based column designs, though, sometimes you don’t want
content to move up and next to a floated element. For example, you frequently
want to keep copyright notices, contact information, or other housekeeping details
at the bottom of your web page, below all other content.

In the two- and three-column designs you’ve seen so far, if the main column is
shorter than either of the floated sidebar columns, a footer can move up and around
the left floated column (Figure 13-6, left). To make the footer stay down below the
sidebars, you can use the clear property. This property prevents an element from
wrapping around floats. You can make an element drop below a left-floated object
(clear: left;) or a right-floated object (clear: right;). For footers and other
items that need to appear at the bottom of the page, you should clear both left and
right floats, like this:

footer { clear: both; }

FiGURE 13-6
You don’t always want
an item to wrap around
a floated element (left).
Copyright notices and
other material that belong
at the bottom of a page
usually need to clear any
floats they encounter.
To achieve this, use the
clear property for the
copyright notice to force
it to the bottom of the
page below any floated
elements.

Another problem occurs when you float one or more elements inside a non-floated
containing tag like a <div> tag. When the floated element is taller than the other
content inside the div, it sticks out of the bottom of the enclosing element. This
snafu is especially noticeable if that tag has a background or border. The top of the
web page in Figure 13-7 shows a <div> tag that has an <h1> tag and two columns

Css: tHe MIssInG MAnUAL406

OVERCOMING
FLOAT

PROBLEMS
created by floating two divs. The background and border, which appear only around
the <h1> tag, are actually applied to the entire enclosing <div>, including the area
where the two columns are. However, since the columns are floated, they pop out
of the bottom instead of expanding the borders of the box.

 NOTE  For a good explanation of why floated elements can break outside of their containing blocks, read
www.complexspiral.com/publications/containing-floats.

A similar problem happens in the bottom example in Figure 13-7. In this case, each
image is floated left inside a containing <div> that has a border. Because the images
are taller than their boxes, they pop out of the bottom. Unfortunately, this example
is even worse than the previous one, because each image causes the image below
it to wrap to the right, creating an ugly staggered effect.

FiGURE 13-7
A floated element can
escape its containing
<div> if it’s taller than
the container itself. If the
containing tag includes
a background or border,
then the escaping ele-
ments can look like they’re
not even part of the
container (top of page).
In addition, a floated ele-
ment can bump into other
elements—including other
floats, thereby creating
a "stair-stepped" effect
(bottom of page) instead
of the nicely stacked boxes
in Figure 13-8.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 407

OVERCOMING
FLOAT

PROBLEMS
You have many ways to tackle the problem of these renegade floating elements.
It’s good to have more than one solution at your fingertips, so here’s a list of the
most popular:

• Add a clearing element at the bottom of the containing div. This solution is the
most straightforward. Simply add a tag—like a line break or horizontal rule—as
the last item in the <div> containing the floated element (that is, right before the
closing </div> tag). Then use the clear property to force that extra tag below
the float. This trick makes the enclosing div expand, revealing its background
and border. You can add a line break—
 (HTML) or
 (XHTML)—before
the closing </div> tag and add a class to it: <br class="clear"/>. Then create
a style for it, like this:

br.clear { clear: both; }

The problem with this technique is that it adds extra HTML.

• Float the containing element. An easier way is to just float the <div> contain-
ing the floated elements as well. A floated container <div> expands to fully
contain any floated elements inside it. In Figure 13-8, top, the <div> containing
the heading and two floated columns is floated to the left of the page. In the
process, its entire box—background and borders—expands to fit everything
inside it, including the floated elements. Strange, but true.

If you go this route, make sure you add a clear property to whatever element
follows the floated container to make sure the following element drops below
the container.

• Use overflow:hidden. Another common technique is to add the following two
properties to a style for the containing block:

overflow: hidden;

The overflow:hidden property is just another one of those weird CSS things: It
forces the containing block to expand and contain the floated elements. In general,
this technique works very well. However, if you have any absolutely positioned
elements (see page 430) inside the container, they may not show up. You can
get into this situation if you have a drop-down menu inside another tag and the
drop-downs, when they appear, are supposed to appear outside the container
element. If that’s the case, use one of the other methods described on these pages.

• Use the Micro Clear Fix. With this technique, created by Nicolas Gallagher, you
add just a few styles and a class name to the tag containing the floated element.
This technique is the latest in a long evolution of methods that use the :after
pseudo-class. To use it, add the following style to your style sheet:

.clear:after {
 content: " ";
 display: table;
 clear: both;
}

Css: tHe MIssInG MAnUAL408

OVERCOMING
FLOAT

PROBLEMS
Once you’ve added that style to a style sheet, you simply add the class name
to the div containing the escaping floats: <div class="clear">. If you’re using
HTML5 sectioning elements like <article> or <footer>, then add that class to
them: <article class="clear">. (See the bottom of Figure 13-8.) This technique
is very reliable; however, unlike the previous two techniques, you do have to
add extra HTML (the class attribute) to the page.

FiGURE 13-8
Don’t let a float escape!
You have several ways to
make floated elements
stay inside the borders
and backgrounds of
their containing tag. Two
methods are pictured here,
though any of the four
discussed would produce
the same results. Floating
the container works (top),
as does a special combina-
tion of CSS (bottom). Both
methods result in borders
and backgrounds that sur-
round the container and
the floats inside.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 409

OVERCOMING
FLOAT

PROBLEMS

POWER USERS’ CLINIC

Multiple Columns: The Easy Way
CSS includes a multicolumn layout module: It lets you divide a
single element (like a div full of text) into three, four, or more
columns. It provides CSS properties to determine the number
of columns and the space between columns, and to add a line
(a rule) between the columns.

Multicolumns are intended to simulate the kind of columns you
find in a newspaper or magazine, where one long story flows
from the top to the bottom of one column, back to the top of
the second column, down to the bottom of that column, and
so on. In other words, it’s not for placing columns of unrelated
content next to each other (for example, a sidebar with links,
and a main column containing an article). In addition, you
can’t set different widths for each individual column; they’re
all the same width.

Multiple columns work well in a magazine, where you have
a set height and can see an entire page, making it easy to
read to the bottom of a column and jump back to the top of
the next. On a web page, however, you don’t know the size of
your visitors’ monitors, so a long column of text might force a
visitor to scroll down to get to the bottom, then scroll back up
to read the next column. Unless you make sure you have very
short columns, you might end up forcing people to scroll down
and up to read one page—not very user friendly.

However, multiple columns are great for long bulleted lists with
short items. Instead of one really long list of bullets, you can
spread them across a page in multiple columns, saving precious
vertical space. The basic syntax is pretty straightforward: You
can use the column-count property to set the number of
columns, the column-gap property to set the space between

columns, and the column-rule property to draw a line
between the columns. To set the style, size, and color of the
column rule, use the same syntax as for borders (page 194).

You apply these to the tag that contains the elements you wish
to divide into columns. For example, say you have several para-
graphs of text inside a <div> tag. You apply these properties
to that div, and the paragraphs flow across multiple columns.
If, for instance, you give that column a class called multicol,
you can create the following style for a three-column design,
with a 1 em gap and a dotted rule:

.multicol {
 column-count: 3;
 column-gap: 1em;
 column-rule: 1px dotted black;
}

Mind you, Internet Explorer 9 and earlier don’t understand mul-
tiple columns. In addition, you need to use vendor prefixes (page
321) for Chrome and Safari (-webkit-column-count,
-webkit-column-gap, and -webkit-column-rule)
and for Firefox (-moz-column-count, -moz-column-
gap, and -moz-column-rule). Opera, however, understands
the non-prefixed version.

There are a few other properties for multicolumns, which
you can read about at the official W3C page: www.w3.org/
TR/css3-multicol/. In addition, there’s a simple introduction
to multicolumns at http://dev.opera.com/articles/view/
css3-multi-column-layout/ and an online tool for creating
and previewing multiple columns at www.aaronlumsden.
com/multicol/.

Creating Full-Height Columns
HTML tables aren’t great for web page layout for several reasons. They add lots of
code, they’re difficult to update, and they don’t work well on alternative browsers
like those used by cellphones. But tables have one thing going for them in the layout
department—the ability to create columns of equal height. Equal-height columns
let you add a background color or graphic to one column and have it fill the entire
height of the page. The backgrounds of the two sidebars in the top image of Figure
13-9 fill the screen height, creating solid, bold stripes on either side of the page.

http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://dev.opera.com/articles/view/css3-multi-column-layout/
http://dev.opera.com/articles/view/css3-multi-column-layout/
http://www.aaronlumsden.com/multicol/
http://www.aaronlumsden.com/multicol/

Css: tHe MIssInG MAnUAL410

OVERCOMING
FLOAT

PROBLEMS
CSS floats, on the other hand, fall a bit short in this regard. Table cells in a row are
always the same height, which isn’t true of divs. The height of a float is usually dic-
tated by the content inside it; when there’s not a lot of content, the float is not very
tall. Since a background image or background color fills only the float, you can end
up with solid-colored columns that stop short of the page bottom, as in the circled
areas at the bottom of Figure 13-9.

 NOTE  The flexible box model fixes the problem of different height columns in a row. You’ll learn about it
in Chapter 15.

As with most problems related to CSS, there are several workarounds. The most
tried-and-true method is the faux column technique first championed by CSS guru
Dan Cederholm. The secret is to add background images to a tag that wraps around
the stubby sidebar and the other columns on the page. Say your HTML has two
<div> tags that contain the content for a left sidebar and the page’s main content:

<div class="sidebar">Sidebar content here</div>
<div class="main">Main content for page, this column has a lot of text and is
much taller than the sidebar.</div>

The sidebar <div> is floated to the left edge of the page and has a width of 170
pixels. Because there’s less content in the sidebar, it’s shorter than the main text.
Suppose you wrap that HTML in a wrapper <div> tag, like so:

<div class="wrapper">
<div class="sidebar">Sidebar content here</div>
<div class="main">Main content for page, this column has a lot of text and is
much taller than the sidebar.</div>
</div>

That outer div grows to be as tall as the tallest element inside it, so if the main div is
very tall, that wrapper div will be just as tall. Here’s the magic: Create a style for the
wrapper div with a background image the width of the sidebar, in the background
color you want for the sidebar. That way, if the background image tiles vertically, it
forms a solid bar the height of the wrapper div (Figure 13-9, top).

.wrapper { background: url(images/col_bg.gif) repeat-y left top; }

Web browsers display that background image directly under the sidebar, creating
the illusion that the sidebar has a background color.

 NOTE  You’re not limited to solid colors either. Since you’re using an image anyway, you can make a decora-
tive pattern that tiles seamlessly down the left side of the page.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 411

OVERCOMING
FLOAT

PROBLEMS

FiGURE 13-9
Full-height columns with bold back-
ground colors are a common design
technique. The left and right sidebars
(top) show how solid backgrounds can
help visually define the different areas
of a page. When a sidebar’s background
stops abruptly (circled at bottom),
you get extra white space that’s both
distracting and unappealing.

Css: tHe MIssInG MAnUAL412

OVERCOMING
FLOAT

PROBLEMS
Reproducing this result for two columns is just a little more involved. First, add two
wrapper divs:

<div class="wrapper1">
<div class="wrapper2">
<div class="sidebar1">Sidebar content here</div>
<div class="sidebar2">Second sidebar</div>
<div class="main">Main content for page, this column has a lot of text and is

much taller than the two sidebars.</div>
</div>
</div>

 NOTE  If the wrapper and each column are all fixed widths, you can create this faux-column look for both the
left and right columns with just a single image and a wrapper div. Just make the graphic as wide as the wrapper,
with the left side of the graphic being the color and width of the left sidebar, the right side of the graphic the
color and width of the right sidebar, and the center part of the graphic matching the background color of the
center column.

If the first sidebar appears on the left side of the page and the second sidebar ap-
pears on the right side, create two styles. Apply one style to the first wrapper <div>
tag to add a background to the left sidebar; apply one to the second wrapper <div>
to add a background to the right sidebar (Figure 13-10, bottom).

.wrapper1 { background: url(images/col1_bg.gif) repeat-y left top; }

.wrapper2 { background: url(images/col2_bg.gif) repeat-y right top; }

When adding a background image to the right-hand column, make sure you posi-
tion the background image in the top right of the second wrapper, so that it falls
underneath the second sidebar on the right side of the page.

One major problem with the faux-column technique is that it’s very difficult to make
it work when the columns are all percentage widths. If the widths of the sidebars
are a percentage of the browser window, they can be thinner or wider depending
upon a visitor’s monitor. The faux-column technique requires placing a graphic in
the background of the wrapper element. That graphic is a specific width and won’t
scale as the browser’s width, and thus the column’s width, changes.

One clever workaround uses linear gradients (page 252) to add a gradient to a wrap-
per element. The gradient becomes the background colors for the columns inside
the wrapper element. Now, you may be thinking, "I like rainbows and all, but I want
the background colors to each column to be solid, not a gradient that morphs from
one color to the next." Well, fear not, you can get solid colors.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 413

OVERCOMING
FLOAT

PROBLEMS

FiGURE 13-10
You sometimes need to think outside
the tag for creative solutions to CSS
problems. To get full-height back-
grounds behind floated columns, you
need to resort to some extra <div>
tags that wrap around all of the main
columns of text. These divs grow to
be the height of the tallest column
in the group. By adding background
images to these wrapper divs, you
create the appearance of equal-
height columns.

As described on page 254, linear gradients let you set color stops—places where a
new color is defined as part of the gradient. If the first stop is white, for instance,
and the second stop is white, the gradient runs from white to white. In other words,
there’s no color change—it’s just one solid color. In addition, you can set a color
stop at the same spot as another color stop, which lets the second color begin im-
mediately after the other with no subtle gradient effect.

Say you have a three-column design. The first column is 25 percent wide, the middle
column is 50 percent wide, and the third column is 25 percent wide. You want the
first column to have a background color of red, the middle white, and the third blue.

1. Wrap all three columns in a wrapping element:

<div class="wrapper">
 <div class="sidebar1"> ... content here ...</div>
 <div class="main"> ... content here ...</div>
 <div class="sidebar2"> ... content here ...</div>
</div>

Css: tHe MIssInG MAnUAL414

OVERCOMING
FLOAT

PROBLEMS
The wrapper is the element in which you’ll add the gradient. In addition, if you
float all three of the columns inside the wrapper, you’ll need to use one of the
methods described on page 405 for containing those floats.

2. Add a linear gradient, with color stops that match the width of the columns:

.wrapper {
 background-image: linear-gradient(left,
 red 0%,

 red 25%,
 white 25%,
 white 75%,
 blue 75%,
 blue 100%);
}

Red runs from 0% (far left of the wrapper) to 25%. It’s the same color, so there’s
no gradient. Then white begins at 25%—the same point at which red ended—so
again there’s no gradient. White continues until the 75% mark—just a solid white
stretch. Then blue begins exactly where white ends and continues to the 100%
mark (the right side of the wrapper). In other words, you have three solid-color
columns whose widths change with the browser width. Perfect.

The downside of using a linear gradient is that it only works with solid colors
(or, of course, gradients, if you’d like to do that), so you can’t use a graphic in
the background or borders around each column. In addition, Internet Explorer
9 and earlier don’t understand gradients at all.

 NOTE  There are even a few other ways to make columns appear to be equal height. Check out this blog
post by CSS expert Chris Coyier for an overview of the different techniques: http://css-tricks.com/fluid-width-
equal-height-columns/.

 NOTE  Another clever technique uses the :before pseudo-class to create an element that’s placed behind
the floated column. You can read about it at http://webdesign.tutsplus.com/tutorials/quick-tip-solving-the-equal-
height-column-conundrum--cms-20403.

Preventing Float Drops
Suddenly, one of your columns simply drops down below the others (Figure 13-11,
top). It looks like there’s plenty of room for all the columns to coexist perfectly side
by side, but they don’t. You’ve got the dreaded float drop.

http://css-tricks.com/fluid-width-equal-height-columns/
http://css-tricks.com/fluid-width-equal-height-columns/
http://webdesign.tutsplus.com/tutorials/quick-tip-solving-the-equal-height-column-conundrum--cms-20403
http://webdesign.tutsplus.com/tutorials/quick-tip-solving-the-equal-height-column-conundrum--cms-20403

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 415

OVERCOMING
FLOAT

PROBLEMS

FiGURE 13-11
It takes only a single pixel or two
to ruin a design. When the width
of floated elements is just a hair
wider than their containing block
(like a <div> with a set width, or
even the browser window itself),
the last floated element drops
below the others (top). The actual
width of an element combines
many CSS properties. In the
middle image, the outline around
the main content area shows
that it’s a tad too wide to allow
the right sidebar to fit (circled).
Adjusting any of the elements by
removing a bit of width, padding,
or margins can solve the problem
(bottom).

A floated column drops down because there’s not enough room to fit it, so be care-
ful if you set widths for each column. If the available space in the browser window
(or the containing block in a fixed-width design) is less than the total widths of
the columns, then you’re asking for a float drop. Also, keep the CSS box model in
mind: As discussed on page 205, the width of an element displayed in the browser
window isn’t the same as its width property. The displayed width of any element is
a combination of its width, left and right border sizes, left and right padding, and
left and right margins. For the columns to fit, the browser window (or containing
block) must accommodate the combined total of all those widths.

Take, for example, the simple three-column layout in Figure 13-11. As you can see
in the top example, the three columns don’t fit. Here’s a breakdown of the math
behind the problem:

Css: tHe MIssInG MAnUAL416

OVERCOMING
FLOAT

PROBLEMS
• Wrapper div. A fixed-width wrapper <div> tag encloses the entire design. Its

width property is set to 760 pixels, so all three columns can’t total more than that.

• Sidebar 1 (left side). Its width is 150 pixels, but it also has 10 pixels of padding,
making its total onscreen width 170 pixels. (150 + 10 pixels of left padding + 10
pixels of right padding.)

• Main content. The main content <div> is 390 pixels wide, with a 1-pixel border
and 15 pixels of left and right margin for a total width of 422 pixels. (You may
need a calculator for this one: 390 + 1 [left border] +1 [right border] + 15 [left
margin] + 15 [right margin].)

• Sidebar 2 (right side). This element has a width property set to 150 pixels,
with 10 pixels of left and 10 pixels of right padding: 170 pixels, just like Sidebar 1.

The actual widths of each element add up to a grand total of 762 pixels. That’s
two pixels more than the width of the wrapper div. The middle image of Figure
13-11 shows an outline around the main content div indicating its total width
plus margins. Just those measly two extra pixels of width (circled) are enough
to cause a column to drop down. The solution: Remove 2 pixels of space from
any of the elements. Changing the main content div’s left and right margins
from 15 to 14 pixels buys you the extra room needed for all three columns to fit
side by side (bottom).

Bottom line: Float drops are always caused by not enough room to hold all of
the columns.

Another way to make the math easier is to never set the border or padding on column
divs or elements. In this way, if you set three columns to 20%, 60%, and 20% widths,
respectively, you’ll know they fit side by side, since they total 100%, and there’s no
padding or border to mess that up. If you do want padding, you can simply add
padding to the elements inside the column: for example, give the same left and
right padding to the headlines, paragraphs, and other elements inside the div. This
requires more work, but it prevents potential float drops caused by column widths
totaling more than 100%.

If you want borders as well, another technique is to nest divs like this:

<div class="column1">
 <div class="innerColumn">
 ...content goes here ...
 </div>
</div>

You then set the width on the outer div—column1 in this case—and add the padding
and borders to the inner div—innerColumn—in the above code. Don’t set a width on
the inner div; it will automatically fill the width of the outer column.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 417

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

Preventing Float Drops With Box-Sizing
The main culprit responsible for float drops is the wacky way browsers calculate the
actual screen width for an element. You set the width to 100 pixels, for example, but
the browser draws it as 122 pixels, because you’ve also added 10 pixels of left and
right padding and a 1-pixel border around the whole thing. Fortunately, one CSS
property lets you sidestep these headache-inducing calculations.

The CSS box-sizing property lets you tell a web browser to use a different model for
calculating the actual screen width of an element. You can give it one of three values:

• The content-box value is how browsers normally work: The width of an element
on the screen is the combined value of the left and right border thicknesses,
left and right padding, and the CSS width property.

box-sizing: content-box;

• The padding-box value tells a browser to include the left and right padding. In
other words, the display width of an element is the total of the CSS width and
the left and right padding. It doesn’t include any borders around the element.

box-sizing: padding-box;

• Finally, the border-box property includes padding, borders, and CSS width. In
general, this is the one you want to use. It keeps the math simple and helps
prevent float drops, especially when you’re using percentage-based widths
along with pixel-based units for the border width and padding:

box-sizing: border-box;

The very good news is that almost all browsers support this scheme, including
Internet Explorer 8. However, while those browsers support the content-box and
border-box value, not all browsers support the padding-box value (see http://ca-
niuse.com/#search=box-sizing). That’s all right, though, because for use the most
important value is border-box.

Some web designers suggest setting all elements to the border-box setting, so that
every tag will be measured in the same way. To do so, use the * selector, which selects
every element on the page, at the top of your style sheet along with your CSS reset:

* {
 box-sizing: border-box;
}

Tutorial: Multiple-Column Layouts
In this tutorial, you’ll create a multicolumn, float-based layout. In the process, you’ll
create a three-column liquid design, as well as a fixed-width design. In addition,
you’ll learn a couple of different techniques for doing it.

http://caniuse.com/#search=box-sizing
http://caniuse.com/#search=box-sizing

Css: tHe MIssInG MAnUAL418

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e. Click the tutorial link and download the
files. All the files are in a zip archive, so you need to unzip them first, as detailed on
the website. The files for this tutorial are in the 13 folder.

Structuring the HTML
The first step in creating a CSS-based layout is identifying the different layout ele-
ments on the page. You do this by wrapping chunks of HTML inside of <div> tags,
each of which represents a different part of the page.

1. Open the index.html file in a text editor and click in the empty line following
the HTML comment: <!–first sidebar goes here-->.

As you can see, some of the HTML work is already done: Currently, there’s a ban-
ner and footer. Before you create any styles, you need to add the structure and
content for the page. You’ll next add an <aside> tag to create the left sidebar.

2. Add an opening <aside> for the sidebar: <aside class="sidebar1">. Then
press Enter (Return) to create a new, empty line.

You’re using the HTML5 <aside> tag, but you could just as easily use a <div>
tag to create this column.

If you were creating a web page from scratch, at this point you’d add the HTML
for the page’s sidebar, perhaps a list of articles on the site, links to related
websites, and so on. In this case, the HTML is already taken care of. The code
for an unordered list of links is waiting for you in another file. You just need to
copy and paste it into this page.

3. Open the file sidebar1.txt, copy all of the contents, and then return to the
index.html file. Paste the HTML after the <aside> tag you created in step 2
(or your <div> tag, if you went that route).

The HTML for the sidebar is nearly complete. You just need to close the <aside>
tag.

4. Immediately after the code you just pasted, type </aside>.

You’ve just added the first layout element on the page. In a little bit, you’ll style
this HTML so that it looks like a column. But first, you need to add some more
content.

5. Place your cursor in the empty line after this HTML comment: <!--main
content goes here-->, and then type <article class="main">.

This div holds the page’s main content. You’ll get that HTML from another file, too.

6. Open the file main.txt, copy all of the contents, return to the index.html file,
and then paste the code after the <article> tag you just created. Add the
closing </article> tag exactly as in step 4. Save the HTML file.

That’s all the HTML you need to create your design for now. Next, it’s time to
turn your attention to building the CSS.

https://github.com/sawmac/css_mm_4e

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 419

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

Creating the Layout Styles
If you preview the page now, you’ll see that the banner, navigation buttons, and text
are already styled. That’s because this page has an external style sheet attached to it
with some basic formatting. Next, you’ll create styles to format the page’s columns:

1. In a text editor, open the styles.css file.

Since the web page uses an external style sheet, you’ll add all the new styles to
it. You’re now managing two files, the HTML file and the CSS file, so make sure
you save both before previewing your work in a web browser.

2. Scroll to the bottom the CSS file. You’ll see a CSS comment that reads /*
add tutorial styles below here */. Below that, add this style:

.sidebar1 {
 float: left;
 width: 20%;
}

This class style floats the sidebar div to the left of the page, and gives it a width
of 20%. The width property is important in this style: Unless you’re floating an
image that has a set width, you should always set a width for a floated element.
Otherwise, the browser sets the width based on the content inside the float,
leading to inconsistent results. Here, the width is percentage-based, meaning
it’s determined by the width of its container. In this case, the container is the
<body> tag, and it fills the entire browser window width. So the sidebar’s onscreen
width will depend on the width of the visitor’s browser window.

3. Save the HTML and CSS files and preview the index.html file in a web browser.

The sidebar now forms a left-hand column…sort of. When the text in the main
column reaches the bottom of the sidebar, it wraps around the bottom of the
sidebar, as shown in Figure 13-12. While that’s normally how floats work, it’s not
what you want in this case. To make the main body text appear like a column
of its own, you have to add enough left margin to indent the main text beyond
the right edge of the sidebar.

4. Create a style for the second column:

.main {
 margin-left: 22%;
}

Since the sidebar is 20 percent wide, a margin of 22 percent indents the main
content an additional 2 percent, creating a gutter between the two columns.
This additional white space not only makes the text easier to read, but also
makes the page look better.

Preview the page now, and you’ll see you’ve got yourself a two-column layout.

Css: tHe MIssInG MAnUAL420

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

FiGURE 13-12
A floated element doesn’t
actually create a column
on the page. It merely
displaces any content that
wraps around it, up to the
point where the float ends.
After that, the content
flows back to its normal
position underneath the
float (notice how the
headline "Subheading"
appears directly under the
sidebar).

Adding Another Column
As you can see, a two-column design isn’t hard. Adding a third column so you can
treat your visitors to even more information isn’t any harder. In fact, the steps are
quite similar to the previous part of this tutorial.

1. Open the file sidebar2.txt. Copy all the HTML from that file, and then return
to the index.html file.

The HTML for this column goes after the <article> tag containing the page’s
main text.

2. Locate the HTML comment <!-- second sidebar goes here --> near the
bottom of the file. Click in the empty line below it.

It’s often hard to find the right closing </div> when you use a lot of divs to
structure a page. That’s why HTML comments—like this one—can really help
you identify and keep track of the HTML in your page.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 421

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

3. Type <aside class="sidebar2">, press Enter, and then paste the HTML you
copied in Step 1. Hit Enter again, and then type </aside>. Save the HTML file.

When you close the <aside> tag, you’ve completed the HTML for the page’s
third column. Start styling it next.

4. In your text editor, return to the styles.css file. Below the .main style you
created in Step 4 on the previous page, add a new style:

.sidebar2 {
 float: right;
 width: 20%;
}

You’re floating this column to the right side of the page to flank the main content
with sidebars on either side.

5. Save all the files and preview the index.html file in a web browser.

Right away, you’ll notice something strange. The second sidebar appears below
the main content and even runs over the footer. The problem has to do with the
HTML’s source order. When you float an element, only HTML that comes after
that element wraps around and appears next to the floated element. In other
words, since the second sidebar’s HTML is after the main content, it doesn’t
appear next to the main content, only after it.

There are a couple of ways to get around this situation. You could move the
second sidebar’s HTML (the second <aside> element) before the main content’s
HTML (the <article> element). Then the first sidebar would float to the left and
the second to the right; the main content would just scoot up in between them.

Alternatively, you could simply float the main column as well. If you set its width
so all three columns add up to no more than 100 percent, then the three columns
will sit side by side. For this example, you’ll try that approach.

6. Edit the .main style so that it looks like this:

.main {
 float: left;
 width: 60%;
}

If you save the CSS file and preview the index.html file in a browser, you’ll notice
another problem—suddenly, everything’s turned black! Remain calm: That’s
the footer trying to wrap around all the floats and causing a mess. As you read
above, when you float an element and another element wraps around it, the
background color and borders for that element actually extend underneath
the floated element. Strange, true…and frustrating. To fix it, you simply need
to make the footer drop below—that is, clear—the floats.

Css: tHe MIssInG MAnUAL422

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

7. Add one more style after the .sidebar2 style:

footer {
 clear: both;
}

As described on page 405, the clear property forces an element to drop below
floated elements. In this case, it pushes the footer down below the columns,
as shown in Figure 13-13.

FiGURE 13-13
Using floats, you can make
three elements appear
as three side-by-side
columns.

Adding Some Breathing Room
You’ve got three columns, but the text is a little jammed together. The three columns
practically touch, and the text on the right sidebar hugs too closely to the edge of
the browser window. A little padding can help fix this.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 423

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

1. Add padding to the .sidebar1, .main, and .sidebar2 styles, so the styles
look like this:

.sidebar1 {
 float: left;
 width: 20%;
 padding: 0 20px 0 10px;
}

.main {
 float: left;
 width: 60%;
 padding: 0 20px 0 20px;
}

.sidebar2 {
 float: right;
 width: 20%;
 padding: 0 10px 0 20px;
}

Here, you’re using the padding shorthand property (page 189). The numbers
represent the top, right, bottom, and left padding. So in the .sidebar1 style,
you’re adding 0 top padding, 20 pixels of right padding, 0 bottom padding,
and 10 pixels of left padding.

If you save the styles.css file and preview the index.html file in a browser, you’ll
notice a problem—the dreaded float drop (page 414). By adding padding, you’ve
essentially increased the width of each column, and since the total widths of the
columns (20% + 60% + 20%) already totaled 100%, that extra padding forces
the third column down below the other two. It just can’t fit!

There are a couple of ways to handle this problem. First, you can remove the
padding from these styles, and add it to all the elements inside. In other words,
add 10 pixels of left and right padding to the <h2>, <h3>, <p>, and tags.
That’s a lot of work.

Second, you could remove the padding from the styles in the CSS file and then,
in the index.html file, add a <div> inside each of the columns, something like this:

<aside class="sidebar1">
 <div class="innerColumn">
 ... content goes here ...
 </div>
</aside>

Then, in the styles.css file, simply create a style to add the padding:

 .innerColumn {
 padding: 0 20px 0 10px;
}

Css: tHe MIssInG MAnUAL424

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

Because there’s no width set on the .innerColumn style, it simply grows to fill
the column, while the padding scoots everything inside of it (the headings,
paragraphs, and so on) in by 10 pixels. The downside of this approach is you
need to add additional HTML.

There’s another way, that’s a lot easier, more flexible, and widely supported by
web browsers.

2. Add the following style to the top of the style sheet (just below the /* reset
browser styles */ comment):

* {
 box-sizing: border-box;
}

This style takes advantage of the universal selector (page 49). It applies the
box-sizing property to every element on the page. By setting this property to
border-box, you’re instructing web browsers to use the size of the padding and
border properties as part of the CSS width value. In other words, the padding
doesn’t add to the CSS widths you set earlier. This prevents any float drop, since
the columns now only add up to 100 percent of the browser window width.

Finally, you’ll add a border line to separate the columns.

3. Edit the .main style by adding a left and right border so that it looks like this:

.main {
 float: left;
 width: 60%;
 padding: 0 20px;
 border-left: dashed 1px rgb(153,153,153);
 border-right: dashed 1px rgb(153,153,153);
}

These properties add two lines, one on either side of the main content section.
If you preview the page in a web browser now, it should look like Figure 13-14.

Fixing the Width
Currently, the page is a liquid design, meaning that it expands to fill the entire width
of the browser window. But say you’d rather have the page stay the same width all
the time—because you hate how it looks on cinema display monitors, or you don’t like
what happens to the design when the browser window is shrunk too small. Changing
a liquid design to a fixed-width design is easy. Start by adding a little more HTML.

1. Return to your text editor and the index.html file. Directly after the opening
<body> tag, add a new <div> tag:

<body>
<div class="pageWrapper">

You’re wrapping the entire page inside a div, which you’ll use to control the
page’s width. You need to make sure that tag is closed.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 425

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

FiGURE 13-14
Adding some padding to
the columns and border
lines between them clearly
separates the columns.

2. Add the closing </div> just before the closing </body> tag:

</div>
</body>

Now that there’s a div surrounding all of the content on this page, you can
control the page’s width by setting a width for this tag.

3. Save the HTML file, and switch to the styles.css file. Add another style:

.pageWrapper {
 width: 960px;
}

Css: tHe MIssInG MAnUAL426

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

If you save the CSS and HTML files and preview the index.html file in a browser,
you’ll see that the page is indeed locked in at 960 pixels. If you make the browser
window thinner than 960 pixels, you’ll get scroll bars.

You don’t have to set an exact width, however. If, you want the page to fit into
a browser window that’s thinner—say 760 pixels—you’re better off avoiding
an exact width. The real problem is that the page becomes hard to read when
the browser is really wide. Another approach is to use the max-width property,
which prevents the div from getting larger than a particular value, but doesn’t
prevent it from getting thinner to fit smaller screens. While you’re at it, you’ll
also center the div within the browser window.

4. In the styles.css file, change the .pageWrapper style you just created so it
looks like this:

.pageWrapper {
 max-width: 1200px;
 margin: 0 auto;
}

The max-width property provides a liquid layout, but only up to a point. In this
case, when the browser window is wider than 1200 pixels, the div won’t get
any wider. The margin setting here—0 auto—provides 0 margin for the top and
bottom, and auto margins for left and right. That auto setting tells the browser
to automatically figure out the margin, splitting the space evenly between left
and right and centering the div in the browser window. The page should now
look like Figure 13-15.

FiGURE 13-15
Using the CSS max-
width property instead
of width lets you provide
a flexible design that fits
various browser window
widths, but won’t get
unreadably wide on an
ultrawide monitor.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 427

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

Mixing Liquid and Fixed Design
The page looks pretty good, but it might look better if the black background for
the nav bar at the top, the footer at the bottom, and the dark purple gradient in the
banner extended all the way across the page (see Figure 13-16). Because the nav,
banner, and footer are inside the pageWrapper div, those backgrounds stop when the
browser window is wider than 1200 pixels. Instead, you want to keep some parts of
the page—the tags with the background colors—liquid, while limiting the width of
the tags containing any content.

The background color for the navigation is applied to a <nav> element in the HTML;
the purple gradient is applied to a <header> element; and the black background
in the footer is applied to the <footer> element. In order for their backgrounds to
extend the width of the page, they can’t be constrained by the pageWrapper div. So
the first step is removing that style.

1. In the styles.css file, delete the .pageWrapper style you just created.

You can leave the pageWrapper div in the HTML. It won’t hurt to have that little
bit of extra HTML, and you may want to use it later to hang styles on.

The page is back to its fully liquid form. Now you want to constrain just the nav,
banner text, footer text, and main content so they don’t get any wider than 1200
pixels. To do so, you need to dig into the HTML a bit and see what elements
you have to play with.

Look in the HTML for the index.html file and find the <nav> tag. Inside it, you’ll
see that the navigation buttons are created with a simple unordered list. Bingo.
You can set the maximum width of that list to 1200 pixels and center it on the
page, while leaving the <nav> tag (and its black background) to extend the entire
browser window width. Likewise, the text inside the banner—CSS: The Missing
Manual—is inside an <h1> tag. You can set its maximum width and margin as
well. In the footer, you’ve got a <p> tag you can control.

2. In the styles.css file, add one more style:

nav ul, header h1, footer p {
 max-width: 1200px;
 margin: 0 auto;
}

This group selector targets the navigation bar, banner, and footer text, but not
their containing elements. If you save the CSS file and preview index.html now,
you’ll see that the navigation, title, and footer text don’t get wider than 1200
pixels. However, the main content region still fills the entire browser window.
To fix that, you need to wrap the three columns in another div to create a group
that you can size and center.

Css: tHe MIssInG MAnUAL428

TUTORIAL:
MULTIPLE-
COLUMN
LAYOUTS

 NOTE  Another approach is to insert another <div> inside the <header> tag and wrapped around the
<nav> and <h1> tags, and another <div> inside the <footer> tag. You can let the <header> and <footer>
stay full width while constraining the width of those nested divs.

3. Open the index.html file in your text editor. Just before the comment that
introduces the first sidebar—<!-- first sidebar goes here -->—add <div
class="contentWrapper">:

<div class="contentWrapper">
<!-- first sidebar goes here -->

Now, you need to close that div.

4. Scroll down near the bottom of the HTML file. Between the closing </aside>
tag and opening <footer> tag, add a closing </div> so the HTML looks like
this:

</aside>
</div>
<footer>

Finally, you can add this new class name to the style you created in step 2.

5. In the styles.css file, add the new class to the group selector, like this:

nav ul, header h1, footer p, .contentWrapper {
 max-width: 1200px;
 margin: 0 auto;
}

The finished page should look like Figure 13-16. A completed version of this tutorial
is in the 13_finished folder.

FiGURE 13-16
Creating a multicolumn
design is no harder than
floating HTML tags: three
columns, three floated ele-
ments. You can add more
columns simply by adding
more HTML containers
(<div>, <article>,
<aside>, and so on) and
floating them to the left
and right. Just make sure
to remember to adjust
their widths so there’s
enough room for them to
fit side by side.

429

CHAPTER

14

When the World Wide Web Consortium introduced CSS Positioning, some
designers understandably thought they could make web pages look just
like print documents created in desktop publishing programs. With just a

couple of CSS properties, CSS Positioning lets you position an element in a precise
location on a page—say 100 pixels from the top of the page and 200 pixels from
the left edge. Pixel-accurate placement seemed to promise that, at last, you could
design a page simply by putting a photo here, a headline there, and so on.

Unfortunately, the level of control designers expected from CSS Positioning never
materialized. There have always been differences in how various browsers display
CSS-positioned elements. But, even more fundamentally, the Web doesn’t work
like a printed brochure, magazine, or book. Web pages are much more fluid than
printed pages. Once a magazine rolls off the press, readers can’t change the page
size or font size. About the only way they can change the look of the magazine is
to spill coffee on it.

Web visitors, on the other hand, can tinker with your handcrafted presentation.
They can increase their browser’s font size, potentially making text spill out of your
precisely placed and sized layout elements. In addition, since these days people
browse the Web using phones, tablets, and even televisions, you can’t predict the
dimensions and use them to determine the exact placement of onscreen elements.
But the news isn’t all bad: As long as you don’t try to dictate the exact width, height,
and position of every design element, you’ll find CSS’s positioning properties power-
ful and helpful. You can use these properties to make a text caption appear on top
of a photo, place a logo anywhere on the page, and much more.

 Positioning Elements
on a Web Page

Css: tHe MIssInG MAnUAL430

HOW
POSITIONING
PROPERTIES

WORK How Positioning Properties Work
The CSS position property lets you control how and where a web browser displays
particular elements. Using position, you can, for example, place a sidebar anywhere
you wish on a page or make sure a navigation bar at the top of the page stays in
place even when visitors scroll down the page. CSS offers four types of positioning:

• Absolute. Absolute positioning lets you determine an element’s location by
specifying a left, right, top, or bottom position in pixels, ems, or percentages.
(See Chapter 6 for more on picking between the different units of measure-
ment.) You can place a box 20 pixels from the top and 200 pixels from the left
edge of the page, as shown in Figure 14-1, middle. (More in a moment on how
you actually code these instructions.)

In addition, absolutely positioned elements are completely detached from
the flow of the page as determined by the HTML code. In other words, other
items on the page don’t even know the absolutely positioned element exists.
They can even disappear completely underneath absolutely positioned items,
if you’re not careful.

 NOTE  Don’t try to apply both the float property and any type of positioning other than static (explained
below) or relative to the same style. The float property and absolute or fixed positioning can’t work
together on the same element.

• Relative. A relatively positioned element is placed relative to its current position
in the HTML flow. So, for example, setting a top value of 20 pixels and left value
of 200 pixels on a relatively positioned headline moves that headline 20 pixels
down and 200 pixels from the left from wherever it would normally appear.

Unlike with absolute positioning, other page elements accommodate the old
HTML placement of a relatively positioned element. Accordingly, moving an
element with relative positioning leaves a “hole” where the element would have
been. Look at the dark strip in the bottom image of Figure 14-1. That strip is
where the relatively positioned box would have appeared, before it was given
orders to move. The main benefit of relative positioning isn’t to move an ele-
ment, but to set a new point of reference for absolutely positioned elements
that are nested inside it. (More on that brain-bending concept on page 435.)

• Fixed. A fixed element is locked into place on the screen. It does the same thing
as the fixed value for the background-attachment property (page 242). When
a visitor scrolls the page, fixed elements remain onscreen as paragraphs and
headlines, while photos disappear off the top of the browser window.

Fixed elements are a great way to create a fixed sidebar or lock a navigation
bar to the top or bottom of the browser window. You can read about how to
create this effect on page 446.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 431

HOW
POSITIONING
PROPERTIES

WORK

FiGURE 14-1
CSS offers several ways to affect
an element’s placement. The static
option, top, is the way browsers
have presented content since
the beginning of the Web. They
simply display the HTML in top-to-
bottom order. Absolute positioning
(middle) removes an element from
the page flow, placing it on top of
the page, sometimes overlapping
other content. Relative positioning
(bottom) places an element
relative to where it would normally
appear on the page and leaves a
hole (the dark background here)
where that element would have
been without relative positioning.

Css: tHe MIssInG MAnUAL432

HOW
POSITIONING
PROPERTIES

WORK
• Static positioning simply means the content follows the normal top-down flow

of HTML (see Figure 14-1, top). Why would you want to assign an element static
positioning? The short answer: You probably never will.

To change the positioning of any element, simply use the position property fol-
lowed by one of the four keywords: absolute, relative, fixed, static. To create
an absolutely positioned element, add this property to a style:

position: absolute;

Static is the normal positioning method, so unless you’re overriding a previously
created style that already has a position of absolute, relative, or fixed, you won’t
need to specify that. In addition, static elements don’t obey any of the positioning
values discussed next.

Setting a positioning value is usually just part of the battle. To actually place an ele-
ment somewhere on a page, you need to master the various positioning properties.

Setting Positioning Values
The display area of a web browser window—also called the viewport—has top, bot-
tom, left, and right edges. Each of the four edges has a corresponding CSS property:
top, bottom, left, and right. But you don’t need to specify values for all four edges.
Two are usually enough to place an item on the page. You can, if you want, place an
element 10 ems from the left edge of the page and 20 ems from the top.

To specify the distance from an edge of a page to the corresponding edge of the
element, use any of the valid CSS measurements—pixels, ems, percentages, and so
on. You can also use negative values for positioning, like left: –10px; to move an
element partly off the page (or off another element) for visual effect, as you’ll see
later in this chapter (page 444).

After the position property, you list one or more properties (top, bottom, left, or
right). If you want the element to take up less than the available width (to make a
thin sidebar, for example), then you can set the width property. To place a page’s
banner in an exact position from the top and left edges of the browser window,
create a style like this:

.banner {
 position: absolute;
 left: 100px;
 top: 50px;
 width: 760px;
}

This style places the banner as pictured in Figure 14-2, top.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 433

HOW
POSITIONING
PROPERTIES

WORK
 NOTE  If you don’t specify a vertical positioning value (for left or right), the browser places the element
in the same place on the page vertically as it would if there were no positioning. The same is true for horizontal
settings (top or bottom). In other words, if you simply set an element to a position of absolute but don’t
provide any placement values for top, right, bottom, or left, the browser simply keeps the element in the same
place on the page, but stacked above other content.

FiGURE 14-2
One useful aspect of absolute
positioning is the ability to
place an item relative to the
right edge of the browser
window (middle). Even when
the width of the browser
changes, the distance from
the right edge of the window
to the right edge of the
positioned element stays the
same (bottom).

Here’s another example: placing an element so it always remains a fixed distance
from the right side of the browser. When you use the right property, the browser
measures the distance from the right edge of the browser window to the right edge
of the element (Figure 14-2, middle). To position the banner 100 pixels from the
right edge of the window, you’d create the same style as above, but simply replace
left with right:

Css: tHe MIssInG MAnUAL434

HOW
POSITIONING
PROPERTIES

WORK
.banner {
 position: absolute;
 right: 100px;
 top: 50px;
 width: 760px;
}

Since the position is calculated based on the right edge of the browser window,
adjusting the size of the window automatically repositions the banner, as you can
see in Figure 14-2, bottom. Although the banner moves, the distance from the right
edge of the element to the right edge of the browser window remains the same.

You can even specify both left and right position properties as well as both top and
bottom, and let the browser determine the width and height of the element. Say you
want a central block of text positioned 10 percent from the top of the window and 10
pixels from both the left and right edges of the window. To position the block, you
can use an absolutely positioned style that sets the top, left, and right properties
to 10%. In a browser window, the left edge of the box starts from the left edge of
the window to 10 percent of the window’s width, and the right edge extends to 10
percent from the right edge (Figure 14-3). The exact width of the box, then, depends
on how wide the browser window is. A wider window makes a wider box; a thinner
window, a thinner box. The left and right positions, however, are always 10 percent
of the browser window’s width.

FiGURE 14-3
You can let a browser
figure out an element’s
width simply by setting
both the left and right
values of an absolutely
positioned element.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 435

HOW
POSITIONING
PROPERTIES

WORK
The width and height properties, which you learned about in Chapter 7, work ex-
actly the same way for positioned elements. To place a 50×50-pixel gray box in the
top-right corner of the browser window, create this style:

.box {
 position: absolute;
 right: 0;
 top: 0;

 width: 50px;
 height: 50px;
 background-color: #333;
}

The same caveat mentioned on page 206 applies here as well: Be careful with set-
ting heights on elements. Unless you’re styling a graphic with a set height, you can’t
be sure how tall any given element will be on a page. You might define a sidebar
to be 200 pixels tall, but if you end up adding enough words and pictures to make
the sidebar taller than 200 pixels, then you end up with content spilling out of the
sidebar. Even if you’re sure the content fits, a visitor can always pump up the size
of her browser’s font, creating text that’s large enough to spill out of the box. Fur-
thermore, when you specify a width and height in a style and the contents inside
the styled element are wider or taller, strange things can happen.

When Absolute Positioning Is Relative
So far, this chapter has talked about positioning an element in an exact location in
the browser window. However, absolute positioning doesn’t always work that way.
In fact, an absolutely positioned element is actually placed relative to the boundaries
of its closest positioned ancestor. Simply put, if you’ve already created an element
with absolute positioning (say a <div> tag that appears 100 pixels down from the top
of the browser window), then any absolutely positioned elements with HTML inside
that <div> tag are positioned relative to the div’s top, bottom, left, and right edges.

 NOTE  If all this talk of parents and ancestors doesn’t ring a bell, then turn to page 50 for a refresher.

In the top image of Figure 14-4, the light gray box is absolutely positioned 5 ems
from the top and left edges of the browser window.

There’s also a <div> tag nested inside that box. Applying absolute positioning to that
div positions it relative to its absolutely positioned parent. Setting a bottom position
of 0 doesn’t put the box at the bottom of the screen; it places the box at the bottom
of its parent. Likewise, a right position for that nested div refers to the right of the
edge of its parent (Figure 14-4, bottom).

Css: tHe MIssInG MAnUAL436

HOW
POSITIONING
PROPERTIES

WORK

FiGURE 14-4
You can place an element relative
to the browser window (top) or
relative to a positioned ancestor
(bottom).

Whenever you use absolute positioning to place an element on the page, the exact
position depends upon the positioning of any other tags the styled element is nested
in. Here are the rules in a nutshell:

• A tag is positioned relative to the browser window if it has an absolute posi-
tion and it’s not inside any other tag that has either absolute, relative, or fixed
positioning applied to it.

• A tag is positioned relative to the edges of another element if it’s inside
another tag with absolute, relative, or fixed positioning.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 437

HOW
POSITIONING
PROPERTIES

WORK
When (and Where) to Use Relative Positioning
You get one big benefit from placing an element relative to another tag: If that tag
moves, the positioned element moves along with it. Say you place an image inside
an <h1> tag, and you want the image to appear on the right edge of that <h1> tag.
If you simply position the image in an exact spot in the browser window on the left
edge of the <h1> tag, you’re taking your chances. If the <h1> moves, the absolutely
positioned image stays glued to its assigned spot. Instead, what you want to do is
position the image relative to the <h1> tag, so that when the headline moves, the
image moves with it (bottom two images in Figure 14-5).

 NOTE  You can use the background-image property to place an image into the background of an <h1>
tag. But if the graphic is taller than the <h1> tag, or you want the graphic to appear outside the boundaries of
the headline (see the example third from the top in Figure 14-5), then embed the image with the tag
and use the relative positioning technique described in this section.

You could use the position property’s relative value to place the image, but that
has drawbacks, too. When you set an element’s position to relative and then place
it—maybe using the left and top properties—the element moves the set amount
from where it would normally appear in the flow of the HTML. In other words, it
moves relative to its current position. In the process, it leaves a big hole where it
would’ve been if you hadn’t positioned it at all (Figure 14-1, bottom). Usually, that’s
not what you want.

A better way to use relative positioning is to create a new positioning context for
nested tags. For instance, the <h1> tag in the example at the beginning of this sec-
tion is an ancestor of the tag inside it. By setting the position of the <h1> tag
to relative, any absolute positioning you apply to the tag is relative to the
four edges of the <h1> tag, not the browser window. Here’s what the CSS looks like:

h1 { position: relative; }
h1 img {
 position: absolute;
 top: 0;
 right: 0;
}

Setting the image’s top and right properties to 0 places the image in the upper-right
corner of the headline—not the browser window.

In CSS, the term relative doesn’t exactly mean the same thing it does in the real
world. After all, if you want to place the tag relative to the <h1> tag, your first
instinct may be to set the image’s position to relative. In fact, the item that you want
to position—the image—gets an absolute position, while the element you want to
position the element relative to—the headline—gets a setting of relative. Think of
the relative value as meaning “relative to me.” When you apply relative positioning
to a tag, it means “all positioned elements inside of me should be positioned rela-
tive to my location.”

Css: tHe MIssInG MAnUAL438

HOW
POSITIONING
PROPERTIES

WORK

FiGURE 14-5
Top: A graphical button (circled)
is placed inside an <h1> tag.
Second from top: Adding absolute
positioning to the button—
right: -35px; top:
-35px;—moves it outside of
the <h1> tag area and places
it in the top-right corner of the
browser window (circled). (In
fact, it’s placed a little outside
of the browser window, thanks
to the negative positioning
values.) Third from top: Adding
position: relative to the
<h1> creates a new positioning
context for the tag. The
same top and right values move
the tag to the <h1> tag’s
top-right corner. Bottom: When
you move the heading down the
page, the graphic goes along for
the ride.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 439

HOW
POSITIONING
PROPERTIES

WORK
 NOTE  Because you’ll often use relative positioning merely to set up a new positioning context for nested
tags, you don’t even need to use the left, top, bottom, or right settings with it. The <h1> tag has position:
relative, but no left, top, right, or bottom values.

Stacking Elements
As you can see in Figure 14-6, absolutely positioned elements sit “above” your web
page and can even reside on top of (or underneath) other positioned elements. This
stacking of elements takes place on what’s called the z-index. If you’re familiar with
the concept of layers in Adobe Photoshop, Sketch, or Adobe Illustrator, then you
know how the z-index works: It represents the order in which positioned elements
are stacked on top of the page.

To put it another way, think of a web page as a piece of paper and an absolutely
positioned element as a sticky note. Whenever you add an absolutely positioned
element to a page, it’s like slapping a sticky note on it. Of course, when you add
a sticky note, you run the risk of covering up anything written on the page below.

Normally, the stacking order of positioned elements follows their order in the page’s
HTML code. On a page with two absolutely positioned <div> tags, the <div> tag that
comes second in the HTML appears above the other <div>. But you can control the
order in which positioned elements stack up by using the CSS z-index property.
The property gets a numeric value, like this:

z-index: 3;

The larger the value, the closer to the top of the stack an element appears. Say you
have three absolutely positioned images, and parts of each image overlap. The one
with the larger z-index appears on top of the others (see Figure 14-6, top). When
you change the z-index of one or more images, you change their stacking order
(Figure 14-6, middle).

You can even use negative z-index numbers, which can come in handy when you want
to position an element underneath its parent or any of its ancestors. For example, in
the top image in Figure 14-6, the <div> tag is relatively positioned. If you wanted to
place one of the images behind the <div>, you could use a negative z-index value:

z-index: -1;

 NOTE  It’s perfectly OK to have gaps in z-index values. In other words, 10, 20, 30 does the exact
same thing as 1, 2, 3. In fact, spreading out the numerical values gives you room to insert more items into
the stack later. And, when you want to make sure nothing ever appears on top of a positioned element, give it
a really large z-index, like this: z-index: 10000;. But don’t get too carried away; some browsers can only
handle a maximum z-index of 2147483647.

Hiding Parts of a Page
Another CSS property often used with absolutely positioned elements is visibility,
which lets you hide part of a page (or show a hidden part). Say you want a label to
pop into view over an image when a visitor mouses over it. You make the caption

Css: tHe MIssInG MAnUAL440

HOW
POSITIONING
PROPERTIES

WORK
invisible when the page first loads (visibility: hidden), and switch to visible
(visibility: visible) when the mouse moves over it.

FiGURE 14-6
When you use z-index to control how posi-
tioned elements are stacked, parent elements
define the stacking order for their children. In
the top two examples, the text box isn’t po-
sitioned, so it shares the z-index of the page
itself, which has a z-index value of 0. So the
buttons in those two text boxes are stacked
relative to and above the page. But the text
box in the bottom image has an absolute
position and a z-index of 1000. This containing
div becomes the starting point for stacking
the images inside it. So even though the div’s
z-index is 1000, its nested children (with lower
z-index values) appear on top of it, while the
text box itself sits above the page.

The visibility property’s hidden value is similar to the display property’s none value,
but there’s a fundamental difference. When you set an element’s display property
to none, it literally disappears from the page without a trace. However, setting the
visibility property to hidden prevents the browser from displaying the element’s
contents, but leaves an empty hole where the element would have been. When ap-
plied to absolutely positioned elements that are already removed from the flow of
the page, visibility: hidden and display: none behave identically. Most develop-
ers simply use the display: none method and skip the visibility property entirely.

There’s yet another way to hide an element—set its opacity to 0 like this:

opacity: 0;

To make it reappear, you can set its opacity back to 1:

opacity: 1;

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 441

HOW
POSITIONING
PROPERTIES

WORK
The benefit of using opacity is that it’s one of the CSS properties that a browser can
animate. This means you can use the CSS transitions you learned about in Chapter
10 to animate changes in opacity. For example, you can make an element appear to
fade into view by changing its opacity from 0 to 1 and adding a transition.

The most common way to switch an element from hidden to displayed and back
again is with JavaScript. But you don’t have to learn JavaScript programming to
use the visibility property (or, for that matter, the display property). You can
use the :hover pseudo-class (see page 55) to make an invisible element visible. For
example, say you wanted to place a caption over an image, but you only want that
caption to show up when a visitor mouses over the image (see Figure 14-7). You
could do that following these steps:

1. Create the HTML for the image and caption.

One way to do this would be to use the HTML <figure> and <figcaption>
tags, like this:

<figure class="hat">

 <figcaption>A picture of a hat</figcaption>
</figure>

Here you’re applying a class—hat—to the <figure> tag so you can style just
that one figure.

2. Position the caption.

To place the caption on top of the image, you use absolute positioning. To place
the caption in relation to the img, you should set its parent (the <figure> tag)
to relative, and also give the parent a set width that matches the dimensions
of the photo.

.hat {
 position: relative;
 width: 100px;
 height: 100px;
}

.hat figcaption {
 position: absolute;
 bottom: 0
 left: 0;
 right: 0;
 background-color: white;
}

The caption is placed at the bottom of the figure (bottom: 0). With its left and
right values set to 0, it will span the entire width of the figure.

Css: tHe MIssInG MAnUAL442

HOW
POSITIONING
PROPERTIES

WORK
3. Hide the caption.

With the current code, a browser would display the caption on top of the im-
age, but you want that to happen only when someone’s mouse hovers over the
image. To hide it, add either visibility: hidden; or display: none; to the
.hat figcaption style.

.hat figcaption {
 display: none;

 position: absolute;
 bottom: 0
 left: 0;
 right: 0;
 background-color: white;
}

4. Make the caption appear when a visitor mouses over the image.

To do this, you’ll employ a little trick with the :hover pseudo-class (page 55).
You want to make the caption visible when the visitor mouses over the image.
Unfortunately, there’s no way to create a style that affects the caption when the
mouse moves over the image. However, since the caption is inside the <figure>
tag, you can craft a descendant selector that affects the caption when the
mouse moves over the figure:

.hat:hover figcaption {
 display: block;
}

This descendant selector basically says “target any <figcaption> tag that’s
inside an element with the class of hat, but only when the mouse is over that
element.” This selector only works because the figcaption tag is a descendant
of the element being hovered over.

You can elaborate on this idea to create CSS-based pop-up tooltips. For a basic
CSS method of adding pop-up tooltips—additional information that appears when
someone mouses over a link—check out www.menucool.com/tooltip/css-tooltip. You
also have many JavaScript options to choose from. For example, the jQuery qTip2
plug-in is a full-featured and easy-to-use JavaScript tooltip based on the jQuery
framework: http://craigsworks.com/projects/qtip2/.

As mentioned earlier, you can also use the opacity setting to hide and show an ele-
ment, as well as use a transition to animate this effect. To do that, you can change
the previous styles to look like this:

.hat figcaption {
 opacity: 0;
 transition: opacity .5s ease-in;
 position: absolute;
 bottom: 0
 left: 0;

http://www.menucool.com/tooltip/css-tooltip
http://craigsworks.com/projects/qtip2/

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 443

POWERFUL
POSITIONING
STRATEGIES

 right: 0;
 background-color: white;
}
.hat:hover figcaption {
 opacity: 1;
}

You’ll see this in action in the tutorial on page 454. Remember, however, that transi-
tions don’t work in Internet Explorer 9 or earlier. That’s OK in this case; your visitors
will still see the caption appear, it just won’t fade in and out of view smoothly.

FiGURE 14-7
Now you don’t see it, now
you do. You can place an
absolutely positioned
element over another
element, but hide it (left)
until a visitor mouses
over a parent element
(right).

Powerful Positioning Strategies
As explained at the beginning of this chapter, you can run into trouble when you
try to use CSS positioning to place every element on a page. Because it’s impos-
sible to predict all possible combinations of browsers and settings your visitors will
use, CSS-controlled positioning works best as a tactical weapon. Use it sparingly to
provide exact placement for specific elements.

In this section, you’ll learn how to use absolute positioning to add small but visually
important details to your page design, how to absolutely position certain layout
elements, and how to cement important page elements in place while the rest of
the content scrolls.

Positioning Within an Element
One of the most effective ways to use positioning is to place small items relative
to other elements on a page. Absolute positioning can simulate the kind of right
alignment you get with floats. In the first example in Figure 14-8, the date on the
top headline is a bit overbearing, but with CSS you can reformat it and move it to
the right edge of the bottom headline.

Css: tHe MIssInG MAnUAL444

POWERFUL
POSITIONING
STRATEGIES

In order to style the date separately from the rest of the headline, you need to
enclose the date in an HTML tag. The tag is a popular choice for applying a
class to a chunk of inline text to style it independently from the rest of a paragraph.

<h1>Nov. 10, 2006 CosmoFarmer Bought By Google</h1>

Now it’s a matter of creating the styles. First, you need to give the containing ele-
ment—in this example, the <h1> tag—a relative position value. Then, apply an abso-
lute position to the item you wish to place—the date. Here’s the CSS for the bottom
image in #1 of Figure 14-8:

h1 {
 position: relative;
 border-bottom: 1px dashed #999999;
}

h1 .date {
 position: absolute;
 bottom: 0;
 right: 0;
 font-size: .5em;
 background-color: #E9E9E9;
 color: black;
 padding: 2px 7px 0 7px;
}

Some of the properties listed above, like border-bottom, are just for looks. The crucial
properties are bolded: position, bottom, and right. Once you give the headline a
relative position, you can position the containing the date in the lower-right
corner of the headline by setting both the bottom and right properties to 0.

Breaking an Element Out of the Box
You can also use positioning to make an item appear to poke out of another ele-
ment. In the second example in Figure 14-8, the top image shows a headline with a
graphic. That is, the tag is placed inside the <h1> tag as part of the headline.
Using absolute positioning and negative top and left property values moves the
image to the headline’s left and pushes it out beyond the top and left edges. Here’s
the CSS that produces that example:

h1 {
 position: relative;
 margin-top: 35px;
 padding-left: 55px;
 border-bottom: 1px dashed #999999;
}

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 445

POWERFUL
POSITIONING
STRATEGIES

h1 img {
 position: absolute;
 top: -30px;
 left: -30px;
}

FiGURE 14-8
Absolute positioning is perfect for simple
design details like placing a date in the
lower-right corner of a headline (top),
punching an image out of its containing
block (middle), or placing a caption directly
on top of a photo (bottom). (You’ll learn
the caption trick in the tutorial on page
452.)

The basic concept is the same as the previous example, but with a few additions.
First, the image’s top and left values are negative, so the graphic actually appears
30 pixels above the top of the headline and 30 pixels to the left of the headline’s
left edge. Be careful when you use negative values. They can position an element
partially (or entirely) off a page or make the element cover other content on the
page. To prevent a negatively positioned element from sticking out of the browser
window, add enough margin or padding to either the body element or the enclosing,
relatively positioned tag—the <h1> tag in this example. The extra margin provides
enough space for the protruding image. In this case, to prevent the image from
overlapping any content above the headline, add a significant top margin. The left
padding of 55 pixels also moves the text of the headline out from under the abso-
lutely positioned image.

Css: tHe MIssInG MAnUAL446

POWERFUL
POSITIONING
STRATEGIES

Creating CSS-Style Frames Using Fixed Positioning
Since most web pages are longer than one screen, you may want to keep some
page elements constantly visible—like a navigation panel, search box, or your site
logo. HTML frames were once the only way to keep important fixtures handy as
other content scrolled out of sight. But HTML frames have major drawbacks. Since
each frame contains a separate web page file, you have to create several HTML
files to make one complete web page (called a frameset). Not only are framesets
time-consuming for the designer, they also make your site hard for search engines
to search. And HTML framesets can also wreak havoc for visitors who use screen
readers due to vision problems or those who want to print pages from your site.

Nevertheless, the idea behind frames is still useful, so CSS offers a positioning value
that lets you achieve the visual appearance of frames with less work. You can see a
page created using the fixed value in Figure 14-9.

FiGURE 14-9
Revisit the Web of yesteryear, but with
a lot less code. Using the position
property’s fixed value, you can emulate
the look of HTML frames by fixing some
elements in place but still letting visitors
scroll through the content of a very long
web page. The scrollbar (circled) moves
only the large text area; the top and bot-
tom banners and the sidebar stay fixed.

Fixed positioning works much like absolute positioning in that you use the left, top,
right, or bottom properties to place the element. Also like absolutely positioned
elements, fixed positioning removes an element from the flow of the HTML. It floats
above other parts of the page, which simply ignore it.

Here’s how you can build the kind of page pictured in Figure 14-9, which has a fixed
banner, sidebar, and footer, and a scrollable main content area:

1. Add <div> tags with class (or ID) attributes for each section of the page.

You can have four main <div> tags with classes (or IDs) like banner, sidebar,
main, and footer (Figure 14-10). The order in which you place these tags in the
HTML doesn’t matter. Like absolute positioning, fixed positioning lets you place
elements on a page regardless of their HTML order.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 447

POWERFUL
POSITIONING
STRATEGIES

FiGURE 14-10
With fixed positioning, you can lock any number of page elements
in place, so they’re always in view when your visitor scrolls. In this
example, the header (1), sidebar (3), and footer (4) are fixed, while the
content in the main area of the page (2) is free to scroll.

2. Add your material to each div.

In general, use the fixed divs for stuff a visitor should always have access to in
the areas you wish to be locked in place. In this example, the banner, sidebar,
and footer contain the site logo, global site navigation, and copyright notices.

The main content goes into the remaining <div> tag. Don’t add too much
information to a fixed div, however. If a fixed sidebar is taller than the visitor’s
browser window, he won’t be able to see the entire sidebar. And since fixed
elements don’t scroll, there’ll be no way (short of buying a bigger monitor) for
that visitor to see the sidebar content that doesn’t fit in his browser window.

3. Create styles for all fixed elements.

The left, right, top, and bottom values are relative to the browser window, so
just determine where on the screen you’d like them to go and plug in the values.
Specify a width for the elements as well.

 NOTE  Unlike absolute positioning, fixed positioning is always relative to the browser window, even when
an element with fixed positioning is placed inside another tag with relative or absolute positioning.

The styles to position the elements numbered 1, 3, and 4 in Figure 14-10 look
like this:

.banner {
 position: fixed;
 left: 0;
 right: 0;
 top: 0;
}

Css: tHe MIssInG MAnUAL448

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

.sidebar {
 position: fixed;
 left: 0;
 top: 110px;
 width: 175px;
}
.footer {
 position: fixed;
 bottom: 0;
 left: 0;
 right: 0;
}

4. Create the style for the scrollable content area.

Since fixed-position elements are removed from the flow of the HTML, other
tags on the page have no idea the fixed-position elements are there. So, the
<div> tag with the page’s main content, for example, appears underneath the
fixed items. The main task for this style is to use margins to move the contents
clear of those areas.

.main {
 margin-left: 190px;
 margin-top: 110px;
}

Fixed positioning is well supported in browsers: Internet Explorer 8 and up, as
well as all other major browsers (including the latest iOS and Android mobile
browsers) support fixed positioning.

Tutorial: Positioning Page Elements
This tutorial lets you explore a few different ways to use absolute positioning, like cre-
ating a three-column layout, positioning items within a banner, and adding captions
on top of photos. Unlike the previous chapter, where you wrapped chunks of HTML
in <div> tags and added class names to them, in these exercises, most of the HTML
work has already been done for you. You can focus on honing your new CSS skills.

To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e.

Enhancing a Page Banner
First, you’ll make some small but visually important changes to a page banner. You’ll
create styles that refer to HTML tags with classes applied to them. (Again, that part
has been taken care of for you.)

https://github.com/sawmac/css_mm_4e

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 449

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

1. Launch a web browser and open the file 14→index.html.

On this web page (Figure 14-11), start by repositioning several parts of the banner.

FiGURE 14-11
This page has a lot of
stuff—logo graphic,
banner, nav bar, and a
gallery of images and
captions. But there’s not
much visual structure. Just
normal, static HTML with
everything running from
top to bottom of the page.
You can make it more
readable and interest-
ing with some absolute
positioning.

2. Open the styles.css file in a text editor.

This file already includes some basic formatting. You’ll add the styles for this
tutorial to the bottom.

You’ll start by moving the small hat image to the left side of the banner. To help
break up the boxy look that’s typical of CSS designs, break this graphic out of
the banner’s borders, so it looks like a slapped-on sticker.

3. At the bottom of styles.css, add this new style:

header .badge {
 position: absolute;
 top: -20px;
 left: -90px;
}

Css: tHe MIssInG MAnUAL450

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

The graphic is inside of an HTML <header> tag, and the graphic itself has a class
of badge. This style positions the top-left corner of the graphic 90 pixels to the
left and 20 pixels above the top of the page.

Preview the page now, and you’ll see a couple of problems. First, the graphic
hangs off the edge of the page, but you really want it to hang off the edge of
the banner area. You’ll tackle that problem now.

4. Add this style above the one you just created:

header {
 position: relative;
}

It’s good practice to place the CSS code for styles that control a general sec-
tion of a page (like this header style) above the code for styles that format just
parts of that section (like the style you created in step 3). Also, grouping styles
for related sections makes it easier to find styles when you need to analyze or
edit a page’s CSS. In this case, the header style goes first because it applies to
a large chunk of HTML. But you should keep the header .badge style near it
as you add more styles to the page. (You can read more about techniques for
organizing your CSS on page 570.)

The header style creates a new positioning context for any nested tags. In other
words, the relative setting makes any other positioned elements inside this tag
place themselves relative to the edges of the banner. This change in positioning
shifts the placement of the style you created in step 3. Now it’s 20 pixels above
and 90 pixels to the left of the banner box. The badge still hangs off the page
just a little bit, so you’ll add some margin to the header to move it down a bit.

5. Edit the header style by adding the two bolded lines below:

header {
 position: relative;
 margin-top: 20px;
 padding: 20px 0 0 10px;
}

This margin adds enough space above the header to move it and the graphic
down. In addition, the padding adds space inside the header so the headline
(and the soon to be repositioned nav bar) don’t feel so cramped. But now you
have another problem—“The Hat Gallery” headline is partially hidden underneath
the badge. Overlapping elements is one of the hazards of absolute position-
ing. In this case, you can fix the problem by changing the badge’s z-index and
moving it behind the text.

6. Add z-index: -1 to the header .badge style:

header .badge {
 position: absolute;
 top: -20px;

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 451

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

 left: -90px;
 z-index: -1;
}

The -1 value places the absolutely positioned element behind its parent—in this
case, behind the text (see Figure 14-12). Next, you’ll use absolute positioning to
move the navigation bar to the right side of the header.

7. Add another style after the header .badge style.

header nav {
 position: absolute;
 right: 0;
 top: 45px;
}

Although you could position the navigation bar by floating the <h1> tag, in this
case, it’s a lot easier to use absolute positioning. Here, you’ve created a tag
style for the HTML <nav> tag, when it’s also inside a <header> tag. Remember,
in step 4, you gave the header a relative position, which means any tags inside
it—like the <nav> tag—are positioned in relation to it, so the right value of 0 in
this style places the right edge of the navigation bar on the right edge of the
banner (see Figure 14-12).

FiGURE 14-12
Absolute positioning is a
big help in placing small
elements like the hat
graphic and the navigation
bar. Unlike floats, the exact
position of the image and
the navigation bar in the
HTML code isn’t important,
giving you a lot of layout
flexibility. You can achieve
the same effect without
absolute positioning, but it
would be harder.

Css: tHe MIssInG MAnUAL452

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

Placing Captions on the Photos
In Chapter 8, you learned one way to add a caption to a photo (page 264). In the
examples from that chapter, the captions sat underneath the photos, which is what
you want most of the time. But someday, you may want to add a caption directly
on a photo, like the subtitles TV news shows love to display across the lower third
of the screen.

1. Open index.html in your text editor.

There is a gallery of photos on this page. The HTML for one image looks like this:

<figure>
 <img src="images/file00079963469.jpg" width="300" height="210"
alt="Panama">
 <figcaption>Nam libero tempore. Soluta nobis est eli-
gendi
 optio cumque nihil impedit quo minus id quod maxime placeat facere pos-
simus,
 omnis voluptas assumenda est, omnis dolor repellendus
 </figcaption>
</figure>

This example uses the HTML <figure> and <figcaption> tags. The <figure>
tag is normally a block-level tag, but since you want the images to sit side by
side, start by changing them to inline elements.

2. Add another style below the header nav style you added earlier.

.gallery figure {
 display: inline-block;
 width: 300px;
 height: 210px;
 margin: 15px;
 position: relative;
}

This HTML creates a descendant selector. The <figure> tags are all grouped
inside a <div> tag with the class of gallery applied to it. You’re using a de-
scendant selector since you may add other figures to this page that aren’t part
of the gallery and should be formatted differently. This descendant selector
targets just the <figure> tags you’re after at the moment.

By making the figure tag an inline-block element, the figures can all sit side
by side. The width and height values match the width and height of the images.
In other words, you want the <figure> tag to only be large enough to hold
the images. The margin value adds a little space around the figures so they
don’t bump into each. Finally, the position: relative declaration sets a new
positioning context, so you can position each caption in relation to its figure.

Now it’s time to position the captions.

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 453

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

3. Add one more style below the one you just added:

.gallery figcaption {
 position: absolute;
 top: 15%;
 bottom: 15%;
 left: 0;
 right: 0;

 background-color: rgba(153,153,153,.9);
}

The <figcaption> tags are absolutely positioned using all four positioning
quadrants: top, bottom, left, and right. Basically, the captions will span the
entire figure, but be placed a bit below the top and above the bottom (in fact,
15 percent below and above). Using all four settings means that you don’t need
to worry about setting a width or a height for the captions; instead, you leave
it up to the browser.

Finally, the background-color declaration places a semi-transparent background
atop each figure, which means you can see the image through the caption’s
background.

Now for some simple text enhancements.

4. Edit the style you just created by adding the bolded code below:

.gallery figcaption {
 position: absolute;
 top: 15%;
 bottom: 15%;
 left: 0;
 right: 0;
 background-color: rgba(153,153,153,.9);
 padding: 20px;
 font-family: Titillium, Arial, sans-serif;
 font-weight: 400;
 font-size: .9em;
 color: white;
}

The padding just provides a little breathing room for the text, while the other
properties set a font, size, and color.

If you preview the page now, you’ll see that the captions appear on top of all
of the images. Next, you’ll change the style so the captions appear only when
a visitor mouses over an image. Start by hiding the captions.

Css: tHe MIssInG MAnUAL454

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

5. Add opacity: 0; to the style:

.gallery figcaption {
 position: absolute;
 top: 15%;
 bottom: 15%;
 left: 0;
 right: 0;

 background-color: rgb(153,153,153);
 background-color: rgba(153,153,153,.9);
 padding: 20px;
 font-family: Titillium, Arial, sans-serif;
 font-size: .9em;
 font-weight: 400;
 color: white;
 opacity: 0;
}

Setting the opacity to 0 makes the caption invisible. You may also use display:
none; or visibility: hidden; to hide the captions, but this way you can ani-
mate the opacity value by using a CSS transition—in fact, you’ll add that effect
in a moment. But first, you need to add a :hover state so when a visitor hovers
over the image, its caption appears.

6. Add the following to the style sheet:

.gallery figure:hover figcaption {
 opacity: 1;
}

This tricky bit of CSS can be translated to “when the mouse moves over the fig-
ure element (figure:hover) inside an element with the class gallery (.gallery),
set the opacity of the caption to 1.” In other words, moving the mouse over the
<figure> tag makes the descendant <figcaption> tag visible. Save the page
and try it out. When you mouse over the figure, the caption should appear. We
can animate this effect by adding a transition to the .gallery figcaption style.

7. Edit the .gallery figcaption style so that it looks like this (additions are
in bold):

figcaption {
 position: absolute;
 top: 15%;
 bottom: 15%;
 left: 0;
 right: 0;
 background-color: rgb(153,153,153);
 background-color: rgba(153,153,153,.9);
 padding: 20px;

CHAPteR 14: POSITIONING ELEMENTS ON A WEB PAGE 455

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

 font-family: Titillium, Arial, sans-serif;
 font-size: .9em;
 font-weight: 400;
 color: white;
 opacity: 0;
 transition: opacity .75s ease-out;
}

You’ve added the transition property. While Internet Explorer 9 and earlier
don’t understand transitions, that’s OK; the captions will still appear in those
browsers. They’ll just appear and disappear instantly instead of fading in and
out smoothly.

Finally, you’ll make the copyright notice stick to the bottom of the browser
window, using fixed positioning.

8. Add one last style to the style sheet:

footer {
 position: fixed;
 bottom: 0;
 left: 0;
 right: 0;
 padding: 10px;
 background-color: black;
 color: white;
}

As you read on page 430, fixed positioning lets you “stick” an element to a
specific spot in the browser window. In this case, it’s fixed to the bottom of
the page (bottom: 0) and extends the entire width of the page (thanks to the
left: 0 and right: 0 declarations). The last three declarations simply add a
bit of space around the footer, giving it a black background and white text.

9. Save the styles.css file, and preview the index.html file.

The final page should look like Figure 14-13. You’ll find a completed version of
this tutorial in the 14_finished folder.

Css: tHe MIssInG MAnUAL456

TUTORIAL:
POSITIONING

PAGE
ELEMENTS

FiGURE 14-13
With some clever CSS, you
can make captions fade
into view when mousing
over an image (circled).

457

CHAPTER

15

Web designers have always had to contend with designing for various screen
sizes—from 760-pixel-wide laptops to gargantuan widescreen displays.
However, the rise of smartphones and tablets has now made it even more

imperative to design for a wide range of screen widths and heights. Some companies
go so far as to create separate, mobile-only websites (see the top images in Figure
15-1). However, unless you have the time, money, and technical expertise to develop
two sites and program your web server to provide the proper site to the proper
device, a mobile-only website is probably out of reach.

Fortunately, there’s another, simpler approach that lets you build a single site that
adapts to different device widths (see bottom images in Figure 15-1). Called respon-
sive web design, this technique uses several different tricks to make a page change
its layout based on the width of the browser screen. On a smartphone, for example,
you can lay out a page in a single, easy-to-read column to fit the narrow width of
the screen (bottom-left image), while maintaining a multicolumn layout on wider
monitors (bottom-right image).

Responsive Web Design Basics
It’s very hard to read a four-column web page on a phone whose screen is just 320
pixels wide. It’s just as difficult to read a single column of text that’s spread across
the 2560 pixels of a large desktop monitor. Responsive web design, a term coined
by web design pioneer Ethan Marcotte, is an attempt to solve that problem. Re-
sponsive web design, or RWD for short, lets you change the entire layout of a page
based on browser window width (among other factors), so you can create the most

 Responsive Web Design

Css: tHe MIssInG MAnUAL458

RESPONSIVE
WEB DESIGN

BASICS
readable presentation for each device, without having to create multiple versions
of the same website. RWD is not a single technology or technique. Instead, it brings
together several CSS and HTML methods to create web pages whose layouts adapt
to different screens.

FiGURE 15-1
Many large companies, like
Amazon and Target, create
mobile versions of their
sites, optimized for display
on handheld devices like
the iPhone (top). Fortu-
nately, using responsive
web design techniques,
you can craft one HTML file
that displays differently
on different-width devices
(bottom). On a phone, the
page may appear as one
long column, while in a
desktop browser, the same
page takes advantage of
the wider screen to include
multiple columns and
larger photos.

 NOTE  Ethan Marcotte lays out his steps for RWD in his book Responsive Web Design (A Book Apart). (There’s
nothing better than a straightforward title.) You can also read Ethan’s original article about RWD at www.alistapart.
com/articles/responsive-web-design.

RWD combines three main ideas: flexible grids for layout, flexible media for images
and video, and CSS media queries to create different styles for different screen
widths. With flexible grids, you skip fixed-width layouts. Since smartphone screens
come in a wide variety of widths, it makes no sense to create a page at a fixed width;

http://www.alistapart.com/articles/responsive-web-design
http://www.alistapart.com/articles/responsive-web-design

CHAPteR 15: RESPONSIVE WEB DESIGN 459

SETTING UP A
WEB PAGE FOR

RWD
instead, you want the page to grow or shrink to fit the particular device (this is the
liquid layout concept discussed on page 386). Creating flexible media lets your im-
ages and videos scale to fit the appropriate screen real estate…big photos for big
monitors, smaller photos for small screens, and so on.

Finally, media queries are a CSS technology that lets you send different styles to
a browser based on current conditions in the browser. For example, you can send
one set of styles when the screen is less than 480 pixels wide and another set when
the window is more than 760 pixels wide. You’re not just limited to width, either;
you can craft styles that only apply to tablets in landscape view or to devices with
high-pixel density (like the Retina display on iPhone and iPads).

Setting Up a Web Page for RWD
If you have a smartphone, like an iPhone or Android phone, take a look at it. Open a
web browser and visit www.nytimes.com. You’ll get shuffled off to a version of the
site specifically aimed at mobile devices: mobile.nytimes.com. However, there’s a
View Desktop Version link that leads to the actual site you’d see in a desktop browser.
You should see (unless the New York Times has made its site responsive since this
writing) something like Figure 15-2. It’s a large, multicolumn design smashed into
the tiny screen space of the phone. Because phone manufacturers know that most
websites are built for desktop screens, they’ve made their browsers behave a little
differently than what you may be used to. Mobile browsers don’t just display the
page at 100 percent; if they did, then a fixed-width, 960-pixel-wide page would
not fit the screen, and you’d see only one portion of the page at a time. You’d then
have to swipe around to see all of the page. Instead, phone browsers zoom out to fit
the page on screen. The exact amount they zoom out varies from phone to phone.
Safari on the iPhone, for example, acts like the screen is really 980 pixels wide, so
it shrinks the page down to fit within 980 pixels.

In general, this behavior of mobile browsers works well for the majority of sites, but
not so well with a responsive web design. Because responsive sites are intended to
look good on phones, you don’t want the display to zoom out, which would make
the text too small to read. Fortunately, there’s a simple way to override this behavior
of mobile browsers. Simply add the following code to the <head> section of your
web page (directly above the <title> tag is a good spot for it):

<meta name=”viewport” content=”width=device-width”>

HTML meta tags provide extra information about the page’s content and can give
browsers extra instructions about how to display the page. In this case, the viewport
refers to the browser screen, and the content attribute sets the width of the browser
to the width of the phone’s. In other words, on mobile browsers that tend to zoom
out, you’re telling them not to zoom out, but to just make the screen’s width match
the actual display of the phone.

Css: tHe MIssInG MAnUAL460

MEDIA QUERIES

FiGURE 15-2
Websites designed for desktop browsers, like the New York Times site
pictured here, tend to look like tiny postage stamps on phones. Visitors
are forced to zoom in and drag around the screen to read everything.

Media Queries
CSS includes a concept called media queries, which let you assign styles to a page
based on the destination browser’s width and height. With this method, you can
create custom styles for mobile phones, tablets, and desktop browsers, and, in
turn, customize your site’s presentation so it looks its best on each type of device.

The whole point of responsive design is to give your site’s visitors the most readable
and attractive presentation possible. This usually means customizing the design
to look its best at different browser widths. Many designers think of three target

CHAPteR 15: RESPONSIVE WEB DESIGN 461

MEDIA QUERIES
screens related to the three most common web browsing devices: smartphones,
tablets, and desktop computers. Granted, there’s a wide variety of widths for these
devices…you can have small phones, large phones, 7” tablets, 10” tablets, and so on,
so there’s no one width for all of these devices. Just keep in mind that the goal is to
make a page look good at varying widths; you can simply test out different designs
and different window widths to see when a four-column design needs to become a
two-column or a one-column design.

Strategies for Using Media Queries
Although we recommend trial and error to determine what changes you need to
make to a design so that it looks the best on different devices, there are a few com-
mon design changes that are routinely targeted by media queries:

• Adjust columns. Multiple side-by-side columns look great on a big monitor (and
even on a tablet in landscape mode), but not so much on a phone. In addition,
four columns is probably too many for most tablets in portrait mode, so bring-
ing the page down to 2 or 3 columns is probably a good idea for media queries
targeting tablets. Avoiding floats in mobile-targeted media-query styles lets
you stack a page’s content containers one on top of the other. You’ll try out this
technique in the tutorial on page 487.

• Flexible widths. You can use a fixed-width design for a desktop browser—that’s
how designers have done it for years—but for narrower screens like those on
tablets and phones, a fixed design won’t fit the window. A 960-pixel-wide page
is just too much for a phone’s 320 or 480 pixels. For phones and tablets, a good
approach is setting the widths of your content divs to auto or 100%. This setting
converts your page from a fixed-width design to a liquid, or flexible, design. In
other words, no matter how wide a phone’s screen, the divs will fit 100 percent
of it. If a person holds an iPhone in portrait mode (so the screen width is 320
pixels) and then suddenly turns the phone horizontally (changing the screen
width to 480 pixels), divs set to auto or 100% simply resize to fit the new space.

• Tighten up white space. Ample space between headlines, graphics, and other
page elements adds breathing room to a design on a 23-inch monitor, but cre-
ates a scattered design and wasted space on a phone’s small screen, forcing
visitors to scroll excessively. Shrinking margin and padding values lets you fit
more onto those small screens.

• Adjust font sizes. Contrast between big, bold headlines and small body type
looks great on a desktop monitor, but overly large headlines waste screen space
and are hard to read on a handheld device. Likewise, making body type a bit
larger on phones can often make it easier to read. In other words, pay attention
to font sizes as you create media-query styles.

• Changing navigation menus. You might have a beautifully designed horizontal
navigation bar that spans the top of your web page, with a dozen buttons to
take visitors to different sections of your site. Unfortunately, as the browser
window becomes thinner, those buttons may no longer fit across the screen.

Css: tHe MIssInG MAnUAL462

MEDIA QUERIES
Instead, they’ll break into two, three, or more lines on the screen. You’ll see an
example of this in the tutorial on page 476. It may be all right if the navigation
bar becomes a few lines instead of just one, or it might take up too much of
the top of the screen, forcing viewers to scroll down just to get to the first bit
of actual content.

Unfortunately, there’s no straightforward CSS solution. Many sites use JavaScript
to dynamically change the navigation menu into an HTML drop-down menu, so it
only takes up a small bit of space (to learn how to do that, visit http://css-tricks.
com/convert-menu-to-dropdown/). There are other solutions as well. For an
overview of different approaches some sites take to this problem, read http://
exisweb.net/incredibly-useful-list-of-responsive-navigation-and-menu-patterns
and http://bradfrostweb.com/blog/web/complex-navigation-patterns-for-
responsive-design/.

• Hide content on handheld devices. Many designers strip away content from
mobile versions of sites. While it’s easy to scan several columns and hundreds
of lines of text on a desktop monitor, too much information on a phone can be
overwhelming. You can use CSS to simply hide content that you think is super-
fluous for mobile users by setting the CSS display property to none.

However, keep in mind that whenever you hide content, you’re keeping a visi-
tor away from information your site provides. This can be particularly shocking
if someone visits your site using their desktop computer, then later visits the
site on her phone only to find that important information she was looking for is
now gone. In addition, even though you hide that content with CSS, the HTML is
still there, forcing the mobile phone to waste time and bandwidth downloading
HTML that it doesn’t use.

• Use background images. If you put a 960-pixel banner on a page, no phone will
display it without zooming out. One approach is to make sure your images are
small enough to fit inside a phone’s screen, or to use CSS background images
instead. For example, you can create a div and add a class to it like this: <div
class="logo">. Then, in the style sheet for the desktop browser, set the div’s
width and height to match the size of the large logo, using the background-image
property to insert the image into the background. For example:

.logo {
 width: 960px;
 height: 120px;
 background-image: url(images/large_logo.png)
}

You could then put another style inside the style sheet used for mobile phones
that resizes that div and uses a different background image:

http://css-tricks.com/convert-menu-to-dropdown/
http://css-tricks.com/convert-menu-to-dropdown/
http://exisweb.net/incredibly-useful-list-of-responsive-navigation-and-menu-patterns
http://exisweb.net/incredibly-useful-list-of-responsive-navigation-and-menu-patterns
http://bradfrostweb.com/blog/web/complex-navigation-patterns-for-responsive-design/
http://bradfrostweb.com/blog/web/complex-navigation-patterns-for-responsive-design/

CHAPteR 15: RESPONSIVE WEB DESIGN 463

MEDIA QUERIES
.logo {
 width: 100%;
 height: 60px;
 background-image: url(images/small_logo.png)
}

On page 472, you’ll learn how to scale images that you’ve inserted into the HTML
using the tag, so they fit different browser widths.

Creating Breakpoints
Media queries let you send different styles to browsers based on their screen widths.
For example, you can tell a browser “If your screen is no larger than 480 pixels,
apply these styles,” or, “If your screen is more than 480 pixels but less than 769
pixels, then use these styles.” The different width values you specify—480, 769, and
so on—are often called breakpoints in responsive design. Basically, at which value
does the design start to break down?

An easy way to determine this is to take a completed desktop design and open it
in a web browser. Grab the browser window’s sizing handle and slowly make the
window narrower. At a certain point, the design will probably start to look terrible.
Those four columns, for example, will get mighty cramped. The point at which the
design starts to look bad is a good candidate for a breakpoint; in other words, it’s
a good size at which to define a new media query and load some new styles to
remove a column or two.

It’s common to create three sets of media queries for three different breakpoints—one
for smartphones, one for tablets, and one for desktop monitors. The exact break-
point you use will vary from design to design (as well as from device to device), but
here’s a common starting point: A screen less than 480 pixels gets one set of styles,
a screen between 481 and 768 gets another set of styles, and anything over 768
gets the desktop design. However, it’s up to you. Some designers make the tablet
design go up to 1024 pixels, and send desktop styles to browsers wider than 1024.

Some designers even go so far as designing four or five different breakpoints so
their designs look best in a wide range of screen widths. The exact details on how
you create these breakpoints using media queries is coming up on page 464.

Desktop First or Mobile First?
Another thing to consider is which device you’re designing for first. You don’t need to
create three separate sets of styles, one for each width device you’re targeting. You
can, and should, start with a default design; that is, a design that works without media
queries. You can then create media-query styles to override the default styles and
reformat the page for the particular screen width. There are two main approaches:

• Desktop first. You can design your site with the desktop in mind. Throw in all
the columns you want. Polish and finalize the design so it looks great on a large
monitor. This becomes your base design, and you can put all of these styles into
an external style sheet and link it to the pages of your site as you normally would.

Css: tHe MIssInG MAnUAL464

MEDIA QUERIES
Then you add media queries for tablets and phones. Those media-query styles
will tweak the base desktop design—remove columns, make headline text
smaller, and so on.

• Mobile first. You can flip that approach on its head by designing first for mobile
browsers. This time, you put the basic small-screen styles in a regular external
style sheet, and then refine the design for tablets and desktops by adding col-
umns and other adjustments for larger screens in media queries.

Whichever method you choose, you should use a regular external style sheet linked
to the web page as you normally would. In that style sheet, include all the styles that
are common across the different devices. For example, you’ll still want the same
color palette and the same fonts across all versions of the site. You may also keep
the same styling for links, images, and other HTML elements consistent. In other
words, you don’t need to create three entirely separate sets of styles for each device;
start with one set that applies across phones, tablets, and desktop browsers, then
refine the design for the media-query–targeted devices.

Creating Media Queries
A query is just a question asked of a web browser: “Is your screen 480 pixels wide?”
If the answer is Yes, the browser launches a style sheet for just that size device (a
style sheet that you supply, as explained on the previous page). The code that makes
this happen looks pretty much the same as that for any external style sheet:

<link href="css/small.css" rel="stylesheet" media="(width: 480px)">

The one addition to this standard style sheet link is the media attribute, which sets
up the conditions under which a browser uses a particular sheet. In the example
above, a browser loads the small.css external style sheet when someone views your
site with a browser whose width measures 480 pixels. The parentheses around
the query—(width: 480px)—are required. If you leave them out, the browser will
ignore the query.

Because 480 pixels is very precise—what if someone’s using a phone with a smaller
screen, say one that’s just 300 pixels wide?—it’s best to use a range of values in your
media query. For example, you might want to apply a particular style for screens
that are less than or equal to 480 pixels wide. You do that like this:

<link href="css/small.css" rel="stylesheet" media="(max-width:480px)">

The notation (max-width:480px) is the same as saying “for screens that are at most
480 pixels wide.” So the styles inside the small.css file apply to screens that are 480
pixels wide, 320 pixels wide, and 200 pixels wide, for example.

Likewise, there’s a min-width option that determines whether a browser is at least
a certain width. This is useful when you target a device that’s bigger than a mobile
phone or tablet. For example, you can write this link to apply styles to screens wider
than the 768 pixels of many tablets:

<link href="css/large.css" rel="stylesheet" media="(min-width:769px)">

CHAPteR 15: RESPONSIVE WEB DESIGN 465

MEDIA QUERIES
To use this style sheet, a browser window must be at least 769 pixels wide—that’s
1 pixel wider than 768, the width of some tablets.

And finally, you can set both max widths and min widths to target devices that fall
between phones and desktop browsers. For example, to create a set of styles for a
tablet that’s 768 pixels wide, you could use this CSS code:

<link href="css/medium.css" rel="stylesheet" media="(min-width:481px) and
(max-width:768px)">

In other words, the browser’s screen must be at least 481 pixels wide, but not more
than 768 pixels wide. This medium.css file wouldn’t apply to a 320-pixel-wide smart-
phone, nor would it apply to a desktop browser with a screen width of 1024 pixels.

 NOTE  CSS media queries can do more than just check the width of a browser. The current media query
standard states that you can check for height, orientation (whether a visitor holds a mobile phone in portrait or
landscape mode), and even whether a device uses a color or monochrome screen. There are a few other browser
characteristics you can check with media queries, but not all browsers support the queries. You can learn more
about media queries at the W3C website: www.w3.org/TR/css3-mediaqueries.

Including Queries Inside a Style Sheet
The technique demonstrated above provides one way to use media queries by using
the <link> tag to load different style sheets for different screen sizes. However, you
can also add media queries within a single style sheet. You may want to do this so
you don’t have to add multiple <link> tags to an HTML file, for example, or you may
want to keep your media-query styles together with your main style sheet. Most web
designers use this approach, rather than using separate files for each media query.

There are a couple of ways to add media queries to a style sheet:

• Use the @import directive. The @import directive lets you load additional ex-
ternal style sheets within either an internal or external style sheet. You can also
use @import with a media query. For example, say you want to load an external
style sheet named small.css containing styles for displays that are 320 pixels or
smaller. To do that, add the @import directive directly to a style sheet:

@import url(css/small.css) (max-width:320px);

 NOTE  You must place @import directives at the beginning of a style sheet. They can’t come after any
styles. As a result, you may run into problems with the cascade, where styles you defined in an external style
sheet and loaded using @import can be overridden by later styles in the style sheet. You can get around it by
simply having one external style sheet that only contains @import directives. The first loads a basic style sheet
for all devices, and the second and third load style sheets using media queries, like this:

@import url(css/base.css); /* no media query, applies to all */
@import url(css/medium.css) (min-width:481px) and (max-width:768);
@import url(css/small.css) (max-width: 480px);

www.w3.org/TR/css3-mediaqueries

Css: tHe MIssInG MAnUAL466

MEDIA QUERIES
• Embed the media query in the style sheet. You can also embed a media query

directly inside a style sheet, like this:

@media (max-width: 480px) {

 body {

 /*style properties go here*/

 }

 .style1 {

 /*style properties go here*/

 }

}

The @media directive acts as a kind of container for all of the styles that match
the query. So in this example, the body and .style1 styles only apply to devices
whose screen is no wider than 480 pixels. By using embedded @media directives
like this, you can keep all of your styles organized into one style sheet. A good
approach is to start your external style sheets with styles that aren’t contained
in a media query using either the desktop-first or mobile-first approach, and
then add media queries for the remaining devices. This is the most common
approach used by web designers.

A Basic Style Sheet Structure
As you can tell, there are many different ways to use media queries to target differ-
ent devices: desktop first, mobile first, separate style sheets, a single style sheet,
and so on. As you gain more experience, you’ll figure out which approach is best
for which project. But as a starting point, you can always create a single external
style sheet that includes styles for desktop displays, and then add media queries
to modify that base-level design for tablets and phones. Here’s a skeletal structure
for just such a file:

/* Put your reset styles here */
/* Put styles for desktop and basic styles for all devices here */
body {
 /* properties for body here */
}

/* medium display only */
@media (min-width: 481px) and (max-width:768px) {
 body {
 /* properties that only apply to tablets */
 }

CHAPteR 15: RESPONSIVE WEB DESIGN 467

MEDIA QUERIES

}
/* small display only */
@media (max-width:480px) {
 body {
 /* properties that only apply to phones */
 }

}

You’ll see this structure in action in the tutorial starting on page 476, and you’ll find
a basic starter style sheet called desktop_first.css in the 15 folder in this chapter’s
tutorial folder (https://github.com/sawmac/css_mm_4e). Remember that even
though this file includes media queries, it’s still just a regular style sheet and is linked
to a web page the usual way. For example, if you save the this file as, you’d add this
HTML to the <head> of a web page:

<link href="styles.css" rel="stylesheet">

Mobile First
If you decide to go the mobile-first route, you first create a set of styles aimed at
mobile browsers, and then add media queries to alter the design for tablets, and
then desktop browsers. Here’s a basic style sheet structure for that approach:

/* Put your reset styles here */
/* Put styles for mobile and basic styles for all devices here*/
body {
 /* properties for body here */
}

/* medium display only */

@media (min-width: 481px) and (max-width:768px) {
 body {
 /* properties that only apply to tablets */
 }

}

/* large display only */
@media (min-width:769px) {
 body {
 /* properties that only apply to phones */
 }

}

You’ll find a basic starter style sheet called mobile_first.css in the 15 folder in this
chapter’s tutorial folder.

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL468

FLEXIBLE
GRIDS Flexible Grids

You may be tempted to design fixed-width layouts to match your phone—for ex-
ample, a style sheet with a 375-pixel width for an iPhone 6; another at 768 pixels to
match the width of an iPad in portrait (tall) mode; and finally, one 1,000 pixels wide
for desktop monitors. Don’t do it. While the iPhone 6 is very popular, it’s far from
the only phone out there. Other iPhones have different pixel widths, and Android
phones come in all sorts of shapes and sizes, and therefore, widths. You’ll undoubt-
edly see many other unusually sized devices, and tablets come in a wide array of
widths. In other words, there is no universal width for smartphones and tablets, so
the best approach is to create flexible-width pages.

Flexible grids are a core component of responsive web design. They’re nothing much
more than the liquid layout discussed on page 386, in which the page’s overall width
resizes to fit different width screens. In most cases, that means you set the width to
100%. However, for desktop displays, you may want to use the max-width property
(page 208) to make sure the page isn’t absurdly wide on large desktop monitors.

In addition, the individual columns within a design should be percentage-based,
instead of set with a fixed pixel- or em-based measurement. Individual columns also
need to grow wider or narrower to fit the changing page width.

 TIP  In the next chapter, you’ll learn about some of the prepackaged flexible grid systems available for free
to web designers. In fact, you’ll use one of the most popular, Skeleton, to easily create multicolumn flexible
grid-based web pages.

For example, say you want to create a two-column design where the first column
is one-third the width of the page and the second is two-thirds. You may start with
some simple HTML, like this:

<div class="columns">
 <div class="one-third">
 ...content goes here...
 </div>
 <div class="two-thirds">
 ...content goes here...
 </div>
</div>

You can then use several CSS styles to create the fluid layout:

.columns {
 width: auto; /* same as 100% */
 max-width: 1200px;
}
.columns:after {
 content: "";
 display: table;

CHAPteR 15: RESPONSIVE WEB DESIGN 469

FLEXIBLE
GRIDS

 clear: both;
}
.one-third {
 float: left;
 width: 33%;
}
.two-thirds {
 float: left;
 width: 67%;
}

The first style—.columns—sets the width of the div containing the columns. Setting the
width property to a value of auto is the same as setting it to 100%, while the max-width
property will keep the box from getting too wide. The second style—.columns:after—
helps contain the two floated columns (for more detail on how that works, see page 407).
Finally, the last two styles just set the widths of the two divs to 33% (one-third the width
of its container) and 67% (two-thirds) and floats them left so they appear side by side.

The Importance of HTML Source Order
When you’re holding a phone upright in your hand, there’s simply not enough room
to have two, let alone three, columns in a row and still have a readable page, so many
designers simply lay out a page in one long column for display on a mobile phone.
To do so, just remove any floats from the columns you’ve created. For example, if
you create a three-column design for desktop display using floats to position the
columns side by side, simply set the float property to none on those elements.
They then display as HTML normally does—one block-level tag on top of the other.

This makes the HTML source order very important. For example, a page may have
two sidebars, one with a list of links to related sites, the other with ads for products
your company sells. A middle column contains the main content—the stuff your au-
dience is really after when they visit the page. One way to lay this out in columns is
to float the first sidebar left and the second sidebar right, and let the main column
simply wrap around the two and sit in the middle.

In terms of HTML, this would mean the two sidebar divs appear first, followed by the
tag containing the main content. If you made this page mobile-friendly by removing
the floats on these sidebars, you’d end up with the two sidebars appearing above
the main content. Your audience would be faced with scrolling down past the ads
and links just to get to the content they’re after.

A more user-friendly approach is to place the main content container above the
sidebars. As discussed on page 403, this method can require adding some additional
containers and floating all the elements, including the main content div.

In short, be aware of how you order your HTML before you try to lay out a multicolumn
design for the desktop. The easiest way to see what’s going on is to view the web
page without any CSS applied. You can then see all the divs and other block-level

Css: tHe MIssInG MAnUAL470

FLEXIBLE
GRIDS

elements stacked on top of each other, and get a good idea of what the page will
look like as a single column on a phone.

 NOTE  The tutorial on page 476 demonstrates how you can create a three-column desktop design while
keeping the most important content near the top of the page.

Reset the Box Model
As explained on page 414, when you use percentage-based widths, you run into the
danger of float drops, where the total width of columns in a row exceeds 100 per-
cent, so the last column drops down below the others. Because of the way browsers
calculate the widths of elements, adding a border around a div, or padding inside
it, will make the div’s onscreen width greater than the width you set in the CSS.

For example, if you make one column 33 percent wide and another 67 percent wide
(as in the example on the previous page), they’d fit perfectly next to each other,
since their combined widths are 100%. However, if you add a 1-pixel border to the
column, their combined width would be 100% + 2 pixels (the left and right borders).
They’d now be too large to fit in the window, and the second column would drop
down below the first.

There are a couple of ways to deal with this predicament, and they’re detailed on
page 416. But the most straightforward solution is to tell the web browser to include
the border and padding widths and heights as part of its box model calculation. In
other words, you can make the browser include the border and padding as part of
the CSS width property, so adding more padding or a border doesn’t increase an
element’s width (or height). Since that’s a good thing for all elements, it’s best to
use a universal selector so you can reset the box model on every element on a page:

* {
 box-sizing: border-box;
}

A good place to put this style is in the page’s CSS reset (page 109).

Converting Fixed Width to Flexible Grids
If you’re starting with a brand new design, thinking in terms of percentages shouldn’t
be too hard. After all, if you wanted four equal-width columns, you’d set each to 25%:

width: 25%;

However, if you’ve already got a fixed-width website design and you want to convert
it to a fluid design, things get a little trickier. To start with, say you design a page
with a fixed width of 960 pixels. You either wrap the page in a <div> tag and give
that div a width of 960 pixels, or simply set the <body> tag to that width. In either
case, you now want that container to be completely fluid. That’s easy: Just change

width: 960px;

CHAPteR 15: RESPONSIVE WEB DESIGN 471

FLEXIBLE
GRIDS

to

width: auto;

Setting an element’s width to auto is much the same as setting it to 100%; its width
will be as wide as its container.

Next, you need to convert any column widths from pixel values to percentages.
Ethan Marcotte, the champion of responsive web design, has come up with a nifty
formula to make this relatively easy to figure out: target / context = result. In English,
it means, “take the width (in pixels) of the element you wish to convert and divide
it by the width of its container (in pixels).” The result is a fractional value that you
convert to percentages.

Here’s an example. Suppose that inside that 960-pixel-wide page, you have two
columns: a sidebar that’s 180 pixels wide and a main column that’s 780 pixels wide.
In your CSS file, you have some code like this:

.sidebar {
 float: left;
 width: 180px;
}
.main {
 float: left;
 width: 780px;
}

Of course, you’d have a lot of other CSS in there like borders, background colors,
and so on, but for this exercise, you’re just concerned about the widths. Starting
with the sidebar, you’d take its width—180 pixels—and divide it by its container’s
width—960 pixels. The result—.1875—multiplied by 100 gives you the percentage
value: 18.75%. Likewise, for the main column, you’d divide 780 by 960 to get .8125.
Multiply that by 100 to get 81.25%. In other words, you end up changing the widths
of those styles like this:

.sidebar {
 float: left;
 width: 18.75%;
}
.main {
 float: left;
 width: 81.25%;
}

Don’t round up the new values. In other words, don’t turn 18.75% into 19%; doing so
will most likely cause the columns to no longer sit side-by-side, resulting in a float
drop. Browsers can handle decimal values just fine. In fact, feel free to use all the
numbers that your calculator returns. A width of 25.48488% is perfectly acceptable.

Css: tHe MIssInG MAnUAL472

FLUID IMAGES
The same applies to a column inside another column. For example, say in the main
column above you have one section of two floated divs that create two additional
columns within the main column. Both divs share the same width—390 pixels—so to
calculate their width in percentages you take their current width in pixels—390—and
divide it by their container’s width—in this example, the main column is 780 pixels.
The result is .5. Multiply that by 100 to get 50%. (But you don’t really need to do
the math. After all, if you have two equally sized columns sitting side by side, you
know that each takes up half the available space, or 50%.)

As you recreate your design and figure out percentage values, keep in mind that
the total width of all columns in a single row can’t exceed 100%.

 TIP  You can use the same formula to convert pixel-sized type to ems. Say you have paragraph text that’s 18
pixels (the target). The default size of regular text (the context) is 16 pixels. Just divide 18 by 16 to get the new
size in ems: 1.125em.

Fluid Images
While a flexible layout creates a design that works in a wide range of browser window
widths, you’ll encounter a problem if you’ve inserted images in your pages. Although
columns in a flexible design shrink as the window gets smaller, images usually don’t.
This can lead to graphics overflowing their bounds and no longer fitting within the
width of a column (see Figure 15-3).

Fortunately, there’s a way to make images flexible as well. It requires two steps: a
new CSS style and some changes to your HTML.

1. First, in your style sheet, add the following style:

img { max-width: 100%; }

This sets the maximum width of any image to 100 percent of the width of its
container. In other words, an image can never be bigger than a column, div, or
any HTML element that it sits inside of.

This alone isn’t enough to make an image flexible. Usually, when you insert an
 tag, you also add the height and width for that image. That’s the size the
browser uses when displaying the image. With the max-width property in place,
the image won’t get wider than the column, but its height is still locked to the
value set in the HTML. In other words, the image will conform to the width of the
column, but its height won’t change, resulting in a distorted image. The solution
is straightforward: Just remove the width and height attributes from the HTML.

CHAPteR 15: RESPONSIVE WEB DESIGN 473

FLUID IMAGES

FiGURE 15-3
When a column gets thin-
ner than an image inside
it, that image overflows
the bounds of the column,
usually overlapping other
columns and content.

2. Locate every tag in the page and remove the height and width at-
tributes.

In other words, turn this HTML:

into this:

Many text editors have search-and-replace features that can speed up the
process of finding and removing these attributes.

This approach assumes, of course, that you want all your images to fill the column
they’re in. In many cases, you’ll want images to be smaller than that; for example, a
photo that’s floated to the right of the main column, with text wrapping around it.
To deal with differently sized images, you can create different classes, with different
max-width settings, and apply those classes to particular tags within the HTML.

Css: tHe MIssInG MAnUAL474

FLUID IMAGES
For example, say you want to float an image to the left of a column and size it to 40
percent of the column. First create a class style:

.imgSmallLeft {
 float: left;
 max-width: 40%;
}

Then apply that class to the tag:

A more flexible approach is to break the size and the float into separate classes:

.imgSmall {
 max-width: 40%;
}

.imgLeft {
 float: left;
}

Then apply both classes to the image:

By using two classes, you can apply the imgSmall class to any image, even ones you
decide to float right or not float at all.

 NOTE  You can resize background images by using the background-size property discussed on page
245.

The Downside of Fluid Images
Fluid images have one major problem. When the page is viewed on a phone, the
column widths and images can shrink to a width that’s much smaller than on a
desktop browser. This means the images are actually shrunk on screen. While the
image quality won’t suffer, you’re forcing users of mobile phones to download image
files that are much larger than really necessary. They’re wasting their bandwidth
on unnecessarily large image files. Unfortunately, there’s no great solution to this
problem yet; in fact, champions of responsive web design recognize this as one of
the biggest problems with RWD.

CHAPteR 15: RESPONSIVE WEB DESIGN 475

FLUID IMAGES

UP TO SPEED

Testing Responsive Designs
Since responsive designs are intended to adapt to the screens
of different browsing devices, you’ll need to find a way to
view your pages at different screen widths. The easiest way
to test your media queries is to view the page on a desktop
browser and resize the browser window. Drag it in to make it
thinner, and view what happens at each breakpoint or media
query that you set. This technique works pretty well, but not
all browsers let you scale the window down to the 320-pixel
width of some phones.

In addition, Google Chrome provides a simple tool that lets
you choose various devices and see what your page looks
like when stuffed into the width and height of the device’s
screen. Choose View→Developer→Developer Tools to open
the Chrome Developer Tools window. Then click the phone icon
in the top left of the Developer Tools window to open a new
view of the current web page. Use the Device menu at the top of
the page to choose a new device—like an iPhone 6 or Motorola
Droid Razr HD. When you’re done, close the Developer Tools
window to return to regular web browsing mode.

There are also several web-based tools that let you preview
your pages inside windows of different dimensions. The
responsivepx site (http://responsivepx.com) lets you enter a
URL for a page on the Web, then input different screen heights
and widths. The site opens the page in an <iframe> of the

set width. The browser applies any media queries that pertain
to that width screen, so you can preview the effect of your
media queries.

The Responsinator (www.responsinator.com) comes with
several preset window widths that match popular devices
like iPhone, Samsung Galaxy, iPad, Kindle, and others. Just
enter your site’s URL, and its page will appear inside simulated
screens. The Responsinator only works with files that you’ve
uploaded to a web server on the Internet.

If you have a smartphone or tablet, you can preview a page
directly from your computer on those devices, using Adobe’s
Edge Inspect tool (https://creative.adobe.com/products/
inspect). This sophisticated tool is a great way to preview
your working design in progress. Alternatively, you can just
put your design up on a web server, whip out your phone, and
visit that page to see what it looks like. Of course, unless you
have dozens of smartphones, you won’t know exactly what all
people using mobile browsers will experience.

Finally, you can pay for a service like BrowserStack (www.
browserstack.com) which lets you preview a page as it actually
appears on different operating systems, browsers, and devices,
including mobile phones and tablets. This clever service liter-
ally runs your web page through the device you select and
lets you see the results.

There are many people and organizations working on ways to solve this problem,
including the W3C. For a rundown on some of the currently popular solutions, read
this article: http://alistapart.com/article/responsive-images-in-practice. Unfortu-
nately, there is no solution that works in all browsers, so in the meantime, you may
choose not to worry about the larger image files for mobile and wait for a solution
to arrive—perhaps one already has by the time you’re reading this. Or try a very
good, but somewhat complicated solution called adaptive images. It uses JavaScript
and PHP to send images of the appropriate size to each device. In other words, a
small, handheld browser receives smaller image files for its smaller screen, while
desktop browsers download larger images. To learn more about it, visit http://
adaptive-images.com.

http://responsivepx.com
http://www.responsinator.com
https://creative.adobe.com/products/inspect
https://creative.adobe.com/products/inspect
http://www.browserstack.com
http://www.browserstack.com
http://alistapart.com/article/responsive-images-in-practice
http://adaptive-images.com
http://adaptive-images.com

Css: tHe MIssInG MAnUAL476

RESPONSIVE
WEB DESIGN

TUTORIAL
Videos and Flash
If you use the HTML video tag or embed Flash content, you can also use the max-
width trick to make those elements scale with their containers as well. Simply add
this style to your style sheet:

img, video, embed, object {
 max-width: 100%;
}

Unfortunately, this style doesn’t do anything to help with videos that are embed-
ded using iframes (the most common way to add a YouTube or Vimeo video to a
page). For embedded YouTube videos, read this article—http://demosthenes.info/
blog/649/Responsive-Design-Create-Fluid-YouTube-and-Vimeo-Content—or simply
use the Embed Responsively service (http://embedresponsively.com). Just give this
website the URL of the YouTube or Vimeo video, and it will generate the HTML code
you need to embed a responsive version of the video on a web page.

UP TO SPEED

When Is a Pixel Not a Pixel?
Most people think of a pixel as a single dot on a screen or
monitor. And it is. But thanks to new high-density pixel
displays like Apple’s Retina displays, you now have to think
of pixels in two different ways. A device like an iPhone 6 Plus
has a resolution of 2208px×1242px. That’s a lot of pixels, and
the iPhone squishes those pixels into a smaller area than most
other screens. It crams 326 pixels into every inch of the screen.
Desktop monitors usually have around 100 pixels per inch. In
other words, the iPhone puts three times as many pixels into
one inch of its screen than many desktop monitors. The result
is very clear, sharp images.

This poses a problem for web designers, however. If you give
your text a size of 16 pixels, that would look fine on a desktop
monitor (about .16 inches tall), but would be unreadable in a
phone with a high-density screen—.04 inches tall.

Fortunately, that ’s not what browsers with high-density
displays do. They actually make a single CSS pixel fill multiple
pixels on its screen, so text that’s 16 pixels tall is actually
displayed using more than 16 pixels. Phones and other devices
with high-density pixel displays make a distinction between
a device pixel—an actual dot on a screen—and a CSS pixel.

A CSS pixel is a calculation based on the screen’s pixel density
and its distance from the viewer. Since a phone is held closer
to your face than a monitor, items on its screen appear bigger
than similarly sized items on a monitor that’s 28 inches away.

On an iPhone, 1 CSS pixel is actually represented by 4 device
pixels. So 16-pixel-tall type is actually 32 device pixels tall.
Different devices like Android phones have different pixel
densities and so use different calculations to determine how
many screen pixels to use to display a single CSS pixel.

Responsive Web Design Tutorial
In this tutorial, you’ll take the layout you created in Chapter 13 (with the addition of
a few images) and turn it into a responsive web design. You’ll use a desktop-first
approach—so the basic CSS styles work best in a desktop browser—and then you’ll
add media queries to change the look for medium-size screens (like tablets) and
small screens (like phones).

http://demosthenes.info/blog/649/Responsive-Design-Create-Fluid-YouTube-and-Vimeo-Content
http://demosthenes.info/blog/649/Responsive-Design-Create-Fluid-YouTube-and-Vimeo-Content
http://embedresponsively.com

CHAPteR 15: RESPONSIVE WEB DESIGN 477

RESPONSIVE
WEB DESIGN

TUTORIAL
To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e. Click the tutorial link and download the
files. All the files are in a zip archive, so you need to unzip them first. The files for
this tutorial are in the 15 folder.

Changing the HTML Source Order
In creating a layout for a small screen, you’ll turn your three-column design into a
single-column layout with each block of content stacked one on top of the other.
One problem with the HTML from the page you worked on in the previous tutorial
is that the left sidebar appears first in the source order, so if you turn this into a
single-column design, that sidebar will appear before the main content.

It would be better for the site’s visitors if they can get directly to the main content
first, then scroll down to see the supplemental information from the sidebars. To
achieve that, you have to add a little HTML and move some already-existing HTML.
You’ll use the technique described on page 401 in the last chapter (see in Chapter
13, Figure 13-4): move the main content container up above the first sidebar, and
then wrap the main content and the sidebar in a new <div> tag. You’ll float that new
div left, the main content right, and the sidebar left. This arrangement will maintain
the same visual layout for desktop displays—first sidebar on the left, main content
in the middle, and second sidebar on the right—but then stack the main content
above the two sidebars for the mobile design.

1. Open the file index.html in the 15 folder.

This page is the same as the completed page from Chapter 13’s tutorial. First,
you’ll move the main content up.

2. Locate the HTML comment <!-- main content goes here -->, and select it
and all the HTML down to and including the closing </article> tag.

In other words, select that comment and everything down to the <!-- second
sidebar goes here --> comment.

3. Cut that text to the clipboard, using Edit→Cut (or using whatever method
your text editor provides).

Next, you’ll paste that code above the first sidebar.

4. Locate the <div class="contentWrapper"> tag toward the top of the file. Add
an empty line after it, but before the <!-- first sidebar goes here --> com-
ment, and choose Edit→Paste to paste the main content above the sidebar.

Now you need to add a <div> tag to enclose the main content and the first
sidebar.

5. After the <div class="contentWrapper"> tag, add <div class="columnWrapper">.
The HTML should look like this:

<div class="contentWrapper">
<div class="columnWrapper">
<!-- main content goes here -->

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL478

RESPONSIVE
WEB DESIGN

TUTORIAL
Next, you’ll close that div.

6. Locate the closing </aside> for the first sidebar. It’s just before the <!--
second sidebar goes here --> comment. Add </div> after the </aside> so
that the HTML looks like this:

</aside>
</div>
<!-- second sidebar goes here -->

That’s it for the HTML changes for now. You can find a file called new-source-
order.html in the 15 folder with all of these HTML changes, if you got lost or
want to check your work.

If you preview this page in a web browser, you’ll see there’s a three-column
layout, but the main content’s on the left side, and the first sidebar is in the
middle (Figure 15-4). You can fix that with some CSS.

7. Open the file styles.css in the 15 folder.

This file contains the CSS you created in the last chapter. You’ll first need to
add a new style for the column wrapper and float it left so it sits next to the
right sidebar.

8. Near the bottom of the file, before the .sidebar1 style, add the following
style:

.columnWrapper {
 float: left;
 width: 80%;
}

The width setting here is the combined widths of the left sidebar (20%) and
the main column (60%). What you’re actually doing is creating a two-column
layout: The first column is this new <div> tag, and the second column is the
right sidebar. The main content container and the left sidebar are actually two
columns inside this column wrapper div—in other words, columns within a
column, as described on page 401 and pictured in Figure 13-4.

Next, you’ll adjust the floats and widths of the main column and first sidebar.

9. Change the width value of the .sidebar1 style to 25%. The style should look
like this:

.sidebar1 {
 float: left;
 width: 25%;
 padding: 0 20px 0 10px;
}

Originally, this sidebar took up 20% of the entire page width, but now that it’s
inside the column wrapper div, you need to adjust the sidebar and main content

CHAPteR 15: RESPONSIVE WEB DESIGN 479

RESPONSIVE
WEB DESIGN

TUTORIAL
columns’ widths to fit within the 80% width of the column wrapper. In other words,
the percentage width you’re specifying isn’t a percentage of the entire page;
it’s a percentage of the column wrapper, which only takes up 80% of the page.

To figure out the new percentage, take the older percentage—20%—and divide it
by the width of its container—80%—and then multiply by 100. So 20 divided by
80 is .25. Multiply that by 100 and you get 25%. You’ll use the same technique
to change the width of the main content.

FiGURE 15-4
The page is still a three-
column design, but now
the main content is on the
left and the left sidebar is
in the middle. A couple of
simple styles can get those
columns back into their
original positions.

10. Locate the .main style, and change the float to right and the width to 75%,
so the style looks like this:

.main {
 float: right;
 width: 75%;
 padding: 0 20px;
 border-left: dashed 1px rgb(153,153,153);
 border-right: dashed 1px rgb(153,153,153);
}

You’re floating this element to the right, so it appears to the right of the first
sidebar, which places the main content in the middle again. You calculate the

Css: tHe MIssInG MAnUAL480

RESPONSIVE
WEB DESIGN

TUTORIAL
width by taking the old width and dividing it by the width of its container:
60/80 = .75, or 75%. If you save the files and preview the index.html file in a
web browser, it should look like Figure 15-5.

 NOTE  This particular design won’t get wider than 1200 pixels, thanks to the max-width set in the group
selector nav ul, header h1, footer p, .contentWrapper. If you want this design to fill the browser
window, no matter how wide it is, just remove the max-width 1200px; declaration from that group selector.

FiGURE 15-5
Back to where you started:
a three-column design.
However, now the order of
the page’s HTML is better
positioned for creating a
one-column phone layout.
The images don’t quite
fit, and hang outside the
columns as pictured here.
You’ll fix that next.

Fluid Images
You’ve successfully created a fluid layout. If you preview the page now and resize the
browser window, you’ll notice that as you make the window narrower, the columns
get smaller. Unfortunately, some of the images are wider than the columns and they
pop out of the design. As you read on page 472, part of responsive web design is
making your images respond to changes in the width of the browser window as well.
To make that work, you need to add some CSS and remove some HTML.

CHAPteR 15: RESPONSIVE WEB DESIGN 481

RESPONSIVE
WEB DESIGN

TUTORIAL
1. Switch to the styles.css file in your text editor. At the bottom of the style

sheet, add a style for the img tag:

img {
 max-width: 100%;
}

This style makes the maximum width of an image equal to 100 percent of its
container’s width. So for a column that’s 200 pixels wide on screen, the image
will be 200 pixels wide. If a visitor resizes the browser window, and the column
shrinks in size, the image will shrink to fit the column.

This only works, however, if you remove the image’s width and height proper-
ties in the HTML.

2. Delete the height and width attribute for each of the four tags in the
index.html file.

There are four graphics—clouds.jpg, jellyfishy.jpg, gator.jpg, and mule.jpg.
Remove the width and height attribute—for example:

should become

If you save the CSS and HTML files and preview the page in a web browser, you’ll
see that the images do change size as you make the page thinner. However,
the two images in the main column are really big. Using max-width: 100% for
the tag does create flexible images, but in many cases, you won’t want
all images to be as wide as their column. In the case of the two images in the
main column, they’d look a whole lot better if they were only half the size of
the main column. You can do that by applying some classes to those tags and
adding some styles.

3. In the styles.css file, add the following styles to the bottom of the style sheet:

img.half {
 max-width: 50%;
}

img.left {
 float: left;
 margin: 0 10px 10px 0;
}

img.right {
 float: right;
 margin: 0 0 10px 10px;
}

Css: tHe MIssInG MAnUAL482

RESPONSIVE
WEB DESIGN

TUTORIAL
The first style sets the max-width to just 50%—half the column width. The other
two styles let you float an image to the left or the right of the column, to let
text wrap around them. To make use of these class styles, you need to add a
bit of HTML to the images

4. In the index.html file, locate the tag for the clouds.jpg image—<img
src="imgs/clouds.jpg" alt="Clouds">—and add class="half right" so it
looks like this:

It’s common and often useful to apply more than one class to an element. In this
way, you can combine simpler, modular styles to create more complex designs.
In this case, the half class resizes the images, while the right class floats the
image to the right. Simply by changing right to left you can move the image to
the left of the column, while still maintaining the sizing property of the half style.

5. For the jellyfish.jpg image, add class="half left" so its HTML code looks
like this:

Now the images are all sized. The page should look like Figure 15-6. If you want,
you can create additional styles for other sizes, and even specify pixel sizes to
allow particular images to resize to their full widths, but no more.

Adding Styles for Tablet Screens
The design at this point works the same in every device: desktop, tablets, and mo-
bile phones. It’s a flexible design that shrinks or grows to fit the browser window.
But at a certain point, the sidebar columns are just too thin to be readable. The first
media query you’ll add will target screens that are between 480 and 768 pixels and
will move the right sidebar to the bottom of the page, converting the three-column
design into a more readable two-column design.

1. Open the styles.css file in your text editor. Scroll to the bottom of the file
and add:

@media (min-width: 481px) and (max-width:768px) {

}

Here’s the first media query. It targets screens that are at least 481 pixels, but
no more than 768 pixels. In the next part of this tutorial, you’ll craft a media
query for devices that are no more than 480 pixels wide. So this media query
excludes those devices, but also excludes devices that are more than 768 pixels.
In other words, any styles you place in this section of the style sheet won’t apply
to desktop browsers (unless you resize the window so that it’s very thin); nor
will they apply to most phones.

The first thing you’ll do is remove the float from the right sidebar.

CHAPteR 15: RESPONSIVE WEB DESIGN 483

RESPONSIVE
WEB DESIGN

TUTORIAL

FiGURE 15-6
Creating responsive
images isn’t difficult. Just
remove the widths and
heights from the HTML and
set their max-width
values. If you want differ-
ent sizes for your images,
then create classes with
the desired max-width
values and apply those
classes to the tags.

2. Inside the media query you added in the last step, add the following style
(in bold):

@media (min-width: 481px) and (max-width:768px) {
 .sidebar2 {
 float: none;
 width: auto;
 }
}

This removes the float from that sidebar, and sets its width to auto (overriding
the 20% width from the .sidebar2 style earlier in the style sheet). However, this
doesn’t make the sidebar drop down below the other two columns. Because
the column wrapper div is also floated left, the second sidebar wraps around
it (see page 401 for more on how floats work). You’ll need to make the sidebar
clear those floats.

Css: tHe MIssInG MAnUAL484

RESPONSIVE
WEB DESIGN

TUTORIAL
3. Edit the style you added in the last step by adding the code in bold:

.sidebar2 {
 float: none;
 width: auto;
 clear: both;
 border-top: 2px solid black;
 padding-top: 10px;
 }

The clear property (discussed on page 405) makes this sidebar drop down
below the other two columns. You’ve also added a distinctive top border to
further visually separate this container from the above columns.

If you preview the page now and resize your browser window so that it’s just
less than 768 pixels, you’ll see that the two columns don’t span the entire width
of the page (see Figure 15-7). That’s because earlier in step 8 on page 478, you
set that column wrapper to 80% of the page width. You need to reset that style
inside the tablet media query.

4. After the .sidebar2 style (but still within the media query), add the fol-
lowing:

.columnWrapper {
 width: auto;
 }

Make sure that style goes inside the media query. It resets the column wrapper’s
width to auto (the same as 100%) so it spans the entire width of the page. You
don’t need the float on this element any more either, since the sidebar2 column
has dropped below. Because there are now only two columns, you can remove
the right border that’s applied to the main content column.

5. Add one last style after the .columnWrapper style. The complete media query
should now look like this (changes in bold):

@media (min-width: 481px) and (max-width:768px) {
 .sidebar2 {
 float: none;
 width: auto;
 clear: both;
 border-top: 2px solid black;
 padding-top: 10px;
 }

 .columnWrapper {
 width: auto;
 }
 .main {
 border-right: none;

CHAPteR 15: RESPONSIVE WEB DESIGN 485

RESPONSIVE
WEB DESIGN

TUTORIAL
 }
}

FiGURE 15-7
From three columns to two
columns, with one media
query and three simple
styles.

Css: tHe MIssInG MAnUAL486

RESPONSIVE
WEB DESIGN

TUTORIAL
6. Save the styles.css file and preview the index.html file in a web browser.

Resize the browser window until only two columns appear.

The page should look like Figure 15-8.

FiGURE 15-8
The design now responds to the browser window’s width. Three
columns turn into two columns, followed by the second sidebar, which
sits underneath. The entire design fits the browser width and makes
sure the columns don’t get too narrow to read on smaller devices.

CHAPteR 15: RESPONSIVE WEB DESIGN 487

RESPONSIVE
WEB DESIGN

TUTORIAL
Adding Phone Styles
Finally, it’s time to add styles for devices that are no wider than 480 pixels.

1. Go back to the styles.css file in your text editor. Scroll to the bottom of the
file and add another media query:

@media (max-width:480px) {

}

Make sure this goes after the other media query, not inside it. Here we’ll target
devices that are no wider than 480 pixels. The first step is to linearize the layout;
that is, remove all of the floats so the content is stacked in a single column for
easy reading on a small screen.

2. Inside that media query, add the following style:

.columnWrapper, .main, .sidebar1, .sidebar2 {
 float: none;
 width: auto;
}

This removes the float from the column wrapper and all the columns. Setting
the width to auto makes them fill their container completely. So now the three
columns are simply block-level elements stacked one on top of the other, with
the main content on top and the two sidebars underneath.

The main content area still has borders from the styles earlier in the style sheet.
These left and right borders provide visual separation from the left and right
sidebars in the three-column layouts, but you don’t need them in this stacked
layout, so you can remove them. On the other hand, adding visual separation
between the now-stacked content blocks would be nice to have.

3. After the style you just added (and still inside the 480-pixel media query),
add these two styles:

.main {
 border: none;
}
.sidebar1, .sidebar2 {
 border-top: 2px solid black;
 margin-top: 25px;
 padding-top: 10px;
}

The second group selector here adds a border above each sidebar as well as
some top margin and padding to clearly mark off the different content regions
on the page.

Css: tHe MIssInG MAnUAL488

RESPONSIVE
WEB DESIGN

TUTORIAL
Save the CSS file and preview the index.html page in a web browser. Drag the
browser window so it’s less than 480 pixels wide. You’ll now see the one-column
design. If you view this page on a phone, you’ll notice that the headline looks
really big (Figure 15-9). In addition, the navigation buttons look a little out of
control. You’ll fix those two problems next.

4. Add a style for the <h1> tag inside the 480-pixel media query:

header h1 {

 font-size: 1.5em;
}

This style reduces the text size in the <h1> tag so it now fits on a single line. It’s
often a good idea to reduce the size of headlines when converting a desktop
design to one viewed on a little phone screen. You may also find that you should
increase the font size for body text to make it easier to read. There are a lot of
ways you can tweak the phone design of your page, and it’s up to you to figure
out what looks best.

Now you’ll tackle the navigation bar. The dashed borders separating the buttons
look bad and jumbled. In addition, the buttons are aligned to the left, creating
an out-of-balance asymmetry. They’ll look better centered and without those
borders.

5. Add another style after the header h1 style you added in the previous step:

nav {
 text-align: center;
}

The nav buttons are contained inside an HTML <nav> element. By setting the
text-align value to center, all text inside that nav should be centered. However,
the buttons are actually floated to the left, so this is only the first step. (You
can turn to page 293 for more information on using floats to create a horizontal
navigation bar.)

6. Add two more styles after the nav style:

nav li {
 float: none;
 display: inline-block;
}

nav a {
 float: none;
 display: inline-block;
 border: none;
}

You’re removing the floats from both the list items and the links. In addition,
you turn these elements into inline blocks. As described on page 293, using

CHAPteR 15: RESPONSIVE WEB DESIGN 489

RESPONSIVE
WEB DESIGN

TUTORIAL
inline-block on navigation elements lets you place links side by side, while
still preserving padding and margins. In addition, the inline-block method is
the only way to center these buttons.

FiGURE 15-9
Even when you get the width of a page correctly sized for
a mobile phone, there’s still work to do. Here, a headline,
which is the perfect size for a desktop browser, is an
oversized monster on the phone, taking up way too much
valuable screen space.

7. The final 480-pixel media query should look like this:

@media (max-width:480px) {
 .columnWrapper, .main, .sidebar1, .sidebar2 {
 float: none;
 width: auto;
 }

Css: tHe MIssInG MAnUAL490

RESPONSIVE
WEB DESIGN

TUTORIAL

 .main {
 border: none;
 }

 .sidebar1, .sidebar2 {
 border-top: 2px solid black;
 margin-top: 25px;
 padding-top: 10px;
 }

 header h1 {
 font-size: 1.5em;
 }

 nav {
 text-align: center;
 }

 nav li {
 float: none;
 display: inline-block;
 }

 nav a {
 float: none;
 display: inline-block;
 border: none;
 }

}

Save all of your files and preview the index.html file in a web browser. Resize
the browser window so it’s less than 480 pixels to see the phone design; resize
the window until the two-column design pops into view; and then again until
you see the three-column desktop version. You should see designs like those
pictured in Figure 15-10. You’ll find a completed version of this tutorial in the
15_finished folder.

CHAPteR 15: RESPONSIVE WEB DESIGN 491

RESPONSIVE
WEB DESIGN

TUTORIAL

FiGURE 15-10
One, two, and three
columns, all in a single
web page. Thanks to
responsive web design
techniques, you can
transform a single web
page to best fit any width
device.

493

CHAPTER

16

So far you’ve learned a number of layout techniques, like how to create float-
based layouts to create multiple side-by-side columns and how to create
responsive designs that change their layout based on the width of the device

displaying the web page. But when your site will appear on screens of all different
shapes and sizes, you need all the control you can get.

This chapter expands on the concepts in the previous few chapters and shows you
the most precise, yet responsive, page design technique of all—the CSS layout grid.
A layout grid is a systematic arrangement of rows and columns used as an organiza-
tional tool for laying out content. In the world of CSS, a grid system is a predefined
style sheet with styles that make it easy for web designers to add a layout grid to
their pages. Grid systems use class names added to <div> tags in a page’s HTML to
create consistently sized columns.

How Grids Work
Grids have a long history in graphic design and traditional page layout. There are
various theories about how to best organize content using grids to create beautiful
designs, but most of them rely on the unchanging nature of print design and don’t
translate well to the flexible nature of browsers.

In web design, a grid acts as a way to organize content into rows and columns using
consistent column widths. A page’s width is divided into a set number of “units”
that group easily to create columns of different widths. A common number of units
is 12, since 12 divides easily into halves, thirds, and quarters. Because grids use a set

 Using a CSS Grid System

Css: tHe MIssInG MAnUAL494

HOW GRIDS
WORK

number of units, columns tend to align better and look better because they share
a consistent rhythm.

For example, the web page pictured in the top image in Figure 16-1 is organized
in rows and columns using a CSS grid system. The page looks well balanced and
well aligned because its grid creates consistent column widths. In this example, the
underlying grid is composed of 12 units, and the page is divided into five rows. The
first row has two columns: The first column, containing the company name, is four
units wide; the second, with the navigation bar, is eight units wide. In most grid
systems, there’s always a gutter, or empty space, separating columns. In this case,
there’s a single gutter between the two columns.

The second and third rows each hold a single column 12 units wide; the fourth row
has three columns, four units wide each, with a gutter between each column; and
the bottom row has two columns, one four units wide and the other eight units wide
(the same as the first row).

As you may have guessed by now, a “unit” isn’t any precise measurement. It’s a
relative measure, like a percentage value. In fact, in most CSS grid systems, the
width of those units is defined using percentage values. So one unit is around 1/12
of the total width of the page—the exact value varies based on the number of col-
umns and gutters in the row. As you read on page 461, relative widths are the key
to creating responsive designs, so the onscreen width of a 3-unit-wide column will
vary based on the width of the browser window. If you resize the browser window,
the precise width of a column in pixels will change, but its relative width will always
be the same—3 units.

And therein lies the beauty of a grid system. Remember all that math you needed to
calculate the percentage value for a div’s width using responsive design (page 470)?
That math is already done for you and baked into the CSS file for the grid system.
In addition, as you can see in Figure 16-1, using consistent unit values makes page
elements line up nicely. For example, the second column in row 4 starts at the same
left position as the second column in the bottom row, so they’re perfectly aligned.
What’s more, column widths are consistent for different unit values: The three col-
umns in row 4, for example, are all the same width, because of the consistent and
accurate calculations in the grid system.

CHAPteR 16: USING A CSS GRID SYSTEM 495

STRUCTURING
YOUR HTML
FOR GRIDS

FiGURE 16-1
Many websites use a grid system to lay out their pages using rows and
columns with predefined widths. While visitors just see well-designed
and visually pleasing pages (top), web designers know that the
underlying grid provides organization, balance, and alignment (bot-
tom). Grids are divided into rows that run horizontally across the page
(numbered), and columns that divide the rows into smaller units. In
addition, grids usually include gutters or extra space on the sides of a
row (left and right spaces in the bottom image) and between columns.

Structuring Your HTML for Grids
Individual web designers—and big companies like Twitter—have created dozens of
CSS grid systems to choose from. You can read about a sampling of them in the
box on page 497. These systems rely on one or more CSS files designed to create
the kind of columns described in the previous section. Most of these systems use
a similar approach for structuring the HTML to create a grid, relying on a series of
nested <div> tags to form three different types of page elements:

• Containers. A container div holds one or more rows. The container helps set a
width for the entire grid system, and often uses the max-width property (page
208) to keep the content from growing absurdly wide on large monitors. Con-
tainers are also usually centered in the middle of the browser window.

Css: tHe MIssInG MAnUAL496

STRUCTURING
YOUR HTML
FOR GRIDS

• Rows. A row is another <div> tag, placed within a container, and the row holds
more divs that make up the columns within it.

• Columns. A column is a <div> tag within a row. Each row has one or more
columns.

To define a container, a row, or a column, you simply add a class name to each div.
The name you use will vary from one CSS grid system to another, but many use some
variation of the words container, row, and column. For example, say you wanted
to start by creating a page with two rows. The first row contains two columns: one
column for a logo and another for the site navigation. The second row holds one
column to display the text of an article. The HTML markup for this grid system might
look like this:

<div class="container">
 <!-- row #1 -->
 <div class="row">
 <!-- 3 unit wide column -->
 <div class="three columns">
 <!-- logo here -->
 </div>
 <!-- 3 unit wide column -->
 <div class="nine columns">
 <!-- navigation here -->
 </div>
 </div>
 <!-- row #2 -->
 <div class="row">
 <!-- 12 unit wide column -->
 <div class="one columns">
 <!-- article text here -->
 </div>
 </div>
</div>

There’s nothing terribly complicated going on here. In fact, this HTML is very similar to
the HTML used in the layout techniques described in Chapter 13. The main difference
is that someone else wrote the CSS styles used for laying out the page, saving you a
lot of time. All you have to do is download the CSS files for the grid system, attach
the style sheet to your web pages, and structure your pages’ HTML according to the
rules defined by that grid system. This chapter uses a particular grid system (called
Skeleton), but you have many CSS grid systems to choose from (see the box below).

CHAPteR 16: USING A CSS GRID SYSTEM 497

USING THE
SKELETON

GRID SYSTEM

POWER USERS CLINIC

Common CSS Grid Systems
This chapter uses a simple but powerful CSS grid system called
Skeleton (http://getskeleton.com). But it’s certainly not your
only choice.

• Simple Grid (http://thisisdallas.github.io/Simple-Grid/)
is another lightweight grid system. It ’s barebones: It
doesn’t provide any CSS except for creating the grid. It’s
also responsive, meaning that the page layout adjusts
automatically to changing browser widths. So on a mobile
device, for example, any multicolumn design instantly
changes into a single column design that’s easy to read
on a phone.

• Pure.css (http://purecss.io) is more of a CSS framework,
meaning it supplies CSS styles that make it easy not only
to create a grid, but also to format buttons, tables, menus,
and forms. Pure.css is a project of Yahoo, so you know it
has some smart people working on it.

• Foundation (http://foundation.zurb.com) is another

responsive CSS framework. It’s very popular, but it’s also a
lot more complex than most other grid systems. It’s great
for building web applications and interactive websites
because it includes not only CSS, but also JavaScript code
for creating drop-down menus, accordions, tooltips, and
modal dialog boxes.

• Bootstrap (http://getbootstrap.com) is the most popular
CSS framework (which explains why a lot of sites look
very similar). Created by Twitter, Bootstrap is used in
thousands of websites. It includes a CSS grid system, but
like Foundation, it also includes everything but the kitchen
sink. Bootstrap’s CSS includes rules for styling buttons,
tables, alerts, badges, labels, and even a large display
container called the jumbotron (http://getbootstrap.com/
components/#jumbotron). In addition, there are lot of
JavaScript components to choose from, such as tooltips,
a carousel, and modal dialog boxes.

Using the Skeleton Grid System
In this chapter, you’ll learn how to work with Skeleton, a simple, responsive CSS
grid system. You’ll also see a few additional CSS rules to help with basic styling of
buttons, forms, and tables. Skeleton gets all this work done in 400 lines of code, so
it makes for a nice small file. It’s built to work really well with mobile devices, and
best of all, it’s easy to use.

Skeleton is considered a responsive grid system because, while it allows for multiple
columns on a page, it collapses those columns to stacked divs when the browser
window’s width is below 550 pixels. On mobile phones, space is at a premium, and
displaying text or any other content in columns makes no sense; it’s just too hard
to read that way. So most mobile web designers choose to display content in one
long column—one div stacked on top of another.

Skeleton lets you build a complex grid layout so your page is neatly structured into
multiple columns on tablets, laptops, and desktop displays. On a phone, however,
Skeleton’s CSS automatically removes the side-by-side columns and forces content
into an easy-to-read, single-column design. You don’t have to do anything; responsive
design is built right into Skeleton’s CSS.

http://getskeleton.com
http://thisisdallas.github.io/Simple-Grid/
http://purecss.io
http://foundation.zurb.com
http://getbootstrap.com
http://getbootstrap.com/components/#jumbotron
http://getbootstrap.com/components/#jumbotron

Css: tHe MIssInG MAnUAL498

USING THE
SKELETON

GRID SYSTEM
To start, visit the Skeleton website (http://getskeleton.com) and click the Download
button (Figure 16-2). You’ll end up with a folder containing a few other folders and
files, but the only ones you really need to worry about are in the CSS folder: normal-
ize.css, which provides a basic CSS reset (page 579) so all browsers will style HTML
tags the same way; and skeleton.css, the file containing all the stuff you need to
create a well organized layout.

FiGURE 16-2
Skeleton is a set of CSS
rules that provide a
simple, responsive grid
system for page layout.

Here’s the basic process for using Skeleton:

1. Attach the CSS files.

You can link to the normalize.css and the skeleton.css files like so:

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">

http://getskeleton.com

CHAPteR 16: USING A CSS GRID SYSTEM 499

USING THE
SKELETON

GRID SYSTEM
 NOTE  Skeleton’s basic CSS styles use a Google Font (page 140) called Raleway. It’s a beautiful font, so if
you want to use it on your site, you should also link to those font files by adding another style sheet link to your
web pages:

<link href="https://fonts.googleapis.com/css?family=Raleway:400,300,600"
rel="stylesheet" type="text/css">

2. Add container divs.

As described earlier in this chapter, in a grid system a container div is used to
hold rows and columns. A page might have just a single container, but there
are times when multiple containers are necessary to create a particular design
effect (more on that on page 503). A container in Skeleton is simply a div with
the class container:

<div class="container">

</div>

Don’t put any HTML directly inside a container div, except for the row divs
described next.

3. Add divs for rows.

Inside each container, you’ll have one or more rows. These are simply <div>
tags nested inside the container div. They have the class row:

<div class="container">
 <div class="row">

 </div>
</div>

You can put any number of rows inside a single container. In fact, unless you
require the particular design effect described on page 503, you might only use
a single container for the page containing multiple rows and columns:

<div class="container">
 <div class="row">

 </div>
 <div class="row">

 </div>
 <div class="row">

 </div>
</div>

Css: tHe MIssInG MAnUAL500

USING THE
SKELETON

GRID SYSTEM
4. Add column divs.

Skeleton uses a 12-unit grid, so each div you add to a row must be at least one
unit wide (that’s quite small) or 12 units wide (the entire width of the container).
In addition, if you have more than one row, their total width must come to exactly
12 units. For example, if you have three columns, they each might be four units
wide, or one might be two units wide, while the other two are five units wide.

You define a div as a column by adding the name columns to the class attribute.
You then set that column’s width using a number from one to twelve. Remember
that CSS class names can’t start with literal numbers like 1, 2, or 12, so you have
to spell out these numbered class names. For example, to add three equal-width
columns to a row you’d add three divs like this:

<div class="container">
 <div class="row">
 <div class="four columns">

 </div>
 <div class="four columns">

 </div>
 <div class="four columns">

 </div>
 </div>
</div>

 TIP  If you want to create a single column within a row, don’t add another div inside the row. Just add your
content like this:

<div class="row">
<p>This text will fill the entire width of the container. It's a single
column.</p>
</div>

5. Add content inside the column divs.

The container and row divs are just structural elements used to contain your
columns. The actual content—the good stuff like words, photos, and videos—
goes inside each of the column divs.

6. Create your own styles.

Skeleton doesn’t provide much more than an underlying structure for your con-
tent, hence the term “skeleton.” To make it look great, you’ll need to add your
own styles to decorate your site with colors, fonts, background images, and so

CHAPteR 16: USING A CSS GRID SYSTEM 501

CREATING
AND NAMING

COLUMNS
on. It’s a good idea to create another CSS file named something like custom.css
for these styles, and link it to your web page after the skeleton.css file:

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/custom.css">

Skeleton uses a mobile-first approach to its CSS (page 463), so you’ll use media
queries to refine your design for multiple browser widths, starting with the nar-
row screen of a phone. (You’ll learn how to do that on page 507.)

Creating and Naming Columns
Skeleton uses a 12-unit grid (Figure 16-3). You can create columns of different widths
ranging from a single unit to 12. To create a column, you assign two class names
to a div. One class is the unit width—one, two, three, and so on—while the other is
columns. Keep in mind that this isn’t a single CSS class name: You must add two
class namess and the names must be separated from each other by a space. Each
name refers to a different CSS rule in the Skeleton style sheet.

FiGURE 16-3
Skeleton’s 12-unit grid
system lets you create
multiple combinations of
column widths. As you
can see, a single unit is
not very wide at all, so it’s
unlikely that you’ll ever
create a column that thin.
But since twelve divides
into multiple combina-
tions, you can create
columns of a variety of
different widths.

Css: tHe MIssInG MAnUAL502

CREATING
AND NAMING

COLUMNS
Take a look at the following two examples. Say you wanted to create a row with two
columns of equal width. You’d simply add two divs, each six units wide, inside a row
div and container div like this:

<div class="container">
 <div class="row">
 <div class="six columns">

 </div>
 <div class="six columns">

 </div>
 </div>
</div>

To create a design with four equal-size columns, add four divs, each with a unit size
of three:

<div class="container">
 <div class="row">
 <div class="three columns">

 </div>
 <div class="three columns">

 </div>
 <div class="three columns">

 </div>
 <div class="three columns">

 </div>
 </div>
</div>

Columns don’t need to be the same width. However, make sure that whatever width
you use, the total number of units in a row always adds up to twelve. For example,
it’s perfectly fine to have a row with one column that’s 4 units wide and another
that’s 8 units wide:

<div class="container">
 <div class="row">
 <div class="four columns">

 </div>
 <div class="eight columns">

CHAPteR 16: USING A CSS GRID SYSTEM 503

CREATING
AND NAMING

COLUMNS
 </div>
 </div>
</div>

One really helpful aspect of Skeleton is that its CSS automatically (and correctly)
calculates the gutters needed for multiple columns. That is, you don’t need to figure
out how much space to place between two columns. If you have just a single column
in a row, Skeleton won’t add any gutter; if you have two columns in a row, it’ll add
one gutter to separate the two; and if you have six columns, it’ll add five gutters—all
calculated automatically in the Skeleton CSS file!

 TIP  Skeleton provides shorthand class names to create columns that are half, one-third, and two-thirds the
container width. Just use the names half, one-third, or two-thirds along with the class name column.
For example, to create two columns, one that’s one-third the width of the container, and another that’s two-thirds
the width of the container, you’d add two divs inside a row, like this:

<div class="row">
 <div class="one-third column">

 </div>
 <div class="two-thirds column">

 </div>
</div>

Creating Full Width Sections
The container div you add to a page holds rows and columns. Skeleton’s CSS doesn’t
extend the width of the container style to fill the browser window for tablet, laptop
and desktop screens. The container’s width is set to different widths using media
queries, but they never extend all the way to the edges of the window. In some cases
this is fine, but if you want to add a background color or image to a container your
design might not look perfect (see Figure 16-4). In this case, you frequently want
to extend the background to the edges of the browser window (as in the bottom
image in Figure 16-4).

Css: tHe MIssInG MAnUAL504

CREATING
AND NAMING

COLUMNS

FiGURE 16-4
Skeleton’s container
class doesn’t extend to fill
the browser window (top). If
you set a background image
or color on one of those con-
tainers, that background will
cover only the container. In
many cases, a design looks
better if the background
color or image extends to
the edges of the browser
window (bottom). The solu-
tion: add a <div> around
each container, and add the
background color or image
to those wrapper divs.

CHAPteR 16: USING A CSS GRID SYSTEM 505

CREATING
AND NAMING

COLUMNS
Fortunately, this is really easy to do. Since the default width of any block-level element
like a <div> tag is 100%, you just wrap the container div with yet another div and
set the background color to that outermost div. For example, in the bottom image,
the top area of the page has a large photo that fills that header portion from edge
to edge. Here’s the HTML for that section:

<div class="section header">
 <div class="container">

 <div class="row">
 <div class="three columns">
 <p class="logo">My Company</p>
 </div>
 <div class="nav nine columns">
 Home
 Our Clients
 About Us
 Careers
 </div>
 </div>
 <div class="row action">
 <h1>We do great things</h1>
 <h2>Donec pulvinar ullamcorper metus</h2>
 Learn More
 </div>
 </div>
</div>

The critical part is the outermost <div>. This div surrounds the container div (lines
2 and 19). By adding a class name to that div, you can easily set a background im-
age using CSS:

.header {
 background-image: url(../imgs/header.jpg);
 background-size: cover;
}

Now, since the width of that outer div is always 100%, its background will always
extend the full width of the browser window.

As mentioned on page 503, you may only need a single container div for an entire
web page. However, you may want to include different backgrounds on different
rows, and have those backgrounds fill the entire width of the window.

For example, in the bottom image in Figure 16-4, a photo fills the top part of the
page, and a black strip fills the bottom, so there are two different backgrounds for
two different sections of the page. In this case, you need to include multiple contain-
ers: one for the top section (the photo), one for the middle section (the white area),
and one for the bottom footer (the black strip). In addition, each of those containers
must be wrapped with its own <div> tag. These are the divs that will fill the width of

Css: tHe MIssInG MAnUAL506

CREATING
AND NAMING

COLUMNS
the browser window, and you style each of those separately. You’ll see an example
of creating this full-width background effect in the tutorial on page 509.

Styling Buttons
While Skeleton is mainly a grid system, it does provide a couple of fun and attractive
styles for formatting other types of page elements. In particular, Skeleton creates
cool-looking buttons (see Figure 16-5).

The Skeleton CSS file automatically styles certain HTML elements to look like the
buttons pictured in Figure 16-5. For example, it styles the HTML <button> element,
as well as form input fields with the type submit or button, like the white buttons
pictured in the top of Figure 16-5. Say you have this HTML on a page:

<button>Button Element</button>

Skeleton’s CSS automatically styles it as a white button with rounded corners and
a gray border. Now suppose you want to style other HTML elements like this. For
example, if you have a series of links forming a navigation bar, you may want each
link to look like a Skeleton button. To do so, add the button class name to the link:

Home

Skeleton includes another class—.button-primary—that creates a blue highlighted
button (the bottom blue buttons in Figure 16-5). To turn an HTML button element, for
example, into one of these blue Skeleton buttons, add a class to the HTML like this:

<button class="button-primary">Button Element</button>

If you want to turn a plain link into one of these flashy blue buttons, you have to
add two classes: one to turn the link to a button and another to make it bright blue,
like this:

Home

FiGURE 16-5
Skeleton makes it very easy to turn
links and form submission fields into
simple, attractive buttons.

CHAPteR 16: USING A CSS GRID SYSTEM 507

CREATING
AND NAMING

COLUMNS
Mobile First
Skeleton takes a mobile-first approach to CSS. Mobile first, which you read about on
page 463, means starting with a design that looks good on small mobile devices like
phones. Using media queries, you then add styles that improve the appearance of
the page at different screen widths. Each media query defines a new, wider screen
width, and you add styles to refine the design at each of these “breakpoints” (widths).

Mobile-first CSS involves using min-width settings in the @media directive (page
460). In other words, each media query adds new styles that apply when the screen
is a minimum width. Take this media query, for example:

@media (min-width: 400px) {

}

The styles you add here will only work when the browser window is at least 400
pixels wide. If the screen is only 320 pixels wide, the styles inside this media query
won’t apply to the page. However, the styles will apply when the width of the browser
window is 400 pixels or wider. The mobile-first approach adds successively wider
media queries; each query applies to not only its min-width setting, but also to
browsers that match queries with a larger min-width setting.

A good approach for creating a mobile-first design with Skeleton is to start with
another style sheet. Name it something like custom.css or site.css and attach it to
your web page after the Skeleton CSS files:

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/custom.css">

Within this CSS file, you’ll add rules to refine the look of the site, adding colors, fonts,
backgrounds, and so on. To create a mobile-first design, you need to start with some
basic media queries in place. The creator of Skeleton recommends setting media
queries to a number of different break points, like the following:

* Mobile first queries */
/* applies to ALL widths */

/* Larger than mobile */
/* applies to all widths 400px and greater */
@media (min-width: 400px) {

}
/* Larger than phablet (also point when grid becomes active) */
/* applies to all widths 550px and greater */
@media (min-width: 550px) {

}

Css: tHe MIssInG MAnUAL508

CREATING
AND NAMING

COLUMNS
/* Larger than tablet */
/* applies to all widths 750px and greater */
@media (min-width: 750px) {

}
/* Larger than desktop */
/* applies to all widths 100px and greater */
@media (min-width: 1000px) {

}
/* Larger than Desktop HD */
/* applies to 1200px and greater */
@media (min-width: 1200px) {

}

In mobile-first design, you’ll want to add styles that apply to all devices (mobile or
not) outside the media queries. For example, if you want to apply the same font,
font color, and background colors to page elements regardless of browser width,
then add those CSS rules here.

In addition, you should add the styles that make your site look great on a mobile
device here. You can use Chrome’s Developer Tools (page 104) to help you see what
the page will look like on a mobile device.

Once the mobile version looks good, expand your browser window (or use Chrome’s
Dev Tools again) to see what your page looks like at the first break point of 400
pixels (line 6 in the code above.) If the page looks perfectly fine at this width (they
often do), you can skip this breakpoint and expand your browser window to the
next one (550 pixels).

If the design doesn’t look great—maybe there’s not enough empty space around page
elements—then add new styles at this breakpoint until it looks good. Remember,
any addition you make within the media query won’t apply to earlier breakpoints.
So, for example, if you add a style that increases padding around headlines within
the media query with the min-width of 550 pixels, that padding won’t be added
to the headlines when the browser window is less than 550 pixels wide. In other
words, changes you make inside this media query won’t affect how the design looks
on a phone.

You can continue this process by checking how your site looks at each breakpoint,
adding any styles within the appropriate breakpoint to improve the look at that
browser width. Although the code starting on page 507 has five media queries with
five different breakpoints, don’t feel you have to add styles at each breakpoint. You’ll
probably find that you only need to adjust the look of page elements for a few dif-
ferent widths. In addition, you may find that the min-width values supplied in this
code don’t work with your particular design. For example, your page design might
look great all the way up to 650 pixels, but beyond that, page elements don’t seem

CHAPteR 16: USING A CSS GRID SYSTEM 509

TUTORIAL:
USING A GRID

SYSTEM
to fit or look as good. In this case, just change the min-width value for a particular
breakpoint and add your styles inside that media query (for instance, change 550px
to 650px). In fact, you probably won’t need all of the media queries listed in the code
starting on page 507, so feel free to remove them from the style sheet.

The best way to understand mobile-first design is to see it in action, which you’ll
get a chance to do in the tutorial coming up next.

Tutorial: Using a Grid System
This tutorial shows you how to apply a grid system to a web page using Skeleton.
You’ll start with some basic HTML, add the required CSS files, add and structure
your HTML to create grids, and finally, add custom CSS rules to make the page look
great—including on mobile devices.

To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e.

Adding a Grid
To get started, you’ll attach the required CSS files and add some basic HTML to
create a grid container with rows and columns.

1. In your text editor, open the file 16→index.html.

This is a basic HTML file. It has a head and body, but no HTML in the body yet.
Before you add HTML, however, add links to a few CSS files. There’s already a
link to a Google Font (page 140), but you also need links to the Skeleton files.

2. On the empty line just before the closing </head> tag, add the following
three lines.

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/custom.css">

The first line of code loads the normalize.css file. normalize.css is a very popular
CSS reset file (page 579) and is used in many projects. The second file is the
basic skeleton.css file, which includes the CSS for the grid system. The final
CSS file, custom.css, is mostly empty; it has a few media queries to add styles
for different screen widths. You’ll use this file to add styles to customize the
look of the page.

Next, you’ll add a Skeleton container.

3. Just below the HTML comment <!-- top section --> add the following HTML:

<!-- top section -->
<div class="container">

</div>

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL510

TUTORIAL:
USING A GRID

SYSTEM
As explained on page 495, Skeleton uses the class name container to define
the div that holds the rows you’ll add to a page. You can have any number of
containers on a page, or use just a single container div for all of your rows. As
you’ll see in a minute, there’s a benefit of having more than one container.

Time to add your first row.

4. Inside the <div> you just added, insert two divs to create two rows (addi-
tions are in bold):

<!-- top section -->
<div class="container">
 <div class="row">

 </div>
 <div class="row">

 </div>
</div>

These divs create two rows. To the first row, you’ll add two columns—one for
the site name and the other for navigation.

5. Inside the first <div> with the class row, type the following HTML:

<div class="four columns">
 <p class="logo">My Company</p>
</div>
<div class="eight columns nav">

</div>

The Skeleton grid system divides a row into 12 units. You can divide those units
to make individual columns, so here you have two columns, one 4 units and
the other 8 units. Visually, you have one column that’s 1/3, or around 33%, of
the container width; the second is 2/3, or around 66%, of the container width.

The second column is wider, because it’s going to hold a navigation bar. In fact,
notice that there’s a class name—nav—added to this tag. That’s not a require-
ment of the Skeleton framework; you’re adding it now so you can use it later
to style the navigation bar.

6. Open the file 01-nav.html. Copy the HTML inside it and paste it into the
9-unit-wide div so the HTML looks like this (additions in bold):

<div class="eight columns nav">
 Home
 Our Clients
 About Us
 Careers
</div>

CHAPteR 16: USING A CSS GRID SYSTEM 511

TUTORIAL:
USING A GRID

SYSTEM
These are just simple links and don’t look like much. However, Skeleton includes
some very fine-looking styles to format any element as a button. You simply
add a class name to the <a> tags.

7. Add a class attribute to each link, and assign a button class, like this:

<div class="eight columns nav">
 Home
 Our Clients
 About Us
 Careers
</div>

Skeleton also includes a special class named button-primary that assigns a spe-
cial look to a button. It’s a great way to make the link for the current page stand
out from the others, so visitors can tell what page they’re on. The page you’re
working on is the home page, so you’ll add that special class to the Home link.

8. Add the class name button-primary to the first <a> tag:

<div class="eight columns nav">
 Home
 Our Clients
 About Us
 Careers
</div>

There’s one last row that needs content. This one is simple, because you want
just a single row that spans the entire width of the container.

9. Open the file 02-action.html. Copy the HTML, return to the index.html file,
and paste it inside the second row div inside the container div. The final HTML
of the container div will look like this (additions from this step are in bold):

<!-- top section -->
<div class="container">
 <div class="row">
 <div class="four columns">
 <p class="logo">My Company</p>
 </div>
 <div class="eight columns nav">
 Home
 Our Clients
 About Us
 Careers
 </div>
 </div>
 <div class="row">
 <h1>We do great things</h1>
 <h2>Donec pulvinar ullamcorper metus</h2>

Css: tHe MIssInG MAnUAL512

TUTORIAL:
USING A GRID

SYSTEM
 Learn More
 </div>
</div>

The content in this row will span the entire width of the container—in other
words, there’s only a single column. In this case you don’t add any additional
divs; you just put the HTML inside the row div.

10. Add a class, action, to the last row:

<div class="row action">
 <h1>We do great things</h1>
 <h2>Donec pulvinar ullamcorper metus</h2>
 Learn More
</div>

You’ll use that class name later when you style this area of the page. The name,
action, doesn’t have anything to do with Skeleton—it’s just a class name you
can use can style this section of the page.

11. Save the index.html file and preview it in a web browser.

The page should look like Figure 16-6. At this point it doesn’t look like a marvel-
ously organized grid layout. But it will. Let’s add another row and three columns
this time. To keep your fingers from going numb, we’ll supply you with the basic
HTML for the main content on this page.

FiGURE 16-6
Skeleton provides not
only a grid layout system,
but also some basic
typographic styles and
well-designed buttons.

12. Open the file 03-info.html. Copy the HTML and, in the index.html file, paste
it just below the comment <!-- info section -->.

This is just a basic set of nested divs. There’s one <div> that represents a con-
tainer for rows, and two <div> tags inside that represent rows. In the first row
there’s only an <h2> tag, which will be a single column that spans the entire con-
tainer. In the second row are three additional divs, which will be three columns.

The HTML doesn’t yet have any of Skeleton’s class names—the secret sauce that
applies the grid layout—so you’ll add those next.

CHAPteR 16: USING A CSS GRID SYSTEM 513

TUTORIAL:
USING A GRID

SYSTEM
13. Add class="container" to the first <div> in the HTML you just pasted into

the page.

<!-- info section -->
<div class="container">

This applies Skeleton’s container style to the tag, creating a place to insert rows.
Next you’ll add some rows.

14. Add class="row" to the next two divs inside the container, like this (addi-
tions in bold):

<div class="container">
 <div class="row">
 <h2>Graeco feugiat intellegam at vix</h2>
 </div>
 <div class="row">

Now that you’ve created the rows, you need to create three columns in that
second row. You can do so by adding a class attribute with two class names:
The first name is the number of units the column should take up, and the second
is the name columns.

15. Add class="four columns" to each of the <div> tags inside the second row
within the “info” section of this page. While you’re at it, add the button class
to the three links in each column. The finished HTML for the “info” section
should look like this:

<!-- info section -->
<div class="container">
 <div class="row">
 <h2>Graeco feugiat intellegam at vix</h2>
 </div>
 <div class="row">
 <div class="four columns">
 <p>Mei te possit instructior…</p>
 <p>More info</p>
 </div>
 <div class="four columns">
 <p>Mei te possit instructior…</p>
 <p>More info</p>
 </div>
 <div class="four columns">
 <p>Mei te possit instructior..</p>
 <p>More info</p>
 </div>
 </div>
</div>

Css: tHe MIssInG MAnUAL514

TUTORIAL:
USING A GRID

SYSTEM
(The HTML shown here has been condensed by not including all of the Latin
gibberish in each column.) Finally, you’ll add a footer to the page.

16. Open the file 04-footer.html. Copy the HTML and, in the index.html file,
paste it just below the comment <!-- footer -->.

This HTML contains the proper Skeleton classes already in place (by now you
probably know how Skeleton works, and don’t need any more practice typing
it all out). The HTML you’ve just added inserts another container with one ad-
ditional row and two columns—one 8 units wide and the second 4 units wide.

17. Save the index.html file and preview it in a browser.

The page should look like Figure 16-7. The design is coming together: There are
two columns in the header (the logo and navigation), three columns of main
text, and two columns in the footer.

If you resize your browser window as thin as it will go, you’ll notice that the
columns eventually collapse and stack on top of each other. You’re watching the
responsive part of the Skeleton framework in action. It uses media queries, just
like the ones you read about in the previous chapter, to create a single-column
design for mobile devices.

FiGURE 16-7
With just some well-
structured HTML, a handful
of class names, and the
Skeleton CSS file, creating
multicolumn layouts is a
breeze.

CHAPteR 16: USING A CSS GRID SYSTEM 515

TUTORIAL:
USING A GRID

SYSTEM
Adding Style
Skeleton takes your designs a long way toward an organized visual presentation,
but it’s rather plain. To add skin and clothes to this structure, you need to add your
own CSS. In this section of the tutorial, you’ll add a few design touches.

1. In your text editor, open the file 16→css→custom.css.

This is a mostly empty CSS file. It only includes media queries set to different
breakpoints—the screen widths at which you might want to change the size
and look of page elements. For example, on a phone you’ll probably want to
decrease the size of headlines and eliminate excessive margins and padding.

You’ll start by seeing what happens if you add a background color to a container.

2. On the empty line following the /* Mobile first queries */ comment,
add the following style:

/* Mobile first queries */
/* applies to ALL widths */
.container {
 background-color: pink;
}

Remember that your page has several <div> tags with the class container.
These are the tags that contain rows.

3. Save the custom.css file. Preview the index.html file in a browser.

The page should look like Figure 16-8. Notice that the pink color is constrained
to the width of the content, and is centered in the browser window. If you look
back at the final design in Figure 16-4, you’ll see that you want a photo in the
background of the header area, and that photo should extend the entire width
of the browser window. Skeleton containers don’t do that, so you need to add
another div that will span the entire width of the browser window.

4. Open the index.html file in a text editor. Locate the <!-- top section -->
comment and add another div, just below it:

<!-- top section -->
<div class="section header">
 <div class="container">

Here, you’re beginning to wrap that container div with another div. You’ve given
it a couple of class names—section and header—so you can style this area
separate from other parts of the page. Now you need to close the div.

5. Add a closing </div> just before the <!-- info section --> comment:

</div>
<!-- info section -->

Css: tHe MIssInG MAnUAL516

TUTORIAL:
USING A GRID

SYSTEM
Now there’s a new div that wraps around the container. By default, like all
block-level elements, divs have a width of 100%. That is, they stretch to fill
their parent element, which in this case is the page’s body. So this new div will
fill the browser window. Now you can add a photo that will fill the width of the
browser window, but only sit inside the header section.

FiGURE 16-8
Skeleton’s container
class doesn’t extend to
fill the width of a browser
window. This is a problem
if you add a background
color or image to the
container.

6. Save the index.html file, and return to the custom.css file in your text edi-
tor. Delete the .container rule you added in step 2 above, and replace it
with this rule:

/* Mobile first queries */
/* applies to ALL widths */
.header {
 padding: 50px 0 70px 0;
 background-image: url(../imgs/header.jpg);
 background-size: cover;
}

The padding property just adds a little breathing room at the top and bottom of
this region of the page. The background-size property (discussed on page 245)
scales the image added by the background-image property so it always fills the
background. If you save the files now and preview the index.html file, you’ll notice
that the picture does span the browser window but only fills the header area.

Now you can format that header area.

CHAPteR 16: USING A CSS GRID SYSTEM 517

TUTORIAL:
USING A GRID

SYSTEM
7. Just below the .header style, add a style for the logo:

.logo {
 font-weight: 600;
 color: rgb(255, 209, 143);
}

This page uses a Google font (page 140) named Raleway, which includes three
font weights. As you read on page 157, you can use numbers to indicate dif-
ferent font styles from very thin to very heavy and bold. 600 is a bold version
of the font.

Next, you’ll align the navigation to the right side of the page and improve the
way the buttons look against the photo background.

8. Add three more styles after the .logo style:

.nav {
 text-align: right;
}
.button {
 background-color: rgba(255,255,255,.5);
}
.button:hover {
 background-color: rgba(255,255,255,.3);
}

The .nav style formats the column containing the navigation buttons. In step
5 on page 510, you added nav to the class attribute for that div. The other two
styles change the appearance of the buttons so that they stand out better from
the photo background.

Lastly, you’ll center the text and button that appears below the navigation area.

9. Add three more styles below the button styles you just added:

.action {
 text-align: center;
 padding-top: 75px;
}
.action h1 {
 margin: 0;
}
.action h2 {
 margin: 0 0 20px 0;
}

You added the action class in step 10 on page 512. Here, you’re centering the
content in that area, and removing some of the spacing around the headlines.

Css: tHe MIssInG MAnUAL518

TUTORIAL:
USING A GRID

SYSTEM
10. Save the files and preview the index.html file in a browser.

The page should look like Figure 16-9.

FiGURE 16-9
An image and a few styles
of your own add some skin
to Skeleton’s bones.

The Mobile Design
As you read on page 507, Skeleton uses a mobile-first approach to its CSS. That is,
you start with a design for small mobile devices like phones. Then you add styles
inside a series of media queries that define progressively wider screen widths. Each
set of styles from the previous query applies to the current query and all other
queries with greater min-width values.

Think about a few enhancements you could make for visitors using mobile phones.
Figure 16-10 shows what the current page would look like in an iPhone 5: There’s a
lot of space at top of the screen. You can fix the logo style to put the company name
at the top of the screen, and fix the navigation buttons to fit better.

1. In your text editor, open the file 16→css→custom.css.

The styles you added to this file earlier in this tutorial are at the top of the file,
outside any media queries. In keeping with the mobile first approach, the styles
here will apply regardless of the browser width, on both small and super-wide
desktop displays.

First, you’ll refine the .logo style so that it looks best on a small phone.

CHAPteR 16: USING A CSS GRID SYSTEM 519

TUTORIAL:
USING A GRID

SYSTEM

FiGURE 16-10
Using Google Chrome’s
Developer Tools, you can
simulate the screen size
of many different devices,
including an iPhone 5
(pictured). See page 475
for more information on
this cool tool built into
Chrome.

Css: tHe MIssInG MAnUAL520

TUTORIAL:
USING A GRID

SYSTEM
2. Locate the .logo style and add seven new declarations (additions in bold):

.logo {
 font-weight: 600;
 color: rgb(255, 209, 143);
 background-color: black;
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 padding-left: 10px;
 z-index: 100;
}

The background-color setting makes the company name stand out. The posi-
tion, top, left, and right settings fix this element to the top of the browser
window. The padding setting adds a little breathing room on the left of the
screen. Finally, the z-index setting (page 439) makes sure that as a visitor
scrolls down the page, the logo sits above and on top of other page content
(Figure 16-11, left).

The navigation buttons would look better if they were the same width and didn’t
have so much space around them.

3. Below the .nav rule in the custom.css file, add the following style:

.nav .button {
 width: 48%;
 margin: 2px 0;
}

This style makes the buttons in the navigation bar all the same width. It also
adjusts the margins so the buttons don’t touch (Figure 16-11, top right).

There’s still too much space at the top of the page.

4. Locate the first style in the custom.css—the .header rule—and change the
padding values to 30px 0 20px 0; to remove the space at top.

Now the navigation and logo fit better on a small screen, and there’s not so
much space below the “Learn More” button (Figure 16-11, bottom left). Lastly,
it would be good to make that big headline a tad smaller and add more space
below the nav buttons.

5. Locate the .action rule and change its padding-top value to 37px.

This adds some space between the first headline and the nav buttons. Now to
shrink the font size of those headlines.

CHAPteR 16: USING A CSS GRID SYSTEM 521

TUTORIAL:
USING A GRID

SYSTEM

FiGURE 16-11
Creating a mobile-first design
requires constant iteration—
adjusting styles to adjust
spacing, font size, and element
placement for different types
of devices with different screen
sizes.

Css: tHe MIssInG MAnUAL522

TUTORIAL:
USING A GRID

SYSTEM
6. In the custom.css file, after the .action h2 rule, add the following two styles:

h1 {
 font-size: 3rem;
}
h2 {
 font-size: 2.5rem;
}

If you save the file and preview it using an iPhone 5 setting in Chrome’s dev
tools you’ll see something like the bottom right image in Figure 16-11.

Styling a Breakpoint
So far you’ve made a great start on a mobile-friendly design. It even looks good
on screens up to around 550 pixels. In other words, you don’t need to worry about
adding any styles to the first media query—the one with the min-width value of
400 pixels. However, at 550 pixels, the design starts to look a little weird. This is
the point at which Skeleton’s built-in grid kicks in, and the design changes from
stacked divs to columns.

As you can see in Figure 16-12, the navigation buttons take up a lot of space and aren’t
aligned. It’s time to make your design look better on progressively wider screens.

1. Open the custom.css file in your text editor. Locate the media query with a
min-width of 550px and add the following styles inside it (additions in bold):

@media (min-width: 550px) {
 .header {
 padding: 40px 0 50px 0;
 }
 .logo {
 position: static;
 background-color: transparent;
 font-size: 2rem;
 line-height: 1;
 }
 .nav .button {
 width: auto;
 }
 h1 {
 font-size: 5rem;
 }
 h2 {
 font-size: 4.2rem;
 }
}

CHAPteR 16: USING A CSS GRID SYSTEM 523

TUTORIAL:
USING A GRID

SYSTEM

FiGURE 16-12
Skeleton’s CSS grid springs
into action at 550 pixels.
This is when a media query
kicks in and the styles
inside it follow the column
settings you specified in
the HTML.

These styles reset the spacing in the header section of the page; change the
logo so it’s no longer fixed on the screen; adjust the width of the buttons; and
increase the font size of the headlines (Figure 16-13, top right).

Finally, you’ll just pump up the size of the logo text.

2. In the media query with a min-width of 750px, add one last style:

/* applies to all widths 750px and greater */
@media (min-width: 750px) {

 .logo {
 font-size: 3rem;
 position: relative;
 top: 5px;
 }
}

This changes the size of the company name and moves it over slightly.

Css: tHe MIssInG MAnUAL524

TUTORIAL:
USING A GRID

SYSTEM

FiGURE 16-13
Skeleton’s responsive grid sys-
tem makes it easy to create web
pages that adjust to a variety of
different browser widths, from
phones to television screens.

CHAPteR 16: USING A CSS GRID SYSTEM 525

TUTORIAL:
USING A GRID

SYSTEM
3. Save the custom.css file. Open the index.html file in a web browser, and

shrink the window to less than 550 pixels wide. Then widen it slowly.

The page design when the browser window is less than 550 pixels looks like the
top-left image in Figure 16-13. As you widen the browser, the page will change
two times: once at 550 pixels (top right) and once again at 750 pixels (bottom).

There’s a lot more you can do to perfect this design at different breakpoints.
Play around by adding different styles at the different media query breakpoints
and see how you can improve this design.

You’ll find the finished design in the 16_finished folder inside the tutorials folder.

As you can see, a grid system is a handy tool that makes creating consistent column
widths easy. However, underneath the hood, you’ll find the same principles you
learned earlier in this section of the book: floats, percentage widths, and so on. If you
spend some time looking at the skeleton.css file, you can learn all about how it works.

 TIP  For a great discussion on how to build your own grid system with CSS read the article at https://css-tricks.
com/dont-overthink-it-grids/.

https://css-tricks.com/dont-overthink-it-grids/
https://css-tricks.com/dont-overthink-it-grids/

527

CHAPTER

17

Designers have used a number of different techniques for laying out web pages
during the short life of the Web. At first, they relied on HTML tables to orga-
nize content into rows and columns. Since the HTML <table> tag was never

intended for page layout, though, designers found creative (and complicated) ways
to use the <table> tag to achieve the designs they wanted.

Later, CSS and float-based layouts (like the type described in Chapter 13) provided
a simpler, more logical way to control page design. Float-based layouts are still the
most common type, and designers continue to refine their use. For example, the
simple grid system you learned in the previous chapter is a sophisticated tool for
creating layouts, but it still uses floats to make the magic happen.

However, the Web is always evolving, and the CSS Working Group at the W3C is
working on new ways to give designers flexible and powerful CSS-layout properties.
One of the newer methods that also has fairly broad browser support is flexbox.

Introducing Flexbox
Flexbox adds another layout mode to CSS. You’ve already read about block-level
and inline-block level (page 192) elements. Tables and positioned elements (page
430) are also CSS layout modes. Flexbox, short for flexible box, adds another layout
mode called flex layout.

Flexbox provides a very useful set of properties that let you lay out items in a row
without floating them or using the inline-block value. In fact, the “flexible” part of
flexbox lets the items inside a flex container adjust their widths automatically, very
much like floated page elements using percentage values.

 Modern Web Layout
with Flexbox

Css: tHe MIssInG MAnUAL528

INTRODUCING
FLEXBOX

But flexbox is a lot easier than using floats, and it can provide all of the same layout
advantages, as shown in Figure 17-1. The biggest downside is that not all browsers
support it. Fortunately, the newest browsers—from Internet Explorer 11 and up,
Chrome, Safari, Opera, and Firefox—all support flexbox properties; and only Safari
still requires a vendor prefix.

FiGURE 17-1
Using flexbox, you can
create the same type of
layouts as you can with
floated elements, but
with a lot less HTML and
CSS. In fact, there are
some things that are very
easy to do with flexbox
that are extremely
difficult to do any other
way. See how the three
columns in the middle of
the page are all the same
height? And how the
“More Info” buttons align
to the bottom of each
column? Flexbox makes
all that easy.

Flexbox Basics
On the surface, flexbox is pretty simple. There are only two components you need
to make it work:

1. The Flex container.

Any HTML element can be a flex container, but usually you’ll use a <div> or some
other structural HTML tag. The tag you use for the flex container will contain
children and other tags that make up the second part of the flexbox model.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 529

INTRODUCING
FLEXBOX

2. Flex items.

Tags nested directly inside the flex container element are called flex items. Every
direct child of the container element is automatically turned into a flex item. You
can place any HTML tag inside the flex container. What’s more, the child tags
don’t even have to be of the same type. For example, you could have one para-
graph and four divs inside a flex container, and each of those will be a flex item.

Keep in the mind that only children of the flex container turn into flex items. If
you had a <div> tag that you turned into a flex container and placed an unor-
dered list inside it, only the tag would be a flex item. The tags nested
inside the tag would not be flex items.

In other words, as you’re probably used to by now, flexbox is as easy as adding a
<div> to a page and nesting additional divs inside it. For example, here’s some simple
HTML that can easily be used to create a row of items using flexbox:

<div class="container">
 <div>A flex item</div>
 <div>Another flex item</div>
 <div>A third flex item</div>
</div>

The outer div is the container, and the divs inside are the child elements. A browser
will display this series of divs as block-level items, filling the entire width of the outer
div and stacked one on top of the other as pictured in the top image in Figure 17-2.

However, you can easily transform the outermost div into a flex container using the
display property and setting its value to flex like this:

.container {
 display: flex;
}

That single line of CSS gives you the second image from the top in Figure 17-2. Each
of the child divs are converted automatically into flex items and placed side by side
in a row: no floats or inline-blocks needed.

Unfortunately, at the time of this writing, Safari requires a vendor prefix for this
property, so to make the above CSS work in all current browsers including Safari,
you would write:

.container {
 display: -webkit-flex;
 display: flex;
}

Css: tHe MIssInG MAnUAL530

INTRODUCING
FLEXBOX

Finally, you can make the divs inside the container the same width and fill up the
container by simply giving those divs a flex property with a value of 1, like this:

.container div {
 flex: 1;
}

Again, to work in Safari, you’ll need the vendor-prefixed version as well:

.container div {
 -webkit-flex: 1;
 flex: 1;
}

You’ll learn more about the flex property in the next part of this chapter, but, in a
nutshell, this line of code tells the browser to make sure each div (flex item) is the
same width. This leads to the image second from the bottom in Figure 17-2.

 TIP  Autoprefixer (https://github.com/postcss/autoprefixer) is a tool that automatically adds vendor prefixes
to your CSS code. Just write normal CSS, run it through Autoprefixer tool, and your style sheet will contain all the
necessary vendor prefixes.

Because flex items automatically touch, you might want to add some space to sepa-
rate each of them. There are many ways to do that, but here’s one simple solution
for this particular example:

.container div:nth-of-type(1n+2) {
 margin-left: 20px;
}

This nth-of-type selector (page 66) simply selects every div starting at the second
one, and sets its left margin to 20 pixels (this handy trick makes sure the first div
doesn’t get a margin that indents it 20 pixels from the edge of the container). This
results in the bottom image in Figure 17-2.

Conceptually, flexbox is pretty simple. As you can see, there’s not a lot of CSS
required to achieve this effect. Best of all, you don’t have to worry about items es-
caping from their containers as you do with floated elements (page 405), and you
can easily create equal-height columns. The only thing that makes flexbox difficult
is understanding the large number of flexbox properties and imagining the almost
limitless combinations of them all.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 531

INTRODUCING
FLEXBOX

FiGURE 17-2
Flexbox makes it very
easy to create equal-sized,
equal-height, side-by-side
columns without any
floats. The extra empty
space you see around
the items (the lightest
gray color) is simply
padding added to the flex
container.

Css: tHe MIssInG MAnUAL532

FLEX
CONTAINER
PROPERTIES Flex Container Properties

Both flex containers and flex items have their own set of CSS properties that control
how a browser displays them. There are a handful of properties specific to just flex
containers, the most important of which is the display property. To transform any
HTML tag into a flex container:

display: -webkit-flex
display: flex;

You’ve seen the display property before. You also use it to turn items into block-
level elements or inline-block elements, and even to hide them: display: none;.
You use the same property to convert an element into a flex layout.

Remember that you apply this property to the container element—an element that
wraps around other tags, which will become the flex items. You can even turn a flex
item into a flex container for some interesting effects. You’ll see an example of that
technique on page 559.

 NOTE  The examples in this chapter will include Safari’s vendor-prefixed versions of each of the flexbox
properties. To create a flex container in Safari, you need to use the display property and set its value to -webkit-
flex:

display: -webkit-flex;

All other Safari-specific flex properties use the standard flex property name, with -webkit- at the beginning.
For example, the flex-flow property for Safari looks like this:

-webkit-flex-flow: column wrap;

By the time you read this, these vendor prefixes may no longer be required. Consult http://caniuse.
com/#search=flexbox to determine if you still need to include them.

Flex-Flow
Flex items, by default, are placed side by side as items in a row. In addition, a browser
will display those flex items in a single row, without wrapping. In other words, no
matter how narrow you make the browser window, the browser will keep those items
side by side without dropping one below another—even if this makes content flow
outside of a flex item (Figure 17-3, left).

http://caniuse.com/#search=flexbox
http://caniuse.com/#search=flexbox

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 533

FLEX
CONTAINER
PROPERTIES

FiGURE 17-3
Flex items normally don’t wrap,
and if the browser window is
made narrow enough, content
inside a flex item will spill outside
of its borders (left). But you can
also display flex items as stacked
on top of each other, and even
reverse the order in which they are
displayed (right).

The flex-flow property lets you control both the direction in which the items are
displayed and whether or not they can wrap onto the next line. Flex-flow requires
two values, separated by a space. The first is the direction and the second is whether
the item can wrap. For example:

.container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: column-reverse nowrap;
 flex-flow: column-reverse nowrap;
}

The first property value is the direction, and there are four possible settings:

• row is the normal setting. It displays flex items side by side, with the first item in
the HTML source code being the left-most item, and the last item in the HTML
source on the right (Figure 17-3, left).

• row-reverse also displays the flex items side by side, but reverses their order
on screen. In other words, the last item to appear in the HTML source appears
on the leftmost side of the container, and the first item in the HTML source ap-
pears at the right side of the container.

Css: tHe MIssInG MAnUAL534

FLEX
CONTAINER
PROPERTIES

• column displays the flex items as stacked blocks one on top of the other. This
is the normal way a group of divs would be displayed, so you might not use
this setting often. However, it does come in handy when using media queries
(page 460) and designing for mobile devices. You can convert the display of
flex items as side-by-side items in a row (for larger screens) or into stacked divs
for mobile devices by switching the direction to column within a media query
for a small mobile screen (you’ll see an example of this in the tutorial, in step
2 on page 564).

• column-reverse is the just like the column setting, except that the display order
of the items is reversed. The item that appears last in the HTML source appears
at the top of the container (Figure 17-3, right).

The second property controls whether flex items will wrap onto a new row (when
using the row direction option) or onto a new column (when using the column direc-
tion option.) There are three possible values:

• nowrap is the normal behavior of flex items inside a flex container. The browser
will keep the items in the same row no matter how narrow the browser window
(Figure 17-3, left). In the case of columns, the browser will stacks the items one
on top of the other (Figure 17-3, right).

• wrap lets items that don’t fit inside the container’s width drop down to a new
row (or over to a new column) as pictured in the top image in Figure 17-4. In
order for flex items to wrap onto new rows (or columns), you’ll also need to set
some values on the flex items as described on page 552.

• wrap-reverse is like the wrap option, but wraps items in a reverse order (Figure
17-4, bottom).

Flex items can be placed side by side in a row or stacked on top of each other in
a single column, depending on which direction property you set (row or column).
However, since the row option is most useful for page layout, the examples in the
rest of this chapter on flexbox will apply to flex items laid out in a row.

 NOTE  The flex-flow property is shorthand for two other flex-related CSS properties: flex-direction
and flex-wrap. For example

flex-flow: row wrap;

is the same as

flex-direction: row;
flex-wrap: wrap;

Because flex-flow requires less code, it’s the method recommended in this book.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 535

FLEX
CONTAINER
PROPERTIES

FiGURE 17-4
Flex items that don’t fit within the
width of a flex container can wrap
onto a new row. The wrap option sim-
ply drops the last item down to a new
row (top), but the wrap-reverse
option places the wrapped item above
the other items in the row.

Css: tHe MIssInG MAnUAL536

FLEX
CONTAINER
PROPERTIES

Justify-content
The justify-content property determines where a browser should place the flex
items within the row. This property only works if the flex items have set widths and if
the total width of the items is less than the flex container. If you’re using flex widths
(page 546) for flex items, the justify-content property has no effect at all. There
are five possible values for this property:

• flex-start aligns items to the left of the row (#1 in Figure 17-5). Confusingly,
if you choose the row-reverse direction (page 553), the flex-start option
aligns all items to the left.

• flex-end aligns items to the right side of the row (#2 in Figure 17-5), unless of
course you set the row-reverse direction (page 533), in which case it aligns
items to the left.

• center centers the flex items in the middle of the container (#3 in Figure 17-5).

• space-between evenly spaces out the flex items, dividing the space between
them equally while aligning the leftmost item to the left and the rightmost item
to the right (#4 in Figure 17-5). This is a great option for displaying a series of
buttons that fill the entire width of a container: for example, a navigation bar
that evenly spans the top of a page banner, or for displaying pagination links
at the bottom of a blog post.

• space-around evenly distributes the leftover space within the container around
all the items adding space to the left- and rightmost items as well (#5 in Figure
17-5).

To use this property you add it to the style formatting the flex container. You also
need to make sure that the items have a set width. For example, to get the layout
pictured in #5 in Figure 17-5, you could use CSS code like this:

.container {
 display: -webkit-flex;
 display: flex;
 -webkit-justify-content: space-around;
 justify-content: space-around;
}
.container div {
 width: 200px;
}

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 537

FLEX
CONTAINER
PROPERTIES

FiGURE 17-5
The justify-content
property is useful when
the width of the container
is greater than the widths
of the items inside. It lets
you determine where the
items are placed and how
they are distributed within
the container.

Align-items
The align-items property determines how flex items of different heights are verti-
cally placed within a flex container. By default, flex items stretch to fit the container, so
are all equal heights (see #5 in Figure 17-6). However, there are several other options:

• flex-start aligns the tops of all flex items to the top of the container (#1 in
Figure 17-6).

• flex-end aligns the bottoms of all flex items to the bottom of the container
(#2 in Figure 17-6).

• center aligns the vertical centers of all flex items to the vertical center of the
container (#3 in Figure 17-6).

Css: tHe MIssInG MAnUAL538

FLEX
CONTAINER
PROPERTIES

• baseline aligns the baseline of the first element within each flex (#4 in Figure
17-6).

• stretch is the normal behavior of flex items. It stretches each item in the con-
tainer to the same height (#5 in Figure 17-6). This is a particularly difficult effect
to achieve using other CSS techniques.

FiGURE 17-6
The align-items
property is useful when
you have flex items of
different heights and you
want to control where
to place them vertically
within the container. You
can also control this on a
per-item basis using the
align-self property
described on page 544.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 539

FLEX
CONTAINER
PROPERTIES

These settings have a different effect when a flex container’s direction is column
(page 532). In that case, the align-items property controls where stacked flex items
of different widths are placed horizontally within the flex container.

To use the align-items property, add it to the style formatting the flex container.
For example, to get the layout pictured in #2 in Figure 17-6, you could use CSS code
like this:

.container {

 display: -webkit-flex;
 display: flex;
 -webkit-align-items: flex-end;
 align-items: flex-end;
}

Align-content
The last property you can apply to a flex container is the align-content property.
This property dictates how a browser places flex items that span over multiple lines.
This property only works if two conditions are true: First, the flex container must
have wrap turned on (page 532); second, the flex container must be taller than the
rows of flex items. In other words, there must be additional vertical space inside the
container that’s greater than the combined heights of the rows of items. This isn’t
that common a situation, but you may find a time when you’ll need it.

This align-content property supports six values:

• flex-start places the rows of flex items at the top of the flex container (#1 in
Figure 17-7).

• flex-end places the flex item rows at the bottom of the container (#2 in Figure
17-7).

• center aligns the vertical center of all rows to the vertical center of the container
(#3 in Figure 17-7).

• space-between evenly distributes extra vertical space between the rows, plac-
ing the top row at the top of the container and the bottom row at the bottom
of the container (#4 in Figure 17-7).

• space-around evenly distributes space on the top and bottom of all rows. This
adds space above the top row and below the bottom row (#5 in Figure 17-7).

• stretch is the normal behavior of rows of flex items. It stretches each item within
a row to match the height of the other items in the row. Note that depending on
how much content is in each item, rows may be of different heights. For example,
in example #6 in Figure 17-7, the bottom row items have less content than the
items in the top row, and are slightly shorter because of that.

Css: tHe MIssInG MAnUAL540

FLEX
CONTAINER
PROPERTIES

FiGURE 17-7
The align-content
property is only useful if
your flex container and
flex items meet specific
conditions: you’ve turned
on wrapping for the con-
tainer, you have multiple
rows of flex items, and the
height of the container is
greater than the height
of the flex rows. In other
words, you won’t need this
property often.

To use the align-content property, add it to the style formatting the flex container.
You also need to make sure that the flex-flow property (page 532) includes the
wrap option, and that the height of the container is greater than the height of the
rows of items. For example, to get the layout pictured in #5 in Figure 17-6, you could
use CSS code like this:

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 541

FLEX ITEM
PROPERTIES

.container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: row wrap;
 flex-flow: row wrap;
 -webkit-align-content: space-between;
 align-content: space-between;
 height: 600px;
}

 NOTE  Flex containers are not block-level elements, so some properties don’t apply to flex containers or
items. For example, the column property (page 409) doesn’t apply to flex containers, and the float and
clear properties (page 405) don’t apply to flex items.

Flex Item Properties
Setting properties on the flex container element is just the beginning. There are a
handful of additional properties that you can apply to flex items—the direct children
of the flex container—which control the order in which those items are displayed,
their widths, and how they are aligned within the container.

The Order Property
At the beginning of the Web, content was displayed from the top of the browser
window to the bottom, following the same order the HTML appeared within the
file. This linear approach was great when all you wanted was to post the text of a
scientific paper. As graphic designers got hold of the Web, they started organizing
content into rows and columns using the techniques you’ve see in this book: first
tables, and then CSS floats.

However, even though designers have come up with clever ways to break the single-
column, top-down flow that’s the default presentation of any web page, they’ve
always been trapped by the source order of the HTML in the file. For example, if
you want to create a three-column design—a sidebar, a main column of text, and
another sidebar—the most common approach is to create three divs and use floats
to turn them into columns:

<div class="sidebar1">
 <!-- navigation and stuff here -->
</div>
<div class="main">
 <!—the main article, the reason people are here, the most important content
-->
</div>
<div class="sidebar2">
 <!—more (less important) stuff here -->
</div>

Css: tHe MIssInG MAnUAL542

FLEX ITEM
PROPERTIES

The problem with this approach is that the first sidebar—which might be stuffed
with navigation, notes, and even advertisements—comes first in the source order
of the file. That means that as Google’s search spiders visit the page, they have to
wade through a lot of side content before getting to the heart of the page—the main
content in that second div. In addition, screen-readers used by visually impaired
web surfers also have to climb over that mass of ancillary content before getting
to the main article.

There are some tricky ways around this, like using negative margin values to pull
columns into a new order, but they’re all hacks that involve some precise CSS. There
should be a better way. And indeed there is, thanks to flexbox. The order property
lets you assign a numeric value to a flex item which dictates where within the row
(or column) this item should appear. The HTML source order doesn’t matter at all:
You can make the last block of HTML appear first in the row, or the first block last
(Figure 17-8, bottom).

FiGURE 17-8
Normally, the order you
write your HTML dictates
the order in which page
elements appear on the
screen (top). However,
using the CSS order
property, you can display
side-by-side flex items
in any order you’d like
(bottom).

For example, say you wanted to recreate the three-column design—a sidebar on the
left, main content in the middle, and a sidebar on the right. You could reorganize
your HTML to be more search-engine and screen-reader friendly by placing the
main content first:

<div class="content">
 <div class="main">
 <!—the main article, the reason people are here, the most important con-
tent -->
 </div>

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 543

FLEX ITEM
PROPERTIES

 <div class="sidebar1">
 <!-- navigation and stuff here -->
 </div>
 <div class="sidebar2">
 <!—more (less important) stuff here -->
 </div>
</div>

You could then turn the outer div—the “content” div here—into a flex container and
use the order property to arrange the divs inside into any order on the page you’d like:

.content {
 display: -webkit-flex;
 display: flex;
}
.sidebar1 {
 -webkit-order: 1;
 order: 1;
}
.main {
 -webkit-order: 2;
 order: 2;
}
.sidebar2 {
 -webkit-order: 3;
 order: 3;
}

Now, even though the main div is listed first in the HTML, it appears between the two
sidebars, while the first sidebar appears at the left side of the flex container. Simple!

The numbers you use for the order property work similarly to the z-index value
(page 439). That is, you don’t need to use the numbers 1, 2, or 3. A browser will
simply arrange the items in order from smallest number to largest. For example,
in the above example, you could replace the 1, 2, and 3 with 10, 20, and 30 or 5, 15,
and 60. For sanity’s sake, however, you should use an easy-to-understand system;
ordering those items using 1, 2, 3, 4, and so on makes the most sense.

However, sometimes you might want to just move one column to the far left or far
right of a row. In that case, you can simply set the order on that particular item, but
not on any others. For example, you could simplify the above code and still move
the first sidebar to the far left like this:

.content {
 display: -webkit-flex;
 display: flex;
}

Css: tHe MIssInG MAnUAL544

FLEX ITEM
PROPERTIES

.sidebar1 {
 -webkit-order: -1;
 order: -1;
}

Using -1 moves the item to the left side of the flex container, before all of the other
rows. Conversely, you could move that same sidebar to the far right by setting its
order number to 1, while leaving the other elements’ order properties unset.

 NOTE  When setting the flex container’s flex direction to column, the order property will adjust how the
flex items stack from top to bottom: A flex item with a lower order number will appear above a flex item with a
larger order number. In addition, there are direction options for column-reverse and row-reverse that
place the rows and columns in reverse order, so in those cases you need to adjust your numbers to account for
the fact that those containers are listed in reverse order.

Align-self
The align-self property works just like the align-items property used for flex
containers. However, whereas align-items applies to all the flex items within a con-
tainer, align-self applies to just the individual flex item. You apply the property to
an item (not the container) and it overrides any value for the align-items property.
In other words, you could align all of the flex items inside a container to the top of
the container, but have just a single item align to the bottom.

The possible values for align-self are the same as align-items (see page 537)
and produce the same effect, but just for individual flex items (see Figure 17-9).

FiGURE 17-9
The align-self
property is similar to
the align-items
property, but only applies
to individual flex items. In
addition, the baseline
option only makes
sense if you have more
than one item whose
align-self property
is baseline (#4).

Mini-Tutorial: Auto Margins for Flex Items
Here’s another amazing feature of flex items: Flex item margins don’t collapse.
That may not sound so amazing at first, but this handy property means you can
use auto margin settings to add margins that adjust to the available space. You’ve

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 545

FLEX ITEM
PROPERTIES

seen something similar when you learned how to use margin: 0 auto; to center a
web page on page 30.

To best understand how auto margins work and why they’re so amazing, follow
this brief tutorial. To get started, download the tutorial files located on this book’s
companion website at https://github.com/sawmac/css_mm_4e.

1. In your text editor, open the file 17→nav-bar→nav-bar.html.

This is a basic HTML file. It has a head and a body, and some simple HTML rep-
resenting a banner. There’s already a style sheet that contains basic styling, so
the page looks like the top image in Figure 17-10. The HTML you’re interested
in is the following:

<div class="banner">
 <p class="logo">Our Company</p>
 Our Clients
 About Us
 Careers
</div>

There’s a div, inside of which is a paragraph and three links. First, turn the div
into a flex container.

2. In the page’s head section, there’s an empty set of <style> tags. Click be-
tween the opening and closing <style> tags and add one style:

.banner {
 display: -webkit-flex;
 display: flex;
}

This turns the banner div into a flex container, and turns the paragraph and links
inside it into flex items. If you save and preview the page now, it’ll look like the
second-from-top image in Figure 17-10. The navigation buttons are really tall,
because the normal behavior of flex items is to grow until all items are the same
height. You can change that and align the buttons to the bottom at the same
time using the align-items property.

3. Update the .banner style to include the both the WebKit and un-prefixed
versions of the align-items property:

.banner {
 display: -webkit-flex;
 display: flex;
 -webkit-align-items: flex-end;
 align-items: flex-end;
}

The flex-end value (page 537) aligns the bottom of the flex items with the bot-
tom of the flex container. The navigation bar looks like the image third from the

https://github.com/sawmac/css_mm_4e

Css: tHe MIssInG MAnUAL546

FLEX ITEM
PROPERTIES

top in Figure 17-10. Now, you could achieve something similar to this by floating
the paragraph with the company name in it, but you’d have to do a lot of tricky
CSS to get those buttons aligned to the bottom like that. With flexbox, it’s just
a single property.

Finally, you’ll use an auto margin to quickly achieve a common design require-
ment—aligning the company logo to the left of the banner and the navigation
buttons to the right.

4. Add one more style to the internal style sheet on the page. The finished
style should look like this (additions in bold):

<style>
.banner {
 display: -webkit-flex;
 display: flex;
 -webkit-align-items: flex-end;
 align-items: flex-end;
}
.logo {
 margin-right: auto;
}
</style>

With flex items, an auto margin tells the browser to automatically set the margin
size based on the available space. In this case, the logo and three nav buttons
don’t fill the entire banner, so giving the logo a right margin of auto tells the
browser to use whatever empty space is available inside the banner and place
it to the right of “Our Company.” This has the effect of pushing the navigation
buttons all the way to the other side of the banner. Amazing!

The finished banner should look like the bottom image in Figure 17-10. You could
have achieved the same effect by assigning the auto value to the first button’s
left margin. That would have added all the available space to the left of that
first button, pushing all the other buttons the right.

 NOTE  For a more advanced design that uses flexbox and media queries to create a mobile-friendly naviga-
tion bar, look in the tutorial files: 17_finished→nav-bar-responsive→nav-bar.html.

Flex
You can do a lot with the basic properties you’ve already learned. However, the flex
property is what gives the flexbox its flexibility. This property is the key to control-
ling the width of flex items; it lets you easily create columns that “flex,” or change
width to match the size of their container, even when the size is unknown or dynamic.
In this way, the flex property can let you create responsive web designs, like the
ones you read about in Chapter 15, in a fraction of the time, and with far less math.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 547

FLEX ITEM
PROPERTIES

FiGURE 17-10
Flexbox makes it easy
to implement common
interface elements like
this banner made up of a
logo and three navigation
buttons. It only takes a
few properties to align
the logo to the left of the
banner, align the buttons
to the right, and place the
button at the bottom of
the banner.

Unfortunately, the flex property can be a bit confusing, since it’s really a shorthand
property that combines three other flex properties. This chapter will take each
property one at a time to build your knowledge gradually.

The first value you supply to flex is a number that indicates the relative width of
that flex item. For example, if you have three divs inside a flex container, you can
set each of their flex values to 1 to make them all the same width:

.container {
 display: -webkit-flex;
 display: flex;
}
.container div {
 -webkit-flex: 1;
 flex: 1;
}

Since all three divs have the same value, they will be the same width as each other
(Figure 17-11, top). The number you supply for the flex value is simply a relative unit,
not an absolute measure. In the top example, each flex item is about 33% the width
of the container. However, if one of those divs has a flex value of 2, then the widths
change (Figure 17-11, middle). The two divs on the left are each one unit, while the

Css: tHe MIssInG MAnUAL548

FLEX ITEM
PROPERTIES

one on the right is two units. In other words, it’s twice as wide as the other divs, so
it now takes up half of the space in the flex container.

The actual width of the flex item, therefore, depends on both the flex value you
provide in your CSS and the number of flex items in the container. For example, in
the top and bottom images in Figure 17-11, the flex items all have a flex value of 1.
However, in the top example, each item takes up around 33% of the container, and
in the bottom each item takes up around 50% of the container width. They have the
same flex value, but the number of items dictates the exact width of each.

The second value you can set for the flex property is also a number, but it repre-
sents the flex-shrink property. This property comes into play when the container
is not as wide as the total of the widths of the items inside it. In this case, flex-
shrink controls how narrow a flex item can be, or how much it can shrink, and it’s
dependent upon flex items having set widths, which is the job of the final value of
the flex property. The next section will discuss that value first, and then return to
how the flex-shrink property works.

FiGURE 17-11
The flex property makes
all the flex items in a row
grow and shrink to fit the
available width of the
container.

 NOTE  For examples of great uses for flexbox check out the “Solved by Flexbox” site at http://philipwalton.
github.io/solved-by-flexbox/.

http://philipwalton.github.io/solved-by-flexbox/
http://philipwalton.github.io/solved-by-flexbox/

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 549

FLEX ITEM
PROPERTIES

The last value is the flex-basis property, which sets a base width for a flex item.
You can use an absolute value like 100px or 5em, or a percentage value like 50%. You
can think of the flex-basis value as a kind of minimum width for a flex item. When
you set the flex-basis value, it sets a width for that item, but depending on other
flex settings, the flex item may grow larger (or smaller) than the flex-basis value.

For example, in the top image in Figure 17-12, the flex-basis value for each item
is 250px. The first value is 0—that’s the value that determines how much the item
flexes or grows. When it’s set to 0, it doesn’t grow, so the item’s width matches the
flex-basis value of 250 pixels.

However, whenever you provide a number greater than 0 for that first value, the
entire width of the row will be filled. So in the middle image in Figure 17-12, although
the flex-basis value for each item is 250px, the actual width of the items varies,
because the flex-grow values are different—1, 2, and 4, respectively.

FiGURE 17-12
If you don’t set a flex-
basis value, and you set
the flex-grow value to
0, then the item shrinks
to as thin as it can be. For
example, the first two
items in the bottom image
are set to flex: 0
1;. There’s no minimum
width set, and there’s no
flex-grow value, so
they shrink. The last item
on the right, however,
has a flex value of 1, so
it’s flexible, and grows to
fill the remaining space
available in the row.

Digging into the Math
So how exactly does the browser figure out how wide a flex item should be when
both a flex-grow and flex-basis value are set? Strap in, ’cause it’s time to do a
bit of math. It isn’t all that difficult, but you will have to wade through a bunch of
addition, subtraction, division, and multiplication.

Take a look at Figure 17-13. It’s a single flex container holding three flex items. Be-
cause each item has a flex-grow property value greater than 0, those items will
grow to fill the entire width of the container, which is 1000 pixels wide. They also
have different flex-basis values: 300, 200, and 100 pixels. Start by totaling those
minimum widths:

300 + 200 + 100 = 600

Css: tHe MIssInG MAnUAL550

FLEX ITEM
PROPERTIES

This value, 600, is the total amount of space the items want to take up. However,
the container is wider than that—it’s 1000 pixels wide. So you can determine how
much extra space remains by subtracting the item widths from the container width:

1000 – 600 = 400

In other words, the browser has 400 pixels of extra space that it has to figure out
what to do with. So, it looks at the various flex-grow values—1, 3, and 4—and de-
termines how to divide the remaining space. 1 + 3 + 4 is 8, so the first item should
get 1/8 of the leftover space. 1/8 of 400 (which is the same as 400/8) is 50. The first
item’s width is the total of its flex-basis value and its share of the leftover space:

300 + 50 = 350 pixels

 The second item should get 3/8 of the remaining space added to its flex-basis value:

200 + (50 * 3) = 350 pixels

And the last item receives ½ of the 400 pixel leftovers, so its width is

100 + 200 = 300 pixels

There is some method to all of this math madness, and as you can see, there’s a lot
of work the browser has to do to set the width of flex items. You’ll find some simple
rules of thumb for choosing values for the flex property on page 553.

FiGURE 17-13
The actual width of a
flex item is dependent
upon the width of the
flex container, the
flex-grow value, and
the item’s flex-basis
width value.

Returning to the Flex-Shrink Property
The second value for the flex property determines how much a flex item may shrink
if the total of the widths of the items is wider than the container. This value is only
important if the container has the nowrap setting (page 552), so that all of the items
must sit next to each other in a single row.

For example, the flex containers for the examples pictured in Figure 17-14 are 1000
pixels wide. Because the flex-basis value of each item is 400 pixels (totaling 1200
pixels for all three), they can’t fit within the container without shrinking. In the first
row, the items all share the same flex-shrink value: 1. This means they’ll all shrink
(decrease in width) by the same amounts.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 551

FLEX ITEM
PROPERTIES

POWER USERS’ CLINIC

Understanding Flex Default Values
If you don’t set the flex property on flex items within a flex
container, browsers provide a default setting, which is the
equivalent of:

flex: 0 1 auto;

With this setting, the width of each flex item is automatically
determined by the content inside it. A flex item with a lot of
text and pictures will be a lot wider than an item with just
two words.

However, browsers apply different defaults when you explicitly
assign the flex property to an item. The CSS flex property
is actually shorthand for three other properties: flex-grow,
flex-shrink, and flex-basis.

So the single line of code flex: 1 1 400px; is the same as

flex-grow: 1;
flex-shrink: 1;
flex-basis: 400px;

When you leave out the flex-shrink and flex-basis
values—for example, flex: 1;—the browser assigns a
default value of 1 to flex-shrink, but sets the default
value of flex-basis to 0%. In other words, flex: 1; is
the equivalent of:

flex-grow: 1;
flex-shrink: 1;
flex-basis: 0%;

These settings are very different from the default values a
browser applies if you simply omit flex entirely. By setting
the flex-basis to 0%, the width of each flex item is com-
pletely dictated by the flex-grow property: In other words,
the amount of content inside each flex item has no effect on
how wide the various items are.

For more information on the ins and outs of the flexbox (techni-
cally called the Flex Layout Box Module), visit the W3C: http://
dev.w3.org/csswg/css-flexbox/.

FiGURE 17-14
If the flex-shrink
value is 0, and the
container’s wrap setting
is nowrap, then the flex
items in a row will extend
outside the container (bot-
tom). You probably want
to avoid this predicament.

However, in the middle row in Figure 17-14, the first item has a flex-shrink value of
1, while the other two have flex-shrink values of 4. So the items aren’t all the same
widths. Unlike flex-grow, where the bigger the number the wider the item can be,

http://dev.w3.org/csswg/css-flexbox/
http://dev.w3.org/csswg/css-flexbox/

Css: tHe MIssInG MAnUAL552

FLEX ITEM
PROPERTIES

the flex-shrink value determines how much narrower an item can become in rela-
tion to other items in the same row. This means the larger the flex-shrink value, the
narrower an item is allowed to be. So, in the middle row in Figure 17-14, two items
on the right are narrower, because their flex-shrink values are larger.

The flex-shrink value adds another layer of complexity in trying to picture how flex
items work. Because of this, and because it has no effect when the flex container
allows items to wrap, you can simply use a flex-shrink value of 1 most of the time.

 NOTE  The flex-shrink property only comes into play when the container doesn’t let items wrap into
additional rows. In other words, when its flex-flow property is set like this:

.container {
 display: flex;
 flex-flow: row nowrap;
}

if the container allows wrapping, a flex item simply drops down to the next row, when it can no longer sit next
to other items in a single row (see Figure 17-15).

Wrapping Flex Items
The real value of the flex-basis property comes into play when you set a flex
container to allow wrapping:

.container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: row wrap;
 flex-flow: row wrap;
}

When wrapping is enabled, flex items will drop to another row when they cannot fit
within the container. For example, imagine you have a flex container with a width
of 1000 pixels, and you have three flex items, each with a flex-basis of 400. Be-
cause 400 + 400 + 400 is more than 1000 pixels, the three flex items can’t all fit.
However, since 400 + 400 is less than 1000 pixels, two of the items can fit side by
side in a single row.

In this case, the browser will display the first two items in a single row and wrap the
third item onto its own row (Figure 17-15, top). Because the three items each have a
flex-grow property, they will fill the entire row, so the bottom item, which sits by
itself, will stretch to fill the entire width of the container.

If the container shrinks so that no flex items can fit side by side, the browser then
places each flex item on its own row (Figure 17-15, bottom).

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 553

FLEX ITEM
PROPERTIES

FiGURE 17-15
The flex-basis prop-
erty is useful for defining
a recommended width for
a flex item. This comes in
handy if the flex container
isn’t wide enough for the
items to sit side by side.
Setting the flex-flow
wrap option means flex
items can wrap onto ad-
ditional rows if they won’t
fit within a single row
(bottom).

The Bottom Line
As you can see, there are a lot of things to keep track of when you begin combining
all three values of the flex property. They each interact in different ways, depending
upon the width of the container, and trying to keep track of every possible combina-
tion can be mind-bending. However, here are a few things that can help you guide
your understanding of when to use each property:

• Fit all flex items in a single row. If you simply want to create a row of items
of various widths, set the flex container to not wrap and supply only a single
value to the flex property. For example, say you have two sidebars and a main
content item in a row. You want the main content area to take up half of the
available width of the container, and each sidebar to take up 25%. You could
simply do something like this:

Css: tHe MIssInG MAnUAL554

FLEX ITEM
PROPERTIES

.container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: row nowrap;
 flex-flow: row nowrap;
}
.sidebar1 {
 -webkit-flex: 1;
 flex: 1;
}
.sidebar2 {
 -webkit-flex: 1;
 flex: 1;
}
.main {
 -webkit-flex: 2;
 flex: 2;
}

You don’t need to supply flex-shrink or flex-basis values at all, since you
simply want a series of flexible containers whose widths stay in the same pro-
portion to each other.

• Keep row proportions, but wrap when the container gets too small to display
the items side by side. If you want the flex items to wrap onto new rows when
their content can no longer be displayed in a single row, then set the wrap op-
tion on the container and the flex-basis value to a specific unit that matches
the flex-grow ratios:

.container {
 display: -webkit-flex;

 display: flex;
 -webkit-flex-flow: row wrap;
 flex-flow: row wrap;
}
.sidebar1 {
 -webkit-flex: 1 1 100px;
 flex: 1 1 100px;
}
.sidebar2 {
 -webkit-flex: 1 1 100px;
 flex: 1 1 100px;
}
.main {
 -webkit-flex: 2 1 200px;
 flex: 2 1 200px;
}

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 555

FLEX ITEM
PROPERTIES

To make sure the flex items retain the same proportional widths dictated by the
flex-grow property, you should set flex-basis values that match the flex-
grow proportions. For example, in the above code there are three flex items.
They have flex-grow values of 1, 1, and 2. So set their flex-basis values using
the same proportions: 100px, 100px, and 200px, for example. The exact values
you use will depend on the browser width at which you want the items to wrap.
Given the code above, the flex container would have to get below 400 pixels
before the items would wrap.

The flex-grow property is used to allocate leftover space once the widths of the
flex items are totaled (see the box on page 549). So if you don’t use flex-basis
values that match the proportions of the flex-grow properties, you’ll end up
with some unexpected results. For example, in the bottom row in Figure 17-16,
the middle item has a flex-grow value of 2. However, it’s not twice as wide as
either of the other items. That’s because its flex-basis value is the same as
those of the other two items—100px. So even though that item gets more of the
leftover space added to its width than the other items, it simply adds that space
to its 100-pixel width—the same width shared by the other items.

• Set flex-basis values to act as breakpoints to determine when items wrap onto
new rows. You can use the flex-basis value as a way to simulate the breakpoints
you learned about for responsive design on page 463. For example, if you have
three items that you’d like to display side by side when the page is greater than
600 pixels wide, you could set the flex-basis for each item to 200px. When
the browser gets narrower than 600 pixels, then the first and second items will
sit side by side, while the third item drops to its own row. When the browser
window is narrower than 400 pixels, each item will sit on its own row, creating
three stacked rows.

Css: tHe MIssInG MAnUAL556

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

FiGURE 17-16
To keep flex items
proportionally sized to
each other, make sure your
flex-basis values—
the base widths for your
flex items—share the
same proportions as their
flex-grow values (top).
If they don’t, then you
won’t be able to accurately
set consistent proportions
for the width of your flex
items in a row, as shown
here in the bottom row.

Tutorial: Build a Flexbox Layout
In this tutorial, you’ll take a linear layout that stacks one div on top of another (Figure
17-17, left) and create columns using flexbox (Figure 17-17, right). In addition, you’ll
create a few visual effects that are extremely easy with flexbox but nearly impos-
sible with other CSS techniques.

To get started, download the tutorial files located on this book’s companion website
at https://github.com/sawmac/css_mm_4e.

https://github.com/sawmac/css_mm_4e

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 557

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

FiGURE 17-17
You can create multi-
column layouts without
using any floats with
flexbox.

Styling the Navigation Bar
This design consists of three flex containers—one for the navigation button, one for
the main content area, and one for the footer (Figure 17-18). Each container will hold
a variable number of flex items: four buttons in the navigation bar, three content
boxes in the main area, and two regions in the footer. The first step is create those
flex containers.

1. In your text editor, open the file 17→flexbox-layout→css→custom.css.

This is an empty CSS file, to which you’ll add the CSS for flexbox. The index.
html page has two style sheets linked to it: this empty file and a file named
base.css, which contains a lot of styling information to make the basic page
elements look good.

First, you’ll set up the main flex containers.

2. In the custom.css file add a group selector rule:

.nav, .boxes, .footer {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: row wrap;
 flex-flow: row wrap;
}

Each of those class names corresponds to a class that is applied to the three re-
gions outlined in Figure 17-18. This basic rule turns those divs into flex containers

Css: tHe MIssInG MAnUAL558

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

and sets them up to display as a row of flex items that can wrap into additional
rows. The –webkit vendor prefix is included so these styles will work in Safari
as well as Chrome, Firefox, Opera, and Internet Explorer 11.

Next, you’ll do something that’s usually difficult to achieve. You’ll spread out
the navigation buttons evenly so that the leftmost button is on the left side of
its container, the rightmost button touches the right side of the container, and
the other two buttons are distributed evenly between.

FiGURE 17-18
The design for this page
includes three flex con-
tainers (the top, middle,
and bottom rows), which
are divided into separate
flex items (numbered
elements).

3. Add another style following the one you added in the last step:

.nav {
 -webkit-justify-content: space-between;
 justify-content: space-between;
}

The justify-content property applied to the flex container controls how the
flex items are placed inside the container. In this case, the space-between value
distributes all the flex items inside it evenly across the container. This is really
cool, and usually difficult to do using other CSS techniques.

You can also give those buttons flexible widths by giving them percentage
width values, so try that next.

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 559

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

4. Style the links by adding one more style to the style sheet:

.nav a {
 width: 23%;
}

This style makes each link take up 23% of the flex container’s width. As the
container shrinks, the buttons get narrower. The remaining space is evenly dis-
tributed between each button, thanks to the style you added in the previous step.

There you have it. A navigation bar made up of evenly distributed, variable-width
buttons, and all done without floats or other difficult CSS.

Adding Three Columns
Now it’s time to tackle the main content area. Currently, there are three divs, each
containing a More Info button, stacked on top of each other. By adding a flex
property, you can place them side by side. Remember that in step 1 on page 559,
you turned the div that holds these three divs into a flex container. Now you’ll turn
the divs into flex items.

1. At the bottom of the custom.css file add the following rule:

.boxes div {
 -webkit-flex: 1 1 250px;
 flex: 1 1 250px;
 }

This makes each of the divs take up an equal area of their flex container. They’re
each the same width, but currently they touch each other, and it’s a bit hard
to read that way (and the fact that the text is in Latin doesn’t help either). The
design should now look like the top image in Figure 17-19. To make the columns
easier to read, you’ll add a background color and a bit of space.

2. Edit the style you added in the last step by adding four more properties to
it (additions are in bold):

.boxes div {
 -webkit-flex: 1 1 250px;
 flex: 1 1 250px;
 margin: 10px;
 border-radius: 5px;
 padding: 10px 10px 0 10px;
 background-color: rgba(0,0,0,.1);
}

The columns should now look like the middle image in Figure 17-19. Notice how
each of the columns are the same height, even though the content inside them is
of different lengths. This is another magic flexbox moment: By default, columns
in a row are all the same height. That’s really hard to do with regular CSS, and
some designers even resort to using JavaScript to get this effect.

Css: tHe MIssInG MAnUAL560

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

However, the buttons, which are so prominent in the design, are staggered at
different vertical positions, which is distracting. It would be great if there were
a way to force those buttons to the bottom of each column. Thanks to flexbox,
there is!

Margins work slightly differently with flex items. For example, you can add auto
margin to the top of each button to force it down to the bottom of its column.
However, you can only use this margin magic on flex items. At this point, only
the columns themselves are flex items; the buttons and paragraphs inside are
regular elements.

Fortunately, the flexbox model lets you assign more than one role to a flex item.
The columns can be flex items within their outer container (the row), and they
can be flex containers holding flex items (the paragraph and button) inside them.

3. Add four more lines of code to the .boxes div style:

.boxes div {
 -webkit-flex: 1 1 250px;
 flex: 1 1 250px;
 margin: 10px;
 border-radius: 5px;
 padding: 10px 10px 0 10px;
 background-color: rgba(0,0,0,.2);
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: column;
 flex-flow: column;
}

This defines the divs as flex containers, and it sets the flow direction of the flex
items inside to column, which stacks the paragraph and buttons on top of each
other. You may be saying to yourself, “Hey self, they’re already stacked on top
of each other, why do I need to do this?” Flex items can take advantage of auto
margins, so you can force those buttons to the bottom of each div.

4. Add another style after the .boxes div rule:

.boxes .more {
 margin-top: auto;
}

Each button has the class of more applied to it, so this selector selects the but-
tons inside the columns. The top margin is set to auto, which tells the browser
to automatically add whatever empty space is left inside the flex item above the
top of the button. This auto-margin has the effect of pushing all of the buttons
to the bottom of each column (Figure 17-19, bottom).

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 561

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

FiGURE 17-19
Flex items have many
virtues: Columns are, by
default, the same height.
That’s normally very tricky
to manage. In addition,
you can distribute empty
space automatically so
that the browser can
perform some magic—like
aligning the buttons to the
bottom of each column
(bottom).

Formatting the Footer
You’ve worked your way to the bottom of this page. There’s just the footer left to
format. In the footer, there’s a copyright notice and a signup form. This content
would look good divided into two columns.

Css: tHe MIssInG MAnUAL562

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

1. Add two new styles to the bottom of the custom.css file:

.footer .copyright {
 -webkit-flex: 2 1 500px;
 flex: 2 1 500px;
 margin-right: 30px;
}

.footer .signup {
 -webkit-flex: 1 1 250px;
 flex: 1 1 250px;
}

These styles set the copyright area to be around twice as wide as the signup
form. A bit of right-margin helps to push the signup form away from the copy-
right notice (Figure 17-20, top).

The last thing to do is to organize the form elements. It would be great if the
Submit button sat right next to the text field, perfectly aligned with it. You can
do that with flexbox, but first you must turn the <form> tag into a flex container.
Then, all of the elements inside—the label, the text field, and the button—can
act like flex items.

2. At the top of the custom.css file, update the style to include the selector
.footer form (changes in bold):

.nav, .boxes, .footer, .footer form {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-flow: row wrap;
 flex-flow: row wrap;
}

This selector makes the form inside the footer a flex container, and turns the
label, the text field, and the button inside the form into flex items. Next, you’ll
make the label span the entire width of the form.

FiGURE 17-20
Using flexbox, it’s easy
to align form fields, like
the text field and submit
button in the bottom
image. To see other great
examples of using flexbox
with forms, visit http://
philipwalton.github.io/
solved-by-flexbox/demos/
input-add-ons/.

http://philipwalton.github.io/solved-by-flexbox/demos/input-add-ons/
http://philipwalton.github.io/solved-by-flexbox/demos/input-add-ons/
http://philipwalton.github.io/solved-by-flexbox/demos/input-add-ons/
http://philipwalton.github.io/solved-by-flexbox/demos/input-add-ons/

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 563

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

3. Add a style to the end of the custom.css file to make the label fill the column:

.signup label {
 width: 100%;
}

In the previous step, you turned the form into a flex container that’s set to wrap.
Setting the width of the label in this rule to 100% forces the two input fields to
wrap to another row. However, the text field and button are not sitting side by
side. A couple of styles will fix that.

4. Add two more rules to the end of the custom.css style sheet:

.signup input[type="email"] {
 border-radius: 4px 0 0 4px;
 -webkit-flex: 1;
 flex: 1;
}
.signup input[type="submit"] {
 border-radius: 0 4px 4px 0;
 padding: 0 10px;
}

These rules use attribute selectors (page 59) to identify the text field for receiv-
ing the user’s email address and the button for submitting the form. Setting the
email field’s flex value to 1 means the field grows to fill all the available space
that’s not occupied by the Submit button.

In addition, by using border-radius and rounding only the left corners of the
text field and the right corners of the Submit button, you’ve created what looks
like a unified form widget. The result looks like the bottom image in Figure 17-20.

Changing the Navigation Bar for Mobile
Thanks to the flexibility of flex items, the design you’ve created works really well at
different browser widths. Go ahead and save the custom.css file; open the index.
html file and resize the browser window. You’ll see that the design shrinks to fit the
browser window: The three columns in the middle of the page turn into two columns,
and eventually one column.

The last thing worth adding is a simple media query to convert the navigation bar
from side-by-side buttons to stacked buttons at small screen sizes.

1. At the bottom of the custom.css file, add a media query:

@media (max-width: 500px) {

}

This media query works when the page is 500 pixels wide or less. In other
words, the styles you place inside it will apply only to devices whose screens
are narrower than 501 pixels.

Css: tHe MIssInG MAnUAL564

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

Inside this media query, add a style to change how the flex items (the nav but-
tons) are displayed inside the navigation bar.

2. Add the following style to the media query you added in the last step (ad-
ditions are in bold):

@media (max-width: 500px) {
 .nav {
 -webkit-flex-flow: column;

 flex-flow: column;
 }
}

This changes the flow direction of the flex items. Instead of sitting next to each
other in a row, the navigation buttons will sit one on top of the other in a column.

Finally, you can make the buttons fill the container.

3. Add one last style to the media query so it looks like this:

@media (max-width: 500px) {
 .nav {
 -webkit-flex-flow: column;
 flex-flow: column;
 }
 .nav a {
 width: 100%;
 margin-bottom: 2px;
 }
}

This last style forces each link to fill the width of the flex container. It also adds
a bit of space below each link to add visual separation.

4. Save the custom.css file and preview the index.html file in a browser. Re-
size the browser, first dragging it to fill your screen, and then dragging it
to make it narrower.

See how the design changes as you narrow the browser window (Figure 17-21)?
First, at full width (#1) the main content area has three columns, and the footer
has two. Then, at a slightly narrower size, the three columns turn into two, and
the footer elements stack on top of each other (#2). Finally, at a width of less
than 500 pixels, all the content appears in a single column, and the navigation
bar turns into a series of stacked buttons (#3).

Flexbox is a fun and exciting addition to CSS. It makes many previously difficult (or
almost impossible) layout chores simple. It simplifies responsive design and reduces
the math you need to create proportionally designed columns. Its biggest drawback
is that not all browsers understand the flexbox syntax, and simply ignore flex proper-

CHAPteR 17: MODERN WEB LAYOUT WITH FLEXBOX 565

TUTORIAL:
BUILD A

FLEXBOX
LAYOUT

ties. However, with support in all current browsers including Internet Explorer, there’s
no reason not to start experimenting with flexbox in your web designs.

FiGURE 17-21
The CSS flexbox display
mode lets you create
designs that “flex,” or
change based on the width
of the browser window.
Used with media queries,
flexbox lets you easily
create responsive designs
for all screen widths.

Advanced CSS
PART

4

CHAPTER 18:

 Improving Your CSS Habits

CHAPTER 19:

 More Powerful Styling with Sass

569

CHAPTER

18

At this point, this book has covered most aspects of Cascading Style Sheets.
With the addition of CSS-based layout, which you learned about in Part Three,
you’re now an unstoppable web-designing machine. But even after you’ve

mastered all the properties CSS offers, nailed those annoying browser bugs, and
learned great tricks for producing beautiful web pages, you can still stand to learn
a few techniques that’ll make your CSS easier to create, use, and maintain.

This chapter covers some recommendations for creating and using CSS. None of
them count as “must know” CSS essentials, but they can make your CSS work go
faster, leading to less frustration and greater productivity.

Adding Comments
When it’s time to edit a style sheet weeks, months, or even years after creating it,
you may find yourself wondering, “Why did I create that style? What does it do?”
As with any project, when you’re building a website, you should keep notes of what
you did and why. Fortunately, you don’t need a pad of paper to do this. You can
embed your notes right into your style sheets using CSS comments.

A CSS comment is simply a note contained within two sets of characters, /* and */.
As with HTML comments, CSS comments aren’t read or acted on by a web browser,
but they do let you add helpful reminders to your style sheets. You don’t need to
comment everything in your style sheets—after all, most properties like color, font-
family, border-color, and so on are self-explanatory. But it’s a good idea to add a
comment for a style when it isn’t immediately obvious what the style or property

 Improving Your
CSS Habits

Css: tHe MIssInG MAnUAL570

ORGANIZING
STYLES

does. For example, you might reset the CSS box model so that the width and height
of an element is calculated with the border and padding taken into account:

* {
 box-sizing: border-box;
}

At the time you wrote the style, you knew what you were doing, but will you still
remember three months later? Or what if someone who’s not familiar with this trick
needs to edit your CSS at some point? Add a comment, and it’ll be easy for you or
someone else who needs to work on the site to figure out what the style does and
why it was created:

/* Make width values include padding and borders */
* {
 box-sizing: border-box;
}

If you have a lot to say, comments can span multiple lines as well. Just begin with
/*, type all the comments you’d like, then end with */. This is handy when adding
background information at the beginning of a style sheet, as pictured in Figure 18-1.

Keep in mind that adding comments adds code to your files, making them larger and
slower to download. In reality, you’d have to add a lot of comments before you’d see
them significantly affect the file’s download speed, but you can use online tools like
CSS Minifier (http://cssminifier.com) to strip out comments when you want to create
a CSS file that’s ready to go onto your website. A better tool, however, is Sass. You’ll
learn about Sass in the next chapter, but one feature of this CSS coding tool is the
ability to leave comments in the CSS you edit, but strip them out automatically in
the CSS files that are used on your web pages (see the note on page 600 to learn
this useful trick).

Organizing Styles
You’ve learned a lot in this book about creating styles and style sheets. But when
you’re designing a site that’s meant to last, you can incorporate a few other steps to
help you out in the future. The day will come when you need to change the look of
the site, tweak a particular style, or hand off your hard work to someone else who’ll
be in charge. In addition to leaving notes for yourself and others, a little planning
and organization within your CSS will make things go more smoothly down the road.

Name Classes Clearly
You’ve already learned the technical aspects of naming different types of selec-
tors—class selectors begin with a . (period) to identify the styles as a class, and
ID styles begin with the # symbol. In addition, the names you give IDs and classes
must begin with a letter and can’t contain symbols like &, *, or !. But beyond those
requirements, following some rules of thumb can help you keep track of your styles
and work more efficiently.

http://cssminifier.com

CHAPteR 18: IMPROVING YOUR CSS HABITS 571

ORGANIZING
STYLES

FiGURE 18-1
CSS comments can help
you identify your styles
for later editing. You can
also use them to provide
helpful introductory infor-
mation that lets you keep
track of the version of the
site or style sheets, add
copyright information,
and identify yourself as
the CSS master behind
it all.

NAME CLASSES BY PURPOSE NOT APPEARANCE
It’s tempting to use a name like .redhighlight when creating a style to format eye-
catching, fire-engine-red text. But what if you (or your boss or your client) decide that
orange, blue, or chartreuse look better? Let’s face it: a style named .redhighlight
that’s actually chartreuse is confusing. It’s better to use a name that describes the
purpose of the style. For example, if that “red” highlight is intended to indicate an
error that a visitor made while filling out a form, then use the name .error. When
the style needs to alert the visitor of some important information, a name like .alert
would work. Either way, changing the color or other formatting options of the style
won’t cause confusion, because the style’s still intended to point out an error or alert
the visitor—regardless of its color.

Likewise, avoid names that provide exact sizes, like .font20px. While that font may
be 20 pixels today, maybe you’ll make it 24 pixels tomorrow, or switch from pixels

Css: tHe MIssInG MAnUAL572

ORGANIZING
STYLES

to ems or percentages. Using a tag selector may be a better route: Apply the font
size to an <h2> or <p> tag, or even a descendant selector like .sidebar p.

DON’T USE NAMES BASED ON POSITION
For the same reason you avoid naming styles by appearance, you should avoid nam-
ing them by position. Sometimes a name like .leftSidebar seems like an obvious
choice—“I want all this stuff in a box placed at the left edge of the page!” But it’s
possible that you (or someone else) will want the left sidebar moved to the right,
top, or even bottom of the page. All of a sudden, the name .leftSidebar makes no
sense at all. A name more appropriate to the purpose of that sidebar—like .news,
.events, .secondaryContent, or .mainNav—serves to identify the sidebar no matter
where it gets moved. The names you’ve seen so far in this book—.gallery, .figure,
.banner, .wrapper, and so on—follow this convention.

The temptation is to use names like .header and .footer (for elements that always
appear at the top or bottom of the page, for example) since they’re so easily un-
derstood, but you can often find names that are better at identifying the content of
an element—for example, .branding instead of .header. On the other hand, some-
times using a name with position information does make sense. For example, say
you wanted to create two styles, one for floating an image to the left side of a page
and another for floating an image to the right side. Since these styles exist solely to
place an image to the left or right, using that information in the style names makes
sense. So .floatLeft and .floatRight are perfectly legitimate names.

AVOID CRYPTIC NAMES
Names like .s, .s1, and .s2 may save you a few keystrokes and make your files a bit
smaller, but they can cause trouble when you need to update your site. You could
end up scratching your head, wondering what all those weird styles are for. Be suc-
cinct, but clear: .sidebar, .copyright, and .banner don’t take all that much typing,
and their purpose is immediately obvious.

 NOTE  You can also learn a lot from checking out the naming conventions used on other sites. The web
inspector built into most browsers gives you a quick way to reveal style names.

Don’t Repeat Yourself
Typing the same code over and over wastes your time, and also adds extra code to
your style sheets, making them slower to download for your site’s visitors. When you
create several page elements that look very similar with only slight visual differences,
you’ll probably find that you’ve typed the same CSS properties over and over again.

For example, say you have three different types of buttons—an orange button for
adding a new item to a shopping cart, a red button for deleting an item from a
shopping cart, and a green button for submitting an order. You could add different
classes for each button in the HTML like this:

CHAPteR 18: IMPROVING YOUR CSS HABITS 573

ORGANIZING
STYLES

<button class="add">Add to Cart</button>
<button class="delete">Delete</button>
<button class="order">Submit Order</button>

You could then create three styles like this:

.add {
 border-radius: 3px;
 font: 12px Arial, Helvetica, sans-serif;
 color: #444;
 background-color: orange;
}
.delete {
 border-radius: 3px;
 font: 12px Arial, Helvetica, sans-serif;
 color: #444;
 background-color: red;
}
.order {
 border-radius: 3px;
 font: 12px Arial, Helvetica, sans-serif;
 color: #444;
 background-color: green;
}

Notice that most of the properties in these three styles are the same. Not only does
that repeated code add to the file size, but if you decide to change the font for the
buttons, you’ll have to edit three styles instead of one.

A better approach is to create a “base” style that all the buttons share, as well as
individual styles that just contain the differences between the buttons. For example,
if you’re using the HTML <button> element for these, you could create a style for
that element, which would apply to all three buttons. Then create three more styles,
one for each button, like this:

button {
 border-radius: 3px;
 font: 12px Arial, Helvetica, sans-serif;
 color: #444;
}
.add {
 background-color: orange;
}
.delete {
 background-color: red;
}
.order {
 background-color: green;
}

Css: tHe MIssInG MAnUAL574

ORGANIZING
STYLES

Not only is this less code, it’s also more manageable. If you wanted to change the
font on all of the buttons, you’d just change the font once in the button style.

Use Multiple Classes to Save Time
You can take the “Don’t repeat yourself” motto even further by using multiple classes.
For example, say you want some images to float to the left and have a right margin,
while some photos float to the right and have a left margin. You also want those
images to have the same border styles around them; however, you don’t want all
images on the page to have a border. See Figure 18-2 for an example.

The most obvious solution is to create two class styles, each having the same border
properties but different float and margin properties. You then apply one class to
the images that should float left and another to the images that should float right.
But what if you need to update the border style for all of these images? You’ll need
to edit two styles, and if you forget one, the images on one side of the page will all
have the wrong frames!

FiGURE 18-2
The two photos pictured
here have the same class
style applied to them. This
style provides the border
around the image. In ad-
dition, the left image has
a class style that merely
floats the image left,
whereas the right image
has a different class that
floats it to the right. In
other words, each image
has two classes applied
to it.

There’s a trick that works in all browsers that not all designers take advantage of—
multiple classes applied to the same tag. This just means that when you use the class
attribute for a tag, you add two (or more) class names like this: <div class="note
alert">. In this example, the <div> tag receives formatting instructions from both
the .note style and the .alert style.

CHAPteR 18: IMPROVING YOUR CSS HABITS 575

ORGANIZING
STYLES

Say you want to use the same border style for a group of images, but some of the
images you want floating left and others you want floating right. You’d approach
the problem like this:

1. Create a class style that includes the formatting properties shared by all
the images.

This style could be called .imgFrame and have a 2-pixel, solid black border
around all four edges.

2. Create two additional class styles, one for the left-floated images and an-
other for the right-floated images.

For example, .floatLeft and .floatRight. One style would include properties
unique to one set of images (floated left with a small right margin), while the
other style includes properties specific to the second group of images.

3. Apply both classes to each tag, like so:

or

At this point, two classes apply to each tag, and the web browser combines the
style information for each class to format the tag. Now if you want to change
the border style, then simply edit one style—.imgFrame—to update the borders
around both the left and right floated images.

 NOTE  You can list more than two classes with this method; just make sure to add a space between each
class name.

This technique is useful when you need to tweak only a couple of properties of one
element, while leaving other similarly formatted items unchanged. You may want a
generic sidebar design that floats a sidebar to the right, adds creative background
images, and includes carefully styled typography. You can use this style throughout
your site, but the width of that sidebar varies in several instances. Perhaps it’s 33
percent wide on some pages and 25 percent wide on others. In this case, create
a single class style (like .sidebar) with the basic sidebar formatting and separate
classes for defining just the width of the sidebar—for example, .w33per and .w25per.
Then apply two classes to each sidebar: <div class="sidebar w33per">.

Use Shorthand Properties
Many CSS properties can be condensed into shorthand versions that require less
code and less typing. For example, the padding property takes the place of four
padding properties: padding-top, padding-right, padding-bottom, and padding-
left. So, you can replace this code:

Css: tHe MIssInG MAnUAL576

ORGANIZING
STYLES

td {
 padding-top: 5px;
 padding-right: 10px;
 padding-bottom: 5px;
 padding-left: 10px;
}

with this:

td {
 padding: 5px 10px;
}

There are shorthand properties for font settings (page 165), borders (page 195),
padding (page 189), margins (page 189), transitions (page 336), background (page
231), and lists (page 171). You’ll get more done if you commit them to memory.

 TIP  If the value for any property takes some kind of measurement value—30px, 40%, 10em, for example—you
can leave off the unit if the value is a 0. In other words, you should use:

padding: 0;

And not:

padding: 0px

Grouping Related Styles
Adding one style after another is a common way to build a style sheet. But after a
while, what was once a simple collection of five styles has ballooned into a massive
500-style CSS file. At that point, quickly finding the one style you need to change
is like looking for a needle in a haystack. (Of course, haystacks don’t have a Find
command, but you get the point.) If you organize your styles from the get-go, you’ll
make your life a lot easier in the long run. There are no hard and fast rules for how
to group styles together, but here are two common methods:

• Group styles that apply to related parts of a page. Group all the rules that
apply to text, graphics, and links in the banner of a page in one place. Then
group the rules that style the main navigation in another, and the styles for the
main content in yet another.

• Group styles with a related purpose. Put all the styles for layout in one group,
the styles for typography in another, the styles for links in yet another group,
and so on.

USING COMMENTS TO SEPARATE STYLE GROUPS
Whichever approach you take, make sure to use CSS comments to introduce each
grouping of styles. Say you collected all the styles that control the layout of your
pages into one place in a style sheet. Introduce that collection with a comment like
this:

CHAPteR 18: IMPROVING YOUR CSS HABITS 577

ORGANIZING
STYLES

/* *** Layout *** */

or

/* --------------------------
 Layout
--------------------------- */

As long as you begin with /* and end with */, you can use whatever frilly combina-
tion of asterisks, dashes, or symbols you’d like to help make those comments easy
to spot. You’ll find as many variations on this as there are web designers.

Using Multiple Style Sheets
As you read in Chapter 17, you can create different style sheets for different types of
displays—maybe one for a screen and another for a printer. But you may also want to
have multiple onscreen style sheets, purely for organizational purposes. This takes the
basic concept from the previous section—grouping related styles—one step further.
When a style sheet becomes so big that it’s difficult to find and edit styles, it may be
time to create separate style sheets that each serve an individual function. You can
put styles used to format forms in one style sheet, styles used for layout in another,
styles that determine the color of things in a third, and so on. Keep the number of
separate files reasonable, since having, say, 30 external CSS files to weed through
may not save time at all. In addition, the more external CSS files, the more requests
your web server has to answer. That’s one source of slower website performance.

At first glance, it may seem like you’ll end up with more code in each web page,
since you’ll have that many more external style sheets to link to or import—one line
of code for each file. Ah, but there’s a better approach: Create a single external style
sheet that uses the @import directive to include multiple style sheets. Figure 18-3
illustrates the concept.

Here’s how to set up this type of arrangement:

1. Create external style sheets to format the different types of elements of
your site.

For example, a color.css file with styles that control the color of the site, a forms.
css file that controls form formatting, a layout.css file for layout control, and
a main.css file that covers everything else (see the right side of Figure 18-3).

2. Create an external style sheet and import each of the style sheets you cre-
ated in step 1.

You can name this file base.css, global.css, site.css, or something generic like
that. This CSS file won’t contain any rules. Instead use the @import directive to
attach the other style sheets like this:

@import url(main.css);
@import url(layout.css);
@import url(color.css);
@import url(forms.css);

Css: tHe MIssInG MAnUAL578

ORGANIZING
STYLES

That’s the only code that needs to be in the file, though you may add some
comments with a version number, site name, and so on to help identify this file.

FiGURE 18-3
Let a single external style sheet serve as gatekeeper for your site’s CSS.
Each HTML page in the site can link to a single CSS file (base.css in this
example). The HTML never has to change, even if you want to add or
remove additional external style sheets. Just update the base.css file
by adding or removing @import directives.

3. Finally, attach the style sheet from step 2 to the HTML pages of your site
using either the <link> tag or the @import method. (See page 26 for more
on using these methods.) For example:

<link rel="stylesheet" href="base.css">

Now, when a web page loads, the browser loads base.css, which in turn tells
the browser to load the four other style sheets.

It may feel like there’s a whole lot of loading going on here, but once the browser
has downloaded those files and stored them in its cache, it won’t have to retrieve
them over the Internet again. (See the box on the next page.)

There’s another benefit to using a single external style sheet to load several other
style sheets: If you decide later to further divide your styles into additional style
sheets, then you won’t have to muck around with the HTML of your site. Instead, just
add one more @import directive to that gatekeeper style sheet (see step 2). If you
decide to take all the styles related to type out of the main.css file and put them in
their own type.css file, then you won’t need to touch the web pages on your site.
Simply open the style sheet with all of the @import directives in it and add one more:
@import url(type.css).

This arrangement also lets you have some fun with your site by swapping in different
style sheets for temporary design changes. Say you decide to change the color of
your site for the day, month, or season. If you’ve already put the main color-defining
styles into a separate color.css file, then you can create another file (like summer_fun.
css) with a different set of colors. Then, in the gatekeeper file, change the @import

CHAPteR 18: IMPROVING YOUR CSS HABITS 579

ELIMINATING
BROWSER

STYLE
INTERFERENCE

directive for the color.css file to load the new color style file (for example, @import
url(summer_fun.css)).

 NOTE  CSS preprocessors let you have the best of both worlds: They let you edit multiple CSS files, but then
convert them into a single style sheet for your site, reducing download times. You’ll learn about these advanced
tools in the next chapter.

Eliminating Browser Style Interference
When you view a web page that hasn’t been “CSS-ified” in a web browser, you can
see that HTML tags already have some minimal formatting: Headings are bold, the
<h1> tag is bigger than other text, links are underlined and blue, and so on. In some
cases, different web browsers apply slightly different formatting to each of these
elements. You may experience some frustrating “it almost looks the same in Internet
Explorer and Firefox and Chrome” moments.

As discussed on page 109, to deal with these browser differences, it’s a good idea
to “zero out” the formatting for commonly used tags so your audience can see the
beautiful styling you worked so hard to create (see Figure 18-4). All you have to
do is set up some basic styles at the beginning of your style sheet that remove the
offensive formatting.

Here are some things you may want to do to make browsers stop meddling with
your designs:

• Remove padding and margins. Browsers add top and bottom margins to
most block-level elements—the familiar space that appears between <p> tags,
for example. This can cause some weird display issues, like when the exact
margin amount is inconsistently applied across browsers. A better approach
is to remove padding and margins from the block-level tags you use, and then
purposely add the amount you want by creating new styles.

• Apply consistent font sizes. While text inside a <p> tag is displayed as 1 em,
web browsers apply different sizes to other tags. You can force all tags to be 1
em to begin with, and then create additional styles with specific font sizes for the
different tags. That way, you stand a much better chance of getting consistent
font sizes across browsers.

• Set a consistent line height. Browsers can have subtle differences in the line
height (page 163) values they use by default. By setting a multiplier on the
<body> tag—body { line-height: 1.2; }—you make sure that browsers apply
the same line height. The 1.2 value is equivalent to 120 percent of the tag’s text
size. You can, of course, change this value to match your design sense.

• Improve table borders and create consistent table cells. As you read on
page 363, applying a border to a table cell usually creates an unpleasant gap
between cell borders and doubles up the borders between cells. You should

Css: tHe MIssInG MAnUAL580

ELIMINATING
BROWSER

STYLE
INTERFERENCE

get rid of both the space and the extra borders. In addition, the <th> and <td>
tag are given different alignments and font weights.

FiGURE 18-4
Doesn’t look like much, and that’s
the point! Eliminate browser dis-
play differences by “zeroing out”
the normal browser styles. Then
create your own—and better—
styles to add margins, padding,
and font sizes that are consistent
across browsers.

• Remove borders from linked images. Some browsers add a colored border
around any image inside of a link. If you’re like most people, you find this border
both unattractive and unnecessary. Remove it and start fresh.

• Set consistent list indents and bullet types. Different browsers indent bulleted
and numbered lists in different ways, and you’ll even find the type of bullet used
can vary between browsers. It’s good to set a consistent indent and bullet type.

• Remove quote marks from quoted material. If you ever use the <q> tag to
identify a quote (<q>To err is human</q>, for example), then you may have
noticed that some browsers (Firefox, Safari) automatically add quote marks
(' ') around the quote and some (Internet Explorer 6 and 7) don’t. And even
within the browsers that do add quote marks, the type of mark added varies;
for example, IE8 inserts single quotes (' '), while Firefox adds double quotes
(" "). For a consistent presentation, it’s best to remove these quote marks.

To put these ideas into action, here are a few basic styles you can add at the begin-
ning of your style sheet:

/* reset browser styles */

* { box-sizing: border-box; }

html, body, div, span, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote,
pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd,
q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt,

CHAPteR 18: IMPROVING YOUR CSS HABITS 581

ELIMINATING
BROWSER

STYLE
INTERFERENCE

dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot,
thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption,
footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark,
audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 vertical-align: baseline;
}

article, aside, details, figcaption, figure, footer, header, hgroup, menu,
nav, section {
 display: block;
}

body {
 line-height: 1.2;
}

table {
 border-collapse: collapse;
 border-spacing: 0;
}

ol {
 padding-left: 1.4em;
 list-style: decimal;
}

ul {
 padding-left: 1.4em;
 list-style: square;
}

blockquote, q {
 quotes: none;
}

blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}

/* end reset browser styles */

Css: tHe MIssInG MAnUAL582

USING
DESCENDANT
SELECTORS

The first style changes how browsers treat the CSS width property (page 204). It
makes sure that any widths you set also include the width of borders and padding—
you can read about the box-sizing property on page 207.

The next two styles here are group selectors that apply the same formatting to
every one of the tags listed. Add these styles to the beginning of your style sheet,
and then, further down the style sheet, override them on a case-by-case basis. After
zeroing out the margins and font size for the <h1> tag, you may want to give the
<h1> tag a specific top margin value and font size. Just add another style, like so:

h1 {
 margin-top: 5px;
 font-size: 2.5em;
}

Thanks to the cascade (see Chapter 5), as long as this <h1> style appears in the
style sheet after the group selector (the reset style that removes the margins and
changes the font size), the new values take precedence.

You’ll find the file reset.css in the 18 folder inside the tutorials folder. Just copy the
code from that file into your own style sheets.

 NOTE  Some designers take a different approach to the problem of inconsistent browser styles. The normalize.
css project (http://necolas.github.io/normalize.css/) aims to provide consistent baseline styles while still retaining
basic styling in HTML tags. For example, instead of making headlines and paragraphs the same size, normalize.
css keeps headlines at varying sizes. It also includes many other styles aimed at fixing bugs present in some
browsers.

Using Descendant Selectors
Classes and IDs are great for marking specific tags for styling. For example, you
can add a class to a paragraph—<p class="intro">—and pinpoint just that one
paragraph with its own look, as determined by the .intro class style. Trouble is,
it’s so easy to add a class or ID to a tag, lots of designers tend to add classes and
IDs to everything (well, almost everything). The pros even have a diagnosis for this
disease—classitis. Adding a class to every tag is not only a waste of your time, it
also makes your HTML slower to download. Most important, there’s a better way
to exert pinpoint control over your tags without resorting to too many classes or
IDs—descendant selectors.

http://necolas.github.io/normalize.css/

CHAPteR 18: IMPROVING YOUR CSS HABITS 583

USING
DESCENDANT
SELECTORS

POWER USERS’ CLINIC

A Pain in the Cache
The web browser’s cache is usually every website owner’s
friend. As discussed on page 25, the cache makes sure frequent
visitors to your site don’t have to download the same file over
and over again, which would slow down their experience and
increase your web hosting bills. However, the cache can be
a pain when it’s time to update your site’s appearance. For
example, if all of the pages in your site reference an external
style sheet named main.css, then visitors to your site will
cache that file. However, when you update that file with all
new styles and a completely new look and feel for your site,
previous visitors to your site may continue to access the old
style sheet from their hard drive instead of the new main.css
file you’ve updated.

Eventually, a visitor’s cache will clear and they’ll get the new
CSS file, but you have one simple way to defeat the cache—by
updating the <link> tag on each HTML page. Normally a
<link> tag to an external style sheet looks like this:

<link rel="stylesheet" href="main.css">

However, if you add a query string after the name of the .css
file (for example, main.css?v=1), then a web browser will
see the file as main.css?v=1 and not just main.css. If you

change the number after the v= whenever you change the
external style sheet, then browsers consider that a new file
and will download the external style sheet from the web server
instead of using the cached site.

For example, suppose when you launch your site, the main.
css file is the first version of the site’s CSS. You can then use
this link:

<link rel="stylesheet" href="main.
css?v=1">

Then when you update the main.css file, you change the
<link> to this:

<link rel="stylesheet" type="textcss"
href="main.css?v=2">

The web browser considers this different from the cached ver-
sion of the main.css file and downloads the file from the web
server. In reality, the ?v=1 doesn’t do anything—it doesn’t
affect how your web server works, for example. It’s a way of
telling a web browser to redownload the file.

The downside of this technique is that you must update the
<link> tag for every HTML file on your site.

Descendant selectors are a powerful tool for efficient website building. As discussed
in Chapter 3, they let you pinpoint the tags you want to style with greater accuracy
than tag styles, with less work than class styles. Most of the time you want to format
all the links in a navigation bar the same way, but that doesn’t mean you want to
format all of the links in the entire page the same way. What you need is a way to say
(in CSS), “Format only the links in the nav bar this way”—without having to apply a
class style to each of those links. In other words, you need the ability to format the
same HTML in different ways depending on where it’s located—and that’s exactly
what descendant selectors offer (see Figure 18-5).

Css: tHe MIssInG MAnUAL584

USING
DESCENDANT
SELECTORS

FiGURE 18-5
The same HTML was
pasted into both the left
sidebar and the larger
right area of this web
page. By using descendant
selectors, identical HTML
tags (<h1>, <p>, ,
and) are formatted
differently based solely on
where they’re located on
the page.

Compartmentalize Your Pages
One of your biggest allies in using descendant selectors effectively is the <div>
tag. Since this HTML tag lets you create logical divisions in a page, you can use it
to identify different layout elements like a banner, a sidebar, a column of text, and
so on. You can organize the content of your page into different areas by wrapping
HTML in a <div> tag.

Group the title of a story and a list of links used to navigate the story’s pages like this:

<div>
 <h2>The CosmoFarmer Revolution</h2>

 page 1
 page 2
 page 3

</div>

After adding the <div>, identify it for CSS purposes with a class attribute: <div
class="pullQuote">. When you want to include the same type of layout element
more than once on a page—multiple pull quotes in a single story perhaps—use a class.

CHAPteR 18: IMPROVING YOUR CSS HABITS 585

USING
DESCENDANT
SELECTORS

Suppose the list of links in the HTML above appears twice on a page—at the begin-
ning of the text and at the end. You’d apply a class to it like this:

<div class="storyNav">
 <h2>The CosmoFarmer Revolution</h2>

 page 1
 page 2

 page 3

</div>

 NOTE  You don’t always need to add a <div> tag to style a group of elements. If the preceding HTML had
only an unordered list of links and didn’t include the <h2> tag, then you could just as easily skip the <div> tag
and simply add a class to the unordered list: <ul class="storyNav">. You could also wrap the tag
in the HTML5 <nav> tag and apply the class to it.

Once you identify each div on a page, it becomes very easy to use a descendant
selector to target tags inside a particular div. Say you want to create a unique look
for each of the links in the above HTML. You’d create a descendant selector like this:

.storyNav a {
 color: red;
 background-color: #ccc;
}

Now links will appear as red text on a light gray background, but only when they
appear inside another tag with the storyNav class applied to it. Best of all, if you
want to add another link (like page4.html) to this list, then you don’t have to lift a
finger to format it like the other links. The browser handles all of that automatically
when it applies the descendant selector.

Formatting other tags inside that <div> is a simple matter of creating a descendant
selector that begins with the class name—.storyNav, for instance—followed by a
space and the tag you want to style. To format the <h2> that appears inside the
<div>, create the descendant selector .storyNav h2.

Identify the Body
Because descendant selectors provide such specific targeting of styles, you can easily
create styles that not only apply to one particular area of a page, but also apply only
to particular types of pages on your site. Say you want to style the <h1> tag differ-
ently on the home page than on other pages of the site. An easy way to distinguish
<h1> tags on the home page is to add a class to the <body> tag of the home page:

<body class="home">

Css: tHe MIssInG MAnUAL586

USING
DESCENDANT
SELECTORS

You can style the <h1> tag on the home page using a descendant selector: .home h1.
With this technique, you can create entirely different looks for any tag on any par-
ticular page of your site (Figure 18-6). One approach is to identify the section of the
site each page is in. Say your site is divided into four sections—news, events, articles,
and links. On each page within a section, add either a class or ID to the <body> tag. So
each page in the news section might have the following HTML: <body class="news">,
while pages in the events section would have <body class="events">.

 NOTE  Another common CSS technique is to use a class to identify the type of layout you want for a particular
page (like a one-, two-, or three-column design).

One great use for identifying a page’s section in the site is to highlight that section’s
button in a navigation bar. The highlighted button acts as a kind of “you are here”
marker, as shown in Figure 18-6. If a page is in the news section of your site, you can
highlight the “news” button so visitors can tell immediately which section they’re in.

Here’s how to format a navigation button differently depending on which section
of your site it’s in:

1. Add a class to the <body> tag indicating the section the page is in.

For example, <body class="home">. Do the same thing for each section, so pages
in the news section of the site would have code like this: <body class="news">.

2. Add a navigation bar to the page.

Step-by-step instructions are on page 289.

3. Identify each link within the navigation bar.

For a link to the home page, you might have this code: <a href="/index.html"
class="homeLink">Home. The class lets you identify that particular link as
the one going to the home page. Repeat for the other links: <a href="/news/"
class="newsLink">News and so on.

At this point, you have enough information in your HTML to uniquely format
each section’s link using CSS. In this example, you know that the Home page
link is nested inside a <body> tag with the class of home only on the Home page.

4. Create a descendant selector to format each section’s link differently when
the link is inside a page for that section.

For the home page in this example, the descendant selector would look like this:

.home .homeLink

This selector formats the .homeLink only when it’s inside another tag with the
ID #home. In most cases, you’ll want the look of the “you are here” button to be
the same for each section of the site, so you can use a group selector (page 49)
to group all the descendant selectors for each section’s button. That way, you
can apply the same formatting to each button without creating separate rules

CHAPteR 18: IMPROVING YOUR CSS HABITS 587

USING
DESCENDANT
SELECTORS

for each button. A group selector to highlight the current section’s navigation
button with a light yellow background may look like this:

.home .homeLink,

.news .newsLink,

.articles .articlesLink,

.links .linksLink {
 background-color: #FBEF99;

}

FiGURE 18-6
Using descendant selectors, you
can highlight a button in a navi-
gation bar simply by changing
the class applied to the <body>
tag. In this example, when the
<body> tag has the class home
applied to it, the Home button
lights up (circled, top). Change
the class to about, and the
About button highlights (circled,
bottom).

Css: tHe MIssInG MAnUAL588

USING
DESCENDANT
SELECTORS

 TIP  When creating a group selector that includes several descendant selectors, keep each selector on its own
line, as in this example. This way, it’s easier to identify each selector in the group when you need to go back and
edit your style sheet.

Using the same technique, make additional styles to apply different looks for the
links when you hover over them or click them, or when they’ve been visited. See
page 281 for the details.

These few examples are just some of the ways you can take advantage of descendant
selectors. They can make your style sheets a little more complex. You’ll have styles
like .home .navbar a, for example, instead of a simple class like .navLink. But once
the styles are set up, you’ll need to do very little further formatting. HTML pasted
into different areas of the page automatically gets formatted in strikingly different
ways. Almost like magic.

POWER USERS’ CLINIC

Object Oriented CSS
Object Oriented CSS is another approach to organizing and
using CSS. The term was coined by CSS expert Nicole Sullivan,
and the approach was developed to respond to the complex-
ity of very large sites with a wide variety of HTML structures.
On large sites, you might end up having really different HTML
containing similar types of information.

For example, in one case you might use a bulleted list to display
names, contact info, and photos for a list of contacts. But on
another page you might use the <article> tag for each
contact. Say you wanted to format those elements similarly,
because they really are the same type of information. If you
use CSS styles that depend on that HTML, you could end up with
either duplicate styles or group selectors like this:

article img, li img {
 /* formatting info here */
}

Object Oriented CSS recommends abandoning any CSS that’s
tied to actual HTML elements and instead use classes. In other
words, you’d apply class names throughout your HTML and
then use CSS class styles to format then. In this way, it doesn’t

matter what HTML tags you use. As long as they use the same
classes, they’ll look the same.

This may sound a lot like the classitis problem described on
page 582, and in a sense, it is. Object Oriented CSS does require
adding lots of class attributes to your HTML. If you’re using a
content management system like WordPress, then this might
not be much work—you can add the class names into the
template files. But if you’re building every page by hand, this
approach could add a lot of work.

For a quick introduction to Object Oriented CSS, read http://
coding.smashingmagazine.com/2011/12/12/an-introduction-
to-object-oriented-css-oocss/. You can find the OOCSS project
at https://github.com/stubbornella/oocss.

Another related approach from Jonathon Snook, called Scal-
able and Modular Architecture for CSS (or SMACSS), is a simpler
style guide for creating reusable CSS components. You can
read more about it at http://smacss.com. You can also find a
bunch of videos discussing SMACSS at http://tv.adobe.com/
watch/adc-presents/smacss-introduction-to-a-scalable-and-
modular-architecture-for-css/.

http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
https://github.com/stubbornella/oocss
http://smacss.com
http://tv.adobe.com/watch/adc-presents/smacss-introduction-to-a-scalable-and-modular-architecture-for-css/
http://tv.adobe.com/watch/adc-presents/smacss-introduction-to-a-scalable-and-modular-architecture-for-css/
http://tv.adobe.com/watch/adc-presents/smacss-introduction-to-a-scalable-and-modular-architecture-for-css/

589

CHAPTER

19

You’ve learned a lot about CSS so far in this book. In the last chapter you learned
techniques for being a better style sheet author. In this chapter, we’ll look at
a very popular tool that makes it a lot easier to write CSS code.

What is Sass?
Sass is known as a CSS preprocessor—that means you first write Sass code, then
process it into the CSS the browser understands. You can think of Sass—which
stands for “Syntactically awesome style sheets”—as a kind of shorthand for CSS
that lets you write less code.

When working with Sass, you have two different types of files: Sass files, which end
in .scss, and CSS files, which (as you know) end in .css. You actually only ever edit
the .scss files: Sass’s preprocessor automatically converts the Sass file to a regular
.css file.

This may sound like a lot of extra work to simply produce the CSS code you’ve
learned about in this book. However, as your sites and their style sheets get larger
and more complex, Sass provides a number of benefits:

• It organizes your CSS code into smaller files. Currently, web designers are told
to use as few CSS files as possible. The more files the browser has to load, the
slower the site will feel to visitors who must wait for each file to transfer from
the web server to their browser. Some web designers, therefore, stuff hundreds
or even thousands of styles into a single style sheet. While this may be more
efficient for your site visitors, it’s not easy for you when you have to locate

 More Powerful
Styling with Sass

Css: tHe MIssInG MAnUAL590

WHAT IS SASS?
that one style that’s formatting the <h2> tag inside a sidebar on the About Us
page. Sass lets you logically group your styles into smaller files, so that all of
the styles for your site’s forms, for example, can be found in one Sass file, while
your typographic rules live in another. When Sass does its preprocessing magic,
it can automatically combine these multiple files into one fast-loading CSS file.
Even better, Sass can compress the final CSS file so it’s much smaller than the
same file you might create by hand.

• You can easily update shared values. You’ll often find yourself using the same
CSS value over and over. For example, your company may have a set of corporate
colors that you use consistently in a web design for coloring text, backgrounds,
borders, and so on. What if your marketing department decides that the colors
need to change? Using a regular CSS file, you’d have to locate and change each
instance of a changed color. With Sass, you can define the color value in one
place and use it throughout your styles. If the color changes, update in a single
spot in the Sass file, and Sass automatically updates the old color to the new one.

• You get to write less code. Sass provides some really powerful tools that let
you write less code. Remember those vendor prefixes from page 321? Having
to write multiple lines of code just to get the same property in multiple brows-
ers is a drag. Sass mixins can take care of that chore for you. You can write just
one line of code and have Sass convert it to all the different browser-prefixed
versions you need. In addition, if you find yourself using the same set of CSS
properties among many different styles, you can tell Sass to add that code
automatically for you. Less writing for you, means faster production time, and
fewer chances for errors.

There are many other advantages to using Sass that you’ll learn about in this chapter,
but the bottom line is that Sass can make you a more efficient web designer: You’ll
be able to work faster and spend more time thinking about design than typing code.

 NOTE  You can find out much more about Sass at the official Sass website: www.sass-lang.com (Figure 19-1).

There are a couple of downsides, however. First, Sass introduces several new concepts
as well as new syntax for writing your CSS. You’ll get that in this chapter.

Second, to use Sass you need to install a few things on your computer. Sass relies
on the Ruby programming language, so you need to install Ruby, as well as the
basic Sass command files. In addition, Sass isn’t a regular program that you just
double-click to launch. You must use the command line (the command prompt in
Windows or the Terminal application on Macs) to make Sass work. The command
line intimidates a lot of web designers, but it shouldn’t. It’s actually pretty easy to
set up, as you’ll see in the next section.

http://www.sass-lang.com

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 591

INSTALLING
SASS

FiGURE 19-1
The Sass website is a great
place to learn more about
Sass—which, apparently,
gives your CSS superpow-
ers. With great power
comes great responsibility.

Installing Sass
Sass was originally created using the Ruby programming language. It’s the same
language used to create many websites using the Ruby on Rails framework, includ-
ing GitHub, Square, Airbnb, and the original Twitter site. The first step in installing
Sass is to install Ruby. In Windows, you have to download Ruby and then install it.
Macs come with a copy of Ruby, so installing it takes a few quick steps (Mac users
can skip to page 594).

 NOTE  Sass originally only worked with Ruby. However, a rewrite of Sass named libSass that uses the C/C++
programming languages is now available. libSass works with many different programming languages, and is
often used with Node.js in conjunction with JavaScript build tools like Grunt (http://gruntjs.com) and Gulp (http://
gulpjs.com).

http://gruntjs.com
http://gulpjs.com
http://gulpjs.com

Css: tHe MIssInG MAnUAL592

INSTALLING
SASS

Installing Sass on Windows
Installing Sass on Windows is a two step-process: First you must install Ruby, and
then the Sass gem (a program written in the Ruby programming language).

1. Download the Ruby installer from http://rubyinstaller.org/downloads/.

Download a recent version of Ruby by clicking one of the download links. If
your machine uses 64-bit Windows, select the x64 version. The installer is a
regular Windows .exe file.

 NOTE  The author tested Ruby 2.2.2 version of the installer for this book. Sometimes, the newest version of
Ruby may not be able to install Sass—if, for example, the Sass gem hasn’t been updated to work with the latest
version. In that case, install an older version of Ruby that does work.

2. Open and run the installer.

You’ll need to click through a couple of windows—selecting the language you
use and accepting the license agreement—until you reach the installation des-
tination window (Figure 19-2).

FiGURE 19-2
It’s extremely important that you turn on
the “Add Ruby executables to your PATH”
checkbox. This will tell Windows where Ruby
is on your system. Then when you use the
command prompt to execute a Ruby com-
mand, Windows will know where to find Ruby
to run the command. If you don’t check this
box, you won’t be able to run Sass easily.

3. In the “Installation Destination and Optional Tasks” window, accept the
suggested installation location and check the “Add Ruby executables to
your PATH” and “Associate .rb and .rbw files with this Ruby installation”.
Click the Install button.

The Windows installer will install Ruby, which may take a minute or so.

http://rubyinstaller.org/downloads/

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 593

INSTALLING
SASS

4. After the installation is done, click the Finish button on the last installation
screen.

Now that your system has the Ruby language installed, you can install Sass
using the Windows command prompt. Read on.

5. Open the Windows command prompt.

Here’s a quick way to do so:

a. Press the Windows Key+R to open the Run window.

This window lets you run applications simply by typing the name.

b. Type CMD and click OK.

This runs the cmd.exe program and opens a command prompt window
(see Figure 19-3).

For other methods of opening a Windows command prompt, visit http://pcsup-
port.about.com/od/windows-8/a/command-prompt-windows-8.htm.

The Command Prompt lets you type commands and run them directly in the
console. This is the way computer science people worked back in the ’70s (and
many still do).

 NOTE  If you had the command prompt window open when you installed Ruby, Windows won’t know how
to get to the Ruby installation yet. You have to close the command prompt and then open it again—the new,
refreshed prompt will have access to Ruby.

6. Type gem install sass and press Enter.

The gem command is part of Ruby and is used to install different Ruby programs
and libraries. It may take a few minutes for this command to run—it has to go
onto the Internet and download and then install the correct files.

If you have some kind of virus protection software installed, you might need to
click a confirmation window to install Sass.

In addition, if you didn’t select the “Add Ruby executables to your PATH” box
when installing Ruby (see Figure 19-2), then you’ll get an error that looks some-
thing like “‘gem’ is not recognized as an internal or external command, operable
program or batch file.” This means Windows doesn’t know where Ruby is and
can’t run the gem command. Just reinstall Ruby following the steps above, but
make sure you check the “Add Ruby executables to your PATH” box this time.

If all goes well, the command prompt should look something like Figure 19-3.
You’re ready to run Sass. You’ll learn how to do that on page 597.

 NOTE  To update to a newer version of Sass, you can type gem update sass in the command prompt.

http://pcsupport.about.com/od/windows-8/a/command-prompt-windows-8.htm
http://pcsupport.about.com/od/windows-8/a/command-prompt-windows-8.htm

Css: tHe MIssInG MAnUAL594

INSTALLING
SASS

FiGURE 19-3
It’s not pretty to look at,
but the Windows com-
mand prompt is a simple
way to install and run Sass.
Here, you can see that
we just installed version
3.4.14 of Sass. To see which
version you have installed
you can type sass -v in
the command prompt.

Installing Sass on Mac
Since Ruby is preinstalled on Macs, the process for installing Sass is quite simple.

1. Open the Terminal application.

You’ll find this in the Applications→Utilities folder. You’ll need to use the Terminal
a lot, so add it to the Dock, by dragging its application icon there.

2. In the Terminal window type gem install sass (see Figure 19-4).

The gem command is part of Ruby and is used to install different Ruby programs
and libraries. It may take a few minutes for this command to run, since your
Mac has to go onto the Internet and download and then install the correct files.

In addition, depending on how permissions are set up on your Mac, you may
need to execute this command as an administrator. To do that you must use
the sudo command, like this:

sudo gem install sass

You’ll then have to type an administrator username and password to install Sass.

If all goes well, the Terminal window should look something like Figure 19-4.
You’re ready to run Sass. You’ll learn how to do that on page 597.

 NOTE  To update to a newer version of Sass, you can type gem update sass in the Terminal. If you don’t
have proper permissions, you may need to type sudo gem update sass then type in an administrator’s
username and password.

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 595

SASS BASICS

FiGURE 19-4
The Mac Terminal program
is a command line utility.
You’ll use it all the time
when working with Sass
and many other common
web development tools. To
see which version of Sass
you have installed, type
sass -v in the Terminal
window.

Sass Basics
Sass is both a tool—software that creates CSS files—and a language that adds fea-
tures that don’t currently exist in CSS. But don’t worry; having spent this whole time
learning about CSS, you won’t need to spend another month learning a whole new
language. Sass is completely compatible with plain CSS. In other words, you can
start with a regular style sheet (like the ones you’ve been building throughout this
book) and slowly improve that style sheet by adding time-saving Sass features to it.

In this chapter, you’ll learn how to add many efficiency-boosting Sass features to
your style sheets, but the important thing to keep in mind is that you can apply all of
your hard-won knowledge about CSS when creating style sheets with Sass. In fact,
you can take a regular style sheet—styles.css, for example—and turn it into a Sass
style sheet simply by replacing .css with .scss—styles.scss, for example.

Css: tHe MIssInG MAnUAL596

SASS BASICS

UP TO SPEED

Sass Without the Command Line
If the idea of the Windows command prompt or the Mac Ter-
minal gives you the shivers, there are other ways to harness
the power of Sass.

Some text editors, like Sublime and WebStorm, let you install
plugins that can compile Sass into CSS for you. In addition, there
are several free and paid programs that can compile Sass files
into CSS without having to install Ruby and Sass on your own.

These apps lets you specify which folder you’ll put your Sass
files into, and into which folder they should put the finished,
processed CSS files. They can also detect changes you make
to the Sass files and automatically generate new CSS files so
you can instantly preview the changes you’ve made. Some
even automatically refresh your browser window to reload
the newly created CSS file.

• Scout (http://mhs.github.io/scout-app/) is a popular,
free application, that runs on both Macs and Windows
machines

• Koala (http://koala-app.com/) runs on Windows, Mac
and Linux. It not only compiles Sass files, but also can
convert Less (another CSS preprocessor language) and
CoffeeScript (a JavaScript preprocessor language) for you.

• LiveReload (http://livereload.com/) is a commercial Mac
app ($10), and a Windows version is under development.
It can compile Sass, Less, Stylus, CoffeeScript, Jade and a
bunch of other pre-processed languages web developers
use.

• CodeKit (http://incident57.com/codekit/) is a powerful
Mac app ($32) which not only handles Sass and a bunch
of other languages, but also auto-refreshes your browser
so you can instantly preview changes you make to your
Sass files.

Organizing Your Files
When using Sass, you’ll work with two different types of files: the ones you create
(Sass files), and the ones the Sass preprocessor generates (plain CSS files for use
by the browser). Sass files end in the extension .scss, and you’ll add your CSS and
Sass-specific code to these files.

Then, you’ll use Sass—the software—to convert Sass files to a CSS file ending in .css.
When using Sass you never edit the .css files themselves; you only edit the .scss files.

Because you have these two different types of files, the most common way to or-
ganize them is to create two separate directories at the root of your website: a css
folder to hold the final CSS file that Sass creates, and another folder for your working
Sass files. You can name this folder anything you want, but many web designers
name it scss or sass. Inside this folder you’ll create a Sass file, and name it based on
what you’d like the final CSS file to be named. For example, if you’re used to naming
your CSS style sheets styles.css, then name your Sass file styles.scss. When Sass
processes the styles.scss file, it automatically creates the file styles.css.

http://mhs.github.io/scout-app/
http://koala-app.com/
http://livereload.com/
http://incident57.com/codekit/

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 597

SASS BASICS
Converting Your Current Site to Sass
Because Sass understands plain CSS perfectly well, here’s a simple process you can
follow to start using Sass with a site you’ve already created.

1. Add a folder named sass to the root level of your web site.

Make sure you also have a folder named css at the root of your site, and that
that folder has the style sheet for your site.

2. Move the site’s style sheet from the css folder to the sass folder.

It’s all right if the folder in your site isn’t currently named css. Maybe you named
it styles or something else. That’s OK—you’ll just have to use that folder name
when running the Sass command, as described in the next section.

In addition, if you have more than one style sheet in the css folder—for example,
a reset.css file and a styles.css file—move both of them into the sass folder. As
you’ll see on page 600, you’ll frequently use multiple Sass files in a project.

3. Rename the style sheet in the sass folder so that its file extension is .scss.

For example, if the file’s name is site.css, change its name to site.scss. If you
have more than one CSS file—perhaps you have a reset.css file as well—then
rename those files using the .scss extension also.

Of course, moving your CSS files to another folder in your site means your current
web pages won’t be able to find them, and the browser won’t apply any styles to
those web pages. But that’s just temporary. When you run the Sass command, you’ll
get a new .css style sheet.

Running Sass
In order to convert a Sass file into a CSS file, you need to run the Sass command
using the command line (the command prompt in Windows, or the Terminal app on
Macs). The Sass command also includes a very special feature—called watch—that
keeps a constant lookout for any changes you make to a .scss file. When the Sass
command detects a change, it automatically regenerates the CSS file. This setup is
particularly helpful as you’re designing your site. Browsers don’t understand Sass
files, so simply changing the code in your Sass file doesn’t let you see that change
immediately. However, when the Sass command is in watch mode, you can instantly
see any changes you make to a Sass file reflected in the web page just by refreshing
the browser window to load the updated style sheet.

To run the Sass command:

1. Open the command prompt on Windows, or Terminal on a Mac.

See step 5 on page 598 for a reminder on how to do this for Windows users, or
step 1 on page 598 for Mac users.

Css: tHe MIssInG MAnUAL598

SASS BASICS
2. Using the command line, navigate to your site’s root folder.

In order to run Sass, you need to get to the site’s root folder—the folder where
the sass and css folders are. However, you have to use language the command
line understands. This involves typing a command like cd C:\Users\dave\
Desktop\site or cd ~/Documents/site.

If you’re not sure how to navigate inside the command line, here’s a simple trick
that works for both Windows and Mac:

a. Open the command prompt or Terminal.

b. In Windows Explorer or the Mac Finder, open a window that shows the
directory with your site in it.

You need to be able to see both the command line and the window with
your site’s directory in it (see Figure 19-5).

c. On the command line, type cd followed by a space.

cd is a command that comes from Unix. It stands for “change directory,”
and it’s used to travel from one folder to another using the command line.
Don’t forget to type a space character, since you need it to separate the cd
command from the path you’re about to add in the next step.

 NOTE  Windows Note: To learn how to use the Windows command prompt to navigate your file system, visit
www.wikihow.com/Change-Directories-in-Command-Prompt.

d. Drag the directory from the file window into the command line and
release the mouse (#1 in Figure 19-5).

The path—the route to get from the top level of your computer’s hard drive
to the folder with your site—is added automatically to the command line.

 NOTE  Mac Note: To learn how to use the Terminal to navigate your file system, visit www.macworld.com/
article/2042378/master-the-command-line-navigating-files-and-folders.html.

e. Hit Enter.

The command-line prompt changes to the site’s directory. It doesn’t look
like anything has happened, but according to the computer, you’re now
“in” that folder. Any commands you run on the command line at this point
will use that folder as a point of reference.

3. On the command line, type sass --watch sass:css and press Enter.

This starts the Sass preprocessor. It looks inside the sass folder for any files
ending in .scss, converts them to regular CSS and then creates a CSS file inside
the css folder. You should see output like that picture in #2 in Figure 19-5.

http://www.wikihow.com/Change-Directories-in-Command-Prompt
http://www.macworld.com/article/2042378/master-the-command-line-navigating-files-and-folders.html
http://www.macworld.com/article/2042378/master-the-command-line-navigating-files-and-folders.html

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 599

SASS BASICS
Because Sass is watching for any changes to Sass files, if you edit an .scss file
inside the sass folder, a new .css file will be created automatically and deposited
into the css folder.

If you’re using a name other than sass for the folder containing your Sass files,
use that in the command instead of sass. For example, if you named that folder
scss, you would type sass --watch scss:css instead.

FiGURE 19-5
To tell the Sass preproces-
sor to convert your Sass
files into CSS files, you
need to use a command
line tool and navigate to
the directory where your
site files are (#1). You
can then issue the Sass
command to convert .scss
files to .css files (#2).

 TIP  Sass can also compress the final CSS file—remove comments and extra spaces, and make other changes
that shrink the file size of your CSS file. The result is a file that will load as quickly as possible for your site’s visi-
tors. To compress your CSS files when using Sass, type sass --watch scss:css --type compressed
on the command line.

Css: tHe MIssInG MAnUAL600

ORGANIZING
YOUR STYLES

WITH SASS
PARTIALS

When you run Sass using the --watch option, Sass will run continuously. If you want
to stop the watch command, type Ctrl-c in the command prompt or Terminal. If you
close the command line window or restart your computer, you’ll have to run the
sass command again, following the instructions above.

As you can see, there’s a fair amount of setup to get started using Sass. However,
once you have Sass up and running, the fun begins.

Organizing Your Styles with Sass Partials
Well-designed websites use lots of CSS. And the bigger and more complex a site
gets, the larger and more complex the CSS. It’s not difficult to create hundreds or
even thousands of styles for a website, but that many styles make for a really big
and long CSS file. Some web designers divide their CSS into smaller, more manage-
able files, but the more files you add to a site, the more time visitors’ browsers will
have to spend asking for and downloading files. Many web design pros recommend
using as few CSS files as possible.

Fortunately, Sass can bring you the best of both worlds. You can divide your Sass
rules into separate files organized in a logical way. For example, you could put your
reset rules (page 109) in one file, your grid layout rules in another, your typographic
rules in yet another file, and so on. You can then tell the Sass preprocessor to compile
all of those files into a single CSS file, or even compress that CSS so it’s smaller and
faster to download (see the note on page 600).

In fact, even if you don’t want to learn anything else about Sass, this one feature is
reason enough to start using it. Being able to organize your CSS into separate files
means it’s easy to locate the file you need to edit: “I want to change the look of
that form—the rules for that must be in the forms.scss file!” Remember, you can put
regular CSS rules into any Sass file (see page 595), so you can simply use Sass as a
way to divide and organize your regular CSS rules into manageable files.

Creating and Using Sass Partials
Sass lets you divide your CSS/Sass rules into multiple files and then combine them
into a single CSS file. Sass calls these files partials, and there’s a special way that you
name and use them. To tell Sass that you don’t want it to convert these partials into
individual CSS files, you must begin the name of the partial file with an underscore
(_) character.

For example, say you wanted to divide your style rules into four different files to
make creating, finding, and updating them easier. You would begin the name of
each file with an underscore: for example, _reset.scss, _grid.scss, _layout.scss, and
_forms.scss. Now, when you run the Sass command, Sass won’t convert this into
four CSS files—reset.css, grid.css, layout.css, and forms.css—and place them into the
css folder. In fact, Sass ignores these files until you explicitly call them into action.

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 601

ORGANIZING
YOUR STYLES

WITH SASS
PARTIALS

Of course, you don’t want those partial files to just sit there—you create them to
include in the final CSS file that Sass outputs. You use an @import statement to load
a Sass partial into another file, like this:

@import '_reset.scss';

The most common way to use partials is to have one main Sass file—the one that
Sass converts to the finished CSS file—that includes nothing but these import state-
ments. For example, say you wanted to produce a single CSS file named styles.css.
You could then create a Sass file named styles.scss and place it in the sass folder.
The contents of the Sass file would look like this:

@import '_reset.scss';
@import '_grid.scss';
@import '_layout.scss';
@import '_forms.scss';

Because the styles.scss file does not begin with an underscore character, Sass pro-
cesses it and creates the file styles.css in the css folder. There’s nothing particularly
tricky happening here: Sass just copies the code from each of the partial files and
then pastes that code into a single file. The order in which you list the partials dic-
tates the order in which Sass adds the CSS, so in the above example the top of the
CSS file will be the reset rules and the bottom of the CSS file will contain styles for
forms. Remember that the order styles appear in a file can affect how the cascade
works (page 99). Keep that in mind when ordering your @import directives.

Sass is pretty smart about partials, so you can use shorthand to identify them when
importing them into another Sass file: You can leave off the _ and the .scss from the
file name. The code above could be re-written more simply as:

@import 'reset';
@import 'grid';
@import 'layout';
@import 'forms';

The @import directive is your first taste of Sass syntax. Although @import is part of
CSS, the way it’s used here is purely Sass. If you tried to do this in a regular CSS file,
a browser wouldn’t know what to do with this, and it certainly couldn’t combine all
the files into a single CSS file.

Organizing Your Sass Partial Files
Many web designers who use Sass like to keep their files orderly. They’ll create
multiple Sass files and place them into subfolders grouped by function. There are as
many ways to organize files as there are web designers, but here’s a simple diagram
for a basic Sass folder structure:

sass/
|
|-- helpers/ # special Sass files
| |-- _variables.scss

Css: tHe MIssInG MAnUAL602

ORGANIZING
YOUR STYLES

WITH SASS
PARTIALS

| |-- _mixins.scss
|
|-- base/ # starter files for project
| |-- _reset.scss
| |-- _grid.scss
| |-- _typography.scss
|
|-- layout/ # files to style page areas
| |-- _header.scss
| |-- _footer.scss
| |-- _sidebar.scss
| |-- _forms.scss
|
|-- components/ # file for UI components
| |-- _buttons.scss
| |-- _dropdown.scss
| |-- _navigation.scss
|
`- styles.scss # primary Sass file

Inside the main sass folder is the styles.scss file—the main file that Sass will convert
to a CSS file. In addition, there are four subfolders to hold files that serve particu-
lar functions in the site design, as well as a few Sass-specific files that you’ll learn
about later in this chapter. To use all of these partial files, you need to import them
into the styles.scss file. For this particular set of files, here’s what you’d put in the
styles.scss file:

@import 'helpers/variables';
@import 'helpers/mixins';

@import 'base/reset';
@import 'base/grid';
@import 'base/typography';
@import 'layout/header';
@import 'layout/footer';
@import 'layout/sidebar';
@import 'layout/forms';
@import 'components/buttons';
@import 'components/dropdown';
@import 'components/navigation';

Note that you have to list the folder name (so Sass knows to look in the correct sub-
folder), but you can leave off the underscore and the .scss extension for the file names.

 NOTE  For more ways to organize your Sass projects, check out these blog posts: www.sitepoint.com/
architecture-sass-project/, http://thesassway.com/beginner/how-to-structure-a-sass-project, and www.sitepoint.
com/look-different-sass-architectures/.

http://www.sitepoint.com/architecture-sass-project/
http://www.sitepoint.com/architecture-sass-project/
http://thesassway.com/beginner/how-to-structure-a-sass-project
http://www.sitepoint.com/look-different-sass-architectures/
http://www.sitepoint.com/look-different-sass-architectures/

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 603

SASS
VARIABLESSass Variables

You’ve probably encountered times when you use the same value over and over and
over again in your CSS. For example, say the main color of your company’s logo is
a deep blue: #083B91. The marketing department wants you to use this color a lot,
so you use it as the background color for the navigation bar, the text color for <h1>
tags, and the border color for sidebars.

So you create a few dozen CSS rules that use that color. But what happens if the
logo color changes, or the marketing department decides to change the color by
a single digit to #083B92? Sure, you can use search and replace to swap in a new
color, but wouldn’t it be great if you could just make a single change to a single file
and have that color update everywhere in your CSS?

You can do just that using Sass variables. A variable is something that holds a value
that might change or “vary”—just like your company’s logo color. You store a value
in the variable once, then use that variable multiple times. If you store a new value
in the variable, the value is updated everywhere you used the variable in your Sass
files: In other words, you make a change in one file, and Sass updates everything
else for you.

There are two steps to using a Sass variable. First, you must define the variable,
which means giving it a name and then giving it a value. In Sass, variable names
begin with a dollar sign. You assign a value to the variable by using a colon (:) fol-
lowed by the value. For example, to create a variable for your company’s logo color,
you’d add this to a Sass file:

$logo_color : #083B91;

Notice how this is formatted very much like a CSS declaration, except that $logo_
color isn’t a valid CSS property. It’s Sass syntax, which means the Sass program
identifies this particular line of code as a special Sass variable. Just as Sass converts
Sass files to a CSS file, it replaces this variable name with the correct color value.

But to make Sass work this magic, you need to use that variable in a CSS rule. You
use a variable anywhere you’d use a regular CSS value. For example, to assign that
special logo color to <h1> tags, you’d write this style in a Sass file:

h1 {
 color: $logo_color;
}

When Sass finishes compiling (that is, converting) this code, the finished CSS file
will have this perfectly valid CSS rule in it:

h1 {
 color: #083B91;
}

Css: tHe MIssInG MAnUAL604

SASS
VARIABLES

Organizing Your Sass Variables
You might start out with just a few uses for variables—maybe a couple of commonly
used colors. However, as you start to use Sass more, you’ll come up with dozens of
good uses for them. To keep your variables in one place and accessible to all of your
other Sass files, it’s a good idea to create a separate file dedicated to just variables.

One way to do this is to create a file named _variables.scss and place it inside a folder
dedicated to special Sass files like this one. Page 601 lists one possible way to orga-
nize all of your Sass files; a folder named something like helpers is a good solution.

Remember that beginning the name of a Sass file with the _ character means that
file is a Sass partial; Sass creates a final CSS file by combining multiple partial files
into one. The order in which you list the partial files in the main Sass file determines
the order that Sass reads and processes those files. For example, say you had a file
named styles.scss, and inside it you imported three partial files like this:

@import 'base/reset';
@import 'base/grid';
@import 'base/layout';

When you run the Sass command, Sass would first read the contents of a _reset.
scss partial file. Sass would process its contents and add them to the beginning of
a new file names styles.css. The rest of that CSS file would contain the contents of
the _grid.scss partial, followed by the _layout.scss partial.

The point of a Sass variable is to set its value once and use it many, many times in
your Sass files. Because other files will need to know the value you set the variable
to, you must make sure the variables you create are loaded first, before any other
Sass files. In other words, the best approach to including your variables is to import
their partial file first, before any other partials, like this:

@import 'helpers/variables';
@import 'base/reset';
@import 'base/grid';
@import 'base/layout';

Common Uses for Sass Variables
Sass variables are commonly used to store color values. Based on marketing choices
at your company, whims in web design, or your own change of mind, you may very
well want to completely swap out the colors you’re using on your site today with
new colors tomorrow.

One simple approach is to define colors for different elements on a page, like text
colors, headline colors, border colors, and background colors:

$text-color: #33333;
$headline-color: #ff0000;
$border-color: #0032ff;
$background-color: #FFEE99;

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 605

SASS
VARIABLES

You’d put these styles in the _variables.scss file, and then you could use them in
other Sass partial files. Many designers recommend using a two-step approach for
color variables: Create a set of variables that defines a palette of colors, and then
assign that variable to yet another variable that defines the particular use of the color.

Say your company has a set of five colors that make up its color palette. You could
start by defining those color variables first. Then you could assign those colors to
variables with functional names specific to the particular page elements or CSS
properties, like this:

/* corporate color palette */
$primary-dark: #06888A;
$primary-light: #FFEED5;
$primary-mid: #DC664A;
$secondary-dark: #5A3928;
$secondary-light: #FDC149;

/* functional variables */
$page-background: $primary-light;
$headline-color: $primary-dark;
$text-color: $primary-dark;
$border-light: $secondary-light;
$border-dark: $primary-dark;

This approach makes it easy to use the same color for multiple components. For
example, in this code the text and headline colors are the same color: #06888A.
But instead of setting that color twice, like this:

$headline-color: #06888A;
$text-color: #06888A;

You set it once, in the $primary-dark variable. If you decide to change your site’s
color palette, just change the value of the $primary-dark variable, and both the
headline and text colors will change. In addition, if you later decide to use another
color for the text color, it’s easy to swap in one of the other variables you created
in your color palette:

$headline-color: $primary-dark;
$text-color: $secondary-dark;

Variables are also useful for setting up your font stacks—the list of fonts you wish
to use for different page elements like headlines and body text (see page 123). For
example, a simple technique is to assign one font stack to a variable used for headline
text, and another for body text, like this:

$headline-font: 'Varela Round', Helvetica, Arial, sans-serif;
$body-font: 'Palatino Linotype', Baskerville, serif;

Css: tHe MIssInG MAnUAL606

SASS
VARIABLES

You could then use those variables in other Sass partial files. For example, say you
had a partial file named _typography.scss. You could then use the font stack vari-
ables in other styles:

body {
 font-family: $body-font;
}
h1, h2, h3 {

 font-family: $headline-font;
}

If you later decide to use different fonts in those stacks, just update the $headline-
font variable or the $body-font variable.

As you start to use Sass variables you’ll discover many uses for them. For example,
if you like rounded corners (page 199), you could set up a variable that controls
how rounded those corners should be on your page elements like sidebars, images,
and so on:

$border-radius: 6px;

If you find that the radius is too small or large, change the variable. All the styles
will update, and the page elements will use the new radius value.

POWER USERS’ CLINIC

Let Sass Do the Math
Sass can even do basic mathematical operations. No, you
won’t use Sass to replace your calculator, but you can use it to
generate new values based on mathematical principles, and
you’ll often do this using Sass variables.

For example, say you wanted to set a standard margin for
headlines: The bottom margin will always be half of the top
margin. To give you flexibility so you can adjust these margins
using a variable, you could start by defining a variable for the
top margin:

$margin-top: 20px;

Then, instead of using a plain number like 10px for the bottom
margin setting, create a new variable and use some math:

$margin-bottom: $margin-top / 2;

Using this mathematical approach offers a lot of flexibility. If
20 pixels isn’t enough, change its value in the variable. The
other variable’s value will automatically change, keeping the
same 1:2 proportions.

You need to use the same measurement units when adding or
subtracting. For example, using the 20px value you just set for
$margin-top;, you can’t do this:

$margin-bottom: $margin-top + 1em;

Sass doesn’t know how to add pixels to ems and will spit out
an error when trying to compile the Sass code. However, you
can add and subtract using the same units:

$margin-bottom: $margin-top – 5px;

There are lots of good uses for Sass math. You’ll see one
example on page 628 when you’ll use Sass to create media
queries. For other uses and more information on Sass math,
check out https://scotch.io/tutorials/getting-started-with-
sass#math, https://css-tricks.com/video-screencasts/132-
quick-useful-case-sass-math-mixins/, http://sass-lang.com/
documentation/file.SASS_REFERENCE.html#operations.

https://scotch.io/tutorials/getting-started-with-sass#math
https://scotch.io/tutorials/getting-started-with-sass#math
https://css-tricks.com/video-screencasts/132-quick-useful-case-sass-math-mixins/
https://css-tricks.com/video-screencasts/132-quick-useful-case-sass-math-mixins/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 607

NESTING
SELECTORSNesting Selectors

Earlier in this book you read about descendant selectors (page 50) and some of
the ways they can be useful (page 582). As you’ll recall, a descendant selector is a
selector composed of multiple selectors that indicate the nesting of elements. For
example, the selector .nav a translates to “select all <a> tags that are inside another
element with the class of nav.”

Often you’ll use descendant selectors to define the look of various elements inside
a larger component. For example, say you use the following HTML to create a navi-
gation bar:

<ul class="nav">
 Home
 About
 Contact

You might create a series of selectors to format the different parts of this navigation
bar. For example, there are three tags in use here, so you might have the following
selectors:

.nav {
 display: flex;
 justify-content: space-around;
 list-style-type: none;
}
.nav li {
 width: 30%;
 background-color: #FFEED5;
 padding: 5px;
 text-align: center;
}
.nav a {
 text-decoration: none;
}

These styles use flexbox (Chapter 17) to lay out three buttons side by side. Don’t worry
about the properties listed: What’s important for this discussion are the selectors.
Here, descendant selectors make sure that not every list item () or anchor (<a>)
tag is formatted using these rules; just the ones inside the navigation bar.

Sass provides a way to keep styles like this grouped together while also decreasing
the amount of code you need to write to get the same output as above. To do that,
you use Sass’s nested selector feature. First, notice that all three of the selectors
above begin with .nav. That becomes the base or main selector:

Css: tHe MIssInG MAnUAL608

NESTING
SELECTORS

.nav {
 display: flex;
 justify-content: space-around;
 list-style-type: none;
}

Then, instead of creating two new styles with the selectors .nav li, and .nav a,
you simply nest the li and a selectors inside like this:

.nav {
 display: flex;
 justify-content: space-around;
 list-style-type: none;

 li {
 width: 30%;
 background-color: #FFEED5;
 padding: 5px;
 text-align: center;
 }

 a {
 text-decoration: none;
 }
}

Notice that the CSS for the li and a goes inside the closing } for the .nav style:
that’s nesting. It’s not valid CSS, but it is valid SCSS. In fact, when the Sass command
compiles the above code, the final CSS will look like this:

.nav {

 display: flex;
 justify-content: space-around;
 list-style-type: none;
}
.nav li {
 width: 30%;
 background-color: #FFEED5;
 padding: 5px;
 text-align: center;
}
.nav a {
 text-decoration: none;
}

It’s the same code as you saw on page 607, but it involves a little less typing, and it
keeps the styles grouped within the outer .nav container.

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 609

NESTING
SELECTORS

Referencing the Parent Selector
In the examples directly above, you can see that Sass automatically adds the name
of the outer selector—the one that wraps around the nested selectors—when gen-
erating the final CSS. For example, the .nav selector is added to the li in the Sass
code to produce .nav li in the CSS code. By default, Sass uses the name of the
parent selector, followed by a space and then the nested selector.

But there are times when you don’t want that space. For example, say you wanted
to use Sass nested selectors to create the pseudo-classes used for different link
states. You might try to use this Sass code:

a {
 color: blue;
 :hover {
 color: green;
 }
}

Unfortunately, you’d end up with this CSS:

a {
 color: blue;
}
a :hover {
 color: green;
}

That might look OK at first glance, but see the space between the a and the :hover?
This only changes the text color of an tag inside the <a> tag and not the <a> tag
itself, and only when you hover over that nested tag. What you really want is a:hover,
without the space. To do that, Sass provides the & (ampersand) symbol. When the
Sass command encounters the &, it replaces that & with the parent selector name.
So, to get the correct CSS output for the above example, you’d use this Sass code:

a {
 color: blue;
 &:hover {
 color: green;
 }
}

There’s no space between the & and the :hover, so the final, output will be a:hover—
the correct pseudo-class. If you wanted to style all four of the pseudo-classes for
links, you could use this basic format for a Sass nested selector:

a {
 &:link {

 }

Css: tHe MIssInG MAnUAL610

NESTING
SELECTORS

 &:visited {

 }
 &:hover {

 }
 &:active {

 }
}

Likewise, if you apply a class—button, for example—to certain links and want pseudo-
classes like .button:link, .button:visited, .button:hover, and .button:active,
start like this:

.button {
 &:link {

 }
 &:visited {

 }
 &:hover {

 }
 &:active {

 }
}

Because Sass literally replaces the & with the parent selector’s name, you can use
nesting to create a series of class names that are independent of the hierarchy of de-
scendant selectors. For example, some designers don’t like to worry about the exact
nesting or type of HTML tags used to create page elements. They simply apply class
names to every (or most) HTML tags. For example, instead of writing HTML like this:

<div class="main">
 <h1>Title</h1>
 <div>

 </div>
</div>

And, relying on CSS selectors like .main, .main h1, .main div, they’ll write HTML
like this:

<div class="main">
 <h1 class="main-title">Title</h1>
 <div class="main-content">

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 611

NESTING
SELECTORS

 </div>
</div>

And create styles like .main, .main-title, and .main-content. Sass makes it easy
to do that using nesting and the & character.

.main {
 &-title {

 }
 &-content {

 }
}

Multiple Levels of Nesting
Sass lets you nest selectors nearly infinitely. After all, it’s just a computer program,
and it can figure out what to do with 50 levels of nested selectors. But for mere
humans, it’s best to limit how much you nest your selectors—one or two levels is
enough to handle most situations. More than that and it’s easy to lose track of your
selectors.

 TIP  Too many nested levels also indicates that you are depending too much on how your HTML tags are
nested in your web pages. This makes your CSS “brittle,” since a simple change to how you structure your HTML
could mean that a complex descendant selector no longer applies.

To nest multiple levels of selectors, just place a selector inside an already nested
selector. For instance, say in the example on page 607, you also wanted to add a
:hover pseudo-class to each navigation bar link. You can nest the :hover style inside
the a selector, which is itself nested inside the .nav selector, like this:

.nav {
 display: flex;
 justify-content: space-around;
 list-style-type: none;

 li {
 width: 30%;
 background-color: #FFEED5;
 padding: 5px;
 text-align: center;
 }

Css: tHe MIssInG MAnUAL612

INHERITING
(OR

EXTENDING)
PROPERTIES

 a {
 text-decoration: none;

 &:hover {
 text-decoration: underline;
 }
 }
}

Note that you need to use the & character to reference the parent selector, and that
the &:hover is nested inside the a selector.

In addition to the styles listed on page 608, Sass will compile the above code to
produce a selector created by this multiple-level nest:

.nav a:hover {
 text-decoration: underline;
}

As you can probably see by now, nesting multiple levels of selectors with Sass can
get very confusing very quickly. But used with care, Sass nested selectors will make
it easier for you to write less CSS and keep your selectors organized and grouped
together by function.

Inheriting (or Extending) Properties
On page 49, you learned how group selectors let you apply the same set of proper-
ties to multiple page elements. For example, to assign the same font and font color
to all headings, you could use a group selector like this:

h1, h2, h3, h4, h5, h6 {

 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}

Group selectors mean you don’t have to repeat the same set of properties over
and over again. Without a group selector, the single style above would turn into six
styles like this:

h1 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 613

INHERITING
(OR

EXTENDING)
PROPERTIES

h3 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h4 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h5 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h6 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}

Not only is that a lot of code, but if you want to change the font color for all six
headlines, you need to update six lines of code instead of just one. Sass provides
a way for a style to inherit the properties of another style. In the above example,
basically the six different headings h1 through h6 share the same set of properties. In
other words, they inherit, or what programmers call extend, a base set of properties.

Sass lets you take a current style and apply its properties to other styles by extend-
ing the original style. You can see a simple example in the headline styles above.
Say you wanted to apply the same font-family and color to headings h1 through
h3 (you can use as many as you want; this is just a quick example). You could start
with the h1 style, and using Sass’s @extend directive, apply those style to the other
headings, like this:

h1 {

 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 @extend h1
}
h3 {
 @extend h1
}

By now you’re probably wondering: Wouldn’t a group selector be easier? Well, the
power of the @extend directive comes when you add additional properties to each
selector, so the particular styles share some properties, but are distinct in other ways.
For example, say you wanted to add a borderline above <h2> tags, and indent <h3>
tags. However, you still want the headlines to share the same font and color. In that
case, you’d write the following Sass:

Css: tHe MIssInG MAnUAL614

INHERITING
(OR

EXTENDING)
PROPERTIES

h1 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 @extend h1;
 border-top: 1px solid #444;
}
h3 {
 @extend h1;
 margin-left: 20px;
}

When the Sass command does its magic, it converts the above code into the fol-
lowing CSS:

h1, h2, h3 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 border-top: 1px solid #444;
}
h3 {
 margin-left: 20px;
}

Extending styles provides several benefits: First, you can limit the number of selec-
tors you have to write. Using a group selector, you have two different styles for the
same element. For example, above, in the CSS code, the h2 selector is used in both
the group selector—h1, h2, h3—and in the unique h2 selector.

Another related benefit is that you can keep all of your CSS properties for an ele-
ment in a single selector. This means if you want to change the look of <h2> tags,
you don’t have to hunt around for two styles—the group selector and the individual
selector style. Just locate the h2 selector, and if you want to change the font and
color, then remove the @extend directive. Or, even better, if you want to change the
color for all of the headlines find the extending selector—the h1, in this example—and
change it there.

 NOTE  You can put the @extend directive anywhere within a style—on the first or the last line, for example.
However, most designers add @extend first before any other properties. This approach makes it a lot easier to
see that the style is based on another style.

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 615

INHERITING
(OR

EXTENDING)
PROPERTIES

Extending With Placeholder Selectors
Sass is pretty aggressive about extending selectors. It will extend not just the se-
lector you specify, but other styles that reference that selector. This usually leads
to unwanted consequences. For example, let’s say I had the following Sass code in
an .scss file:

#main h1 {
 background-color: blue;
}
h1 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 @extend h1;
 border-top: 1px solid #444;
}
h3 {
 @extend h1;
 margin-left: 20px;
}

The first style—#main h1—adds a blue background to any <h1> tag inside an element
with an ID value of main. Unfortunately, when the h2 and h3 styles extend the h1
style, they also extend to that #main h1 style producing the following CSS:

#main h1, #main h2, #main h3 {
 background-color: blue;
}
h1, h2, h3 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 border-top: 1px solid #444;
}
h3 {
 margin-left: 20px;
}

Notice that Sass produces a group selector for all <h1>, <h2>, and <h3> tags inside the
main element. It gets worse if you have other styles that include the h1 selector, like
h1 span or h1 a. Sass will create group selectors for those too! To work around that
problem, Sass provides what it calls a placeholder selector. This placeholder’s name
begins with a % symbol; you can’t use that symbol in a normal CSS selector name,
but in Sass it indicates a style that you only want to use as the basis for other styles.

Css: tHe MIssInG MAnUAL616

INHERITING
(OR

EXTENDING)
PROPERTIES

For example, to avoid the problem of overextending the h1 selector in the above
example, you could create a placeholder selector and extend it like this:

#main h1 {
 background-color: blue;
}
%headline {
 font-family: "Raleway", Helvetica, Arial, sans-serif;

 color: #222;
}
h1 {
 @extend %headline;
}
h2 {
 @extend %headline;
 border-top: 1px solid #444;
}
h3 {
 @extend %headline;
 margin-left: 20px;
}

Now, %headline isn’t a real CSS selector. It’s a only Sass thing, so when the final CSS
is generated, there won’t be a %headline style in the CSS file. Because the other
styles aren’t extending the h1 selector, that top style—#main h1—won’t be extended,
and the final CSS output will look like what you’d hope for:

#main h1 {
 background-color: blue;
}
h1, h2, h3 {
 font-family: "Raleway", Helvetica, Arial, sans-serif;
 color: #222;
}
h2 {
 border-top: 1px solid #444;
}
h3 {
 margin-left: 20px;
}

Only Extend Related Elements
If you’re not careful, extending styles using Sass can get out of hand quickly. You might
be tempted to come up with a placeholder style for a particular border style—say
blue, dotted, 1 pixel thick, with 5-pixel rounded corners—and then @extend that style
on every style you’d like to have that border. That might sound like a good idea, but it
will quickly lead to style sheets bloated with group selectors of unrelated elements.

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 617

INHERITING
(OR

EXTENDING)
PROPERTIES

A better approach is to only extend elements that are related by function. The head-
line example on page 612 is a good use case for the @extend directive. In addition, if
you have a particular user-interface element—like a button or dialog box—that has
different states, then create a base style and extend it.

 NOTE  Mixins (discussed next) provide another alternative to @extend. For a discussion on the key
differences between the two and when to use which, read http://csswizardry.com/2014/11/when-to-use-extend-
when-to-use-a-mixin/.

For example, you might create a style that applies to all the buttons on your site—like
an Order Now, Delete, or Cancel button. They all share some similarities—font, shape,
and so on—but could have unique properties as well, like a green background for
the Order Now button and red for Delete. You can easily create a base style for all
buttons and extend it into other styles with additional properties, like this:

%btn {
 display: inline-block;
 padding: 1em;
 border-radius: 3px;
}
.btn-order {
 @extend %btn;
 background-color: green;
 color: white;
}
.btn-delete {
 @extend %btn;
 background-color: red;
 color: white;
}
.btn-cancel {
 @extend %btn;
 background-color: #888;
 color: black;
}

The Sass command will compile that code into this:

.btn, .btn-order, .btn-delete, .btn-cancel {
 display: inline-block;
 padding: 1em;
 border-radius: 3px;
}
.btn-order {
 background-color: green;
 color: white;
}

http://csswizardry.com/2014/11/when-to-use-extend-when-to-use-a-mixin/
http://csswizardry.com/2014/11/when-to-use-extend-when-to-use-a-mixin/

Css: tHe MIssInG MAnUAL618

MIXINS
.btn-delete {
 background-color: red;
 color: white;
}
.btn-cancel {
 background-color: #888;
 color: black;
}

Using and extending placeholders makes it easy for you to update the overall look
of a generic user interface element like a button. In this example, if you wanted to
remove rounded corners from all buttons, you’d simply delete the border-radius
property from the placeholder selector, and all the buttons on your site would be
updated.

There are many other user interface elements that benefit from placeholder selec-
tors and the @extend directive, like dialog boxes used to alert the user, indicate an
error, confirm an order, or indicate a successful transaction.

Mixins
Sass includes another powerful tool called mixins to streamline your CSS and save
you time. Think of a mixin as akin to a macro in Word or Excel—it’s like a mini program
that does a lot of work so you don’t have to. In the case of Sass, a mixin is a shortcut
that refers to a group of CSS declarations that you’d like to use over and over again.
In other words, mixins can write CSS code for you, saving your tired fingers the effort.

Creating a Mixin
In Chapter 17 you learned about flexbox and how you can turn any page element into
a flex container simply by setting the display property to flex. Unfortunately, to
get that to work in Safari, you also need a vendor prefix (page 321), so to turn a div
with the class of container into a flex container, you have to write two lines of CSS:

.container {
 display: -webkit-flex;
 display: flex;
}

In other words, you have to write more than twice as much code as you should. A
Sass mixin simplifies this chore by letting you write one line of code and giving you
two in return. To create a mixin, first add the @mixin directive, followed by the name
you want to assign to the mixin and a set of curly braces:

@mixin flex {

}

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 619

MIXINS
@mixin is a Sass keyword, but the name (flex in this example) is up to you. Because
this mixin will create the CSS code to create a flex container, the name flex is a
good choice.

Then, inside the curly braces, you add the code you want Sass to add to your final
style sheet. In this case, it should output the same two lines of CSS code:

@mixin flex {
 display: -webkit-flex;

 display: flex;
}

Mixins are reusable bits of code, so they’re like a function in programming languages
like JavaScript: You can use a mixin over and over to insert CSS into your finished
CSS file. Because you can reuse them, just as you can reuse Sass variables (page
603), it’s a common practice to put your mixins into a separate Sass partial file
named _mixins.scss and include this partial file near the top of your main Sass file
(the one that inserts all the other partials). So as a general rule, it’s best to import
mixins just after variables (since you’ll often use variables in mixins) but before any
Sass file that might use your mixins. For example:

@import 'helpers/variables';
@import 'helpers/mixins';
@import 'base/reset';
@import 'base/grid';
@import 'base/layout';

Once you’ve created a mixin, you can use it in any styles you create.

Using a Mixin
To use a mixin, you use Sass’s @include directive followed by the name of the mixin.
For example, to turn a page element with the class of container into a flex container,
you could use the mixin like this:

.container {
 @include flex;
}

After Sass compiles this code, you’ll see the following code in the final CSS file:

.container {
 display: -webkit-flex;
 display: flex;
}

Of course, you can also include other properties as part of the style after you use
the mixin. For example, if you wanted to assign a background color to the container
and a border, just add that CSS after the mixin, like this:

Css: tHe MIssInG MAnUAL620

MIXINS
.container {
 @include flex;
 background-color: #84F;
 border: 1px solid #444;
}

That code will turn into the following CSS:

.container {
 display: -webkit-flex;
 display: flex;
 background-color: #84F;
 border: 1px solid #444;
}

As you can see, mixins come in very handy for any properties that include vendor
prefixes like the flex properties discussed in Chapter 17, or the CSS animations and
transforms discussed in Chapter 10.

 NOTE  Sass mixins are useful, but can get very complicated. For a complete reference to Sass mixins, visit
the Sass documentation at http://sass-lang.com/documentation/file.SASS_REFERENCE.html#mixins.

Giving Mixins Information
Sass mixins can do more than just spit back CSS. They can also accept information
and use it to control the information the mixin produces. As you just saw, mixins
come in really handy for properties that include vendor prefixes. The CSS transform
property (page 319), requires two vendor prefixes if you want to support Safari and
Internet Explorer 9. For example, to rotate an element 10 degrees, you’d need three
lines of CSS code

-webkit-transform: rotate(10deg);
-ms-transform: rotate(10deg);
transform: rotate(10deg);

This looks like a great place to use a Sass mixin, but notice that the rotation value is
very specific: 10 degrees of rotation. You might want a particular element to rotate
5 degrees, or 45 degrees, or even -30 degrees; the exact amount will usually vary.
For example, it would be great if, when you include the mixin, you could specify
how much the element should rotate.

Fortunately, you can give a mixin some data, and it’ll use that data when outputting
its CSS. In this case, you want to create a mixin that takes a degree value. So start
with the @mixin directive, the name of the mixin, a pair of parentheses with a vari-
able name inside them, and a set of curly braces, like this:

@mixin rotate($deg) {

}

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#mixins

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 621

MIXINS
The $deg in the above code looks just like the Sass variables discussed on page 603.
It begins with a dollar sign followed by some characters. In this example, the $deg
inside the parentheses is called a parameter— it’s a variable, but it’s empty until you
use the mixin and pass in (that is, assign it) a value. You’ll see how to do that in a
minute, but first you need to finish this mixin by adding the code Sass should output:

@mixin rotate($deg) {
 -webkit-transform: rotate($deg);

 -ms-transform: rotate($deg);
 transform: rotate($deg);
}

Note that the parameter $deg is used just as you would use any Sass variable. In
this case, you’re using it to set a specific amount of rotation. You’d add the above
code to the _mixins.scss partial file, then use (or call) the mixin in your styles. For
example, say you wanted to rotate every <h1> tag three degrees, and every <div>
tag seven degrees. You could create this style:

h1 {
 @include rotate(3deg);
}
div {
 @include rotate(7deg);
}

The resulting Sass compiled CSS would look like this:

h1 {
 -webkit-transform: rotate(3deg);
 -ms-transform: rotate(3deg);
 transform: rotate(3deg);
}
div {
 -webkit-transform: rotate(7deg);
 -ms-transform: rotate(7deg);
 transform: rotate(7deg);
}

Css: tHe MIssInG MAnUAL622

MIXINS

UP TO SPEED

Don’t Reinvent the Mixin
Sass mixins save you time by letting your write less CSS. Why
not take that a step further and save even more time by us-
ing mixins that other people have already written? At their
most complex, mixins look very much like straight computer
programming: They can use variables, loops, and conditional
statements to do some seemingly amazing things. Fortunately,
there are many libraries of established Sass mixins to choose
from:

• Bourbon (http://bourbon.io) is a small mixin library that
adds vendor prefixes and performs other fancy magic
for many CSS properties such as animation (page 338),
transitions (page 330), font-face (page 131) and more.
It’s a great little set of tools.

• Neat (http://neat.bourbon.io), from the same people who

created Bourbon, is a set of mixins that make creating CSS
grids (see Chapter 16) easier.

• Susy (http://susy.oddbird.net) is another set of mixins
for creating CSS grids. This library is very popular with
Sass folks.

• Breakpoint (http://breakpoint-sass.com) is a mixin library
with a single purpose: to make writing media queries
(page 460) fast and simple.

• Compass (http://compass-style.org) is actually a bit
more than a mixin library. It does contain loads of useful
mixins but it does a lot more, including helping you
create CSS sprites (page 298). Compass is big, and offers
so many features that the creators call it a CSS authoring
framework.

Inserting Variables into Text
In the previous section, you created a handy rotate mixin. Every time you want to
rotate an element, you simply include the mixin and give it a value, like 5deg, 7deg,
or -45deg. Since mixins are all about doing less typing, wouldn’t it be even better
to just supply a number, instead of the full degree value—5 instead of 5deg, for
example. After all, you’ll always need the deg part in the final CSS code, so why not
let Sass write it for you?

In other words, you could just write the rotation as:

h1 {
 @include rotate(3);
}

Then, add deg to the output in your mixin. You might think you could try something
like this:

@mixin rotate($deg) {
 -webkit-transform: rotate($deg deg);
 -ms-transform: rotate($deg deg);
 transform: rotate($deg deg);
}

http://bourbon.io/
http://neat.bourbon.io/
http://susy.oddbird.net/
http://breakpoint-sass.com/
http://compass-style.org/

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 623

MIXINS
Unfortunately, Sass would add a space between the value you supply and deg, and
the output would look something like this:

h1 {
 -webkit-transform: rotate(3 deg);
 -ms-transform: rotate(3 deg);
 transform: rotate(3 deg);
}

The space is invalid, so browsers won’t rotate the element. But you can’t just elimi-
nate the space in the mixin like this:

@mixin rotate($deg) {
 -webkit-transform: rotate($degdeg);
 -ms-transform: rotate($degdeg);
 transform: rotate($degdeg);
}

If you do, Sass won’t create any CSS. Instead it will spit out an error: Undefined
variable: "$degdeg". That’s because without the space, the variable is no longer
$deg; it’s $degdeg, which doesn’t exist.

To combine a Sass variable with text strings, you have to use some special symbols
that tell Sass where the real variable lives. This technique is called interpolation,
and basically it says, “Hey Sass, here’s the variable; spit out its value.” To do so, you
must wrap the variable inside some special characters, starting with #{ followed by
the variable name and a closing }. For example, to get the above example to work,
Sass has to interpolate the $deg variable, so you have to write the code like this:

@mixin rotate($deg) {
 -webkit-transform: rotate(#{$deg}deg);
 -ms-transform: rotate(#{$deg}deg);
 transform: rotate(#{$deg}deg);
}

Now you can use the above mixin, send a number value, and Sass will correctly
connect the number with the text “deg” without complaining, so that @include
rotate(3); will produce:

-webkit-transform: rotate(3deg);
-ms-transform: rotate(3deg);
transform: rotate(3deg);

Passing More Information and Optional Values to Mixins
Mixins aren’t just useful for vendor-prefixed properties or values, either. They come
in handy anytime you have to write similar CSS over and over. For example, when
assigning text properties to a heading, a paragraph, a copyright notice, or any piece of
text, it’s common to set values like font-size, line-height, font-weight, and color.

Css: tHe MIssInG MAnUAL624

MIXINS
You can create a mixin that lets you write a single line of Sass code, but get four lines
of CSS in return. The trick is providing all of that information to the mixin. Fortunately,
Sass lets you supply more than one piece of information (also called an argument) to
a mixin. Just provide the names of each of the variable (or parameter) in a comma-
separated list inside the parentheses after the mixin name. For example, to create a mixin
that accepts four font properties and produces four lines of CSS, you could write this:

@mixin text($size, $line-height, $weight, $color) {

 font-size: $size;
 line-height: $line-height;
 font-weight: $weight;
 color: $color;
}

In this example, the mixin is named text. To use it, you include the mixin and supply
four values like this:

h1 {
 @include text(1.25em, 1.2, bold, #FF0000);
}

The resulting CSS that Sass creates would look like this:

h1 {
 font-size: 2em;
 line-height: 1.2;
 font-weight: bold;
 color: #FF000;
}

Mixins can really save you time and typing. But in this example, what if you don’t
want to supply a color or a font weight? You’re only interested in setting the font
size and line height. In that case you can’t simply leave out the extra values like this:

h1 {
 @include text(1.25em, 1.2);
}

Because this mixin expects four values, if you only provide two, Sass will spit out
an error and your Sass files won’t compile into a CSS file. Fortunately, you can tell
Sass that mixin values are optional. For instance, say you wanted to make the line-
height, font-weight, and color values optional. You would assign null within the
mixin definition for each of those parameters, like this:

@mixin text($size, $line-height: null, $weight: null, $color: null) {
 font-size: $size;
 line-height: $line-height;
 font-weight: $weight;
 color: $color;
}

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 625

MIXINS
The null value here tells Sass that it’s okay if those values are empty. In other
words you can leave those values out when using the mixin, so all of these styles
will compile without errors:

h1 {
 @include text(2em);
}
h2 {

 @include text(1.25em, 1.2);
}
p {
 @include text(1em, 1,2, normal);
}

In addition, instead of using null, you can assign default values to mixin parameters,
and Sass will use those values if you don’t supply your own. For example, say you
wanted the regular value of the line-height for most elements to be 1.2, and the
weight property to be normal. You can assign those default values within the mixin
like this:

@mixin text($size, $line-height: 1.2, $weight: normal, $color: null) {
 font-size: $size;
 line-height: $line-height;
 font-weight: $weight;
 color: $color;
}

Now, if you simply specify the font size when using the mixin like this:

h1 {
 @include text(2em);
}

Sass will create CSS using the default values for any properties you leave out:

h1 {
 font-size: 2em;
 line-height: 1.2;
 font-weight: normal;
}

There’s one final wrinkle to using multiple parameters like this. What if you want to
specify a font size and color, but not the two other parameters? When you include
a mixin in a style, Sass expects the values you pass the mixin to come in the same
order as they’re listed in the mixin. For example, look at this use of the above mixin
for an h2 rule:

h2 {
 @include text(2em, red);
}

Css: tHe MIssInG MAnUAL626

WORKING
WITH MEDIA

QUERIES
Because Sass expects the second piece of information to be a line-height value,
it will attempt to assign red to the line-height property. This isn’t valid CSS and
is clearly not what you want. However, you can explicitly tell Sass what values you
want assigned to which parameters when you include the mixin in a style by listing
the mixin parameter followed by a colon and the value you wish to assign:

 h2 {
 @include text(2em, $color:red);

}

Sass mixins can be a real time-saver and are well worth the time it takes to learn
how to use them.

Working with Media Queries
As you saw in Chapter 15, media queries are important for creating flexible designs
that look and work well at a variety of screen sizes. Media queries let you make
fonts larger for bigger screens, or eliminate unwanted margins and padding on
small phone screens. Sass includes built-in support for media queries within selec-
tors. For example, say you wanted all <h1> tags to be 2 ems in size normally, but
when the screen width reached 1200 pixels, the headline should be larger—3 ems,
for instance. You can do that in Sass like this:

h1 {
 font-size: 2em;
 @media (min-width: 1200px) {
 font-size: 3em;
 }
}

This looks a little like the nested selectors you read about on page 607; however,
the final CSS looks very different. In this case, Sass creates one h1 style, and then
generates a media query with another h1 style. The final, compiled CSS looks like this:

h1 {
 font-size: 2em;
}
@media (min-width: 1200px) {
 h1 {
 font-size: 3em;
 }
}

Pretty slick. The benefit of this approach is that you can group all of your h1 style
information in one place. As you read on page 464, normally with media queries you
divide your style sheet into multiple media queries and duplicate selectors within
each media query. So, depending upon how many media queries you add to a CSS
file, you may have h1 selectors in 2, 3, or 5 different parts of a file. With Sass, you

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 627

WORKING
WITH MEDIA

QUERIES
can group all of the media queries with the selector, so you can see at a glance how
the h1 tag will be formatted at each breakpoint.

 NOTE  The downside of the Sass approach is that it literally creates separate media queries for each selector,
so a style sheet can become littered with extra media query code. There’s a lot of debate about this, but many
designers think that Sass’s approach is easier for managing your styles and that it doesn’t really add much code.
Here’s a good article explaining the pros and cons of inline media queries (the kind shown in the above example):
http://benfrain.com/inline-or-combined-media-queries-in-sass-fight/.

Creating Media Query Mixins
While embedding your media queries inside a selector can help group an element’s
properties in a single spot in a Sass file, they’re even more useful when combined
with a mixin. As you can see in the code on the opposite page, the media query’s
specification is written directly in the code: min-width: 1200px. But what if you de-
cide that 1200 pixels is too large a number, or too small? If you’ve added the query
to hundreds of other page elements, then you’ll need to make a lot of updates to
your Sass files.

You can combine several Sass techniques—variables, mixins, and inline media
queries—to create a very customizable method for adding media queries to your
styles. There are many different ways to create media query mixins with Sass, and
(as you read on page 460) there are also many different ways to use media queries.

In this section, you’ll see one technique based on the mobile-first approach discussed
on page 463. The basic strategy is to start with styles that work at all browser widths.
That is, the basic styles (without media queries) present the mobile version and also
set common properties shared at all screen widths, like the fonts used for headlines
and text, or the colors used for backgrounds.

Then you add media queries for different breakpoints that modify the previous styles
to accommodate different screen widths. For example, as the browser window gets
wider, you could use a breakpoint to change the size of headlines, or to add space
around a photo. In other words, each media query refines the original design by
adding rules that improve the appearance at the new screen width.

In this example, you’ll have three breakpoints: small, medium, and large. Small will
cover devices like larger mobile phones—something like a Samsung Galaxy S6. Me-
dium will be for most tablets, and large will work with desktop and laptop displays.
In addition, you’ll create media queries that work within just those ranges and ones
that work for that breakpoint and greater.

To do so, you’ll create Sass variables for the breakpoints; create mixins to generate
the media queries based on those breakpoints; and use mixins in your code, using
the @include directive.

SETTING BREAKPOINT VARIABLES.
Your design might adapt differently at different screen widths. For example, you
might want that four-column design to turn into a three-column design when the

http://benfrain.com/inline-or-combined-media-queries-in-sass-fight/

Css: tHe MIssInG MAnUAL628

WORKING
WITH MEDIA

QUERIES
screen is less than 760 pixels wide. Or maybe 780 is a better value. To get started,
you can create Sass variables and provide values that you can later change if you
need to:

$screen-small : 400px;
$screen-medium : 760px;
$screen-larger: 1000px;

Because these are Sass variables, it’s a good idea to follow the advice on page
604, and store these inside a Sass partial file dedicated to just defining variables:
_variables.scss is a good choice. You can use these variables in the mixins.

CREATING THE MEDIA QUERY MIXINS
The mixins will generate the necessary media query code using the breakpoint
variables. To provide the most flexibility, you can create two different media queries
for the small and medium breakpoints. The first media query will apply when the
browser window is at least as wide as the breakpoint, but it can be wider than the
next breakpoints as well. You’d use this media query when you want, for example,
to add a style that works on both tablet and desktop displays.

The mixin for this media query would look like this:

@mixin mq-small-up {
 @media (min-width: $screen-small) {
 @content;
 }
}

Notice that there’s a new Sass directive here: @content. This represents whatever
code the designer places inside opening and closing braces following the @include
directive. For example, to use the above mixin to increase the font size of paragraphs
when the browser screen is wider than the smallest breakpoint, you could write this:

p {
 font-size: 1.5em;
 @include mq-small-up {
 font-size: 1.75em;
 margin-top: 10px;
 }
}

The code inside the braces—font-size: 1.75em; margin-top: 10px;—replaces the
@content directive when the mixin does its magic. The CSS code that Sass would
generate from the above example looks like this:

p {
 font-size: 1.5em;
}
@media (min-width: 500px) {

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 629

WORKING
WITH MEDIA

QUERIES
 p {
 font-size: 1.75em;
 margin-top: 10px;
 }
}

The second media query for the small breakpoint only applies when the screen is
greater than that breakpoint and also narrower than the next breakpoint. That way
you can create styles that only work within a specific range of screen sizes.

The “breakpoint-only” mixin for the small breakpoint would look like this:

@mixin mq-small {
 @media (min-width: $screen-small) and (max-width: $screen-medium – 1px) {
 @content;
 }
}

This code would generate a media query that looks something like this:

@media (min-width: 400px) and (max-width: 759px) {

}

Notice that there’s a bit of math going on here: $screen-medium – 1px. Sass is actu-
ally programmed to perform basic math operations (see the box on page 606). In
this case, Sass is subtracting 1 pixel from the $screen-medium variable, creating the
value 759px. Because this media query should not apply at the next breakpoint—
760px—so the max-width value needs to be 1 less than that breakpoint.

You’ll create two mixins like this for each breakpoint except the last, so sticking with
the example of three breakpoints, you could use these three mixins:

@mixin mq-small {
 @media (min-width: $screen-small) and (max-width: $screen-medium - 1px) {
 @content;
 }
}
@mixin mq-small-up {
 @media (min-width: $screen-small) {
 @content;
 }
}
@mixin mq-medium {
 @media (min-width: $screen-medium) and (max-width: $screen-large - 1px) {
 @content;
 }
}

Css: tHe MIssInG MAnUAL630

WORKING
WITH MEDIA

QUERIES
@mixin mq-medium-up {
 @media (min-width: $screen-medium) {
 @content;
 }
}
@mixin mq-large-up {
 @media (min-width: $screen-large) {
 @content;
 }
}

USING THE MEDIA QUERY MIXINS
Finally, with the variables and mixins in place, you can start using them in your styles
using the @include directive. Suppose you wanted the padding inside a sidebar to
get larger at each breakpoint to add more white space and breathing room on pro-
gressively larger screens. In addition, you want the top and bottom margins of the
sidebar to be 0 pixels at first, then change to 20 pixels when the browser window
is at least as wide as the medium breakpoint. So if the sidebar has the class name
sidebar, for example, you could write this Sass code to accomplish that goal:

.sidebar {
 padding: 0px;
 margin: 0px;
 @include mq-small {
 padding: 3px;
 }
 @include mq-medium {
 padding: 10px;
 }
 @include mq-medium-up {

 margin: 10px 0;
 }
 @include mq-large-up {
 padding: 15px;
 }
}

Although this code is a long way from writing the traditional media queries in Chapter
15, once you get used to this approach, you’ll soon find the benefits of writing less
code, and keeping all media queries bound with their elements will make it easier
and more efficient to update your CSS.

 NOTE  There are lots of other ways to use Sass to make writing media queries simpler. For a few other
techniques read the following articles: https://css-tricks.com/approaches-media-queries-sass/, http://davidwalsh.
name/write-media-queries-sass, http://thesassway.com/intermediate/responsive-web-design-in-sass-using-
media-queries-in-sass-32 and www.sass-lang.com/documentation/file.SASS_REFERENCE.html#media.

https://css-tricks.com/approaches-media-queries-sass/
http://davidwalsh.name/write-media-queries-sass
http://davidwalsh.name/write-media-queries-sass
http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32
http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32
http://www.sass-lang.com/documentation/file.SASS_REFERENCE.html#media

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 631

TROUBLESHOOTING
WITH CSS

SOURCE MAPSTroubleshooting with CSS Source Maps
As you read in Chapters 5 and 6, CSS styles can interact in all sorts of fun, unusual,
and frustrating ways. The box on page 104 explains one solution to determine how
multiple styles affect a page element. Most browsers let you inspect a page element
by right-clicking on a web page and choosing Inspect Element from the pop-up
menu (circled in Figure 19-6). A browser’s element inspector usually opens in the
bottom half of the browser screen and shows HTML on the left and CSS styles on
the right (see bottom section of Figure 19-6).

The information in the right-hand styles section shows all of the styles (including
media queries) that affect the current selection. With this information you can see
if there’s a style that’s doing something you don’t want, and then fix it in your text
editor. In addition, the style sheet containing each style is listed to the right of the
style. For example, in Figure 19-6, the first style (beginning with .button.button-
primary:hover) is located in the skeleton.css style sheet, while the two styles below
that can be found in the custom.css file. This information lets you know where to go
when you want to modify a style.

With Sass, however, the style sheet that the browser uses to format the HTML of a
page isn’t the same file in which you add and edit your styles. Knowing that a button’s
background color is defined in the styles.css file isn’t a big help when you actually
need to go to the _buttons.scss partial file to change that color. Fortunately, most
browsers support a special feature called source maps, which can help you find the
Sass file you need to edit in order to make changes.

A source map is just that: a map that a browser can follow to point from one style to
its source. That is, it tells the browser how to get from a style in the compiled CSS
file back to the original style inside a Sass file. Sass automatically generates these
source maps for you, so when you run the sass --watch command (page 597), Sass
produces both the final CSS file and its source map.

 NOTE  In older versions of Sass you had to turn on source maps manually:

sass --watch --sourcemap sass:scss

Source map files end in .map—styles.css.map, for example. If you don’t see one of those files in the folder where
Sass puts your finished, compiled CSS file, try running the sass command above using the --sourcemap option.

Css: tHe MIssInG MAnUAL632

TROUBLESHOOTING
WITH CSS

SOURCE MAPS

FiGURE 19-6
When you use a browser’s
element inspector, you
can learn a lot about
the CSS used to format
parts of a web page. For
example, inspecting the
link to the home page
shows that multiple styles
apply to the link. The
arrows point to the styles
and their properties.

Internet Explorer 11, Firefox, Chrome, and Safari all support source maps, so inspect-
ing page elements isn’t really that different for Sass-generated CSS than it is for
regular CSS. Simply right-click the element you wish to inspect, and then choose
Inspect Element from the pop-up menu. The same element inspector appears in
your browser window. However, now you’ll see the names of the Sass partial files
responsible for rules that format the element (circled in Figure 19-7).

CHAPteR 19: MORE POWERFUL STYLING WITH SASS 633

TROUBLESHOOTING
WITH CSS

SOURCE MAPS

FiGURE 19-7
A CSS source map makes
it easy for you to locate
the Sass partial files
containing the rules
that format elements of
a web page. Here, you
can see that a media
query was generated by
a mixin in the _mixins.
scss file, and the actual
style for this heading
tag is in the _layout.
scss file. To change that
media query, you’d open
the _mixins.scss file; to
change the font-size
value for the headline or
add more properties to
it, you'd open and edit
the _layout.scss file.

Sass opens a lot of opportunities for you, the web designer. It makes it easy to or-
ganize your CSS into small, easily edited files; it can create much smaller CSS files;
it can take the chore out of working with vendor prefixes; and, in general, it lets you
work more quickly and efficiently.

 NOTE  For creating a compressed, production-ready CSS file see the Tip on page 600.

Appendixes
PART

5

APPENDIX A:

 CSS Property Reference

APPENDIX B:

 CSS Resources

637

APPENDix

A

Mastering Cascading Style Sheets involves knowing how to use a large number
of CSS properties that control the appearance of text, images, tables, and
forms. To help you in your quest, this appendix gives you a summary of com-

mon properties and values you’ll use to create your own styles. This list covers nearly
all of the CSS 2.1 standard properties—the ones that most web browsers support—as
well as a handful of the most useful and commonly supported newer CSS properties.

 NOTE  The latest CSS specification is really quite large. In fact, to better manage the growth of CSS, the W3C
split CSS into many modules, each of which describes a particular property or set of related properties. For full
details straight from the horse’s mouth, visit the latest CSS specifications from the World Wide Web Consortium at
www.w3.org/Style/CSS/current-work. For a complete list of CSS properties, visit the Mozilla Developer Network’s
CSS Reference at https://developer.mozilla.org/en-US/docs/Web/CSS/Reference.

CSS Values
Every CSS property has a corresponding value. The color property, which formats
font color, requires a color value to specify which color you want to use. The property
color: #FFFFFF; creates white text. Different properties require different types of
values, but they come in four basic categories: colors, lengths and sizes, keywords,
and URLs.

Colors
You can assign colors to many different properties, including those for font, back-
ground, and borders. CSS provides several different ways to specify color.

 CSS Property Reference

Css: tHe MIssInG MAnUAL638

CSS VALUES
KEYWORDS

A web color keyword is simply the name of the color, like white or black. There are
currently 17 recognized web color keywords: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow. Some
browsers accept more keywords, and CSS 3 promises to offer many more in the
future; for one example, RGBA color, see page 149. You can read a lot more about
color keywords at www.w3.org/TR/css3-color.

RGB VALUES
Computer monitors create colors using a mixture of red, green, and blue light. These
RGB values can create (nearly) the full spectrum of color. Almost every design, il-
lustration, and graphics program lets you specify colors using RGB, so it’s easy to
transfer a color from one of those programs to a CSS property. CSS represents RGB
values in several ways:

• Hex values. The method most commonly used on the Web for identifying color,
hex color values consist of three two-character numbers in the hexadecimal
(that is, base 16) system. #FF0033 represents an RGB value composed of red
(FF, which equals 255 in normal, base 10 numbers), green (00), and blue (33).
The # tells CSS to expect hex numbers ahead, and it’s required. If you leave off
the #, a web browser won’t display the correct color.

 TIP  If all three two-digit values are repeated pairs of digits, you can shorten the hex value by using just the
first number of each pair. For example, #361 means the same thing as #336611.

• RGB percentages. You can also specify a color using percentage values, like this:
rgb(100%, 0%, 33%). You can get these numbers from image-editing and design
programs that can define colors using percentages (which is most of them).

• Integer values. Finally, you can use integer RGB values to specify a color. The
format is similar to the percentage option, but you use a number from 0 to 255
to indicate each color: rgb(255, 0, 33).

• RGBA adds transparency to the mix. You can make the color see-through so
the underlying background colors, images, or text shows through. You add a
value of 0 (completely invisible) to 1 (totally opaque) to the end of an RGB color
like this. You can use either the percentage or decimal values for the colors, but
only decimal values for the transparency. For example, both of these options
create a middle gray color that’s 50% transparent:

rgba(50%,50%,50%,.5)
rgba(122,122,122,.5)

• HSL stands for hue, saturation, and lightness (also sometimes labeled luminance).
It’s yet another way to specify color. It’s not supported by Internet Explorer 8 or
earlier, but works in all other browsers. If you’re used to RGB or hex colors, you
may find the HSL syntax is a bit unusual. Here’s an example of a bright red color:

hsl(0, 100%, 50%);

APPenDIx A: CSS PROPERTY REFERENCE 639

CSS VALUES
The first number is a degree value from 0 to 360 representing the spectrum of
colors in a color wheel. The number represents a hue, or what we normally think
of as a color; for example, 360 is red, 240 is blue, and 180 is green. The second
number is saturation, or how pure the color is, specified in a percentage from
0% (dull gray) to 100% (vibrant). The last value is lightness, and it’s also speci-
fied as a percentage from 0% (completely black) to 100% (completely white).
As with RGB color, there is a version of HSL that supports transparency, called
HSLA: hsla(0, 100%, 50%, .5).

It doesn’t matter which method you use—they all work. For consistency, you may
want to pick one way of specifying RGB values and stick with it. However, using
keywords like white and black can be quick and convenient. The Windows and Mac
operating systems both have color pickers that let you find the perfect color from
a palette of millions, and then show you the RGB value. Alternatively, you can use
this free online color picker: www.ficml.org/jemimap/style/color/wheel.html. Or for
more advanced color picking (including the ability to create and save a palette of
colors), check out http://kuler.adobe.com.

Lengths and Sizes
CSS provides many different ways to measure the size of type, the width of a box,
or the thickness of a border line. To indicate type size, you can use inches, picas,
points, centimeters, millimeters, em-heights, ex-heights, pixels, and percentages.
However, even though there are a lot of options, most don’t apply to the world of
onscreen display, for reasons discussed on page 151. You really need to think about
these three only—pixels, ems, and percentages.

PIXELS
A pixel is a single dot on a computer screen. Pixels give you a consistent method
of identifying lengths and font sizes from computer to computer: 72 pixels on one
monitor is 72 pixels on another monitor. That doesn’t mean the actual, real-world
length is the same for everyone, though. Since people set their monitors to different
resolutions—800×600, 1024×768, 1600×1200, or whatever—72 pixels may take up
1 inch on one monitor, but only half an inch for someone else. Nevertheless, pixels
give you the most consistent control over presentation.

 NOTE  There’s just one drawback to using pixels: Folks using Internet Explorer 6 or earlier can’t resize any
type that’s sized using pixels. If your text is too small for someone’s eyes, the visitor won’t be able to enlarge it
to make it more readable. (See page 151 for more on pixel measurements.)

EMS
Originally from the typographic world, an em is a unit that represents the height of
the capital letter M for a particular font. In web pages, 1 em is the height of the web
browser’s base text size, which is usually 16 pixels. However, anyone can change that
base size setting, so 1 em may be 16 pixels for one person, but 24 pixels in someone
else’s browser. In other words, ems are a relative unit of measurement.

http://www.ficml.org/jemimap/style/color/wheel.html
http://kuler.adobe.com

Css: tHe MIssInG MAnUAL640

CSS VALUES
In addition to the browser’s initial font-size setting, ems can inherit size information
from containing tags. A type size of .9em would make text about 14 pixels tall on
most browsers with a 16-pixel base size. But if you have a <p> tag with a font size of
.9 ems, and then a tag with a font size of .9 ems inside that <p> tag, that
 tag’s em size isn’t 14 pixels—it’s 12 pixels (16 x .9 x .9). So keep inheritance
in mind when you use em values.

PERCENTAGES
CSS uses percentages for many different purposes, like sizing text, determining
the width or height of an element, and specifying the placement of an image in the
background of a style, to name a few. Now, what you’re taking a percentage of var-
ies from property to property. For font sizes, the percentage is calculated based on
the text’s inherited value. Say the general font size for a paragraph is 16 pixels tall.
If you created a style for one special paragraph and set its font size to 200 percent,
that text is displayed at 32 pixels tall. When applied to width, however, percentages
are calculated based on the width of the page or on the width of the nearest parent
element. You specify a percentage with a number followed by the percent sign: 100%.

REMS
The rem unit is a relative size based on the root element’s font size—the font size you
set on the html element. This value remains consistent in the document, so unlike
an em unit, rem units do not change based on the font-size value inherited from
parent elements.

VH
The vh unit stands for viewport height, and it’s equivalent to 1/100 of the viewport, or
browser window’s, height. So 100vh is the height of the browser window. If a visitor
resizes the browser window, the vh value changes accordingly.

VW
The vw unit stands for viewport width, and it’s equivalent to 1/100 of the viewport,
or browser window’s, width. So 100vw is the full width of the browser window. If a
visitor resizes the browser window, the vw value changes accordingly.

VMIN
Equal to the minimum of either vh or vw. In other words, if the browser window is
taller than it is wide, then 1vmin is the same as 1vw. However, if the browser window
is wider than it is tall, then 1vmin is the same as 1vh.

VMAX
Equal to the maximum of either vh or vw. In other words, if the browser window is
taller than it is wide, then 1vmin is the same as 1vh. However, if the browser window
is wider than it is tall, then 1vmin is the same as 1vw.

APPenDIx A: CSS PROPERTY REFERENCE 641

CSS VALUES
Keywords
Instead of color or size, many properties have their own specific values that affect how
the properties display and are represented by keywords. The text-align property,
which aligns text on screen, can take one of four keywords: right, left, center, and
justify. Since keywords vary from property to property, read the property descrip-
tions that follow to learn the keyword appropriate to each property.

One keyword, however, is shared by all properties—inherit. This keyword lets you
force a style to inherit a value from a parent element. You can use the inherit
keyword on any property. This keyword gives you the power to make styles inherit
properties that aren’t normally inherited from parent tags. For instance, say you use
the border property to add a border around a paragraph. Other tags, such as
and , inside the <p> tag don’t inherit this value, but you can force them to
do so with the inherit keyword:

em, strong {
 border: inherit;
}

That way, the and tags display the same border value as their parent
<p> tag. So the and elements of the paragraph each get their own
borders, as does the entire paragraph, so you’d end up with boxes within boxes (a
good reason why that property isn’t inherited normally). If you change the <p> tag’s
border value to a different color or thickness, the and tags inherit
that value and display the same type of border, too.

URLs
URL values let you point to another file on the Web. For example, the background-
image property accepts a URL—the path to the file on the Web—as its value, which
lets you assign a graphic file as a background for a page element. This technique
is handy for adding a tiling image in the background of a page or using your own
graphic for bulleted lists (see page 231).

In CSS, you specify a URL like this: url(images/tile.gif). A style that adds an im-
age called tile.gif to the background of the page would look like this:

body { background-image: url(images/tile.gif); }

Unlike in HTML, in CSS, quotes around the URL are optional, so url("images/tile.
gif"), url('images/tile.gif'), and url(images/tile.gif) are equivalent.

 NOTE  The URL itself is just like the HTML href attribute used for links, meaning you can use an absolute URL
like http://www.missingmanuals.com/images/tile.gif, a root-relative path like /images/tile.gif, or a document-
relative URL like ../../images/tile.gif. See page 237 for the full story on these kinds of paths.

Css: tHe MIssInG MAnUAL642

TEXT
PROPERTIES Text Properties

The following properties affect how text is formatted on a web page. Since most of
the properties in this category are inherited, you don’t necessarily have to apply them
to tags specifically intended for text (like the <p> tag). You can apply these properties
to the <body> tag, so that other tags inherit and use the same settings. This technique
is a quick way to define an overall font, color, and so on for a page or section.

color (inherited)
Sets the color of text. Since it’s inherited, if you set the color of the <body> tag to
red, for example, all text inside of the body—and all other tags inside the <body>
tag—is red, too.

• Values: Any valid color value

• Example: color: #FFFF33;

 NOTE  The preset link colors for the <a> tag override color inheritance. In the above example, any links
inside the <body> tag would still be standard hyperlink blue. See page 279 for ways to change preset link colors.

font (inherited)
This is a shortcut method for cramming the following text properties into a single
style declaration: font-style, font-variant, font-weight, font-size, line-height,
and font-family. (Read on for the individual descriptions.)

You must separate each value by a space and include at least font-size and font-
family, and those two properties must be the last two items in the declaration. The
others are optional. If you don’t set a property, the browser uses its own preset
value, potentially overriding inherited properties.

• Values: Any value that’s valid for the specific font property. When including a
line height, add a slash followed by the line height after the font size, like this:
1.25em/150%.

• Example: font: italic small-caps bold 1.25em/150% Arial, Helvetica,
sans-serif;

font-family (inherited)
Specifies the font the browser should use to display text. Fonts are usually specified
as a series of three to four options to accommodate the fact that a particular font
may not be installed on a visitor’s computer. See page 121.

• Values: A comma-separated list of font names. When a font has a space in
its name, surround that font name with quotes. The last font listed is usually
a generic font type instructing browsers to choose a suitable font if the other
listed fonts aren’t available: serif, sans-serif, monotype, fantasy, or cursive.

• Example: font-family: "Lucida Grande", Arial, sans-serif;

APPenDIx A: CSS PROPERTY REFERENCE 643

TEXT
PROPERTIES

 NOTE  All browsers let you specify additional fonts that you keep on your web server or that your site’s
visitors download from a web font service. See page 126 for a detailed description of using web fonts.

font-size (inherited)
Sets the size of text. This property is inherited, which can lead to some weird behav-
iors when using relative length measurements like percentages and ems.

• Values: Any valid CSS measurement unit plus the following keywords: xx-small,
x-small, small, medium, large, x-large, xx-large, larger, and smaller.
Medium represents the web browser’s normal, preset font size; the other sizes
are multiples of medium.

Each of the other options decreases or increases the size by a different factor.
While each size change is supposed to be a consistent increase or decrease
from the previous size, it isn’t. Basically, xx-small is the equivalent of 9 pixels
(assuming you haven’t adjusted the base font size in your browser); x-small is 10
pixels; small is 13 pixels; large is 18 pixels; x-large is 24 pixels; and xx-large is
32 pixels. Due to the uncertainty of how each browser handles these keywords,
many designers use pixels, ems, or percentages instead.

• Example: font-size: 1.25em;

font-style (inherited)
Makes text italic. Applied to italic text, it turns it back to plain text. The options
italic and oblique are functionally the same.

• Values: italic, oblique, normal

• Example: font-style: italic;

font-variant (inherited)
Makes text appear in small caps, like this: special presentation. The value normal re-
moves small caps from text already formatted that way.

• Values: small-caps, normal

• Example: font-variant: small-caps;

font-weight (inherited)
Makes text bold or removes bolding from text already formatted that way.

• Values: CSS actually provides 14 different font-weight keywords, but only a
couple actually work with today’s browsers and computer systems: bold and
normal.

• Example: font-weight: bold;

Css: tHe MIssInG MAnUAL644

TEXT
PROPERTIES

letter-spacing (inherited)
Adjusts the space between letters to spread out letters (adding spacing between
each) or cram letters together (removing space).

• Values: Any valid CSS measurement unit, though ems and pixels are most
common. For this property, percentages don’t work in most browsers. Use a
positive value to increase the space between letters and a negative value
to remove space (scrunch letters together). The value normal resets letter-
spacing to its regular browser value of 0.

• Examples: letter-spacing: -1px; letter-spacing: 2em;

line-height (inherited)
Adjusts space between lines of text in a paragraph (often called line spacing in
word-processing programs). The normal line height is 120 percent of the size of the
text (page 163).

• Values: Most valid CSS lengths (page 151), though ems and pixels and percent-
ages are most common.

• Example: line-height: 200%;

text-align (inherited)
Positions a block of text to the left, right, or center of the page or container element.

• Values: left, center, right, justify (the justify option often makes text
difficult to read on monitors).

• Example: text-align: center;

text-decoration (inherited)
Adds lines above, under, and/or through text. Underlining is common with links, so
it’s usually a good idea not to underline text that isn’t a link. The color of the un-
derline, overline, or strikethrough line is the same as the font color of the tag being
styled. The property also supports a blink value that makes text flash off and on
obnoxiously (but most browsers ignore blink anyway).

• Values: underline, overline, line-through, blink, none. The none value turns
off all decoration. Use this to hide the underline that normally appears under
links. You can also add multiple decorations by listing the name of each type
(except none) separated by a space.

• Example: text-decoration: underline overline line-through;

APPenDIx A: CSS PROPERTY REFERENCE 645

TEXT
PROPERTIES

text-indent (inherited)
Sets the indent size of the first line of a block of text. The first line can be indented
(as in many printed books) or outdented, so that the first line hangs off and over
the left edge of the rest of the text.

• Values: Any valid CSS measurement unit. Ems and pixels are most common;
percentages behave differently than with the font-size property. Here, per-
centages are based on the width of the box containing the text, which can be
the width of the entire browser window. So 50% would indent the first line half
of the way across the window. To outdent (hang the first line off the left edge),
use a negative value. This technique works well in conjunction with a positive
margin-left property (page 187), which indents the left side of the other lines
of text a set amount.

• Example: text-indent: 3em;

text-shadow (inherited)
Lets you add a drop shadow to any text.

• Values: Two measurement values (ems or pixels) for horizontal and vertical
offset; a value for the amount of blur applies to the text, and a color value. For
the horizontal offset, a negative number places the shadow to the left of the
text, a positive value to the right. For vertical offset, a negative number moves
the shadow above the text, and positive value places it below. Each value is
separated from the next by a space. You can also add multiple shadows by
adding additional shadows values separated by a comma.

• Example:

text-shadow: -4px 4px 3px #999999;
text-shadow: -4px 4px 3px #999999, 2px 3px 10px #000;

text-transform (inherited)
Changes the capitalization of text, so text appears in all uppercase letters, all low-
ercase, or only the first letter of each word capitalized.

• Values: uppercase, lowercase, capitalize, none. The none option returns
the text to whatever case is in the actual HTML code. If aBCDefg are the actual
letters typed in HTML, then none removes any other inherited case set by an
ancestor tag and displays aBCDefg onscreen.

• Example: text-transform: uppercase;

Css: tHe MIssInG MAnUAL646

TEXT
PROPERTIES

vertical-align
Sets the baseline of an inline element relative to the baseline of the surrounding con-
tents. With it, you can make a character appear slightly above or below surrounding
text. Use this to create superscript characters like ™, ®, or ©. When applied to a table
cell, the values top, middle, bottom, and baseline control the vertical placement of
content inside the cell (page 360).

• Values: baseline, sub, super, top, text-top, middle, bottom, text-bottom,
a percentage value, or an absolute value (like pixels or ems). Percentages are
calculated based on the element’s line-height value (page 163).

• Examples:

vertical-align: top;
vertical-align: -5px;
vertical-align: 75%;

white-space
Controls how the browser displays space characters in the HTML code. Normally, if
you include more than one space between words—“Hello Dave”—a web browser
displays only one space—“Hello Dave.” You can preserve any white space exactly as
is in the HTML using the pre value, which does the same as the HTML <pre> tag. In
addition, web browsers will split a line of text at a space, if the line won’t fit within
the window’s width. To prevent text from wrapping, use the nowrap value. But the
nowrap value makes all of the paragraph’s text stay on one line, so don’t use it with
long paragraphs (unless you like the idea of making your visitors scroll endlessly
to the right).

• Values: nowrap, pre, normal. Two other values—pre-line and pre-wrap—don’t
work in many browsers.

• Example: white-space: pre;

word-spacing (inherited)
Works like the letter-spacing property (page 159), but instead of letters, it adjusts
space between words.

• Values: Any valid CSS measurement unit, though ems and pixels are most com-
mon; percentages don’t work in most browsers. Use a positive value to increase
the space between words and a negative value to remove space (scrunch words
together). The value normal resets word spacing to its regular browser value of 0.

• Examples: word-spacing: -1px; word-spacing: 2em;

APPenDIx A: CSS PROPERTY REFERENCE 647

LIST
PROPERTIESList Properties

The following properties affect the formatting of bulleted lists () and numbered
lists (). (See page 168 for more on using CSS with lists.)

list-style (inherited)
This property is a shorthand method of specifying the three properties listed next.
You can include a value for one or more of those properties, separating each by a
space. You can even use this property as a shortcut for writing a single property and
save a couple of keystrokes: list-style: outside, instead of list-style-position:
outside. If you specify both a type and an image, a web browser will display the bullet
type (disc, square, and so on) only if it can’t find the image. This way, if the path to
your custom bullet image doesn’t work, you don’t end up with a bulletless bulleted list.

• Values: Any valid value for list-style-type, list-style-image, and/or list-
style-position.

• Example: list-style: disc url(images/bullet.gif) inside;

list-style-image (inherited)
Specifies an image to use for a bullet in a bulleted list.

• Values: A URL value (page 641) or none.

• Example: list-style-image: url(images/bullet.gif);

 NOTE  The background-image property does the custom bullet job just as well and offers more control
(see page 231).

list-style-position (inherited)
Positions the bullets or numbers in a list. These markers can appear outside of the
text, hanging off to the left, or inside the text (exactly where the first letter of the
first line normally begins). The outside position is how web browsers normally
display bullets and numbers.

• Values: inside, outside

• Example: list-style: inside;

list-style-type (inherited)
Sets the type of bullet for a list—round, square, roman numeral, and so on. You can
even turn an unordered (bulleted) list into an ordered (numbered) list by changing
the list-style-type property. Use the none option to completely remove bullets
or numbers from the list.

• Values: disc, circle, square, decimal, decimal-leading-zero, upper-alpha,
lower-alpha, upper-roman, lower-roman, lower-greek, none

• Example: list-style-type: square;

Css: tHe MIssInG MAnUAL648

PADDING,
BORDERS, AND

MARGINS Padding, Borders, and Margins
The following properties control the space around an element, and let you add
border lines to a style.

box-shadow
• Values: An optional value—inset—to add a drop shadow inside an element, fol-

lowed by four measurement values and a color. The first two measurement values
(ems or pixels) are for horizontal and vertical offset; the third value specifies
the amount of blur applied to the box; the fourth value, which is optional, adds
a “spread” to the shadow, making the shadow wider. For the horizontal offset,
a negative number places the shadow to the left of the box, a positive value to
the right. For vertical offset, a negative number moves the shadow above the
box, and positive value places it below. Each value is separated from the next
by a space. You can also add multiple shadows by adding additional shadows
values separated by a comma.

• Example:

box-shadow: -4px 4px 3px #999999;
box-shadow: inset 4px 4px 3px 5px #999999;
box-shadow: inset 4px 4px 3px 5px #999999
 2px 2px 5px black;

border
Draws a line around the four edges of an element.

• Values: The width (thickness) of the border line in any valid CSS measurement
unit (except percentages).

You can also specify a style for the line: solid, dotted, dashed, double, groove,
ridge, inset, outset, none, and hidden. The none and hidden values do the same
thing—remove any border.

Finally, you can specify a color using any valid CSS color type (a keyword like
green or a hex number like #33fc44).

• Example: border: 2px solid #f33;

border-radius
Rounds the corners of an element. Only has a visual effect if the element has a
border, background color, or image.

• Values: One, two, three, or four values (px, em, or %) that indicate the size
of a radius of a circle drawn at the corners of an element’s box. If you supply
only one value, it applies the same size rounded corner to all four corners; with
two values, the first specifies the top-left and bottom-right corner, while the
second indicates the top-right and bottom-left corner radii. When using three
values, the first specifies the top-left corner; the second, both the top-right and

APPenDIx A: CSS PROPERTY REFERENCE 649

PADDING,
BORDERS, AND

MARGINS
bottom-left, and the third the bottom-right corner. With four values, each value
applies in order to the top-left corner, top-right corner, bottom-right corner,
and bottom-left corner. You can add a / followed by a second value to create
an elliptical corner rather than a perfectly circular one.

• Example:

border-radius: .5em;
border-radius: 15px 10px 25px 5px;

border-radius: 15px / 5px;

border-top, border-right, border-bottom, border-left
Adds a border to a single edge. For example, border-top adds a border to the top
of the element.

• Values: Same as for border.

• Example: border-left: 1em dashed red;

border-color
Defines the color used for all four borders.

• Values: Any valid CSS color type (a keyword like green or a hex number like
#33fc44).

• Example: border-color: rgb(255,34,100);

This property also supports a shorthand method, which lets you assign different
colors to each of the four borders.

• Values: Any valid CSS color type for each border: top, right, bottom, left. If you
include just two colors, the first color applies to the top and bottom, and the
second color to the left and right.

• Example: border-color: #000 #F33 #030 #438F3C;

border-top-color, border-right-color, border-bottom-color,
border-left-color
Functions just like the border-color property but sets color for only one edge. Use
these properties to override the color set by the border property. In this way, you
can customize the color for an individual edge while using a more generic border
style to define the basic size and style of all four edges.

• Values: See border-color above.

• Example: border-left-color: #333;

Css: tHe MIssInG MAnUAL650

PADDING,
BORDERS, AND

MARGINS
border-style
Defines the style used for all four borders.

• Values: One of these keywords: solid, dotted, dashed, double, groove, ridge,
inset, outset, none, and hidden. See Figure 7-7 on page 195 for an illustration
of the different styles. The none and hidden values act identically—they remove
any border.

• Example: border-style: inset;

This property also supports a shorthand method, which lets you assign different
styles to each of the four borders.

• Values: One of the keywords mentioned above for each border: top, right,
bottom, left. If you include just two keywords, then the first style applies to
the top and bottom and the second style to the left and right.

• Example: border-style: solid dotted dashed double;

border-top-style, border-right-style, border-bottom-style,
border-left-style
Functions just like the border-style property, but applies only to one edge.

• Values: See border-style above.

• Example: border-top-style: none;

border-width
Defines the width or thickness of the line used to draw all four borders.

• Values: Any valid CSS measurement unit except percentages. The most com-
mon are ems and pixels.

• Example: border-width: 1px;

This property also supports a shorthand method, which lets you assign different
widths to each of the four borders.

• Values: Any valid CSS measurement unit (except percentages) for each border:
top, right, bottom, left. If you include just two values, then the first value sets
the width for the top and bottom border and the second value the width for
the left and right borders.

• Example: border-width: 3em 1em 2em 3.5em;

border-top-width, border-right-width, border-bottom-
width, border-left-width
Functions just like the border-width property but applies only to one edge.

• Values: See border-width above.

• Example: border-bottom-width: 3em;

APPenDIx A: CSS PROPERTY REFERENCE 651

PADDING,
BORDERS, AND

MARGINS
box-sizing
Dictates how a browser measures the height and width of an element. Normally,
browsers combine the border, padding, and CSS width properties to determine the
amount of screen space an element takes up. This is often confusing, since you can
specify an element’s width to be 300 pixels, but, if the element also has padding
and borders, the browser displays that element wider than 300 pixels on screen.

• Values: content-box, padding-box, or border-box. The content-box option is the
normal way browsers do it. The padding-box option tells a browser to include the
padding in with the CSS width and height values; border-box also includes the
border width and height in its calculations. For example, if you have a <div> tag
that you set to 300 pixels width, with 20 pixels of padding and a 2-pixel border,
a browser will normally display that div in 344 pixels of screen space (300 + 20
+ 20 + 2 +2); however, if you set the box-sizing property to padding-box, the
browser would display that div in 304 pixels of space (300 + 2 +2), because the
padding is considered part of that 300 pixels; the border-box setting would
tell a browser to simply make the div 300 pixels wide. The border-box option
is commonly used to make it easier to keep track of element widths.

• Example: box-sizing: border-box;

outline
This property is a shorthand way to combine outline-color, outline-style, and
outline-width (listed next). An outline works just like a border, except the outline
takes up no space (that is, it doesn’t add to the width or height of an element), and
it applies to all four edges. It’s intended more as a way of highlighting something
on a page than as a design detail.

• Values: The same as for border with one exception—see outline-color next.

• Example: outline: 3px solid #F33;

outline-color
Specifies the color for an outline (see outline above).

• Values: Any valid CSS color, plus the value invert, which merely reverses the
color the outline is sitting on. If the outline is drawn on a white background, the
invert value makes the outline black. Works just like border-color (page 649).

• Example: outline-color: invert;

outline-style
Specifies the type of line for the outline—dotted, solid, dashed, and so on.

• Values: Same as border-style (page 650).

• Example: outline-style: dashed;

Css: tHe MIssInG MAnUAL652

PADDING,
BORDERS, AND

MARGINS
outline-width
Specifies the thickness of the outline. Works just like border-width.

• Values: Any valid CSS measurement unit except percentages. The most com-
mon are ems and pixels.

• Example: outline-width: 3px;

padding
Sets the amount of space between the content, border, and edge of the background.
Use it to add empty space around text, images, or other content. (See Figure 7-1 on
page 186 for an illustration.)

• Values: Any valid CSS measurement unit, like pixels or ems. Percentage values
are based on the width of the containing element. A headline that’s a child of
the <body> tag uses the width of the browser window to calculate a percentage
value, so a padding of 20 percent adds 20 percent of the window’s width. If
the visitor resizes his browser, the padding size changes proportionately. For
example, you can specify the padding for all four edges by using a single value,
or set individual padding sizes per edge using this order: top, right, bottom, left.

• Examples: padding: 20px; padding: 2em 3em 2.5em 0;

padding-top
Works just like the padding property, but sets padding for top edge only.

• Example: padding-top: 20px;

padding-right
Works just like the padding property, but sets padding for right edge only.

• Example: padding-right: 20px;

padding-bottom
Works just like the padding property, but sets padding for bottom edge only.

• Example: padding-bottom: 20px;

padding-left
Works just like the padding property, but sets padding for left edge only.

• Example: padding-left: 20px;

APPenDIx A: CSS PROPERTY REFERENCE 653

PADDING,
BORDERS, AND

MARGINS
margin
Sets the amount of space between an element’s border and the margin of other
elements (see Figure 7-1 on page 186). It lets you add white space between two
elements—between one picture and another picture, or between a sidebar and the
main content area of a page.

 NOTE  Vertical margins between elements can collapse. That is, browsers use only the top or bottom margin
and ignore the other, creating a smaller gap than expected (see page 189).

• Values: Any valid CSS measurement unit like pixels or ems. Percentage values
are based on the width of the containing element. A headline that’s a child of
the <body> tag uses the width of the browser window to calculate a percentage
value, so a margin of 10 percent adds 10 percent of the window’s width to the
edges of the headline. If the visitor resizes his browser, the margin size changes.
As with padding, you specify the margin for all four edges using a single value,
or set individual margins in this order: top, right, bottom, left.

• Examples: margin: 20px; margin: 2em 3em 2.5em 0;

margin-top
Works just like the margin property, but sets margin for top edge only.

• Example: margin-top: 20px;

margin-right
Works just like the margin property, but sets margin for right edge only.

• Example: margin-right: 20px;

margin-bottom
Works just like the margin property, but sets margin for bottom edge only.

• Example: margin-bottom: 20px;

margin-left
Works just like the margin property, but sets margin for left edge only.

• Example: margin-left: 20px;

Css: tHe MIssInG MAnUAL654

BACKGROUNDS Backgrounds
CSS provides several properties for controlling the background of an element, includ-
ing coloring the background, placing an image behind an element, and controlling
how that background image is positioned.

background
Provides a shorthand method of specifying properties that appear in the background
of an element, like a color, an image, and the placement of that image. It combines
the five background properties (described next) into one compact line, so you can
get the same effect with much less typing. However, if you don’t set one of the
properties, browsers use that property’s normal value instead. For example, if you
don’t specify how a background image should repeat, browsers will tile that image
from left to right and top to bottom (see page 234).

• Values: The same values used for the background properties listed next. The
order of the properties isn’t important (except for positioning as described
below), but usually follow the order of background-color, background-image,
background-repeat, background-attachment, background-position.

• Example: background: #333 url(images/logo.gif) no-repeat fixed left
top;

background-attachment
Specifies how a background image reacts when your visitor scrolls the page. The
image either scrolls along with the rest of the content or remains in place. You can
add a logo to the upper-left corner of a very long web page, using the background-
attachment property’s fixed value, and make that image stay in the upper-left
corner even when the page is scrolled.

• Values: scroll or fixed. Scroll is the normal behavior: An image will scroll off
the screen along with text. fixed locks the image in place.

• Example: background-attachment: fixed;

background-clip
This property limits the area in which a background-image appears. Normally a
background image fills the entire area of an element including its borders, padding,
and content. However, you may want a background image to only appear behind the
padding area and exclude the borders. That effect is useful when you have a dot-
ted or dashed border, to keep the image from appearing in the gaps of the border.
Likewise, you might want to exclude the padding area so a tiled background appears
only in the content area, and a solid color in the padding area.

• Values: border-box, padding-box, or content-box. The border-box option is
the normal method—placing an image behind the border, padding and content.
The padding-box option keeps a background image in the padding area only,
so that it won’t appear behind the border; content-box places a background

APPenDIx A: CSS PROPERTY REFERENCE 655

BACKGROUNDS
image in the content area only, so it won’t appear in the padding area or behind
the border.

• Example:

background-clip: content-box;
background-clip: padding-box;

background-color
Adds a color to the background of a style. The background sits underneath the
border and underneath a background image, a fact to keep in mind if you use one
of the nonsolid border styles like dashed or dotted. In these cases, the background
color shows through the gaps between the dashes or dots.

• Values: Any valid color value (page 637).

• Example: background-color: #FFF;

background-image
Places an image into the background of a style. Other page elements sit on top of
the background image, so make sure that text is legible where it overlaps the image.
You can always use padding to move content away from the image, too. The image
tiles from left to right and top to bottom, unless you set the background-repeat
property as well. CSS also lets you apply multiple background images (see page 249).

• Values: The URL of an image. Can also include a browser generated linear- or
radial-gradient (see page 252).

• Examples:

background-image: url(images/photo.jpg);
background-image: url(http://www.example.org/photo.jpg);
background-image: url(http://www.example.org/photo.jpg),
 url(images/photo.jpg);

background-origin
Tells a browser where to place a background image in relationship to the border,
padding and content of an element. This is most useful for a non-repeating image,
since this property lets you better control the image’s position. This property is not
supported by Internet Explorer 8 or earlier.

• Values: border-box, padding-box, or content-box. The border-box option is the
normal method—placing an image in the top-left corner of the border. The padding-
box option starts a background image in the padding area only, so that it won’t
appear behind the border; content-box places a background image in the content
area only, so it won’t appear in the padding area or behind the border. However, if
the image is tiled, you’ll still see the image behind the borders and padding—this
property only controls where the image starts. Use the background-clip property
(page 654) to keep a tiled image from appearing behind borders or padding.

• Example: background-origin: content-box;

http://www.example.org/photo.jpg

Css: tHe MIssInG MAnUAL656

BACKGROUNDS
background-position
Controls the placement of an image in the background of a page element. Unless
you specify otherwise, an image begins in the element’s top-left corner. If the image
tiles, background-position controls the image’s start point (see background-repeat
next). If you position an image in the center of an element, the browser puts the
image there, and then tiles the image up and to the left and down and to the right.
In many cases, the exact placement of an image doesn’t cause a visible difference
in the background tiling, but it lets you make subtle changes to the positioning of
a pattern in the background.

• Values: Any valid CSS measurement unit, like pixels or ems, as well as keywords
or percentages. The values come in pairs, with the first being the horizontal
position, and the second being the vertical. Keywords include left, center,
and right for horizontal positioning and top, center, and bottom for vertical.
Pixel and em values are calculated from the top-left corner of the element, so
to place a graphic 5 pixels from the left edge and 10 pixels from the top, you’d
use a value of 5px 10px.

Percentage values map one point on the image to one point in the background
of the element, calculated by the specified percentage from the left and top
edges of the image and the specified percentage from the left and top edges of
the element. 50% 50% places the point that’s 50 percent across and 50 percent
down the image on top of the point that’s 50 percent across and 50 percent
down the element. In other words, it puts the image directly in the middle of the
element. You can mix and match these values: If you want, use a pixel value for
horizontal placement and a percentage value for vertical placement.

• Examples: background-position: left top; background-position: 1em 3em;
background-position: 10px 50%;

background-repeat
Controls whether or how a background image repeats. Normally, background images
tile from the top left to the bottom right, filling the element’s entire background.

• Values: repeat, no-repeat, repeat-x, repeat-y. The repeat option is the normal
method—tiling left to right, top to bottom. The no-repeat places the image a
single time in the background with no tiling; repeat-y tiles the image top to
bottom only—perfect for adding a graphical sidebar. The repeat-x option tiles
the image from left to right only, so you can add a graphical bar to an element’s
top, middle, or bottom.

• Example: background-repeat: no-repeat;

APPenDIx A: CSS PROPERTY REFERENCE 657

PAGE LAYOUT
PROPERTIES

background-size
Lets you resize a background image scaling it up or down, or even distorting its
proportions.

• Values: You can use specific values in pixels, ems or percentages, or one of two
keywords: contain or cover. The contain keyword forces the image to resize to
completely fit the entire element while still maintaining its aspect ratio; cover
forces the width of the image to fit the width of the element and the height of
the image to fit the height of the element. This usually distorts the image by
stretching it or squishing it to fit within the element.

• Example:

background-size: 200px 400px;
background-size: contain;

Page Layout Properties
The following properties control the placement and size of elements on a web page.

bottom
This property is used with absolute, relative, and fixed positioning (see page 430).
When used with absolute or fixed positioning, bottom determines the position of the
bottom edge of the style relative to the bottom edge of its closest positioned ancestor.
If the styled element isn’t inside of any positioned tags, then the placement is rela-
tive to the bottom edge of the browser window. You can use this property to place a
footnote at the bottom of the browser window. When used with relative positioning,
the placement is calculated from the element’s bottom edge (prior to positioning).

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages. Per-
centages are calculated based on the width of the containing element.

• Example: bottom: 5em;

clear
Prevents an element from wrapping around a floated element. Instead, the cleared
element drops below the bottom of the floated element.

• Values: left, right, both, none. The left option means the element can’t wrap
around left-floated elements. Similarly, right drops the element below any
right-floated items. The both value prevents an element from wrapping around
either left- or right-floated elements. The none value turns the property off, so
you use it to override a previously set clear property. This trick comes in handy
when a particular tag has a style that drops below a floated element, but you
want the tag to wrap in just one case. Create a more specific style to override
the float for that one tag.

• Example: clear: both;

Css: tHe MIssInG MAnUAL658

PAGE LAYOUT
PROPERTIES

clip
Creates a rectangular window that reveals part of an element. If you had a picture
of your high-school graduating class, and the class bully was standing on the far
right edge of the photo, you could create a display area that crops out the image
of your tormentor. The full image is still intact, but the clipping area only displays
the bully free portion of it. The clip property is most effective when used with
JavaScript programming to animate the clip. You can start with a small clipping
area and expand it until the full photo is revealed.

• Values: Coordinates of a rectangular box. Enclose the coordinates in parentheses
and precede them by the keyword rect, like so: rect(5px,110px,40px,10px);.

Here’s how the order of these coordinates works: The first number indicates the
top offset—the top edge of the clipping window. In this example, the offset is
5px, so everything in the first four rows of pixels is hidden. The last number is
the left offset—the left edge of the clipping window. In this example, the offset
is 10px, so everything to the left (the first 9 pixels of the element) is hidden.
The second number is the width of the clipping window plus the last number;
if the left edge of the clip is 10 pixels and you want the visible area to be 100
pixels, the second number would be 110px. The third number is the height of
the clipping region plus the top offset (the first number). So, in this example,
the clipping box is 35 pixels tall (35px + 5px = 40px).

• Example: clip: rect(5px,110px,40px,10px);

 NOTE  Since the order of the coordinates is a little strange, most designers like to start with the first and
last numbers, and then compute the two other numbers from them.

display
Determines the kind of box used to display a web page element—block-level or inline
(page 192). Use it to override how a browser usually displays a particular element.
You can make a paragraph (block-level element) display without line breaks above
and below it—exactly like, say, a link (inline element).

• Values: block, inline, none. The display property accepts 17 values, most of
which have no effect in the browsers available today. Block, inline, and none,
however, work in almost all browsers. The block value forces a line break above
and below an element, just like other block-level elements (like paragraphs and
headers). The inline value causes an element to display on the same line as
surrounding elements (just as text within a tag appears right on the
same line as other text). The none value makes the element completely disappear
from the page. Then, you can make the element reappear with some JavaScript
programming or the :hover pseudo-class (see page 55).

• Example: display: block;

APPenDIx A: CSS PROPERTY REFERENCE 659

PAGE LAYOUT
PROPERTIES

float
Moves an element to the left or right edge of the browser window, or, if the floated
element is inside another element, to the left or right edge of that containing element.
Elements that appear after the floated element move up to fill the space to the right
(for left floats) or left (for right floats), and then wrap around the floated element.
Use floats for simple effects—like moving an image to one side of the page—or for
very complex layouts, like those described in Chapter 12.

• Values: left, right, none. To turn off floating entirely, use none. This comes in
handy when a particular tag has a style with a left or right float applied to it and
you want to create a more specific style to override the float for that one tag.

• Example: float: left;

height
Sets the height of the content area—the area of an element’s box that contains
content like text, images, or other tags. The element’s actual onscreen height is
the total of height, top and bottom margins, top and bottom padding, and top and
bottom borders.

• Values: Any valid CSS measurement unit, such as pixels, ems, or percentages.
Percentages are calculated based on the height of the containing element.

• Example: height: 50%;

 NOTE  Sometimes, your content ends up taller than the set height—if you type a lot of text, for instance, or
your visitor increases text size in her browser, the content extends outside the box flowing outside of a background
color and over any borders. The overflow property controls what happens in this case (see page 208).

left
When used with absolute or fixed positioning (page 430), this property determines
the position of the left edge of the style relative to the left edge of its closest-
positioned ancestor. If the styled element isn’t inside of any positioned tags, then
the placement is relative to the left edge of the browser window. You can use this
property to place an image 20 pixels from the left edge of the browser window.
When used with relative positioning, the placement is calculated from the element’s
left edge (prior to positioning).

• Values: Any valid CSS measurement unit, such as pixels, ems, or percentages.

• Example: left: 5em;

Css: tHe MIssInG MAnUAL660

PAGE LAYOUT
PROPERTIES

max-height
Sets the maximum height for an element. That is, the element’s box may be shorter
than this setting, but it can’t be any taller. If the element’s contents are taller than
the max-height setting, they overflow the box. You can control what happens to
the excess using the overflow property. Internet Explorer 6 (and earlier) doesn’t
understand the max-height property.

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.
Browsers calculate percentages based on the height of the containing element.

• Example: max-height: 100px;

max-width
Sets the maximum width for an element. The element’s box can be narrower than
this setting, but not wider. If the element’s contents are wider than the max-width
setting, they overflow the box, which you can control with the overflow property.
You mostly use max-width in liquid layouts (page 386) to make sure a page design
doesn’t become unreadably wide on very large monitors.

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages. Per-
centages are calculated based on the width of the containing element.

• Example: max-width: 950px;

min-height
Sets the minimum height for an element. The element’s box may be taller than this
setting, but it can’t be shorter. If the element’s contents aren’t as tall as the min-
height setting, the box’s height shrinks to meet the min-height value.

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.
Percentages are based on the containing element’s height.

• Example: min-height: 20em;

min-width
Sets the minimum width for an element. The element’s box may be wider than this
setting, but it can’t be narrower. If the element’s contents aren’t as wide as the
min-width value, the box simply gets as thin as the min-width setting. You can also
use min-width in liquid layouts, so that the design doesn’t disintegrate at smaller
window widths. When the browser window is thinner than min-width, it adds hori-
zontal scroll bars.

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.
Percentages are based on the containing element’s width.

• Example: min-width: 760px;

 NOTE  You usually use the max-width and min-width properties in when creating responsive web
designs like those discussed in Chapter 15.

APPenDIx A: CSS PROPERTY REFERENCE 661

PAGE LAYOUT
PROPERTIES

overflow
Dictates what should happen to text that overflows its content area, like a photo
that’s wider than the value set for the width property.

• Values: visible, hidden, scroll, auto. The visible option makes the overflow-
ing content extend outside the box—potentially overlapping borders and other
elements on the page. The hidden value hides any content outside of the content
area. The scroll value adds scroll bars to the element so a visitor can scroll to
read any content outside the content area—sort of like a mini-frame. The auto
option adds scrollbars only when they’re necessary to reveal more content.

• Example: overflow: hidden;

position
Determines what type of positioning method a browser uses when placing an ele-
ment on the page.

• Values: static, relative, absolute, fixed. The static value is the normal browser
mode—one block-level item stacked on top of the next, with content flowing
from the top to the bottom of the screen. The relative option positions an
element in relation to where the element currently appears on the page—in
other words, it can offset the element from its current position. The absolute
value takes an element completely out of the page flow. Other items don’t see
the absolute element and may appear underneath it. It’s used to position an
element in an exact place on the page, or to place an element in an exact posi-
tion relative to a parent element that’s positioned with absolute, relative, or
fixed positioning. The fixed option locks an element on the page, so that when
the page is scrolled, the fixed element remains on the screen—much like HTML
frames. Internet Explorer 6 (and earlier) ignores the fixed option.

• Example: position: absolute;

 TIP  You usually use relative, absolute, and fixed in conjunction with left, right, top, and
bottom. See Chapter 13 for the full details on positioning.

right
When used with absolute or fixed positioning, this property determines the posi-
tion of the right edge of the style relative to the right edge of its closest positioned
ancestor. If the styled element isn’t inside of any positioned tags, then the place-
ment is relative to the right edge of the browser window. You can use this property
to place a sidebar a set amount from the right edge of the browser window. When
used with relative positioning, the placement is calculated from the element’s right
edge (prior to positioning).

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.

• Example: left: 5em;

Css: tHe MIssInG MAnUAL662

PAGE LAYOUT
PROPERTIES

top
Does the opposite of the bottom property. In other words, when used with absolute
or fixed positioning, this property determines the position of the top edge of the style
relative to the top edge of its closest positioned ancestor. If the styled element isn’t
inside of any positioned tags, then the placement is relative to the top edge of the
browser window. You can use this property to place a logo a set amount from the
top edge of the browser window. When used with relative positioning, the placement
is calculated from the element’s top edge (prior to positioning).

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.

• Example: top: 5em;

visibility
Determines whether a web browser displays the element. Use this property to hide
part of the content of the page, such as a paragraph, headline, or <div> tag. Unlike the
display property’s none value—which hides an element and removes it from the flow
of the page—the visibility property’s hidden option doesn’t remove the element from
the page flow. Instead, it just leaves an empty hole where the element would have
been. For this reason, you most often use the visibility property with absolutely
positioned elements, which have already been removed from the flow of the page.

Hiding an element doesn’t do you much good unless you can show it again. JavaScript
programming is the most common way to toggle the visibility property to show and
hide items on a page. You can also use the :hover pseudo-class (page 55) to change
an element’s visibility property when a visitor hovers over some part of the page.

• Values: visible, hidden. You can use the collapse value to hide a row or col-
umn in a table as well.

• Example: visibility: hidden;

width
Sets the width of the content area (the area of an element’s box that contains text,
images, or other tags). The amount of onscreen space actually dedicated to the
element may be much wider, since it includes the width of the left and right margin,
left and right padding, and left and right borders.

• Values: Any valid CSS measurement unit, like pixels, ems, or percentages.
Percentages are based on the containing element’s width.

• Example: width: 250px;

APPenDIx A: CSS PROPERTY REFERENCE 663

ANIMATION,
TRANSFORM

AND
TRANSITION
PROPERTIES

z-index
Controls the layering of positioned elements. Only applies to elements with a posi-
tion property set to absolute, relative, or fixed (page 430). It determines where
on the z-axis an element appears. If two absolutely positioned elements overlap,
the one with the higher z-index appears to be on top.

• Values: An integer value, like 1, 2, or 10. You can also use negative values, but
different browsers handle them differently. The larger the number, the more “on
top” the element appears. An element with a z-index of 20 appears below an
element with a z-index of 100 (if the two overlap). However, when the element
is inside another positioned element, its “positioning context” changes and it
may not appear above another element—no matter what its z-index value. (See
Figure 14-6 on page 440.)

• Example: z-index: 12;

 NOTE  The values don’t need be in exact integer order. If element A has a z-index of 1, you don’t have
to set element B’s z-index to 2 to put it on top. You can use 5, 10, and so on to get the same effect, as long
as it’s a bigger number. So, to make sure an element always appears above other elements, simply give it a very
large value, like 10000. However, Firefox can only handle a maximum value of 2147483647, so don’t ever set your
z-index above that number.

Animation, Transform and Transition
Properties

CSS has some spiffy properties (added in CSS3) to transform elements by scaling,
rotating, skewing, and moving them, as well as the ability to animate changes from
one CSS property to another.

@keyframes
The heart of CSS animations is the @keyframes rule. It lets you name an animation
(which you can then apply to any element on a page) and set up a set of keyframes,
or places within the animation where CSS properties change. For example, to fade
the background of an element from black to white, you’d need two keyframes: The
first keyframe sets the CSS background-color property to black, while the second
keyframe sets it to white. You can have any number of keyframes and animate
changes in a variety of CSS properties.

At the time of this writing, you need to use vendor prefixes for a @keyframes rule
and animations with Safari, and they don’t work at all in Internet Explorer 9 and
earlier (see page 338).

Css: tHe MIssInG MAnUAL664

ANIMATION,
TRANSFORM

AND
TRANSITION
PROPERTIES

• Values: The @keyframes rule isn’t like any other CSS property—in fact, it’s not
a property at all. It’s called an at rule, and it’s more complex than a regular
property. You need to supply a name (which you’ll use later when you apply
the animation to an element on the page) and then a set of braces: { }. Inside
the braces are the keyframes, which can be as simple as the two keywords from
and to to mark the first and last keyframes. Each keyframe has its own set of
braces, in which you put CSS properties that you’d like to animate—background
color, font size, position on the page, and so on. For detailed information on
how animations work, turn to page 338.

• Example:

@keyframes myAnimation {
from {
 background-color: black;
}

to {
 background-color: white;
}
}

animation
This is the shorthand method of applying an animation to an element. It’s a com-
pact way to include the following properties into one: animation-name, animation-
duration, animation-timing-function, animation-iteration-count, animation-
direction, animation-delay, and animation-fill-mode, all of which are explained
below. Safari requires a vendor prefix for this property, and animations don’t work
in IE9 and earlier.

• Values: A space-separated list of values that includes the animation properties
listed in the previous paragraph. For the exact type of values you need to supply for
each, read the following entries (animation-name, animation-duration, and so on).
Only two values are required: animation-name and animation-duration. Animation
requires vendor prefixes (page 321). You can apply multiple named animations
to the same element by providing a comma-separated list of animation values.

• Example:

animation: myAnimation 2s;
animation: myAnimation 2s ease-in 2 alternate 5s forwards;
animation: fadeOut 2s ease-in-out 2 alternate 5s forwards,
 glow 5s;

APPenDIx A: CSS PROPERTY REFERENCE 665

ANIMATION,
TRANSFORM

AND
TRANSITION
PROPERTIES

animation-name
Use this property to assign an animation that you’ve created with the @keyframes
rule. You add this property as part of a CSS selector that applies to one or more page
elements. For example, adding this property to an <h1> tag style will tell a browser
to run the specified animation on all <h1> tags when the page loads. You also need
to assign the animation-duration property for this to work. This property requires
a vendor prefix for Safari, and it doesn’t work in IE9 or earlier.

• Values: A name from an @keyframes rule.

• Example: animation-name: myAnimation;

animation-duration
Specifies how long an animation specified by the animation-name property (above)
takes to complete.

• Values: A value in seconds—1s—or milliseconds—1000ms.

• Example: animation-duration: 2s;

animation-timing-function
Dictates the speed of an animation within the allotted animation duration. For ex-
ample, while you may set the duration of an animation to 5 seconds, you can also
control how the animation plays back within that 5 seconds, such as starting slowly
and finishing quickly. Safari requires a vendor prefix for this property and animations
don’t work in IE9 or earlier.

• Values: One of five keywords: linear, ease, ease-in, ease-out, and ease-in-out.
Can also supply a cubic Bezier value for a custom timing function (page 332).

• Example:

 animation-timing-function: ease-out;
 animation-timing-function: cubic-bezier(.20, .96, .74, .07);

animation-delay
Specifies a time in seconds or milliseconds that an animation should wait before
beginning to play. Safari requires a vendor prefix and this property doesn’t work
in IE9 or earlier.

• Values: A value in seconds—1s—or milliseconds—1000ms.

• Example: animation-delay: 1.5s;

Css: tHe MIssInG MAnUAL666

ANIMATION,
TRANSFORM

AND
TRANSITION
PROPERTIES

animation-iteration-count
Specifies how many times an animation runs. Normally, an animation runs once and
then is done, but you can make an animation run 4, 5, 100, or an infinite number of
times. Safari requires a vendor prefix, and this property doesn’t work in IE9 or earlier.

• Values: A positive integer or the keyword infinite.

• Example:

 animation-iteration-count: 5;
 animation-iteration-count: infinite;

animation-direction
When an animation runs more than once, this property specifies the starting point for
each subsequent animation. Normally, a browser simply replays an animation from
its original starting point, over and over. However, you can also make the animation
forwards, then backwards, then forwards again. For example, if you have an animation
that makes an element’s background color progress from white to black, you may
want to give it a pulsing quality by having it run many times and animate from white
to black, then black back to white, then white to black, then black to white, and so
on. Safari requires a vendor prefix, and this property doesn’t work in IE9 or earlier.

• Values: The keyword normal or alternate. Normal is the way a browser already
plays back animations, so you only need to use this property if you want to use
the alternate keyword.

• Example: animation-direction: alternate;

animation-fill-mode
Dictates how an animated element should be styled at the beginning and/or end of
an animation. Requires vendor prefixes for Safari, and doesn’t work in IE9 or earlier.

• Values: One of three keywords: backwards, forwards, or both. forwards is the
most common, as it leaves the element styled in the same way as the end of the
animation, instead of reverting back to the styling before the animation began.

• Example: animation-fill-mode: backwards;

animation-play-state
Controls whether an animation is playing or not. You can use this property on a :hover
pseudo-class to pause an animation when a visitor hovers over the element. Safari
requires a vendor prefix, and this property doesn’t work in IE9 or earlier.

• Values: One of two keywords: pause or running. The paused keyword stops the
animation, while running makes it go. The default value is running.

• Example: animation-play-state: paused;

APPenDIx A: CSS PROPERTY REFERENCE 667

ANIMATION,
TRANSFORM

AND
TRANSITION
PROPERTIES

transform
Changes an element in one or more ways, including scaling, rotating, skewing, or
moving the element. Safari requires a vendor prefix, and this property doesn’t work
in IE9 or earlier.

• Values: Keywords rotate(), translate(), skew(), or scale(). Each keyword
takes its own kind of value. For example, rotate() requires a degree value, as
in 180deg, for example; translate() requires a measurement like percentage,
ems or pixels; skew() takes two degree values; and scale() takes a number
positive or negative. See page 319 for details. You can apply more than one
type of transformation to an element.

• Example:

transform: rotate(45deg);
transform: scale(1.5);
transform: skew(45deg 0) rotate(200deg) translate(100px, 0) scale(.5);

transform-origin
Controls the point at which a transformation is applied. For example, normally when
you rotate an element, you spin it around its center. However, you can also rotate it
around one of its four corners.

• Values: Two values, one for the horizontal origin, the other for the vertical
origin. You use the same keywords and values as for the background-position
property (page 236).

• Example:

transform-origin: left top;
transform-origin: 0% 100%;
transform-origin: 10px -100px;

transition
A shorthand method to specify the transition-property, transition-duration,
transition-timing-function, and transition-delay properties (discussed next).
Transitions tell a browser to animate changes in CSS properties on an element. For
example, you can animate the change of a navigation button’s background color
from red to green as a visitor mouses over that button.

• Values: A space-separated list of properties, which include the transition-
property (optional, defaults to all), transition-duration (required),
transition-timing-function (optional, defaults to ease), transition-delay
(optional, defaults to 0).

• Example: transition: background-color 1.5s ease-in-out 500ms;

Css: tHe MIssInG MAnUAL668

TABLE
PROPERTIES

transition-property
Specifies the specific CSS properties that should be animated when an element’s
CSS properties change.

• Values: An animatable CSS property (see page 331), or the keyword all.

• Example:

transition-property: width, left, background-color;
transition-property: all;

transition-duration
Specifies how long a transition animation takes to complete.

• Values: A value in seconds—1s—or milliseconds—1000ms.

• Example: transition-duration: 2s;

transition-timing-function
Dictates the speed of a transition animation within the specified duration. For
example, while you may set the duration of a transition to 5 seconds, you can also
control how the transition plays back within that 5 seconds, such as starting slowly
and finishing quickly.

• Values: One of five keywords linear, ease, ease-in, ease-out, and ease-in-out.
Can also supply a cubic Bezier value for a custom timing function (page 332).

• Example:

transition-timing-function: ease-out;
transition-timing-function: cubic-bezier(.20, .96, .74, .07);

transition-delay
Specifies a time in seconds or milliseconds that the transition animation should wait
before beginning to play.

• Values: A value in seconds—1s—or milliseconds—1000ms.

• Example: transition-delay: 1.5s;

Table Properties
There are a handful of CSS properties that relate solely to HTML tables. Chapter 10
has complete instructions on using CSS with tables.

border-collapse
Determines whether the borders around the cells of a table are separated or col-
lapsed. When they’re separated, browsers put a space of a couple of pixels between
each cell. Even if you eliminate this space by setting the cellspacing attribute for

APPenDIx A: CSS PROPERTY REFERENCE 669

TABLE
PROPERTIES

the HTML <table> tag to 0, browsers still display double borders. That is, the bottom
border of one cell will appear above the top border of the cell below, causing a dou-
bling of border lines. Setting the border-collapse property to collapse eliminates
both the space between cells and this doubling up of border lines (page 363). This
property works only when applied to a <table> tag.

• Values: collapse, separate

• Example: border-collapse: collapse;

border-spacing
Sets the amount of space between cells in a table. It replaces the <table> tag’s
cellspacing HTML attribute. However, Internet Explorer 7 and earlier doesn’t under-
stand the border-spacing property, so it’s best to continue to use the cellspacing
attribute in your <table> tags to guarantee space between cells in all browsers.

 NOTE  If you want to eliminate the space browsers normally insert between cells, just set the border-
collapse property to collapse.

• Values: Two CSS length values. The first sets the horizontal separation (the
space on either side of each cell), and the second sets the vertical separation
(the space separating the bottom of one cell from the top of the one below it).

• Example: border-spacing: 0 10px;

caption-side
When applied to a table caption, this property determines whether the caption
appears at the top or bottom of the table. (Since, according to HTML rules, the
<caption> tag must immediately follow the opening <table> tag, a caption would
normally appear at the top of the table.)

• Values: top, bottom

• Example: caption-side: bottom;

empty-cells
Determines how a browser should display a table cell that’s completely empty, which
in HTML would look like this: <td></td>. The hide value prevents any part of the
cell from being displayed. Instead, only an empty placeholder appears, so borders,
background colors, and background images don’t show up in an emptied cell. Apply
this property to a style formatting the <table> tag.

• Values: show, hide

• Example: empty-cells: show;

 NOTE  The empty-cells property has no effect in Internet Explorer 7 and earlier.

Css: tHe MIssInG MAnUAL670

MISCELLANEOUS
PROPERTIES

table-layout
Controls how a web browser draws a table and can slightly affect the speed at
which the browser displays it. The fixed setting forces the browser to render all
columns the same width as the columns in the first row, which (for complicated
technical reasons) draws tables faster. The auto value is the normal “browser just
do your thing” value, so if you’re happy with how quickly your tables appear on a
page, don’t bother with this property. If you use it, apply table-layout to a style
formatting the <table> tag.

• Values: auto, fixed

• Example: table-layout: fixed;

Miscellaneous Properties
CSS offers a few additional—and sometimes interesting—properties. They let you
enhance your web pages with special content and cursors, offer more control over
how a page prints, and so on.

content
Specifies text that appears either before or after an element. Use this property with
the :after or :before pseudo-elements. You can add an opening quotation mark
in front of quoted material and a closing quotation after the quote.

• Values: Text inside of quotes "like this", the keywords normal, open-quote,
close-quote, no-open-quote, no-close-quote. You can also use the value of
an HTML attribute.

• Examples:

p.advert:before { content: "And now a word from our sponsor…"; }
a:after { content: " (" attr(href) ") "; }

 NOTE  Adding text in this way (like the opening and closing quote example) is called generated content.
Read a simple explanation of the generated content phenomenon at www.westciv.com/style_master/academy/
css_tutorial/advanced/generated_content.html. For a deeper explanation, visit www.w3.org/TR/CSS21/generate.
html.

http://www.westciv.com/style_master/academy/css_tutorial/advanced/generated_content.html
http://www.westciv.com/style_master/academy/css_tutorial/advanced/generated_content.html
http://www.w3.org/TR/CSS21/generate.html
http://www.w3.org/TR/CSS21/generate.html

APPenDIx A: CSS PROPERTY REFERENCE 671

MISCELLANEOUS
PROPERTIES

cursor
Lets you change the look of the mouse pointer when it moves over a particular
element. You can make a question mark appear next to the cursor when someone
mouses over a link that provides more information on a subject (like a word defini-
tion).

• Values: auto, default, crosshair, pointer, move, e-resize, ne-resize, nw-
resize, n-resize, se-resize, sw-resize, s-resize, w-resize, text, wait, help,
progress. You can also use a URL value to use your own graphic as a cursor (but
see the Note below). The look of a cursor when mousing over a link is pointer,
so if you want to make some element on the page display the “click me” icon,
you can add the declaration cursor: pointer to the style.

• Example: cursor: help; cursor: url(images/cursor.cur);

 NOTE  Not all browsers recognize URL cursor values. For more information, visit www.quirksmode.org/css/
cursor.html.

opacity
Lets you control the transparency of any element and all of its descendants. In this
way, you can have underlying colors, images, and content show through an element.
Note that if you apply opacity to a div, all of the items inside that div, headlines, im-
ages, paragraphs, and other divs will share the same opacity level. In other words,
if you set a <div> tag to .5 opacity (50% transparent), an image inside that div will
also be 50% transparent—even explicitly setting the opacity of that image to 1 won’t
override the 50% transparency.

• Values: A decimal value from 0 to 1. 0 is invisible, 1 is completely opaque.

• Example: opacity: .5;

orphans
Specifies the minimum number of lines of text that can be left at the bottom of a
printed page. Suppose you’re printing your web page on a laser printer, and a five-
line paragraph is split between two pages, with just one line at the bottom of page
one, and the four remaining lines at the top of page two. Because a single line all by
itself looks odd (sort of like a lost orphan—get it?), you can tell the browser to break
a paragraph only if at least, say, three lines are left on the bottom of the page. (At
this writing, only the Opera browser understands this property.)

• Values: a number like 1, 2, 3, or 5.

• Example: orphans: 3;

http://www.quirksmode.org/css/cursor.html
http://www.quirksmode.org/css/cursor.html

Css: tHe MIssInG MAnUAL672

MISCELLANEOUS
PROPERTIES

page-break-inside
Prevents an element from being split across two printed pages. If you want to keep
a photo and its caption together on a single page, wrap the photo and caption text
in a <div> tag, and then apply a style with page-break-inside to that <div>.

• Values: avoid

• Example: page-break-inside: avoid;

widows
The opposite of orphans, it specifies the minimum number of lines that must appear
at the top of a printed page. Say the printer can manage to fit four out of five lines
of a paragraph at the bottom of a page and has to move the last line to the top of
the next page. Since that line might look weird all by itself, use widows to make the
browser move at least two or three (or whatever number of) lines together to the
top of a printed page.

• Values: A number like 1, 2, 3, or 5.

• Example: widows: 3;

673

APPENDix

B

No one book—not even this one—can answer all of your CSS questions. Luck-
ily, CSS resources abound for both beginning and expert web designers. In
this appendix, you’ll find resources to help you with general CSS concepts as

well as specific CSS tasks, like building a navigation bar or laying out a web page.

References
References that cover CSS properties range from the official to the obscure. There
are websites and online tutorials, of course, but you don’t have to be on the Web to
learn about CSS. Some of these guides come on good old-fashioned paper.

World Wide Web Consortium (W3C)
• CSS Current Work (www.w3.org/Style/CSS/current-work). Here you’ll find all

of the CSS specifications, including the newest additions to CSS. The different
specifications are organized by status, like Completed, Testing, Refining, Revising,
or Abandoned. You can click any specification to dig into the nitty-gritty details,
but just because a specification is listed as “Completed” doesn’t necessarily mean
it’s been fully implemented in all web browsers. However, this site does provide
the final (sometimes overly complex and hard-to-understand) word on CSS.

Other Online References
• CSS Reference at the Mozilla Developer Network (https://developer.mozilla.

org/en-US/docs/Web/CSS/Reference). The Mozilla Developer Network (MDN)
provides one of the most comprehensive references to CSS (as well as HTML5,
JavaScript, and other web technologies).

 CSS Resources

http://www.w3.org/Style/CSS/current-work
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

Css: tHe MIssInG MAnUAL674

CSS HELP
• The Codrops CSS Reference (http://tympanus.net/codrops/css_reference/).

This provides an extensive and detailed reference for most CSS properties.
Includes many examples of properties in action as well as detailed descriptions
with notes and trivia.

• Can I use (http://caniuse.com). This frequently updated site provides detailed
information on CSS and browser compatibility. Here, you’ll be able to determine
if a particular CSS property works in Internet Explorer 9, for example.

• CSS3 Files (http://www.css3files.com/). This provides very good instruction and
even better demonstrations of popular CSS3 properties like animation, shad-
ows, gradients and more. Also includes blog posts on current CSS techniques.

CSS Help
Even with the best references (like this book), sometimes you need to ask an expert.
You can join a discussion list where CSS-heads answer questions by email, or peruse
a wealth of information in an online forum.

Discussion Boards
• Stack Overflow (http://stackoverflow.com). One of the best resources for

everything Web and programming. Thousands of experts answer questions
on nearly every computer-related question. You can ask CSS questions here as
well, and find questions tagged with the CSS keyword to find out what people
are asking about: http://stackoverflow.com/questions/tagged/css.

• CSS Creator Forum (www.csscreator.com/css-forum). A very active online fo-
rum offering help and advice for everything from basic CSS to advanced layout.

• SitePoint.com’s HTML and CSS Forum (http://community.sitepoint.com/c/
html-css). Another helpful group of CSS addicts.

• CSS-Tricks.com Forum (http://css-tricks.com/forums). This small forum holds
some good information. (If you like PHP and JavaScript, there’s some good
discussion on those topics here as well.)

CSS Tips, Tricks, and Advice
The Web makes it easy for anyone to become a publisher. That’s the good news. The
bad news is, when everyone’s a publisher, it’s harder to sort through all the chaff to
find the golden wheat of clear, concise, and accurate information. There’s plenty of
good CSS information on the Web—and a lot that’s not good. Here are a few of the
best destinations for CSS information:

• CSS-Tricks.com (http://css-tricks.com). This one-man blog is full of great CSS
tips. You’ll find frequently updated tips and tricks as well as comprehensive
video tutorials.

http://tympanus.net/codrops/css_reference/
http://caniuse.com
http://www.css3files.com/
http://stackoverflow.com/
http://stackoverflow.com/questions/tagged/css
http://www.csscreator.com/css-forum
http://community.sitepoint.com/c/html-css
http://community.sitepoint.com/c/html-css
http://css-tricks.com/forums
http://css-tricks.com

APPenDIx B: CSS RESOURCES 675

CSS
NAVIGATION

• SitePoint (www.sitepoint.com/html-css/). Lots of articles and tutorials on CSS
techniques. You’ll often find the latest news and information about CSS here too.

• Smashing Magazine (www.smashingmagazine.com/tag/css). Smashing Maga-
zine gathers some of the best resources on the Web, and in the CSS category
you’ll find a nearly endless number of links highlighting some of the most creative
thinking on CSS and web design.

CSS Navigation
Chapter 9 shows you how to create navigation buttons for your website from scratch.
But online tutorials are a great way to solidify your knowledge. Also, once you un-
derstand the process in detail, you don’t have to do it yourself every single time. On
the Web you can find examples of navigation features for inspiration.

Tutorials
• Listutorial (http://css.maxdesign.com.au/listutorial). Step-by-step tutorials on

building navigation systems from unordered lists.

• Responsive, Fluid-Width, Variable-Item Navigation with CSS (www.sitepoint.
com/responsive-fluid-width-variable-item-navigation-css/). Behind that really,
really long title is a tutorial that provides step-by-step instructions for creating
a responsive navigation bar.

• How To Create A Responsive Navigation Menu Using Only CSS (http://me-
dialoot.com/blog/how-to-create-a-responsive-navigation-menu-using-only-
css/). Learn how to use only CSS to create a responsive, drop-down menu.

Online Examples
• NavNav (http://navnav.co) provides a showcase of navigation bar examples,

demos and tutorials. The site lists both CSS and JavaScript solutions for creat-
ing exciting navigation options.

• 5 Examples of Patterns for Mobile Navigation Menus (www.sitepoint.com/5-
examples-patterns-mobile-navigation-menus/). Learn different design patterns
for mobile menus.

• Pure CSS Off-screen Navigation Menu (http://www.sitepoint.com/pure-css-
off-screen-navigation-menu/). What good is a nav menu that’s not on screen?
It saves screen real estate. This tutorial shows you how to create a menu that
slides onto the screen when a visitor clicks a button. And it’s all done with CSS!

• The Priority+ Navigation Pattern (https://css-tricks.com/the-priority-naviga-
tion-pattern/). See how to adjust and prioritize your navigation menu buttons
based on screen size.

http://www.sitepoint.com/html-css/
http://www.smashingmagazine.com/tag/css
http://css.maxdesign.com.au/listutorial
http://www.sitepoint.com/responsive-fluid-width-variable-item-navigation-css/
http://www.sitepoint.com/responsive-fluid-width-variable-item-navigation-css/
http://medialoot.com/blog/how-to-create-a-responsive-navigation-menu-using-only-css/
http://medialoot.com/blog/how-to-create-a-responsive-navigation-menu-using-only-css/
http://medialoot.com/blog/how-to-create-a-responsive-navigation-menu-using-only-css/
http://navnav.co/
http://www.sitepoint.com/5-examples-patterns-mobile-navigation-menus/
http://www.sitepoint.com/5-examples-patterns-mobile-navigation-menus/
http://www.sitepoint.com/pure-css-off-screen-navigation-menu/
http://www.sitepoint.com/pure-css-off-screen-navigation-menu/
https://css-tricks.com/the-priority-navigation-pattern/
https://css-tricks.com/the-priority-navigation-pattern/

Css: tHe MIssInG MAnUAL676

CSS LAYOUT CSS Layout
CSS layout is so flexible, you could spend a lifetime exploring the possibilities. And
some people seem to be doing just that. You can gain from their labors by reading
articles, checking out online examples, and experimenting with tools that can do
some of the CSS work for you.

• Learn CSS Layout (http://learnlayout.com/index.html) provides an interactive
set of lessons teaching different CSS layout techniques.

• Free CSS Responsive Layouts (http://maxdesign.com.au/css-layouts/) pro-
vides starter templates of HTML and CSS for a handful of common page layouts.
The designs are responsive (Chapter 15) so they adjust to the visitor’s screen size.

• Pure Layouts (http://purecss.io/layouts/) provides many sample, starter layouts
based on Yahoo’s CSS framework, Pure.

• Twitter Bootstrap (http://getbootstrap.com). A complete website toolkit—
includes HTML, CSS and JavaScript components to make it easy to build a
complete, responsive, grid-based page, with some fancy JavaScript thrown in.

• Foundation (http://foundation.zurb.com). Another take on the complete web-
site toolkit. Very much like Twitter bootstrap, Foundation includes HTML, CSS
and JavaScript. It has excellent documentation and is relatively easy to learn.

Showcase Sites
Knowing the CSS standard inside out is no help when your imagination is running
dry. A great source of inspiration is the creative work of others. There are more CSS
showcase sites than you can shake a search engine at, so here’s a handful of sites
where you can appreciate and study beautiful CSS designs.

• CSS ZenGarden (www.csszengarden.com). The mother of all CSS showcase
sites: many different designs for the exact same HTML.

• CSS Line (http://cssline.com). A wonderful gallery of inspirational CSS designs,
with innovative filtering options. Interested in websites that use a particular
color? You can see just those sites. Or if you want to see sites with particular
features like unique navigation and typography, you can filter the results to
see just those.

• The Awwwards (www.awwwards.com). A site that awards great design despite
having an awwwkwwward name.

• CSS Design Awards (www.cssdesignawards.com). This site highlights a new
“winner” every day. It’s unclear if the judges are really just teenagers surfing
the Web in their bedrooms, but the site does highlight some very nicely de-
signed sites.

http://learnlayout.com/index.html
http://maxdesign.com.au/css-layouts/
http://purecss.io/layouts/
http://getbootstrap.com
http://foundation.zurb.com
http://www.csszengarden.com
http://cssline.com
http://www.awwwards.com
http://www.cssdesignawards.com/

677

:active pseudo-class, 281
:active pseudo-class (links), 56
:active state of links, 326
adaptive images, 475
<address> tag, 17
adjacent sibling tags, 67–68
:after pseudo-class, 407
:after pseudo-element, 58
align-content property (flex

containers), 539–541
aligning paragraph text, 164
align-items property (flex containers),

537–539
align-self property (flex items), 544
a:link pseudo-class, 55
all keyword (transitions), 332
alpha channels, 149
alpha transparency (PNG32), 233
ancestors

ancestor tags, 51
nearest ancestor resolves conflicts,

99
animations

applying to page elements, 342–344
defining keyframes, 338–342
finishing, 345–347
on hover, 349
overview, 338
pausing, 348–349
properties reference, 663–666
shorthand, 347–348
timing, 344–345
tutorial, 349–355

Index

Symbols
3D transforms, 330
> (angle bracket) in child selectors, 61
* (asterisk) universal selector, 49–50
[] (brackets) in attribute selectors, 59
: (colon) in declarations, 23
{ } (curly braces)

in declaration blocks, 23
enclosing keyframes, 664
enclosing styles with, 175
using in mixins, 618, 628

:: (double colon) syntax in pseudo-
elements, 56

/ (forward slash)
beginning root-relative paths with,

237
in border-radius property, 200
closing tags with, xv

(hash symbol)
for naming styles, 48
in :target selectors, 68

+ (plus sign)
in adjacent sibling selectors, 67
in :NTH child selectors, 64

; (semicolon)
ending declarations with, 23
ending property/value pairs with, 24

A
absolute paths (URLs), 237
absolute positioning, 430–431,

435–436

InDex678

<ARTICLE> TAG
(HTML5)

controlling (tutorial), 216–219
float elements and, 212–213
gradient. See gradient backgrounds
properties reference, 654–657

banners
banner area (web pages), 206
butting to edge of page, 188
defining with <div> tags, 86
<header> tag indicating, 9
marking boundaries of, 194
specifying height of, 206
subdividing with <div> tags, 7

base text size, 152
:before pseudo class, 414
:before pseudo-element, 57
Bezier curves, 333
<blockquote> tag, 17
block boxes, 192–194
block-level elements, 47
block-level tags, 192
<body> tags, 35
bolding/italicizing text, 156–157
bold/italic variants (web fonts),

135–141
Bootstrap CSS framework, 497
borders

border-bottom property, 36
border-box property, 417, 424
border-box values (box-sizing

property)), 207
border-collapse property, 363, 373
border property, 185
border property shorthand, 195–196
border-radius property, 35, 199, 225,

230, 363
float elements and, 212–213
formatting individual, 196–198
overview, 194–195
properties reference, 648–650
replacing with graphics (tutorial),

273–274
rounded corners, 199–201
in tables, 362–363

box model
basics, 185–187
height/width properties. See height/

width properties (box model)
resetting, 470

box-shadow property, 201–204, 363,
648–649

<article> tag (HTML5), 9–10, 47, 81
<aside> tag (HTML5), 9, 418
at (@) rules in CSS, 339
attribute selectors

basics, 59–61
identifying/styling links with,

307–309
styling forms with, 367

attributes, ID, 48
Autoprefixer, 530

B
background images

adding to links (tutorial), 305–306
background-image property, 231–233
background-position property.

See positioning background
images

background property shorthand,
247–249

background-repeat property,
234–236

on mobile devices, 462–463
multiple, 249–251
origin/clipping of, 243–245
positioning. See positioning

background images
scaling, 245–246
tiling, 234
tutorial

adding images to page
backgrounds, 271–273

adding image to sidebar, 276–278
overview, 270–278
replacing borders with graphics,

273–274
using multiple, 249–251

backgrounds
background-attachment property,

242–243
background-clip property, 199, 245
background-color property, 186, 198
background-image property, 33,

231–233, 270–278, 395
background-origin property, 243–245
background property, 37, 182
background-repeat property,

234–236
background-size property, 245–246
coloring, 198–199

InDex 679

COLLIDING
MARGINS

box-sizing property, 207, 417, 651–652

 tag, 14, 17
breakpoints (media queries)

creating, 463
setting variables, 627–628
styling (tutorial), 522–525

browsers
browser-prefixed properties, 321
BrowserStack service, 475
removing browser style formatting,

579–582
bulleted lists

positioning bullets/numbers, 169–171
presenting links with, 283
using graphics for (tutorial), 274–276

bullets (lists)
customizing, 172
graphic, 171–172
types of, 168

buttons
creating links as, 285–287
in forms, 367
navigation, formatting with

descendent selectors, 586–588
styling (grid systems), 506

C
cache (browsers)

cached files, 176
force reloads and, 24–25
problems with, 583
refreshing, 371

capitalizing text, 157–158
captions

<caption> tag, 372
placing on photos (tutorial), 452–456
positioning (tutorial), 441–442

cascade
accumulation of inherited styles,

98–99
avoiding specificity wars, 108–109
changing specificity, 105–107
conflicts resolved by nearest

ancestor, 99
CSS reset, 109–111
directly applied styles rule, 99–100
Inspect Element function (browsers),

104
last style tiebreaker (specificity),

103–104

multiple styles applied to tags,
100–102

overruling specificity, 105
overview, 97
selective overriding, 107–108
specificity of styles, 102–103
tutorial

creating hybrid styles, 113–114
overcoming conflicts, 115–118
resetting CSS/styling from

scratch, 111–113
Ceaser tool (timing functions), 333
Cederholm, Dan, 410
character sets (Google fonts), 145
checkboxes, 367
:checked pseudo-class, 370
child selectors, 61–65
child tags, 52
child type selectors, 65–67
Chrome browser

Developer’s tools, 104
first-line capitalization in, 168
forced reload in, 25
SVG fonts unsupported in, 128
Web Developer extension for, 15
-webkit- vendor prefix for

animations, 341
WOFF format support in, 127

circular gradients, 259
<cite> tag, 14, 17
classes

multiple, 574–575
naming tips, 570–572
saving time with multiple, 574–575

class selectors
basics, 43–46
creating, 78–80
negation pseudo-class, 69–70
pseudo-classes, 55–59

clear property, 213–215, 405, 407, 541
clipping/origin of background images,

243–245
CMSes (Content Management

Systems), 109
code

avoiding repeated, 572–574
modules of, 54–55

collapsing margins, 190
collections, font (Google), 142
colliding margins, 189–190

InDex680

COLOR
color

adding to text, 147–151
coloring backgrounds, 198–199
color stops, 254–256
color values, 637–639

columns. See also flex containers;
float-based layouts; grid systems;
responsive web design (RWD)

2-column liquid layout, 397–400
3-column liquid layout, 401
adding to flexbox layout, 559–561
adjusting for media queries, 461
creating full-height, 409–414
creating/naming (grid systems),

501–503
floating all, 401–403
multicolumn layout module, 409
multiple-column layout (tutorial),

417–428
styling columns/rows (tables),

363–365
comments, CSS, 569–571, 576–577
containers

container class (Skeleton), 516
container <div> tags, 503–506
flex. See flex containers
overview, 495

contain keyword (sizing images), 246
content

@content Sass directive, 628
content-box option (box-sizing

property), 207
content-box values (box-sizing), 417
content property, 670–671
generated, 57
hiding on mobile devices, 462
of web pages, giving priority to, 392
wrapping with floating elements,

210–215
cover keyword (sizing images), 246
Coyier, Chris, 414
CSS (Cascading Style Sheets)

comments, 569–571, 576–577
CSS Minifier, 570
CSS pixels, 476
CSS reset, 109–111, 111–113, 187
CSS source maps, 631–633
Help, 674
vs. HTML, 3–4
layout resources, 676

navigation system resources, 675
object oriented, 588
overview, 19–20
references, 673–674
showcase sites, 676
software for, xvii–xviii
tips/tricks/advice, 674–675
validating, 27
versions of, 20

CSS layouts
HTML5 sectioning elements, 390–391
organizing with <div> tags, 388–390
overview, 387–388
pre-built, 402
strategies/tips, 392–396
techniques for, 391
tutorial: multiple column layout

adding columns, 420–422
adding padding, 422–424
changing to fixed-width, 424–426
creating layout styles, 419–420
HTML structure, 418
mixing liquid/fixed designs,

427–428
CSS Positioning

absolute positioning, 430–431
breaking elements out of the box,

444–445
CSS position property, 430
fixed positioning, 430
fixed positioning for CSS-style

frames, 446–448
hiding parts of pages, 439–443
overview, 429
positioning within elements, 443–

444
relative positioning, 430–431,

437–439
setting positioning values, 432–435
stacking elements, 439
static positioning, 431–432
tutorial: positioning page elements

page banner, enhancing, 448–451
placing captions on photos,

452–456
when absolute positioning is relative,

435–436
cubic-bezier curves, 333–334
cursor property, 671
customizing bullets/numbers (lists),

172

InDex 681

FIXED
POSITIONINGD

<dd> tag (HTML), 16
declaration blocks (styles), 21, 23
declarations (styles), 23
decorating text, 158–159
delay function (transitions), 334–336
delay property (animations), 345
descendant selectors

basics, 50–55
creating, 80

descendant tags, 51
descendent selectors

compartmentalizing pages, 584–585
creating styles for types of pages,

585–588
grouping links with, 282–283
overview, 582–584

designing in browsers, 393
device pixels, 476
direction property (animations),

346–347
:disabled pseudo-class, 370
display mode (flexbox), 565
display property, 194, 293–295
<div> tag

block-level elements and, 47
descendent selectors and, 584–585
grouping other tags with, 10
overusing, 17
overview, 7–8
using in CSS layouts, 388–390, 394

<dl> tag, 16
doctypes

doctype declarations, 17–18
overview, xiv–xv

document-relative paths (URLs), 34,
231, 234, 237

drop-down menus (forms), 367
drop shadows

adding to elements, 201–204
adding to photo gallery, 269–271
adding to text, 160–162

<dt> tag (HTML), 16
duration property (transitions), 332

E
ease-in/ease-out keywords, 333, 344,

665
ease-in timing function, 336, 351

Edge Inspect tool (Adobe), 475
elements

adding drop shadows to, 201–204
breaking out of the box, 444–445
layering, 396
positioning within, 443–444
pseudo-elements, 55–59
sectioning (HTML5), 390–391
stacking, 439

email links, 301
Embed Responsively service, 476
em units

definition of, 22
overview, 639–640
sizing text with, 152–156
spacing lines by, 163

:enabled pseudo-class, 370
EOT (Embedded Open Type) fonts, 127
extending Sass properties

overview, 612–614
with placeholder selectors, 615–617
related elements only, 616–618

external style sheets
basics, 26–27
creating, 32–38
vs. internal, 24
linking, 27

F
faux column technique, 410, 412
<fieldset> tags, 366
<figcaption> tag, 452
<figure> tag, 264, 266, 452
<figure> tag (HTML5), 9, 47
fill-mode property (animations), 347
Firefox browser

force reloads in, 25
padding property in, 109
support for transforms in, 320
support for WOFF format in, 127
vendor prefixes and, 351
vendor prefixes for, 58
Web Developer extension for, 15

:first-child pseudo-element, 62
:first-letter/:first-line pseudo-

elements, 56, 166–168, 178
:first-of-type selector, 65, 293
first-line indents (paragraphs),

164–165
fixed positioning, 430, 446–448

InDex682

FIXED WIDTH
DESIGNS

fixed width designs, 470–471
fixed width page layouts, 385–386
fixing images in place, 242–243
flexbox

basics, 528–531
display mode, 565
flex container properties. See flex

containers
flex item properties. See flex items
overview, 527–528
tutorial: building layout

adding three columns, 559–561
converting navigation bar to

mobile, 563–565
formatting footer, 561–563
overview, 556–557
styling navigation bar, 557–559

flex containers
align-content property, 539–541
align-items property, 537–539
flex-flow property, 532–535
justify-content property, 536–537,

558
overview, 528
properties overview, 532

flexible box layout module, 393
flexible grids (RWD), 468–472
flexible width designs (RWD), 461
flex items

align-self property, 544
auto margins for, 544–546
browser calculations of width,

549–550
flex-basis property, 549, 551–553,

555–556
flex-grow property, 551, 555–556
flex property, 530, 546–549
flex property default values, 551
flex property guidelines, 553–556
flex-shrink property, 548–549,

550–552
order property, 541–544
overview, 529
wrapping, 552–553

float-based layouts
building 2-column liquid layout,

397–400
clearing/containing floats, 405–408
CSS techniques for, 401–404
full-height columns, 409–414
preventing float drops, 414–417

floating
elements, 210–215
images, 230

float property
flex items and, 541
in list formatting, 179–180
overview, 210–211
position property and, 430

floats
clearing/containing, 405–408
preventing float drops, 414–417
setting width of, 400
using for horizontal navigation,

296–299
within floats, 403–404

fluid images (RWD)
creating, 472–473
downside of, 474–475
tutorial, 480–481

:focus pseudo-class, 56–57, 280, 335,
370, 381

fonts
basics, 121–126
@font-face directive, 123, 127, 131–134
font-family property, 127
font services, 148
font shorthand method, 165
font-size property, 151
Font Squirrel, 130
font stacks, 605–606
font-style property, 140, 156–157
font-variant property, 158
font-weight property, 135, 140,

156–157
Google web fonts. See Google web

fonts
properties reference, 642–643
sizing, 151–156
TypeKit, Adobe, 148
web fonts. See web fonts

<footer> tag (HTML5), 9
force reloading (web pages), 25
form.css file naming, 26
forms

pseudo-classes for, 370
styling, 366–369
tutorial, 375–381

Foundation CSS framework, 497
frames, fixed positioning for, 446–

448
framing images (tutorial), 261–266

InDex 683

HTML
(HYPERTEXT

MARKUP
LANGUAGE)G

Gallagher, Nicolas, 407
gem command (Ruby), 593
general sibling combinatory selectors,

68
generated content, 57
generators, layout, 402
GIF files, 233
global.css file naming, 26
Google Chrome testing tool, 475
Google web fonts

finding/selecting, 142–145
overview, 140–141
using, 144–147

gradient backgrounds
linear gradients, 252–257
overview, 252
radial gradients, 258–261
repeating linear gradients, 257–258
repeating radial gradients, 261

graphics. See also images
adding to links, 288–289
replacing borders with (tutorial),

273–274
specifying in external style sheets, 171
using for bulleted lists (tutorial),

274–276
using for bullets, 171–172

grid layout module, 393
grid systems

basics, 493–495
creating full width sections, 503–506
creating/naming columns, 501–503
mobile first approach, 507–509
structuring HTML for, 495–496
styling buttons, 506
tutorial

adding grid, 509–514
adding styles to grid, 515–518
mobile design enhancements,

518–522
styling breakpoint, 522–525

types of, 497
grouping

links with descendent selectors,
282–283

related styles, 576–577
group selectors, 38, 49, 73–75,

612–613

H
<h1>/<h2> tags, 16
hanging indents (text), 165
headings, formatting (tutorial),

175–179
height/width properties (box model)

calculating actual, 205–206
maximum/minimum heights/widths,

208–210
overflow property, 208
overview, 204
redefining width with box-sizing,

207–208
Help, CSS, 674
hexadecimal color notation, 148–151
horizontal navigation bars

changing display property from block
to inline, 293–295

floats for, 296–299
overview, 293–294
tutorial: converting vertical to

horizontal, 315–317
horizontal/vertical alignments

(tables), 360–362
:hover pseudo-class, 55, 280–281,

289, 304, 349
href attribute (<link> tag), 27
HSL/HSLA color specifications,

150–151, 638–639
HTML5

overview, xvii
sectioning elements, 390–391
tags in, 8–9

HTML (Hypertext Markup Language)
building structure with, 6–7
<cite> tag, 14
vs. CSS, 3–4
<div>/ tags, 7–8
doctype declarations, 17–18
form elements, 366–367
meta tags, 459–460
overview, xiv
past and present, 3–4
search engines and, 8
source order, 212, 469–470
source order in float-based layouts,

398–399
source order (tutorial), 477–480
structuring for grid system, 495–496
tag overview, 6

InDex684

HUE (COLOR)
tags/attributes to avoid, 13–14
validating, 15
web page structuring tips, 16–17
writing based on layouts, 10–13

hue (color), 150–151

i
ID selectors, 46–48, 75–77
images. See also graphics

background. See background images
finding free, 249
floating, 230
fluid (RWD), 472–476
framing (tutorial), 261–266
 tag, 17, 229–230
photo gallery, creating (tutorial),

266–270
@import directive, 465–466

in Sass syntax, 601
@import option (Google fonts),

145–146
!important rule (specificity), 105
inheritance

limits of, 88–89
overview, 85–86
streamlining style sheets with, 86–87
tutorials

non-inherited properties, 94–95
one level example, 90
restyling whole pages, 91–93

inherit keyword, 641
inline-block setting, 194
inline boxes, 192–194
inline media queries, 627
inline styles, 26, 28–29
in page links, 68
Inspect Element function (browsers),

104
installing Sass

on Mac, 594–595
overview, 591
on Windows, 592–594

internal style sheets
basics, 25–26
creating, 29–31
vs. external, 24

Internet Explorer 8
supporting bold/italic web fonts in,

138–141
usage statistics for, 13

Internet Explorer, gradient support
in, 257

interpolation (Sass), 623
italicizing/bolding text, 156–157
iteration-count property (animations),

346

J
JavaScript

access to form elements using IDs,
48

animating elements with, 342
changing form elements with, 370
for drop-down menus, 296
pausing animations with, 349
placing style sheets before, 26
triggering transitions using, 335
using with Sass, 591

JPEG files, 233
jQuery qTip2 plug-in, 442
justify-content property (flex

containers), 536–537, 558

K
keyboard shortcuts

force reloading web pages, 25
opening files, 28
zooming, 152

@keyframes rule, 342–343
keyframes, defining, 338–342
keywords

overview, 641
positioning background images with,

236–238
for radial gradients, 259–260
web color, 638

L
<label> tags, 368
:last-child pseudo-element, 63
:last-of-type selector, 65, 293
layering elements, 396
laying out forms, 367–369
LayoutGala site, 402
layout grids. See grid systems
layouts

CSS. See CSS layouts
float-based. See float-based layouts
linearizing, 487
online resources for, 676

InDex 685

MAX-WIDTH
PROPERTY

properties reference, 657–664
types of web page, 385–387
with flexbox. See flexbox
writing HTML based on, 10–13

<legend> tag, 366
Lein, Mathew, 333
length/size values, measuring,

639–640
letters (text)

formatting, 156–160
formatting first in paragraphs,

166–168
spacing, 159–160

libSass, 591
lightness (color), 150–151
li:last-child selector, 63
linear gradients

adding to wrapper elements, 412
basics, 252–257
repeating, 257–258

linearizing layouts, 487
lines (text)

formatting first in paragraphs,
166–168

indenting first, 164–165
line-height property, 82, 162–164, 178
spacing, 162–164

<link> tag, 27
linking external style sheets, 27
links

adding graphics to, 288–289
creating buttons, 285–287
email, 301
grouping with descendent selectors,

282–283
in page, 68
link states, 279–282
in navigation bars. See navigation

bars
to other websites, 300–301
preloading rollovers (sprites),

298–299
pseudo-classes for, 55–56
to specific file types, 301
styling, 283
styling specific, 281–282
tutorial: creating navigation bar

adding rollovers, 312–315
converting unordered list of links,

308–311

modifying vertical to horizontal,
315–317

tutorial: styling links
adding background image to link,

305–306
basic formatting, 302–304
highlighting different links,

306–309
underlining, 283–285

liquid page layouts, 386, 388
lists

customizing bullets/numbers, 172
formatting (tutorial), 178–180
graphic bullets, 171–172
list-style-image property, 171–172
list-style-position property, 170
list-style-type property, 168
properties reference, 647–648
styling, 168–172
unordered, 67
using graphics for bulleted (tutorial),

274–276
luminance (color), 150

M
Mac, installing SAS on, 594–595
Marcotte, Ethan, 457
margins

auto margins for flex items, 544–546
colliding, 189–190
controlling (tutorial), 216–219
in CSS layout, 396
images and, 230
margin-bottom property, 166
margin-left property, 170
margin property, 33, 82, 179, 183, 186
margin-right property, 183
margin-top property, 166, 218
removing space with negative,

191–192
margins and padding

basics, 187–188
inline/block boxes, 192–194
percentages and, 188
removing browser-created, 579
shorthand, 189

matrix method (transforms), 328
max-height property, 210
max-width property, 81, 182, 208, 218,

426

InDex686

MEDIA QUERIES
media queries

basic style sheet structure, 466–467
breakpoints, 463
creating, 464–465
desktop/mobile default designs, 463
including inside style sheets,

465–466
@media directive, 466
media query mixins, 627–631
min-width option, 464
mobile-first default designs, 467–468
overview, 460
strategies for using, 461–463
working with (Sass), 626–630

meta tags, 459–460
min-height property, 210
min-width option (media queries),

464
min-width property, 210
mixins (Sass)

creating, 618–619
giving data to, 620–621
inserting variables into text, 622–623
libraries of, 622
media query, 627–630
passing information/optional values

to, 623–626
using, 618–619

mobile devices. See also Mobile First
design; responsive web design
(RWD)

background images on, 462–463
default designs for, 464
hiding content on, 462

Mobile-first design
overview, 392–393

Mobile First design
design enhancements (tutorial),

518–522
media queries and, 467–468
Skeleton grid system and, 507–509

modules of code (descendent
selectors), 54–55

monospaced fonts, 125
multicolumn layout module, 393, 409
multiple background images, 249–251
multiple classes, 574–575
multiple nesting selectors (Sass),

611–612
multiple style sheets, 577–579

N
name property (animations), 343
naming

classes, 570–572
class selectors, 43–44
columns (grid systems), 501–503
Sass files, 596
style sheets, 26

<nav> element (HTML5), 9
navigation bars

converting to mobile (tutorial),
563–565

creating (tutorial), 308–314
horizontal. See horizontal navigation

bars
overview, 289–290
pop-up menus, 296
styling (tutorial), 557–559
using unordered lists, 290–291
vertical, 291–293

navigation menus (media queries),
461

navigation system resources, 675
negation (:not) pseudo-class, 69–70,

301–302
negative margins, 183, 191–192
nested HTML tags, 50–52
nesting selectors (Sass), 607–612
none keyword, 159
normalize.css file, 498–499, 509
Normalize.css project, 582
Normalize.css style sheet, 111, 217
:not() selector, 67, 69–70
:nth-child pseudo-element, 64–65
:nth-of-type selector, 66–67, 363, 375
numbered lists, 169–171
numbers

customizing (lists), 172
line spacing by, 163–164
positioning (lists), 169–171

O
object oriented CSS, 588
 tag, 16, 168
:only-child pseudo-element, 63–64
opacity property, 671
opacity setting, 442
Open Type fonts, 127–128
Opera browser

-webkit- vendor prefix for, 341

InDex 687

PURE.CSS
FRAMEWORK

Web Developer extension for, 15
WOFF format support in, 127

order property (flex items), 541–544
origin/clipping of background images,

243–245
origin property (transforms), 328–329
orphans property, 671
outline properties, 651
overflow:hidden property, 407
overflow property (box model), 208,

213
overriding styles selectively, 107–108

P
<p> tag, 16, 17
padding. See also margins and

padding
adding to tables, 360
in CSS layout, 396
inside borders, 198
padding-box option (box-sizing), 207
padding-box values (box-sizing), 417
padding-left property, 170
padding-top property, 33
properties reference, 652–653
property, 183, 185, 230

page-break-inside property, 672
page layout properties, 657–664
paragraphs

adjusting line spacing, 162–164
aligning text, 164
first lines/letters, 166–168
margins between paragraphs, 166
styling, 56
tutorial, 175–179

parameters (Sass), 621–622
parent selectors (Sass), 609–611
parent tags, 51
partials, Sass, 600–602
pausing animations, 348–349
percentage values

margins/padding and, 188
overview, 640
positioning background images

using, 240–242
sizing text with, 152–156
spacing lines by, 163

photos
photo gallery, creating (tutorial),

266–270

placing captions on (tutorial),
452–456

pixels
device/CSS pixels, 476
overview, 639
sizing fonts using, 151–152
spacing lines by, 163

placeholder selectors (Sass), 615–617
play-state property (animations),

348–349
PNG files, 233
pop-up menus, 296
positioning background images

background-position property, 255,
289, 299

defining origin/clipping, 242–244
fixing images in place, 242–243
with keywords, 236–238
with percentage values, 240–242
with precise values, 239–240
scaling images, 245–246

positioning elements. See CSS
Positioning

preloading rollovers (sprites),
298–299

printing background images, 242
properties

animation (reference), 663–666
background (reference), 654–657
borders (reference), 648–650
commonly used with images,

229–230
easy viewing of, 30
extending Sass, 612–614
list (reference), 647–648
margins and padding (reference),

652–653
non-inherited, 94–95
outline, 651
overview, 23
page layout (reference), 657–664
shorthand, 575–576
table (reference), 668–669
text (reference), 642–646
transform (reference), 667
transition (reference), 667
vendor prefixes, 321

pseudo-classes/elements, 55–59
pseudo-elements, 55–59
Pure.css framework, 497

InDex688

QUERIES,
MEDIA

Q
queries, media. See media queries
quirks mode (browsers), 17
quote marks (“ “)

for fonts, 124
removing browser-created, 580

R
radial gradients

basics, 258–261
repeating, 261

radio buttons, 367
references, CSS, 673–674
relative positioning, 430–431,

437–439
rel attribute, 27, 34
rem measurement units, 155–156, 640
repeating linear gradients, 257–258
repeating radial gradients, 261
resetting CSS. See CSS reset
Responsinator, 475
responsive web design (RWD)

basics, 457–458
flexible grids, 468–472
fluid images, 472–476
media queries. See media queries
overview, 387–388, 457–458
scaling videos/Flash content, 476
setting up web pages for, 459–461
testing, 475
tutorial

adding phone styles, 487–491
adding styles for tablet screens,

482–486
fluid images, 480–481
HTML source order, changing,

477–480
Retina Displays (Apple), 152
rgba() color method/values, 73,

149–150
RGB color values, 638–639
rollovers (CSS sprites)

creating (tutorial), 312–315
preloading, 298–299

root-relative paths (URLs), 34, 237
rotate function (transforms), 321–322
rounded corners

in borders, 199–201
in table cells, 363

rows/columns. See also columns; grid
systems

styling (tables), 363–365
rules (styles), 22

S
Safari

vendor-prefixed flexbox properties,
532

vendor prefixes in, 530
sans-serif fonts, 125
Sass (CSS preprocessor)

avoiding the command line, 596
converting current site to, 597–598
extending properties. See extending

Sass properties
installing, 591–595
mathematical operations, 606
media queries and, 626–630
mixins. See mixins (Sass)
nesting selectors, 607–612
organizing files, 596
organizing styles with Sass partials,

600–602
overview, 589–591, 595
running, 597–600
troubleshooting with CSS source

maps, 631–633
variables, 604–607

saturation (color), 150–151
Scalable and Modular Architecture for

CSS (SMACSS), 588
scale function (transforms), 322–325,

350
scaling background images, 245–246
search engines, HTML and, 8
<section> tag (HTML5), 9
sectioning elements (HTML5),

390–391
<select> tag, 367
::selection pseudo-element, 58–59
selectively overriding styles

(cascade), 107–108
selectors

attribute, 59–61
child, 61–65
child type, 65–67
class, 43–46
descendent, 50–55
group, 49, 612–613

InDex 689

STYLE SHEETS
ID, 46–48
nesting (Sass), 607–612
:not(), 69–70
overview, 21–23
parent (Sass), 609–611
placeholder (Sass), 615–617
:target(), 68–69
tutorial

creating class selector, 78–80
creating descendent selector, 80
creating group selector, 73–75
creating ID selector, 75–77
finishing touches, 81–84
preparing web page with basic

styles, 70–73
type (element) selectors, 42–43
universal (*), 49–50

serif fonts, 124–125
services, font, 148
shadows, adding to text, 160–162
shorthand

animations, 347–348
background property, 247–249
border property, 195–196
margins/padding, 189
properties overview, 575–576
transitions, 336–337

showcase CSS sites, 676
sibling tags, 52, 67–68
sidebars, building (tutorial), 223–227
sizing

background images, 245–246
fonts, 151–156

Skeleton grid system, 497–501
sketching out page content, 393–394
skew function (transforms), 327–328
small caps text, 158
Snook, Jonathon, 588
source maps, CSS, 631–633
source order, HTML, 212, 469–470,

477–480
space

adjusting around tags (tutorial),
219–223

between table cells, 362
controlling with margins/padding.

See margins and padding
removing with negative margins,

191–192
spaces in styles, 23–24

tightening for mobile devices, 461
spacing

lines of text, 162–164
words/letters, 159–160

 tag, 7–8, 368–369, 444
 tags, 47
specificity of styles (cascade)

avoiding specificity wars, 108–109
basics, 102–103
changing, 105–107
last style tiebreaker, 103–104
overruling, 105

sprites (preloading rollovers),
298–299

src attribute, 27
src property, 132
SSL (secure socket layer), 300
stacking elements, 439
stacks, font, 123, 605–606
static positioning, 431–432
Stencil Kit (Yahoo), 393
 tag, 52
styles

accumulation of inherited (cascade),
98–99

adding to grids (tutorial), 515–518
anatomy of, 21–24
creating hybrid (cascade), 113–114
creating inline, 28–29
creating using web fonts, 134–135
definition of, 19
grouping related, 576–577
inline, 26
for links, 55–56
organizing with Sass partials,

600–602
for phones (tutorial), 487–491
rule of directly applied, 99–100
selectively overriding, 107–108
<style> tag, 26, 31
for tablet screens (tutorial), 482–486
tabs in, 23–24
tips for organizing, 570–579

style sheets
adding media queries to, 465–466
basic structure for media queries,

466–467
creating external, 32–38
creating internal, 29–31
CSS reset, 109–111

InDex690

STYLING
TABLES

definition of, 19, 24
internal/external, 24–27
multiple, 577–579
naming, 26
streamlining with inheritance, 86–87
using multiple, 577–579

styling tables
adding padding, 360
borders, 362–363
overview, 359–360
rows/columns, 363–365
tutorial, 370–375
vertical/horizontal alignment,

360–362
submit buttons (forms), 378–379
Sullivan, Nicole, 588
SVGs (Scalable Vector Graphics)

files, 233
format, 128

T
tables

building with HTML, 357–359
properties (reference), 668–669
styling. See styling tables
<table> tag, 14

tabs in styles, 23–24
tags

adjacent sibling, 67–68
adjusting space around (tutorial),

219–223
applying multiple classes to, 45–46
block-level, 192
in HTML5, 8–9
multiple styles applied to, 100–102
overview, xv–xvi, 6
positioning rules for, 436
styling groups of, 49–51
styling tags within tags, 50–55
styling with type selectors, 42–43
tags/attributes to avoid, 13–14

:target() selectors, 68–69
text

editors, 28
inserting variables into (mixins),

622–623
properties reference, 642–646
text-align property, 360–361
text-decoration property, 283
text field tags (forms), 367
text-transform property, 177

text formatting
adding color to, 147–151
adding shadows to, 160–162
fonts, 121–126
formatting words/letters, 156–160
paragraph formatting.

See paragraphs
shorthand method for formatting, 165
sizing, 151–156
styling lists, 168–172
text-decoration property, 158–159
text-indent property, 164–165
text-shadow property, 160–161
text-transform property, 157–158
tutorial

adding classes, 181–182
finishing touches, 182
formatting headings/paragraphs,

175–179
formatting lists, 178–180
setting up page, 172–175

tiling background images, 234
timing

animations, 344–345
timing-function property

(transitions), 332–334
title attribute, 59
transforms

3D transforms, 330
multiple transformations, 328
overview, 319–320
properties reference, 667
rotate function, 321–322
scale function, 322–325
skew function, 327–328
transform-origin property, 328–329
translate function, 325–327
tutorial: transformations/animation/

transitions, 349–355
transitions

adding, 331–332
delaying start of, 334–336
overview, 330–331
properties for smoothe, 337
properties (reference), 667
shorthand, 336–337
timing, 332–334
triggering with JavaScript, 335
tutorial: transformations/animation/

transitions, 349–355

InDex 691

WEBSITES FOR
DOWNLOADING

translate function (transforms),
325–327

tree diagrams (HTML tags), 50–53
triggering transitions with JavaScript,

335
triggers (transitions), 330–331
True Type fonts, 127–128
tutorials

background images, using, 270–278
cascade, 111–117
flexbox layout, building, 556–565
forms, styling, 375–381
grid systems, 509–525
images, framing, 261–266
inheritance, 90–95
margins/backgrounds/borders,

216–227
multiple-column, float-based layout,

417–428
navigation bar, creating, 308–316
photo gallery, creating, 266–270
positioning page elements, 448–456
responsive web design (RWD),

476–490
selectors, creating, 70–80
styles/style sheets, creating, 27–39
styling links, 302–308
text formatting, 172–184
transforms/transitions/animations,

349–355
type (element) selectors, 42–43,

65–67
TypeKit, Adobe, 148

U
 tag, 16, 168
underlining links, 283–285
universal selectors (*), 49–50
unordered lists

in navigation bars, 290–291
using child selectors for, 67

URLs (Uniform Resource Locators)
http:// and https://, 300
links to specific file types, 302
types of, 237
values, 641

v
validating

CSS, 27
HTML, 15

values, property
overview, 23
reference, 637–641
setting positioning, 432–435

variables
breakpoint, 627–628
inserting into text (mixins), 622–623
Sass, 604–607

vector graphics, 128
vendor prefixes, 58, 321, 341, 343
vertical-align property, 360, 369
vertical/horizontal alignments

(tables), 360–362
vertical navigation bars, 291–293
vh/vw (viewport height/width) units,

640
:visited pseudo-class, 55, 280, 289,

304

W
W3C validator, 15, 27
web color keywords, 638
web fonts

bold/italic variants, 135–141
creating styles using, 134–135
finding, 129
@font-face directive, 131–134
font file types, 127–128
generating multiple formats, 129–131
Google. See Google web fonts
legal issues with, 128–129
overview, 123, 126

WebKit syntax, 352
web pages

compartmentalizing, 584–585
layouts, types of, 385–387

websites for downloading
apps for compiling Sass files, 596
Autoprefixer, 530
CSS software, xvii–xviii
CSS templates/designs, 402
extension for validating web pages,

15
free images, 249
grid systems, 497
Grunt, 591
Gulp, 591
HTML5 elements flow chart, 9
normalize.css style sheet, 111, 217
Ruby installer, 592

InDex692

WEBSITES
FOR FURTHER
INFORMATION

Sass mixin libraries, 622
Skeleton grid system, 498
Stencil Kit (Yahoo), 393
web fonts, 129

websites for further information
3D transforms, 330
adaptive images, 475
Adobe Creative Cloud service, 148
animatable properties, 331
blend-modes in Photoshop/CSS, 247
box-sizing, 417
browser support of CSS selectors, 57
browser usage, 13
building search-friendly websites, 8
cache refreshing, 371
calculating specificity, 102
Ceaser tool (timing functions), 333
color convertor, 217
color keywords, 638
color picker, 639
color-related resources, 148
colors listed/organized, 149
containing floats, 406
CSS buttons, 287
CSS Font Stack, 124
CSS gallery, 69
CSS grid layout module, 393
CSS Minifier, 570
CSS reset (Meyers), 110
CSS resources, 673–676
CSS specifications/references, 637
CSS sprites, 299
CSS transforms, visualizing, 328
CSS transitions with JavaScript, 335
CSS validation, 27
doctypes, xv
document-/root-relative links, 34
drop-down menus, 296
embedded YouTube videos, 476
equal-height column techniques, 414
fixed-width design, 386
flexbox examples, 548, 562
form designs, 366
generated content phenomenon, 670
Google Analytics, 13
Google Fonts, 141, 142
gradient examples, 257
graphical icons, 135
grid systems, building, 525
HSL color picker, 151

HTML5 sectioning elements, 391
HTML5 tags, 9
HTML definition lists, 16
HTML tutorials, xiv, 6
ID selectors, avoiding, 109
image sizes on mobile devices, 475
inline media queries, 627
liquid layouts, 386
matrix method (transforms), 328
media queries, 465
Mobile First design, 393
multi-columns, 409
navigating Mac file system, 598
navigation menus, 462
Normalize.css project, 582
Object Oriented CSS, 588
pop-up tooltips, 442
properties for smoother transitions/

animations, 337
pseudo-classes for forms, 370
Pure CSS Menu generator, 296
quirks mode, 18
responsive web design (RWD), 458
Safari flexbox vendor prefixes, 532
Sass, 590
Sass for writing media queries, 630
Sass math, 606
Sass mixins, 620
Sass projects, organizing, 602
Scalable and Modular Architecture

for CSS (SMACSS), 588
Selectoracle, 59
SVG resources, 233
text shadows, 161
timing function property

(transitions), 333
tutorials for analyzing CSS (Chrome),

104
typographic contrast, 156
W3C, 15
Webfont Generator, 130
web pages, tools for previewing, 475
Windows command prompt, 593, 598

widows property, 672
width property

Box Model. See height/width
properties (box model)

setting for floats, 400
usage of, 179

Windows, installing Sass on, 592–594

InDex 693

ZOOMING WEB
PAGES

WOFF (Web Open Font Format), 127
words

formatting, 156–160
spacing, 159–160

wrapping content with floating
elements, 210–215

wrapping flex items, 552–553
Wroblewski, Luke, 393

x
XHTML, 18

Y
YouTube videos, 476

Z
z-index

property, 439–440
values, 543

zooming web pages, 152

Don’t miss a thing!
Sign up for the free Missing
Manual email announcement
list at missingmanuals.com.
We’ll let you know when we
release new titles, make
free sample chapters available,
and update the features and
articles on the Missing Manual
website.

CSS

TH

E MISSING CD

There’s no

CD with this book;

you just saved $5.00.

Instead, every single Web address, practice file, and

piece of downloadable software mentioned in this

book is available at missingmanuals.com

(click the Missing CD icon).

There you’ll find a tidy list of links,

organized by chapter.

	The Missing Credits
	Introduction
	What Is CSS?
	What You Need to Know
	HTML: The Barebones Structure
	Document Types
	How HTML Tags Work
	HTML5: More Tags to Choose From
	Software for CSS
	About This Book
	The Very Basics
	About the Online Resources
	Safari® Books Online

		Part One:	CSS Basics
		Chapter 1:	HTML and CSS
	HTML: Past and Present
	Writing HTML for CSS
	The Importance of the Doctype
	How CSS Works

		Chapter 2:	Creating Styles and Style Sheets
	Anatomy of a Style
	Understanding Style Sheets
	Internal Style Sheets
	External Style Sheets
	Tutorial: Creating Your First Styles

		Chapter 3:	Selectors: Identifying What to Style
	Type Selectors: Styling HTML Tags
	Class Selectors: Pinpoint Control
	ID Selectors: Specific Page Elements
	Styling Groups of Tags
	Styling Tags Within Tags
	Pseudo-Classes and Pseudo-Elements
	Attribute Selectors
	Child Selectors
	Siblings
	The :target Selector
	The :not() Selector
	Tutorial: Selector Sampler

		Chapter 4:	Saving Time with Style Inheritance
	What Is Inheritance?
	How Inheritance Streamlines Style Sheets
	The Limits of Inheritance
	Tutorial: Inheritance

		Chapter 5:	Managing Multiple Styles: The Cascade
	How Styles Cascade
	Specificity: Which Style Wins
	Controlling the Cascade
	Tutorial: The Cascade in Action

		Part Two:	Applied CSS
		Chapter 6:	Formatting Text
	Using Fonts
	Using Web Fonts
	Discovering Google Web Fonts
	Adding Color to Text
	Changing Font Size
	Formatting Words and Letters
	Adding Text Shadow
	Formatting Entire Paragraphs
	Styling Lists
	Tutorial: Text Formatting in Action

		Chapter 7:	Margins, Padding, and Borders
	Understanding the Box Model
	Controlling Space with Margins and Padding
	Adding Borders
	Coloring the Background
	Creating Rounded Corners
	Adding Drop Shadows
	Determining Height and Width
	Wrapping Content with Floating Elements
	Tutorial: Margins, Backgrounds, and Borders

		Chapter 8:	Adding Graphics to Web Pages
	Discovering CSS and the Tag
	Adding Background Images
	Controlling Repetition
	Positioning a Background Image
	Using Background Property Shorthand
	Using Multiple Background Images
	Utilizing Gradient Backgrounds
	Tutorial: Enhancing Images
	Tutorial: Creating a Photo Gallery
	Tutorial: Using Background Images

		Chapter 9:	Sprucing Up Your Site’s Navigation
	Selecting Which Links to Style
	Styling Links
	Building Navigation Bars
	CSS-Style Preloading Rollovers
	Styling Particular Types of Links
	Tutorial: Styling Links
	Tutorial: Creating a Navigation Bar

		Chapter 10:	CSS Transforms, Transitions, and Animations
	Transforms
	Transitions
	Animations
	Tutorial

		Chapter 11:	Formatting Tables and Forms
	Using Tables the Right Way
	Styling Tables
	Styling Forms
	Tutorial: Styling a Table
	Tutorial: Styling a Form

		Part Three:	CSS Page Layout
		Chapter 12:	Introducing CSS Layout
	Types of Web Page Layouts
	How CSS Layout Works
	Layout Strategies

		Chapter 13:	Building Float-Based Layouts
	Applying Floats to Your Layouts
	Overcoming Float Problems
	Tutorial: Multiple-Column Layouts

		Chapter 14:	Positioning Elements on a Web Page
	How Positioning Properties Work
	Powerful Positioning Strategies
	Tutorial: Positioning Page Elements

		Chapter 15:	Responsive Web Design
	Responsive Web Design Basics
	Setting Up a Web Page for RWD
	Media Queries
	Flexible Grids
	Fluid Images
	Responsive Web Design Tutorial

		Chapter 16:	Using a CSS Grid System
	How Grids Work
	Structuring Your HTML for Grids
	Using the Skeleton Grid System
	Creating and Naming Columns
	Tutorial: Using a Grid System

		Chapter 17:	Modern Web Layout with Flexbox
	Introducing Flexbox
	Flex Container Properties
	Flex Item Properties
	Tutorial: Build a Flexbox Layout

		Part Four:	Advanced CSS
		Chapter 18:	Improving Your CSS Habits
	Adding Comments
	Organizing Styles
	Eliminating Browser Style Interference
	Using Descendant Selectors

		Chapter 19:	More Powerful Styling with Sass
	What is Sass?
	Installing Sass
	Sass Basics
	Organizing Your Styles with Sass Partials
	Sass Variables
	Nesting Selectors
	Inheriting (or Extending) Properties
	Mixins
	Working with Media Queries
	Troubleshooting with CSS Source Maps

		Part Five:	Appendixes
		Appendix A:	CSS Property Reference
	CSS Values
	Text Properties
	List Properties
	Padding, Borders, and Margins
	Backgrounds
	Page Layout Properties
	Animation, Transform and Transition Properties
	Table Properties
	Miscellaneous Properties

		Appendix B:	CSS Resources
	References
	CSS Help
	CSS Tips, Tricks, and Advice
	CSS Navigation
	CSS Layout
	Showcase Sites

	Index

