
Java
for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way
—
Iuliana Cosmina

Ketabton.com

Java for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

Iuliana Cosmina

(c) ketabton.com: The Digital Library

Java for Absolute Beginners: Learn to Program the Fundamentals the Java 9+ Way

ISBN-13 (pbk): 978-1-4842-3777-9			 ISBN-13 (electronic): 978-1-4842-3778-6
https://doi.org/10.1007/978-1-4842-3778-6

Library of Congress Control Number: 2018964482

Copyright © 2018 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237779. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Iuliana Cosmina
Edinburgh, UK

(c) ketabton.com: The Digital Library

This book is dedicated to all men that told me
software engineering is not for women.

And to that one professor that told me I’m not PhD material.

How do ya’ like them apples?

(c) ketabton.com: The Digital Library

v

Table of Contents

Chapter 1: �An Introduction to Java and Its History��� 1

Who This Book Is For�� 2

How This Book Is Structured�� 3

Conventions��� 4

When Java Was Owned by Sun Microsystems��� 5

Why Is Java Portable?�� 8

Sun Microsystem’s Java Versions�� 10

Oracle Takes Over�� 15

What the Future Holds��� 21

Prerequisites�� 21

Chapter 2: �Preparing Your Development Environment�� 23

Installing Java�� 24

The JAVA_HOME Environment Variable�� 29

JAVA_HOME on Windows��� 30

JAVA_HOME on macOS��� 35

JAVA_HOME on Linux��� 36

Installing Gradle��� 37

Installing Git��� 38

Installing a Java IDE��� 39

Summary��� 47

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

(c) ketabton.com: The Digital Library

vi

Chapter 3: �Getting Your Feet Wet��� 49

Using JShell��� 49

Java Fundamental Building Blocks�� 56

Access Modifiers�� 60

Introducing Modules��� 64

Configuring Modules�� 67

Determining the Structure: A Java Project��� 69

Explaining and Enriching the Hello World! Class�� 89

Summary��� 96

Chapter 4: �Java Syntax�� 99

Base Rules of Writing Java Code��� 100

Package Declaration��� 101

Import Section�� 101

Java “Grammar”��� 103

Java Identifiers��� 106

Java Comments�� 107

Java Object Types�� 107

Classes��� 108

Enums��� 125

Interfaces��� 129

Exceptions�� 139

Generics��� 145

Java Reserved Words��� 147

Summary��� 151

Chapter 5: �Data Types�� 153

Stack and Heap Memory�� 153

Introduction to Java Data Types��� 159

Primitive Data Types��� 159

Reference Data Types��� 161

Table of Contents

(c) ketabton.com: The Digital Library

vii

Java Primitive Types�� 165

The Boolean Type��� 165

The char Type��� 166

Integer Primitives��� 167

Real Primitives��� 170

Java Reference Types�� 173

Arrays��� 177

The String Type��� 183

Escaping Characters��� 187

Wrapper Classes��� 189

Date Time API��� 191

Collections�� 196

Concurrency Specific Types�� 201

Summary��� 206

Chapter 6: �Operators��� 207

The Assignment Operator (=)��� 208

Explicit Type Conversion (type) and instanceof�� 211

Numerical Operators�� 214

Unary Operators��� 214

Binary Operators��� 217

Relational Operators��� 223

Bitwise Operators��� 227

Bitwise NOT�� 227

Bitwise AND�� 228

Bitwise Inclusive OR��� 230

Bitwise Exclusive OR�� 231

Logical Operators��� 233

Shift Operators��� 238

The Elvis Operator�� 241

Summary��� 242

Table of Contents

(c) ketabton.com: The Digital Library

viii

Chapter 7: �Controlling the Flow��� 243

if-else Statement��� 244

switch Statement��� 250

Looping Statements��� 256

for Statements�� 257

while Statement��� 263

do-while Statement�� 268

Breaking Loops and Skipping Steps�� 271

break Statement��� 271

continue Statement�� 273

return Statement�� 275

Controlling the Flow Using try-catch Constructions�� 277

Summary��� 280

Chapter 8: �The Stream API�� 281

Introduction to Streams��� 281

Creating Streams��� 284

Creating Streams from Collections��� 284

Creating Streams from Arrays�� 287

Creating Empty Streams��� 289

Creating Finite Streams�� 289

Streams of Primitives and Streams of Strings��� 292

A Short Introduction to Optional��� 295

How to Use Streams�� 298

Terminal Functions: forEach and forEachOrdered�� 300

Intermediate Operation filter and Terminal Operation toArray�� 302

Intermediate Operations map and flatMap and Terminal Operation collect������������������������� 303

Intermediate Operation sorted and Terminal Operation findFirst��� 306

Intermediate Operation distinct and Terminal Operation count�� 306

Intermediate Operation limit and Terminal Operations min and max����������������������������������� 307

Terminal Operations sum and reduce��� 307

Table of Contents

(c) ketabton.com: The Digital Library

ix

Intermediate Operation peek�� 308

Intermediate Operation skip and Terminal Operations findAny, anyMatch,
allMatch, and noneMatch��� 309

Debugging Stream Code�� 310

Summary��� 314

Chapter 9: �Debugging, Testing, and Documenting��� 317

Debugging�� 317

Logging��� 318

Logging with SLF4J and Logback��� 337

Debug Using Assertions�� 345

Step-by-Step Debugging�� 348

Inspect Running Application Using Java Tools�� 351

Accessing the Java Process API�� 362

Testing��� 369

A Small Introduction to Testing��� 370

Test Code Location��� 371

Application to Test�� 372

Documenting�� 397

Summary��� 408

Chapter 10: �Making Your Application Interactive�� 409

Reading Data from the Command Line�� 409

Reading User Data Using System.in��� 410

Using Scanner�� 411

Reading User Data with java.io.Console��� 417

Build Applications Using Swing��� 420

Introducing JavaFX�� 432

Internationalization�� 442

Build a Web Application��� 450

Summary��� 468

Table of Contents

(c) ketabton.com: The Digital Library

x

Chapter 11: �Working with Files��� 471

File Handlers�� 471

Path Handlers��� 478

Reading Files��� 482

Using Scanner to Read Files��� 482

Using Files Utility Methods to Read Files��� 484

Using Readers to Read Files��� 485

Using InputStream to Read Files�� 489

Writing Files��� 492

Writing Files Using Files Utility Methods�� 492

Using Writers to Write Files�� 495

Using OutputStream to Write Files��� 499

Serialization and Deserialization�� 502

Binary Serialization�� 503

XML Serialization�� 507

JSON Serialization�� 511

The Media API�� 513

Using JavaFX Image Classes��� 526

Summary��� 529

Chapter 12: �The Publish/Subscribe Framework�� 531

Reactive Programming and the Reactive Manifesto�� 532

Using the JDK Reactive Streams API��� 536

Reactive Streams Technology Compatibility Kit��� 548

Using Project Reactor�� 552

Summary��� 558

Chapter 13: �Garbage Collection��� 559

Garbage Collection Basics��� 560

Oracle Hotspot JVM Architecture�� 560

How Many Garbage Collectors Are There?��� 564

Table of Contents

(c) ketabton.com: The Digital Library

xi

Working with GC from the Code��� 571

Using the finalize() Method��� 571

Heap Memory Statistics��� 578

Using Cleaner��� 584

Preventing GC from Deleting an Object�� 587

Using Weak References�� 591

Garbage Collection Exceptions and Causes��� 595

Summary��� 596

�Index�� 599

Table of Contents

(c) ketabton.com: The Digital Library

xiii

About the Author

Iuliana Cosmina is currently a software engineer for NCR

Edinburgh. She has been writing Java code since 2002. She

has contributed to various types of applications, such as

experimental search engines, ERPs, track and trace, and

banking. During her career, she has been a teacher, a team

leader, software architect, a DevOps professional, and a

software manager. 

She is a Spring-certified professional, as defined by Pivotal,

the makers of Spring Framework, Boot, and other tools.

She considers Spring the best Java framework to work with.

When she is not programming, she spends her time reading, blogging, learning to

play piano, travelling, hiking, or biking.

•	 You can find some of her personal work on her GitHub account at

https://github.com/iuliana.

•	 You can find her complete CV on her LinkedIn account at

www.linkedin.com/in/iulianacosmina.

•	 You can contact her at Iuliana.Cosmina@gmail.com.

(c) ketabton.com: The Digital Library

xv

About the Technical Reviewer

Wallace Jackson has been writing for leading multimedia publications about his

work in new media content development since the advent of Multimedia Producer

Magazine nearly two decades ago. He has authored a half-dozen Android book titles

for Apress, including four titles in the popular Pro Android series. Wallace received his

undergraduate degree in business economics from the University of California at Los

Angeles and a graduate degree in MIS design and implementation from the University of

Southern California. He is currently the CEO of Mind Taffy Design, a new media content

production and digital campaign design and development agency.

(c) ketabton.com: The Digital Library

xvii

Acknowledgments

Here I am again, the main author of a technical book for the third time.

This book was quite challenging to write, because I had to quickly adapt to changes

made to the Java ecosystem. With the new six months interval release system, modules

being introduced, and backward compatibility thrown out the window, I found myself

with a project that stopped compiling and had to invest precious time into fixing it,

understand why it broke in the first place, and eventually adapt the book.

Writing books for beginners is tricky, because as an experienced developer, it might

be difficult to find the right examples and explain them in such a way that even a non-

technical person would easily understand them. That is why I am profoundly grateful to

Matthew Moodie and Mark Powers for all the support and advice they provided to keep

this book at beginner level. We have been working together for four years and it has been

a fruitful collaboration so far.

I would like to thank Wallace Jackson; his recommendations and corrections were

crucial for the final form of the book.

Apress has published many of the books that I have read and used to improve myself

professionally. It is a great honor to publish my fourth book with Apress, and it gives me

enormous satisfaction to be able to contribute to the “making” of a new generation of

Java developers.

I am grateful to all my friends who had the patience to listen to me complain about

sleepless nights and writer’s block. Thank you all for being supportive and making sure I

still had some fun while writing this book. You have no idea how dear you are to me.

I am thankful to John Mayer still, as his music provided yet again, a great

environment for my working nights.

A special thank you to Achim Wagner, whom I consider both a mentor and a dear

friend. He provided me with an environment and support to grow as a professional and

as a person, and I will miss working with him.

(c) ketabton.com: The Digital Library

xviii

A special thank you to the Bogza-Vlad family: Monica, Tinel, Cristina, and Stefan.

You are all close to my heart and this book might have been released later without your

support when I moved to Edinburgh.

And a very special thank-you in advance to all the passionate Java developers who

will find mistakes in the book and be so kind to write me about them so I can provide an

erratum and make this book even better.

Acknowledgments

(c) ketabton.com: The Digital Library

xix

Introduction

Even though I have been writing Java Applications since 2002 I don’t think I’ve ever dived

so deeply into the JVM as I did while writing this book. Most companies I’ve worked

for had their own code base when I joined them, and my work was mostly related to

designing, improving or maintaining one that already existed. It’s like making brownies

when you already have brownie mix. Writing this book has given me the opportunity to

get down to basics and work with basic ingredients—so, making brownies using eggs,

flower, cocoa, milk, and butter.

Java began in 1982 and was created by a handful of people. The most renowned

name linked to the beginning of Java is James Gosling, also known as the father of

Java, the language that is now used on over three billion devices. When Oracle bought

Sun Microsystems, developers were worried about Java’s future, especially since its

main creator quit the company and went on to create what was thought to be Java’s

replacement: Scala. That will probably never happen. Java is still here.

Most banking applications are written in Java and because it is definitely dangerous

and costly to migrate these applications, Java will be here in 50 years, if not more. Java

began by making websites more dynamic and more entertaining, and ended up being

the basis for applications run on ATMs, cashier machines, computers, and mobile

devices. Sure, this would have been more difficult if Java wasn’t cross-platform.

The first Java version was officially released in 1996. Since then, ten more versions

have been released, with the latest one, Java 11, being released on 25th September 2018.

The work on Java 12 has already begun and the early access build is already available.

This book was written with the intention to cover the fundamental elements of the

language and of the JVM, especially the ones introduced in versions 9, 10, and 11.

The book provides a complete overview of the most important Java classes in the JVM,

all wrapped up in a multimodule project that compiles with Java 11 and Gradle 5.

(c) ketabton.com: The Digital Library

xx

A group of reviewers has gone over the book, but if you notice any inconsistencies,

please send an email to editorial@apress.com, or directly to the author, and corrections

will be made and published in an erratum that will be uploaded to the official GitHub

repository for the book. The example source code for this book can be found on GitHub

or downloaded from the official book’s product page, located at www.apress.com/in/

book/9781484237779.

I truly hope you will enjoy using this book to learn Java as much as I enjoyed writing it.

Introduction

(c) ketabton.com: The Digital Library

1
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_1

CHAPTER 1

An Introduction to Java
and Its History
Java is currently one of the most influential programming languages. It all started in

1990, when an American company that was leading the revolution in the computer

industry decided to gather its best engineers together to design and develop a product

that would allow them to become an important player in the new emerging Internet

world. Among those engineers was James Arthur Gosling, a Canadian computer scientist

who is recognized as the “father” of the Java programming language. It would take five

years of design, programming, and one rename (from Oak to Java because of trademark

issues), but finally in 1996, Java 1.0 was released for Linux, Solaris, Mac, and Windows.

You might have the tendency to skip this chapter altogether. But I think it would be

a mistake. I was never much interested in the history of Java. I was using it for work. I

knew that James Gosling was the creator and that Oracle bought Sun, and that was pretty

much it. I never cared much about how the language evolved, where the inspiration

came from, or how one version was different from another. I started learning Java at

version 1.5, and I took a lot of things in the language for granted. So, when I was assigned

to a project running on Java 1.4, I was quite confused, because I did not know why

some of the code I wrote was not compiling. Although the IT industry is moving very

fast, there will always be that one client that has a legacy application. And knowing the

peculiarities of each Java version is an advantage, because you know the issues when

performing a migration.

When I started doing research for this book, I was mesmerized. The history of Java is

interesting because it is a tale of incredible growth, success of a technology, and how a

clash of egos in management almost killed the company that created it. Because even if

Java is the most used technology in software development, it is simply paradoxical that

the company that gave birth to it no longer exists.

(c) ketabton.com: The Digital Library

2

This chapter covers each version of Java to track the evolution of the language and

the Java virtual machine. You can find a timeline for versions 1.0 to 1.8 on the Oracle

official site at http://oracle.com/edgesuite.net/timeline/java./. But first, I’ll

introduce the book.

�Who This Book Is For
Most Java books for beginners start with the typical Hello World! example depicted here:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

This code, when executed, prints Hello World! in the console. But if you have bought

this book, it is assumed that you want to develop real applications in Java, and get a real

chance when applying for a position as a Java developer. If this is what you want, if this

is who you are, a beginner with the wits and the desire to make full use of this language’s

power, then this book is for you. And that is why to start this book, a complex example is

used. We go over it in almost every section, when some part of it is clarified.

Java is a language with a syntax that is readable and based on the English language.

So, if you have a logical thinking and a little knowledge of the English language, it should

be obvious to you what the following code does without even executing it.

package com.apress.ch.one.hw;

import java.util.List;

public class Example01 {

 public static void main(String[] args) {

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(item -> {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

3

 System.out.println("Not A");

 }

 });

 }

}

In this code example, a list of text values is declared; then the list is traversed, and when

a text is equal to "a", the letter "A" is printed in the console; otherwise, "Not A" is printed.

If you are an absolute beginner to programming, this book is for you, especially

because the sources attached to this book make use of algorithms and design patterns

commonly used in programming. So, if your plan is to get into programming and learn

a high-level programming language, read the book, run the examples, write your own

code, and you should have a good head start.

If you already know Java, you can use this book too because it covers the specifics of

Java versions 9, 10, and 11 (the EAP1 release).

How This Book Is Structured
The chapter you are reading is an introductory one that covers a little bit of Java history,

showing you how the language has evolved and a glimpse into its future. Also, the mechanics

of executing a Java application are covered, so that you are prepared for Chapter 2. The

next chapter shows you how to set up a development environment and introduces you

to a simple application. In Chapters 3 to 7, the fundamental parts of the language are

covered: packages, modules, classes, objects, operators, data types, statements, streams,

lambda expressions, and so forth. Starting with Chapter 8 more advanced features are

covered such as: interactions with external data sources: reading writing files, serializing/

deserializing objects, testing and creating an interface. Chapter 12 is dedicated fully to the

publish-subscribe framework introduced in Java 9. Chapter 13 covers the garbage collector.

The book is completed by the java-for-absolute-beginners project. This project is

organized in modules (thus it is a multimodule project) that are linked to each other and

must be managed by Gradle. Gradle is something we developers call a build tool, which

is used to build projects. To build a project means transforming the code into something

that can be executed. I chose to use multimodule projects for the books I write because

it is easier to build them, and common elements can be grouped together, keeping the

1�Early Access Program

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

4

configuration of the project simple and non-repetitive. Also, by having all the sources

organized in one multimodule project, you get the feedback on whether the sources are

working or not as soon as possible, and you can contact the author and ask him or her to

update them.

�Conventions
This book uses a number of formatting conventions that should make it easier to read. To

that end, the following conventions are used within the book:

•	 code or concept names in paragraphs appear as follows:

import java.util.List;

•	 code listings appear as follows:

public static void main(String[] args) {

 System.out.println("Hello there young developer!");

}

•	 logs in console outputs appear as follows:

01:24:07.809 [main] INFO c.a.Application - Starting Application

01:24:07.814 [main] DEBUG c.a.p.c.Application - Running in debug mode

...

•	 ! This symbol appears in front of paragraphs that you should pay

specific attention to.

•	 Italic font is used for metaphors, jocular terms and technical terms that

the reader should pay special attention to because they are not explained

in the current context, but they are covered in the book. Examples:

“This was mentioned before at the end of Chapter 4 when generics were

introduced.” “The stack memory is used during execution (also referred

to as at runtime)” or “Let’s see how this is being done under the hood”.

•	 Bold font is used for chapter references and important terms.

As for my style of writing, I like to write my books in the same way I have technical

conversations with colleagues and friends: sprinkling jokes, giving production examples,

and making analogies to non-programming situations. Because programming is just

another way to model the real world.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

5

�When Java Was Owned by Sun Microsystems
The first version of Java was released in 1996. Up until that point, there was a small

team named the Green Team that worked on a prototype language named Oak, which

was introduced to the world with a working demo—an interactive handheld home

entertainment controller called the Star7. The star of the animated touch-screen user

interface was a cartoon character named Duke, created by one of the team’s graphic

artists, Joe Palrang. Over the years, Duke has become the official Java technology mascot,

and every JavaOne conference has its own Duke mascot personality and the most simple

version is depicted in Figure 1-1.

Figure 1-1.  The Duke mascot (image source: http://oracle.com)

The Green Team released it to the world via the Internet, because that was the fastest

way to create widespread adoptions. You can imagine that they jumped for joy every

time somebody downloaded it, because it meant people were interested in it. And there

are a few other advantages making software open source, like the fact that contributions

and feedback come from a bigger and diverse number of people from all over the world.

Thus, for Java, this was the best decision, as it shaped the language a lot of developers

are using today. Even after 22 years, Java is still among the top-three most used

programming languages.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

6

The American company that started all of this was Sun Microsystems, founded in

1982. It guided the computer revolution by selling computers, computer parts, and

software. Among their greatest achievements is the Java programming language. In

Figure 1-2,2 you can see the company logo that was used since Java’s birth year until it

was acquired by Oracle in 2010.

It is quite difficult to find information about the first version of Java, but dedicated

developers that witnessed the birth of Java—when the web was way smaller and full of

static pages—did create blogs and shared their experience with the world. It was quite

easy for Java to shine with its applets that displayed dynamic content and interacted

with the user. But because the development team thought bigger, Java became much

more than a web programming language. Because in trying to make applets run in any

browser, the team found a solution to a common problem: portability.

Nowadays, developers face a lot of headaches when developing software that

should run on any operating system. And with the mobile revolution, things have

become really tricky. In Figure 1-3, you see an abstract drawing of what is believed to

be the first Java logo.

2�The story behind the logo can be read here: https://goodlogo.com/extended.info/sun-
microsystems-logo-2385. You can also read more about Sun Microsystems.

Figure 1-2.  The Sun Microsystems logo (image source: https://en.wikipedia.
org/wiki/Sun_Microsystems)

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

7

Java 1.0 was released at the first JavaOne conference—with over 6000 attendees. It

started out as a language named Oak3 that was really similar to C++ and was designed

for handheld devices and set-top boxes. It evolved into the first version of Java, which

provided developers some advantages that C++ did not.

•	 security: In Java, there is no danger of reading bogus data when

accidentally going over the size of an array.

•	 automatic memory management: A Java developer does not have

to check if there is enough memory to allocate for an object and then

deallocate it explicitly; the operations are automatically handled by the

garbage collector. This also means that pointers are not necessary.

•	 simplicity: There are no pointers, unions, templates, structures.

Mostly anything in Java can be declared as a class. Also, confusion

when using multiple inheritance is avoided by modifying the

inheritance model and not allowing multiple class inheritance.

•	 support for multithreaded execution: Java was designed from the

start to support development of multithreaded software.

•	 portability: A Java motto is Write it once, run it everywhere. This is

made possible by the Java virtual machine, which is covered shortly.

3�The language was named by James Gosling after the oak tree in front of his house.

Figure 1-3.  The first Java logo, 1996–2003 (image source: http://xahlee.info/)

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

8

All this made Java appealing for developers, and by 1997, when Java 1.1 was released,

there were already approximatively 400,000 Java developers in the world. JavaOne had

10,000 attendees that year. The path to greatness was set. Before going further in our

analysis of each Java version, let’s clarify a few things.

�Why Is Java Portable?
I mentioned a few times that Java is portable and that Java programs can run on any

operating system. It is time to explain how this is possible. Let’s start with a simple

drawing, like the one in Figure 1-4.

Figure 1-4.  What makes Java portable

Java is what we call a high-level programming language that allows a developer

to write programs that are independent of a particular type of computer. High-level

languages are easier to read, write, and maintain. But their code must be translated by

a compiler or interpreted into machine language (unreadable by humans because is it

made up of numbers) to be executed, because that is the only language that computers

understand.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

9

In Figure 1-4, notice that on top of the operating systems, a JVM is needed to execute

a Java program. JVM stands for Java virtual machine, which is an abstract computing

machine that enables a computer to run a Java program. It is a platform-independent

execution environment that converts Java code into machine language and executes it.

So, what is the difference between Java and other high-level languages? Well, other

high-level languages compile source code directly into machine code that is designed

to run on a specific microprocessor architecture or operating system, such as Windows

or UNIX. What JVM does, it that is mimics a Java processor making it possible for a Java

program to be interpreted as a sequence of actions or operating system calls on any

processor regardless of the operating system.

And because the Java compiler was mentioned, we have to get back to Java 1.1,

which was widely used, even as new versions were released. It came with an improved

Abstract Window Toolkit (AWT) graphical API (collections of components used for

building applets), inner classes, database connectivity classes (JDBC model), classes for

remote calls (RMI), a special compiler for Microsoft platforms named JIT,4 support for

internationalization, and Unicode. Also, what made it so widely embraced is that shortly

after Java was released, Microsoft licensed it and started creating applications using it.

The feedback helped further development of Java, thus Java 1.1 was supported on all

browsers of the time, which is why it was so widely deployed.

! A lot of terms used in the introduction of the book might seem foreign to you
now, but as you read the book, more information is presented and these words
will start to make more sense. For now, just keep in mind, that every new Java
version, has something more than the previous version, and at that time, every
new component is a novelty.

So, what exactly happens to developer-written Java code until the actual execution?

The process is depicted in Figure 1-5.

4�Just In Time

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

10

In Figure 1-5, you see that Java code is compiled and transformed to bytecode that is

then interpreted and executed by the Java virtual machine on the underlying operating

system. This is what Java is: a compiled and interpreted general-purpose programming

language with a large number of features that make it well suited for the web. And now

that we’ve covered how Java code is executed, let’s go back to some more history.

�Sun Microsystem’s Java Versions
The first stable Java version released by Sun Microsystems could be downloaded from the

website as an archive named JDK 1.0.2. JDK is an acronym for Java Development Kit. This is

the software development environment used for developing Java applications and applets.

It includes the Java Runtime Environment (JRE), an interpreter (loader), a compiler, an

archiver, a documentation generator, and other tools needed for Java development. We will

get into this more when I cover how to install the JDK on your computer.

Figure 1-5.  From Java code to machine code

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

11

Starting with version 1.2, released in 1998, Java versions were given codenames.5

The Java version 1.2 codename was Playground. It was a massive release and this was

the moment when people started talking about the Java 2 Platform. Starting with this

version, the releases up to J2SE 5.0 were renamed, and J2SE replaced JDK because the

Java platform was now composed of three parts:

•	 J2SE (Java 2 Platform, Standard Edition), which later became JSE, a

computing platform for the development and deployment of portable

code for desktop and server environments

•	 J2EE (Java 2 Platform, Enterprise Edition), which later became

JEE, a set of specifications extending Java SE with specifications for

enterprise features such as distributed computing and web services

•	 J2ME (Java 2 Platform, Micro Edition), which later became JME, a

computing platform for development and deployment of portable

code for embedded and mobile devices

With this release, the JIT compiler became part of Sun Microsystem’s JVM (which

basically means turning code into executable code became a faster operation and the

generated executable code was optimized), the Swing graphical API was introduced as

a fancy alternative to AWT (new components to create fancy desktop applications were

introduced), and the Java collections framework (for working with sets of data) was

introduced.

J2SE 1.3 was released in 2000 with the codename Kestrel (maybe as a reference to

the newly introduced Java sound classes). This release also contained Java XML APIs.

J2SE 1.4 was released in 2002 with the codename Merlin. This is the first year that the

Java Community Process members were involved in deciding which features the release

should contain, and thus, the release was quite consistent. This is the first release of the

Java platform developed under the Java Community Process as JSR 59.6 The following

features are among those worth mentioning.

•	 Support for IPv6 (basically applications that run over a network can

now be written to work using networking protocol IPv6).

5�All codenames, for intermediary releases too, are listed here: http://www.oracle.com/
technetwork/java/javase/codenames-136090.html#close

6�If you want to see the contents and the list of Java Specification Requests, follow this URL:
http://www.jcp.org/en/jsr/detail?id=59

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

12

•	 Non-blocking IO (IO is an acronym for input-output, which refers to

reading and writing data— a very slow operation. Making IO non-

blocking means to optimize these operations to increase speed of the

running application.)

•	 Logging API (Operations that get executed need to be reported to a

file or a resource, which can be read in case of failure to determine

the cause and find a solution. This process is called logging and

apparently only in this version components to support this operation

were introduced.)

•	 Image processing API (Components developers can use this to

manipulate images with Java code.)

Java’s coffee cup logo made its entrance in 2003 (between releases 1.4 and 5.0) at the

JavaOne conference. You can see it in Figure 1-6.7

J2SE 5.0 was released in 2004 with the codename Tiger. Initially, it followed the

typical versioning, and was named 1.5, but because this was a major release with a

significant number of new features that proved a serious improvement of maturity,

stability, scalability, and security of the J2SE, the version was labeled 5.0 and presented

like that to the public, even if internally 1.5 was still used. For this version and the next

two, it was considered that 1.x = x.0. Let’s list those features because most of them are

covered in the book.

7�The Java language was first named Oak. It was renamed to Java because of copyright issues.
There are a few theories that you will find regarding the new name. There is one saying that
the JAVA name is actually a collection of the initials of the names being part of the Green team:
James Gosling, Arthur Van Hoff, and Andy Bechtolsheim, and that the logo is inspired by their
love of coffee.

Figure 1-6.  Java official logo 2003-2006 (image source: http://oracle.com)

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

13

•	 Generics provide compile-time (static) type safety for collections and

eliminates the need for most type conversions (which means the type

used in a certain context is decided while the application is running,

we have a full section about this in Chapter 5).

•	 Annotations, also known as metadata, are used to tag classes and

methods to allow metadata-aware utilities to process them (which

means a component is labeled as something another component

recognizes and does specific operations with it).

•	 Autoboxing/unboxing are automatic conversion between primitive

types and matching object types (wrappers), also covered in Chapter 5.

•	 Enumerations define static final ordered sets of values using the

enum keyword; covered in Chapter 5.

•	 Varargs are the last parameter of a method is declared using a type

name followed by three dots (String...), which implies that any

number of arguments of that type can be provided and is placed into

an array; covered in Chapter 3.

•	 Enhanced for each loop is used to iterate over collections and arrays

too; covered in Chapter 5.

•	 Improved semantics for multithreaded Java programs, covered in

Chapter 7.

•	 Static imports are covered in Chapter 5.

•	 Improvements for RMI (not covered in the book), Swing (Chapter 10),

concurrency utilities (Chapter 7), and introduction to the Scanner

class; covered in Chapter 11.

Java 5 was the first available for Mac OS X (version 10.4) and the default version

installed on Mac OS X (version 10.5). There were a lot of updates8 released for this

version to fix issues related to security and performance. It was a pretty buggy release,

which is understandable since quite a lot of features were developed in only two years.

8�Let’s call them what they actually are: hotfixes.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

14

In 2006, Java SE 6 was released with a little delay, with the codename Mustang. Yes,

yet another rename. And yes, yet again a serious number of features were implemented

in a short period of time and a lot of updates followed. This was the last major Java

release by Sun Microsystems. Oracle acquired the company in January 2010. Let’s take a

look at the most important features in this release:

•	 Dramatic performance improvements for the core platform

(applications run faster, need less memory or CPU to execute)

•	 Improved web service support (optimized components that are

required for development of web applications)

•	 JDBC 4.0 (optimized components that are required for development

of applications using databases)

•	 Java Compiler API (basically, from your code you can components

that are used to compile code)

•	 Many GUI improvements, such as integration of SwingWorker in

the API, table sorting and filtering, and true Swing double-buffering

(eliminating the gray-area effect); basically, improvement of

components used to create interfaces for desktop applications

In December 2008, Java FX 1.0 SDK was released. JavaFX is used to create graphical

user interfaces for any platform, and the initial version was a scripting language. Until

2008, there were two ways to create a user interface in Java:

•	 AWT (Abstract Window Toolkit) components, which are rendered

and controlled by a native peer component specific to the underlying

operating system; that is why AWT components are also called

heavyweight components.

•	 Swing components, which are called lightweight because they do

not require allocation of native resources in the operating system’s

windowing toolkit. The Swing API is a complimentary extension

of AWT.

In the first versions, it was never really clear if JavaFX would actually have a future

and grow up to replace Swing. The management turmoil inside Sun did not help in

defining a clear path for the project either.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

15

�Oracle Takes Over
Although Sun Microsystems won a lawsuit against Microsoft, in which they agreed to pay

$20 million for not implementing the Java 1.1 standard completely, in 2008, the company

was in such poor shape that negotiations for a merger with IBM and Hewlett-Packard

began. In 2009, Oracle and Sun announced that they agreed on the price: Oracle would

acquire Sun for $9.50 a share in cash; this amounted to a $5.6 billion offer. The impact

was massive. A lot of engineers quit, including James Gosling, the father of Java, which

made a lot of developers question the future of the Java platform.

Java SE 7, codename Dolphin, was the first Java version released by Oracle in

2011. It was the result of an extensive collaboration between Oracle engineers and

members of the worldwide Java communities, like the OpenJDK Community and the

Java Community Process (JCP). It contained a lot of changes, but still, a lot fewer than

developers expected. Considering the long period between the releases, the expectations

were pretty high. Project Lambda, which was supposed to allow usage of lambda

expressions in Java (this leads to considerable syntax simplification in certain cases), and

Jigsaw (making JVM and the Java application modular; there is a section in Chapter 3

about them) were dropped. Both were released in future versions. The following are the

most notable features in Java 7.

•	 JVM support for dynamic languages with the new invokedynamic

bytecode (basically, Java code can use code implemented in non-Java

languages, such as C)

•	 Compressed 64-bit pointers (internal optimization of the JVM, so less

memory is consumed)

•	 Small language changes grouped under project Coin

–– strings in switch (covered in Chapter 7)

–– automatic resource management in try-statement (covered in Chapter 5)

–– improved type inference for generics—the diamond <> operator (covered in

Chapter 5)

–– binary integer literals (covered in Chapter 5)

–– multiple exceptions handling improvements (covered in Chapter 5)

•	 Concurrency improvements

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

16

•	 New I/O library (new classes added to read/write data to/from files,

covered in Chapter 8)

•	 Timsort to sort collections and arrays of objects instead of merge

sort (Sets of data that are ordered need to be sorted using an

algorithm, basically, in this version, the algorithm was replaced with

one that has better performance. Better performance usually means

reducing of consumed resources: memory and/or CPU, or reducing

the time needed for execution.)

It must have been difficult to pick up a project and update it with almost none of the

original development team involved. That can be seen in the 161 updates that followed;

most of them needed to fix security issues and vulnerabilities.

JavaFX 2.0 was released with Java 7. This confirmed that the JavaFX project had a

future with Oracle. As a major change, JavaFX stopped being a scripting language and

became a Java API. This meant that knowledge of the Java language syntax would be

enough to start building user graphical interfaces with it. JavaFX started gaining ground

over Swing because of its hardware-accelerated graphical engine called Prism that did a

better job at rendering.

Java SE 8, codename Spider, was released in 2014, and included features that were

initially intended to be part of Java 7. But, better late than never, right? Three years in the

making, Java 8 contained the following key features.

•	 Language syntax changes

–– Language-level support for lambda expressions (functional programming

features)

–– Support for default methods in interfaces (covered in Chapter 4)

–– New date and time API (covered in Chapter 5)

–– New way to do parallel processing by using streams (covered in Chapter 8)

•	 Improved integration with JavaScript (the Nashorn project).

JavaScript is a web scripting language that is quite loved in the

development community, so providing support for it in Java probably

won Oracle a few new supporters.

•	 Improvements of the garbage collection process

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

17

Starting with Java 8, codenames were dropped to avoid any trademark-law hassles;

instead, a semantic versioning that easily distinguishes major, minor, and security-

update releases was adopted.9 The version number matches the following pattern:

$MAJOR.$MINOR.$SECURITY

When executing java -version in a terminal (if you have Java 8 installed), you see

something similar to the following log.

$ java -version

java version "1.8.0_162"

JavaTM SE Runtime Environment build 1.8.0_162-b12

Java HotSpotTM 64-Bit Server VM build 25.162-b12, mixed mode

In this log, the version numbers have the following meaning:

•	 The 1 represents the major version number, incremented for a major

release that contains significant new features as specified in a new

edition of the Java SE Platform Specification.

•	 The 8 represents the minor version number, incremented for a minor

update release that may contain compatible bug fixes, revisions to

standard APIs and other small features.

•	 The 0 represents the security level that is incremented for a security-

update release that contains critical fixes, including those necessary

to improve security. $SECURITY is not reset to zero when $MINOR is

incremented, which lets the users know that this version is a more

secure one.

•	 162 is the build number.

•	 b12 represents additional build information.

This versioning style is quite common for Java applications, thus this versioning style

was adopted to align with the general industry practices.

Java SE 9 was released in September 2017. The long-awaited Jigsaw project was

finally here. The Java platform is finally modular.

9�Java Enhancement Proposal 223: http://openjdk.java.net/jeps/223

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

18

! T his is a big change for the Java world; it’s not a change in syntax and it’s not
some new feature. It’s a change in the design of the platform. Some experienced
developers I know, who have used Java since its first years have difficulties
adapting. It is supposed to fix some serious problems that Java has been living
with for years (covered in Chapter 3). You are lucky because, as a beginner,
you start from scratch, so you do not need to change the way you develop your
applications.

The following are the most important features, aside the introduction of Java

modules.10

•	 The Java Shell tool, an interactive command-line interface for

evaluation declarations, statements, and expressions written in Java

(covered in Chapter 3)

•	 Quite a few security updates

•	 Improved try-with-resources: final variables can now be used as

resources (covered in Chapter 5)

•	 "_" is removed from the set of legal identifier names (covered in

Chapter 4)

•	 Support for private interface methods (covered in Chapter 5)

•	 Enhancements for the Garbage-First (G1) garbage collector; this

becomes the default garbage collector (covered in Chapter 13)

•	 Internally, a new more compact String representation is used

(covered in Chapter 5)

•	 Concurrency updates (related to parallel execution, mentioned in

Chapter 5)

•	 Factory methods for collections (covered in Chapter 5)

•	 Updates of the image processing API optimization of components

used to write code that processes images

10�A detailed description of all JDK 9 features can be found here: https://docs.oracle.com/
javase/9/whatsnew/toc.htm#JSNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

19

Java 9 followed the same versioning scheme as Java 8, with a small change. The Java

version number contained in the name of the JDK finally became the $MAJOR number in

the version scheme. So, if you have Java 9 installed, when executing java -version in a

terminal, you see something similar to the following log.

$ java -version

java version "9.0.4"

JavaTM SE Runtime Environment build 9.0.4+11

Java HotSpotTM 64-Bit Server VM build 9.0.4+11, mixed mode

Java SE 10 (AKA Java 18.3) was released on March 20, 2018. Oracle changed the Java

release style, so a new version is released every six months. Also, Java 10 uses the new

versioning convention set up by Oracle: the version numbers follow a $YEAR.$MONTH

format.11 Apparently, this release versioning style is supposed to make it easier for

developers or end users to figure out the age of a release so that they can judge whether

to upgrade it to a newer release with the latest security fixes and additional features.

The following are a few features of Java 10.12

•	 A local-variable type inference to enhance the language to extend

type inference to local variables (this is the most expected feature and

is covered in Chapter 5)

•	 More optimizations for garbage collection (covered in Chapter 13)

•	 Application Class-Data Sharing to reduce the footprint by sharing

common class metadata across processes (this is an advanced feature

that won’t be covered in the book)

•	 More concurrency updates (related to parallel execution, mentioned

in Chapter 5)

•	 Heap allocation on alternative memory devices (The memory

needed by JVM to run a Java program—called heap memory—can be

allocated on an alternative memory device, so the heap can also be

split between volatile and non-volatile RAM. More about memory

used by Java applications can be read in Chapter 5.)

11�Java Enhancement Proposal 322: http://openjdk.java.net/jeps/322
12�The complete list can be found at http://openjdk.java.net/projects/jdk/10/ and the

release notes containing the detailed list with API and internal changes can be found at http://
www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html10-relnote-
issues-4108729.html

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

20

And since we’ve done this before, let’s see what running java -version in a terminal

shows for this Java version.

$ java -version

java version "10" 2018-03-20

JavaTM SE Runtime Environment 18.3 build 10+46

Java HotSpotTM 64-Bit Server VM 18.3 build 10+46, mixed mode

Java SE 11 (AKA Java 18.9)13 (released on 25 September 2018) contains the following

features:

•	 Removal of JEE advanced components used to build enterprise Java

applications and Corba (really old technology for remote invocation,

allowing your application to communicate with applications installed

on a different computer) modules

•	 Local-variable syntax for lambda parameters allow the var keyword

to be used when declaring the formal parameters of implicitly typed

lambda expressions

•	 Epsilon, a low-overhead garbage collector (is a no-GC, so

basically you can run an application without a GC), basically more

optimizations to the garbage collection (covered in Chapter 13)

•	 More concurrency updates (related to parallel execution, mentioned

in Chapter 5)

Aside from these changes, it was also speculated that a new versioning change

should be introduced because the $YEAR.$MONTH format did not go so well with

developers. (Why so many versioning naming changes, right? Is this really so important?

Apparently, it is.) The proposed versioning change is similar to the one introduced in

Java 9, and if you are curious, you can read a detailed specification for it at

http://openjdk.java.net/jeps/322.

When this chapter was written, JDK 11 was available only via the early access

program, which is why the "ea" string is present in the version name; it means early

access. It is quite difficult to use it, as it is not supported by any editors or other build

tools yet. By the time this book is released, Java 11 will be stable and ready to use and the

sources for the book are updated accordingly on the GitHub repository.

13�Details are at http://openjdk.java.net/projects/jdk/11/

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

21

$ java -version

java version "11-ea" 2018-09-18

JavaTM SE Runtime Environment 18.9 build 11-ea+2

Java HotSpotTM 64-Bit Server VM 18.9 build 11-ea+2, mixed mode

And this is where the details end. If you want more information on the first 20 years

of Java’s life, you can find it on Oracle’s website.14

�What the Future Holds
Java has dominated the industry for more than 20 years. It wasn’t always at the top of the

most-used development technologies, but it never left the top five since its existence.

Even with server-side JavaScript smart frameworks, like Node.js, the heavy-lifting is still

left to Java. Emerging programming languages like Scala and Kotlin run on the JVM, so

maybe the Java programming language will suffer a serious metamorphosis in order to

compete, but it will still be here.

The modularization possibility introduced in version 9 opens the gates for Java applications

to be installed on smaller devices, because to run a Java application, we no longer need

the whole runtime—only its core plus the modules the application was built with.

Also, there are a lot of applications written in Java, especially in the financial domain,

so Java will still be here, because of legacy reasons and because migrating these titan

applications to another technology is an impossible mission.

Java will probably survive and be on top for the next 10 to 15 years. It does help that it is

a very mature technology with a huge community built around it. And the fact that is easy to

learn and developer-friendly makes it remain the first choice for most companies. So, you

might conclude at this point that learning Java and buying this book is a good investment.

�Prerequisites
Before ending this chapter, it is only fair to tell you that to learn Java, you need to know or

have a few things….

•	 Your way around an operating system, such as Windows,

Linux or macOS

14�The first 20 years of Java’s life: http://oracle.com.edgesuite.net/timeline/java/

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

22

•	 How to refine your search criteria, because information related to

your operating systems is not covered in the book; if you have issues,

you must fix them yourself

•	 An Internet connection

If you already know Java, and you just bought this book out of curiosity or for the

modules chapter, knowing about a build tool like Maven or Gradle is helpful, because

the source code is organized in a multimodule project that can be fully built with one

simple command. I’ve chosen to use a build tool because in this day and age, learning

Java without one makes no sense; any company you apply to most definitely uses one.

Aside from the prerequisites that I listed, nothing else is needed. You do not need to

know math, algorithms, or design patterns. Actually, you might end up knowing a few

after you read this book.

This being said, let’s dig in.

Chapter 1 An Introduction to Java and Its History

(c) ketabton.com: The Digital Library

23
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_2

CHAPTER 2

Preparing Your
Development Environment
To start learning Java, you need a few things installed on your computer. The following

are the requirements:

•	 Java support on your computer (kinda’ mandatory).

•	 An integrated development environment, also known as IDE, which

is basically an application in which you write your code and that you

use to compile and execute it.

•	 The recommended IDE for this book is IntelliJ IDEA. You can

go to their website to get the free community edition; for the

purposes of the book, it will do.

•	 Or, you can choose the most popular free IDE for Java

development: Eclipse.

•	 Or, you can try NetBeans,1 which is the default choice for most

beginners because it was bundled with the JDK until version 8.2,3

1�Get it from here https://netbeans.org/
2�See: http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-
jsp-142931.html

3�For Eclipse and NetbeansNetBeans, you will need to install a plugin for Gradle support.

(c) ketabton.com: The Digital Library

24

•	 Gradle is a build tool used to organize projects, to easily handle

dependencies, and make your work easier as your projects get bigger.

(It is mandatory because the projects in this book are organized and

built on a Gradle setup.)

•	 Git is a versioning system that you can use to get the sources for the

book, and you can experiment with it and create your own version.

It is optional because GitHub, which is where the sources for this

chapter are hosted, supports direct download.4

To write and execute Java programs/applications, you only need the Java

Development Kit installed. All other tools that I’ve listed here are only needed to make

your job easier and to familiarize you with a real development job.

!  You probably need administrative rights if you install these applications for all
users. For Windows 10, you might even need a special application to give your user
administrative rights so you can install the necessary tools. This book provides
instructions on how to install everything—assuming your user has the necessary
rights. If you need more information, the Internet is there to help.

If it seems like a lot, do not get discouraged; this chapter contains instructions on

how to install and verify that each of tool is working accordingly. Let’s start by making

sure your computer supports Java.

�Installing Java
Here you are with your computer and you can’t wait to start writing Java applications.

But first, you need to get yourself a JDK and install it. For this, you need an Internet

connection to open https://developer.oracle.com/java.

4�Also, I don’t think there is a company that does not use a versioning system these days, so getting
comfortable with Git could be a serious advantage when applying for a software developer
position.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

25

Scroll down until you see the Downloads section. Click the Java SE link. The two

links and their contents are depicted in Figure 2-1.

Figure 2-1.  Navigating the Oracle site to find the desired product, JDK in this case

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

26

On the Oracle site, you find the latest stable Java version. Click the Download JDK

button. You should be redirected to the page depicted in Figure 2-2.

Figure 2-2.  The Oracle page where you can download the desired JDK

As you can see, JDK is available for a few operating systems. You should download

the one matching yours. For writing this book and the source code, I used a macOS

computer, which means I download the JDK with the .dmg extension.

You need to accept the license agreement before being allowed to download the

desired JDK. You can read it if you are curious, but basically, it tells you that you are

allowed to use Java as long as you do not modify its original components. It also tells you

that you are responsible for how you use it, so if you use it to write or execute dangerous

applications, you are legally responsible.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

27

If you want to get your hands on an early version of JDK that is not officially released

yet, go to http://openjdk.java.net/projects/jdk/. Under Releases, versions 10 and

11, an early access (unstable) JDK 11 is available for download.

!  This book covers Java specifics until Java 11, but that version was eight
months away when this chapter was written, so some images and details might
seem deprecated. Keep in mind that there are common details that remain the
same from one version to the next, and those won’t be reviewed and changed, as
the only thing that is different is the version number. Since this book was planned
to be released after Java 11 was released, it is recommended to download that
version of the JDK to have full compatibility of the sources.

After you download the JDK, the next step is to install it. Just double-click it and

click Next until finished. This works for Windows and macOS. The JDK is installed in a

specific location.

In Windows, it is C:\ProgramFiles\Java\jdk-10.

In macOS, it is /Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home.

On Linux systems, depending on the distribution, the JDK install location varies. My

preferred way is to get the *.tar.gz from the Oracle site that contains the full content

of the JDK, unpack it, and copy it to a specific location. Also, my preferred location on

Linux is /home/iuliana.cosmina/tools/jdk-10.jdk.

! U sing a PPA (repository)5 installer on Linux puts the JDK files where they are
supposed to go on Linux automatically and updates them automatically when a
new version is released using the Linux (Global) updater utility. But if you are using
Linux proficiently, you’ve probably figured this out.

If you go to that location, you can inspect the contents of the JDK. In Figure 2-3, the

contents of JDK 10 are on the left; the contents of the JDK 8 are on the right.

5�Also known as a Package Manager

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

28

I chose to make this comparison because, starting with Java 9, the content of the

JDK is organized differently. Until Java 8, the JDK contained a directory called jre

that contained a Java Runtime Environment (JRE) used by the JDK. The lib directory

contains Java libraries and support files needed by development tools.

The bin contains a set of Java executables for running Java applications.

Starting in Java 9, the JRE was no longer isolated in its own directory. In the

Figure 2-4, you see the contents of the JDK 10 on the left, and the contents of the JRE 10

on the right.6

6�JDK and JRE 10 have the same directory structure introduced in version 9.

Figure 2-3.  JDK version 8 and ten contents comparison

Figure 2-4.  JDK 10 and JRE contents compared

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

29

The directory structure depicted was introduced when Java 9 was released. You can

read more about it on the official Oracle site.7

The most important thing you need to know about the JDK is that the bin directory

contains executables and command-line launchers that are defined by the modules

linked to the image, thus the JDK has a few of those extra compared to the JRE. The other

directories are the jmods directory, which contains the compiled module definitions, and

the include directory, which contains the C-language header files that support native-

code programming with the Java Native Interface (JNI) and the Java Virtual Machine

(JVM) Debug Interface.

�The JAVA_HOME Environment Variable
The most important directory in the JDK is the bin directory, because that directory

has to be added to the path of your system so you can call the Java executables

from anywhere. This allows other applications to call them as well, without extra

configurations steps needed. Most IDEs used for handling8 Java code are written in Java,

and they require knowing where the JDK is installed so that they can be run. This is done

by declaring an environment variable named JAVA_HOME that points to the location of the

JDK directory. To make the Java executables callable from any location within a system,

you must add the bin directory to the system path. The next three sections explain how

to do this on the three most common operating systems.

7�The new directory structure introduced with Java 9 is explained in detail at https://
docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.
htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

8�Includes operations like writing the code, analyzing the code, compiling it, and executing it.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

30

�JAVA_HOME on Windows
To declare the JAVA_HOME environment variable on a Windows system, you need to open

the dialog window for setting up system variables. On Windows systems, click the Start

button; in the menu, there is a search box (or right-click the Start button for a context-

menu and select Search). Enter the word environment in there (the first three letters

should suffice) and the option should become available for clicking. These steps are

depicted in Figure 2-5.

Figure 2-5.  Windows menu item to configure environment variables

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

31

After clicking that menu item, a window like the one shown in Figure 2-6 should

open.

Figure 2-6.  First dialog window to set environment variables on Windows

Click the Environment Variables button. Another dialog window opens, which is

split into two sections: user variables and system variables. You are interested in system
variables because that is where we declare JAVA_HOME. Just click the New... button and a

small dialog window appears with two text fields; one requires you to enter the variable

name—JAVA_HOME in this case, and one requires you to enter the path—to the JDK in

this case. The second window and the variable information pop-up dialog window are

depicted in Figure 2-7.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

32

After defining the JAVA_HOME variable, you need to add the executables to the system

path. This can be done by editing the Path variable. Just select it from the System
Variables list and click the Edit... button. Starting in Windows 10, each part of the Path

variable is shown on a different line, so you can add a different line and add %JAVA_

HOME%\bin on it. This syntax is practical because it takes the location of the bin directory

from whatever location the JAVA_HOME variable contains. The dialog window is depicted

in Figure 2-8.

Figure 2-7.  Declaring JAVA_HOME as a system variable on Windows

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

33

On older Windows systems, the contents of the Path variable are depicted in

the dialog box shown in Figure 2-7, so you must add the %JAVA_HOME%\bin text in

the Variable value text field, and separate it from the existing content by using a

semicolon (;).

No matter which Windows system you have, you can check that you set everything

correctly by opening Command Prompt and executing the set command. This lists

all the system variables and their values. JAVA_HOME and Path should be there with the

desired values. For the setup proposed in this section when executing set the output is

depicted in Figure 2-9.

Figure 2-8.  Declaring the JDK executables directory as part of the system Path
variable on Windows 10

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

34

If you execute the previous command and see the expected output and then execute

java -version in the command prompt, it prints the expected result. You are all set.

...> java -version

java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)

Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

Figure 2-9.  Windows system variables listed with the set command

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

35

�JAVA_HOME on macOS
The location in which JDK is installed is /Library/Java/JavaVirtualMachines/jdk-

10.jdk/Contents/Home. Your JAVA_HOME should point to this location. To do this for the

current user, you can do the following:

	 1.	 In the /Users/your.user directory, create a file named

.bash_profile.

	 2.	 In this file, write the following:

export JAVA_HOME=$(/usr/libexec/java_home -v10)

export PATH=$JAVA_HOME/bin:$PATH

On macOS, you can simultaneously install multiple Java versions. You can set which

version is the one currently used on the system by obtaining the JDK location for the

desired version by calling the /usr/libexec/java_home command and giving the Java

version you are interested in as the argument. The result of executing the command is

stored as a value for the JAVA_HOME variable.

On my system, I have JDK 8, 9, 10, and 11 installed. If I execute the command, giving

an argument to each of the Java versions, look at what happens:

$ /usr/libexec/java_home -v11

/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

$ /usr/libexec/java_home -v10

/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

$ /usr/libexec/java_home -v9

/Library/Java/JavaVirtualMachines/jdk-9.0.4.jdk/Contents/Home

$ /usr/libexec/java_home -v1.8

/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/Contents/Home

Depending of the version given as argument, a different JDK location is returned. If

you want to test the value of the JAVA_HOME, the echo command can help with that.

$ echo $JAVA_HOME

/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

36

The line export PATH=$JAVA_HOME/bin:$PATH adds the contents of the bin directory

from the JDK location to the system patch. This means that I could open a terminal and

execute any of the Java executables under it. For example, I could verify that the Java

version set as default for my user is the expected one by executing java –version.

$ java -version

java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)

Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

If you do all of this and java -version prints the expected result, you are all set.

�JAVA_HOME on Linux

!  If you are using Linux proficiently, you probably are using a PPA, so you can
skip this section. But if you like to control where the JDK is and define your own
environment variables, keep reading.

Linux systems are Unix-like operating systems. This is similar to macOS, which is

based on Unix. Depending on your Linux distribution, installing Java can be done via the

specific package manager or by directly downloading the JDK as a *.tar.gz archive from

the official Oracle site.

If Java is installed using a package manager, the necessary executables are usually

automatically placed in the system path at installation time. That is why in this book, we

cover only the cases where you do everything manually, and choose to install Java only

for the current user in a location such as /home/your.user/tools/jdk-10.jdk,9 because

covering package managers is not the object of the book after all.10

9�Replaces your.user with your actual system username

10�Linux users do not really need this section anyway.’

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

37

So, after downloading the JDK archive from the Oracle site and unpacking it at

/home/your.user/tools/jdk-10.jdk, you need to create a file named either .bashrc or

.bash_profile11 in your user home directory and add the following to it.

export JAVA_HOME=/home/your.user/tools/jdk-10.jdk

export PATH=$JAVA_HOME/bin:$PATH

As you can see, the syntax is similar to macOS. To check the location of the JDK and

the Java version, same commands mentioned in the macOS section can be used.

�Installing Gradle
 Gradle 5.x ** The sources attached to this book can be compiled and executed

using the Gradle wrapper, which is a batch script on Windows and a shell script for other

operating systems. When you start a Gradle build via the wrapper, Gradle automatically

downloads and runs the build; thus you do not to really need to install Gradle.

Instructions on how to do this can be found by reading the public documentation at

www.gradle.org/docs/current/userguide/gradle_wrapper.html.

A good practice is to keep code and build tools separate, and for the project attached

to this book this is the recommended way to go.

If you decide to use Gradle outside the editor, you can download the binaries only

(or if you are curious, you can download the full package, which contains binaries,

sources, and documentation) from the official site (www.gradle.org), unpack them, and

copy the contents somewhere on the hard drive. Create a GRADLE_HOME environment

variable and point it to the location where you have unpacked Gradle. Also, add

%GRADLE_HOME%\bin for Windows, or $GRADLE_HOME/bin for Unix-based operating

systems, to the general path of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy

setup, small configuration files, flexibility in defining execution tasks, and because it is

practical to learn a build tool—because for medium-sized and large projects, they are a

must-have.

11�On some Linux distributions, the file might already exist, you just need to edit it.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

38

! V erify that the version of Gradle the operating system sees is the one you just
installed by opening a terminal (Command Prompt in Windows, and any type of
terminal you have installed on macOS and Linux) and entering

gradle -version

You should see something similar to this:
--

Gradle 5.0-20180826235923+0000

--

Build time: 2018-08-26 23:59:23 UTC

Revision: c2edb259761ee18f9a14e271f24ef58530b1300f

Kotlin DSL: 1.0-rc-3

Kotlin: 1.2.60

Groovy: 2.4.15

Ant: Apache Ant (TM) version 1.9.11 compiled on March 23 2018

JVM: 10 (Oracle Corporation 10+46)

OS: -- whatever operating system you have --

The preceding text is confirmation that Gradle commands can be executed in your

terminal; thus, Gradle was installed successfully.

�Installing Git
This is an optional section, but as a developer, being familiar with a versioning system

is important, so here it is. To install Git on your system, just go to the official page at

https://git-scm.com/downloads and download the installer. Open the installer and

click Next until done. This works for Windows and macOS.12 Yes, it is this easy. You do

not need to do anything else.13 For Linux, you can use your package manager or PPA to

install Git.

12�For macOS, you can use homebrew as well.
13�Just in case, here is a page with instructions on how to install Git for all operating systems:
https://gist.github.com/derhuerst/1b15ff4652a867391f03

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

39

To test that Git installed successfully on your system, open a terminal (Command
Prompt in Windows, and any type of terminal you have installed on macOS and Linux)

and run git --version to see the result that it is printed. It should be the version of Git

that you just installed.

$ git –version

git version 2.15.1

Now that you have Git installed, you can get the sources for this book by cloning the

official Git repository in a terminal or directly from the IDE. But more about this a little

bit later.

�Installing a Java IDE
The editor that I recommend, based on my experience of more than ten years, is IntelliJ

IDEA. It is produced by a company called JetBrains. You can download this IDE from

their official site at www.jetbrains.com. There is an Ultimate Edition available that

you can use for free for 30 days; after that, you need to acquire a license. That is why I

recommend you download and use the Community Edition,14 because for the simple

development involved in learning Java, this version suffices.

After you download the IntelliJ IDEA archive, double-click it to install it. After that,

start it to do a couple of configurations. Just click the Next button until you get to the

plugin selection step, which should be very similar to the one depicted in Figure 2-10.

14�The IntelliJ IDEA download page is at https://www.jetbrains.com/idea/download/

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

40

In the previous image, two sections were underlined. The first section configures

build tools. If you click Customize... button, the window should change to show you the

plugins that are available for build tools. Make sure that the option for Gradle is checked,

as depicted in Figure 2-11, then click the Save Changes and Go Back button.

Figure 2-10.  IntelliJ IDEA Community Edition configure plugins dialog section

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

41

The second section configures support for versioning control systems. If you click

the Customize... button, the window should show you which plugins are available

for versioning systems. Make sure that the options for Git and GitHub are checked, as

depicted in Figure 2-12, and then click the Save Changes and Go Back button. If you go

another step forward, you get to another plugin screen that offers you the possibility to

install a plugin called IDE Feature Trainer. I think if you are a beginner, a plugin might

be very useful. The window is depicted in Figure 2-13

For the final step, click the Install button, and then Start using IntelliJ IDEA, and

you are all set up and good to go. Your development environment is fully configured and

ready for you to write your first Java program.

Figure 2-12.  IntelliJ IDEA Community Edition configure Git plugin

Figure 2-11.  IntelliJ IDEA Community Edition configure Gradle plugin

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

42

But before doing that, let’s also cover how to retrieve the sources for the book.

There are three ways to get the sources for the book:

•	 Download the zipped package directly from GitHub.

•	 Clone the repository using a terminal (or Git Bash Shell in Windows)

using the following command:

git clone git@github.com:Apress/java-for-absolute-

beginners.git

•	 Clone the project using IntelliJ IDEA. For this and cloning from

the command line, you need a GitHub user. The following images

show all the dialog windows that you see when cloning the project

with IntelliJ IDEA. Figure 2-14 shows the window that you see after

Figure 2-13.  IntelliJ IDEA Community Edition configure IDE Feature Trainer
plugin

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

43

you start an IntelliJ IDEA instance that was never used. The project

is hosted on GitHub, so from the Check out from Version Control

menu, select GitHub. At this point, you to the next dialog window,

depicted in Figure 2-15.

Figure 2-15.  IntelliJ IDEA second dialog window to clone the java-for-absolute-
beginners project

Figure 2-14.  IntelliJ IDEA first dialog window to clone the java-for-absolute-
beginners project

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

44

This requires you to insert your GitHub username and password (Auth Type:

Password). If you do not have a GitHub username, go to https://github.com to create

one. After clicking the Login button, the window depicted in Figure 2-16 is shown.

Click the Clone button and move on to the window depicted in Figure 2-17.

Click Yes because you definitely need an IntelliJ IDEA project for the sources. In

Figure 2-18, IntelliJ IDEA has identified that the project might be configured with Gradle

and recommends to Import project from External model and select Gradle. Do so and

click Next.

Figure 2-17.  IntelliJ IDEA fourth dialog window to clone the java-for-absolute-
beginners project

Figure 2-16.  IntelliJ IDEA third dialog window to clone the java-for-absolute-
beginners project

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

45

The window depicted in Figure 2-19 is the last image before having a full-blown

local Gradle project. If you configured JAVA and Gradle properly, IntelliJ IDEA finds and

selects them automatically for you.

Figure 2-18.  IntelliJ IDEA fifth dialog window to clone the java-for-absolute-
beginners project

Figure 2-19.  IntelliJ IDEA last window to clone the java-for-absolute-
beginners project

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

46

And this is it. Starting in the next chapter, some code snippets are presented; so go

ahead and build the project. You can do this by executing the build task from Gradle

project view. Figure 2-20 shows the IntelliJ IDEA editor with the project loaded and the

Gradle view opened.

Figure 2-20.  IntelliJ IDEA Gradle project view with Tasks node expanded

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

47

�Summary
If any of instructions are unclear to you (or I missed something), do not hesitate to use

the World Wide Web to search for answers. All the software technologies introduced in

this chapter are backed up by documented and comprehensive official websites and by

huge communities of developers eager to help. And in the worst-case scenario, you can

always create an issue on the Apress GitHub official repository for this book, or drop me

an email. I’ll do my best to support you if need be.

But I think you will be fine. Java is hardly rocket-science.15

15�Well, it wasn’t until Java 9. But this book should make it easier for beginner developers.

Chapter 2 Preparing Your Development Environment

(c) ketabton.com: The Digital Library

49
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_3

CHAPTER 3

Getting Your Feet Wet
This is the last introductory chapter in the book. After this one, we get to the serious

business. The previous chapter left you with a complete development environment

configured for writing Java code. It is time to make use of it. The following topics are

covered in this chapter:

•	 Using JShell

•	 Java fundamental building blocks: packages, modules, and classes

•	 Creating a Java project with IntelliJ IDEA

•	 Compiling and executing Java classes

•	 Packing a Java application into an executable jar

•	 Using Gradle to automate compiling and test execution

�Using JShell
Introduced in Java 9, the Java Shell tool (JShell) is an interactive tool for learning the

Java programming language and prototyping Java code. This means that you can write

Java code and execute it in the console, without the need to save it to a file, which is later

compiled into bytecode and then interpreted by the underlying OS as a sequence of

instructions to run to execute it. JShell is quite late to the party, as scripting languages

like Python and Node introduced similar utilities years ago, and JVM languages like

Scala, Clojure, and Groovy adopted it some time ago. But, better late than never is still

acceptable.

JShell is a Read-Eval-Print Loop (REPL), which evaluates declarations, statements,

and expressions as they are entered, and then it immediately shows the results. It

is practical to try new ideas and techniques quickly and without the need to have a

complete development environment or an entire context for the code to be executed in.

(c) ketabton.com: The Digital Library

50

JShell is a standard component of the JDK and the executable to start it, is in the bin

directory located in the JDK installation directory. This means that all you have to do

is open a terminal (Command Prompt in Windows, and any type of terminal you have

installed on macOS and Linux) and type jshell. You should see something like this:1

$ jshell

 | Welcome to JShell -- Version 10

 | For an introduction type: /help intro

Go ahead and enter /help to view a list of all the available actions and commands.

jshell> /help

| Type a Java language expression, statement, or declaration.

| Or type one of the following commands:

| /list <name or id>|-all|-start

| list the source you have typed

| /edit <name or id>

| edit a source entry

| /drop <name or id>

| delete a source entry

...

| /exit <integer-expression-snippet>

| exit the jshell tool

...

To see exactly what JShell is doing, we can start it in verbose mode by adding -v as

an argument when starting it. Let’s play with a few numbers and see what happens. First,

let’s start the JShell in a verbose mode, so we’ll have a report log of everything that JShell

does when we insert statements. In your terminal, of enter java -v.

$ jshell -v

| Welcome to JShell -- Version 10-ea

| For an introduction type: /help intro

1�Since this book covers Java notions up to Java 11, you can install JDK 11 and work with it, if it has
been released by the time you get this book. While writing the book, I installed a new JDK as soon
as it was available, but tried to keep the version 10 as a constant version throughout the book, as
to avoid confusion.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

51

In Java, values are assigned to sequences of characters named variables. (More

about how to name them and use them in Chapter 4.) Next, let’s create a variable of type

integer (int in Java) and give it the value of 42. To do this, enter int i=42.

jshell> int i = 42

i ==> 42

| created variable i : int

As you can see, the log message is clear and tells us that our command was executed

successfully and the variable of type int was created. The line i ==> 42 lets us know that

value 42 was assigned to the variable that we just created.

Let’s declare another one named j. In the code snippet, below 35 is the value that we

assign to it. But you can try different numbers if you want to.

jshell> int j = 35

j ==> 35

| created variable j : int

As long as the JShell session is not closed, the two previous variables still exist,

because we can further use them. Let’s add them together. The + operator sums two

integer variables in Java, just like in plain mathematics. Enter i + j.

jshell> i + j

$3 ==> 77

| created scratch variable $3 : int

As you can see, we added two variables but we did not store the result in a third,

thus JShell creates a scratch variable to store the result and print it in the log; but that

variable cannot be used in later statements, because it does not have a name.

All seems fine: variables are created and operations are executed correctly. Anything

that could be written in Java can be written in the JShell and executed.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

52

! T he building blocks of Java are named classes, which are pieces of code that
model real-world objects and events. Classes contain two types of members:
those modelling to states, which are the class variables, also named fields or
properties, and those modelling behavior, named methods. JDK provides a lot
of classes that model the base components needed to create most applications.
Classes are covered in more detail in the next chapter and you create a lot of them
while reading this book. Even if this terms and concepts seem foreign now, just be
patient, and let them add up; they will make more sense later.

In JShell, JDK classes can be used like java.lang.String (programming

components that you learn more about in Chapter 4), which is the Java class that

represents text objects. And their methods can be called. Let’s declare our first String

variable.

jshell> String text = "this is a text";

text ==> "this is a text"

| created variable text : String

We’ve just declared a variable of type String named text with the value of "this is

a text". The String class has many methods you can call to modify a text, let’s call one

with an obvious effect. Type text.toUpperCase().

jshell> text.toUpperCase()

$6 ==> "THIS IS A TEXT"

| created scratch variable $6 : String

The last statement is called a String method, which uppercases the variable

contents. But let’s see what happens when we introduce something that does not match

the Java syntax. Let’s call a method that does not exist for type String.

jshell> text.toAnotherUniverse()

| Error:

| cannot find symbol

| symbol: method toAnotherUniverse()

| text.toAnotherUniverse()

| ^--------------------^

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

53

JShell is quite clear in telling us that the toAnotherUniverse() is unknown to it. Let’s

throw plain text in there. In the following, I tried "what is this?".

jshell> what is this?

| Error:

| ';' expected

| what is this?

| ^

In the first statement, we tried calling a method that is not defined for the String

class, and the error message was pretty relevant in regards to what we did wrong.

We can even create our own methods.

jshell> String createHello(String s){

 ...> return "Hello " + s;

 ...> }

| created method createHello(String)

jshell> createHello(text)

$8 ==> "Hello this is a text"

| created scratch variable $8 : String

Code completion2 is also available in JShell. Take the text variable that we defined

earlier, for example; if we enter text then put a "." (dot) after it and then press the Tab

key, the list of available methods is listed, as depicted in Figure 3-1. If you type a few

letters from the method name, filtering is applied. JShell suggests only the method

names that start with that combination of letters. Pretty helpful, right?

2�Also called code assistance

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

54

If you want to see all variables you have declared in a JShell play session, you can do

so by executing the /vars command.

jshell> /vars

| String text = "this is a text"

| List<String> units = []

| List<String> list1 = [One]

| File f = .

| Logger log = null

The preceding output corresponds to a sequence of statements executed in a JShell

console that looks like this:

jshell> String text = "this is a text"

 text ==> "this is a text"

| created variable text : String

jshell> List<String> units = new ArrayList<>()

 units ==> []

| created variable units : List<String>

jshell> List<String> list1 = new ArrayList<>()

 list1 ==> []

| created variable list1 : List<String>

Figure 3-1.  JShell lists methods possible to call on a String variable

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

55

jshell> list1.add("One");

 $4 ==> true

| created scratch variable $4 : boolean

jshell> File f = new File(".")

 f ==> .

| created variable f : File

jshell> import java.util.logging.LogManager;

jshell> import java.util.logging.Logger;

jshell> Logger l = LogManager.getLogManager().getLogger("sample");

l ==> null

| created variable l : Logger

If you want to save all your input from a JShell session, you can do so by executing

the /save [filename.java] command. It results in a file containing all Java statements

that you have executed with JShell within that session.

String text="this is a text";

List<String> units = new ArrayList<>();

List<String> list1 = List.of("One");

File f = new File(".");

import java.util.logging.Logger;

import java.util.logging.LogManager;

Logger log = LogManager.getLogManager().getLogger("sample");

Also, assuming the preceding output is a list of Java statements exported by JShell

to a file called sample.java, using the command /save sample.java, all of those

statements can be executed into a new JShell session using the /open sample.java

command. So, all variables will be created and we can use them in the new session.

There is a JShell complete user guide available on the Oracle official site if you are

interested in trying every command and every feature it has to offer.3

If you have opened your JShell and tried yourself some of the commands listed in

this section, you already got your feet wet with a little Java syntax. But there is a reason

that there is an entire chapter for that, but until then, it is more helpful to know the

building blocks of the Java ecosystem.

3�Oracle JShell user guide: https://docs.oracle.com/javase/9/jshell/toc.htm

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

56

�Java Fundamental Building Blocks

! T his is a consistent introduction into Java as a platform, but to write code
confidently, you need to have a grasp of what happens under the hood, what the
building blocks are, and how they are connected to each other. If you want, you
can skip the next section altogether, but in the same way some new drivers need
a little knowledge of how the engine works before grabbing the driving wheel,
some people might feel more confident and in control when programming if they
understand the mechanics a little. So, I wanted to make sure that anyone reading
this book gets a proper start.4

To write Java applications, a developer must be familiar with the Java building blocks

of the Java ecosystem. The core of this ecosystem is the class. There are other object

types in Java, but classes are the most important because they represent the templates

for the objects making up an application. A class groups fields and methods. When an

object is created, the values of the fields define the state of the object and the methods

describe its behavior.

! T he Java object is a model of a real-world object. So, if we choose to model
a car in Java, we choose to define fields that describe the car: manufacturer,
modelName, productionYear, and speed. The methods of our car class describe
what the car does; and a car does mainly two things: accelerates and brakes.

All object types are described in files with the *.java extension. Object types are

organized in packages. A package is a logical collection of types, some of them are

visible outside the package, and some of them are not, depending on their scope.

A package is a hierarchy of directories, with the Java object types on the last level

(usually, but now always).

4�If you are worried that you will forget the keywords and meaning for modules, print the cheat
sheet at http://files.zeroturnaround.com/pdf/RebelLabs-Java-9-modules-cheat-sheet.
pdf and keep it handy.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

57

Package names must be unique and their name should follow a certain template.

Good practices say that to ensure unicity and meaning, you typically begin the name

with your organization’s Internet domain name in reverse order, then add various

grouping criteria. In this project, package names follow the template depicted here:

com.apress.bgn.ch[*]+

This template begins with the reversed domain name for Apress publisher (www.

apress.com), then a term identifying the book is added (bgn is a shortcut for beginner)

and at last the ch plus the number of the package the source (usually) matches.

Starting with Java 5, each package can contain a file named package-info.java that

contains a package declaration, package annotations, package comments, and Javadoc

tags. The comments are exported to the Javadoc for that package and you learn how

to generate that with Gradle later. The package-info.java must reside under the last

directory in the package. So, if we define a com.apress.bgn.ch3 package, the overall

structure and contents of the Java project looks like Figure 3-2.5

The package-info.java contents could be similar to this:

/**

 * Contains classes used for reading information from various sources.

 * @since 1.0-SNAPSHOT

 * @author iuliana.cosmina

 * @version 1.0-SNAPSHOT

 */

@Deprecated

package com.apress.bgn.ch3;

5�The chapter03.iml is an IntelliJ IDEA project file.

Figure 3-2.  Java package contents

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

58

The files with *.java extension containing the object types definitions are compiled

into files with *.class that are organized according to the package structure and

packaged into one or more JARs (Java Archives).6 For the previous example, if we were to

unpack the JAR resulted after the compilation and linkage, you would see what’s shown

in Figure 3-3.

!  package-info.java files are not mandatory, packages can be defined
without them. They are useful mostly for documentation purposes.

The code in one package might span multiple JARs, meaning if you have more than

one subproject7 in your project you can have the same package name in more than once,

containing different classes. A symbolic representation of all the preceding is depicted in

Figure 3-4.

6�When JARs are hosted on a repository, such as The Maven Public Repository, they are also called
artifacts.

7�I am deliberately avoiding the term module for now to avoid confusion between project modules
and Java modules.

Figure 3-3.  Contents of a sample JAR

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

59

A library groups one or more JARs.8

A Java application can make use of one or more libraries, and in order to be run,

needs all of its dependencies (all the JARs) on the classpath. What does this mean? It

means that to run a Java application, the JDK is needed, the dependencies (external

JARs) and the application jars. Figure 3-5 depicts this quite clearly.

The JARs that make up an application classpath are (obviously) not always

independent of each other. For 21 years this organization style was enough, but in

complex applications there were a lot of complications caused by: packages scattered in

8�The most popular are logging libraries like Log4J. (https://logging.apache.org/log4j/2.x/)
and Logback (https://logback.qos.ch/)

Figure 3-4.  Java building blocks

Figure 3-5.  Classpath of an application

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

60

multiple jars, transitive dependencies between jars, which sometimes leads to different

versions of the same class on the classpath, missing transitive dependencies and

accessibility problems. All these problems are grouped under one name The Jar Hell.9

This problem was resolved in Java 9 by introducing another level to group packages, but

we should expect that there is The Module Hell at some point in the future.

Before introducing modules, access modifiers should be mentioned because Java

object types and members can declared with certain access rights within packages, and

that is something important to understand before jumping into coding.

�Access Modifiers
When you declare an object type in Java (let’s stick to class because it is the only one

mentioned so far), you can configure who should be able to use it. Access modifiers specify

access to classes, and in this case, we say that they are used at the top-level. They can also

specify access to class members, and in this case, they are used at member-level.10

At top-level only two access modifiers can be used: public and none.

A top-level class that is declared public must be defined in a Java file with the same

name. So, the following class is defined in a file named Base.java stored under the com.

apress.bgn.ch0 package.

package com.apress.bgn.ch0;

//top-level access modifier

public class Base {

 ...

}

The contents of the class are not depicted for the moment and replaced with ... to stop

you from losing focus. A public class is visible to all classes anywhere. So, a different class, in a

different package can create an object of this type, like in the following sample code:

9�A great article about The Jar Hell in case you want to know more, but you might want to read it
later, after you have written a little code of your own. See https://tech-read.com/2009/01/13/
what-is-jar-hell/

10�I will not mention nested classes right now, as they are not really crucial for understanding this
section. But in the downloadable Appendix, there is a small section about nested and local
classes that you might find useful.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

61

package com.apress.bgn.ch3;

import com.apress.bgn.ch0.Base;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class Main {

 public static void main(String... args) {

 // creating an object of type Base

 Base base = new Base();

 }

}

!  For now, let this affirmation sink in: a public class is visible to all classes
everywhere.

The option to not use an access modifier it is called using the default or package-

private modifier.11 This means if a class has no access modifier, the class is only visible

to classes defined in the same package. A class without an access modifier can be

defined in any Java file, one that has the same name, or right next to the class that gives

the file its name. So, if we were to declare a class named HiddenBase in the Base.java file

as depicted in the following code snippet, trying to create an object of this type within

the Main class is not possible, because this class is in a different package.

package com.apress.bgn.ch0;

public class Base {

 ...

}

class HiddenBase{

 // you cannot see me outside the package

}

11�I know it seems confusing that there are two names referring to the lack of access modifiers, but
as you might read other books or blog posts that refer to this situation, it is better to have all the
possibilities listed here.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

62

Sure, you can write the code, but the Java compiler will not compile it, and there is

no bytecode to execute. Also, smart Java editors very clearly show you the error of your

ways, by making your code red and refusing to provide any code assistance when writing

it. Figure 3-6 depicts how IntelliJ IDEA tries to tell me that I’m doing something wrong in

trying to access a package-private class.

Figure 3-6.  IntelliJ IDEA hinting that access to a package-private class leads to a
compilation error

In the same figure, the file containing the two classes is depicted in a rectangle to

attract your attention on how the editor is making it obvious that the two classes are

defined in the same Java file.

!  For now, take this affirmation and let it sink in: a class with no access
modifier is visible to all classes in the same package.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

63

Inside a class, the class members are defined: fields and methods.12 Access

modifiers can be applied to the class members as well, and at member-level, two

more modifiers can be applied: private and protected. At member-level, the access

modifiers have the following affects.

•	 public: The same as at top level, the member can be accessed from

everywhere.

•	 private: The member can only be accessed from within its own class.

•	 protected: The member can only be accessed from within its own

package or by any subclass13 of its class in another package.

•	 none: The member can only be accessed from within its own package.

If it seems complicated, it’s only until you begin writing code and getting used to it.

On the official Oracle documentation page, there is a table with the visibility of members,

depicted here in this book as Table 3-1.14

You will probably come back to this table once or twice after you start writing Java

code. Everything in this table is still valid after the introduction of modules, but only

once you properly configure module access, of course.

12�Aside from that, we can also define other Java object types, which are referred to as nested, but
we’ll cross that bridge when we come to it.

13�Creating a subclass is covered in Chapter 5.
14�I depicted the table to avoid the hassle of navigating to this URL: https://docs.oracle.com/
javase/tutorial/java/javaOO/accesscontrol.html

Table 3-1.  Member-Level Accessors

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

none (also referred to as default/package-private) Yes Yes No No

private Yes No No No

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

64

�Introducing Modules
Starting with Java 9, a new concept was introduced: modules. They are used to group and

encapsulate packages. Implementation of this new concept took more than ten years. The

discussion about modules started in 2005, and it was proposed to be implemented for Java 7.

Under the name Project Jigsaw an exploratory phase started in 2008. Java developers

hoped a modular JDK would be available with Java 8, but it was made possible in Java 9,

after three years of work (and almost seven year of analysis). Apparently, this is why the

official release date for Java 9 was postponed to September 2017.15

Modules represent a new way to aggregate packages. A module is a way to group

them and configure more granulated access to package contents.

A module is a uniquely named, reusable group of packages and resources (XML

files) described by a file named module-info.java. This file contains the following

information:

•	 the module’s name

•	 the module’s dependencies (that is, other modules this module

depends on)

•	 the packages it explicitly makes available to other modules (all other

packages in the module are implicitly unavailable to other modules)

•	 the services it offers

•	 the services it consumes

•	 to what other modules it allows reflection

•	 native code

•	 resources

•	 configuration data

In theory, module naming resembles package naming and follows the reversed-

domain-name convention. In practice, make sure that the module name does not

contain any numbers and that it reveals clearly what its purpose is. The module-info.

java file is compiled into a module descriptor, which is a file named module-info.

15�The full history of the Jigsaw project can be found at http://openjdk.java.net/projects/
jigsaw/

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

65

class that is packed with classes into a plain old JAR file. The location of the file is in

the root sources directory, outside of any package. For the example introduced earlier, a

module-info.java was added and the new project structure is depicted in Figure 3-7.

Figure 3-7.  Structure of a Java 9 project

As any file with the *.java extension, the module-info.java gets compiled into a

*.class file. As the module declaration is not a part of Java object types declaration,

module is not a Java keyword, so it can still be used when writing code for Java object types.

For package, the situation is different, as every Java object type declaration must start with

a package declaration. Take a look at the SimpleReader class, declared as follows.

package com.apress.bgn.ch3;

public class SimpleReader {

 private String source;

 ...

}

So, what does this actually mean? Where is the module and what is it? Well, in

simple projects that are made of one root directory with sources, modules do not have to

physically delimit or organize sources. 16 They are defined by the contents of the module-

info.java file. So, starting with Java 9, what is shown in Figure 3-4 evolves into Figure 3-8.

16�Unless you rename directories containing sources for a module to the module name. Having
actual directories for modules is unavoidable when the sources in the root directory of a project
must be split into different modules.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

66

In Figure 3-8, there is no need to create a directory for the module in JAR1 and JAR2.

For JAR3, there are two modules archived in the same JAR; in this case, we need to explicitly

separate their sources. The reason for this is the need to have two module-info.java files, and

obviously no operating system allows two files in the same directory to have the same name. An

example of such a project is covered in the Appendix , which is available as part of the book’s

source code download (https://github.com/apress/java-for-absolute-beginners).

The introduction of modules means the JDK is now divided into modules as well. This

means that the Java platform is no longer a monolith that consists of a massive number

of packages and making it challenging to develop, maintain, and evolve. The platform is

now split into 95 modules that can be viewed by executing java --list-modules (the

number might vary in Java later versions).

 $ java --list-modules

java.base@10

Figure 3-8.  Java building blocks, starting with Java 9

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

67

java.compiler@10

java.datatransfer@10

java.desktop@10

...

Each module name is followed by a version string, @10, which means that the

module belongs to Java 10.

So, if a Java application does not require all modules, a runtime can be created only

with the modules that it needs, which reduces the runtime’s size. The tool to build a

smaller runtime customized to an application needs is called jlink, which is part of the

JDK executables. It allows larger levels of scalability and increased performance.17

There are multiple benefits of introducing modules, that more experienced

developers have been waiting for years to take advantage of. But configuring modules for

bigger and more complex projects is no walk in the park, so for the time being, a simple

configuration for a module containing one package is covered. After finishing this book,

you are welcome to read the Appendix, where a more advanced module configuration is

covered, with examples for each of the possible module configuration is presented.

The contents of the module-info.java can be as simple as the name of the module

and two brackets.

module chapter.three {

}

�Configuring Modules
Within those brackets, different module directives may be declared, using one of the

following keywords:

•	 requires

•	 exports

•	 module

•	 open

17�How to use jlink is not an object of this book. The focus of the book is learning the Java
programming language; thus, the technical details of the Java platform will be kept to a
minimum, just enough to start writing and executing code confidently.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

68

•	 opens... to

•	 provides ... with

•	 transitive

Each of them covers a specific behavior, but for a beginner, the most important two

are requires and exports.

Modules can depend on one another. For our example, classes inside the chapter.

three module need access to packages, and classes in the chapter.zero module.

Declaring a module dependency is done my using the requires keyword.

module chapter.three {

 requires chapter.zero;

}

The preceding dependency is an explicit one. But there are also implicit

dependencies. For example, any module declared by a developer implicitly requires

the JDK java.base module. This module defines the foundational APIs of the Java SE

Platform, and no Java application could be written without it.

Declaring a module as required, means that that module is required at compile time

and runtime. If a module is required only at runtime, the requires static keywords are

used to declare the dependency. Keep that in mind for now; it will make sense when I

talk about web applications.

But is it enough to declare our module as dependent of another? Does this mean

that the dependent module can access all public types (and their nested public and

protected types)? If you are thinking not, you are right. Just because a module depends

on another, it does not mean it has access to the packages and classes that it needs to.

This is because the module it depends on must be configured to expose its insides. How

can that be done? In our case, we need to make sure module chapter.zero gives access

to the required packages. This is done by customizing the module-info.java for this

module by adding the exports directive, followed by the necessary package names.

module chapter.zero {

 exports com.apress.bgn.ch0;

}

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

69

By doing this we have given access to the com.apress.bgn.ch0 package to any

module that requires this package as a dependency. What if we do not want that?

! I f you were curious and read the recommended Jar Hell article, you noticed
that one of the concerns of working with Java sources packed in Jars, was
security. Because even without access to Java sources, objects could be accessed,
extended, and instantiated by adding a Jar as a dependency to an application.
So, aside from providing a reliable configuration, better scaling, integrity for the
platform, and improved performance, the goal for introduction of modules was
better security.

What if we want to limit the access to module contents only to the chapter.three

module? This can be done by adding the to keyword followed by the module name to

the exports directive.

module chapter.zero {

 exports com.apress.bgn.ch0 to chapter.three;

}

More than one module can be specified to have access by listing the desired

modules, separated by comma.

module chapter.zero {

 exports com.apress.bgn.ch0 to chapter.three, chapter.two;

}

And that’s about all you need to know about modules for the moment.

�Determining the Structure: A Java Project

!  When this chapter was written, JDK 11 EAP has just been released. Shortly
after, Gradle version 4.9 and IntelliJ IDEA version 2018.2 were released and they
fully supported development using JDK 11. So, from this section onward Java 11
will be referred in the rest of the book.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

70

There are a few ways Java projects can be structured. It depends on the project’s

scope and the build tool used.

You might wonder why does the project scope influence its structure because you

expect there should be a standard for this, right? Well, there is more than one standard,

and that is dependent on the project scope, because the scope, the reason for creating a

Java project influences its size. And if a project is small, it might not require you to split

the sources into subprojects, and you do not need a build tool either, and build tools

come with their own standard way of organizing a project. Let’s start with the smallest

Java project ever, which should print Hello World! to the console.

�The HelloWorld! Project in IntelliJ IDEA

As a side note, you do not even need a project because you have JShell. Open a terminal

(Command Prompt for Windows) and JShell, and enter the System.out.print("Hello

World!") statement.

$ jshell

| Welcome to JShell -- Version 11-ea

| For an introduction type: /help intro

jshell> System.out.print("Hello World!")

Hello World!

Since you installed IntelliJ IDEA, let’s create a Java project and check what project

structure the editor chooses for us. Start with the first IntelliJ IDEA and click the Create
New Project option. A second dialog window appears on top with the types of projects

that you can create listed on the left. The two dialog windows mentioned here are

depicted in Figure 3-9.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

71

Select Java project type from the left and click Next. (Do not select any of the

additional libraries and frameworks, we are actually creating the smallest Java project

possible.) In the next dialog window, the project name and location can be introduced.

As we are creating a Java 11 project, you can notice at the bottom a section used to

configure the Java module. This configuration window is depicted in Figure 3-10.

Figure 3-9.  Create an IntelliJ IDEA project

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

72

After inserting the project and module name- we used sandbox for both project

name and module name- click Finish and the next window should be the editor

window, in which you can start writing code. If you expand the sandbox node on the left

(that section is called the project view), you can see that the project is built using the JDK

you have installed (in this case 11) and a src directory was created for you. Your project

should look a lot like the one depicted in Figure 3-11.

Figure 3-10.  IntelliJ IDEA project configuration dialog window

Figure 3-11.  IntelliJ IDEA project view

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

73

Before writing code, let’s check out what other project settings are available. IntelliJ

IDEA provides you access to view and edit project properties through the File ➤ Project
Structure... menu item. If you click it, a dialog window opens, similar to the one

depicted in Figure 3-12.

Figure 3-12.  IntelliJ IDEA project settings tab

By default, the Project settings tab is opened. In Figure 3-12, there are two arrows

attracting your attention to the Project SDK: section, which is depicting the JDK version

for a Java project, and the Project language level: section. At the time this chapter was

written, JDK 11 EA was the most recent version. The most recent version of IntelliJ IDEA

supports syntax and code completion for Java 11, which is why it is depicted here. This is

the meaning of the project language level setting.

If you switch to the tab named Modules you see the information depicted in Figure 3-13.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

74

!  Let’s clarify something first. The Modules tab does not show information
about Java modules in your project. Aside from Java modules, that wrap packages
together; a module is also a way to wrap up Java sources and resource files
with a common purpose within a project. That is why, before Oracle introduced
the module concept to modularize Java applications, the code making up these
applications was already modularized by developers that needed to structure big
projects in some practical way.

In the Modules tab, you can see the number of parts (modules) that a project has and

the settings for each part. The sandbox has one part: one module named also sandbox

and the source for this module is contained in the src directory. So, if we want to write a

class that prints Hello World!, the file called HelloWorld.java must be placed under it. If

you right-click the src directory, the menu depicted in Figure 3-14 appears.

Figure 3-13.  IntelliJ IDEA modules settings tab

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

75

Aside from the Java Class option, there are a few red arrows showing you what other

components can be in the src directory. Let’s go ahead and create our class. Click the

Java Class menu option, and after introducing the class name, expand the Kind: drop-

down list. Figure 3-15 shows the expanded list.

Figure 3-14.  IntelliJ IDEA menu listing which Java objects can be created in the
src directory

Figure 3-15.  IntelliJ IDEA dialog windows to create a Java data type

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

76

The core building block of a Java application is the Java class, but there are other

object types in Java. In the Kind: list, the four Java object types are listed. Each of them

is explained in detail later; for now, select Class and click the OK button. You notice that

a file named HelloWorld.java was created under the src directory and the contents of

that file are quite simple.

/**

 * Created on 3/3/18.

 */

public class HelloWorld {

}

You have created your first Java class in your first simple Java project. It does

nothing yet. But it can be compiled by selecting from the IntelliJ IDEA Build menu, the

Build Project option, or by pressing a combination of keys, that is different for each

operation system. Compiling the Build Project option produce the HelloWorld.class

file, containing the bytecode. By default, IntelliJ IDEA stores compilation results into a

directory named out\production. The menu option for compiling your project and the

result are depicted in Figure 3-16. The menu option is marked with (1).

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

77

Figure 3-16.  IntelliJ IDEA—how to compile a Java project

When you have more classes in your project, you can compile the one you modify by

right-clicking the class body and choosing Recompile [ClassName].java, marked with (2)

in Figure 3-16.

It is time we make the class print Hello World!. For that we need to add a special

method to the class. Any Java desktop application has a special method named main that

has to be declared in a top-level class. This method is called by the JRE to run the Java

program/application and I call it the entry point. Without such a method, a Java project

is a collection of classes that are not runnable, cannot be executed, and cannot perform

certain functions. Imagine it this way: it’s like having a car, but you have no way of

starting it, because the ignition lock cylinder is missing. By for all intents and purposes,

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

78

it is a car, but it cannot perform the main purpose of a car, which is to take you somewhere.

You can imagine the main method as the ignition lock cylinder, where the JRE inserts the

key to get your application running. Let’s add that method to the HelloWorld class.18

/**

 * Created on 3/3/18.

 */

public class HelloWorld {

 public static void main(String... args) {

 System.out.println("Hello World!");

 }

}

Now, let’s run this class. In IntelliJ IDEA, you have also two options: from the Run

menu choose the Run '[ClassName]' option, or right-click the class body and select

Run '[ClassName]'.main() from the menu that appears.19

Figure 3-17, depicts the menu items that you can use to execute the class, as well as

the result of the execution.

18�Because IntelliJ IDEA is an awesome editor, you can generate the main method, by typing psvm
and pressing the Tab key.

19�Next to the Run menu item, a combination of keys is depicted that can be used to run the class.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

79

So, this is the most basic structure for a Java Project. This project is so simple that it

can also be compiled manually from the command line. So, let’s do that.

�The HelloWorld! Project Compiled and Executed Manually

You’ve probably noticed the Terminal button in your IntelliJ IDEA. If you click that

button, inside the editor a terminal window will be opened. For Windows it is a

Command Prompt instance, for Linux and macOS are the default shell. And IntelliJ open

your terminal right into your project root. The following explains what you have to do.

	 1.	 Enter the src directory by executing the following command:

cd src

cd is a command that works in Windows and Unix systems and is

short for change directory.

	 2.	 Compile the HelloWorld.java file by executing:

javac HelloWorld.java

Figure 3-17.  IntelliJ IDEA—how to execute a Java class

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

80

javac is a JDK executable used to compile Java files that IntelliJ IDEA

calls in the background.

	 3.	 Run the resulting bytecode from the HelloWorld.class file by

executing:

java HelloWorld

Figure 3-18 depicts the execution of those commands in a terminal in IntelliJ IDEA.

Figure 3-18.  Manually compile and run the HelloWorld class in a terminal inside
IntelliJ IDEA

Looks simple, right? And it actually is simple, because no packages or Java modules

were defined. But wait, is that possible? Well, yes. If you did not define a package, the

class is still part of an unnamed default package that is provided by default by the JSE

platform for the development of small, temporary, and educational applications like the

one you are building. So, let’s make our project a little bit more complicated and add a

named package for our class to be in.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

81

�Putting the HelloWorld Class in a Package

In Figure 3-14, there is a Package option in the menu. So right-click the src directory

and select it. A dialog window appears where you must enter the package name. Enter

com.sandbox. Figure 3-19 shows the dialog windows. Even though the package was

already created, I introduced the same name again to show how the IDE warns that you

are trying to create a package with the same name.

Figure 3-19.  Create package in IntelliJ IDEA

So, we created the package, but the class is not in it. Well, the way to get it there, is

to select it and drag it into it. A dialog window for moving the class appear, because the

editor must modify the class to make it to belong to the package by adding a package

statement. And it requires your approval for the operation. Figure 3-20 depicts this dialog

window.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

82

Click the Refactor button and look at what happens to the class. The class should

now start with a package com.sandbox; declaration. If you rebuild your project, and

then look at the directory structure, you see something similar to what is depicted in

Figure 3-21.

Figure 3-20.  Moving a class into a package in IntelliJ IDEA

Figure 3-21.  New directory structure after adding the com.sandbox package

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

83

If you compile and execute the class manually, you must consider the package now,

so your commands change to

~/sandbox/src: $ javac com/sandbox/HelloWorld.java

~/sandbox/src: $ java com/sandbox/HelloWorld

Hello World!

But things do not end here, because we still have Java modules. So, what about

that? How is our code running without a module-info.java file? Well, there is a

default unnamed module, and all JARs, modular or not, and classes on the classpath

are contained in it. This default and unnamed module exports all packages and reads

all other modules. Because it does not have a name it cannot be required and read by

named application modules. Thus, even if your small project seems to work with JDKs

in versions 9 and higher, it cannot be accessed by other modules; but it works because it

can access others. (This ensures backward compatibility with older versions of the JDK,

but depending on the complexity of the project, compatibility is not always ensured.)

This being said, let’s add a module to our project.

�Configuring the com.sandbox Module

Configuring a module is as easy as adding a module-info.java file under the src directory.

In Figure 3-14, in the menu listed there is a module-info.java option and if you select

that, the IDE generates the file for you. All is well and fine, and if you do not like the

module name that was generated for you, you can change it. I changed it to com.sandbox

to respect the module naming convention established by Oracle developers.

/**

 * Created on 3/3/18.

*/

module com.sandbox {

}

What happens now that we have a module? Not much from the IDEs point of view.

But if you want to compile a module manually, you have to know a few things. I compiled

our module using the following command:

~/sandbox/src/: $ javac -d ../out/com.sandbox \

 module-info.java \

 com/sandbox/HelloWorld.java

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

84

!  "\" is a macOS/Linux separator. On Windows, either write the whole command
on a single line or replace "\" with "^".

Let me explain what I did there. The syntax to compile a module is this:

javac -d [destination location]/[module name] \

 [source location]/module-info.java \

 [java files...]

The result of executing that command is that a directory named com.sandbox in the

out directory is created—the module name. Under this directory, we have the normal

structure of the com.sandbox package. The contents of the out directory are depicted in

Figure 3-22.

Figure 3-22.  Java module com.sandbox compiled manually

As you have noticed in this example, the module does not really exist until we

compile the sources, because a Java module is more of a logical mode of encapsulating

packages described by the module-info.class descriptor. The only reason the com.

sandbox directory was created is that we specified it as argument in the javac -d

command.

We have a compiled module, what do we do with it? We try to run the application

obviously.

sandbox/: $ java --module-path out \

 --module com.sandbox/com.sandbox.HelloWorld

Hello World!

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

85

The syntax to execute a modular application is this:

java --module-path [destination location] \

 --module [module name] /[package name].HelloWorld

Hello World!

Regarding the module name, doesn’t it seem a little redundant? To me it sure looks

like it, which is why I prefer not to create directories for modules unless I have more of

them under the src directory. And we must talk about the standard naming conventions

for modules. That is also another thing that might give developer headaches if they

want to create directories for modules. In multiple blog articles and Oracle Magazine

(September 2017), this is recommended.20 But do not worry about it for now; the book’s

sources contain modules with simple names, and the module configuration is already in

place for you.

�Java Projects Using Build Tools (Mostly Gradle)

Maven is a build automation tool used primarily for Java projects. Although Gradle is

gaining ground, Maven is still one of the most used build tools. Tools like Gradle and

Maven are used to organize the source code of an application in interdependent project

modules and configure a way to compile, validate, generate sources, test, and generate

artifacts automatically. An artifact is a file, usually a JAR, that gets deployed to a Maven

repository. A Maven repository is a location on an HDD where JARs are saved in a special

directory structure.

The discussion about build tools must start with Maven, because this build tool

standardized a lot of the terms we used in development today. Gradle respects a lot of

Maven standard rules was chosen as the go-to build tool for the sources attached to this

book, because it is easier to configure and the configuration files are reduced in size. A

project split into multiple subprojects can be downloaded from GitHub, and built in the

command line or imported into IntelliJ. This approach makes sure that you get quality

sources that can be compiled at once. It is also practical, because I imagine you do not

want to load a new project in IntelliJ IDEA every time you start reading a new chapter.

Also, it makes it easier for me to maintain the sources and adapt them to a new JDK, and

with Oracle releasing so often, I need to be able to do this quickly.

20�Oracle Magazine from September 2017 can be accessed at http://www.javamagazine.
mozaicreader.com/SeptOct2017#&pageSet=29&page=0

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

86

The project you use to test the code written in this book and write your own code

if you want to, is called java-for-absolute-beginners. It is a multimodule Gradle

project. The first level of the project is the java-for-absolute-beginners project, that

has a configuration file named build.gradle. In this file, all dependencies and their

versions are listed. The child projects, the ones on the second level, are the modules of

this project. And we call them child projects because they inherit those dependencies

and modules from the parent project. In their configuration files, we can specify which

dependencies are needed from the list defined in the parent. And these modules are

a method of wrapping up sources for each chapter and that is why these modules are

named chapter00, chapter01, and so forth. If a project is big and needs a lot of code to

be written, the code is split again in another level of modules. Module chapter05 is such

a case, and is configured as a parent for the projects underneath it. In Figure 3-23, you see

what this project looks like loaded in IntelliJ IDEA, and module chapter05 is expanded

so you can see the third level of modules. Each level is marked with the corresponding

number.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

87

Figure 3-23.  Gradle multimodule-level structure

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

88

In the Appendix you can read a detailed explanation for the configuration of this

Gradle project. For now, if you have loaded it into IntelliJ IDEA as you were taught in

Chapter 2, you can make sure everything is working correctly by building it. Here’s how

you do it.

You can do it by using the IntelliJ IDEA editor, in the upper right side you should

have a tab called Gradle projects.

If the projects are loaded as they are depicted in Figure 3-24, the project was loaded

correctly. If the Gradle projects tab is not visible, look for a label like the one marked

with (1), and click it.

Figure 3-24.  Gradle multimodule-level structure

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

89

Expand the java-for-absolute-beginners(root) node until you find the build

task, marked with (2). If you double click it and in the view at the bottom of the editor

you do not see any error, all your projects were built successfully.

The second way to make sure the Gradle project is working as expected is to build

it from the command line. Open an IntelliJ IDEA terminal, and if you installed Gradle

on the system path as explained in Chapter 2, enter gradle clean build and hit the

Enter key. In the command line, you might see some warnings, if the Gradle plugin for

supporting Java modules is still unstable when this book reaches you, but as long as the

execution ends with BUILD SUCCESSFUL, everything is alright.

Aside from the sandbox project, all the classes, modules, and packages mentioned

in this section are part of this project. chapter00 and chapter01 do not really contain

classes specific to those chapters. I needed them to construct the Java module examples.

IntelliJ IDEA sorts modules in alphabetical order, so the naming of the chapter modules

was chosen this way. They are listed in the order that you should work with them. Until

now, this chapter was focused on the building blocks of Java applications, and you

created a class that prints Hello World! by following the instructions, but the details were

not really covered. Let’s do that now and enrich the class with new details.

�Explaining and Enriching the Hello World! Class
We wrote a class named HelloWorld in our sandbox project. I propose you to add that

class to the chapter03 module. Just copy it or create it under the com.apress.bgn.ch3.

helloworld package, and let’s analyze it first and then see what more can we do with it.

In Figure 3-25, the class is depicted in the IntelliJ IDEA editor, and a few details about the

IDE are underlined. Let’s talk about the class first.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

90

The following explains the lines that contain different statements.

•	 the package declaration: When classes are part of a package their

code must start with this line that declares the package the class is

part of. The package is a reserved keyword in Java and cannot be used

for anything else but declaring a package.

•	 <empty for convenience> (left empty so the picture looks nicer)

•	 the class declaration: This is the line where we declare our class;

it is public so it can be seen from everywhere; it is a class named

HelloWorld. The body of a class is enclosed between curly brackets,

and the opening bracket is on this line as well.

•	 the main() method declaration: In Java, a method signature is the

method name and the number, type, and order of its parameters.

A method also has a return type, as in the type of result it returns.

But there is also a special type that can declare methods that do not

return anything. In order of appearance, the following explains what

every term of the main() method represents.

Figure 3-25.  Adding HelloWorld to the java-for-absolute-beginners project

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

91

•	 public: A method accessor; the main method must be public;

otherwise, JRE can’t access it and call it.

•	 static: When an object of that class type is created, it has the fields

and methods as declared by the class. The class is a template

for creating objects. Because of the static keyword, the main

method is not associated with an object of a class type, but with

the class itself. More information about this in Chapter 4.

•	 void: This keyword is used here to tell us that the main method

does not return anything, so it’s like a replacement for "no type",

because if nothing is returned there is no need for a type.

•	 String[] args: Methods are sometimes declared as receiving

some input data, String[] args represents an array of text

values. (Arrays are sets of data of fixed length; in mathematics

they are known as a one-dimension matrix or vector.) String

is the class representing text objects in Java. The [] means array

and args is its name. But wait, we’ve run this method before and

we did not need to provide anything! Well, it is not mandatory,

but you’ll see how you can give it arguments (values provided to

the method, which are used by the code in its body) after this list.

! I n previous code samples, you might have noticed that the main method was
written like this:

public class HelloWorld {

public static void main(String... args) {

System.out.println("Hello World!");

}

}

The three dots are referred to as varargs and allow you to pass more than one
string to the method. It’s an alternative way of writing this method and it is used
in the book when the sources require some special formatting that involves [].

•	 {: The starting bracket of the main() method body.

•	 <empty for convenience> (left empty so the picture looks nicer).

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

92

•	 System.out.println("Hello World!");: A statement used for writing

Hello World in the console.

•	 }: The closing bracket of the main() method body.

•	 }: The closing bracket for the class body.

If we execute this class, Hello World! gets printed in the console. Figure 3-17 shows

how to execute a class with a main() method in it. After executing a class that way, IntelliJ

IDEA automatically saves the configuration for that execution in a run configuration and

displays it in a drop-down list next to a triangular green button that executes that class

by clicking it. Both are placed on the IDE header and ostentatiously pointed to you in

Figure 3-25. Those two elements are really important because a run configuration can be

edited and added arguments for the JVM and the main() method. Let’s first modify the

main() method to do something with the arguments.

package com.apress.bgn.ch3.helloworld;

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello " + args[0] + "!");

 }

}

! A rrays are accessed using indexes of their elements, and the counting starts
in Java from 0. Consequently, the first member of an array can be found at 0, the
second at 1 and so on. But arrays can be empty, so in the previous code snippet, if
no argument is specified, the execution of the program crash and in the console an
explicit message are printed in red.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at chapter.three/com.apress.bgn.ch3.helloworld.HelloWorld.

main(HelloWorld.java:5)

When we try to access an empty array, or an element of an array that
does not exist, Java programs crash and the JVM throws an object of type
ArrayIndexOutOfBoundsException containing the line where the failure
happened and the index of the element we were trying to access. Exception

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

93

objects are used by the JVM to notify developers of exceptional situations when a
Java execution does not work as expected and these objects contain information
on where in the code it happened and what caused the problem.

The modification we did in the previous code snippet prints the text value provided

as argument when executing the class. Let’s modify the run configuration for this class

and add an argument. If you click the small gray arrow next to the Run configuration

name, a menu appears. Click Edit Configurations... and inspect the dialog window

shown in Figure 3-26 .

Figure 3-26.  Customizing a Run configuration

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

94

In the image, the key elements were circled (well, enclosed in a rectangle actually,

but you get the idea!). As you can see in the run configurations list in Figure 3-26, IntelliJ

IDEA saves a few of your previous executions, including the Gradle build task, that you

executed earlier in this chapter. In the left of the Run/Debug Configurations dialog

windows, you can see the IntelliJ IDEA run configurations grouped by type. By default,

the last run configuration is opened on the right of the window, in this case it should

be the run configuration for the HelloWorld class. There are a lot of options you can

configure for an execution and most of them have been automatically decided by the

IDE. The Program arguments: text field is where your arguments for the main() method

are introduced. In Figure 3-26, I introduced Developer. So, if you click the Apply button

and then the OK button, and then execute the class, instead of Hello World! you should

see now Hello Developer! in the console.

So what else can we do with our class? Remember the code the book started with?

Let’s put it in the main main() method.

package com.apress.bgn.ch3.helloworld;

import java.util.List;

public class HelloWorld {

 public static void main(String... args) {

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(item -> {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 });

 }

}

The import java.util.List; statement is the only type of statement that can exist

between a package and a class declaration. This statement is telling the Java compiler

that object type java.util.List is used in the program. The import keyword is followed

by the fully qualified name of the data type. A fully qualified name of a data type is

made of the package name(java.util), a dot(.) and the simple name of the class(List).

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

95

Without it, the class will not compile. Try it; just put // in front of the statement, which

turns the line into a comment that is ignored by the compiler. You will see the editor

complaining by making any piece of code related to that list bright red.

The statement List<String> items = List.of("1", "a", "2", "a", "3", "a");

creates a list of text values21,22 that are then traversed, one by one, by the forEach

method, and each of them are tested to see if they are equal to the "a" character.23

If you run the class now, you should see a sequence of A and Not A in the console,

each on its own line.

Not A

A

Not A

A

Not A

A

The code we have written until now uses a few types of objects to print a simple

message in the console. The List object is used to hold a few String objects. The

messages are printed using the println() method, that is called on the out object, that

is a static field in the System class. And these are just the objects that are visible to you in

the code. Under the hood, the List objects are processed by a Consumer object created

on the spot that the lambda expression hides for simplicity.

package com.apress.bgn.ch3.helloworld;

import java.util.List;

[import java.util.function.Consumer;]

public class HelloWorld {

 public static void main(String... args) {

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(new Consumer<String>() {

 @Override

21�Creating lists this way was introduced in Java 9
22�Specifying what type of elements are in a list by using <> was introduced in Java 5 and it’s called

generics
23�The whole expression used to do this is called a lambda expression. This type of syntax was

introduced in Java 8, together with the forEach method.

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

96

 public void accept(String item) {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 }

 });

 }

}

It might look scary now, but I promise that this book introduces each concept in

a clear context and compared with real life objects and events so you can understand

it easily. And if that does not work, there are always more books, more blogs, and the

official Oracle webpage for each JDK, which have good tutorials. Where there’s a will,

there’s a way.

! A lso, use your IDE! By clicking any object type in the code while pressing the
Control/Command key, the code of the object class is opened, and you can see
how that class was written and you can read the documentation for it directly in
the editor. As an exercise do this for the forEach method and the System class.

�Summary
In this chapter, you did the following tasks:

•	 Learned how to use JShell

•	 Learned about Java packages and actually created one

•	 Learned about Java accessors

•	 Learned about modules

•	 Created our first Java project with IntelliJ IDEA

•	 Wrote the code for our first program within IntelliJ IDEA

•	 ... that we later compiled manually too

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

97

•	 Ran our first program (Hello World!)

•	 Added packages to it

•	 Configured a module for it

•	 ... and compiled and executed it manually too

•	 Learned about Gradle and how it can make a developer’s life easy

Many of the things you did in this chapter, you will probably do daily after getting

a job as a Java developer—except for the time you’ll spend hunting and fixing bugs in

existing code. You will probably spend a lot of time reading documentation too, because

the JDK has a lot of classes, fields, and methods that you can use to write an application.

And with each released version, things change and you must keep yourself up-to-date.

Brains have limited capacity, so no employer should ever expect you to know every JDK

class and method; but work smart and keep the webpage24 at https://docs.oracle.

com/javase/10/docs/api/ open in your browser. And when you have doubts about a

JDK class or method, you can read about it on the spot.

24�Currently, only the JDK 10 is available at https://docs.oracle.com/javase/10/

Chapter 3 Getting Your Feet Wet

(c) ketabton.com: The Digital Library

99
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_4

CHAPTER 4

Java Syntax
Languages are means of communication—verbal or written—between people. Whether

they are natural or artificial, they are made of terms and have rules on how to use

them to perform the task of communication. Programming languages are means of

communicating with a computer. The communication with a computer is a written

communication; basically, the developer defines some instructions to be executed,

communicates them through an intermediary to the computer, and if the computer

understands them, performs the set of actions, and depending on the application type,

some sort of reply is returned to the developer.

In the Java language, communication is done through an intermediary—the

Java virtual machine. The set of programming rules that define how terms should be

connected to produce an understandable unit of communication is called syntax. Java

borrowed most of its syntax from a programming language called C++, which has a

syntax based on the C language. C syntax borrows elements and rules from languages

that preceded it, but in essence, all of these languages are based on the natural English

language.

Maybe Java got a little cryptic in version 8 because of the introduction of lambda

expressions, but when writing a Java program, if you are naming your terms properly in

the English language, the result should be code that is easily readable, like a story.

A few details were covered in Chapter 3; packages and modules were covered

enough to give you a solid understanding of their purpose to avoid confusion with the

organization of the project and aimless fumbling through the code. But as expected

when it comes to actual code writing, the surface has been barely scratched. Thus, let’s

begin our deep dive into Java.

(c) ketabton.com: The Digital Library

100

�Base Rules of Writing Java Code
Before writing Java code, let’s go over a few rules that you should follow to make sure

your code actually works. Let’s depict the class we ended Chapter 3 with by adding a few

details.

01. package com.apress.bgn.ch3.helloworld;

02.

03. import java.util.List;

04.

05. /**

06. * this is a JavaDoc comment

07. */

08. public class HelloWorld {

09. public static void main(String... args) {

10. //this is a one-line comment

11. List<String> items = List.of("1", "a", "2", "a", "3", "a");

12. items.forEach(item -> {

13. /* this is a

14. multi-line

15. comment */

16. if (item.equals("a")) {

17. System.out.println("A");

18. } else {

19. System.out.println("Not A");

20. }

21. });

22. }

23. }

Next, I’ll cover each rule in its own section.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

101

�Package Declaration
A Java file always starts with the package declaration. The package name can contain

letters and numbers, separated by dots. Each part matches a directory in the path to

the classes contained in it. The package declaration should reveal the name of the

application and the purpose of the classes in the package. Let’s take the package naming

used for the sources of this book: com.apress.bgn.ch4.basic. If we split the package

name in pieces, the meaning of each piece is described as follows.

•	 com.apress is the domain of the application, or who owns the

application in this case

•	 bgn is the scope of the code, in this case the book it is written for (Java

for Absolute Beginners)

•	 ch4 is the purpose of the classes in Chapter 4

•	 basic is a more refined level of the purpose for the classes, these

classes are simple, used to depict basic Java notions

�Import Section
The import section follows the package declaration. This section contains the fully

qualified names of all classes, interfaces, and enums used within the file. Look at the

following code sample.

package java.lang;

import java.io.Serializable;

import java.io.ObjectStreamField;

import java.io.UnsupportedEncodingException;

import java.lang.annotation.Native;

import java.nio.charset.Charset;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Comparator;

import java.util.Formatter;

import java.util.Locale;

...

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

102

public final class String

 implements Serializable, Comparable<String>, CharSequence {

 private static final ObjectStreamField serialPersistentFields =

 new ObjectStreamField0;

 ...

}

It is a snippet from the official Java String class. Every import statement makes

reference to the package and the name of a class used within the String class body.

Special import statements import static variables and static methods. Static variables

and methods can be used without the need to instantiate a class. In the JDK, there is a

class used for mathematical processes. It contains static variables and methods that can

be used by developers to implement code that solves mathematical problems. Look at

the following code.

package com.apress.bgn.ch4.basic;

import static java.lang.Math.PI;

import static java.lang.Math.sqrt;

public class Sample extends Object {

 public static void main(String... args) {

 System.out.println("PI value =" + PI);

 double result = sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

By putting import and static together, we can declare a fully qualified name of a

class and the method or the variable we are interested in using in the code. This allows

us to use the variable or method directly, without the name of the class it is declared in.

Without the static imports, the code has to be rewritten like this:

package com.apress.bgn.ch4.basic;

import java.lang.Math;

public class Sample extends Object {

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

103

 public static void main(String... args) {

 System.out.println("PI value =" + Math.PI);

 double result = Math.sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

Another thing that you probably do when writing Java code is to compact import

statements. Compacting imports is recommended when using multiple classes from

the same package to write code, or multiple static variables and methods from the same

class. When doing so, the import section of a file becomes really big and difficult to

read. This is where compacting comes to help. Compacting imports means replacing

all classes from the same package or variables and methods from the same class with a

wildcard so only one import statement is needed. So, the Sample class becomes

package com.apress.bgn.ch4.basic;

import static java.lang.Math.*;

public class Sample extends Object {

 public static void main(String... args) {

 System.out.println("PI value =" + PI);

 double result = sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

�Java “Grammar”
Java is case sensitive, which means that you can write a piece of code as follows.

public class Sample {

 public static void main(String... args) {

 int mynumber = 0;

 int myNumber = 1;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

104

 int Mynumber = 2;

 int MYNUMBER = 3;

 System.out.println(mynumber);

 System.out.println(myNumber);

 System.out.println(Mynumber);

 System.out.println(MYNUMBER);

 }

}

All four variables are different and the last lines print numbers: 0 1 2 3. You cannot

declare two variables sharing the same name, in the same context (e.g., in the body of

a method), because you would be basically redeclaring the same variable and the Java

compiler does not allow this. If you try to do this, your code will not compile, and even

IntelliJ IDEA will try to make you see the error of your ways by underlining the code in

red and showing you a relevant message, like in Figure 4-1, where the mynumber variable

is declared twice.

Figure 4-1.  Same statements example with error

There is a set of Java keywords that can be used only for a fixed and predefined

purpose in the Java code. A few of them have already been introduced: import, package,

public, class. The rest of them are covered at the end of the chapter with a short

explanation for each (see Tables 4-2 and 4-3).

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

105

Figure 4-2.  Different statements samples

Except for import, package, interface (or @interface), enum and class declarations,

everything else in a Java source file must be declared between curly brackets ({}). These

are called block delimiters. Take a look at the beginning of section 4.1. The brackets are

used there to wrap up the following.

•	 contents of a class, also called the body of the class (brackets in lines

08 and 23)

•	 contents of a method, also called the body of a method (brackets in

lines 09 and 22)

•	 a set of instructions to be executed together (brackets in lines 12 and 21)

Line terminators: code lines are usually ended in Java by the semicolon (;) symbol or

by the ASCII characters CR, LF, or CR LF. Colons are used to terminate fully functioning

statements, like the list declaration in line 11. If we have a really little monitor, and we

are forced to split that statement on two subsequent lines to keep the code readable,

the colon at its end tells the compiler that this statement that is correct only when taken

together. Take a look at Figure 4-2.

The declaration of a list in line 8 is equivalent to the one in lines 10 and 11. The

declaration in line 13 and 14 is intentionally written wrong—a colon is added in line

13, which ends the statement there; but that statement is not valid and the compiler

complains about it when you try to compile that class by printing an exception saying:

"Error:(13, 32) java: illegal start of expression". If the error message does

not seem to fit the example, think about it like this: the problem for the compiler is not

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

106

the wrongful termination of the statement, but that after the = symbol, the compiler

expects to find some sort of expression that produces the value for the badList variable,

but instead it finds nothing.

�Java Identifiers
An identifier is the name you give to an item in Java: a class, variable, method, and

so forth. Identifiers must respect a few rules to allow the code to compile and also

common-sense programming rules, called Java coding conventions. A few of them are

listed below:

•	 an identifier cannot be one of the Java reserved words, or the code

will not compile

•	 an identifier cannot be a boolean literal (true, false) or the null

literal , or the code will not compile

•	 an identifier can be made of letters, numbers and any of _, $

•	 developers should declare their identifiers following the Camel case

writing style, the practice of writing compound words or phrases such

that each word or abbreviation in the middle of the phrase begins

with a capital letter, with no intervening spaces or punctuation,

making sure each word or abbreviation in the middle of the identifier

name begins with a capital letter (e.g., StringBuilder, isAdult)

A variable is a set of characters that can be associated with a value. It has a type. The

set of values that can be assigned to it are restricted to a certain interval group of values

or must follow a certain form defined by that type. For example, items declared in line 11

is a variable of type List.

In Java, there are three types of variables.

•	 fields are variables defined in class bodies, outside of method bodies

and that do not have the keyword static in front of them

•	 local variables are variables declared inside method bodies, they are

relevant only in that context

•	 static variables are variables declared inside class bodies with the

have the keyword static in front of them. If they are declared as

public they are accessible globally.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

107

�Java Comments
Java comments refer to pieces of explanatory text that are not part of the code executed

and are ignored by the compiler. There are three ways to add comments within the code

in Java, depending on the characters used to declare them.

•	 // is used for single line comments (line 10)

•	 /** ... */ Javadoc comments, special comments that are exported

using special tools into the documentation of a project called Javadoc

API (lines 05 to 07)

•	 /* ... */ used for multiline comments (lines 13 to 15)

�Java Object Types
When introducing the Java building blocks in Chapter 3, only class was mentioned

to keep things simple. It was mentioned that there are other object types in Java. The

expression object type is not really accurate and in this section, things become clearer.

Classes are templates for creating objects. Creating an object based on a class

is called instantiation and the resulted object is referred to as an instance of that
class. Instances are called objects because by default any class written by a developer

implicitly extends class java.lang.Object if no other superclass is declared. So, the

following class declaration

package com.apress.bgn.ch4.basic;

public class Sample {

}

is equivalent to

package com.apress.bgn.ch4.basic;

public class Sample extends Object {

}

Also, notice how importing the java.lang package is not necessary, because the

Object class is the root class of the Java hierarchy, all classes (including arrays) must

have access to extend it. And thus, the java.lang package is implicitly imported as well.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

108

But aside from classes, there are other template types that can be used for creating

objects in Java. The following sections introduce them and explain what they are used

for. But let’s do so in context.

Let’s create a family of templates for defining humans. Most Java tutorials use

templates for vehicles or geometrical shapes. I want to model something that anybody

can easily understand and relate to. The purpose of the following sections is to develop

Java templates that model different types of people. The only Java template that I’ve

explained so far is the class, so let’s continue with that.

�Classes
The operation through which instances are created is called instantiation. So, to

design a class that models a generic human, we should think about two things: human

characteristics and human actions. So, what do all humans have in common? Well, a lot,

but for the purpose of this section, let’s choose three generic attributes: a name, age, and

height. These attributes map in a Java class to variables called fields or properties.

�Fields

So, our class looks like this (initially):

package com.apress.bgn.ch4.basic;

public class Human {

 String name;

 int age;

 float height;

}

In the code sample, the fields have different types, depending on which values

should be associated with them. For example, name can be associated with a text value,

like "John", and text is represented in Java by the String type. The age can be associated

with numeric integer values, so is of type int. And for the purpose of this section, we’ve

considered that the height of a person is a rational number like 1.9, so we used the

special Java type for this kind of value: float.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

109

So, now we have a class modelling some basic attributes of a human. How do we

use it? We need a main() method and we need to instantiate the class. In the next code

snippet, a human named John is created.

package com.apress.bgn.ch4.basic;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human human = new Human();

 human.name = "John";

 human.age = 40;

 human.height = 1.91f;

 }

}

To create a Human instance, we use the new keyword. Next, we call a special method

called a constructor. I’ve covered methods before, but this one is special. (Some

programmers do not even consider it a method.) The most obvious reason for that is

it wasn’t defined anywhere in the body of the Human class. So, where is it coming from?

Well, it’s a default constructor that is automatically generated by the compiler unless an

explicit one is declared. A class cannot exist without a constructor; otherwise, it cannot

be instantiated. That is why the compiler generates one if none was explicitly declared.

The default constructor, calls super() that invokes the Object no argument constructor

that initializes all fields with default values. This can be tested by the following example.

package com.apress.bgn.ch4.basic;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human human = new Human();

 System.out.println("name: " + human.name);

 System.out.println("age: " + human.age);

 System.out.println("height: " + human.height);

 }

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

110

What do you think will happen when you run the previous code? If you think that

some default values (neutral) printed, you are absolutely right. The following is the

output of the previous code.

name: null

age: 0

height: 0.0

The numeric variables were initialized with 0, and the String value was initialized

with null. The reason for that is that the numeric types are primitive data types and

String is an object data type. The String class is part of the java.lang package, which is

one of the predefined Java classes that creates objects of type String. It is a special data

type that represents text objects. We’ll go deeper into data types in the following chapter.

�Class Variables

Aside attributes that are specific to each human in particular, all humans have

something in common: a lifespan, which is assumed to be 100 years. It would be

redundant to declare a field called lifespan, because it has to be associated with the same

value for all human instances. So, we declare a field using the static keyword in the

Human class, which has the same value for all Human instances and that is initialized only

once. And we can go one step further and make sure that value never changes during the

execution of the program by adding the final modifier in front of its declaration as well.

This way we created a special type of variable called a constant. The new Human class

looks like this:

package com.apress.bgn.ch4.basic;

public class Human {

 static final int LIFESPAN = 100;

 String name;

 int age;

 float height;

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

111

The LIFESPAN variable is also called a class variable, because it is not associated

with instances but with the class. This is clear in the following example.

package com.apress.bgn.ch4.basic;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human john = new Human();

 john.name = "John";

 Human jane = new Human();

 jane.name = "Jane";

 System.out.println("John’s lifespan = " + john.LIFESPAN);

 System.out.println("Jane’s lifespan = " + jane.LIFESPAN);

 System.out.println("Human lifespan = " + Human.LIFESPAN);

 }

}

When the main() method of the preceding class is executed, the following is printed,

which proves everything that was mentioned before.

John's lifespan = 100

Jane's lifespan = 100

Human lifespan = 100

�Encapsulating Data

The class we defined makes no use of access modifiers on the fields, which is not

acceptable. Java is known as an object-oriented programming language (OOP), and

thus, code written in Java must respect the principles of OOP. Respecting these coding

principles ensures that the written code is of good quality and totally aligns with the

fundamental Java style. One of the OOP principles is encapsulation. The encapsulation

principle refers to hiding of data implementation by restricting access to it using special

methods called accessors (getters) and mutators (setters).

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

112

Basically, any field of a class should have private access, and access to it should be

controlled by methods that can be intercepted, tested, and tracked to see where they were

called. Getters and setters are a normal practice to have when working so objects that most

IDEs have a default options to generate them, including IntelliJ IDEA. Right-click inside

the class body and select the Generate option to see all possibilities and select Getters and
Setters to generate the methods for you. The menu is depicted in Figure 4-3.

After making the fields private, and generating the getters and setter the Human class

now looks like this:

package com.apress.bgn.ch4.basic;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public float getHeight() {

 return height;

 }

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

113

 public void setHeight(float height) {

 this.height = height;

 }

}

So, you may be wondering what this is. As the word says, it is a reference to the

current object. So, this.name is the value of the field name of the current object. Inside

the class body, this accesses fields for the current object, when there are parameters

in methods that have the same name. And as you can see, the setters and getters that

IntelliJ IDEA generates have parameters that are named the same as the fields.

Getters are the simplest methods declared without any parameter. They return the

value of the field they are associated with. Their naming convention uses the get prefix

and the name of the field they access, with the first letter uppercased.

Figure 4-3.  IntelliJ IDEA code generation menu. Generate... ➤ Getter and Setter
submenu

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

114

Setters are methods that return nothing. They declare as a parameter a variable with

the same type that needs to be associated to the field. Their names are made of the set

prefix and the name of the field they access, with its first letter uppercased. Figure 4-4

depicts the setter and getter for the name field.

Figure 4-4.  Setter and getter methods used for the name field

This means that when instantiating the Human class, we have to use the setters

to set the field values and the getters to access those values. Thus, our class

BasicHumanDemo becomes

package com.apress.bgn.ch4.basic;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human human = new Human();

 human.setName("John");

 human.setAge(40);

 human.setHeight(1.91f);

 System.out.println("name: " + human.getName());

 System.out.println("age: " + human.getAge());

 System.out.println("height: " + human.getHeight());

 }

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

115

�Methods

Since getters and setters are methods it is time to start the discussions about methods too.

A method is a block of code characterized by returned type, name, and parameters that

describes an action done by or on the object that makes use of the values of its fields and/

or arguments provided. An abstract template of a Java method is depicted as follows.

[accessor] [returned type] [name] type1 param1, type2 param2, ... {

 // code

 [[maybe] return val]

}

Let’s create a method for the Human class that computes and prints how much time a

human still has to live by making use of his age and the LIFESPAN constant. Because the

method does not return anything, the return type used is void, a special type that tells

the compiler that the method does not return anything and we have no return statement

in the method body.

package com.apress.bgn.ch4.basic;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 /**

 * compute and prints time to live

 */

 public void computeAndPrintTtl(){

 int ttl = LIFESPAN - this.age;

 System.out.println("Time to live: " + ttl);

 }

 ...

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

116

! T here is a Java coding convention in the naming of constants that recommends
using only uppercase letters, underscores, and numbers.

The preceding method definition does not declare any parameters, so considering

we have a Human instance we can call the method like this:

Human human = new Human();

human.setName("John");

human.setAge(40);

human.setHeight(1.91f);

human.computeAndPrintTtl();

And we expect it to print Time to live: 60, which actually happened. Now, let’s

modify the method to return the value instead of printing it.

package com.apress.bgn.ch4.basic;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 /**

 * @return time to live

 */

 public int getTimeToLive(){

 int ttl = LIFESPAN - this.age;

 return ttl;

 }

 ...

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

117

Calling the method do nothing in this case, we have to modify the code to save the

returned value and print it.

Human human = new Human();

human.setName("John");

human.setAge(40);

human.setHeight(1.91f);

int timeToLive = getTimeToLive();

System.out.println("Time to live: " + timeToLive);

Both methods introduced here declare no parameters, so they are called without

providing any arguments. We won’t cover methods with parameters, as the setters are

more than obvious. Let’s skip ahead.

�Constructors

Now we’ve done it. We can no longer use human.name without the compiler complaining

about it. But still, it is annoying to call all of those setters to set the properties; something

should be done about that. Remember the implicit constructor? Well, let’s create an

explicit one that has parameters for each of the fields we are interested in.

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age, float height) {

 this.name = name;

 this.age = age;

 this.height = height;

 }

 ...

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

118

In the preceding example, you can see that the constructor does not include

a return statement, even if the result of calling a constructor is the creation of an

object. Constructors are different from methods in that way. By declaring an explicit

constructor, the default constructor is no longer generated. So, creating a Human instance

by calling the default constructor does not work anymore; the code no longer compiles

because the default constructor is no longer generated.

Human human = new Human();

To create a Human instance, we now have to call the new constructor and provide

proper arguments in place of the parameters, having the same types as declared.

Human human = new Human("John", 40, 1.91f);

But what if we do not want to be forced to set all fields using this constructor? It’s

simple, we define another with only the parameters that we are interested in. Let’s define

a constructor that only sets the name and the age for a Human instance.

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this.name = name;

 this.age = age;

 this.height = height;

 }

 ...

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

119

And this is where we stumble upon an OOP principle called polymorphism. The

term is Greek and translates to one name, many forms. Polymorphism manifests itself

by having multiple methods all with the same name, but slightly different functionality.

There are two basic types of polymorphism: overriding, also called run-time
polymorphism, and overloading, which is referred to as compile-time polymorphism.

The second type of polymorphism applies to the preceding constructors, because we

have two of them, one with a different set of parameters that looks like it is an extension

of the simpler one.

So, we have some code duplication in the previous example, and there is a common

sense programming principle called DRY1 (Don’t Repeat Yourself!) that the following

example clearly defies. So, let’s fix that by using the this keyword.

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this(name, age);

 this.height = height;

 }

 ...

}

Yes, constructors can call each other by using this(...). So now, we can use both

constructors to create Human instances. If we use the one that does not set the height, the

height field is implicitly initialized with the default value for type float.

1�Also one of the clean coding principles; read more about it at https://blog.goyello.
com/2013/01/21/ top-9-principles-clean-code/

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

120

Now, our class is generic; we could even say that it models a Human class in an

abstract way. If we were to try to model humans with certain skill sets or abilities, we

must enrich this class. Let’s say we want to model musicians and actors. This means we

need to create two new classes. The Musician class is depicted in the following; getters

and setters for the fields are skipped.

public class Musician {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 private String musicSchool;

 private String genre;

 private List<String> songs;

 ...

}

The Actor class is depicted next; getters and setters for the fields are also skipped.

public class Actor {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 private String actingSchool;

 private List<String> films;

 ...

}

There are more than a few common elements between the two classes. One of the

clean coding principles requires developers to avoid code redundancy. This can be done

by designing the classes by following two OOP principles: inheritance and abstraction.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

121

�Abstraction

Abstraction is an OOP principle that manages complexity. Abstraction decomposes

complex implementations and defines core parts that can be reused. In our case, common

fields of the Musician and Actor classes can be grouped in the Human class that we defined

earlier in the chapter. The Human class can be viewed as an abstraction, because any human

in this world is more than his name, age, and height. So, there is no need to create Human

instances, because a human is represented by something else, like passion, purpose, and

skill. A class that does not need to be instantiated, but groups together fields and methods

for other classes to inherit, or provide a concrete implementation for is modelled in Java by

an abstract class. Thus, we modify the Human class to make it abstract first. And since we

are abstracting this class, let’s make the LIFESPAN constant public so we can access it from

anywhere and make the getTimeToLive method abstract.

package com.apress.bgn.ch4.basic;

public abstract class Human {

 public static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this(name, age);

 this.height = height;

 }

 /**

 * @return time to live

 */

 public abstract int getTimeToLive();

...

// setters & getters for fields in this class

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

122

An abstract method like getTimeToLive() is declared in the example; it is a

method missing the body. This means that within the Human class, there is no concrete

implementation for this method, only a skeleton—a template that extending classes

must provide a concrete implementation for.

Oh, but wait, we kept the constructors! Why did we do that if we are not allowed to

use them anymore? And we aren’t, because Figure 4-5 shows what IntelliJ IDEA does

with the BasicHumanDemo class Figure 4-5.

Figure 4-5.  Java compiler error when trying to instantiate an abstract class

We kept the constructors because they can help further abstracting behavior. The

Musician and Actor classes must be rewritten to extend the Human class. This is done

by using the extends keyword when declaring the class and specifying the class to be

extended, also called the parent class or superclass. The resulting class is called a

subclass. When extending a non-abstract class, the subclass inherits all the fields and

concrete methods declared in the superclass.

When extending an abstract class, the subclass must provide a concrete

implementation for all abstract methods, and must declare their own constructors,

which eventually make use of the constructors declared in the abstract class. These

constructors can be called by using the keyword super. The same goes for methods, but

not for fields, unless they have the proper access modifier.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

123

Let’s see what the Musician class looks like when making use of abstraction and

inheritance.

 package com.apress.bgn.ch4.basic;

import java.util.List;

public class Musician extends Human {

 private String musicSchool;

 private String genre;

 private List<String> songs;

 public Musician(String name, int age, float height,

 String musicSchool, String genre) {

 super(name, age, height);

 this.musicSchool = musicSchool;

 this.genre = genre;

 }

 public int getTimeToLive() {

 return (LIFESPAN - getAge()) / 2;

 }

...

// setters & getters for fields in this class

}

The songs field was not used as a parameter in the constructor for simplicity reasons

here.

The Musician constructor calls the constructor in the superclass to set the properties

defined there. Also, notice the full implementation provided for the getTimeToLive()

method.

The Actor class is rewritten in a similar manner. You find a proposal implementation

in the sources for the book, but try to write your own before looking in the com.apress.

bgn.ch4.basic package.

Figure 4-6 shows the Human class hierarchy, as generated by IntelliJ IDEA.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

124

The UML diagram clearly shows the members of each class and the arrows point

to the superclass. UML diagrams are useful tools in designing class hierarchies and

defining logic of applications. If you want to read more about them and the many types

of UML diagrams that there are, you can do so at www.uml-diagrams.org.

After covering so much about classes and how to create objects, we need to cover

other Java important components that create even more detailed objects, which can then

be used to implement more complex applications. Our Human class is missing quite a few

attributes, like gender for example. A field that models the gender of a person can only

have values from a fixed set of values. It used to be two, but because we are living in a brave

new world that is fond of political correctness, we cannot limit the set of values for genders

to two; so we introduce a third, called UNDEFINED. This means that we must introduce a

Figure 4-6.  UML diagram generated by IntelliJ IDEA

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

125

new class to represent a gender that is limited to being instantiated three times. This would

be tricky to do with a typical class. So, in Java version 1.5, enums were introduced.

�Enums
The enum type is a special class type. It defines a special type of class that can only be

instantiated a fixed number of times. An enum declaration, groups all instances of that

enum. All of them are constants. So, the Gender enum can be defined as shown in the

following piece of code.

package com.apress.bgn.ch4.basic;

public enum Gender {

 FEMALE,

 MALE,

 UNDEFINED

}

An enum cannot be instantiated externally. An enum is by default final, thus it cannot

be extended. Remember how by default every class in Java implicitly extends class

Object? Every enum in Java implicitly extends class java.lang.Enum<E> and in doing so,

every enum instance inherits special methods that are useful when handling enums.

As an enum is a special type of class, it can have fields and a constructor that can

only be private, as enum instances cannot be created externally. The private modifier is

not needed explicitly, as the compiler knows what to do. Let’s modify our Gender enum

to add an integer field that is the numerical representation of each gender and a String

field that is the text representation.

package com.apress.bgn.ch4.basic;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNDEFINED(3, "u");

 private int repr;

 private String descr;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

126

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

 public String getDescr() {

 return descr;

 }

}

But wait, what would stop us from declaring setters and modifying the field values?

Well, nothing. If that is what you need to do you can do it. But this is not a good practice.

Enum instances, should be constant. So, what we can do is to not create setters, and make

sure the values of the fields never change by declaring them final. When we do so, the

only way the fields can be initialized is by calling the constructor, and since the constructor

cannot be called externally, the integrity of our data is ensured. So, our enum becomes

package com.apress.bgn.ch4.basic;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNDEFINED(3, "u");

 private final int repr;

 private final String descr;

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

127

 public String getDescr() {

 return descr;

 }

}

Methods can be added to enums, and each instance can override them. So, if we add

a method called getComment() to the Gender enum, every instance inherits it. But the

instance can override it. Let’s see what that looks like.

package com.apress.bgn.ch4.basic;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNDEFINED(3, "u"){

 @Override

 public String comment() {

 return "to be decided later: " + getRepr() + ", " + getDescr();

 }

 };

 private final int repr;

 private final String descr;

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

 public String getDescr() {

 return descr;

 }

 public String comment() {

 return repr + ": " + descr;

 }

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

128

If we were to print the values returned by the comment() method for each instance,

we would see the following.

package com.apress.bgn.ch4.basic;

public class Sample extends Object {

 public static void main(String... args) {

 System.out.println(Gender.FEMALE.comment());

 // prints '1: f'

 System.out.println(Gender.MALE.comment());

 // prints '2: m'

 System.out.println(Gender.UNDEFINED.comment());

 //prints 'to be decided later: 3, u'

 }

}

We’re going to be playing with enums in future examples as well. Just remember that

whenever you need to limit the implementation of a class to a fixed number of instances,

enums are the tools for you. And now because we introduced enums, our Human class can

also have a field of type Gender.

package com.apress.bgn.ch4.basic;

public abstract class Human {

 public static final int LIFESPAN = 100;

 protected String name;

 protected int age;

 protected float height;

 private Gender gender;

 public Human(String name, int age, Gender gender) {

 this.name = name;

 this.age = age;

 this.gender = gender;

 }

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

129

 public Human(String name, int age, float height, Gender gender) {

 this(name, age, gender);

 this.height = height;

 }

 ...

}

In previous sections, interfaces were mentioned as one of the Java tools used to

create objects. It is high time I expand the subject.

�Interfaces
One of the most common Java interview questions is, “What is the difference between

an interface and an abstract class?” This section provides you the most detailed answer

to that question. An interface is not a class, but it does help create classes. An interface

is fully abstract; it has no fields, only method definitions (skeletons). A class can

implement an interface, and unless the class is abstract, it is forced to provide concrete

implementations for them. Each method declared inside an interface is implicitly public

and abstract, because methods need to be abstract to force implementing classes to

provide implementations and are public, so classes have access to do so.

The only methods with concrete bodies in an interface are static methods and

starting with Java 8, default methods. The interfaces cannot be instantiated, they do not

have constructors.

Interfaces that declare no method definitions are called marker interfaces and have

the purpose to mark classes for specific purposes. The most renowned Java marker

interface is java.io.Serializable, which marks objects that can be serialized(their

state can be saved to a binary file).

An interface can be declared in its own file as a top-level component, or nested inside

another component. There are two types of interfaces: normal interfaces and annotations.

The difference between abstract classes and interfaces, and when one or the other

should be used, becomes relevant in the context of inheritance. Java supports only

single inheritance. This means a class can only have one superclass. This might seem

like a limitation, but let’s consider a simple example. Let’s modify the previous hierarchy

and imagine a class called Performer that should extend the Musician and Actor classes.

If you need a real human that can be modelled by this class, think of David Duchovny, an

actor who recently got into music.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

130

Figure 4-7 shows the class hierarchy.

Figure 4-7.  Diamond class hierarchy

Figure 4-8.  Java hierarchy with interfaces for Performer class

The hierarchy in Figure 4-7 introduces something called the diamond problem, and

the name is inspired by the shape formed by the relationships between classes. What is

actually wrong with the design? If both Musician and Actor extend Human, and inherit

all members from it, which member does Performer inherit and from where? Because it

cannot inherit members of the Human class twice - this would make this class useless and

invalid. So, what is the solution? As you probably imagine, given the title of this section:

interfaces.

What has to be done is to turn methods in classes Musician and Actor into method

skeletons and transform those classes into interfaces. The behavior from the Musician is

moved to a class called, let’s say Guitarist, which extends the Human class and implement

the Musician interface. For the Actor class, something similar can be done, but I’ll leave

that as an exercise for you. Some help is provided by the hierarchy shown in Figure 4-8.

The Musician interface contains only method templates mapping what a musician

does. It does not go into detail to model how. The same goes for the Actor interface. In

the following code snippet, you can see the bodies of the two interfaces.

// Musician.java

package com.apress.bgn.ch4.hierarchy;

import java.util.List;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

131

public interface Musician {

 String getMusicSchool();

 void setMusicSchool(String musicSchool);

 List<String> getSongs();

 void setSongs(List<String> songs);

 String getGenre();

 void setGenre(String genre);

}

 // Actor

package com.apress.bgn.ch4.hierarchy;

import java.util.List;

public interface Actor {

 String getActingSchool();

 void setActingSchool(String actingSchool);

 List<String> getFilms();

 void setFilms(List<String> films);

 void addFilm(String filmName);

}

The fields have been removed because they cannot be part of the interfaces; all that is

left are the method templates. The Performer class is depicted in the next code snippet.

package com.apress.bgn.ch4.hierarchy;

import java.util.List;

public class Performer extends Human

 implements Musician, Actor {

 private String musicSchool;

 private String genre;

 private List<String> songs;

 private String actingSchool;

 private List<String> films;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

132

 public Performer(String name, int age, float height, Gender gender) {

 super(name, age, height, gender);

 }

 @Override

 public int getTimeToLive() {

 return (LIFESPAN - getAge()) / 2;

 }

 public String getMusicSchool() {

 return musicSchool;

 }

 public void setMusicSchool(String musicSchool) {

 this.musicSchool = musicSchool;

 }

 public List<String> getSongs() {

 return songs;

 }

 public void setSongs(List<String> songs) {

 this.songs = songs;

 }

 public void addSong(String song) {

 this.songs.add(song);

 }

 public String getGenre() {

 return genre;

 }

 public void setGenre(String genre) {

 this.genre = genre;

 }

 public String getActingSchool() {

 return actingSchool;

 }

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

133

 public void setActingSchool(String actingSchool) {

 this.actingSchool = actingSchool;

 }

 public List<String> getFilms() {

 return films;

 }

 public void setFilms(List<String> films) {

 this.films = films;

 }

 public void addFilm(String filmName) {

 this.films.add(filmName);

 }

}

What you are left with from this example is that using interfaces multiple
inheritance is possible in Java, and that classes extend classes and implement interfaces.

But inheritance applies to interfaces too. For example, both Musician and Actor

interface can extend an interface named Artist that contains template for behavior

common to both. For example, we can combine the music school and acting school

into a generic school and define the setters and getters for it as method templates. The

Artist interface is depicted as follows with Musician.

 // Artist.java

package com.apress.bgn.ch4.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String chool);

}

 // Musician.java

package com.apress.bgn.ch4.hierarchy;

import java.util.List;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

134

public interface Musician extends Artist {

 List<String> getSongs();

 void setSongs(List<String> songs);

 String getGenre();

 void setGenre(String genre);

}

Hopefully, you understood the idea of multiple inheritance, when it is appropriate

to use classes, and when to use interfaces in designing your applications. It is time to

fulfill the promise made in the beginning of this section and list the differences between

abstract classes and interfaces. You can find them in Table 4-1.

Table 4-1.  Differences Between Abstract Classes and Interfaces in Java

Abstract Class Interface

Can have non-abstract methods Can only have abstract and (since Java 8

default methods, since Java 9 private methods)

Single inheritance: a class can only extend one

class

Multiple inheritance: a class can implement

more than one interface.

Can have final, non-final, static and non-static

variables

Can only have static and final fields.

Declared with abstract class Declared with interface.

Can extend another class using keyword

extends and implement interfaces with keyword

implements

Can only extend other interfaces (one or more)

using key-word extends.

Can have non-abstract, protected or private

members

All members are method definitions and are

by default abstract and public. (Except default

methods, starting with Java 8 and private

methods, starting with Java 9.)

If a class has an abstract method, it must be

declared itself abstract

(No correspondence)

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

135

�Default Methods
One problem with interfaces is that if you modify their bodies to add new methods, most

likely, the code stops compiling because the classes implementing the interfaces do not

provide concrete implementations for the new methods declared in the interfaces. Sure,

a solution would be to declare the new methods in a new interface and then creating

new classes that implement both new and old interfaces.

The methods interfaces expose make up an API (application programming

interface) and when developing applications, the aim is to design applications and their

components to have a stable API. This rule is described in the open closed principle,

which is one of the five SOLID programming principles.2 This principle states that you

should be able to extend a class without modifying it. Thus, modifying the interface a

class implements, extends the class behavior, but only if the class is modified to provide

a concrete implementation for the new methods. So, implementing interfaces, tends to

lead to breaking this principle. So, how can we avoid this in Java?

In Java 8, a solution for this was finally introduced: default methods. Starting with

Java 8, methods with a full implementation can be declared in interfaces as long as they

are declared using the default keyword.

Let’s consider the previous example: the Artist interface. Any artist should be able

to create something, right? So, he or she should have a creative nature. Given the world

we are living in, I won’t mention names, but some of our artists are actually products of

the industry, so they are not creative themselves. So, the realization that we should have

a method that tells us if an artist has a creative nature or not, came way after we decided

our hierarchy, which is depicted in Figure 4-9.

2�A good article is at https://hackernoon.com/solid-principles-made-easy-67b1246bcdf

Figure 4-9.  Java hierarchy with more interfaces for Performer class

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

136

If we add a new method template to the Artist interface, the Performer class causes

a compile error. IntelliJ IDEA makes it clear that our application does not work anymore

by showing a lot of things in red, as depicted in Figure 4-10.

Figure 4-10.  Java broken hierarchy

The compiler errors that we see are caused by our decision to add a new method,

named isCreative, to the Artist interface. It is underlined in the following code

snippet.

package com.apress.bgn.ch4.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String school);

 boolean isCreative();

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

137

To get rid of the compiling errors we’ll transform the isCreative method into a

default method that returns true, because every artist should be creative.

package com.apress.bgn.ch4.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String school);

 default boolean isCreative(){

 return true;

 }

}

Now, the code should compile again. If we need to add more than one default

method to an interface and the methods have some implementation in common, that

code can be isolated starting with Java 9 into a private method that can be called from

the default methods. So basically, starting from Java 9, full blown methods can be part of

an interface, as long as they are declared private.

�Annotation Types

An annotation is defined in a similar way to an interface; the difference is that the

interface keyword is preceded by the at sign (@). Annotation types are a form of

interfaces, and most times, they are used as markers. For example, you’ve probably

noticed the @Override annotation. This annotation is automatically placed by intelligent

IDEs when classes extending or implementing interfaces are generated automatically.

It’s declaration in the JDK is depicted in the following code snippet.

package java.lang;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.SOURCE)

public @interface Override {}

Annotations that do not declare any property are called marker or informative

annotations. They are needed only to inform other classes in the application, or

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

138

developers of the purpose of the components they are placed on. They are not

mandatory and the code compiles without them.

In Java 8, an annotation named @FunctionalInterface was introduced. This

annotation was placed on all Java interfaces that can be used in lambda expressions.

 package java.lang;

import java.lang.annotation.*;

@Documented

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface FunctionalInterface {}

Lambda expressions were also introduced in Java 8 and they represent a compact and

practical way of writing code that was borrowed from languages like Groovy and Ruby.

Functional Interfaces are interfaces that declare a single abstract method. Because

of this, the implementation of that method can be provided on the spot, without the

need to create a class to define a concrete implementation.

Let’s imagine the following scenario: we create an interface named Operation that

contains a single method.

package com.apress.bgn.ch4.lambda;

@FunctionalInterface

public interface Operation {

 float execute(int a, int b);

}

We’ll next create a class named Addition.

package com.apress.bgn.ch4.lambda;

public class Addition implements Operation {

 @Override

 public float execute(int a, int b) {

 return a + b;

 }

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

139

And if we want to test it, we need yet another class.

package com.apress.bgn.ch4.lambda;

public class OperationDemo {

 public static void main(String... args) {

 Addition addition = new Addition();

 float result = addition.execute(2,5);

 System.out.println("Result is " + result);

 }

}

Using lambda, the Addition class is no longer needed, and the instantiation and the

method call can be replaced with

package com.apress.bgn.ch4.lambda;

public class OperationDemo {

 public static void main(String... args) {

 Operation addition2 = (a, b) -> a + b;

 float result2 = addition2.execute(2, 5);

 System.out.println("Lambda Result is " + result2);

 }

}

Lambda expressions can be used for a lot of things. I’ll cover them throughout the

book, whenever code can be written in a more practical way using them.

�Exceptions
Exceptions are special Java classes that are used to intercept special unexpected

situations during the execution of a program so that the developer can implement the

proper course of action. These classes are organized in a hierarchy that is depicted in

Figure 4-11.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

140

Figure 4-11.  Java Exception hierarchy

Throwable is the superclass of all errors that can be thrown in a Java application. The

exceptional situations can be caused by hardware failures (e.g., trying to read a protected

file), by missing resources (e.g., trying to read a file that does not exist), or by bad code.

Bad developers tend to do this: when in doubt, catch a throwable. You should definitely

try to avoid this because the Error class that notifies the developer about a situation

that the system cannot recover from is a subclass of it. Let’s start with a simple example.

We define a method that calls itself (its technical name is recursive), but we’ll design it

badly to call itself forever and cause the JVM to run out of memory.

package com.apress.bgn.ch4.ex;

public class ExceptionsDemo {

 // bad method

 static int rec(int i){

 return rec(i*i);

 }

 public static void main(String... args) {

 rec(1000);

 System.out.println("An error happened.");

 }

}

If we run the class, An error happened is not printed. Instead, the program ends

abnormally by throwing a StackOverFlowError and states the line where the problem is

(in our case, the line where the recursive method calls itself).

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

141

Exception in thread "main" java.lang.StackOverflowError

 �at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.

recExceptionsDemo.java:7

 �at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.

recExceptionsDemo.java:7

 ...

StackOverFlowError is a subclass of Error, and is caused by the defective recursive

method that was called. Sure, we could modify the code, treat this exceptional situation,

and execute whatever has to be executed next.

package com.apress.bgn.ch4.ex;

public class ExceptionsDemo {

...

 public static void main(String... args) {

 try {

 rec(1000);

 } catch (Throwable r) {

 }

 System.out.println("An error happened.");

 }

}

In the console, you see only the An error happened text, but no trace of the error,

which is why we caught it and decided not to print any information about it. This is also

a bad practice called exception swallowing, never do this! Also, the system should not

recover from this, as the result of any operation after an error is thrown is unreliable.

That is why, as a rule of thumb, never catch a throwable!!
The Exception class is the superclass of all exceptions that can be caught and

treated, and the system can recover from them. The RuntimeException class is the

superclass of exceptions that are thrown during the execution of the program, so the

possibility of them being thrown is not known when the code is written. Let’s consider

the following code sample.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

142

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {

 public static void main(String... args) {

 Performer p = PerformerGenerator.get("John");

 System.out.println("TTL: " + p.getTimeToLive());

 }

}

Let’s suppose we do not have access to the code of the PerformerGenerator class.

We know that if we call the get(..) method with a name, it returns a Performer

instance. So, we write the preceding code and try to print the performer time to live.

What happens if the performer is not initialized with a proper object, because the

get("John") method call returns null? The outcome is depicted in the next code snippet.

Exception in thread "main" java.lang.NullPointerException

 �at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.

mainExceptionsDemo.java:10

But if we are smart developers, or a little paranoid, we can prepare for this case,

catch the exception and throw an appropriate message or perform there a dummy

initialization, in case the performer instance is used in some other way later in the code.

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {

 public static void main(String... args) {

 Performer p = null;//PerformerGenerator.get("John");

 try {

 System.out.println("TTL: " + p.getTimeToLive());

 } catch (Exception e) {

 System.out.println("The performer was not initialised properly

 because of: " + e.getMessage());

 }

 }

}

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

143

The exception that was thrown is of type NullPointerException, a class that extends

RuntimeException, so a try/catch block is not mandatory. This type of exceptions are

called unchecked exceptions, because the developer is not obligated to check for them.

The NullPointerException is the exception type Java beginner developers get a lot

because they do not have the "paranoia sense" developed enough to always test objects

with unknown origin before using them.

There is another type of exceptions that are called checked exceptions. This is any

type of exception that extends Exception—including custom exception classes declared

by the developer—that are declared as explicitly thrown by a method. In this case, when

invoking that method, the compiler forces the developer to treat that exception or throws

it forward. Let’s use a mock implementation for PerformerGenerator.

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Gender;

import com.apress.bgn.ch4.hierarchy.Performer;

public class PerformerGenerator {

 public static Performer get(String name)

 throws EmptyPerformerException {

 return new Performer(name,40, 1.91f, Gender.MALE);

 }

}

The EmptyPerformerException is a simple custom exception class that extends the

java.lang.exception class.

package com.apress.bgn.ch4.ex;

public class EmptyPerformerException extends Exception {

 public EmptyPerformerException(String message) {

 super(message);

 }

}

We declared that the get(..) method might throw EmptyPerformerException; and

without a try/catch block wrapping that method call a compiler error is thrown, as

depicted in Figure 4-12.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

144

How do we fix it? Well, we write the code to catch it and print a relevant message.

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {

 public static void main(String... args) {

 try {

 Performer p = PerformerGenerator.get("John");

 System.out.println("TTL: " + p.getTimeToLive());

 } catch (EmptyPerformerException e) {

 System.out.println("Cannot use an empty performer

 because of " + e.getMessage());

 }

 }

}

And since we are talking about exceptions, the try/catch block can be completed

with a finally block. The contents of the finally block are executed if the exception

is thrown further, or if the method returns normally. The only situation in which the

finally block is not executed is when the program ends in an error.

Figure 4-12.  Java compiler error caused by checked exception

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

145

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {

 public static void main(String... args) {

 try {

 Performer p = PerformerGenerator.get("John");

 System.out.println("TTL: " + p.getTimeToLive());

 } catch (EmptyPerformerException e) {

 System.out.println("Cannot use an empty performer!");

 } finally {

 System.out.println("All went as expected!");

 }

 }

}

During this book, we write code that ends in exceptional situations, so we’ll have the

opportunity to expand the subject when your knowledge is a little more advanced.

�Generics
Until now we talked only of object types and java templates used for creating objects. But

what if we would need to design a class with functionality that applies to multiple types

of objects? Since every class in Java extends the Object class, we can create a class with

a method that receives a parameter of type Object, and in the method we can test the

object type. Take this for granted; it is covered later.

In Java 5, the possibility to use a type as parameter when creating an object was

introduced. The classes that are developed to process other classes are called generics.

When writing Java applications, you most likely need at some point to pair up values

of different types. The simplest version of a Pair class that can hold a pair of instances of

any type is listed in the following code snippet.

package com.apress.bgn.ch4.gen;

public class Pair<X, Y> {

 protected X x;

 protected Y y;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

146

 private Pair(X x, Y y) {

 this.x = x;

 this.y = y;

 }

 public X x() {

 return x;

 }

 public Y y() {

 return y;

 }

 public void x(X x) {

 this.x = x;

 }

 public void y(Y y) {

 this.y = y;

 }

 ...

 public static <X, Y> Pair<X, Y> of(X x, Y y) {

 return new Pair<>(x, y);

 }

 @Override public String toString() {

 return "Pair{" + x.toString() +", " + y.toString() + ’}’;

 }

}

Let’s test it! Let’s create a pair of Performer instances, a pair of a String and a

Performer instance, and a pair of Strings to check if this is possible. The toString()}

method is inherited from the Object class and overridden in the Pair class to print the

values of the fields.

package com.apress.bgn.ch4.gen;

import com.apress.bgn.ch4.hierarchy.Gender;

import com.apress.bgn.ch4.hierarchy.Performer;

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

147

public class GenericsDemo {

 public static void main(String... args) {

 Performer john = new Performer("John", 40, 1.91f, Gender.MALE);

 Performer jane = new Performer("Jane", 34, 1.591f, Gender.FEMALE);

 Pair<Performer, Performer> performerPair = Pair.of(john, jane);

 System.out.println(performerPair);

 Pair<String, String> stringPair = Pair.of("John", "Jane");

 System.out.println(stringPair);

 Pair<String, Performer> spPair = Pair.of("John", john);

 System.out.println(spPair);

 System.out.println("all good.");

 }

}

If you execute the preceding class, you see something like the log depicted, as

follows.

Pair{com.apress.bgn.ch4.hierarchy.Performer@1d057a39com.apress.bgn.ch4.

 hierarchy.Performer@26be92ad}

Pair{JohnJane}

Pair{Johncom.apress.bgn.ch4.hierarchy.Performer@1d057a39}

all good.

The println method expects its argument to be a String instance, the toString()

method is called on the object given if argument if the type is not String. If the toString

method was not overridden, the one from the Object class is called that returns the

fully qualified name of the object type and something called a hashcode, which is a

numerical representation of the object.

�Java Reserved Words
Table 4-2 and Table 4-3 list Java keywords that can be used only for their fixed and

predefined purposes in the language. This means they cannot be used as identifiers; you

cannot use them as names for variables, classes, interfaces, enums, or methods.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

148

Table 4-2.  Java Keywords (part 1)

Method Description

abstract Declares a class or method as abstract—as in any extending or implementing

class, must provide a concrete implementation.

assert Test an assumption about your code. Introduced in Java 1.4, it is ignored by the

JVM, unless the program is run with "-ea" option.

boolean

byte

char

short

int

long

float

double

Primitive type names

break Statement used inside loops to terminate them immediately.

continue Statement used inside loops to jump to the next iteration immediately.

switch Statement name to test equality against a set of values known as cases.

case Statement to define case values in a switch statement.

default Declares a default case within a switch statement. Also used to declare default

values in interfaces. And starting with Java 8, it can be used to declare default

methods in interfaces, methods that have a default implementation.

try

catch

finally

throw

throws

Keywords used in exception handling.

class

interface

Keywords used in classes and interfaces declarations.

extends

implements

Keywords used in extending classes and implementing interfaces.

(continued)

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

149

Table 4-2.  (continued)

Method Description

enum Keyword introduced in Java 5.0 to declare a special type of class that defines a

fixed set of instances.

const Not used in Java; a keyword borrowed from C where it declares constants,

variables that are assigned a value, which cannot be changed during the

execution of the program.

final The equivalent of the const keyword in Java. Anything defined with this

modifier, cannot change after a final initialization. A final class cannot be

extended. A final method cannot be overridden. A final variable has the same

value that was initialized with throughout the execution of the program. Any code

written to modify final items, lead to a compiler error.

Table 4-3.  Java Keywords (part 2)

Method Description

do

while

for

Keywords to create loops:

do{..} while(condition),

while(condition){..},

for(initialisation;condition;incrementation){..}

goto Another keyword borrowed from C, but that is currently not used in Java,

because it can be replaced by labeled break and continue statements

if

else

Creates conditional statements:

if(condition) {..}

else {..}

else if (condition) {..}

import Makes classes and interfaces available in the current source code.

instanceof Tests instance types in conditional expressions.

native This modifier indicates that a method is implemented in native code using JNI

(Java Native Interface).

(continued)

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

150

Table 4-3.  (continued)

Method Description

new Creates java instances.

package Declares the package the class/interface/enum/annotation is part of and it

should be the first Java statement line.

public

private

protected

Access-level modifiers for Java items (templates, fields, or methods).

return Keyword used within a method to return to the code that invoked it. The

method can also return a value to the calling code.

static This modifier can be applied to variables, methods, blocks, and nested

classes. It declares an item that is shared between all instances of the class

where declared.

stricfp Used to restrict floating-point calculations to ensure portability. Added in

Java 1.2.

super Keyword used inside a class to access members of the super class.

this Keyword used to access members of the current object.

synchronized Ensures that only one thread executes a block of code at any given time. This

avoids a problem cause “race-condition”3.

transient Marks data that should not be serialized.

volatile Ensures that changes done to a variable value are accessible to all threads

accessing it.

void Used when declaring methods as a return type to indicate that the method

does not return a value.

_(underscore) Cannot be used as an identifier starting with Java 9.

3A detailed article describing this problem and ways to avoid it can be found here:
https://devopedia.org/race/-condition/-software

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

151

�Summary
The most often used elements of the Java language were introduced in this chapter, so

that nothing you find in future code samples should surprise you, and you can focus on

learning the language properly.

•	 Syntax mistakes prevent java code from being transformed into

executable code. This means the code is not compiling.

•	 Static variables can be used directly when declaring classes if static

import statement are used.

•	 Java identifiers must respect naming rules.

•	 Comments are ignored by the compiler and there are three types of

comments in Java.

•	 Classes, interfaces, and enums are Java components used to create

objects.

•	 Abstract classes cannot be instantiated, even if they can have

constructors.

•	 Interfaces could only contain method templates until Java version 8,

when default methods were introduced. And starting with Java 9 they

can contain full implemented methods as long as they are declared

private and are being called only from default methods.

•	 Enums are special types of classes that can only be instantiated a

fixed number of times.

•	 In Java, there is no multiple inheritance using classes.

•	 Interfaces can extend other interfaces.

•	 Java defines a fixed number of keywords, called reserved keywords,

which can be used only for a specific purposes. They are covered in

the previous section.

Chapter 4 Java Syntax

(c) ketabton.com: The Digital Library

153
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_5

CHAPTER 5

Data Types
In Chapter 4, a lot of Java code was written, but when designing classes, only the

most simple data types were used: a few numeric ones and text. In the JDK, a lot of

data types are declared for a multitude of purposes: for modelling calendar dates,

for representing multiple types of numeric, for manipulating texts, collections, files,

database connections, and so forth. Aside from JDK, there are libraries created by

other parties that provide even more functionality. But the data types provided by the

JDK are fundamental ones, the bricks every Java application is built from. Of course,

depending on the type of application you are building, you might not need all of them.

For example, I’ve never had the occasion to use the java.util.logging.Logger class.

Most applications that I’ve worked on were already set up by a different team when I

came along, and they were using external libraries like Log4j or Logback, or logging

abstractions like Slf4j.

This section covers the basic Java data types that you need to write about 80% of any

Java application.

�Stack and Heap Memory
Java types can be split in two main categories: primitive and reference types. Java code

files are stored on the HDD, Java bytecode files as well. Java programs run on the JVM,

which is launched as a process by executing the java executable. During execution, all

data is stored in two different types of memory named: stack and heap that are allocated

for a program’s execution by the operating system.

The stack memory is used during execution(also referred to as at runtime) to store

method primitive local variables and references to objects stored in the heap. A stack

is also a data-structure represented by a list of values that can only be accessed at one

(c) ketabton.com: The Digital Library

154

end, also called a LIFO order, which is an acronym for Last In, First Out. The name fits,

because every time a method gets called, a new block is created in the stack memory

to hold local variables of the method: primitives and references to other objects in the

method.1

Each JVM execution thread has its own stack memory, and its size can be specified

using JVM parameter -Xss. If too many variables are allocated, or the method being

called is recursive and badly designed, the condition to return is never fulfilled, and

thus keeps calling itself forever. You run into a java.lang.StackOverFlowError, which

means there is no stack memory left, because every method call causes a new block to be

created on the stack.

The heap memory is used at runtime to allocate memory for objects and JRE classes.

Objects are instances of JDK classes or developer defined classes. Any object created

with new is stored inside the heap memory. Objects created inside the heap memory

can be accessed by all threads of the application. Access and management of the heap

memory are a little more complex and is covered more in Chapter 13. The -Xms and

-Xmx JVM parameters set the initial and maximum size of the heap memory for a Java

program during execution. The heap size may vary, depending on the number of objects

created by the program, and if all heap memory allocated to a Java program is full, then a

java.lang.OutOfMemoryError is thrown.

The JVM parameters are useful because during development, you might have to

write code that solves complex problems and that needs a bigger than usual stack or

heap memory, so instead of relying on the default sizes, you can set your own. Stack and

heap default values are platform-specific. If you are interested in these values, check out

the official documentation at https://docs.oracle.com/cd/E13150_01/jrockit_jvm/

jrockit/jrdocs/refman/optionX.html, which covers all JVM parameters and default

values. You can open the link in your browser and search for -Xss, -Xms, or -Xmx.

The java.lang.String class is the most used class in the Java programming

language. Because text values within an application might have the same value, for

efficiency reasons this type of objects are managed a little different within the heap. In

the heap there is a special memory region called the StringPool where all the String

1�When the call ends, the block is removed (popped out) and new blocks are created for methods
being called after that. The first element in a stack it’s called head. Operations performed on a
stack have specific names: adding an element to the stack is called a push operation, inspecting
the first element in the stack is called a peek or top operation and extracting the first element in
the stack, its head, is called pop.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

155

instances are stored by the JVM. This had to be mentioned here because the following

piece of code that is analyzed to explain how memory is managed in Java contains a

definition of a String instance, but the String Pool and other details about the String

data type is covered in detail in its own section later in the chapter.

Let’s consider the following executable class, and imagine how the memory is

organized during the execution of this program.

01. package com.apress.bgn.ch5;

02.

03. import java.util.Date;

04.

05. public class PrimitivesDemo {

06.

07. public static void main(String... args) {

08. int i = 5;

09. int j = 7;

10. Date d = new Date();

11. int result = add(i, j);

12. System.out.print(result);

13. d = null;

14. }

15.

16. static int add(int a, int b) {

17. String mess = new String("performing add ...");

18. return a + b;

19. }

20. }

Can you figure out which variables are saved on the stack and which are on the

heap? Let’s go over the program line by line to see what is happening.

•	 As soon as the program starts, Runtime classes that JVM need are

loaded in the heap memory.

•	 The main() method is discovered in line 07 so a stack memory is

created to be used during the execution of this method.

•	 Primitive local variable in line 08, i=5, is created and stored in the

stack memory of main() method.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

156

•	 Primitive local variable in line 09, j=7, is created and stored in the

stack memory of main() method. At this point, the program memory

looks like what’s depicted in Figure 5-1.

•	 In line 10 an object of type java.util.Date is declared, so this object

is created and stored in the heap memory and a reference named d

is saved on the stack. At this point, the program memory looks like

what’s depicted in Figure 5-2.

Figure 5-1.  Java stack and heap memory, after declaring two primitive variables

Figure 5-2.  Java stack and heap memory, after declaring two primitive variables
and an object

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

157

•	 In line 11 method add() is called with arguments i and j. This means

their values is copied into the local variables for this method named a

and b and these two is stored in the memory block for this method.

•	 Inside the add(..) method body, in line 17 a String instance is

declared. So, the String object is created in the heap memory, in the

String Pool memory block, and the reference named mess is stored ,

in the stack, in the memory block for this method. At this point, the

program memory looks like what’s shown in Figure 5-3.

•	 Also in line 11, the result of the execution of the add(..) method is

stored in the local variable named result. Because at this point, the

add(..) method has finished its execution, its stack block is discarded.

Thus we can conclude that variables that are stored on the stack exist

for as long as the function that created them is running. At this point in

the stack memory of main() method the result variable is saved.

Figure 5-3.  Java stack and heap memory, after calling the add(..) method

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

158

•	 In line 12, the print method is called, but we’ll skip the explanation

for this line for simplicity reasons.

•	 In line 13, the d reference is assigned a null value, which means,

the object of type Date is now only in the heap, and it is not linked

to the execution of the main method in any way. Look at it like this:

in that line, we are basically telling the JVM that were are no longer

interested in that object, which means the space containing it can be

collected and used to store other objects.

At this point, the program memory looks like what’s shown in Figure 5-4.

After the program exits all memory contents are discarded.

Figure 5-4.  Java stack and heap memory, before the ending of the main(..)
method execution

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

159

!  When applying for a Java developer position, you will most likely be asked
about the differences between stack and heap memory. So, if you think that the
previous section did not clarify this for you, please feel free to consult additional
resources.2

�Introduction to Java Data Types
The previous example showed that data types in Java can be split into two big groups

based on where they are stored during execution: primitive types and reference types. I’ll

introduce them briefly and explain their most important members later.

�Primitive Data Types
Primitive types are defined by the Java programming language as special types that do

not have a supporting class and are named by their reserved keyword. Variables of these

types are saved on the stack memory and when values are assigned to them using the =

(equals) operator, the value is actually copied. So, if we declare two primitive variables

of type int, as in the following code listing, we end up with two variables, k and q, both

having the same value: 42.

package com.apress.bgn.ch5;

public class PrimitivesDemo {

 public static void main(String... args) {

 int k = 42;

 int q = k;

 System.out.println("k = " + k);

 System.out.println("q = " + q);

 }

}

2�A very good article about this subject is at https://www.journaldev.com/4098/
java-heap-space-vs-stack-memory

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

160

When passed as arguments to other methods, the values of primitive values are copied

and used without the initial variables being modified. This can be proved by creating a

method to swap the values of two int variables. The following is the code for the method.

package com.apress.bgn.ch5;

public class PrimitivesDemo {

 public static void main(String... args) {

 int k = 42;

 int q = 44;

 swap(k, q);

 System.out.println("k = " + k);

 System.out.println("q = " + q);

 }

 static void swap(int a, int b) {

 int temp = a;

 a = b;

 b = temp;

 }

}

So, what do you think is printed as values for k and q? If you thought the output is the

same as the following, you are correct.

k = 42

q = 44

This happens because in Java passing arguments to a method is done through their

value, which means for primitives, changing the formal parameter’s value doesn’t affect

the actual parameter’s value. If you read the previous section, you can already imagine

what happens on the stack. When the swap() method is called a new stack memory

block is created to save the values used by this method. During the execution of the

method, the values might change, but if they are not returned and assigned to variables

in the calling method, the values are lost when the method execution ends. Figure 5-5

depicts the changes that take place on the stack during the execution of the code

previously listed. As you can obviously notice, the heap memory is not used at all.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

161

�Reference Data Types
There are four reference types in Java:

•	 class types

•	 interface types

•	 enums

•	 array types

Reference types are different from primitive types as these types are instantiable

(except interfaces). Objects of these types are created by calling constructors, and

variables of these types are references to objects stored in the heap. Because the

references are stored on the stack as well, even if we modify the previous code to use

references, the behavior is the same. Let’s introduce a class named IntContainer, whose

only purpose is to wrap primitive values into objects.

Figure 5-5.  Java passing primitive arguments by value

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

162

package com.apress.bgn.ch5;

public class IntContainer {

 private int value;

 public IntContainer(int value) {

 this.value = value;

 }

 public int getValue() {

 return value;

 }

 public void setValue(int value) {

 this.value = value;

 }

}

And now we create two objects of this type and two references for them and rewrite

the swap method.

package com.apress.bgn.ch5;

public class ReferencesDemo {

 public static void main(String... args) {

 IntContainer k = new IntContainer(42);

 IntContainer q = new IntContainer(44);

 swap(k,q);

 System.out.println("k = " + k.getValue());

 System.out.println("q = " + q.getValue());

 }

 static void swap(IntContainer a, IntContainer b) {

 IntContainer temp = a;

 a = b;

 b = temp;

 }

}

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

163

If we run the main(..) method, you notice that we still get

k = 42

q = 44

How can this be explained? In the same manner, Java still uses the same style of

arguments passing by value, only this time, the value of the reference is the one passed.

Figure 5-6 depicts what is going on in the memory managed by the JVM for the execution

of the previous code.

In a similar manner, the references to the objects are interchanged in the body of the

swap(..) method, but they have no effect on the k and q references, and neither on the

objects they point to in the heap. To really exchange the values, we need to exchange the

content of the objects by using a new object. Look at the following new version of the

swap(..) method.

package com.apress.bgn.ch5;

public class ReferencesDemo {

Figure 5-6.  Java passing reference arguments by value

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

164

 public static void main(String... args) {

 IntContainer k = new IntContainer(42);

 IntContainer q = new IntContainer(44);

 swap(k,q);

 System.out.println("k = " + k.getValue());

 System.out.println("q = " + q.getValue());

 }

 static void swap(IntContainer a, IntContainer b) {

 IntContainer temp = new IntContainer(a.getValue());

 a.setValue(b.getValue());

 b.setValue(temp.getValue());

 }

}

By making use of setters and getters, we exchange the values of the objects, because

the references are never modified inside the body of the method. Figure 5-7 depicts what

happens within the memory during execution of the previous piece of code.

Figure 5-7.  Java passing reference arguments by value, swapping object contents

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

165

Maybe this example was introduced too early, but it was needed so you could witness as

early as possible the major differences between primitive and reference types. We’ll list all the

differences in the summary, until then, let’s introduce the most used data types in Java.

�Java Primitive Types
Primitive types are the basic types of data in Java. Variables of this type can be created by

directly assigning values of that type, so they are not instantiated.(That would be pretty

difficult to do since these types are not backed up by a class) In Java there are 8 types of

primitive types, six of them used to represent numbers, one to represent characters and

one to represent boolean values. Primitive types are predefined into the Java language

and they have names that are reserved keywords. Primitive variables can have values

only in the interval or dataset that is predefined for that type. When declared as fields of

a class at instantiation time, a default value specific to the type is assigned to the field.

Primitive values do not share state with other primitive values.

Most Java tutorials introduce the numeric types first, but this book starts with the

non-numerics.

�The Boolean Type
Variables of this type can have only one of the two accepted values: true and false. This

type of variable is used in conditions to decide a course of action. The values true and

false are themselves reserved keywords. Default value for a boolean variable is false.

Another observation: when a field is of type boolean the getter for it has a different

syntax. It is not prefixed with get but with is. This makes sense because of what boolean

values are used for. They model properties with only two values. For example, let’s say we

are writing a class to model a conversion process. A boolean field marks the process state

as done or still in process. If the name of the field is done, a getter named getDone() would

be pretty unintuitive and stupid, but one named isDone() would be quite the opposite.

Let’s write that class and also add a main method to test the default value of the done field.

package com.apress.bgn.ch5;

public class ConvertProcess {

 /* other fields and methods */

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

166

 private boolean done;

 public boolean isDone() {

 return done;

 }

 public void setDone(boolean done) {

 this.done = done;

 }

 public static void main(String... args) {

 ConvertProcess cp = new ConvertProcess();

 System.out.println("Default value = " + cp.isDone());

 }

}

And as expected, the output printed is

Default value = false

The boolean type is not compatible with any other primitive type, assigning a

boolean value to an int variable by simple assignment(using =) is not possible. Explicit

conversion is not possible either. So, writing something like the following causes a

compilation error.

boolean f = false;

int fi = (int) f;

We’ll be adding more information about this type in Chapter 6.

�The char Type
The char type represents characters. The values are 16-bit unsigned integers

representing UTF-16 code units. The interval of the possible values for char variables

is : from '\u0000' to '\uffff' inclusive, as numbers this means: from 0 to 65535.

This means that we can try to print the full set of values. As the representation of the

characters is numeric, this means we can convert int values from interval to char values.

The following code snippet, prints all the numeric values of the char interval and their

matching characters.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

167

package com.apress.bgn.ch5;

public class CharLister {

 public static void main(String... args) {

 for (int i = 0; i < 65536; ++i) {

 char c = (char) i;

 System.out.println("c[" + i + "]=" + c);

 }

 }

}

! T he last char value the for loop statement prints is 65535. The 65536 value is
used as an upper maximum value. So, if i=65336, then nothing gets printed and
the execution of the statement ends. The for loop is covered in detail in Chapter 8:
Controlling the flow.

Depending on the operating system, some of the characters might not be supported,

so they won’t be displayed, or they are replaced with a bogus character. The same goes

for whitespace characters.

If you think the interval dedicated to represent characters is too big, scroll the

console and you will understand why. The UTF-16 character set contains all numbers as

characters, all separators, characters from Chinese, Arabic and a lot more symbols.3

�Integer Primitives
In the code samples used so far to introduce Java language basics, we mostly used

variables of type int, but there is more than one numeric primitive type in Java.

Java defines six primitive numeric types, and each of them has a specific internal

representation, on a certain number of bits, which means that there is a minimum and

a maximum value. There are four numeric types to represent integer values and two

numeric types to represent real numbers. Figure 5-8 shows the integer types and the

interval of the values for each of them.

3�A complete list of the symbols and their meanings can be found at https://www.fileformat.
info/info/charset/UTF-16/list.htm

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

168

Anything in a computer is represented using bits of information, each bit can

only have a value of 1 or 0, which is why it is called binary representation. Binary

representation is not the focus of this book, but a short mention is made because it is

important. You might be wondering now why the binary representation was chosen for

our computers? Well, primarily because data (in memory and on storage) is stored using

a series of ones (on) and zeros (off) binary representations; also binary operations are

really easy to do, and this makes computers very fast. Let’s take math for example, we

widely use the decimal system, which is made of 10 unique digits, from 0 to 9. Internally

computers use a binary system, which uses only two digits: 0 and 1. To represent

numbers bigger than 1, we need more bits. So, in a decimal system we have: 0, 1, 2 , 3,

4, 5, 6, 7, 8, 9, 10, 11, and so forth, in a binary system to represent numbers we only have

two digits, so we’ll have: 0, 1, 10, 11, 100, 101, 110, 111, 1000, and so forth. If you imagine

a box in which you can only put ones and zeroes to represent numbers like a computer

does, you need more as the numbers get bigger. A bit can only have two values, so the

number of values to represent it is defined by a power of 2. Look at Figure 5-9.

Figure 5-8.  Java numeric types to represent integer values

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

169

So, on one bit we can represent two values, which is 21,on two bits we can represent

four values, which is 22 and so on. So, that is how we refer to Java primitive numeric types

representation boundaries, sometimes including a bit for the sign as well. Thus, the

following list contains the integer primitive types and their boundaries.

•	 byte represents numbers between −27 and 27-1 inclusive ([-128,

127]). Default value for a byte field is 0 and is represented on 8 bits.

•	 short represents numbers between −215 and 215 − 1 inclusive

([-32768, 32767]). The values interval for this type is a superset of

the byte values interval, thus a byte value can be safely assigned to a

short variable without the need for an explicit conversion. This goes

for all types that have the values interval a superset of the one for the

byte type. In the next code snippet, a byte value is assigned to a short

variable and the code compiles and when executed prints 23.

Default value for a short field is 0 and is represented on 16 bits.

byte bv = 23;

short sbv = bv;

System.out.println("byte to short: " + sbv);

•	 int represents integer numbers between −231 and 231−1 inclusive

([-2147483648, 2147483647]). Default value for a byte field is 0 and

is represented on 32 bits.

Figure 5-9.  Binary numeric representation

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

170

•	 long represents integer numbers between −263 and 263 − 1 inclusive

([-9223372036854775808, 9223372036854775807]) Default value

for a byte field is 0 and is represented on 64 bits.

!  In practice sometimes the need to work with integer numbers outside the
interval long appears. For this situations, in Java a special class (yes a class, not a
primitive type) was defined and is named BigInteger that allocates just as much
memory is needed to store a number of any size. Operations with BigInteger
might be slow, but this is the trade off to work with huge numbers.

�Real Primitives
Real numbers are useful because most prices and most arithmetic operations executed

by programs do not result in an integer number. Real numbers contain a decimal point

and decimals after it. To represent real numbers in Java, two primitive types (called

floating-point types) are defined: float and double. Let’s discuss each of them in a little

more detail.

•	 float represents single-precision 32-bit format IEEE 754 values as

specified in IEEE Standard for Binary Floating-Point Arithmetic,

ANSI/IEEE Standard 754-1985 (IEEE, New York).The default value

is 0.0. A floating-point variable can represent a wider range of

numbers than a fixed point variable of the same bit width at the

cost of precision. Because of this values of type int or long can be

assigned to variables of type float. What is actually happening and

why the loss of precision? Well, a number is represented as a floating-

point number and an exponent, which is a power of 10. So, when the

floating-point number is multiplied with 10 at this exponent power,

the initial number should result. Let’s take the maximum long value,

assign it to a float variable, and check what is printed.

float maxLongF = Long.MAX_VALUE;

System.out.println("max long= " + Long.MAX_VALUE);

System.out.println("float max long= " + maxLongF);

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

171

The Long.MAX_VALUE is a final static variable that has the maximum long value

assigned to it: 9223372036854775807. The preceding code prints the following.

max long= 9223372036854775807

float max long= 9.223372E18

As you can see, the maxLongF number should be equal to 9223372036854775807, but

because it is represented as a smaller number and a power of 10, precision is lost. Because

if we were to reconstruct the integer number by multiplying 9.223372 with 1018 gives us

9223372000000000000. So yeah, close, but not close enough. So, what are the interval edges

for float? Float represents real numbers between 1.4E −45 and 2128 * 1038.

•	 double represents single-precision 64-bit format IEEE 754 values as

specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/

IEEE Standard 754-1985 (IEEE, New York)and represents numbers

between 4.9E −324 and 2127 * 10308. The default value is 0.0.

!  Values 0 and 0.0 are different in Java. To a normal user, they both mean zero,
but in mathematics, the one with the decimal point is more precise. Still in Java
we are allowed to compare an int value to a float value, and if we compare 0
and 0.0, the result is that they are equal. Also positive zero and negative zero are
considered equal; thus the result of the comparison 0.0==-0.0 is true.

Developers cannot define a primitive type by defining it from scratch or by extending

an existing primitive type. Type names are reserved Java keywords, which cannot be

redefined by a developer. It is prohibited to declare fields, methods, or class names that

are named as those types.

A variable that we intend to use must be declared first. When it is declared, a value

can be associated as well. For primitive values, a number can be written in many ways.

The following shows a few samples of how numeric values can be written when variables

are initialized or assigned afterward.

package com.apress.bgn.ch5;

public class NumericDemo {

 private byte b;

 private short s;

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

172

 private int i;

 private long l;

 private float f;

 private double d;

 public static void main(String... args) {

 NumericDemo nd = new NumericDemo();

 nd.b = 0b1100;

 System.out.println("Byte binary value: " + nd.b);

 nd.i = 42 ; // decimal case

 nd.i = 045 ; // octal case - base 8

 System.out.println("Int octal value: " + nd.i);

 nd.i = 0xcafe ; // hexadecimal case - base 16

 System.out.println("Int hexadecimal value: " + nd.i);

 nd.i = 0b10101010101010101010101010101011;

 System.out.println("Int binary value: " + nd.i);

 //Java 7 syntax

 nd.i = 0b1010_1010_1010_1010_1010_1010_1010_1011;

 System.out.println("Int binary value: " + nd.i);

 nd.l = 1000_000l; // equivalent to 1000_000L

 System.out.println("Long value: " + nd.l);

 nd.f = 5;

 �System.out.println("Integer value assigned to a float variable:

" + nd.f);

 nd.f = 2.5f; // equivalent to nd.f = 2.5F;

 �System.out.println("Decimal value assigned to a float variable:

" + nd.f);

 nd.d = 2.5d; // equivalent to nd.d = 2.5D;

 �System.out.println("Decimal value assigned to a double variable:

" + nd.f);

 }

}

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

173

Starting with Java 7, the "_" is permitted to be used when declaring numeric values

to group digits and increase clarity. When running the previous code, the following is

printed.

Byte binary value: 12

Int octal value: 37

Int hexadecimal value: 51966

Int binary value: -1431655765

Int binary value: -1431655765

Long value: 1000000

Integer value assigned to a float variable: 5.0

Decimal value assigned to a float variable: 2.5

Decimal value assigned to a double variable: 2.5

Since no formatting is done when the variables are printed, the values depicted in

the console are in the decimal system.

For now, this is all that can be said about the primitive types. Each of the primitive

types has a matching reference type defined within the JDK, and converting a primitive

value to its equivalent reference is called boxing and the reverse process is called

unboxing. In certain situation those processes are done explicitly, but more about that

later.

�Java Reference Types
Java Reference Types were described earlier to highlight the differences between

primitive and reference types. It is now time to expand that description and give some

examples of the most used JDK reference types when programming.

Objects or instances are created using the new keyword followed by the call of a

constructor. The constructor is a special member of a class, used to create an object

by initializing all fields of the class with their default values, or values received as

arguments. A class instance is created by calling the class constructor (one of them,

because there might be more than one defined within the class). So, considering the

example that we had in Chapter 4, the Performer class, to declare a reference to an

object of type Performer the following expression is used.

Performer human = new Performer("John", 40, 1.91f, Gender.MALE);

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

174

The interface reference types cannot be instantiated, but objects of class types that

extend that interface can be assigned to references of that interface type. The hierarchy

used in Chapter 4 is depicted in Figure 5-10.

Based on this hierarchy, the following four statements are valid and they compile.

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.*;

public class ReferencesDemo {

 public static void main(String... args) {

 �Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = new Performer("Jack", 40, 1.91f, Gender.MALE);

 Actor actor = new Performer("Jean", 40, 1.91f, Gender.MALE);

 �Musician musician = new Performer("Jodie", 40, 1.71f, Gender.

FEMALE);

 }

}

In the example, we created four objects of type Performer and assigned them to

different reference types, including two interface reference types. If we were to inspect

the stack and heap contents for the preceding method, Figure 5-11 shows what we would

find. (Figure 5-11)

Figure 5-10.  Class and interface hierarchy

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

175

All the references in the previous example point to different objects in the heap, but

the following code is possible as well.

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.*;

public class ReferencesDemo {

 public static void main(String... args) {

 �Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = performer;

 Actor actor = performer;

 Musician musician = performer;

 }

}

Figure 5-11.  Multiple reference types

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

176

In the code snippet, we’ve created only one object, but multiple references to it,

of different types. If we were to inspect the stack and heap contents for the preceding

method, Figure 5-12 shows what we would find.

References can only be of the super-type of an assigned object, so the assignments in

the following code snippet will not compile.

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.*;

public class ReferencesDemo {

 public static void main(String... args) {

 �Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = performer;

 Actor actor = performer;

 Musician musician = performer;

Figure 5-12.  Multiple reference types, second example

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

177

 //these will not compile!!!

 performer = musician;

 //or

 performer = human;

 //or

 performer = actor;

 }

}

The reason for that is that the methods are called on the reference, so the object the

reference is pointing to must have those methods. So, if a reference is of type Performer

and getSongs() gets called on it, an object of type actor, like in the last line of code will

not have that method. That is why the Java compiler complains, and that is why smart

editors notify you by underlining the statement with a red line.

Sure, an explicit conversion can be made: performer = (Performer) actor;, and

this convinces the compiler that all is well, but this only causes an exception at runtime.

�Arrays
The new keyword can also be used to create arrays. In a similar manner, it creates objects.

An array is a data structure that holds a group of variables together. Its size is defined

when it is created, and it cannot be changed.

Each variable can be accessed using an index that starts at 0 and goes up to the

length of the array to –1. Arrays can hold primitive and reference values. Let’s declare a

few arrays to show you how versatile and useful they are. Let’s declare first an array field

and check what is happening with it when an object is created.

package com.apress.bgn.ch5;

public class ArraysDemo {

 int array[];

 public static void main(String... args) {

 ArraysDemo ad = new ArraysDemo();

 System.out.println("array was initialized with " + ad.array);

 }

}

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

178

What do you think is printed in the console when the preceding code is executed? If

you assumed that the ad.array field is initialed with null, you were right.

Arrays are reference types, and thus when left to the JVM to initialize fields of this

type with a default value, null is used, as this is the typical default value for reference

types.

The null keyword represents a non-existing value. A reference that is assigned

this value does not have a concrete object assigned to it; it does not point to an object

in the heap. That is why when writing code, if an object is used (through its reference,

of course) before being initialized, a NullPointerException is thrown. This is why

developers test equality to null before using the object (or array). Let’s modify the

previous example to do that.

package com.apress.bgn.ch5;

public class ArraysDemo {

 int array[];

 public static void main(String... args) {

 ArraysDemo ad = new ArraysDemo();

 if (ad.array == null) {

 System.out.println("array unusable");

 }

 }

}

Why do we need the null keyword to mark something that does not exist yet?

Because it is common practice in programming to declare a reference first and initialize

it only when first time used. This is useful, especially for objects that tend to be large in

size, and the process is called lazy loading.

Back to arrays. Let’s properly initialize the array field previously declared and give it a

size to see what happens.

1. package com.apress.bgn.ch5;

2.

3. public class ArraysDemo {

4.

5. public static void main(String... args) {

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

179

6. int[] array = new int[2];

7. for (int i = 0; i < array.length; ++i) {

8. System.out.println("array["+ i +"]= " + array[i]);

9. }

10. }

11. }

The initialization of the Array takes place in line 6 and the size of the array is 2. The

size of the array is given as a parameter to what it looks like a constructor call, only

instead of parentheses, square brackets are used. By setting the dimension of the array

to 2, we are telling the JVM that two adjacent memory locations must be put aside for

this object to store two int values in. And because, no values were specified as the array

contents, what do you think they are filled with when the array is created? Well, this is a

simple one: the previous array is defined to be made of two int values, so when the array

is initialized, the default value for the int type is used. Figure 5-13 depicts what happens

in the stack and heap memory when the previous code is executed.

In lines 7 to 9, a for loop prints the values of the array. The int i variable is what we

call an index variable and traverses all values of the array in increments of 1 in each step

of the loop. The array.length is the property containing the size of the array, how many

elements the array contains. As you probably expected, the output printed in the console is

Figure 5-13.  Declaring an int array of size 2

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

180

array[0]= 0

array[1]= 0

To put values in an array, we have the following choices.

•	 We access the element directly and we set the value.

array[0] = 5;

array[1] = 7;

//or

for (int i = 0; i < array.length; ++i) {

 array[i] = i;

}

•	 We initialize the array explicitly with the values we intend to store.

int another[] = {1,4,3,2};

Arrays can contain references as well. The following code sample depicts how a

Performer array can be used.

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.*;

public class PerformerArrayDemo {

 public static void main(String... args) {

 Performer[] array = new Performer[2];

 for (int i = 0; i < array.length; ++i) {

 System.out.println("performer[" + i + "]= " + array[i]);

 }

 array[0] = new Performer("John", 40, 1.91f, Gender.MALE);

 array[1] = new Performer("Julianna", 35, 1.61f, Gender.FEMALE);

 for (int i = 0; i < array.length; ++i) {

 �System.out.println("performer[" + i + "]= " + array[i].

getName());

 }

 }

}

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

181

And because depicting the memory contents makes it more clear what happens with

our array and objects, I give to you Figure 5-14.

So yeah, we have an array of references, and the object they point to can be changed

during the program.

Arrays can be multidimensional. If you studied advanced math, you probably

remember the matrix concept, which was a rectangular array arranged in rows and

columns. In Java, you can model matrices by using arrays. If you want a simple matrix

with rows and columns, you define an array with two dimensions.

package com.apress.bgn.ch5;

public class MatricesDemo {

 public static void main(String... args) {

 // bi-dimensional array: 2 rows, 2 columns

 int[][] intMatrix = {{1, 0}, {0, 1}};

 int[][] intMatrix2 = new int[2][2];

 for (int i = 0; i < intMatrix2.length; ++i) {

 for (int j = 0; j < intMatrix2[i].length; ++j) {

 intMatrix2[i][j] = i + j;

 System.out.print(intMatrix[i][j] + " ");

 }

Figure 5-14.  Declaring an array of Performers with size 2

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

182

 System.out.println();

 }

 }

}

But you can get multidimensional and define as many coordinates as you want. The

next code snippet defines only three of them.

package com.apress.bgn.ch5;

public class MatricesDemo {

 public static void main(String... args) {

 // cubical matrix, with three coordinates

 int[][][] intMatrix3 = new int[2][2][2];

 for (int i = 0; i < intMatrix3.length; ++i) {

 for (int j = 0; j < intMatrix3[i].length; ++j) {

 for (int k = 0; k < intMatrix3[i][j].length; ++k) {

 intMatrix3[i][j][k] = i + j + k;

 System.out.print("["+i+", "+j+", " + k + "]");

 }

 System.out.println();

 }

 System.out.println();

 }

 }

}

When it comes to arrays, make them as big as you need them and your memory

allows, but make sure to initialize them and make sure in your code that you do not try to

access indexes outside the allowed range. If the size of an array is N, then its last index is

N-1 and its first is 0. Try to access any index outside that range and an exception of type

java.lang.ArrayIndexOutOfBoundsException is thrown at runtime. So writing code like

this

int array = new int[2];

array[5] =7;

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

183

causes your program to crash at runtime, and the following is printed in the console.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:

 Index 5 out of bounds for length 2

at chapter.five.collections/com.apress.bgn.ch5.ArraysDemo.main(ArraysDemo.

java:56)

For easier handling of arrays in Java, there is a special class: java.util.Arrays. This

class provides utility methods to sort and compare arrays, search elements, and convert

their content to text or a stream, so that they can print without writing the tedious for

loop.

int array = new int2;

 System.out.println(Arrays.toString(ad.array));

//or

Arrays.stream(array).forEach(ai -> System.out.println(ai));

//or using methods reference

Arrays.stream(array).forEach(System.out::println);

//sorting

Arrays.sort(another);

Feel free to modify the code provided for this chapter to try some of those methods.

�The String Type
The next special Java type on our list is String. You’ve seen it being used quite often until

now, without a detailed explanation. Together with the primitive int, this is one of the

most used types in Java. String instances model texts and perform all kinds of operations

on them. The String type is a special type, because objects of this type are given
special treatment by the JVM. If you remember the first image with memory contents,

String objects are allocated in the heap in a special place called the String Pool. This

section is dedicated to it; the String type is covered in detail, and a lot of your questions

you might have about this type should get answered.

Until now String variables were declared in this book like this:

String name= "John";

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

184

But the String class has many constructors to initialize String variables. The

following is a set of String variables being declared and initialized.

package com.apress.bgn.ch5.refs;

public class StringDemo {

 public static void main(String... args) {

1. String text1 = null;

2.

3. String text21 = "two";

4. String text22 = "two";

5. String text23 = new String ("two");

6.

7. String piece1 = "t";

8. String piece2 = "wo";

9. String text24 = piece1 + piece2;

10.

11. char[] twoCh = {'t', 'w', 'o'};

12. String text25 = new String(twoCh);

 }

}

Lines 3, 4, 5, 9, and 11 all define a String object with the same content two. We

intentionally did that, creating multiple String objects with the same value. In real life

applications, especially in this big data hype period, applications handle a lot of data,

most of it text form. So, being able to compress the data and reuse it would reduce the

memory consumption, also reducing memory access attempts also increases speed by

reducing processing, which in turn reduces costs.

Before continuing this section, I have to discuss what object equality means in

Java. Objects are handled in Java using references to them. The == operator compares

references; but if we want to compare the objects, we must use the equals() method.

This is a special method inherited from the Object class.

In Java String instances are immutable, which means they cannot be changed once

created. This means that the JVM can reuse existing values to form new string values,

without consuming additional memory. This process is called interning. One copy of

each text value (literal) is saved to a special memory region called String Pool. When

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

185

a new String variable is created and a value is assigned to it, the JVM first searches the

pool for a string of equal value. If found, a reference to this memory address is returned,

without allocating additional memory. If not found, it’ll be added to the pool and its

reference is returned.

This being said, considering the preceding sample code, we expect for text21 and

text22 variable to point to the same String object in the pool, which means references

are equal too. Let’s test that.

package com.apress.bgn.ch5.refs;

public class StringDemo {

 public static void main(String... args) {

 String text21 = "two";

 String text22 = "two";

 if (text21 == text22) {

 System.out.println("Equal References");

 } else {

 System.out.println("Different References");

 }

 if (text21.equals(text22)) {

 System.out.println("Equal Objects");

 } else {

 System.out.println("Different Objects");

 }

 }

}

When running the preceding code, the following is printed in the console, proving

the previous affirmations and the existence of the String pool.

Equal References

Equal Objects

Figure 5-15 shows an abstract representation of the memory contents when the code

is executed.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

186

When a new String object is created using the new operator, the JVM allocate new

memory for a new object and store it in the heap, so the String pool won’t be used.

This results in every String object created like this having its own memory region with

its own address. That is why if we were to compare variable text22 and variable text23,

from the initial code sample, we would expect their references to be different, but the

objects should be equal. Let’s test that.

package com.apress.bgn.ch5.refs;

public class StringDemo {

 public static void main(String... args) {

 String text22 = "two";

 String text23 = new String ("two");

 if (text22 == text23) {

 System.out.println("Equal References");

 } else {

 System.out.println("Different References");

 }

Figure 5-15.  String Pool example

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

187

 if (text22.equals(text23)) {

 System.out.println("Equal Objects");

 } else {

 System.out.println("Different Objects");

 }

 }

}

When running the preceding code, the following is printed in the console, proving

everything that was mentioned before.

Different References

Equal Objects

I leave it up to you to imagine what the stack and heap memory look like in the

previous example.4

The String Pool has a default size of 1009. Starting with Java 6, its size can be

modified using the -XX:StringTableSize.

** Lines 11 and 12 in the initial code sample depict how a String instance
is created from a char[3] array. Until Java 8, internally that was the initial
representation for String: arrays of characters. A character is represented on 2
bytes, which means a lot of memory was consumed for Strings. In Java 9, a new
representation was introduced called Compact String, which uses byte[] or
char[] depending on the content. This means that the memory consumed by your
String processing application is significantly lower starting with Java 9.

�Escaping Characters
There are special characters that cannot be part of a String value. As you have probably

noticed, String values are defined between double quotes ("sample") and this makes

the "(double quote) character unusable as a value. To use it as a String value, it has to

4�If you want to check if you understood memory management and Strings correctly, you
are welcome to draw your own picture and sent it to the author for a review and a technical
discussion.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

188

be escaped. Aside from this character there is also the \(backslash) and the \a(alert).

Figure 5-16 shows how IntelliJ IDEA tries to tell you that you cannot use those characters

in the content of a String value.

To escape those characters, a backlash must be inserted before them. The '(single

quote) must be escaped as well when used as a character value.

char quote = '\";

There are some other Java escape sequences that can be used in String values to get

a certain effect, which are listed in Table 5-1.

Table 5-1.  Java Escape Sequences

Escape Sequence Effect

\n Create a new line (often called the newline character)

\t Create a tab

\b Create a backspace character (which might delete the preceding character,

depending on the output device)

\r Return to the start of the line (but do not make a new line, the equivalent of the

Home key on the keyboard)

\f Form feed (move to the top of the next page for printers)

Figure 5-16.  Code samples with special characters

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

189

The newline \n and the tab \t character are used often in programming to properly

format console output. If we define a String instance like the following,

String perf = "The singers performing tonight are: \n\t Paolo Nutini \n\t

Seth MacFarlane

 \n\t John Mayer";

When printed in the console, the text is formatted to look like this:

The singers performing tonight are:

 Paolo Nutini

 Seth MacFarlane

 John Mayer

�Wrapper Classes
Each primitive type has a corresponding reference type. Before covering each of them

and explaining why they are needed, please take a look at Table 5-2. The Java wrapper

classes wrap a value of the primitive type with the same name.

Table 5-2.  Java Primitive and Equivalent Reference Types

Primitive Class

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

boolean java.lang.Boolean

char java.lang.Char

In addition, these classes provide methods for converting primitive values to String

and vice versa, as well as constants and methods useful when dealing with primitive

types that need to be treated as objects. The numeric wrapper classes are related, all of

them extend the Number class, as depicted in Figure 5-17.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

190

The following code samples mostly use the Integer class, but the other numeric

wrapper classes can be used in a similar way. The JVM knows how to convert a primitive

int into an Integer object automatically when needed, operation that is called boxing

and from an Integer object to a primitive int, operation that is called unboxing. The

following code sample contains a few operations with Integer and int values.

package com.apress.bgn.ch5.refs;

public class WrapperDemo {

 public static void main(String... args) {

 // upper interval boundary for int

 Integer max = Integer.MAX_VALUE;

 System.out.println(max);

 //unboxing

 int pmax = max;

 //boxing

 Integer io = 10;

 //creating primitive utility method

 //exception is thrown, if string is not a number

 int i1 = Integer.parseInt("11");

 //constructor deprecated in Java 9

 //exception is thrown, if string is not a number

 Integer i2 = new Integer("12");

Figure 5-17.  Wrapper classes hierarchy

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

191

 //exception is thrown, if string is not a number

 Integer i3 = Integer.valueOf("12");

 //convert int into to String

 String s0 = Integer.toString(13);

 //convert int to float

 float f0 = Integer.valueOf(14).floatValue();

 //creating string with binary representation of number 9 (1001)

 String s1 = Integer.toBinaryString(9);

 //introduced in Java 1.8

 Integer i4 = Integer.parseUnsignedInt("+15");

 //method to add to integers

 int sum = Integer.sum(2, 3);

 //method to get the bigger value

 int maximum = Integer.max(2, 7);

 }

}

The Character and Boolean types are a little bit different, because these types are not

numeric, so they cannot be converted to any numeric value. They cannot be converted

one to another either. Oracle provides really good documentation for its classes, so if you

are curious about using these two types, check out the official JDK API documentation

at https://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.

html.

�Date Time API
A lot of applications make use of calendar date types to print the current date, deadlines,

and birthdays. No matter what application you decide to build you most likely need to

use calendar dates. Until Java 8, the main class to model a calendar date was java.util.

Date. There are a few problems with this class and others involved in handling calendar

dates. But before we get into that, let’s see how we can get the current date, create a

custom date, and print certain details.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

192

package com.apress.bgn.ch5;

import java.util.Date;

import java.text.SimpleDateFormat;

public class CalendarDateDemo {

 public static void main(String... args) {

 SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

 Date currentDate = new Date();

 System.out.println("Today: " + sdf.format(currentDate));

 //deprecated since 1.1

 Date johnBirthday = new Date(77, 9, 16);

 System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

 int day = johnBirthday.getDay();

 System.out.println("Day: " + day);

 int month = johnBirthday.getMonth() + 1;

 System.out.println("Month: " + month);

 int year = johnBirthday.getYear();

 System.out.println("Year: " + year);

 }

}

Getting the current date is simple; just call the default constructor of the Date class.

Date currentDate = new Date();

The contents of the currentDate can be displayed directly, but usually an instance

of java.text.SimpleDateFormat is used to format the date to a pattern that is country

specific. The formatter can also be used to convert a String with that specific format

intro a Date instance. Of course, if the text does not match the pattern of the formatter, a

specific exception is thrown (type: java.text.ParseException)

SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

System.out.println(currentDate);

System.out.println("Today: " + sdf.format(currentDate));

Date johnBirthday = sdf.parse("16-10-1977");

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

193

To create a Date instance from the numbers representing a date: year, month and

day, a constructor that takes those values as arguments can be used, although that

constructor has been deprecated since Java 1.1, and the recommended way is to use

the sdf.parse(..) method. The constructor has a few particularities regarding its

arguments.

•	 changes the technical meaning again the year argument must be the

intended year value from which 1900 is subtracted

•	 the months are counted from 0, so the month to give as an argument,

must be the month we want –1

The code to construct a Date from the numeric values for the year, month, and day is

depicted as follows.

//deprecated since 1.1

Date johnBirthday = new Date(77, 9, 16);

System.out.println("John's Birthday: " + sdf.format(johnBirthday));

//it prints: John's Birthday: 16-10-1977

If we want to extract the year, month, and day of the month from the date, there are

methods for that: the method to extract the day of the month is named getDate().

try {

 johnBirthday = sdf.parse("16-10-1977");

} catch (ParseException e) {

 e.printStackTrace();

}

System.out.println("John's Birthday: " + sdf.format(johnBirthday));

//day of the month

int day = johnBirthday.getDate();

System.out.println("Day: " + day);

int month = johnBirthday.getMonth() + 1;

System.out.println("Month: " + month);

int year = johnBirthday.getYear();

System.out.println("Year: " + year);

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

194

If you inspect the CalendarDateDemo class in the IntelliJ IDEA editor, you notice

that some constructors and methods are written with a strikethrough font. This means

that they are deprecated and might be removed in future versions of Java and thus they

should not be used. That is why there is another way to do all of that: use the java.util.

Calendar class. The code to do the same as before, but using the Calendar class is listed

next.

package com.apress.bgn.ch5;

import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;

import java.text.SimpleDateFormat;

public class CalendarDateDemo {

 public static void main(String... args) {

 SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

 Calendar calendar = new GregorianCalendar();

 Date currentDate = calendar.getTime();

 System.out.println("Today: " + sdf.format(currentDate));

 calendar.set(1977, 9, 16);

 Date johnBirthday = calendar.getTime();

 System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

 int day = calendar.get(Calendar.DAY_OF_MONTH);

 System.out.println("Day: " + day);

 int month = calendar.get(Calendar.MONTH);

 System.out.println("Month: " + month);

 in year = calendar.get(Calendar.YEAR);

 System.out.println("Year: " + year);

 }

}

Unfortunately some of the peculiarities remain, as the central class for representing

dates is still the java.util.Date, but at least we are not using anything deprecated

anymore.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

195

The java.util.Date class and the java.text.SimpleDateFormat class are not

thread safe, so in complex applications with multiple execution threads, developers

must synchronize access to those type of objects explicitly. Objects of those types are not

immutable, and working with time zones is a pain. That is why in Java 8, a new API to

model calendar-date operations was introduced. It is better designed, and date instances

are thread-safe and immutable. The central classes for the API are java.time.LocalDate

and java.time.LocalDateTime, used to model calendar dates and calendar dates with

time. Let’s see how the code to get the current date and to create a custom date looks

with the new API.

package com.apress.bgn.ch5;

import java.time.LocalDate;

import java.time.LocalDateTime;

import java.time.Month;

public class CalendarDateDemo {

 public static void main(String... args) {

 LocalDateTime currentTime = LocalDateTime.now();

 System.out.println("Current DateTime: " + currentTime);

 LocalDate today = currentTime.toLocalDate();

 System.out.println("Today: " + today);

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 System.out.println("John’s Birthday: " + johnBd);

 int day = johnBd.getDayOfMonth();

 System.out.println("Day: " + day + ", " + johnBd.getDayOfWeek());

 int month = johnBd.getMonthValue();

 System.out.println("Month: " + month + ", " + johnBd.getMonth());

 int year = johnBd.getYear();

 System.out.println("Year: " + year);

 }

}

To get the current date and time a static method named now() is called, which

returns an instance of type LocalDateTime. This instance can get the current date by

calling toLocalDate().

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

196

To create a custom date, the actual year and day of month can be used as parameters

and the month can be specified using one of the values of the java.time.Month enum.

Extracting information regarding a date can be done easily by calling methods with

intuitive names. Look at the getDayOfMonth() and getDayOfWeek() methods in the

previous snippet. Their name reflects exactly what data they are returning.

The LocalDate and LocalDateTime classes simplify the development where time

zones are not required. Working with time zones is an advanced subject, so it won’t be

covered in this book.

�Collections
Among the most important family types in JDK are collections. Classes and interfaces

in the collections family model common data collections, such as sets, lists, and maps.

All the classes are stored under package java.util and can be split into two categories:

tuples and collections of key-value pairs. The tuples are unidimensional sets of data: if

the values are unique, any class implementing the java.util.Set interface should be

used to model them, if not any class implementing the java.util.List interface should

be used. For collections of key-value pairs classes, implementations of java.util.Map

should be used.

Starting with Java 1.5 collections have become generic, which allows developers

more precision and security when working with them. Before Java 1.5, collections could

contain any type of objects. Developers can still write code like this:

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.Gender;

import com.apress.bgn.ch4.hierarchy.Performer;

import java.util.*;

public class CollectionsDemo {

 public static void main(String... args) {

 List objList = new ArrayList();

 objList.add("temp");

 objList.add(Integer.valueOf(5));

 objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

 }

}

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

197

When you iterate this list, it is difficult to determine which objects you are handling

without complicated code analyzing the type of each object. This was mentioned at the

end of Chapter 4 when generics were introduced. The code to iterate the list and process

the elements is depicted next to show you why this is a bad idea and bad practice in this

day and age of Java.

package com.apress.bgn.ch5;

import com.apress.bgn.ch4.hierarchy.Gender;

import com.apress.bgn.ch4.hierarchy.Performer;

import java.util.*;

public class CollectionsDemo {

 public static void main(String... args) {

 List objList = new ArrayList();

 objList.add("temp");

 objList.add(Integer.valueOf(5));

 objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

 for (Object obj : objList) {

 if (obj instanceof String) {

 System.out.println("String object = " + obj.toString());

 } else if (obj instanceof Integer) {

 Integer i = (Integer)obj;

 System.out.println("Integer object = " + obj.toString());

 } else {

 Performer p = (Performer) obj;

 System.out.println("Performer object = " + p.getName());

 }

 }

 }

}

Maybe this is not clear to you now, but to use the contents of the list, you have to

know all the types of objects that were put in the list. This might be doable when you are

working on a small project, but in a bigger project with multiple developers involved,

this can get messy really fast.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

198

This is where generics come to help. Generics help define at compile time what

types of objects should be put into a collection, and thus, if the wrong object type is

added to the collection, the code no longer compiles. Both lists and sets implement the

same interface: java.util.Collection<T>, which means their API is almost the same.

Figure 5-18 shows a simplified hierarchy of the collections with the most used classes

and interfaces in programming Figure 5-18.

Let’s start with a list example.

package com.apress.bgn.ch5;

import java.util.*;

public class CollectionsDemo {

Figure 5-18.  Collection hierarchy

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

199

 public static void main(String... args) {

 List<String> stringList = new ArrayList<String>();

 stringList.add("one");

 stringList.add("two");

 stringList.add("three");

 for (String s : stringList) {

 System.out.println(s);

 }

 }

}

A List contains an unsorted collection of non-unique data, null elements

included. In the example, we declared a reference of type List<T> and an object of type

ArrayList<T>. We did this because as all implementations have the same API, we could

easily switch ArrayList<T> with LinkedList<T> and the code still works. Declaring
abstract references is a good programming practice.

List<String> stringList = new ArrayList<String>();

stringList = new LinkedList<String>();

The syntax in the previous examples are pre-Java 1.7, when the <> (diamond
operator) was introduced. This allowed more simplification of collections initializations,

because it only required declaring the type of the elements in the list only in the

reference declaration. So, the two lines in the previous code snippet became

List<String> stringList = new ArrayList<>();

stringList = new LinkedList<>();

Every new Java version has added changes to the collection framework starting with

Java 1.5. In Java 1.8, support for lambda expressions was added with a default method

named forEach in the java.lang.Iterable<T> interface, which is extended by the java.

lang.Collection<T>. So, the code to print all the values in the list, as we did previously

using a for loop, can be replaced with

stringList.forEach(element -> System.out.println(element));

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

200

In Java 9, yet another improvement was introduced: factory methods for collections.

Our collection was populated with elements by repeatedly calling add(..), which is a

little redundant, especially since we have the full collection of elements we want to put in

the list. That is why in Java 9 methods to create collection objects in one line of code were

introduced; for example,

List<String> stringList = List.of("one", "two", "three");

The resulting List<T> is an immutable collection; it can no longer be modified, and

elements cannot be added or removed from it.

Moving closer to the present, in Java 10, support for local variable type inference

was added, which means that we no longer have to explicitly specify the reference

type, because it is automatically be inferred based on the object type, so the following

declaration

List<String> stringList = List.of("one", "two", "three");

becomes

var stringList = List.of("one", "two", "three");

Similar code can be written with Set<T>, HashSet<T>, and TreeSet<T>, and similar

methods exist for the Set<T> classes.

Map implementations come with a few differences because they model collections of

key-value pairs; so this case is treated separately. The following code snippet depicts the

creation, initialization of a map that uses keys of type String and values of type Integer.

The syntax is Java 6.

package com.apress.bgn.ch5;

import java.util.*;

public class CollectionsDemo {

 public static void main(String... args) {

 Map<String, Integer> stringMap = new HashMap<String, Integer>();

 stringMap.put("one", 1);

 stringMap.put("two", 2);

 stringMap.put("three", 3);

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

201

 for (Map.Entry<String, Integer> entry : stringMap.entrySet()) {

 System.out.println(entry.getKey() + ": " + entry.getValue());

 }

 }

}

From the for loop, you can infer that a map is a collection of Map.Entry<K, V>

elements. If we were to move ahead to the Java 1.7 syntax, the declaration of the map

changes to

Map<String, Integer> stringMap = new HashMap<>();

In Java 1.8, traversal and printing values in maps became more practical.

stringMap.forEach((k,v) -> System.out.println(k + ": " + v));

And in Java 9, declaring and populating a map became easier.

Map<String, Integer> stringMap = Map.of("one", 1,"two", 2, "three", 3);

And local variable type inference works for maps too.

var stringMap = new HashMap<String, Integer>();

The JDK classes for working with collections, cover a wide range of functionality,

such as sorting, searching, merging collections, intersections, and so on. As the book

advances, the context of the code samples widen, and we are able to use collections to

solve real-life problems. So, other methods are covered and working code samples are

provided.

�Concurrency Specific Types
A Java program can have more than one execution thread. By default, when a Java

program is executed, a thread is created for the code that is called from the main method

and a few other utility threads are created and executed in parallel for JVM related

things. These threads can easily be accessed using static utility methods defined in

the java.lang.Thread class. The following code sample does just that: extracts the

references to the Thread instances and prints their name in the console.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

202

package com.apress.bgn.ch5;

public class ListJvmThreads {

 public static void main(String... args) {

 var threadSet = Thread.getAllStackTraces().keySet();

 var threadArray = threadSet.toArray(new Thread[threadSet.size()]);

 for (int i = 0; i < threadArray.length; ++i) {

 System.out.println("thread name: " + threadArray[i].getName());

 }

 }

}

The output produced by running the code in JDK 11 prints the following.

thread name: Reference Handler

thread name: Monitor Ctrl-Break

thread name: Finalizer

thread name: main

thread name: Signal Dispatcher

thread name: Common-Cleaner

The thread named main is the thread that executes the developer written code. The

developer can write code to start its own threads from the main thread. The simplest way

to create a custom thread is to create a class that extends the Thread class. The Thread

class implements an interface named Runnable that declares a single method named

run(). The Thread class declares a method named start(). When this method is called,

the body of the run() method is executed in a separate execution thread.5 Thus, when

extending the Thread class, the run() method must be overridden.

The following example depicts a class named CounterThread. The contents of

the run() method is designed to pause the execution from time to time by calling the

Thread.sleep(..) utility method. The body of the method is wrapped in two lines

of code that print the name of the thread and a starting message and the name of the

thread and an ending message. This is necessary to slow down the execution of this type

of thread, so that we can clearly see they are executed in parallel.

5�Sure, the internal of thread management is much more complicated, but this section scratches
the surface.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

203

package com.apress.bgn.ch5;

public class CounterThread extends Thread {

 @Override

 public void run() {

 System.out.println(this.getName() + " started...");

 for (int i = 0; i < 10; ++i) {

 try {

 Thread.sleep(i * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println(this.getName() + " ended.");

 }

}

To test our thread class is as simple as instantiating it a few times and calling the

start() method.

package com.apress.bgn.ch5;

public class ThreadDemo {

 public static void main(String... args) {

 for (int i = 0; i < 10; ++i) {

 new CounterThread().start();

 }

 }

}

In the example, ten instances of class CounterThread were created and the start()

method was called for each of them. When the previous code is executed, a log similar to

the following should print in the console.

Thread-0 started...

Thread-3 started...

Thread-8 started...

Thread-9 started...

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

204

Thread-7 started...

Thread-6 started...

Thread-1 started...

Thread-2 started...

Thread-4 started...

Thread-5 started...

Thread-4 ended.

Thread-1 ended.

Thread-9 ended.

Thread-7 ended.

Thread-5 ended.

Thread-8 ended.

Thread-0 ended.

Thread-6 ended.

Thread-2 ended.

Thread-3 ended.

Another way to create threads is by creating a class that implements the Runnable

interface. This is useful when we want to customize the execution in the run method a

little more and maybe extend another class. Or, considering that the Runnable declares

one method, lambda expressions can be used too. Let’s declare the equivalent Runnable

implementation.

package com.apress.bgn.ch5;

import static java.lang.Thread.*;

public class CounterRunnable implements Runnable {

 @Override

 public void run() {

 System.out.println(Thread.currentThread().getName() + " started...");

 for (int i = 0; i < 10; ++i) {

 try {

 Thread.sleep(i * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

205

 }

 System.out.println(Thread.currentThread().getName() + " ended.");

 }

}

Because we no longer have access to the name of the thread, to print it we must use

another utility method Thread.currentThread() to retrieve a reference to the current

thread in execution. The Thread class provides a constructor with a parameter of type

Runnable, this means it can be called with any argument of a type that implements

Runnable. And thus, to create threads using CounterRunnable, code similar to the

following example can be written.

package com.apress.bgn.ch5;

public class LambdaRunnableDemo {

 public static void main(String... args) {

 for (int i = 0; i < 10; ++i) {

 new Thread(new CounterRunnable()).start();

 }

 }

}

If this code is run, we’ll get a similar output.

This is a good candidate for using lambda expressions, because Runnable can be

implemented on the spot. So, the previous code can also be written as follows.

for (int i = 0; i < 10; ++i) {

 new Thread(

 //Runnable implemented on the spot

 () -> {

 System.out.println(currentThread().getName() + " started...");

 for (int j = 0; j < 10; ++j) {

 try {

 sleep(j * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

206

 System.out.println(currentThread().getName() + " ended.");

 }).start();

 }

Java provides thread management classes that can create and manage threads, so

the developer mustn’t declare the threads explicitly. The concurrency framework is a

subject too advanced for this book, but if this section has made you curious, the Oracle

Concurrency tutorial is at https://docs.oracle.com/javase/tutorial/essential/

concurrency/index.html.

�Summary
In this chapter, you learned how memory for a Java program is administered by the JVM

and the basics of the most used Java data types. We discussed the following.

•	 how the memory is managed during the execution of a Java program

•	 the differences between primitive and reference types

•	 how many primitive types are defined in Java

•	 why the String type is special

•	 how to work with calendar dates

•	 how arrays are declared and used

•	 how null is used

•	 how to declare and use collection implementations

If some of the examples in this chapter seem complicated, do not be discouraged.

It is difficult to explain certain concepts without providing working code that you can

execute, test, and even modify yourself. Unfortunately, this requires the use of concepts

introduced in later chapters (e.g., for and if statements). Make a note of every concept

that it is not clear now, and the page number, and return to this chapter after you read

about the concept in more detail later in the book.

Chapter 5 Data Types

(c) ketabton.com: The Digital Library

207
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_6

CHAPTER 6

Operators
The previous chapters covered the basic concepts of Java programming. You were taught

how to organize your code, how your files should be named, and which data types you

can use, depending on the problem you are trying to solve. You were taught how to

declare fields, variables, and methods and how they were stored in memory to help you

design your solutions so that resource consumption is optimal.

In this chapter, you learn to combine declared variables using operators. Most Java

operators are the ones you know from math, but because programming involves types

other than numeric, extra operators with specific purposes were added. Table 6-1 lists all

Java operators with their category and scope.

Table 6-1.  Java Operators

Category Operator Scope

casting (type) explicit type conversion

unary, postfix expr++, expr– post increment/decrement

unary, prefix ++expr, –expr pre increment/decrement

unary, logical ! negation

unary, bitwise ~ bitwise complement performs a bit-by-bit

reversal of an integer value

multiplicative, binary *, /, % for numeric types: multiply, divide, and return

remainder

additive, binary +, - for numeric types: addition, subtraction; “+”

also used for String concatenation

(continued)

(c) ketabton.com: The Digital Library

208

Category Operator Scope

bit shifting, binary >>, <<, >>> for numeric types: move bits to the right, left,

and right ignoring the sign

conditional, relational instanceof tests whether the object is an instance of the

specified type (class or subclass or interface)

conditional, relational ==, !=, <, >,

<=, >=

equals differs from, lesser than, greater than,

less than or equals, greater than or equals

AND, binary & bitwise logical AND

exclusive OR, binary ^ bitwise logical XOR

inclusive OR, binary | bitwise logical OR

conditional, logical AND &&

conditional, logical OR ||

conditional, ternary ? : also called the Elvis operator

assignment =, +=, -=, *=,

/= %=, &=, ^=,

<<= >>=, >>>=

, |=

simple assignment, combined assignments

Table 6-1.  (continued)

Let’s start this chapter with the most common operator in programming: the

assignment operator (=).

�The Assignment Operator (=)
This operator is the most used in programming, as nothing can be done without it. Any

variable that you create, regardless of the type, primitive or reference has to be given a

value at some point in the program. Setting of a value using the assignment operator is

quite simple: on the left side of the operator you have the variable name and on the right

it is a value. The only condition for an assignment to work is that the value matches the

type of the variable.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

209

To test this operator, you can play a little using jshell; make sure that you start it in

verbose mode so you can see the effect of your assignments.

$ jshell -v

| Welcome to JShell -- Version 11-ea

| For an introduction type: /help intro

[jshell> int i = 0;

i ==> 0

| created variable i : int

[jshell> i = -4;

i ==> -4

| assigned to i : int

jshell> String sample = "text"

[sample ==> "text"

| created variable sample : String

[jshell> List<String> list = new ArrayList<>()

list ==> []

| created variable list : List<String>

[jshell> list = new LinkedList<>();

list ==> []

| assigned to list : List<String>

In the previous example, we declared primitive and reference values and assigned

and reassigned values to them. Assignment of values with types that mismatch the initial

type is not permitted. In the following code sample, we are trying to assign a text value to

a variable that was previously declared as having the int type.

[jshell> int i = 0;

i ==> 0

| created variable i : int

[jshell> i = -4;

i ==> -4

| assigned to i : int

Chapter 6 Operators

(c) ketabton.com: The Digital Library

210

[jshell> i = "gigi pedala"

| Error:

| incompatible types: java.lang.String cannot be converted to int

| i = "gigi pedala"

| ^-----------^

Introduction of type inference in JDK 10 does not affect this, and the type of the

variable is inferred depending on the type of the first value assigned. This means that

you cannot declare a variable using the var keyword without specifying an initial value.

This excludes the null value, as it cannot be used to declare a type. This can be forced

though by casting the null value to the type we are interested in.

[jshell> var j;

| Error:

| cannot infer type for local variable j

| (cannot use ’var’ on variable without initializer)

| var j;

| ^----^

[jshell> var j = 5;

j ==> 5

| created variable j : int

[jshell> var sample2 = "bubulina"

sample2 ==> "bubulina"

| created variable sample2 : String

// yes, this actually works !

[jshell> var funny = (Integer) null;

funny ==> null

| created variable funny : Integer

This is all that can be said about the assignment operator. Other details are covered

later with the composed assignment operators.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

211

�Explicit Type Conversion (type) and instanceof
We coupled these two operators in the same section, because it is easier to provide code

samples that are identical to what you use frequently in your job as a developer. (should

you decide to go in this direction).

It is better to keep the reference type as generic as possible to allow changing of the

concrete implementation without breaking the code, but sometimes, we might need to

group objects together, but execute different code depending of their types. Remember

the Performer hierarchy mentioned in the previous chapter? We’re going to make use of

these types here to show you how to use these operators. In case you do not want to go

back to the previous chapter to see the hierarchy, 6-1 here it is again in Figure 6-1, but

with a twist: we added an extra class named Graphician, which implements the Artist

interface and extends the Human class.1

In the following code sample, an object of type Musician and one of type Graphician

are created and both are added into a list containing references of type Artist. We can

do this because, both types implement the interface Artist.

package com.apress.bgn.ch6;

import com.apress.bgn.ch4.hierarchy.*;

import java.util.ArrayList;

import java.util.List;

1�The implementation of the new class is not relevant for this chapter, so it won’t be detailed here.

Figure 6-1.  The Performer hierarchy

Chapter 6 Operators

(c) ketabton.com: The Digital Library

212

public class OperatorDemo {

 public static void main(String... args) {

 List<Artist> artists = new ArrayList<>();

 Musician john = new Performer("John", 40, 1.91f, Gender.MALE);

 List<String> songs = List.of("Gravity");

 john.setSongs(songs);

 artists.add(john);

 �Graphician diana = new Graphician("Diana", 23, 1.62f, Gender.

FEMALE, "macOs"); artists.add(diana);

 for (Artist artist : artists) {

 if (artist instanceof Musician) { \\ (*)

 Musician musician = (Musician) artist; \\(**)

 System.out.println("Songs: " + musician.getSongs());

 } else {

 System.out.println("Other Type: " + artist.getClass());

 }

 }

 }

}

The line marked with (*) shows how to use the instanceof operator. This operator

tests whether the object is an instance of the specified type. (class, subclass or interface).

It is used in writing conditions to decide which code block should be executed.

The line marked with (**) does an explicit conversion of an reference. Since the

instanceof operator helped figure out that the object the reference points to is of type

Musician, we can now convert the reference to the proper type so methods of class

Musician can be called.

But what happens if an explicit conversion fails? For this we try to convert the

previously declared Graphician reference to Musician. So, we’ll add the following line.

Musician fake = (Musician) diana;

Chapter 6 Operators

(c) ketabton.com: The Digital Library

213

The compiler won’t complain, but this does not change the fact that Graphician

has no relation to the Musician type, so the code will not run, and a special exception

is thrown in the console to tell you what went wrong. The error message printed in the

console is explicit and is depicted in the next log snippet.

Exception in thread "main" java.lang.ClassCastException:

 chapter.six/com.apress.bgn.ch6.Graphician cannot be cast to

 chapter.four/com.apress.bgn.ch4.hierarchy.Musician

 �at chapter.six/com.apress.bgn.ch6.OperatorDemo.mainOperatorDemo.java:24

The message clearly states that the two types are not compatible and the package

and module names are included.

But explicit conversion is not limited to reference types, it works for primitives too.

Any variable of a type with values in a smaller interval can be converted to a type of

a bigger interval, without explicit conversion. But the reverse is possible too by using

explicit conversion, but if the value is too big, bits is lost and the value is... unexpected.

Look at the following examples of conversions between byte and int.

[jshell> byte b = 2;

b ==> 2

| created variable b : byte

[jshell> int i = 10;

i ==> 10

| created variable i : int

[jshell> i = b

i ==> 2

| assigned to i : int

[jshell> b = i

| Error:

| incompatible types: possible lossy conversion from int to byte

| b = i

| ^

Chapter 6 Operators

(c) ketabton.com: The Digital Library

214

[jshell> b = (byte) i

b ==> 2 // all good, because value is in byte interval

| assigned to b : byte

[jshell> i = 300000

i ==> 300000

| assigned to i : int

[jshell> b = (byte) i

b ==> -32 // oops! value outside byte interval

| assigned to b : byte

So, as a general rule, use explicit conversion to widen the scope of a variable, not to

narrow it, as narrowing it can lead to unexpected results.

�Numerical Operators
This section groups all operators that are mostly used on numerical types. The numerical

operators you know from math: +, -, /. Comparators are found in programming too, but

they can be combined to obtain different effects.

�Unary Operators
Unary operators require only one operand, and they affect the variable they are

applied to.

�Incrementors and Decrementors

In Java(and some other programming languages) there are unary operator called

incrementors (++) and decrementors (--). These operators are placed before or after a

variable to increase or decrease its value by 1. They are usually used in loops as counters

to condition the termination of the loop. When they are placed before the variable, they

are called prefixed and when are placed after it they are called postfixed.

When they are prefixed, the operation is executed on the variable, before the variable

is used in the next statement. The following code sample tests this affirmation.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

215

package com.apress.bgn.ch6;

public class UnaryOperatorsDemo {

 public static void main(String... args) {

 int i = 1;

 int j = ++i;

 System.out.println("j is " + j + ", i is " + i);

 }

}

The expected result of the preceding code is that j=2, because the value of the i

variable is modified to 2, before it is assigned to j. Thus, the expected output is j is 2,

i is 2.

When they are postfixed, the operation is executed on the variable, after the variable

is used in the next statement. The following code sample tests this affirmation.

package com.apress.bgn.ch6;

public class UnaryOperatorsDemo {

 public static void main(String... args) {

 i = 1;

 j = i++;

 System.out.println("j is " + j + ", i is " + i);

 }

}

The expected result of the preceding code is that j=1, because the value of the i

variable is modified to 2, after it is assigned to j. Thus, the expected output is j is 1,

i is 2.

The decrementor operator can be used in a similar manner, the only effect is that the

variable is decreased by 1. Try to modify the UnaryOperatorsDemo to use the -- operator

instead.

�Sign Operators

Mathematical operator + is used on a single operator to indicate that a number is

positive(redundant and mostly never used). So basically,

int i = 3;

Chapter 6 Operators

(c) ketabton.com: The Digital Library

216

Is the same as

int i = +3;

Mathematical operator - declares negative numbers.

[jshell> int i = -3

i ==> -3

| created variable i : int

Or it negates an expression.

[jshell> int i = -3

i ==> -3

| created variable i : int

[jshell> int j = - (i + 4)

j ==> -1

| created variable j : int

As you can see in the example, the result of the (i + 4) is 1, because i = -3,

but because of the - in front of the parentheses, the final result that is assigned to the j

variable is -1.

�Negation Operator

There are two more unary operators, and their role is to negate variables. Operator !

applies to boolean variables, and it is used to negate them. So, true becomes false and

false becomes true.

[jshell> boolean t = true

t ==> true

| created variable t : boolean

[jshell> boolean f = !t

f ==> false

| created variable f : boolean

[jshell> boolean t2 = !f

t2 ==> true

| created variable t2 : boolean

Chapter 6 Operators

(c) ketabton.com: The Digital Library

217

�Binary Operators
Let’s start with the ones you probably know from math.

•	 + adds two variables

[jshell> int i = 4

i ==> 4

| created variable i : int

[jshell> int j = 6

j ==> 6

| created variable j : int

[jshell> int k = i + j

k ==> 10

| created variable k : int

[jshell> int i = i + 2

i ==> 6

| modified variable i : int

| update overwrote variable i : int

The last statement int i = i + 2 has the effect of incrementing the value of

i with 2 and there is a little redundancy there. That statement can be written

without mentioning i twice, because its effect is to increase the value of i

with 2. This can be done by using the += operator, which is composed of the

assignment and the addition operator. The optimal statement is i += 2.

The + operator can also be used to concatenate String instances, or String

instances with other types. The JVM decides how to use the + operator

depending on the context. Let’s look at the following example.

package com.apress.bgn.ch6;

public class ConcatenationDemo {

 public static void main(String... args) {

 int i1 = 0;

 int i2 = 1;

 int i3 = 2;

Chapter 6 Operators

(c) ketabton.com: The Digital Library

218

 System.out.println(i1 + i2 + i3);

 System.out.println("Result1 = " + (i1 + i2) + i3);

 System.out.println("Result2 = " + i1 + i2 + i3);

 System.out.println("Result3 = " + (i1 + i2 + i3));

 }

}

If the preceding code executed the following is displayed in the console.

1. 3

2. Result1 = 12

3. Result2 = 012

4. Result3 = 3

I’ll explain.

–– The result in line 1 can be explained as follows: because all

operands are of type int JVM adds the terms as normal and the

println function prints this result.

–– The result in line 2 can be explained as follows: parentheses

were added to isolate the addition of two terms (i1+i2).

Because of this, the JVM executes the addition between the

parentheses as a normal addition between to int terms. But

after that, what we are left with is "Result1 = " + 1 + i3, and

this operation includes a String operand, which means the +

operator must be used as a concatenation operator, because

adding a number with a text value does not work otherwise.

–– The result in line 3 should be obvious at this time; we have three

int operands, and a String operand, and thus the JVM decides

that the context of the operation cannot be numeric, so concat-

enation is required.

–– The result in line 4 can be explained in a similar way as line 2;

the parentheses are used to ensure that the context of the

operation is numeric, and thus the three operands are added.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

219

This is a typical example to show how JVM decides the context for operations

involving the + operator that you might find in other Java tutorials as well.

But the int variables can be replaced with float or double variables and the

behavior is similar.

•	 - subtracts two variables, or subtracts a value from a variable. The

following shows how this operator and the -= operator, which is

composed of the assignment and the subtraction operator, are used.

[jshell> int i = 4;

i ==> 4

| created variable i : int

[jshell> int j = 2;

j ==> 2

| created variable j : int

[jshell> int k = i – j

k ==> 2

| created variable k : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i = i - 3;

i ==> 1

| assigned to i : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i -= 3

$9 ==> 1

| created scratch variable $9 : int

Chapter 6 Operators

(c) ketabton.com: The Digital Library

220

•	 * multiplies two variables, or multiplies a value with a variable. It

is used in similar statements as + and -, and there is a composed

operator *= that can be used to multiply the value of a variable and

assign it on the spot.

[jshell> int i = 4

i ==> 4

| created variable i : int

[jshell> int j = 2

j ==> 2

| created variable j : int

[jshell> int k = i * j

k ==> 8

| created variable k : int

[jshell> int i = 4;

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i = i * 3

i ==> 12

| assigned to i : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i *= 3

$7 ==> 12

| created scratch variable $7 : int

Chapter 6 Operators

(c) ketabton.com: The Digital Library

221

•	 / divides two variables, or divides a value by a variable. It is used in

similar statements as + and -, and there is a composed operator /=

that can be used to divide the value of a variable and assign it on the

spot. The result of a division is named quotient and it is assigned to

the variable on the left side of the assignment sign("="). When the

operands are integers, the result is an integer too, and the remainder

is discarded.

[jshell> int i = 4

i ==> 4

| created variable i : int

[jshell> int j = 2

j ==> 2

| created variable j : int

[jshell> int k = i / j

k ==> 2

| created variable k : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> int i = i / 3

i ==> 1

| modified variable i : int

| update overwrote variable i : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i /= 3

$7 ==> 1

| created scratch variable $7 : int

Chapter 6 Operators

(c) ketabton.com: The Digital Library

222

•	 % is also called the modulus operator divides two variables, but

the result is the remainder of the division. The operation is called

modularization and there is also a composed operator %= that is used

to divide the value of a variable and assign the remainder on the spot.

[jshell> int i = 4

i ==> 4

| created variable i : int

[jshell> int j = 3

j ==> 3

| created variable j : int

[jshell> int k = i % j

k ==> 1

| created variable k : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i = i % 3

i ==> 1

| assigned to i : int

[jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

[jshell> i %= 3

$7 ==> 1

| created scratch variable $7 : int

The modulus operator returns the remainder, but, what happens when the operands

are real numbers? And what if the remainder is a real number with an infinite numbers

of decimals after the decimal point?

Chapter 6 Operators

(c) ketabton.com: The Digital Library

223

package com.apress.bgn.ch6;

public class ModulusDemo {

 public static void main(String... args) {

 float f = 1.9f;

 float g = 0.4f;

 float h = f % g;

 System.out.println("remainder = " + h);

 }

}

Well, some rounding is done. The text printed in the console is remainder = 0.29999995

which can be rounded to 0.3, for some cases. But rounding can be dangerous when the data

is used for sensitive operations, like determining the volume of a tumor for a robot to operate

on, or determining the perfect trajectory for a rocket to be sent to Mars. So, rounding can be

problematic, because it causes a loss of precision.

�Relational Operators
In certain cases, when designing the solution for a problem, you need to introduce

conditions to drive and control the execution flow. Conditions require the evaluation

of a comparison between two terms using a comparison operator. In this section all

comparison operators used in java is described and code samples is provided. Let’s

proceed.

•	 == tests equality of terms. Because in Java a single equals (=) sign

assigns values, a solution needed to be find to test equality, so the

developers just duplicated the “=” operator. We have used for

loops before to depict how to use certain types or statements, even

if they are to be covered only in the next chapter, because the code

samples presented to you should be compliable and runnable. In

the following code sample, you see an example of testing the ==

comparator in searching for value 2 in an array. If the value is found,

the index is printed in the console.

package com.apress.bgn.ch6;

public class ComparisonOperatorsDemo {

Chapter 6 Operators

(c) ketabton.com: The Digital Library

224

 public static void main(String... args) {

 int[] values = {1, 7, 9, 2, 6,};

 for (int i = 0; i < values.length; ++i) {

 if (values[i] == 2) { \\(*)

 System.out.println("Fount 2 at index: " + i);

 }

 }

 }

}

The condition in the line marked with (*) is evaluated and the

result is a boolean value. When the result is false, nothing is

done, but if the result is true the index is printed. Because the

result is of type boolean, if you make a mistake and instead you

use = instead of ==, the code will not compile. You have to be extra

careful when comparing boolean values though.

The == sign works just fine for primitives; for reference types, you

need to use the equals() method that was covered in Chapter 5.

•	 != tests inequality of terms. It is the opposite of the == operator. As an

exercise, modify the previous example to print a message when the

array value is not 2. This operator also works on reference types. But

if you want to test inequality of references values you have to use an

expression similar to: !a.equals(b)

•	 < and <= have the same purpose as the one you probably learned in

math class. The first one (<) tests if the item on the left of the operator

is less than the one on the right. The next one (<=) tests if the item on

the left of the operator is less or equal to the one on the right. This

operator cannot be used on reference types.

•	 > and >= have the same purpose as the one you probably learned in

math class. The first one (>) tests if the item on the left of the operator

is greater than the one on the right. The next one (>=) tests if the item

on the left of the operator is greater or equal to the one on the right.

This operator cannot be used on reference types.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

225

Almost all numeric operators can be used on variables of different primitive (and

wrapper) types, as they are automatically converted to type that has a wider interval

representation or unboxed to the appropriate type in the case of wrapper types. The

following code reflects a few situations, but in practice, you might need to make

even more extreme decisions that do not always abide to the common-sense rules of

programming or follow good practices.

package com.apress.bgn.ch6;

public class MixedOperationsDemo {

 public static void main(String... args) {

 byte b = 1;

 short s = 2;

 int i = 3;

 long l = 4;

 float f = 5;

 double d = 6;

 int ii = 6;

 double resd = l + d;

 long resl = s + 3;

 //etc

 if (b <= s) {

 System.out.println("byte val < short val");

 }

 if (i >= b) {

 System.out.println("int val >= byte val");

 }

 if (l > b) {

 System.out.println("long val > byte val");

 }

 if(d > i) {

 System.out.println("double val > byte val");

 }

Chapter 6 Operators

(c) ketabton.com: The Digital Library

226

 if(i == i) {

 System.out.println("double val == int val");

 }

 }

}

Make sure that if you are ever in a situation where you need to make shady things

(non-optimal code constructs) like these to test a lot, and think about your conversions

well, especially when floating-point types are involved, because, for example, the

following piece of code can have unexpected results.

package com.apress.bgn.ch6;

public class DecimalPointDemo {

 public static void main(String... args) {

 float f1 = 2.2f;

 float f2 = 2.0f;

 float f3 = f1 * f2;

 if (f3 == 4.4) {

 System.out.println("expected float value of 4.4");

 } else {

 System.out.println("unexpected value of " + f3);

 }

 }

}

If you expect the message expected float value of 4.4 to be printed in the console, you

will be surprised. Any IEEE 754 floating-point number representation presents issues

because some numbers that appear to have a fixed number of decimals in the decimal

system actually have an infinite number of decimals in the binary system. So, we cannot

compare floats and doubles using ==. One of the solutions that is easiest to implement is

to use the compare method provided by the wrapper class; in this case, Float.compare.

package com.apress.bgn.ch6;

public class DecimalPointDemo {

 public static void main(String... args) {

 float f1 = 2.2f;

 float f2 = 2.0f;

Chapter 6 Operators

(c) ketabton.com: The Digital Library

227

 float f3 = f1 * f2;

 if (Float.compare(f3,4.4f) == 0) {

 System.out.println("expected float value of 4.4");

 } else {

 System.out.println("unexpected value of " + f3);

 }

 }

}

Using the previous example, the expected message is now printed in the console:

expected float value of 4.4.

�Bitwise Operators
In Java there are a few operators that are used at bit level to manipulate variables of

numerical types. Bitwise operators are used to change individual bits in an operand.

Bitwise operations are faster and usually use less power because of the reduced use of

resources. They are most useful in programming visual applications, games, where color,

mouse clicks, and movements can be quickly determined using bitwise applications.

�Bitwise NOT
The ~ operator is sort of a binary negator. It performs a bit-by-bit reversal of an integer

value. Of course, this affects all bits used to represent the value. So, if we declare

byte b1 = 10;

the binary representation is 00001010. The Integer class provides a method named

toBinaryString that can print the binary representation of the previously defined

variable, but it won’t print all the bits, because the method doesn’t know on how many

bits we want the representation on. So, we need to use a special String function to

format the output. The following code snippet prints the b value in binary on 8 bits.

System.out.println("decimal:" + b1);

String str = String.format("%8s", Integer.toBinaryString(b1 & 0xFF))

 .replace(' ', '0');

System.out.println("binary:" + str);

Chapter 6 Operators

(c) ketabton.com: The Digital Library

228

If we apply the ~ operator on the b value, the binary value resulted is 11110101. The

fist bit is the sign bit, and value one corresponds to -. So, the number is –11, as displayed

in the following code.

byte b2 = (byte) ~b1;

System.out.println("decimal:" + b2);

String str2 = String.format("%8s", Integer.toBinaryString(b2 & 0xFF))

 .replace(' ', '0');

System.out.println("binary:" + str2);

In the previous example, you probably noticed this statement:

byte b2 = (byte) ~b1

You are expecting an explanation. The bitwise complement expression operator

requires an operand that is convertible to a primitive integral type, or a compile time

error occurs. Internally, Java uses one or more bytes to represent values. The ~ operator

converts its operand to the int type, so it can use 32-bits when doing the complement

operation; this is needed to avoid loss of precision. That is why an explicit cast to byte is

needed in the previous example.

And because everything is clearer with images, Figure 6-2 shows the effect of the ~ on

the bits of the b1 variable in parallel with its value.

�Bitwise AND
The bitwise AND operator is represented by & and what is does is to compare two

numbers bit by bit and if the bits on each position have the value of 1, the bit in the result

is 1. The following code sample, depicts the result of the & operator.

Figure 6-2.  The effect of the operator on every bit

Chapter 6 Operators

(c) ketabton.com: The Digital Library

229

package com.apress.bgn.ch6;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 byte b2 = 95; // 01011111

 byte result = (byte) (b1 & b2); // 01010101

 System.out.println("b1:"+ b1);

 System.out.println("b2:"+ b2);

 System.out.println("---------");

 �String str = String.format("%8s", Integer.toBinaryString(result &

0xFF))

 .replace(' ', '0');

 System.out.println("result:" + result);

 System.out.println("binary result:" + str);

 }

}

We are using the same String.format(..) method to display the bits of the result of

applying the & to the b1 and b2 operators. The preceding code prints the following.

b1:117

b2:95

result:85

binary result:01010101

But the effect of the & operator is seen best in Figure 6-3. The 01010101 value is the

binary representation of number 85.

Figure 6-3.  The effect of the & operator on every bit

Chapter 6 Operators

(c) ketabton.com: The Digital Library

230

For practical reasons, the composed operator &= is available in Java, so that the

bitwise AND operation can be done on the same variable on which the result is assigned.

[jshell> byte b1 = 10

b1 ==> 10

| created variable b1 : byte

[jshell> b1 &= 2

$2 ==> 2

| created scratch variable $2 : byte

�Bitwise Inclusive OR
The bitwise OR operator is represented by | and what is does is to compare two numbers

bit by bit and if at least one of the bits is 1, the bit in the result is 1. The following code

sample, depicts the result of the | operator.

package com.apress.bgn.ch6;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 byte b2 = 95; // 01011111

 byte result = (byte) (b1 | b2); // 01111111

 System.out.println("b1:"+ b1);

 System.out.println("b2:"+ b2);

 System.out.println("---------");

 �String str = String.format("%8s", Integer.toBinaryString

(result & 0xFF))

 .replace(' ', '0');

 System.out.println("result: " + result);

 System.out.println("binary result: " + str);

 }

}

Chapter 6 Operators

(c) ketabton.com: The Digital Library

231

We are using the same String.format(..) method to display the bits of the result of

applying the | to the b1 and b2 operators. The preceding code prints the following.

b1:117

b2:95

result: 127

binary result: 01111111

But the effect of the | operator is seen best in Figure 6-4. The 01010101 value is the

binary representation of number 127.

For practical reasons, the composed operator |= is available in Java, so that the

bitwise inclusive OR operation can be done on the same variable on which the result is

assigned.

[jshell> byte b1 = 10

b1 ==> 10

| created variable b1 : byte

[jshell> b1 |= 2

$4 ==> 10

| created scratch variable $4 : byte

�Bitwise Exclusive OR
The bitwise XOR operator is represented by ^ and what is does is to compare two

numbers bit by bit and if the values are different, the bit in the result is 1. The following

code sample, depicts the result of the ^ operator.

Figure 6-4.  The effect of the | operator on every bit

Chapter 6 Operators

(c) ketabton.com: The Digital Library

232

package com.apress.bgn.ch6;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 byte b2 = 95; // 01011111

 byte result = (byte) (b1 ^ b2); // 00101010

 System.out.println("b1:"+ b1);

 System.out.println("b2:"+ b2);

 System.out.println("---------");

 �String str = String.format("%8s", Integer.toBinaryString

(result & 0xFF))

 .replace(' ', '0');

 System.out.println("result: " + result);

 System.out.println("binary result: " + str);

 }

}

We are using the same String.format(..) method to display the bits of the result of

applying the ^ to the b1 and b2 operators. The preceding code prints the following.

b1:117

b2:95

result: 42

binary result: 00101010

But the effect of the ^ operator is seen best in Figure 6-5. The 00101010 value is the

binary representation of number 42.

Figure 6-5.  The effect of the ^ operator on every bit

Chapter 6 Operators

(c) ketabton.com: The Digital Library

233

For practical reasons, the composed operator ^= is available in Java, so that the bitwise

exclusive OR operation can be done on the same variable on which the result is assigned.

[jshell> byte b1 = 10

b1 ==> 10

| created variable b1 : byte

[jshell> b1 ^= 2

$6 ==> 8

| created scratch variable $6 : byte

�Logical Operators
When designing conditions for controlling the flow of the execution of a program,

sometimes there is need for complex conditions to be written, composed conditions

constructed from multiple expressions. There are four operators that are used to construct

complex conditions; two of them are bitwise operations that can be reused: &(AND)

and |(OR); but they require evaluation of all the parts of the condition. The operators

&&(AND) and ||(OR) have the same effect as the other ones, but the difference is they do

not require evaluation of all the expression, which is why they are also called shortcut

operators. To explain the difficult behavior of these operators, there is a typical example.

Basically, we declare a list of ten terms (some of them null) and a method to generate a

random index, used to select an item from the list. Then we test the selected element from

the list to see if it is not null and equal to an expected value. If both conditions are true,

then a message is printed in the console. Let’s start with the first example.

package com.apress.bgn.ch6;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 add("Rose");

 add(null);

 add("River");

 add("Clara");

 add("Vastra");

Chapter 6 Operators

(c) ketabton.com: The Digital Library

234

 add("Psi");

 add("Cas");

 add(null);

 add("Nardhole");

 add("Strax");

 }};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int rnd = getRandomNumber();

 String term = terms.get(rnd);

 System.out.println("Generated index: " + rnd);

 if (term != null & term.equals("Rose")) { \\(*)

 System.out.println("Rose was found");

 }

 }

 }

 private static int getRandomNumber() {

 Random r = new Random();

 return r.nextInt(10);

 }

}

To make sure we get the expected result, we repeat the operation of selecting a

random term 20 times. In the line marked with (*), the & composes the two expressions.

So, the text "Rose was found" should be printed in the console only if the value of the

term variable is not null and equal to Rose. So, when the preceding code is run, expect to

see something like this in the console.

Generated index: 8

Exception in thread "main" java.lang.NullPointerException

Generated index: 4

 at chapter.six/com.apress.bgn.ch6.LogicalDemo.mainLogicalDemo.java:57

Generated index: 7

But, think about it like this: if the term is null, should we even evaluate the equality

to “Rose”, especially since calling a method on a null object causes a runtime error?

Chapter 6 Operators

(c) ketabton.com: The Digital Library

235

Obviously not, which is why the & is not suitable for this case. If the term is null, it fails

the first condition; there is no point in evaluating the second. And so, enter the &&

shortcut operator that does exactly this. This works because when using the logical AND

operator, if the first term is false, it does not really matter what the second term is equal

to, the result is always false. So, we can correct the previous code sample as follows.

package com.apress.bgn.ch6;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 add("Rose");

 add(null);

 ..

 }};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int rnd = getRandomNumber();

 String term = terms.get(rnd);

 System.out.println("Generated index: " + rnd);

 if (term != null && term.equals("Rose")) { \\(*)

 System.out.println("Rose was found");

 }

 }

 }

 private static int getRandomNumber() {

 Random r = new Random();

 return r.nextInt(10);

 }

}

So, when the preceding code is executed, no exception is thrown, because if the term

is null, the second condition is not evaluated.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

236

Let’s modify the previous code sample, but this time, let’s print the message if we

find a null or if we find “Rose”.

package com.apress.bgn.ch6;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 add("Rose");

 add(null);

 ..

 }};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int rnd = getRandomNumber();

 String term = terms.get(rnd);

 System.out.println("Generated index: " + rnd);

 if (term == null | term.equals("Rose")) { \\(*)

 System.out.println("Rose was found");

 }

 }

 }

 private static int getRandomNumber() {

 Random r = new Random();

 return r.nextInt(10);

 }

}

If we run the previous code, the use of | throws a NullPointerException because

this operator requires both expressions to be evaluated. So, if term is null, calling

.equals(...) causes the exception to be thrown. So, to make sure that the code works

as expected, the | must be replaced with ||, which shortcuts the condition and does not

evaluate the second expression. This works because when using the logical OR operator,

if the first term is true, it does not really matter what the second term is equal to; the

result is always true. We’ll leave that as an exercise for you.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

237

Of course, conditions can be made up from more than one expression and more

than one operator, whether it is && or ||. Take a look at the following examples.

package com.apress.bgn.ch6;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 add("Rose");

 add(null);

 ..

 }};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int rnd = getRandomNumber();

 String term = terms.get(rnd);

 if (rnd == 0 || rnd == 1 || rnd <= 3) {

 System.out.println(rnd + ": this works...");

 }

 if (rnd > 3 && rnd <=6 || rnd < 3 && rnd > 0) {

 System.out.println(rnd + ": this works too...");

 }

 }

 }

 private static int getRandomNumber() {

 Random r = new Random();

 return r.nextInt(10);

 }

}

Beware of conditions that become too complex, make sure you cover that piece

of code with a lot of tests. When writing complex conditions it is possible that some

expressions become redundant, and IntelliJ IDEA and other smart editors display

warnings of dead code on expressions that are redundant and unused.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

238

�Shift Operators
The shift operators are operators working at bit level. Because moving bits around is a

sensitive operation, the only requirement of these operands is for arguments to be integers.

The operand to the left of the operator is the number that is shifted, and the operand to the

right of the operator is the number of bits that is shifted. There are three shift operators in

Java, and each of them can be composed with the assignment operator to do the shifting and

assign the result to the original variable on the spot. Let’s analyze each of them separately.

•	 << shift left. Given a number represented in binary, this operator

shifts bits to the left. Let’s look at the following piece of code.

public class ShiftDemo {

 public static void main(String... args) {

 byte b1 = 12; // 00001100

 byte result = (byte) (b1 << 3);

 �str = String.format("%8s", Integer.

toBinaryString(result & 0xFF))

 .replace(' ', '0');

 �System.out.println("result: " + result); // 01100000

 }

}

When bits are shifted to the left, the remaining positions are filled

with 0. Also, the number becomes bigger, and the new value is

its old value multiplied with −2N, where N is the second operand.

When the preceding code is executed, the following output is

printed in the console.

b1: 12

binary result: 00001100

result: 96

binary result: 01100000

The preceding code can be written like this: b <<= 3, using the

composed operators, without the need to declare another variable.

So, the result is 12 * 23. The way that the bits shifted is shown in

Figure 6-6.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

239

•	 >> shift right. Given a number represented in binary, this operator

shifts bits to the right. Let’s look at the following piece of code.

public class ShiftDemo {

 public static void main(String... args) {

 byte b1 = 96; // 01100000

 byte result = (byte) (b1 >> 3);

 �str = String.format("%8s", Integer.

toBinaryString(result & 0xFF))

 .replace(' ', '0');

 System.out.println("result: " + result); // 00001100

 }

}

When bits are shifted to the right, the remaining positions are

filled with 0 if the number is positive. If the number is negative,

the remaining positions are replaced with 1. This is done to

preserve the sign of the number. Also, the number becomes

smaller, and the new value is its old value divided by −2N, where N

is the second operand. When the preceding code is executed, the

following output is printed in the console.

b1: 96

binary result: 01100000

result: 12

binary result: 00001100

The preceding code can be written like this: b >>= 3, using

the composed operators, without the need to declare another

variable.

Figure 6-6.  The effect of the « operator

Chapter 6 Operators

(c) ketabton.com: The Digital Library

240

So, the result is 96 / 23. And the way that the bits shifted for a

positive number and a negative number is displayed in Figure 6-7.

•	 >>> unsigned shift right. Also called logical shift. Given a number

represented in binary, this operator shifts bits to the right, together

with the sign bit, and the remaining positions are replaced with zero.

This is why, the result is always a positive number. Let’s look at the

following piece of code.

public class ShiftDemo {

 public static void main(String... args) {

 byte b1 = -16; // 11110000

 byte result = (byte) (b1 >>> 3);

 �str = String.format("%8s", Integer.

toBinaryString(result & 0xFF))

 .replace(' ', '0');

 System.out.println("result: " + result); // 00011110

 }

}

When the preceding code is executed, the following output is

printed in the console.

b1: -16

binary result: 11110000

result: 30

binary result: 00011110

Figure 6-7.  The effect of the » operator

Chapter 6 Operators

(c) ketabton.com: The Digital Library

241

The preceding code can be written like this: b >>>= 3, using the

composed operators, without the need to declare another variable.

And the way that the bits shifted is displayed in Figure 6-8.

As all bitwise operators, shifting operators promote char, byte, or short type

variables to int, which is why an explicit conversion is necessary. As you have probably

noticed, shifting bits on negative numbers is tricky, it is easy for the resulted number to

be outside the interval of allowed values for a type, and an explicit conversion can lead

to loss of precision or serious anomalies. So, why use them? Because they are fast. Make

sure to test intensively when using shifting operators.

�The Elvis Operator
The Elvis operator is the only ternary operator in Java. Its function is equivalent to a

java method that tests a condition and depending of the outcome, returns a value. The

following is a template for the Elvis operator.

variable = (condition) ? val1 : val2

The following if statement is equivalent.

variable = methodName(..)

type methodName(..) {

 if (condition) {

 return val1;

 } else {

 return val2;

 }

}

The reason this operator is called the Elvis operator is because the question mark

resembles Elvis Presley’s hair, and the column resembles the eyes. Let’s see it in action.

Figure 6-8.  The effect of the > > > operator

Chapter 6 Operators

(c) ketabton.com: The Digital Library

242

[jshell> int a = 4

a ==> 4

| created variable a : int

[jshell> int result = a > 4 ? 3 : 1;

result ==> 1

| created variable result : int

[jshell> String a2 = "test"

a2 ==> "test"

| created variable a2 : String

[jshell> var a3 = a2.length() > 3 ? "hello": "bye-bye"

a3 ==> "hello"

| created variable a3 : String

This operator is practical when you have a simple if statement that contains only one

expression per branch, because using this operator you can compact the whole thing in

one expression, one line of code. Make sure that when using it, the readability of the code

is improved, because from a performance point of view, there is no difference between an

if statement and the equivalent Elvis operator expression. Another advantage of using the

Elvis operator is that the expression can initialize a variable in a single in-line statement.

�Summary
In this chapter, you learned that

•	 Java has a lot of operators, simple and composed.

•	 Bitwise operators are fast, but dangerous.

•	 The + operator does different things in different contexts.

•	 Java has a ternary operator that accepts three operands: a boolean

expression and two objects of the same type. The result of the

evaluation of the boolean expression decides which operand is the

result of the statement.

The purpose of this chapter is to make you familiar with all the operators that are

used throughout the book, to help you understand the provided solutions, and even to

design and write your own.

Chapter 6 Operators

(c) ketabton.com: The Digital Library

243
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_7

CHAPTER 7

Controlling the Flow
The previous chapters covered ways to create statements and which operators to use.

Sometimes, elements of logic were added to make the code runnable for you. This

chapter is dedicated to explain how to manipulate the execution of your code using

fundamental programming—conditional and repetitive statements.

A solution and an algorithm can be represented using flowcharts. Most of the

programming that we’ve done until this chapter contained declaration and printing

statements—simple one-step statements. Take the following piece of code.

package com.apress.bgn.ch7;

public class Main {

 public static void main(String... args) {

 String text = "sample";

 System.out.println(text);

 }

}

If we were to design a flowchart for it, the schema would be simple and linear, no

decision and no repetition, as depicted in Figure 7-1.

Figure 7-1.  Simple flowchart sample

(c) ketabton.com: The Digital Library

244

But resolving real-life problems requires often a more complicated logic than that,

so more complicated statements are necessary. Before getting into that, let’s describe the

components of a flowchart, because they will be used a lot during this chapter. Table 7-1

lists flowchart elements.

The flowchart elements presented in this table are pretty standard; you will probably

find very similar elements used in any programming course or tutorial. After this

consistent introduction, it is only fit to get into it.

�if-else Statement
The most simple decisional flow statement in Java is the if-else statement. (probably in

other languages too) You’ve probably seen the if-else statement in code samples in the

previous chapters. There was no way to avoid it, because providing runnable code that

Table 7-1.  Flowchart Elements

Shape Name Scope

Terminal Indicates beginning or end of a program, and contains a

text relevant to its scope.

Flowline Indicates the flow of the program, the order of operations.

Input/Output Indicates declaration of variables and outputting values.

Process Simple process statement: assignment, change of values,

and so forth.

Decision Shows a conditional operation that decides a certain path

of execution.

Predefined Process This element indicates a process defined else-where.

On-page Connector This element is usually labeled and indicates the

continuation of the flow on the same page.

Off-page Connector This element is usually labeled and indicates the

continuation of the flow on a different page.

Comment (Or

annotation)

When a flow or an element requires extra explanation it is

introduced using this type of element.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

245

encourages you to write your own is important. But in this section the focus is strictly on

this type of statement.

Let’s imagine this scenario: we run a Java program with a numeric argument

provided by the user. If the number is even, we print EVEN in the console; else, we print

ODD. The flowchart matching this scenario is depicted in Figure 7-2.

The condition is evaluated to a boolean value, if the result is true the statement

corresponding to the if branch is executed, if the result is false, the statement

corresponding to the else branch is executed.

The Java code that implements the process described by this flowchart is depicted in

the following code snippet.

package com.apress.bgn.ch7;

public class IfFlowDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args0);

 if (a % 2 == 0) { // is even

 //Display EVEN

 System.out.println("EVEN");

Figure 7-2.  if-else flowchart sample

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

246

 } else {

 //Display ODD

 System.out.println("ODD");

 }

 }

}

To run this class with different arguments, you must create an IntelliJ IDEA launcher

and add your argument in the Program arguments text field, as explained at the

beginning of this book. Each Java statement in the previous code snippet was paired

with a comment matching the flowchart element to make the implementation clear.

The fun thing is that not both branches of an if statement are mandatory. Sometimes

you want to print something if a value matches a condition, but you are not interested

in what happens otherwise. For example, given a user provided argument, we want to

print a message if the number is negative, but we are not interested in printing or doing

anything else if the number is positive. The flowchart for that is depicted in Figure 7-3.

And the Java code looks like this:

package com.apress.bgn.ch7;

public class IfFlowDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args0);

Figure 7-3.  if flowchart sample, missing the else branch

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

247

 if (a < 0) {

 System.out.println("Negative");

 }

 }

}

And in the same way that the statement can be made simple, in the same way, is

we need it, we can link more if-else statements together. Let’s consider the following

example: the user inserts a number from 1 to 12, and we have to print the season the

month with that number corresponds to. How would the flowchart look like? Do you

think Figure 7-4 fits the scenario?

Looks complicated, right? Wait until you see the code matching that diagram, that is

depicted in this next code snippet.

Figure 7-4.  Complex if-else flowchart sample

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

248

package com.apress.bgn.ch7;

public class SeasonDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args[0]);

 if(a == 12 || (a>=1 && a<= 2)) {

 System.out.println("Winter");

 } else {

 if (a>2 && a <= 5) {

 System.out.println("Spring");

 } else {

 if (a>5 && a <= 8) {

 System.out.println("Summer");

 } else {

 if (a>8 && a <= 11) {

 System.out.println("Autumn");

 } else {

 System.out.println("Error");

 }

 }

 }

 }

 }

}

Looks ugly, right? But, fortunately, Java provides a way to simplify it, especially

because it makes no sense having so many else blocks that only contain another if

statement. The simplified code connects the else statements with the contained if(s)

statements. And the code ends up looking like the following code snippet.

package com.apress.bgn.ch7;

public class SeasonDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args0);

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

249

 if (a == 12 || (a >= 1 && a <= 2)) {

 System.out.println("Winter");

 } else if (a > 2 && a <= 5) {

 System.out.println("Spring");

 } else if (a > 5 && a <= 8) {

 System.out.println("Summer");

 } else if (a > 8 && a <= 11) {

 System.out.println("Autumn");

 } else {

 System.out.println("Error");

 }

 }

}

Any argument given by the user that is not in the [1,12] causes the program to print

Error. You can test it for yourself if you want by modifying your IntelliJ IDEA launcher.

The elements to focus on are underlined in Figure 7-5.

Figure 7-5.  IntelliJ IDEA launcher and parameters

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

250

�switch Statement
When a value requires different actions for a fixed set of values, the if might get more

complex, the more the set of values increases. In this case the more suitable statement

is the switch statement. Let’s look at the code first, and then check what more can be

improved.

package com.apress.bgn.ch7;

public class SeasonSwitchDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args[0]);

 var season = "";

 switch (a) {

 case 1:

 season = "Winter";

 break;

 case 2:

 season = "Winter";

 break;

 case 3:

 season = "Spring";

 break;

 case 4:

 season = "Spring";

 break;

 case 5:

 season = "Spring";

 break;

 case 6:

 season = "Summer";

 break;

 case 7:

 season = "Summer";

 break;

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

251

 case 8:

 season = "Summer";

 break;

 case 9:

 season = "Autumn";

 break;

 case 10:

 season = "Autumn";

 break;

 case 11:

 season = "Autumn";

 break;

 case 12:

 season = "winter";

 break;

 default:

 System.out.println("Error");

 }

 System.out.println(season);

 }

}

Hm... that does not look very practical, at least not for this scenario. Before showing

how the switch statement can be written differently, let’s explain the structure and logic

of it first. The general template of a switch statement is

switch ([onvar]) {

 case [option]:

 [statement;]

 break;

 ...

 default:

 [statement;]

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

252

The terms in square brackets are detailed in the following list.

•	 [onvar] is the variable that is tested against the case statements

to select a statement. It can be of any primitive type, enumerations

and starting with Java 7, String. Clearly the switch statement is not

limited by conditions evaluated to boolean results, which allows for a

lot of flexibility.

•	 case [option] is a value the variable is matched upon to make a

decision regarding the statement to execute. A case as the keyword

states.

•	 [statement] is a statement or a groups of statements to execute

when [onvar] == [option]. Considering that there is no

else branch, we have to make sure that only the statement(s)

corresponding to the first match is executed, which is where the

break; statement comes in. The break statement stops the current

execution path and moves the execution point to the next statement

outside the statement that contains it. I’ll cover it later in the chapter.

Without it, after the first match, all subsequent cases are traversed,

and statements corresponding to them are executed.

So, if we execute the preceding program and we provide number

7 as an argument, the text Summer is printed. But if the break

statements for case 7 and 8 are commented, the output changes to

Autumn.

•	 default [statement;] is a statement that is executed when no

match on a case has been found, the default case does not need

a break statement. If the previous program is run with any number

outside the [1-12] interval, Error is printed because the default

statement is executed.

Now that you understand how switch works, let’s look at how we can reduce the

previous statement. The month example is suitable here, because it can further be

modified to show how the switch statement can be simplified, when a single statement

should be executed for multiple cases. In our code, writing each assignment statement

three times is a little redundant. switch can be written in a different way to avoid that by

grouping the cases. The code is depicted next.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

253

package com.apress.bgn.ch7;

public class SeasonSwitchDemo {

 public static void main(String... args) {

 //Read a

 int a = Integer.parseInt(args0);

 var season = "";

 switch (a) {

 case 1:

 case 2:

 case 12:

 season = "winter";

 break;

 case 3:

 case 4:

 case 5:

 season = "Spring";

 break;

 case 6:

 case 7:

 case 8:

 season = "Summer";

 break;

 case 9:

 case 10:

 case 11:

 season = "Autumn";

 break;

 default:

 System.out.println("Error");

 }

 System.out.println(season);

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

254

The grouping in this case represents the alignment of the cases that require the same

statement to be executed, and writing it only once in the last one. This still looks a little

weird, but this is the only way to reduce the statement repetition. The behavior in the

previous case is possible because each case without a break statement is followed by the

next case statement.

In Java 7, the switch statement started supporting String values. The main

problems with switch supporting String values is that there is always a risk of

NullPointerExceptions being thrown, because the equals method is used to test

matching of the items, and the variable used in the switch statement can be null. Also,

because equals is used, the comparison is case sensitive. If we modify the previous

example and ask the user for a text representing the month, and use switch to decide the

season to print, unless we use the exact text in case options that the user will use when

writing the argument, we won’t get the expected result.

The code changes to

package com.apress.bgn.ch7;

public class StringSwitchSeasonDemo {

 public static void main(String... args) {

 //Read a

 String a = args0;

 var season = "";

 switch (a) {

 case "january":

 case "february":

 case "december":

 season = "winter";

 break;

 case "march":

 case "april":

 case "may":

 season = "Spring";

 break;

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

255

 case "june":

 case "july":

 case "august":

 season = "Summer";

 break;

 case "september":

 case "october":

 case "november":

 season = "Autumn";

 break;

 default:

 System.out.println("Error");

 }

 System.out.println(season);

 }

}

If we run the previous program with the "january" argument, the text "winter"

is printed in the console. If we run it with argument "january", the text "Error" is

printed in the console. And if we run it with null, a NullPointerException is thrown

in the line where the switch statement begins.

And this is all that can be said about the switch statement. In practice, depending on

the solution you are trying to develop, you might decide to use a combination of if and

switch statements.

Unfortunately because of its peculiar logic and its flexible number of options, it is

difficult to draw a flowchart for the switch statement, but nevertheless I’ve tried and it’s

depicted in Figure 7-6.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

256

�Looping Statements
Sometimes in programming, we need repetitive steps that involve the same variables.

To write the same statement over and over again to get the job done would be ridiculous.

Let’s take the example of sorting an array of integer values. The most known algorithm

to do this and the one that is taught first in programming courses because it is simple

is called bubble sort. The algorithm compares the elements of an array, two by two and

if they are not in the correct order it swaps them. It goes over the array again and again

until no more swaps are needed. The effects of the algorithm are depicted in Figure 7-7.

Figure 7-6.  The switch statement flowchart

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

257

This algorithm performs two types of loops; one iterates each element of the array

using indexes. And this traversal is repeated until no swaps are necessary. In Java this

algorithm can be written in more than one way using different looping statements. But

we’ll get there, let’s take it slow.

There are three types of looping statements in Java.

•	 for statement

•	 while statement

•	 do-while statement

The for looping statement is the most used, but while and do-while have their uses

as well.

�for Statements
For is recommended for iterating on objects like arrays and lists that can be counted. For

example, traversing an array and printing each one of its values is as simple as depicted

in the following code sample.

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

Figure 7-7.  Bubble sort phases and effect

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

258

 for (int i = 0; i < arr.length; ++i) {

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

 }

}

Based on the previous example, a flowchart for the for statement can be drawn and

it is depicted in Figure 7-8. The following code snippet depicts the for loop template.

for ([int_expr]; [condition];[step]){

 [code_block]

}

Each of the terms between square brackets have a specific purpose that is explained

next.

•	 [init_expr] is an initialization expression that sets the initial value

of the counter used by this loop. It ends with ; and is not mandatory,

as the initialization can be done outside the statement, especially if

we are interested in using the counter variable later in the code and

outside the statement. The preceding code can be written like this:

Figure 7-8.  The for statement flowchart

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

259

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; i < arr.length; ++i) {

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

 System.out.println("Loop exited with index: " + i);

 }

}

•	 [condition] is the termination condition of the loop, as long as this

condition is evaluated to true, the loop will continue executing.

The condition ends with ; and funny enough, it is not mandatory

either, as the termination condition can be placed inside the code to

be executed repeatedly by the loop. So, the preceding code can be

modified further and written like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; ; ++i) {

 if (i >= arr.length) {

 break;

 }

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

 System.out.println("Loop exited with index: " + i);

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

260

•	 [step] is the step expression or increment that increases the counter

on every step of the loop. It should end in ;, but it is often dropped,

and as you probably already expected, it is not mandatory either, as

nothing stops the developer from manipulating the counter inside

the code block. So, the preceding code can also be written like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; ;) {

 if (i >= arr.length) {

 break;

 }

 System.out.println("arr[" + i + "] = " + arr[i]);

 ++i;

 }

 System.out.println("Loop exited with index: " + i);

 }

}

The modification of the counter does not have to be done inside

the code; it can be done in the termination condition, but the

initialization expression and the termination condition must be

modified accordingly to fit the purpose. The code depicted next

has the same effect as all the samples before it.

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 for (int i = -1; i++ < arr.length -1;) {

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

261

 System.out.println("Loop exited with index: " + i);

 }

}

The step expression does not have to be an incrementation. It

can be any expression that modifies the value of the counter.

Instead of ++i or i++, you can use i= i+1, or i=i+3, or even

decrementation if the array of list is traversed starting with a

bigger index. Any mathematical operations that keep the counter

in the boundaries of the type it was declared and within the

indexes range can be used safely.

•	 [code_block] is a block of code executed repeatedly, in every step

of the loop. If there is no exit condition within this code, this block

of code is executed by as many times as the counter passes the

termination condition.

This is the basic form of the for looping statement, but in Java there are other ways to

iterate a group of values. Let’s say that instead of an array, we have to iterate over a list.

package com.apress.bgn.ch7;

import java.util.List;

public class ForLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 for (int j = 0; j < list.size(); ++j) {

 System.out.println("list[" + j + "] = " + list.get(j));

 }

 }

}

The code seems somehow impractical and that is why List<> instances can be

traversed with a different type of for statement that was known as forEach until Java 8.

You will see immediately why, but first let’s look at forEach.

package com.apress.bgn.ch7;

import java.util.List;

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

262

public class ForLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 for (Integer item : list) {

 System.out.println(item);

 }

 }

}

This type of for statement is also called as having enhanced syntax and basically

executes the code block for each item in the collection used in its expression. This means

it works on any implementation of Collection interface and it works on arrays too. So,

the example code is written like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 for (int item : arr) {

 System.out.println(item);

 }

 }

}

Clearly the best part in this case is that we no longer need a termination condition,

or counter at all. Starting with Java 8, the name forEach is no longer needed for the for

statement with enhanced syntax, because the forEach default method was added to all

Collection extensions. Combine that with lambda expressions and the code to print the

elements of a list becomes

package com.apress.bgn.ch7;

import java.util.List;

public class ForLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 list.forEach(item -> System.out.println(item));

 //or

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

263

 list.forEach(System.out::println);

 }

}

Pretty neat, ha? But wait, there’s more, it works on arrays too, but a small conversion

to suitable implementation BaseStream is necessary first. But it is provided by the Arrays

utility class that was enriched in Java 8 with methods to support lambda expressions. So

yeah, the code with the arr array can be written (starting in Java) 8 like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 Arrays.stream(arr).forEach(System.out::println);

 }

}

In Java 11, all the preceding examples compile and execute just fine, so use whatever

syntax you prefer most when writing your solutions.

�while Statement
The while statement is different from the for statement in that there is not a fixed

number of steps that have to be executed, so a counter is not always needed. The

number of repetitions of a while statement executes depends only on how many times

the continuation condition that controls this number is evaluated to true. So, the generic

template for this statement is depicted in the following listing:

while ([eval(condition)] == true) {

 [code_block]

}

A while statement does not really require an initialization statement either, as it can

be inside the code block, or outside the statement. The while statement can replace

the for statement, but the advantage of the for statement is that it encapsulates the

initialization, the termination condition and the modification of the counter in a single

block, so it’s more concise. The array traversal code sample can be rewritten using the

while statement; the code is listed next.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

264

package com.apress.bgn.ch7;

public class WhileLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i=0;

 while(i < arr.length){

 System.out.println("arr[" + i + "] = " + arr[i]);

 ++i;

 }

 }

}

As you can see, the declaration and initialization of the counter variable, int i=0;

is done outside the statement and the incrementation of the counter is done inside

the code block to be repeated. Basically at this point, if we design the flowchart for this

scenario, it will look the same as the for statement depicted in Figure 7-9.

And as incredible as it sounds, the [condition] is not mandatory either, as it can be

replaced directly with true. But in this case, you have to make sure that there is an exit

condition inside the block of code that executes at some point; otherwise, the execution

will most likely end with an error. And this condition must be placed at the beginning

of the block of code to prevent the execution of the useful logic in a situation where it

shouldn’t be. For our simple example, we do not want to call System.out.println for an

element with an index outside the array range.

package com.apress.bgn.ch7;

public class WhileLoopDemo {

public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i=0;

 while(true){

 if (i >= arr.length) {

 break;

 }

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

265

 System.out.println("arr[" + i + "] = " + arr[i]);

 ++i;

 }

 }

}

The while statement is best used when we are working with a resource that is not

always online. Let’s say we are using a remote database for our application that is in a

network that is unstable. Instead of giving up trying to save our data after the first timeout,

we could try until we succeed, right? This is done by using a while statement that tries to

initialize a connection object in its code block. And the code looks roughly like this:

package com.apress.bgn.ch7;

import java.sql.*;

public class ConnectionTester {

 public static void main(String... args) throws Exception {

 Connection con = null;

 while (con == null) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/sample", "root", "pass");

 } catch (Exception e) {

 System.out.println("Connection refused. Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 }

 // con != null, do something

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from test");

 while (rs.next()) {

 System.out.println(rs.getInt(1) + " " + rs.getString(2));

 }

 con.close();

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

266

The problem with this code is that it runs forever; if we want to give up trying after a

certain time, we must introduce a variable that counts the number of tries and then exits

the loop using a break statement.

package com.apress.bgn.ch7;

import java.sql.*;

public class ConnectionTester {

 public static final int MAX_TRIES = 10;

 public static void main(String... args) throws Exception {

 int cntTries = 0;

 Connection con = null;

 while (con == null && cntTries < MAX_TRIES) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/sample", "root", "pass");

 } catch (Exception e) {

 ++cntTries;

 System.out.println("Connection refused. Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 }

 if (con != null) {

 // con != null, do something

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from test");

 while (rs.next()) {

 System.out.println(rs.getInt(1) + " " + rs.getString(2));

 }

 con.close();

 } else {

 System.out.println("Could not connect!");

 }

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

267

So, as a rule of thumb, always make sure there is an exit condition when using
looping statements.

And since we’ve covered all the statements needed to implement the bubble sort

algorithm depicted in Figure 7-9, let’s see what the code looks like. Be aware that,

this algorithm can be written in many ways, but the following code best matches the

explanation provided earlier. So, while there are elements in the array that are not in the

proper order, the array is traversed again and again and adjacent elements are swapped

to fit the desired order (ascending, in this case).

package com.apress.bgn.ch7;

import java.util.Arrays;

public class BubbleSortDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 boolean swapped = true;

 while (swapped) {

 swapped = false;

 for (int i = 0; i < arr.length - 1; ++i) {

 if (arr[i] > arr[i + 1]) {

 int temp = arr[i];

 arr[i] = arr[i + 1];

 arr[i + 1] = temp;

 swapped = true;

 }

 }

 }

 Arrays.stream(arr).forEach(System.out::println);

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

268

When run, the code swaps elements of the arr array until they are all in ascending

order, so the last line in the code prints the modified arr:

1

2

3

4

5

�do-while Statement
The do-while statement is similar to the while, with one difference, the continuation

condition is evaluated after executing the code block. This causes for the code block to

be executed at least once, unless there is a an exit condition embedded in it. The generic

template for this statement is depicted in the following listing:

do {

 [code_block]

} while ([eval(condition)] == true)

Most times statements while and do-while can be easily interchanged, and

sometimes a minimum change of the logic of the code block is needed. For example,

traversing an array and printing the values of its elements can be written using do-while

as well, without changing the code block. Figure 7-9 shows the two implementations side

by side: the while on the left and do-while on the right.

Figure 7-9.  while and do-while implementation for printing elements of an array

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

269

The flowchart for these two examples (see Figure 7-10) reveals the different logic

between the two statements.

The do-while statement works best when the code block must be executed at least

once; otherwise, we evaluate the condition once unnecessarily. Remember the code

sample that was trying to connect to a database that was in an unstable network? Well,

when while was used, the execution started by testing if the connection is not null, but

the connection was not even initialized yet.

Connection con = null;

while (con == null) {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/sample", "root", "pass");

 ...

}

Figure 7-10.  Comparison between while and do-while statements flowcharts

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

270

This implementation, although functional, is a little redundant and the logic

is not following programming best practices. More suitable would be a do-while

implementation, one that avoids testing if the con instance is null, considering that it

clearly is, as in the following.

package com.apress.bgn.ch7;

import java.sql.*;

public class DoConnectionTester {

 public static final int MAX_TRIES = 10;

 public static void main(String... args) throws Exception {

 int cntTries = 0;

 Connection con = null;

 do {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/sample", "root", "pass");

 } catch (Exception e) {

 ++cntTries;

 System.out.println("Connection refused. Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 } while (con == null && cntTries < MAX_TRIES);

 if (con != null) {

 // con != null, do something

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from test");

 while (rs.next()) {

 System.out.println(rs.getInt(1) + " " + rs.getString(2));

 }

 con.close();

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

271

 } else {

 System.out.println("Could not connect!");

 }

 }

}

Sure, skipping the evaluation of the condition is not a big optimization, but in a big

application, every little optimization counts.

�Breaking Loops and Skipping Steps
In the previous examples, I mentioned that exiting a loop using the break statement.

There are three ways to manipulate the behavior of a loop:

•	 The break statement exits the loop, and if accompanied by a label,

it breaks the loop that is labeled with it; this is useful when we have

more nested loops, because we can break form any of the nested

loops, not just the one containing the statement.

•	 The continue statement skips the execution of any code after it and

continues with the next step.

•	 The return statement is used to exit a method, so if the loop, or if or

switch statement is within the body of a method, it is used to exit the

loop as well. In regards to best practices, usage of return statements

to exit a method should not be abused as they might make the

execution flow difficult to follow.

�break Statement
The break statement can only be used within switch, for, while, and do-while

statements. You have already seen how it can be used within the switch statement; let’s

look at how to use it in all the others.

Breaking out of a for, while or do-while loop can be done using the break

statement, but it must be controlled by an exit condition; otherwise, no step is executed.

In the following code sample, we print only the first three elements, even if the for loop

should traverse all of them. If we get to the index equal to 3, we exit the loop.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

272

package com.apress.bgn.ch7;

public class ManipulationDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < arr.length ; ++i) {

 if (i == 3) {

 System.out.println("Bye bye!");

 break;

 }

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

 }

}

If we have a case of nested loops, a label can be used to decide the looping statement

to break out of. As an example, in the following code we have three nested for loops, and

we exit the middle loop when all indexes are equal.

package com.apress.bgn.ch7;

public class ManipulationDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < 2; ++i) {

 HERE: for (int j = 0; j < 2; ++j) {

 for (int k = 0; k < 2; ++k) {

 System.out.println("(i, j, k) = (" + i + "," + j + "," + k + ")");

 if (i == j && j == k) {

 break HERE;

 }

 }

 }

 }

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

273

The label used in the code sample is named HERE, and it precedes the for statement

that is exited when the condition is fulfilled and follows the break statement. Writing

label names in all all-caps letters is considered a best practice in development as it

avoids confusing labels with variables or class named when reading the code.

To make sure this works, you can take a look in the console to see that all

combinations of (i,j,k), including the ones with i = j = k and all after it, are no

longer printed. In this case, all sets beginning with 0 are skipped, which is what is in the

console.

(i, j, k) = (1,0,0)

(i, j, k) = (1,0,1)

(i, j, k) = (1,1,0)

�continue Statement
The continue statement does not break a loop, but can be used to skip certain steps

based on a condition. So it basically, stops the current step of the loop and moves to

the next one, so you could say that this statement continues the loop. Let’s continue

experimenting with the array traversal example, and this time, let’s skip from printing the

elements with odd indexes by using the continue statement.

package com.apress.bgn.ch7;

public class ManipulationDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < arr.length; ++i) {

 if (i % 2 != 0) {

 continue;

 }

 System.out.println("arr[" + i + "] = " + arr[i]);

 }

 }

}

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

274

This statement must be conditioned; otherwise, the loop will iterate uselessly. The

continue statement can be used with labels too. Let’s take a similar example to the three

nested for loops used earlier, but this time, when the k index is equal to 1, nothing is

printed and we skip to the next step of the loop enclosing the k loop.

package com.apress.bgn.ch7;

public class ManipulationDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < 3; ++i) {

 HERE:

 for (int j = 0; j < 3; ++j) {

 for (int k = 0; k < 3; ++k) {

 if (k == 1) {

 continue HERE;

 }

 System.out.println("(i, j, k) = (" + i + "," + j + "," + k + ")");

 }

 }

 }

 }

}

To make sure this works, you can take a look in the console to see that what combinations

are printed. We clearly notice that no combination with k=1 or k=2 has printed.

(i, j, k) = (0,0,0)

(i, j, k) = (0,1,0)

(i, j, k) = (0,2,0)

(i, j, k) = (1,0,0)

(i, j, k) = (1,1,0)

(i, j, k) = (1,2,0)

(i, j, k) = (2,0,0)

(i, j, k) = (2,1,0)

(i, j, k) = (2,2,0)

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

275

!  The usage of labels to break out of loops is frowned upon in the Java
community, because jumping to a label resembles the goto statement that
still can be found in certain old school programming languages. goto is a Java
reserved keyword, because this statement used to exist in the first version of
the JVM, but it was later removed. Using jumping makes code less readable,
less testable and promotes bad design. That is why goto was removed in
later versions, but any need of such operation can be implemented break and
continue statements.

�return Statement
The return statement is an easy one. It can be used to exit the execution of a method

body. If the method returns a value, the return statement is accompanied by the value

returned. The return statement can be used to exit any of the statements mentioned in

this section. It can represent a smart way to shortcut the execution of a method, as the

execution of the current method stops and processing continues from the point in the

code that called the method.

Let’s look at a few examples. First let’s write a method that finds the first even

element in an array; if found, the method returns its index; otherwise, it returns -1.

package com.apress.bgn.ch7;

public class ReturnDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 int foundIdx = findEven(arr);

 if (foundIdx != -1) {

 System.out.println("First even is at: " + foundIdx);

 }

 }

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

276

 public static int findEven(int ... arr) {

 for (int i = 0; i < arr.length; ++i) {

 if (arr[i] %2 == 0) {

 return i;

 }

 }

 return -1;

 }

}

Let’s write the same method but using a while statement.

package com.apress.bgn.ch7;

public class ReturnDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 int foundIdx = findEven(arr);

 if (foundIdx != -1) {

 System.out.println("First even is at: " + foundIdx);

 }

 }

 public static int findEven(int ... arr) {

 int i = 0;

 while (i < arr.length) {

 if (arr[i] % 2 == 0) {

 return i;

 }

 ++i;

 }

 return -1;

 }

}

The return statement can be used in any situation where we want to terminate the

execution of a method if a condition is met.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

277

�Controlling the Flow Using try-catch Constructions
Exceptions and try-catch statements were already mentioned in this book, but not as

tools to control flow execution. Before we skip to explanations and examples, let’s first

discuss the general template of a try-catch-finally statement.

try {

 [code_block]

} catch ([exception_block]} {

 [handling_code_block]

} finally {

 [cleanup_code_block]

}

I’ll explain each of these components.

•	 [code_block] is the code block to execute.

•	 [exception_block] is a declaration or more of an exception type that

can be thrown by the [code_block].

•	 [handling_code_block] - an exception being thrown marks an

unexpected situation, which must be handled, once the exception

is being caught, this piece of code is executed to treat it, whether by

trying to return the system to a normal state or by logging details

about the cause of the exception.

•	 [clean_up_code] is a block of code releases resources or sets objects

to null so that they are eligible for collection.

Now that you know how a try-catch-finally works, you can probably imagine

how to use it to control the execution flow. Basically, within the [code_block], you can

explicitly throw exceptions and decide how they are treated.

Considering the array that we have been using until now, we’ll design our piece of

code based on it again. First, let’s write a piece of code that throws an exception when an

even value is found.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

278

package com.apress.bgn.ch7.ex;

public class ExceptionFlowDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 try {

 checkNotEven(arr);

 System.out.println("Not found, all good!");

 } catch (EvenException e) {

 System.out.println(e.getMessage());

 } finally {

 System.out.println("Cleaning up arr");

 for (int i = 0; i < arr.length; ++i) {

 arr[i] = 0;

 }

 }

 }

 public static int checkNotEven(int... arr) throws EvenException {

 for (int i = 0; i < arr.length; ++i) {

 if (arr[i] % 2 == 0) {

 throw new EvenException("Did not expect an even number at " + i);

 }

 }

 return -1;

 }

}

The EvenException type is a custom exception type written for this specific example

and its implementation is not relevant here. If we execute this piece of code the following

is printed.

Did not expect an even number at 2

Cleaning up arr

By throwing an exception, we’ve directed the execution to the handling code,

so Not found, all good! was not printed, and because we have a finally block that was

executed as well.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

279

So, yeah, you can mix-and-match: use different types of exceptions, have multiple

catch blocks—whatever you need to solve your problem. At a previous company that

I worked for, I stumbled upon a piece of code that was validating a document and

throwing different types of exceptions depending on the validation check that was not

passed and in the finally block we had a code that was converting the error object to

PDF. The code looks similar to this:

...

ErrorContainter errorContainer = new ErrorContainter();

try {

 validate(report);

} catch (FileNotFoundException | NotParsable e) {

 errorContainer.addBadFileError(e);

} catch (InvestmentMaxException e) {

 errorContainer.addInvestmentError(e);

} catch (CreditIncompatibilityException e) {

 errorContainer.addIncompatibilityError(e);

} finally {

 if (errorContainer.isEmpty()) {

 printValidationPassedDocument();

 } else {

 printValidationFailedDocument(errorContainer);

 }

}

...

The code in the finally code block was complex and totally not recommended

to be in there. But sometimes in the real world, the solutions do not always respect

best practices, or even common sense practices. And when dealing with legacy code,

you might find yourself in the position to write crappy but functional code that must

be delivered fast. Because, sure programming is awesome, but in the eyes of some

managers, results are more important. If you are lucky enough to get a job at a company

that is looking to build on the code in the future or hand it to other team members, you

might actually end up with a manager that favors best practices. Just remember to do

your best, and document everything properly and you’ll be fine.

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

280

�Summary
This chapter covered one of the most important things in development: how to design

your solutions, the logic of it. You’ve also been introduced to what flowcharts are and

their components, as tools for deciding how to write your code and how to control

execution paths. And finally, you’ve learned which statements to use and when. A few

Java best practices were discussed, so that you are able to design the most suitable

solutions to your problems.

Java provides

•	 simple and more complex ways to write if statements

•	 a switch statement that works with any primitive type, enumerations

and starting with Java 7, String instances

•	 a few ways to write for statements

•	 how to use forEach methods and streams to traverse a collection of

values

•	 while statement, used when a step must be repeated until a

condition is met

•	 do-while statement, used when a step must be repeated until a

condition is met, but the step is repeated at least once, because the

continuation condition is evaluated after it

•	 how to manipulate loop behavior by using statements like break,

continue, and return

•	 how to control the execution flow by using try-catch-finally

constructions

Chapter 7 Controlling the Flow

(c) ketabton.com: The Digital Library

281
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_8

CHAPTER 8

The Stream API
The term stream has more than one meaning, as explained on Dictionary.com.

•	 a body of water flowing in a channel or watercourse, as a river, rivulet,

or brook

•	 a steady current in water, as in a river or the ocean

•	 any flow of water or other liquid or fluid

•	 a current or flow of air, gas, or the like

•	 a continuous flow or succession of anything

•	 prevailing direction; drift

•	 In digital technology - a flow of data, as an audio broadcast, a movie,

or live video, transmitted smoothly and continuously from a source

to a computer, mobile device, and so forth.

In the software development context the definitions that are closest to a stream are

the fifth and part of the seventh (highlighted in bold). I software development a stream

is a sequence of objects from a source that supports aggregate operations. In your mind,

you would be saying right now: so, is it similar to a collection? Well... not quite.

�Introduction to Streams
Consider a really big collection of songs that we want to analyze. We want to find all

songs with duration of at least 300 seconds. We want to save the names of these songs in

a list and sort them by decreasing order of their duration. Assuming we already have the

songs in a list, the code looks like this:

List<Integer> songList = ...

List<Song> resultedSongs = new ArrayList<>();

(c) ketabton.com: The Digital Library

282

for (Song song: songList) {

 if (song.getDuration() >= 300) {

 resultedSongs.add(song);

 }

}

Collections.sort(resultedSongs, new Comparator<Song>(){

 public int compare(Song s1, Song s2){

 return s2.getDuration().compareTo(s1.getDuration());

 }

});

System.out.println(resultedSongs);

List<String> finalList = new ArrayList<>();

for (Song song: resultedSongs) {

 finalList.add(song.getTitle());

}

System.out.println(finalList);

One of the problems with this code is that processing large collections is not really

efficient. Also, we are traversing lists over and over again and performing checks to get to

a final result. Wouldn’t it be nice if we could just link all of those operations together and

execute them on the initial list?

Enter Java 8 and the new Stream abstraction that represents a sequence of elements

that can be processed sequentially or in parallel and supports aggregate operations.

Because of the latest evolutions in hardware development, CPUs have become more

powerful and more complex, containing multiple cores that can process information

in parallel. To make use of these hardware capabilities in Java the Fork Join Framework

was introduced. And in Java 8, the Stream API was introduced to support parallel data

processing, without the boiler-code of defining and synchronizing threads. The central

interface of the Stream API is the java.util.stream.BaseStream. Any object with

stream capabilities is of a type that extends it. A stream does not store elements itself,

it is not a data structure, it is used to compute elements and serve them on-demand to

a function or a set of aggregate functions. Serving the elements in a sequence involves

an internal automatic iteration. Functions that return a stream can be chained in a

pipeline, and are called intermediate operations. They are used to process elements of a

stream and return the result as a stream to the next function in the pipeline. Functions

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

283

that return a result that is not a stream are called terminal operations and are obviously

present at the end of a pipeline. As a quick example before getting deeper, the previous

code can be written like this using streams:

List<String> finalList = songList.stream().filter(s -> s.getDuration()>= 300)

 .sorted(Comparator.comparing(Song::getDuration).reversed())

 .map(Song::getTitle)

 .collect(Collectors.toList());

System.out.println(finalList);

Yup, programming with streams is awesome. The Stream API concept allows

developers to transform collections into streams, and write code to process the data in

parallel and then getting the results into a collection.

Because working with streams is a sensitive way of programming; I recommend

designing the code by taking every possibility in mind. NullPointerException is one

of the most common exceptions to be thrown in Java. In Java 8, the class Optional<T>

was introduced to avoid this type of exceptions. Stream<T> instances are used to store

an infinite instances of type T, while Optional<T> is an instance that might or might

not contain an instance of type T. Because both of these implementations are basically

wrappers for other types, they are covered together.

!  For practical reasons, Stream instances are referred in this chapter as streams,
in a similar manner as List instances are referred as lists and collection
instances as collections, and many more.

!  You might notice that the term function was introduced and refers to the
methods called on streams or their arguments. This is because working with
streams allows for Java code to be written in functional programming style.
Java is an object-oriented programming language, and the object is its core
term. In functional programming, the core term is pure function. Code is written
by composing pure functions, which avoids shared states, takes advantage of
immutable data, and avoids the side effects of processing contamination.1

1�The following is a very good article about the functional programming paradigm
and I gladly recommend you to read it: https://medium.com/ javascript-scene/
master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

284

�Creating Streams
Before having fun and optimizing our code using streams let’s see how we can create

them. To create a stream, we need a source. That source can be anything: a collection

(list, set or map), an array, I/O resources used as input (such as files, databases, or

anything that can be transformed into a sequence of instances).

A stream does not modify its source, so multiple stream instances can be created
from the same source and used for different operations.

�Creating Streams from Collections
In the introduction of the chapter, in the last snippet of code we were introduced to one

method of creating a stream from a list. Starting with Java 8, all collection interfaces and

classes were enriched with default methods that return streams. In the following code

sample, we take a list of integers and transform it into a stream by calling its stream()

method. After having a stream, we traverse it using the forEach method to print the

values in the stream and the name of the execution thread this code is executed on. Why,

the thread name you ask? You see shortly.

package com.apress.bgn.ch8;

import java.util.List;

public class StreamsDemo {

 public static void main(String... args) {

 List<Integer> bigList = List.of(50, 10, 250, 100 ...);

 bigList.stream()

 .forEach(i ->

 System.out.println(Thread.currentThread().getName() + ": " + i)

);

 }

}

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

285

The previous code creates a stream of integer elements. The Stream interface exposes

a set of methods that each Stream implementation provides a concrete implementation

for. The most used is the forEach method that iterates over the elements in the stream.

The forEach method requires a parameter of type java.util.function.Consumer<T>.

! A consumer is what we call in this book an inline implementation of the java.
util.function.Consumer<T> functional interface. This means it has only has
one method that a class implementing it has to provide a concrete implementation
for. The method named accept(T t), takes a stream element of type T as
argument, processes it and returns nothing.

This method is called for each element in the stream, and the T is the type of the

elements in the stream. The implementing class is basically declared inline by only

mentioning the body of the method. The JVM does the rest, because of the magic of

lambda expressions. Without them, you would have to write something like this:

import java.util.function.Consumer;

...

bigList.stream()

 .forEach(new Consumer<Integer>() {

 @Override

 public void accept(Integer i) {

 System.out.println(Thread.currentThread().getName() + ": " + i);

 }

});

Actually, this was the way you would write code before lambda expressions were

introduced in Java 8. If you needed to create a single object of a class type implementing

a specific interface, in a singular place in the application, you could choose to write a

contraption like that, which looks like you are instantiating the interface; the result of that

code is called an anonymous class. Lambda expressions simplified this process a lot, but

only for a category of interfaces named functional interfaces, which define a single method

and are annotated with the @FunctionalInterface annotation (starting in Java 8).

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

286

In the previous example, the implementation prints the thread name and the value

of the element. The following is the result is of running that code.

main: 50

main: 10

main: 250

main: 100

...

The fact that each number is prefixed with main means that all integers in the stream

are processed sequentially by the same thread, and is the main thread of the application.

!  For practical reasons, there is no need to call stream()for collections when
a sequential stream is needed only for traversal, because the forEach method
defined for them does the job well. So the preceding code can be reduced to

bigList.forEach(i ->

 System.out.println(Thread.currentThread().getName() + ": " + i)

);

The name of the thread was printed because there is another way to create a stream

by calling the parallelStream() method. The only difference is that the returned

stream is a parallel stream. This means that each element of the stream is processed on

a different thread. Of course, this means the implementation of the Consumer must be

thread-safe and not contain code that involves instances that are not meant to be shared

amongst threads. The code to print the value of a stream element, does not affect the

value of the element returned by the stream, not other external object, so it is safe to

parallelize. So let’s use parallelStream() instead of stream to create a stream and print

the elements of the stream using the same Consumer implementation.

package com.apress.bgn.ch8;

import java.util.List;

import java.util.function.Consumer;

public class StreamsDemo {

 public static void main(String... args) {

 List<Integer> bigList = List.of(50, 10, 250, 100 ...);

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

287

 bigList.parallelStream()

 .forEach(i ->

 System.out.println(Thread.currentThread().getName() + ": " + i)

);

 }

}

If we execute the code in the console, we see something similar to the output, but

slightly different.

ForkJoinPool.commonPool-worker-9: 94

ForkJoinPool.commonPool-worker-7: 10

ForkJoinPool.commonPool-worker-5: 40052

ForkJoinPool.commonPool-worker-3: 50

ForkJoinPool.commonPool-worker-13: 74

ForkJoinPool.commonPool-worker-9: 200

ForkJoinPool.commonPool-worker-11: 250

ForkJoinPool.commonPool-worker-7: 83

ForkJoinPool.commonPool-worker-3: 23

...

The first thing you notice is the thread name, we no longer have one, but a lot of

them all named ForkJoinPool.commonPool-worker-**. This tells us that all stream

elements are processed on different threads, but all of them are part of the same pool.

A thread pool is created by the JVM in this case to contain a few thread instances, used

to process all elements in the stream in parallel. The advantage of using a thread pool is

that the threads can be reused, so no new thread instances need to be created and this

optimizes the execution time a little, but it is visible only in more complex solutions.

If you look at the number associated to each thread, the number at the end of the

thread name, you can see that the numbers sometimes repeat. This basically means the

same thread was reused to process another stream element.

�Creating Streams from Arrays
The streams we have used so far, were created from a List instance. The same syntax can

be used for Set instances as well.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

288

But streams can be created from arrays as well. Look at the following piece of code.

package com.apress.bgn.ch8;

import java.util.Arrays;

public class ArrayStreamDemo {

 public static void main(String... args) {

 int[] arr = { 50, 10, 250, 100 ...};

 Arrays.stream(arr).forEach(

 i -> System.out.println(Thread.currentThread().getName() + ": " + i)

);

 }

}

The static method stream(int[] array) from the utility class Arrays creates a

stream of primitives. For arrays that contain objects, the method called is stream(T[]

array) (where T is a generic type) that is replaced with the type of the elements in

the array. Streams generated from arrays can be parallelized by calling the parallel

methods, which exist for parallel streams as well. So, the following code can be

parallelized, as shown.

package com.apress.bgn.ch8;

import java.util.Arrays;

public class ArrayStreamDemo {

 public static void main(String... args) {

 int[] arr = { 50, 10, 250, 100 ...};

 Arrays.stream(arr).parallel().forEach(

 i -> System.out.println(Thread.currentThread().getName() + ": " + i)

);

 }

}

For both cases, the output is the same as in the previous examples, so there is no

need to depict it again.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

289

The novelty with arrays is that a stream can be created form a part of the array by

specifying the start and the end indexes for the array chunk.

Arrays.stream(arr, 3,6).forEach(

 i -> System.out.println(Thread.currentThread().getName() + ": " + i)

);

�Creating Empty Streams
When writing Java code, a good practice is to write methods that return objects by

avoiding returning null to reduce the possibility of NullPointerExceptions being

thrown. When methods return streams, the preferred way is to return an empty stream.

This can be done by calling the static Stream.empty() method of the Stream interface.

The following method, receives a list of Song instances as a parameter and returns a

stream using it as a source. If the list is null or empty, an empty stream is returned.

public static Stream<Song> asStream(List<Song> inputList) {

 if (inputList == null || inputList.isEmpty()) {

 return Stream.empty();

 } else {

 return inputList.stream();

 }

}

�Creating Finite Streams
Aside from creating streams from actual sources, streams can be created on the spot by

calling stream utility methods like Stream.generate() or Stream.builder().

The builder() method should be used when we want to build a limited stream with

a fixed sets of known values. This method returns an instance of java.util.stream.

Stream.Builder<T>, an internal interface that declare a default method named add(..)

that needs to be called to add the elements of the stream. To create the Stream instance,

its build method must be finally called. The add(..) method returns a reference to the

Builder instance so it can be chained with any other methods of this class. The following

code is a sample of how the builder() method can be used to create a finite stream of

Integer values.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

290

Stream<Integer> built = Stream.<Integer>builder()

 .add(50).add(10).add(250).build();

As the Builder interface is a generic one, it is mandatory to specify a type argument,

as the type of the elements in the stream. Also, the builder() method is generic and

requires the type to be provided as a parameter in front of it, right before being called. If

no type is specified the default Object is used.

To create a stream, the generate(..) method can also be used. This method receives

as a parameter an instance of type java.util.function.Supplier<T> instance.

! A supplier is what we call in this book an inline implementation of the java.
util.function.Supplier<T> functional interface. This interface requires a
concrete implementation to be provided for its single method named get(). This
method should return the element to be added to the stream.

So, if we want to generate a stream of integers, a proper implementation for get()

should return a random integer. The expanded code is depicted next; no lambda

expressions are used to make it clear that the get(..) receives as a parameter a

Supplier<Integer> instance created on the spot.

Stream<Integer> generated = Stream.generate(

 new Supplier<Integer>() {

 @Override

 public Integer get() {

 Random rand = new Random();

 return rand.nextInt(300) + 1;

 }

 }

).limit(15);

The limit method limits the number of elements generated by the supplier to 15;

otherwise, the generated stream is infinite. If we make use of lambda expressions, the

previous code reduces to

Stream<Integer> generated = Stream.generate(

 () -> new Random().nextInt(300) + 1

).limit(15);

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

291

But this is not all; if Supplier<Integer>.get() always returns the same number, no

matter how useless it is, it can be done and the previous code becomes

Stream<Integer> generated = Stream.generate(() -> 5).limit(15);

If more control is needed over the elements in the stream, the iterate(..) method

can be used. It was introduced in Java 9 and using this method is like having a for

statement generate the entries for the stream. The method receives as arguments an

initial value called a seed, a predicate that determines when the iteration should stop,

and an iteration step.

! A predicate is an inline implementation of the functional interface java.util.
function.Predicate<T> that declares a single method that returns a boolean
value. The implementation of this method should test its single argument of type T
against a condition and return true if the condition is fulfilled and false if not.

In the following example, stream elements are generated, starting from 0, using a

step of 5 and they are generated as long as the values are lesser than 50, as defined by the

predicate.

Stream<Integer> iterated = Stream.iterate(0, i -> i < 50 , i -> i + 5);

As with the for statement, the termination condition is not mandatory and there is

an iterate(...) method version that does not require a predicate, but in this case the

limit(...) method must be used to make sure the stream is finite.

Stream<Integer> iterated = Stream.iterate(0, i -> i + 5).limit(15);

The first element of the stream is the seed value.

In Java 9 aside from limit() there is another way to control the numbers of values in

a stream: the takeWhile(..) operation. This method takes the longest set of elements

from the original stream that matches the predicate received as argument, starting with

the first element. This works fine for ordered streams, but if the stream is unordered the

result is, any set of elements that match the predicate, including an empty one. Let’s

see it in action! The first code sample uses takeWhile(..) on a stream of integers and

returns a stream with elements that divide by 3.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

292

Stream<Integer> forTaking = Stream.of(3, 6, 9, 11, 12, 13, 15);

forTaking.takeWhile(s -> s % 3 == 0)

 .forEach(s -> System.out.print(s + " "));

The code prints 3 6 9 because this is the first set of elements that match the

given predicate. If takeWhile(..) is called on an unordered stream, the result is

unpredictable. The result might be 3 6 9 or 12 36 18 42, as the result is a subset of any

elements matching the predicate. So the result of takeWhile(..) on an unordered

stream is non-deterministic.

Stream<Integer> forTaking = Stream.of(3, 6, 9, 2, 4, 8, 12, 36, 18, 42, 11, 13);

forTaking.parallel().takeWhile(s -> s % 3 == 0)

 .forEach(s -> System.out.print(s + " "));

The takeWhile(..) operation is the "sister" of the dropWhile(..); and does exactly

the reverse of what takeWhile(..) does: it returns, for an ordered stream, a stream

consisting elements after dropping the longest set of elements that match the predicate.

So in the following example, we expect the following elements to be printed in the

console: 11 12 13 15

Stream<Integer> forDropping = Stream.of(3, 6, 9, 11, 12, 13, 15);

forDropping.dropWhile(s -> s % 3 == 0)

 .forEach(s -> System.out.print(s + " "));

The result of this operation for unordered streams is also non-deterministic, as the

operation can drop any set, including the empty one.

If these two operations are executed on parallel streams, the only thing that changes

is the order in which the elements are printed, but the result sets contain the same

elements.

�Streams of Primitives and Streams of Strings
When we first created a stream of primitives, we used an int[] array as a source. But

streams of primitives can be created in a different way, because the Stream API contains

more interfaces with default methods to make programming with streams practical.

Figure 8-1 shows the Stream hierarchy. The IntStream interface can be used to create

primitive streams of integers. This interface exposes many methods to do so, some of

them inherited from BaseStream. An IntStream instance can be created from a few

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

293

values specified on the spot, either by using the builder(), generate(), or iterate()

methods or by using the of method, as depicted next.

IntStream intStream0 = IntStream.builder().add(0).add(1).add(2).add(5).build();

IntStream intStream1 = IntStream.of(0,1,2,3,4,5);

An IntStream instance can be created by giving the start and end of an interval as

arguments to the range() and rangeClosed(). Both of them generate elements for the

stream, with a step of 1, only the last one includes the upper range of the interval as a value.

Figure 8-1.  Stream API interfaces

intStream2 = IntStream.range(0, 10);

intStream3 = IntStream.rangeClosed(0, 10);

Also, in Java 1.8 the java.util.Random class was enriched with a method named

ints that generates a stream of random integers. It declares a single argument that

represents the number of elements to be generated and put in the stream, but there is a

form of this method without the argument that generates an infinite stream.

Random random = new Random();

intStream = random.ints(5);

All the methods mentioned for IntStream can generate LongStream instances,

because equivalent methods are defined in this interface. There are no range methods

for DoubleStream, but there is the of() method, builder(), generate() and so on.

Also, the java.util.Random class was enriched in Java 1.8 with the doubles() method

that generates a stream of random double values. It declares a single argument that

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

294

represents the number of elements to be generated and put in the stream, but there is

a form of this method without the argument that generates an infinite stream. In the

following code snippet, a few ways of creating streams of doubles are depicted.

DoubleStream doubleStream0 = DoubleStream.of(1, 2 , 2.3, 3.4, 4.5, 6);

Random random = new Random();

DoubleStream doubleStream1 = random.doubles(3);

DoubleStream doubleStream2 = DoubleStream.iterate(2.5, d -> d = d + 0.2).

limit(10);

For streams of char values there is no special interface, but IntStream can be used

just fine.

IntStream intStream = IntStream.of('a','b','c','d');

intStream.forEach(c -> System.out.println((char) c));

Another way to create a stream of char values is to use a String instance as a stream

source.

IntStream charStream = "sample".chars();

charStream.forEach(c -> System.out.println((char) c));

In Java 8, the java.util.regex.Pattern was enriched with stream specific methods

too; as a class used to process String instances, it is the proper place to add these

methods after all. A Pattern instance can be used to split an existing String instance

and return the pieces as a stream using the splitAsStream(..) method.

Stream<String> stringStream = Pattern.compile(" ")

 .splitAsStream("live your life");

The contents of a file can also be returned as a stream of strings using the Files.

lines(..) utility method.

String inputPath = "chapter08/src/main/resources/songs.csv";

Stream<String> stringStream = Files.lines(Path.of(inputPath));

The sections so far have shown you how to create all types of streams; the next

sections show you how to use them to process data.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

295

!  If you feel the need to associate stream instances with real objects to make
sense of them, I recommend the following: imagine a finite stream(like one created
from a collection) as the water dripping from a mug when inclined. The water in
the mug will end eventually, but while the water drips, it forms a stream. An infinite
stream is like a river that has a fountain head, it flows continuously. (well, unless a
serious drought dries the river, of course)

�A Short Introduction to Optional
The java.util.Optional<T> instances are the Schrödinger2 boxes of the Java Language.

They are very useful because they can be used as a return type for methods to avoid

returning a null value, and cause either a possible NullPointerException to be thrown,

or the developer using the method to write extra code to treat the possibility of an

exception being thrown. Optional<T> instances can be created in similar way to streams.

There is an empty() method for creating an optional value of any type that does not

contain anything.

Optional<Song> empty = Optional.empty();

There is an of() method used to wrap an existing object into an Optional<T>.

Optional<Long> value = Optional.of(5L);

Considering that these type of instances were designed to not allow null values and

the way the Optional<T> instance was created previously, what would stop us to write

something like the following?

Song song = null;

Optional<Song> nullable = Optional.of(song);

The compiler wouldn’t, but when the code is executed at runtime, a NullPointer

Exception is thrown. Still, if we really need an Optional<T> instance to permit null

values, it is possible, there’s an utility method was introduced in Java 9 just for that.

Song song = null;

Optional<Song> nullable = Optional.ofNullable(song);

2�Read about it at https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

296

Now that we have Optional<T> instances, what can we do with them? We use them.

Let’s take a look at the following code.

package com.apress.bgn.ch8;

import com.apress.bgn.ch8.util.MediaLoader;

import com.apress.bgn.ch8.util.Song;

import java.util.List;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 song = findFirst(songs, "B.B. King");

 if(song != null && song.getSinger().equals("The Thrill Is Gone")) {

 System.out.println("Good stuff!");

 } else {

 System.out.println("not found!");

 }

 }

 public static Song findFirst(List<Song> songs, String singer) {

 for (Song song: songs) {

 if (singer.equals(song.getSinger())) {

 return song;

 }

 }

 return null;

 }

}

The findFirst(..) method looks for the first song in the list that has the singer equal

to “B.B. King”, returns it and prints a message if found, and another if not. You can notice

the nullability test and iteration of the list. In Java 8, both of them are no longer necessary.

Optional<Song> opt = songs.stream()

 .filter(s -> "B.B. King".equals(s.getSinger()))

 .findFirst();

opt.ifPresent(r -> System.out.println(r.getTitle()));

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

297

If the Optional<T> instance is not empty, the song title is printed, otherwise,

nothing is printed, and the code continues from that point on without an exception

being thrown. But what if we want to print something when the Optional<T> instance is

empty? In Java 11, we can do something about that, because a method named isEmpty()

was introduced to test the Optional<T> instance contents.

Optional<Song> opt = songs.stream()

 .filter(s -> "B.B. King".equals(s.getSinger()))

 .findFirst();

if(opt.isEmpty()) {

 System.out.println("Not found!");

}

But wait, this is a little bit... not right. Can’t we have a method to call on an

Optional<T> to get the exact behavior as an if-else statement? Well, that was possible

starting with Java 9; the ifPresentOrElse(..) that takes as arguments a consumer

to process the contents of the Optional<T> instance when is not empty and a Runner

instance to execute when the Optional<T> instance is empty.

Optional<Song> opt = songs.stream()

 .filter(ss -> "B.B. King".equals(ss.getSinger())).findFirst();

opt.ifPresentOrElse(

 r -> System.out.println(r.getTitle()),

 () -> System.out.println("Not found!")) ;

If the Optional<T> instance is not empty, its contents can be extracted by calling the

get() method.

Optional<Song> opt2 = songs.stream()

 .filter(ss -> "Rob Thomas".equals(ss.getSinger()))

 .findFirst();

System.out.println("Found Song " + opt2.get());

The code does not print anything when the desired object is not found. But if we

want to print a default value for example, we can do that as well using a method named

orElse().

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

298

Optional<Song> opt = songs.stream()

 .filter(ss -> "B.B. King".equals(ss.getSinger()))

 .findFirst();

opt.ifPresent(r -> System.out.println(r.getTitle()));

Song defaultSong = new Song();

defaultSong.setTitle("Untitled");

Song s = opt.orElse (defaultSong);

System.out.println("Found: " + s.getTitle());

If we were interested to throw a specific exception when the Optional<T> is empty,

there is a method for that as well, named orElseThrow(..)

Optional<Song> opt = songs.stream()

 .filter(s -> "B.B. King".equals(s.getSinger()))

 .findFirst();

Song song = opt.orElseThrow(IllegalArgumentException::new);

As you probably noticed in the code samples, Optional<T> and Stream<T> can be

combined to write practical code to solve complex solutions. As there are a lot of methods

that can be applied to Optional<T> and Stream<T> instances as well, the next sections

introduce them for streams and randomly make reference to Optional<T> as well.

�How to Use Streams
After creating a stream, the next thing is to process the data on the stream. The result

of that processing is another stream that can be further processed as many times as

needed. There are a few methods to use to process a stream and return the result as

another stream. These methods are called intermediate operations. The methods that

do not return a stream but actual data structures, or nothing, are named terminal

operations. All these are defined in the Stream interface. The key feature of streams is

that the processing of data using streams is only done when the terminal operation is

initiated and elements from source are consumed only as needed. So you could say that

the whole stream process is well, lazy. Lazy loading of source elements and processing

them when needed allows significant optimizations.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

299

After the previous affirmations, you probably realized that the forEach method that

was used to print values from the streams is a terminal operation. But there are a few that

you’ll likely need for the most common implementations.

This chapter started with an example of Song instances, but the Song class was not

listed yet. You can see its contents in the following code listing.

package com.apress.bgn.ch8.util;

public class Song {

 private Long id;

 private String singer;

 private String title;

 private Integer duration;

 private AudioType audioType;

 ... //getters and setters

 ... // toString

}

The AudioType is an enum containing the types of audio files and is depicted in the

following code snippet.

package com.apress.bgn.ch8.util;

public enum AudioType {

 MP3,

 FLAC,

 OGG,

 AAC,

 M4A,

 WMA

}

And now that the data type that is used on the following stream examples is depicted,

the data should be depicted as well. In the example in the book, the data is contained

into a file named songs.csv. The CSV extension denotes a comma separated file, and

each Song instance matches a line in the file. Each line contains all the property values

of each Song instance, separated by columns. Other separators can be used, semi-colons

were used here for practical reasons(that is the default supported by the library reading

the data). The contents of the file are depicted next.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

300

ID;SINGER;TITLE;DURATION;AUDIOTYPE

01;John Mayer;New Light;206;FLAC

02;John Mayer;My Stupid Mouth;225;M4A

03;John Mayer;Vultures;247;FLAC

04;John Mayer;Edge of Desire;333;MP3

05;John Mayer;In Repair;372;MP3

05;Rob Thomas;Paper Dolls;185;MP3

07;The Script;Mad Love;207;MP3

08;Seth MacFarlane;No One Ever Tells You;244;MP3

09;Nat King Cole;Orange Colored Sky;154;MP3

10;Vertical Horizon;Forever;246;MP3

11;Mario Lanza;Temptation;141;M4A

12;Jack Radics;No Matter;235;MP3

13;George Michael;Fastlove;306;MP3

14;Childish Gambino;Freaks And Geeks;227;M4A

15;Bill Evans;Lover Man;304;MP3

16;Darren Hayes;Like It Or Not;381;MP3

17;Stevie Wonder;Superstition;284;MP3

18;Tony Bennett;It Had To Be You;196;MP3

19;Tarja Turunen;An Empty Dream;322;MP3

20;Lykke Li;Little bit;231;M4A

Each line in the file is transformed into a Song instance by using classes in a library

named Josefa.3 This library is not the topic of this book, but if you are interested, you

can use the link in the footnote to get more information from the official site.

�Terminal Functions: forEach and forEachOrdered
And now we are ready to start playing with streams. Assuming the songs stream provides

all instances declared, let’s first print all the elements on the stream.

package com.apress.bgn.ch8;

import com.apress.bgn.ch8.util.Song;

import com.apress.bgn.ch8.util.StreamMediaLoader;

3�JSefa (Java Simple exchange format API) is a simple library for stream-based serialization of Java
objects to XML, CSV, and FLR. More about it at http://jsefa.sourceforge.net/

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

301

import java.util.List;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 songs.forEach(song -> System.out.println(song));

 }

}

Because we are using Java 11 by now, we can make use of method references

introduced in Java 8. Method references are a shortcut for cases when a lambda

expression does nothing else than call a method, so the method can be referred by name

directly. So this line

songs.forEach(song -> System.out.println(song));

becomes

songs.forEach(System.out::println);

The forEach(..) method receives an instance of Consumer<T> as an argument. In

the two previous examples, the implementation of the accept() method contained only

a call to System.out.println(song) and that is why the code is so compact, but if the

implementation of this method would contain more statements then the compact code

previously written would not be possible.

Instead of printing the songs directly, let’s first uppercase the singer name. The code

would look like this:

songs.forEach(new Consumer<Song>() {

 @Override

 public void accept(Song song) {

 song.setSinger(song.getSinger().toUpperCase());

 System.out.println(song);

 }

});

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

302

Of course, it can be simplified using lambda expressions.

songs.forEach(song -> {

 song.setSinger(song.getSinger().toUpperCase());

 System.out.println(song);

 });

The sister function, forEachOrdered(..), does the same thing as forEach(..), with

one little difference, ensure that the elements on the stream is processed element is

processed in encounter order, if such order is defined, even if the stream is a parallel one.

So basically the following two lines, print the songs in the same order.

songs.forEach(System.out::println);

songs.parallel().forEachOrdered(System.out::println);

�Intermediate Operation filter and Terminal Operation
toArray
In the following example, we select all MP3 songs and save them to an array. Selecting

all MP3 songs is done using the filter(..) method. This method receives an argument

of type Predicate<? super T> that defines a condition that the elements of the stream

must pass to be put into the array that results by calling the terminal method named

toArray(..).

The toArray(..) receives an argument of type IntFunction<A[]>. This type of

function takes an integer as argument and generates an array of that size, which is

populated by the toArray() method.

The code to filter the MP3 entries and put them into an array of type Song[] is

depicted next.

Song sarray = songs.filter(s -> s.getAudioType() == AudioType.MP3)

 .toArray(Song::new);

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

303

�Intermediate Operations map and flatMap and Terminal
Operation collect
In the following example we process all the songs and calculate the duration in

minutes. To do this, we use the map method to associate each song with the method

processing it. This result is a stream of Integer values. All of its elements are added to a

List<Integer> using the collect(..) method. This method accumulates the elements

as they are processed into a Collection instance.

package com.apress.bgn.ch8.util;

public class SongTransformer {

 public static int processDuration(Song song) {

 int secs = song.getDuration();

 return secs/60;

 }

}

...

List<Integer> durationAsMinutes = songs

 .map(SongTransformer::processDuration)

 .collect(Collectors.toList());

The map(..) method receives an argument of type Function<T,R> which is basically

a reference to a function to apply on each element of the stream. The function we

applied in the previous example takes a song element from the stream, gets its duration

and transforms it into minutes and returns it.

The reference to it can be written as

Function<Song,Integer> fct = SongTransformer::processDuration;

The first generic type is the type of the element processed and the second is the type

of the result returned.

A version of the filter method is defined for the Optional type and can be used to

avoid writing complicated if statements, together with the map method. Let’s assume we

have a Song instance and we want to check if it is more than three minutes and less than

10 minutes long. Instead of writing an if statement with two conditions connected by an

AND operator, we can use an Optional<Song> and those two methods to do the same.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

304

 public static boolean isMoreThan3Mins(Song song) {

 return Optional.ofNullable(song)

 .map(SongTransformer::processDuration)

 .filter(d -> d >= 3)

 .filter(d -> d <= 10)

 .isPresent();

}

So, the map(..) is quite powerful, but it has a small flaw. If we take a look at its

signature in the Stream.java file, this is what we see:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

So, if the map function is applied to each element in the stream and returns a

stream with the result, which is placed into another stream that contains all results,

the collect(...) method is called on a Stream<Stream<Integer>>. The same goes

for Optional<T>, the terminal method is called on a <Optional<Optional<T>>>.

When the objects are simple, like we have here Song instances, the map(..) method

works quite well, but if the objects in the original stream are more complex, let’s say a

List<List<Integer>>, things get complicated. In a case like this the map method should

be replaced with flatMap. The easiest way to show the effects of the flatMap(..) is to

apply it exactly on a List<List<Integer>>. Let’s take a look at the following example.

List<List<Integer>> testList = List.of (List.of(2,3), List.of(4,5),

List.of(6,7));

System.out.println(processList(testList));

...

public static List<Integer> processList(List<List<Integer>> list) {

 List<Integer> result = list

 .stream()

 .flatMap(Collection::stream)

 .collect(Collectors.toList());

 return result;

}

The flatMap(..) method receives as argument a reference to a method that

takes a collection and transforms it into a stream, the most simple way to create

a Stream<Stream<Integer>>. The flatMap(..) does its magic and the result is

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

305

transformed into <Stream<Integer>> and the elements are then collected by the

collect method into a List<String>. The operation of removing the useless stream

wrapper is called flattening.

Another way to see the effect of the flatMap(..) method is to write a simpler

example with Optional. Let’s say we need a function that transforms a string into an

integer and if the string is not a valid number we want to avoid returning null. This

means that our function must take a string and return Optional<Integer>.

Function<String, Optional<Integer>> toIntOpt = OptionalDemo::toIntOpt;

 ...

public static Optional<Integer> toIntOpt(String string) {

 try {

 return Optional.of(Integer.parseInt(string));

 } catch (NumberFormatException e) {

 return Optional.empty();

 }

}

Now that we have our function, let’s use it.

Optional<String> str = Optional.of("42");

Optional<Optional<Integer>> resInt = str.map(toIntOpt);

// flatten it

Optional<Integer> desiredRes = resInt.orElse(Optional.empty());

System.out.println("finally: " + desiredRes.get());

If we want to get to the Optional instance that we are really interested in, we have to

get rid of the external Optional wrapper. If we use flatMap(..), we do not need to do that.

Optional<String> str = Optional.of("42");

Optional<Integer> desiredRes = str.flatMap(toIntOpt);

System.out.println("boom: " + desiredRes.get());

So yeah, there is a slight difference between these two methods, which you probably

would have never investigated; as in most cases when working with streams the map()

method is usually terminated with collect(..).

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

306

�Intermediate Operation sorted and Terminal Operation
findFirst
As the name says the sorted() method has something to do with sorting. When called

on a stream, it creates another stream with all the elements of the initial stream, but

sorted in their natural order. If the type of elements on the stream is not comparable (the

type does not implement java.lang.Comparable, a java.lang.ClassCastException is

thrown). And since we are going to use this method to get a stream of sorted elements,

we use findFirst() to get the first element in the stream. This method returns an

Optional<T>, because the stream might be empty.

List<String> pieces = List.of("some","of", "us", "we’re", "hardly",

"ever", "here");

String first = pieces.stream().sorted().findFirst().get();

System.out.println("First from sorted list: " + first);

This code prints ever because that is the first element in the sorted stream.

�Intermediate Operation distinct and Terminal Operation
count
The distinct() method takes a stream and generates a stream with all the distinct

elements of the original stream. And because we need a terminal function, let’s use

count(); as the name says, this function counts the elements of the stream.

List<String> pieces = List.of("as","long", "as", "there", "is",

 "you", "there", "is", "me");

long count = pieces.stream().distinct().count();

System.out.println("Elements in the stream: " + count);

If the code is run, the number printed is 6, because after removing the duplicate

terms (as, there, is), we are left with six terms.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

307

�Intermediate Operation limit and Terminal Operations
min and max
The limit(..) method was used in this chapter before to transform a infinite stream into

a finite one. As it transforms a stream into another stream, clearly this is an intermediate

function. To see it in action, we will use a stream of integers and we’ll use as terminal

methods two mathematical functions: to calculate the minimum of the elements in the

stream - min() and to calculate the maximum of the elements fn the stream - max().

How to use these functions together is depicted in the following code snippet.

Stream<Integer> ints = Stream.of(5,2,7,9,8,1,12,7,2);

ints.limit(4).min(Integer::compareTo)

 .ifPresent(min -> System.out.println("Min is: " + min));

// Prints "Min is: 2"

Stream<Integer> ints = Stream.of(5,2,7,9,8,1,12,7,2);

ints.limit(4).max(Integer::compareTo)

 .ifPresent(max -> System.out.println("Max is: " + max));

// Prints "Max is: 9"

�Terminal Operations sum and reduce
Let’s consider the scenario: we have a finite stream of Song values and we want to

calculate the sum of their durations. The code to do this is depicted in the following

listing, and the use of another stream terminal function that can be used only on

numeric streams.

Stream<Song> songs = StreamMediaLoader.loadSongs();

Integer totalDuration = songs

 .mapToInt(Song::getDuration)

 .sum();

The same result can be obtained using the reduce(..) function.

Stream<Song> songs = StreamMediaLoader.loadSongs();

Integer totalDuration = songs

 .mapToInt(Song::getDuration)

 .reduce(0, (a, b) -> a + b);

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

308

The reduce functions takes two arguments.

•	 The identity argument represented the initial version of the

reduction and the default result if there are no elements in the stream

•	 The accumulator function takes two parameters; the operation is

applied on to get a partial result (in this case is the addition of those

two elements)

So basically, every time an element of the stream is processed, the accumulator returns

a new value that is the result of adding the processed element with the previous partial

result. So, if the result of the process is a collection, the accumulator’s result is a collection,

so every time a stream element is processed a new collection would be created. This is

pretty inefficient, so in scenarios like this the collect function is more suitable.

�Intermediate Operation peek
This function is special because it really doesn’t affect the stream results in any way.

The peek function returns a stream consisting of the elements of the stream it is called

on while also performing for each element the operation specified by its Consumer<T>

argument. This means that this function can be used to debug stream operations.

Let’s take our stream of Song instances and filter them by their duration. Select all the

ones with a duration >300 seconds, and then get their titles and collect them in a list. The

following code shows how to do this.

Stream<Song> songs = StreamMediaLoader.loadSongs();

List<String> result = songs.filter(s -> s.getDuration() > 300)

 .map(Song::getTitle)

 .collect(Collectors.toList());

Before the map call, a peek call can be introduced to check if the filtered elements are the

ones you expect. Another peek call can be introduced after to inspect the mapped value.

Stream<Song> songs = StreamMediaLoader.loadSongs();

List<String> result = songs.filter(s -> s.getDuration() > 300)

 .peek(e -> System.out.println("\t Filtered value: " + e))

 .map(Song::getTitle)

 .peek(e -> System.out.println("\t Mapped value: " + e))

 .collect(Collectors.toList());

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

309

�Intermediate Operation skip and Terminal Operations
findAny, anyMatch, allMatch, and noneMatch
These are the last operations discussed in this chapter, so they are coupled together

because the skip operation might affect the result of the others.

The findAny() returns an Optional<T> instance that contains the first element of

the stream or an empty Optional<T> instance when the stream is empty. When the

stream is parallel, the function returns a random element of the stream wrapped into an

Optional<T>. Because the stream of songs we’ve been using so far is not a parallel one,

we create a parallel stream by calling the intermediate function parallel().

Stream<Song> songs = StreamMediaLoader.loadSongs();

Optional<Song> optSong = songs.parallel().findAny();

optSong.ifPresent(System.out::println);

The anyMatch(..) method receives an argument of type Predicate<T> and returns

a boolean true value if there is any elements in the stream that match the predicate, and

false otherwise. It works on parallel streams as well. The scenario the next code covers

is to return true id any of the songs in our stream has a title containing the word Paper.

Stream<Song> songs = StreamMediaLoader.loadSongs();

boolean b = songs

 .anyMatch(s -> s.getTitle().contains("Paper"));

System.out.println("Are there songs with title containing 'Paper'? " + b);

The code prints true because there is song on the list called Paper Dolls. But, if we

want to change that result, all we have to do is skip processing the first six elements in the

original stream by calling skip(6). Yes, this method works on parallel streams as well.

Stream<Song> songs = StreamMediaLoader.loadSongs();

boolean b = songs.parallel()

 .skip(6)

 .anyMatch(s -> s.getTitle().contains("Paper"));

System.out.println("Are there songs with title containing \"Paper\"? " + b);

And so, if the first six elements in the original stream were not processed, now

the previous code returns false. There is another function that analyses all elements

of a stream checking if they all match a single predicate, and that method is called

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

310

allMatch(..). In the next code sample, we check if all Song instances have duration

bigger than 300. The function returns a boolean, and the value is true of all Song

instances match the predicate and false otherwise. For our example, we are obviously

expecting a false value, because not all of our Song instances have the duration field

value bigger than 300.

Stream<Song> songs = StreamMediaLoader.loadSongs();

boolean b = songs.allMatch(s -> s.getDuration() > 300);

System.out.println("Are all songs longer than 5 minutes? " + b);

The pair of this function is a function named noneMatch and does exactly the

opposite thing: takes a predicate as an argument and returns a boolean. The value of

this boolean is true if none of the stream elements match the predicate provided as

argument, and false otherwise. In the next code sample, we check using the noneMatch

if there is no Song instance with duration > 300 and we expect the result to be false.

Stream<Song> songs = StreamMediaLoader.loadSongs();

boolean b = songs.noneMatch(s -> s.getDuration() > 300);

System.out.println("Are all songs shorter than 5 minutes? " + b);

�Debugging Stream Code
The peek(..) method can be used for a light debugging, more like logging the changes

that happen on stream elements between one stream method call and another. A more

advanced way to debug streams is provided by the IntelliJ IDEA editor; starting on May

11, 2017, this editor includes a specialized plugin, called the Java Stream Debugger, for

stream debugging.4

I am assuming that you already have a version of IntelliJ IDEA that is more recent

than 2017, so you should already have this plugin. To use it, you have to place a

breakpoint on the line where a stream processing chain is defined. Figure 8-2 shows

a piece of code representing the processing of a stream of Song instances executed in

debug and a breakpoint paused the execution in line 44. When the execution is paused

the Stream debugger view can be opened by clicking the button that is surrounded in the

red rectangle.

4�Official blogpost from JetBrains, the company that created and maintains IntelliJ IDEA https://
plugins.jetbrains.com/ plugin/9696-java-stream-debugger?platform=hootsuite

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

311

If you click the debugger button shown in Figure 8-2, a pop-up window appears; it

has a tab for each operation of the stream processing. Figure 8-3 shows the tabs and their

methods underlined and linked to each other.

Figure 8-2.  Debugging

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

312

In each of the tabs, the text box on the left contains the elements on the original

stream and on the text box on the right contains the resulting stream with its elements.

For operations that reduce the number of elements or change their order there are lines

from one set of elements to the other. The first map method transforms the song titles to

their uppercase versions. The second map method transforms the duration of the songs

in minutes and returns a stream of integers. The distinct method produces a new

stream that contains only the distinct elements, and this operation’s effect is depicted

nicely in Figure 8-4.

Figure 8-3.  The Java Stream Debugger window

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

313

The next operation is sorted() that sort the entries on the stream returned by the

distinct() operation. The reordering of the elements and adding them to a new stream

is depicted in the debugger also and in Figure 8-5.

Figure 8-5.  The sorted() operation in the IntelliJ IDEA stream debugger

Figure 8-4.  The distinct() operation in the IntelliJ IDEA stream debugger

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

314

Of course, after inspecting the results in the debugger, even if you want to continue

the execution, this won’t be possible, because all elements in the original stream and the

resulting ones were consumed by the debugger, so the following exception is printed in

the console.

Connected to the target VM, address: '127.0.0.1:64083', transport: 'socket'

Exception in thread "main" java.lang.IllegalStateException:

 stream has already been operated upon or closed

Disconnected from the target VM, address: '127.0.0.1:64083',

transport: 'socket'

 �at java.base/java.util.stream.AbstractPipeline.<init>AbstractPipe

line.java:203

 �at java.base/java.util.stream.ReferencePipeline.<init>ReferencePipe

line.java:94

 at java.base/java.util.stream.ReferencePipeline$StatelessOp.<init>

 ReferencePipeline.java:696

 �at java.base/java.util.stream.ReferencePipeline$3.<init>ReferencePi

peline.java:189

 �at java.base/java.util.stream.ReferencePipeline.

mapReferencePipeline.java:188

 �at chapter.eight/com.apress.bgn.ch8.StreamDebuggerDemo.

mainStreamDebuggerDemo.java:45

�Summary
After reading this chapter and running the provided code samples, it should be clear

why the Stream API is so awesome. I like three things best: more compact and simple

code can be written to solve problems without losing readability (ifs and loops can be

avoided), parallel processing of data is possible without the boilerplate code required

before Java 8 and the fact that code can be written in Functional Programming style.

Also, the Stream API is more a declarative way of programming as most stream methods

take arguments of type Consumer<T>, Predicate<T>, or Function<T>, which declare what

should be done for each stream element, but the methods are not explicitly called from

the developer written code.

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

315

This chapter also covered how to use Optional<T> instances to avoid

NullPointerExceptions and writing if statements.

After you finished reading this chapter, you should have a pretty good idea about the

following.

•	 how to create sequential and parallel streams from collections

•	 what empty streams are useful for

•	 terms to remember about streams:

–– sequence of elements

–– predicate

–– consumer

–– supplier

–– method reference

–– source

–– aggregate operations

–– intermediate operation

–– terminal operation

–– pipelining

–– internal automatic iterations

•	 how to create and use Optional instances

Chapter 8 The Stream API

(c) ketabton.com: The Digital Library

317
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_9

CHAPTER 9

Debugging, Testing,
and Documenting
Development work does not only require you to write design the solution for a problem

and write the code for it. To make sure your solution solves the problem, you have to test

it. Testing involves making sure every component making up your solution behaves as

expected in expected and unexpected situations.

The most practical way to test code is to inspect values of intermediary variables by

logging them; print them in the console only in specific situations.

When a solution is complex, debugging provides the opportunity to pause the

execution and inspect state of the variables. Debugging sometimes involves breakpoints

and requires an IDE. Breakpoints are points where the application pauses its execution,

and the inspection of variables can be performed.

After making sure your solution fits the requirements, you have to document it,

especially if the problem that is being solved is one that requires complex code to

solve it. Or if your solution might be a prerequisite for other applications, it is your

responsibility to explain other developers how to use it.

This chapter covers a few ways to do all these, because these are key talents for a

developer.

�Debugging
Debugging is a process of finding and resolving defects or problems within a computer

program. There are more debugging tactics, and depending of the complexity of an

application, one or more can be used. The following is a list of those techniques.

•	 logging intermediary states of objects involved in the process and

analyzing log files

(c) ketabton.com: The Digital Library

318

•	 interactive debugging using breakpoints to pause the execution of the

program and inspect intermediary states of objects involved in the

process

•	 testing

•	 monitoring at the application or system level

•	 analysis of memory dumps item profiling, a form of dynamic

program analysis that measures the memory occupied by a program,

or CPU used, duration of method calls, and so forth.

Let’s start with the simplest way of debugging: logging.

�Logging
In the real world, logging is a destructive process; it is the cutting and processing of trees

to produce timber. In software programming, logging means writing log files that can be

later used to identify problems in code. The simplest way to log information is to use the

System.out.print method family, as depicted in Figure 9-1.

Figure 9-1.  System.out.print class family

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

319

For the examples in this chapter, we use a hierarchy of classes that provide methods

to sort integer arrays. The class hierarchy is depicted in Figure 9-2.

Figure 9-2.  Sorting class hierarchy

We’ll take first the MergeSort class and add System.out.print statements to log

the steps of the algorithm. Merge sort is the name of a sorting algorithm with a better

performance than bubble sort, and it works by splitting the array into two halves, then

into smaller pieces, until it gets to the arrays of two elements that can be easily sorted.

Then it starts merging the array pieces. This approach, of splitting the array repeatedly

until sorting becomes a manageable operation is called Divide et Impera also known

as divide and conquer. There are more algorithms that follow the same approach for

solving a problem and merge sort is only the first of them that is covered in this book.

Figure 9-3, shows what happens in every step of the merge-sort algorithm that we are

going to implement.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

320

In each step of the algorithm the middle of the array is identified, and as long as the

start index of the array the low value is smaller than the end index of the array to sort,

the high value, we further split the array by calling the sort(..) method until we get

to an array with one element. That is when the merge(..) method is called, aside from

merging pieces of the array, it also sorts them during the merging. To write the code, we

need to implement the two methods.

Listing 9-1.  Logging with System.out.print

package com.apress.bgn.ch9.algs;

public class MergeSort implements IntSorter {

 public void sort(int[] arr, int low, int high) {

 if (low < high) {

 int middle = (low + high) / 2;

 sort(arr, low, middle);

 sort(arr, middle + 1, high);

 merge(arr, low, middle, high);

Figure 9-3.  Merge sort

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

321

 }

 }

 private void merge(int arr[], int low, int middle, int high) {

 int leftLength = middle - low + 1;

 int rightLength = high - middle;

 int left[] = new int[leftLength];

 int right[] = new int[rightLength];

 for (int i = 0; i < leftLength; ++i) {

 left[i] = arr[low + i];

 }

 for (int i = 0; i < rightLength; ++i) {

 right[i] = arr[middle + 1 + i];

 }

 int i = 0, j = 0;

 int k = low;

 while (i < leftLength && j < rightLength) {

 if (left[i] <= right[j]) {

 arr[k] = left[i];

 i++;

 } else {

 arr[k] = right[j];

 j++;

 }

 k++;

 }

 while (i < leftLength) {

 arr[k] = left[i];

 i++;

 k++;

 }

 while (j < rightLength) {

 arr[k] = right[j];

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

322

 j++;

 k++;

 }

 }

}

This code might look scary, but it does exactly what is depicted in Figure 9-3; we just

need a lot of variables to refer all the indexes we are using to arrange our elements in the

proper order. To make sure our solution is properly implemented, it would be useful to

see the values each method is called with and the array pieces that are being handled.

We can do this by simply modifying our methods and adding a few System.out.print

method calls.

package com.apress.bgn.ch9.algs;

public class MergeSort implements IntSorter {

 public void sort(int[] arr, int low, int high) {

 System.out.print("Call sort of " + ": [" + low + " " + high + "] ");

 for (int i = low; i <= high; ++i) {

 System.out.print(arr[i] + " ");

 }

 System.out.println();

 if (low < high) {

 int middle = (low + high) / 2;

 sort(arr, low, middle);

 sort(arr, middle + 1, high);

 merge(arr, low, middle, high);

 }

 }

 private void merge(int arr[], int low, int middle, int high) {

 int leftLength = middle - low + 1;

 int rightLength = high - middle;

 int left[] = new int[leftLength];

 int right[] = new int[rightLength];

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

323

 for (int i = 0; i < leftLength; ++i) {

 left[i] = arr[low + i];

 }

 for (int i = 0; i < rightLength; ++i) {

 right[i] = arr[middle + 1 + i];

 }

 int i = 0, j = 0;

 int k = low;

 while (i < leftLength && j < rightLength) {

 if (left[i] <= right[j]) {

 arr[k] = left[i];

 i++;

 } else {

 arr[k] = right[j];

 j++;

 }

 k++;

 }

 while (i < leftLength) {

 arr[k] = left[i];

 i++;

 k++;

 }

 while (j < rightLength) {

 arr[k] = right[j];

 j++;

 k++;

 }

 System.out.print("Called merge of: [" + low

 + " " + high + " " + middle + "], ");

 for (int z = low; z <= high; ++z) {

 System.out.print(arr[z] + " ");

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

324

 System.out.println();

 }

}

To test the output we need a class containing a main(..) method to execute the

algorithm.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;

import com.apress.bgn.ch9.algs.MergeSort;

import java.util.Arrays;

public class SortingDemo {

 public static void main(String... args) {

 int arr[] = {5,1,4,2,3};

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length-1);

 System.out.print("Sorted: ");

 Arrays.stream(arr).forEach(i -> System.out.print(i+ " "));

 }

}

If we run the preceding class, the intermediary values handled by sort(..) and

merge(..) calls are printed in the console.

Call sort of : [0 4] 5 1 4 2 3

Call sort of : [0 2] 5 1 4

Call sort of : [0 1] 5 1

Call sort of : [0 0] 5

Call sort of : [1 1] 1

Called merge of: [0 1 0], 1 5

Call sort of : [2 2] 4

Called merge of: [0 2 1], 1 4 5

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

325

Call sort of : [3 4] 2 3

Call sort of : [3 3] 2

Call sort of : [4 4] 3

Called merge of: [3 4 3], 2 3

Called merge of: [0 4 2], 1 2 3 4 5

Sorted: 1 2 3 4 5

You can see that the console output matches the algorithm steps depicted in

Figure 9-3; that output is clearly proof that the solution works as expected. But, there is

a problem with the code now. Every time the sort(..) method is called, the output is

printed, and if the sorting is only one step in a more complex solution, the output is not

really necessary. It can even pollute the output of the bigger solution. Also, if the array

is big, printing that output could affect the performance of the overall solution. So, a

different approach should be considered, one that could be customized and decision

made if the output should be printed or not. This is where logging libraries come in.

�Logging with JUL

The JDK provides its own logger classes that are hosted under package java.util.

logging that is why the logging module provided by the JDK is also called JUL. A Logger

class instance is used to log messages. The logger instance should be provided a name

when is created and log messages are printed by calling specialized methods that print

messages at different levels. For the JUL module, the levels and their scope are listed

next, but other logging libraries have similar logging levels.

•	 OFF - should be used to turn off all logging

•	 SEVERE – is the highest level, message indicates a serious failure

•	 WARNING - indicates that this message is being printed because of a

potential problem

•	 INFO - indicates that this is an informational message

•	 CONFIG - indicates that this is a message containing configuration

information

•	 FINE - indicates that this a message providing tracing information

•	 FINER - indicates that this is a fairly detailed tracing message

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

326

•	 FINEST - indicates that this is a very detailed tracing message

•	 ALL - all log messages should be printed

Loggers can be configured using XML or properties files and their output can be

directed to external files. For the code sample introduced previously, let’s replace all

System.out.print method calls with logger calls. Let’s start with the SorterJulDemo class.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;

import com.apress.bgn.ch9.algs.MergeSort;

import java.util.Arrays;

import java.util.logging.Logger;

public class SortingJulDemo {

 private static final Logger log =

 Logger.getLogger(SortingJulDemo.class.getName());

 public static void main(String... args) {

 int arr[] = {5,1,4,2,3};

 log.info("Sorting an array with merge sort");

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length-1);

 StringBuilder sb = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.info(sb.toString());

 }

}

In the code sample, a Logger instance was created by calling the static method

Logger.getLogger(..). The recommended practice is for the logger to be named as

the class it is logging messages for. Without any additional configuration, every message

printed with log.info(..) is printed prefixed with the full system date, class name,

and method name in front of it. Let’s replace all System.out.print method calls with

logger calls in the MergeSort class, and introduces a StringBuilder to construct longer

messages before writing them with log.info(..).

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

327

package com.apress.bgn.ch9.algs;

import java.util.logging.Logger;

public class MergeSort implements IntSorter {

 private static final Logger log =

 Logger.getLogger(SortingJulDemo.class.getName());

 public void sort(int[] arr, int low, int high) {

 StringBuilder sb = new StringBuilder("Call sort of ")

 .append(": [")

 .append(low).append(" ").append(high)

 .append("] ");

 for (int i = low; i <= high; ++i) {

 sb.append(arr[i]).append(" ");

 }

 log.info(sb.toString());

 if (low < high) {

 int middle = (low + high) / 2;

 //sort lower half of the interval

 sort(arr, low, middle);

 //sort upper half of the interval

 sort(arr, middle + 1, high);

 // merge the two intervals

 merge(arr, low, middle, high);

 }

 }

 private void merge(int arr[], int low, int middle, int high) {

 ...

 StringBuilder sb = new StringBuilder("Called merge of: [")

 .�append(low).append(" ").append(high).append(" ")

.append(middle)

 .append("],) ");

 for (int z = low; z <= high; ++z) {

 sb.append(arr[z]).append(" ");

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

328

 }

 log.info(sb.toString());

 }

}

And now let’s run the code and analyze the console output.

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.SortingJulDemo main

 INFO: Sorting an array with merge sort

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [0 4] 5 1 4 2 3

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [0 2] 5 1 4

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [0 1] 5 1

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [0 0] 5

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [1 1] 1

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort merge

 INFO: Called merge of: [0 1 0],) 1 5

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [2 2] 4

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort merge

 INFO: Called merge of: [0 2 1],) 1 4 5

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [3 4] 2 3

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [3 3] 2

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort sort

 INFO: Call sort of : [4 4] 3

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort merge

 INFO: Called merge of: [3 4 3],) 2 3

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.algs.MergeSort merge

 INFO: Called merge of: [0 4 2],) 1 2 3 4 5

Jul 21, 2018 11:17:30 PM com.apress.bgn.ch9.SortingJulDemo main

 INFO: Sorted: 1 2 3 4 5

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

329

The way log messages are written is decided by a special class called a formatter. When

an explicit configuration is missing, the default formatter used is java.util.logging.

SimpleFormatter that prints log messages exactly as shown in the previous listing. The

messages are printed by default in the console and the class used for that is called a handler,

and is java.util.logging.ConsoleHandler in this case. Both of these are configurable and

can be replaced via a configuration file with more advanced classes or custom classes.

The previous log seems a little crowded and is not really clear. So, we must refine

it by adding a proper configuration. The StreamFormatter class contains a field

named format that can be initialized with a template for how the log messages should

be written. So, let’s remove the class and method name altogether because we have

really specific messages in place anyway. The following code listing contains a simple

configuration for JUL.

handlers=java.util.logging.ConsoleHandler

.level=ALL

java.util.logging.ConsoleHandler.level=ALL

java.util.logging.ConsoleHandler.formatter=java.util.logging.

SimpleFormatter

java.util.logging.SimpleFormatter.format=[%1$tF %1$tT] [%4$-4s] %5$s %n

This file should be loaded at the start of the execution using an instance of java.

util.logging.LogManager and calling the readConfiguration(..) method, so the

SortingJulDemo class is modified as follows.

public class SortingJulDemo {

 private static final Logger log =

 Logger.getLogger(SortingJulDemo.class.getName());

 static{

 try {

 LogManager logManager = LogManager.getLogManager();

 logManager.readConfiguration (

 new FileInputStream("./chapter09/src/main/resources/logging.properties"));

 } catch (IOException exception) {

 log.log(Level.SEVERE, "Error in loading configuration",exception);

 }

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

330

 public static void main(String... args) {

 // same code as before

 ...

 }

}

If we run our example again, the output changes to

[2018-07-21 23:58:29] [INFO] Sorting an array with merge sort

[2018-07-21 23:58:29] [INFO] Call sort of : [0 4] 5 1 4 2 3

[2018-07-21 23:58:29] [INFO] Call sort of : [0 2] 5 1 4

[2018-07-21 23:58:29] [INFO] Call sort of : [0 1] 5 1

[2018-07-21 23:58:29] [INFO] Call sort of : [0 0] 5

[2018-07-21 23:58:29] [INFO] Call sort of : [1 1] 1

[2018-07-21 23:58:29] [INFO] Called merge of: [0 1 0],) 1 5

[2018-07-21 23:58:29] [INFO] Call sort of : [2 2] 4

[2018-07-21 23:58:29] [INFO] Called merge of: [0 2 1],) 1 4 5

[2018-07-21 23:58:29] [INFO] Call sort of : [3 4] 2 3

[2018-07-21 23:58:29] [INFO] Call sort of : [3 3] 2

[2018-07-21 23:58:29] [INFO] Call sort of : [4 4] 3

[2018-07-21 23:58:29] [INFO] Called merge of: [3 4 3],) 2 3

[2018-07-21 23:58:29] [INFO] Called merge of: [0 4 2],) 1 2 3 4 5

[2018-07-21 23:58:29] [INFO] Sorted: 1 2 3 4 5

Aside from SimpleFormatter, there is another class that can be used to format log

messages named XMLFormatter that formats the messages as XML(Extensible Markup

Language). The XML format of writing data is defined by a set of rules for encoding the

data that is both human-readable and machine readable. Also, the set of rules makes it

easy to validate and find errors.1 And since for XML it makes no sense to be written in

the console, let’s use the FileHandler class to save the logs to a file. The modifications to

add to the configuration file are shown next.

handlers=java.util.logging.FileHandler

java.util.logging.FileHandler.pattern=chapter09/out/chapter09-log.xml

.level=ALL

1�More about XML here: https://en.wikipedia.org/wiki/XML

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

331

java.util.logging.ConsoleHandler.level=ALL

java.util.logging.ConsoleHandler.formatter=java.util.logging.XMLFormatter

With that configuration, when running the code, a chapter09-log.xml is

generated located under chapter09/out and contains entries that look similar to the

one depicted next.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE log SYSTEM "logger.dtd">

<log>

<record>

 <date>2018-07-21T23:50:52.905961Z</date>

 <millis>1532217052905</millis>

 <nanos>961000</nanos>

 <sequence>0</sequence>

 <logger>com.apress.bgn.ch9.SortingJulDemo</logger>

 <level>INFO</level>

 <class>com.apress.bgn.ch9.SortingJulDemo</class>

 <method>main</method>

 <thread>1</thread>

 <message>Sorting an array with merge sort</message>

</record>

...

</log>

The logging output can be customized also by providing a custom class, the only

condition is for the class to extend the java.util.logging.Formatter class, or any of its

JDK subclasses.

In the previous sample, we only had log.info calls because the code is basic

and leaves no room for error; but let’s modify the code to allow the user to insert the

elements of the array. This requires code to be written to treat situations when the user

does not insert proper data. Code to treat the case when the user does not provide any

data and code to treat the case when user inserts bad data should be added to the class.

If the user does not provide any data, a SEVERE log message should be printed and the

application should terminate. If the user introduces invalid data, the valid data should be

used and warning should be printed for elements that are not integers.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

332

This means that the SortingJulDemo class becomes

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;

import com.apress.bgn.ch9.algs.MergeSort;

import java.io.FileInputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.LogManager;

import java.util.logging.Logger;

public class SortingJulDemo {

 private static final Logger log =

 Logger.getLogger(SortingJulDemo.class.getName());

 static {

 try {

 LogManager logManager = LogManager.getLogManager();

 logManager.readConfiguration(new FileInputStream

 �("./chapter09/logging-jul/src/main/resources/logging.

properties"));

 } catch (IOException exception) {

 �log.log(Level.SEVERE, "Error in loading configuration",

exception);

 }

 }

 public static void main(String... args) {

 if (args.length == 0) {

 log.severe ("No data to sort!");

 return;

 }

 int[] arr = getInts(args);

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

333

 final StringBuilder sb = new

 StringBuilder("Sorting an array with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.info(sb.toString());

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 private static int[] getInts(String[] args) {

 List<Integer> list = new ArrayList<>();

 for (String arg : args) {

 try {

 int toInt = Integer.parseInt(arg);

 list.add(toInt);

 } catch (NumberFormatException nfe) {

 log.warning ("Element " + arg + " is not an

 integer and cannot be added to the array!");

 }

 }

 int[] arr = new int[list.size()];

 int j = 0;

 for (Integer elem : list) {

 arr[j++] = elem;

 }

 return arr;

 }

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

334

The arr array is no longer hardcoded in the main(..) method, but the values that

this method receives as arguments become the array to be sorted and are converted

from String values to int values by the toInts(..) method. The person executing

this program can provide the arguments from the command line, but because we are

using IntelliJ IDEA, there is an easier way to do that. If you now run the program without

providing any arguments, the following is printed in the console.

[2018-07-22 01:34:37] [SEVERE] No data to sort!

The execution stops right there because there is nothing to sort. And since you’ve

probably run this class a few times, IntelliJ probably created a launcher configuration that

you can customize and provide arguments for the execution. E9-4, dit your configuration

as shown in Figure 9-4 by adding the recommended values as program arguments.

Figure 9-4.  IntelliJ IDEA launcher for the SortingJulDemo class

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

335

Then, run the program and inspect the console log. You see a few extra log messages

there with severity WARNING that are printed for values given as arguments that cannot

be converted to int.

[2018-07-22 01:43:35] [WARNING] Element a is not an integer and cannot be

added to the array!

[2018-07-22 01:43:35] [WARNING] Element b is not an integer and cannot be

added to the array!

[2018-07-22 01:43:35] [WARNING] Element ds is not an integer and cannot be

added to the array!

[2018-07-22 01:43:35] [INFO] Sorting an array with merge sort: 5 3 2 1 4

[2018-07-22 01:43:35] [INFO] Call sort of : [0 4] 5 3 2 1 4

[2018-07-22 01:43:35] [INFO] Call sort of : [0 2] 5 3 2

[2018-07-22 01:43:35] [INFO] Call sort of : [0 1] 5 3

[2018-07-22 01:43:35] [INFO] Call sort of : [0 0] 5

[2018-07-22 01:43:35] [INFO] Call sort of : [1 1] 3

[2018-07-22 01:43:35] [INFO] Called merge of: [0 1 0],) 3 5

[2018-07-22 01:43:35] [INFO] Call sort of : [2 2] 2

[2018-07-22 01:43:35] [INFO] Called merge of: [0 2 1],) 2 3 5

[2018-07-22 01:43:35] [INFO] Call sort of : [3 4] 1 4

[2018-07-22 01:43:35] [INFO] Call sort of : [3 3] 1

[2018-07-22 01:43:35] [INFO] Call sort of : [4 4] 4

[2018-07-22 01:43:35] [INFO] Called merge of: [3 4 3],) 1 4

[2018-07-22 01:43:35] [INFO] Called merge of: [0 4 2],) 1 2 3 4 5

[2018-07-22 01:43:35] [INFO] Sorted: 1 2 3 4 5

Writing logs can affect performance, and in some cases, like when the application

is running in a production system, we might want to refine the logging configuration

to only important log messages that notify the risk of a problem and skip informational

messages. In the previous configuration examples, there was a configuration line that

enabled all log messages to be printed.

handlers=java.util.logging.ConsoleHandler

.level=ALL

java.util.logging.ConsoleHandler.level=ALL

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

java.util.logging.SimpleFormatter.format=[%1$tF %1$tT] [%4$-4s] %5$s %n

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

336

If we change the value of that property to OFF, nothing is printed. The log levels have

integer values assigned to them, and those values can be used to compare the severity

of the messages. As a rule, if you configure a certain level of messages, more severe

messages are printed. So, if we set that property to INFO, warning messages are printed.

The values for the severity levels of messages are defined in the java.util.logging.

Level class, and if you open that class in your editor, you can see the integer values

assigned to each of them.

...

 �public static final Level OFF = new Level("OFF",Integer.MAX_VALUE,

defaultBundle);

 �public static final Level SEVERE = new Level("SEVERE",1000,

defaultBundle);

 �public static final Level WARNING = new Level("WARNING", 900,

defaultBundle);

 public static final Level INFO = new Level("INFO", 800, defaultBundle);

 �public static final Level CONFIG = new Level("CONFIG", 700,

defaultBundle);

 public static final Level FINE = new Level("FINE", 500, defaultBundle);

 �public static final Level FINER = new Level("FINER", 400,

defaultBundle);

 �public static final Level FINEST = new Level("FINEST", 300,

defaultBundle);

...

So, in the previous configuration, if we change .level=ALL to .level=WARNING, then

we would expect to see all log messages of levels WARNING and SEVERE. If we run the

SortingJulDemo class with the previous arguments, we should see only the WARNING level

messages.

[2018-07-22 15:46:19] [WARNING] Element a is not an integer and cannot be

added to the array!

[2018-07-22 15:46:19] [WARNING] Element b is not an integer and cannot be

added to the array!

[2018-07-22 15:46:19] [WARNING] Element ds is not an integer and cannot be

added to the array!

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

337

To define log messaging formatting there are more ways: system properties can be

used or programmatically a formatter can be instantiated and set on a logger instance.

It really depends on the specifics of the application, but you might consider other

options for logging, because JUL is known for its weak performance in multithreaded

environments and most production applications use some other libraries. But when

Java 7 was released, one of the announced features was improvements to the JUL module,

so it might deserve a chance nowadays.

Another thing you have to take into account is that if the application you are building

is a complex one, with a lot of dependencies, these dependencies might use different

logging libraries, how do you configure and use them all? This is where a logging facade

proves useful. And the next section shows you how to use the most renowned Java

logging facade: SLF4J.

�Logging with SLF4J and Logback
The most renowned Java logging facade is SLF4J2 that serves as a logging abstraction for

various logging frameworks. This means that you use the SLF4J classes, and behind the

scenes all the work is done by a logging concrete implementation found in the classpath.

The best part? You can change the logging implementation anytime, and your code still

compiles and executes correctly, and there is no need to change anything in it.

In the code samples covered until now in this chapter, the code is seriously tied to

JUL, if we want for some reason to change the logging library, we need to change the

existing code as well. The first step is to change our code to use the SLF4J classes. Another

advantage of using SLF4J is that the configuration is automatically read if the logging

configuration file is on the classpath. So, the LogManager initialization block that we

needed for JUL is not needed anymore, as long as the configuration file is named according

to the standard of the concrete logging implementation used. So, let’s see the code first.

package com.apress.bgn.ch9;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.Arrays;

import java.util.logging.Logger;

2�Simple Logging Facade for Java (SLF4J) official site https://www.slf4j.org/

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

338

public class SortingJulDemo {

 private static final Logger log =

 LoggerFactory.getLogger(SortingSlf4jDemo.class);

 public static void main(String... args) {

 if (args.length == 0) {

 log.error ("No data to sort!");

 return;

 }

 int[] arr = getInts(args);

 final StringBuilder sb = new StringBuilder

 ("Sorting an array with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug (sb.toString());

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info (sb2.toString());

 }

}

As you’ve probably noticed, the methods we are calling are a little bit different, which

is because SLF4J defines an API that maps to the concrete implementation, but the

methods depending on their names they are used to print log messages with specific

purposes and at specific levels. I’ll list them and provide a short explanation for each.

•	 info.error(..) logs messages at the ERROR level; usually these

are messages that are used when there is a critical failure of the

application and normal execution cannot continue. There is more

than one form for this method, and exceptions and objects can be

passed as arguments to it so that the state of the application at the

moment of the failure can be assessed.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

339

•	 info.warn(..) logs messages at the WARN level; usually these

messages are printed to notify that the application is not functioning

normally and there might be reason to worry, in the same way as

the previous method, there is more than one form of for it, and

exceptions and objects can be passed as arguments to better assess

the current state of the application.

•	 log.info(..) logs messages at the INFO level; this type of messages

is informational to let the user know that everything is OK.

•	 info.debug(..) logs messages at the DEBUG level; usually these

messages are used to print intermediary states of the application and

to check that things are going as expected; and in case of a failure,

you can trace the evolution of the application objects.

•	 log.trace(..) logs messages at the TRACE level; this type of

messages is informational of a very low importance.

The logging concrete implementation used for this example is called Logback,3

which was chosen because it is the only library that works with SLF4J after the modules

were introduced in Java 9. Logback is viewed as the successor of Log4j, another popular

logging implementation, and it makes sense since the team that created it also worked

on Log4j.4 Logback implements SLF4J natively, so there is no need to add another bridge

library. And it is faster because the Logback internals have been rewritten to perform

faster on critical execution points. After modifying our classes to use SLF4J, all we have to

do is add Logback as a dependency of our application and add a configuration file under

the resources directory. The configuration file can be written in XML or Groovy. The

standard requires for it to be named logback.xml. The next listing depicts the contents

of this file for this sections’ example.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

3�Logback official site https://logback.qos.ch
4�Log4j official site https://logging.apache.org/log4j

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

340

 </encoder>

 </appender>

 <logger name="com.apress.bgn.ch9" level="debug"/>

 <root level="info">

 <appender-ref ref="console" />

 </root>

</configuration>

The ch.qos.logback.core.ConsoleAppender class is used for writing log messages

in the console and the <pattern> element defines the format of the log messages.

Logback can format fully qualified class names by shortening package names to their

initials thus, it allows for a compact logging without losing information. This makes

Logback one of the favorite logging implementation of the Java development world at the

moment.

The logging calls in the MergeSort class were all replaced with log.debug(..)

because these messages are intermediary and not really informational, just samples of

the state of the objects used by the application during the execution of the process. The

general logging level of the application can be set using a <root> element to the desired

level, but different logging levels can be set for classes or packages using <logger>

elements.

So, if we run the SortingSlf4jDemo class with the previous configuration on the

classpath, this is what is printed:

19:38:57.950 WARN c.a.b.c.SortingSlf4jDemo -

 Element a is not an integer and cannot be added to the array!

19:38:57.951 WARN c.a.b.c.SortingSlf4jDemo -

 Element b is not an integer and cannot be added to the array!

19:38:57.951 WARN c.a.b.c.SortingSlf4jDemo -

 Element ds is not an integer and cannot be added to the array!

19:38:57.953 DEBUG c.a.b.c.SortingSlf4jDemo - Sorting an array with merge

sort: 5 3 2 1 4

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 4] 5 3 2 1 4

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 2] 5 3 2

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 1] 5 3

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 0] 5

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

341

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [1 1] 3

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 1 0],) 3 5

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [2 2] 2

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 2 1],) 2 3 5

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [3 4] 1 4

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [3 3] 1

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [4 4] 4

19:38:57.954 DEBUG c.a.b.c.a.MergeSort - Called merge of: [3 4 3],) 1 4

19:38:57.954 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 4 2],) 1 2 3 4 5

19:38:57.954 INFO c.a.b.c.SortingSlf4jDemo - Sorted: 1 2 3 4 5

The fully qualified class name com.apress.bgn.ch9.SortingSlf4jDemo was

shortened to c.a.b.c.SortingSlf4jDemo.

The configuration file can be provided to the program as a VM argument, which

means logging format can be configured externally. When launching the class, use

-Dlogback.configurationFile=\temp\ext-logback.xml as a VM argument.

Logback can direct output to a file as well; all we have to do is add a configuration

using the ch.qos.logback.core.FileAppender class and direct the output to the file by

adding an <appender> element in the <root> configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appender name="file" class="ch.qos.logback.core.FileAppender">

 <file>chapter09/logging-slf4j/out/output.log</file>

 <append>true</append>

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <charset>UTF-8</charset>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

342

 <logger name="com.apress.bgn.ch9" level="debug"/>

 <root level="info">

 <appender-ref ref="file"/>

 <appender-ref ref="console" />

 </root>

</configuration>

In this example, we kept the original configuration because I wanted to give you a

working example of log messages written to two destinations at once. But what if the log

file becomes too big to open? Well, there’s an approach for that. We can use a different

class, which can be configured to write a file to a configured limit in size and then start

another file. This class is named ch.qos.logback.core.rolling.RollingFileAppender

and requires two arguments: an instance of a type that implements ch.qos.logback.

core.rolling.RollingPolicy, which provides functionality to write a new log file (also

called a rollover) and an instance of a type that implements ch.qos.logback.core.

rolling.TriggeringPolicy that configures the conditions under which the rollover

happens.

Also, a single instance of a type that implements both of the interfaces can configure

the logger. Rolling over a log file means that the log file is renamed according to the

configuration; usually, the last date that the file was accessed is added to its name,

and a new log file is created, with the log file named configured (without any date

information).

<?xml version="1.0" encoding="UTF-8"?>

<configuration scan="true">

 �<appender name="r_file" class="ch.qos.logback.core.rolling.

RollingFileAppender">

 <file>chapter09/logging-slf4j/out/output.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

 <fileNamePattern>

 chapter09/logging-slf4j/out/output_%d{yyyy-MM-dd}.%i.log

 </fileNamePattern>

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

343

 <timeBasedFileNamingAndTriggeringPolicy

 class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">

 <maxFileSize>10MB</maxFileSize>

 </timeBasedFileNamingAndTriggeringPolicy>

 <maxHistory>30</maxHistory>

 </rollingPolicy>

 <encoder>

 <charset>UTF-8</charset>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <logger name="com.apress.bgn.ch9" level="debug"/>

 <root level="info">

 <appender-ref ref="r_file"/>

 <appender-ref ref="console" />

 </root>

</configuration>

So, the <file> element configures the location and the name of the log file. The

<rollingPolicy> element configures the name the log file receive when log messages

no longer be written in it using the <fileNamePattern>. In the previous configuration,

the output.log file is renamed to output_2018-07-22.log, for example, and then a new

output.log file is created daily. The <timeBasedFileNamingAndTriggeringPolicy>

configures how big the output.log file should be before a new file is written. The

configured size in the previous example is 10 MB. And if a log file grows bigger than

10 MB before the end of the day, the file is renamed to output_2018-07-22.1.log, an

index is added to the name, and a new output.log is created. The <maxHistory> sets the

lifespan of a log file, and in our case, it is 30 days.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

344

Logging is a powerful tool; make sure not to abuse it because it can lead to

performance problems and a lot of data that is difficult to analyze for useful information.

Another thing worth noticing is in the previous code. StringBuilder instances are

used to construct big log messages, which are printed at a certain level. What happens

if logging for that level is disabled via configuration? If you guessed that time and

memory are consumed by creating those messages, even if they are not logged, you are

right. So, what do we do? The creators of SLF4J have thought of this as well and added

methods to test if a certain logging level is enabled and those methods can be used in

an if statement that wrap around the performance sensitive code. This being said the

SortingSlf4jDemo.main(..) method becomes

public static void main(String... args) {

 if (args.length == 0) {

 log.error("No data to sort!");

 return;

 }

 int[] arr = getInts(args);

 if (log.isDebugEnabled()) {

 final StringBuilder sb = new StringBuilder(

 "Sorting an array with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug(sb.toString());

 }

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 if (log.isInfoEnabled()) {

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 }

In this code sample, if the SLF4J configuration for the com.apress.bgn.ch9 package

is set to info, the message starting with Sorting an array with merge sort: ... is no longer

created nor printed, because the log.isDebugEnabled() returns false, so the code

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

345

enclosed in the if statement is no longer executed. The Logger class contains

if..Enabled() for any logger level.

And this is all that can be said in this section about logging. Remember to use it

moderately, pay very much attention when you decide to log messages in loops and for

big application always use a logging facade, meaning SLF4J.

�Debug Using Assertions
Another tool to debug your code is using assertions. If you remember the section about

Java keywords, you probably remember the assert keyword. The assert keyword writes

an assertion statement that is a test of your assumptions on the program execution.

In the previous examples, we had the user provide the input for our sorting program,

so for our program to do the right thing, it is assumed that the user provide the proper

input, this means, an array with size bigger than 1, because there is no point to run the

algorithm for a single number. So, how does this assertion looks like in the code? The

answer to this question is in the following code sample.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;

import com.apress.bgn.ch9.algs.QuickSort;

import java.util.Arrays;

import static com.apress.bgn.ch9.SortingSlf4jDemo.getInts;

public class AssertionDemo {

 public static void main(String... args) {

 int[] arr = getInts(args);

 assert arr.length > 1;

 IntSorter mergeSort = new QuickSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 System.out.println(sb2.toString());

 }

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

346

If you run this code without providing any arguments to the program, nothing

happens, even if we have an assertion statement in it. The reason for this is that

assertions need to be enabled using a VM argument: -ea. To specify this argument, you

can add it to the command when executing from the command line; but since we’ve

used the editor until now, you can add it in the VM options text box of the IntelliJ IDEA

launcher, as depicted in Figure 9-5.

Figure 9-5.  IntelliJ IDEA launcher for the AssertionDemo class with the -ea VM
argument set

When assertions are enabled, running the previous code ends with an java.lang.

AssertionError being thrown, because the expression of the assertions is evaluated

to false because the arr.length is clearly not bigger than 1 when no argument is

provided. Assertions have two forms. In the simple form, they only have the expression

to evaluate; the assumption to test

assertion expression;

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

347

In this case, java.lang.AssertionError is being thrown. It prints the line of the

assumption being made, which is clearly the wrong assumption for the current run of

the program, with the module and the full classname.

Exception in thread "main" java.lang.AssertionError

 �at chapter.nine.slf4j/com.apress.bgn.ch9.AssertionDemo.main

(AssertionDemo.java:48)

The complex version of the assertion adds another expression to be evaluated, or a

value in the stack to tell the user that the assumption was wrong.

assertion expression1 : expression 2;

So, if we replace

assert arr.length > 1;

with

assert arr.length > 1 : "Not enough data to sort!";

when java.lang.AssertionError is thrown, it depicts the Not enough data to sort!

message, which makes it clear why the assertion statement is preventing the rest of the

code from being executed.

Exception in thread "main" java.lang.AssertionError: Not enough data to sort!

 �at chapter.nine.slf4j/com.apress.bgn.ch9.AssertionDemo.main

(AssertionDemo.java:48)

Or we could just print the size of the array.

assert arr.length > 1 : arr.length;

Or both.

assert arr.length > 1 :

 "Not enough data to sort! Number of values: " + arr.length;

Assertions can be used before and after the piece of code that needs to be debugged.

In the this case, the assertion was used as a precondition of the execution, because the

failure of the assertion prevents code from being executed. But assertions can be used as

post-conditions also to test the outcome of executing a piece of code.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

348

In the previous code snippet, the assertion was used to test the correctness of the

user provided input. In situations like this, the restriction of a valid input should be

obeyed, whether assertions are enabled or not. Sure, if our array is empty or contains

a single element, this is not a problem, as the algorithm is not executed, and this does

not lead to a technical failure. There are a few rules to obey, or things to look for when

writing code using assertions.

•	 Assertions should not be used to check the correctness
of arguments provided to public methods. Correctness of

arguments should be something tested in the code and a proper

RuntimeException should be thrown and should not be avoidable.

•	 Assertions should not be used to do work that is required for
your application to run properly. The main reason for this is that

assertions are disabled by default and having them disabled leads

to that code not being executed, so the rest of the application does

not function properly because of the missing code.

•	 For performance reasons, do not use expressions that are
expensive to evaluate in assertions. This rule requires no

explanation, even if assertions are disabled by default, imagine that

somebody enables them by mistake on a production application.

That would be unfortunate, wouldn’t it?

If you are interested in using assertions, keep in mind those three rules, and you

should be fine.

�Step-by-Step Debugging
If you do not want to write log messages, or use assertions, but you still want to inspect

values of variables during the execution of a program. There is a way to do that using

an IDE: pausing the execution using breakpoints and using the IDE to inspect variable

contents or execute simple methods to check if your program is performing as expected.

A breakpoint is a mark set on an executable line of code (not a comment line, not an

empty line and not a declaration). In IntelliJ IDEA, to set a breakpoint, you have to click

the gutter area on the line you are interested in. Or select the line and from the Run menu

select Toggle Line Breakpoint. When a breakpoint is in place, a red bubble appears on the

line in the gutter section. Figure 9-6 shows a few breakpoints in IntelliJ IDEA.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

349

Once the breakpoints are in place, when the application is executed in debug mode,

it pauses on each of the lines. You can decide if you want to continue the step-by-step

execution and inspect the values of the variables. IntelliJ IDEA is very helpful with

this because it shows you the contents of every variable in each line of the code being

executed. In Figure 9-7, the SortingSlf4jDemo class is running in debug mode and is

paused during execution using breakpoints.

Figure 9-6.  IntelliJ IDEA breakpoints

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

350

To run an application in debug mode, instead of starting the launcher normally, you

can start it by clicking the green bug-shaped button (marked 1 in Figure 9-7) that is right

next to the green triangle-shaped button that is normally used to run the application.

The application runs and stops at the first line marked with a breakpoint. From that

point on the developer can do the following things.

•	 Inspect values of the variables used on the line with the breakpoint

by reading the values depicted by the editor there.

•	 Continue the execution until the next breakpoint by clicking the

green triangle in the Debug section, marked 2 in Figure 9-7.

•	 Stop the execution by clicking the red square-shaped button in the

Debug section, marked 2 in Figure 9-7.

•	 Disable all breakpoints by clicking red bubble cut diagonally shaped

button in the Debug section, marked 2 in Figure 9-7.

•	 Continue execution to the next line of code by clicking the button with

a 90-degree angle in the Debugger section, marked 3 in Figure 9-7.

Figure 9-7.  IntelliJ IDEA SortingSlf4jDemo class paused during execution

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

351

•	 Continue execution by entering the method in the current line of

code by clicking the button with a blue arrow oriented down, in the

Debugger section, marked 3 in Figure 9-7.

•	 Continue execution by stepping out of the current method by clicking

the button with a blue arrow oriented up, in the Debugger section,

marked 3 in Figure 9-7.

•	 Continue the execution to the line pointed at by the cursor by clicking

the button with a diagonal arrow pointing to a cursor sign in the

Debugger section, marked 3 in Figure 9-7.

•	 Evaluate your own expressions by adding them to the Watches

section marked 4 in Figure 9-7. The only condition is that the

expressions only use variables that are accessible in the context of the

breakpoint line.

Most Java smart editors provide the means to run a Java application in debug mode;

just make sure that you don’t forget to clean up your Watches section from time to time,

because if you add expressions that are expensive to evaluate there, it might affect the

performance of the application. Also, be aware that expressions that use streams might

make the application fail, as proven in Chapter 8.

�Inspect Running Application Using Java Tools
Aside from the executables to compile Java code and execute or packaging of Java

bytecode, the JDK provides a set of utility executables that can be used to debug and

inspect the state of a running Java application. This section covers the most useful of

them. without further ado, let’s cover the most important ones.

�jps

A Java application is assigned a process ID when it is running. This is how an operating

system keeps track of all applications running in parallel at the same. You can see the

process IDs in utilities, such as Process Explorer in Windows and Activity Monitor in

macOS. But if you are comfortable with working in the console, you might prefer using

the jps executable provided by the JDK because it only focuses on Java processes.

When calling jps from the console, all Java process IDs are listed with the main class

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

352

name or some details that are exposed by the application API that help you identify the

application running. This is useful when an application crashes, but the process remains

in a hanging state. This can be painful when the application uses resources such as files

or network ports, because it might block them and prevent you from using them. When

executing jps on my computer (I have a Mac) these are the Java processes I see running.

$ jps

21234 Launcher

18562

21235 SortingSlf4jDemo

3155 muCommander

21236 Jps

As you can see in the listing, jps does include itself in the output, because it is a Java

process. The process with 21235 is the execution of the SortingSlf4jDemo class. The

21234 process is a launcher application that IntelliJ IDEA uses to start the execution

of the SortingSlf4jDemo class. The process with ID 3155 is a Java application that is

an alternative to Total Commander (a Windows file manager application). The 18562

process does not have any description, but at this point I can identify the process myself,

because I know I have IntelliJ IDEA opened, which is itself a Java application.

The advantage of knowing the process IDs is that you can kill them when they

hang and block resources. Let’s assume that the process started by the execution of

SortingSlf4jDemo ended up hanging. To kill a process, all operating systems provide

a version of the kill command. For macOS and Linux, you should execute kill -9

[process_id]. For the preceding example, if I call kill -9 21235 and then call jps, I

can see that that SortingSlf4jDemo process is no longer listed.

$ jps

21234 Launcher

18562

3155 muCommander

21257 Jps

I do still have the Launcher process, but that is a child process of IntelliJ IDEA so

there is no point in killing it, because next time I run a main(..) in the IDE, the process is

started again.

jps is a simple tool for this specific purpose, but sometimes when applications are

installed on servers with minimal setup, it might be all you have. So, it’s good to know it exists.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

353

�jcmd

The jcmd is another JDK utility that can be useful. It sends diagnostic command requests

to the JVM, which can help troubleshoot and diagnose JVM and running Java applications.

It must be used on the same machine where the JVM is running and the result of calling

it without any commands is that it shows all Java processes currently running on the

machine; it displays the process Ids and the command used to start their execution.

$ jcmd

3155 com.mucommander.muCommander

21369 jdk.jcmd/sun.tools.jcmd.JCmd

21355 org.jetbrains.jps.cmdline.Launcher /Applications/IntelliJ IDEA 2018.2 EAP

.app/Contents/lib/platform-api.jar:/Applications/IntelliJ IDEA 2018.2 EAP

.app/Contents/lib/jps-builders-6.jar:/Applications/IntelliJ IDEA 2018.2 EAP

...

.app/Contents/lib/netty-transport-4.1.25.Final.jar:/Applications/IntelliJ IDEA

21356 chapter.nine.slf4j/com.apress.bgn.ch9.SortingSlf4jDemo 5 a 3 2 b 1 ds 4

21326 org.jetbrains.idea.maven.server.RemoteMavenServer

The simplest command that you can run jcmd with is help on a running process, which

depicts all additional commands you can use on that process. This works if the application

is currently running and not paused using a breakpoint. Since the SortingSlf4jDemo was

paused when I was writing this, I used the muCommander process as an example.

If I call jcmd 3155 help this is what I see:

$ jcmd 3155 help

3155:

The following commands are available:

JFR.configure

JFR.stop

JFR.start

JFR.dump

JFR.check

VM.log

VM.native_memory

VM.check_commercial_features

VM.unlock_commercial_features

ManagementAgent.status

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

354

ManagementAgent.stop

ManagementAgent.start_local

ManagementAgent.start

Compiler.directives_clear

Compiler.directives_remove

Compiler.directives_add

Compiler.directives_print

VM.print_touched_methods

Compiler.codecache

Compiler.codelist

Compiler.queue

VM.classloader_stats

Thread.print

JVMTI.data_dump

JVMTI.agent_load

VM.stringtable

VM.symboltable

VM.class_hierarchy

VM.systemdictionary

GC.class_stats

GC.class_histogram

GC.heap_dump

GC.finalizer_info

GC.heap_info

GC.run_finalization

GC.run

VM.info

VM.uptime

VM.dynlibs

VM.set_flag

VM.flags

VM.system_properties

VM.command_line

VM.version

help

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

355

It is not the objective of this book to cover them all, as these are advanced features of

Java, but probably you have a basic idea of the scope of each command. As example, the

following shows the output of calling jcmd 3155 GC.heap_info.

$ jcmd 3155 GC.heap_info

3155:

 �garbage-first heap total 48128K, used 11698K [0x00000006c0000000,

0x00000007c0000000)

 region size 1024K, 1 young (1024K), 0 survivors (0K)

 Metaspace used 35414K, capacity 35923K, committed 36864K, reserved 1081344K

 class space used 4588K, capacity 4835K, committed 5120K, reserved 1048576K

If you remember, in Chapter 5 the different types of memory used by the JVM were

discussed, and heap was the memory where all the objects used by an application were

stored. This command prints the heap details: the amount that was used and reserved,

the size of a region, and so forth. These details are covered more in detail in Chapter 13.

�jconsole

jconsole is JDK utility that can be used to inspect various JVM statistics. To use it, you

have to start it from the command line and connect it to a Java application that is already

running. This application is quite useful, as it can connect to applications running on

different machines also, as long as they are running in debug mode on a server and

expose a port to connect to. To start a Java application in debug mode and expose a

port for an external application, you have to start the application with the following VM

parameters.

-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=1044

The port can be any port really as long as it is bigger than 1024, because those are

restricted by the operating system. The transport=dt_socket instructs the JVM that the

debugger connections is made through a socket, the address=1044 parameter informs

it that the port number is 1044. The suspend=y instructs the JVM to suspend execution

until a debugger is connected to it. To avoid that suspend=n should be used.

For our simple example and considering we use jconsole to debug a Java application

on the same machine, we do not need all that. We need to start jconsole from the

command line and look in the Local Processes: section and identify the Java process we

are interested in debugging. Figure 9-8 shows the first JConsole dialog window.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

356

When the process is running locally it can be easily identified because it is named

using the module and the fully qualified main class name. When we use jconsole to

debug locally, the application does not have to run in debug mode, but for an application

as simple as ours we need to make a few tweaks to make sure that we can see a few

statistics with jconsole, during the run of the application. A few Thread.sleep(..)

statements were added to pause the execution enough for jconsole to connect. Also,

we’ll use a large array of data to make sure that the statistics are relevant.

public class SortingSlf4jDemo {

 private static final Logger log =

 LoggerFactory.getLogger(SortingSlf4jDemo.class);

 public static void main(String... args) throws Exception {

 Thread.sleep(3000);

Figure 9-8.  JConsole first dialog window

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

357

 Random random = new Random(5);

 IntStream intStream = random.ints(100_000_000,0,350);

 int[] arr = intStream.toArray();

 if (log.isDebugEnabled()) {

 final StringBuilder sb =

 new StringBuilder("Sorting an array with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug(sb.toString());

 }

 Thread.sleep(3000);

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 if (log.isInfoEnabled()) {

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 }

 ...

 }

After doing the modifications, we’ll start the application normally and connect

jconsole to it. After a successful connection, a window like the one shown in Figure 9-9

is opens, and graphs of the JVM memory consumption, number of threads, of classes

loaded and CPU usage are displayed.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

358

There is a tab for each of these statistics that provides more information, and in

a more complex application, this information can be used to improve performance,

identify potential problems, or even estimate application behavior for desired cases. For

our small application, the jconsole graphs do not reveal much, but if you really want to

see valuable statistics, install an application like mucommander5 use it for a while without

closing it and then connect jconsole to it and have fun.

5�The official MuCommander site is at http://www.mucommander.com

Figure 9-9.  JConsole statistics window

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

359

�jmc

JMC is short for Oracle Java Mission Control. The jmc command starts an advanced

Oracle application for debugging and analyzing JVM statistics for a running application.

From its official description: JMC is a tool suite for managing, monitoring, profiling, and

troubleshooting your Java applications that became part of the JDK utility tools family

starting with version 7.

Similar to other tools, this utility identifies the Java processes currently running

and provides the possibility to check out how much memory they require at specific

times during execution, how many threads are running in parallel at a given moment

in time, the classes loaded by the JVM, and how much processing power is required to

run a Java application. The JMC has a friendlier interface and one of its most important

components is the Java Flight Recorder that can be used to record all JVM activity while

the application is running, all that data collected during this time being is then used to

diagnose and profile the application.

To inspect the application while it is running, we open the JMC by running jmc from

the command line, and then select the process that we recognize as the one running the

SortingSlf4jDemo main class based on the same rule as before. We look for a process

name containing the module name and the fully classified class name when we found it.

We right-click it and select Start JMX console. You should see something similar to the

image depicted in Figure 9-10.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

360

As you probably noticed, the interface is definitely friendlier and the provided

statistics are more detailed. Using JMC, everything that happens with the application

and JVM during a run can be recorded and analyzed later, even if the application has

stopped running since. The Memory tab provides a lot of information regarding the

memory used by the application, including what types of objects are occupying it. The

information for the memory occupied by SortingSlf4jDemo during its run is depicted in

Figure 9-11.

Figure 9-10.  JMX console

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

361

To record this information during the application run, or for a limited period of

time, in the JVM Browser expand the process node and select Start Flight Recording.

A window is opened asking you to select a path where the recording is saved and the

duration of the recording. The file has a .jfr extension and can be opened with the

JMC for inspection. The flight recorder menu and the dialog to start recording data are

depicted in Figure 9-12.

Figure 9-11.  JMX console ➤ the Memory tab

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

362

The JMC subject is too advanced and broad for this section, an entire book

could probably be written about its usage and how to interpret the statistics. So,

I’ll stop here and recommend this Oracle article if you want to dig deeper: www.

oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-

control-1998576.html.

�Accessing the Java Process API
Java 9 came with a lot of other improvements aside the Jigsaw modules, one of them

being a new and improved Process API. The Java Process API allows you to start, retrieve

information, and manage native operating system processes. The ability to manipulate

processes was in former versions of Java, but it was rudimentary. Note how a process was

created before Java 5.

package com.apress.bgn.ch9;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

Figure 9-12.  JMC Flight Recording menu and dialog window

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

363

import java.io.BufferedReader;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.Reader;

import java.nio.charset.Charset;

import java.nio.charset.StandardCharsets;

public class ProcessCreationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ProcessCreationDemo.class);

 public static void main(String... args) {

 try {

 Process exec = Runtime.getRuntime()

 �.exec(new String[] { "/bin/sh", "-c", "echo Java

home: $JAVA_HOME" });

 exec.waitFor();

 InputStream is = exec.getInputStream();

 StringBuilder textBuilder = new StringBuilder();

 try (Reader reader = new BufferedReader(new InputStreamReader

 (is, Charset.forName(StandardCharsets.UTF_8.name())))) {

 int c = 0;

 while ((c = reader.read()) != -1) {

 textBuilder.append((char) c);

 }

 }

 log.info("Process output -> {}", textBuilder.toString());

 log.info("process result: {}", exec.exitValue());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Intercepting the output of a process that has started is a pain. We need to wrap a

BufferedReader instance around the InputStream instance connected to the normal

output of the process.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

364

The process API made things a little more practical. It has at its core a few classes

and interfaces, all with names that start with the "Process" term. What we’ve done so

far with Java executables, can be directly done by writing Java code. The interface that

provides an API to access native processes is named ProcessHandle and is part of the

core Java package java.lang. In a similar manner to the Thread class, there is a static

method named current to call on this interface to retrieve the ProcessHandle instance

of the current running process. Once we have this, we can use its methods to access

more process information. The ProcessHandle provides several static utility methods

to access native processes. Java code can be written to list all processes running on a

computer and they can be sorted based on certain criteria. The following piece of code

lists all the processes that were created by running the java command.

package com.apress.bgn.ch9;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.Arrays;

import java.util.Optional;

public class ProcessListingDemo {

 private static final Logger log = LoggerFactory.getLogger(ProcessDemo.class);

 public static void main(String... args) {

 Optional<String> currUser = ProcessHandle.current().info().user();

 ProcessHandle.allProcesses()

 .filter(ph -> ph.info().user().equals(currUser)

 && ph.info().commandLine().get().contains("java"))

 .forEach(p -> log.info("PID: " + p.pid());

 p.info() .arguments()

 .ifPresent(s -> Arrays.stream(s)

 .forEach(a -> log.info("\t {}", a)));

 p.info().command()

 .ifPresent(c -> log.info("\t Command: {}", c));

 });

 }

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

365

This code extracts the user from the current running process by obtaining its

handle and calling info() to obtain an instance of ProcessHandle.Info, an interface

that provides a set of methods to access snapshot information about the process as

the command and arguments that were used to create the process. The output of the

previous code is printed in the console. It should look similar to the following listing.

INFO c.a.b.c.ProcessDemo - PID: 3077

INFO c.a.b.c.ProcessDemo - -Dlogback.configurationFile=

 chapter09/processapi/src/main/resources/logback.xml

INFO c.a.b.c.ProcessDemo - -�javaagent:/Applications/IntelliJ IDEA

2018.2 EAP

 .app/Contents/lib/idea_rt.jar=57554:

 /Applications/IntelliJ IDEA 2018.2 EAP.app/Contents/bin

INFO c.a.b.c.ProcessDemo - -Dfile.encoding=UTF-8

INFO c.a.b.c.ProcessDemo - -p

INFO c.a.b.c.ProcessDemo - /Users/iulianacosmina/apress/workspace/

 java-bgn/chapter09/processapi/out/production/classes ...*.jar

INFO c.a.b.c.ProcessDemo - -m

INFO c.a.b.c.ProcessDemo - �chapter.nine.processapi/com.apress.bgn.ch9.

ProcessDemo

INFO c.a.b.c.ProcessDemo - Command:

 /Library/Java/JavaVirtualMachines/jdk-10.0.1.jdk/Contents/Home/bin/java

INFO c.a.b.c.ProcessDemo - PID: 3076

INFO c.a.b.c.ProcessDemo - -Xmx700m

INFO c.a.b.c.ProcessDemo - -Djava.awt.headless=true

INFO c.a.b.c.ProcessDemo - -Djdt.compiler.useSingleThread=true

...

INFO c.a.b.c.ProcessDemo - org.jetbrains.jps.cmdline.Launcher

INFO c.a.b.c.ProcessDemo - �/Applications/IntelliJ IDEA 2018.2 EAP.app/

Contents/lib/...*.jar

INFO c.a.b.c.ProcessDemo - org.jetbrains.jps.cmdline.BuildMain

INFO c.a.b.c.ProcessDemo - 127.0.0.1

INFO c.a.b.c.ProcessDemo - 51833

INFO c.a.b.c.ProcessDemo - 47353a1a-570c-4f45-85f9-91abcbb66e9a

INFO c.a.b.c.ProcessDemo -

 /Users/iulianacosmina/Library/Caches/IntelliJIdea2018.2/compile-server

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

366

INFO c.a.b.c.ProcessDemo - Command:

 /Library/Java/JavaVirtualMachines/jdk-10.0.1.jdk/Contents/Home/bin/java

In this log, only the IntelliJ IDEA launcher used to run the ProcessDemo class and

the process spawned to run it were depicted, but the output could be much bigger. Also,

some arguments were shortened, as it is useless to waste pages of the book with logs.

Nevertheless, some depiction of the log format was necessary in case you never run the

code yourself.

The previous code sample showed you roughly how to access native processes and

print information about them. But, using the improved Java process API, new processes

can be created, and commands of the underlying operation system can be started. For

example, we can create a process that prints the value of the JAVA_HOME environment

variable, and capture the output to display it in the IntelliJ console.

package com.apress.bgn.ch9;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class ProcessCreationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ProcessCreationDemo.class);

 public static void main(String... args) {

 try {

 ProcessBuilder pb = new

 ProcessBuilder("/bin/sh", "-c", "echo Java home: $JAVA_HOME")

 .inheritIO();

 Process p = pb.start();

 p.onExit();

 CompletableFuture<Process> future = p.onExit();

 int result = future.get().exitValue();

 log.info("Process result: {}", result);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

367

New processes can be created by using instances of ProcessBuilder that can receive

as arguments a list of commands and values to use as arguments for them. The class has

many constructors and methods with different signatures that can be used to create and

start processes easily. The inheritIO() method sets the source and destination for the

subprocess standard I/O to be the same as the current process. The onExit() method

returns an CompletableFuture<Process> that can be used to access the process at the

end of its execution to retrieve the exit value of the process. For a process terminating

normally, the value should be 0(zero).

When a Java program creates a process, it becomes a child of the process that created

it. To list all child processes, we need to make sure that they last a while, because once

terminated, they obviously no longer exist. The following code sample creates three

identical processes, each of them executing three Linux shell commands: the first is

echo "start" to notify that the process has started execution, the second is sleep 3

that pauses the process for 3 seconds, and the last one (echo "done.") is executed right

before the process finishes its execution. Once the process has started, it can no longer

be controlled, so to make sure that the child processes finish their execution, we’ll ask

the user to press a key to decide when the current process finishes execution by calling

System.in.read();.

package com.apress.bgn.ch9;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class ProcessCreationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ProcessCreationDemo.class);

 public static void main(String... args) {

 try {

 List<ProcessBuilder> builders = List.of(

 new ProcessBuilder("/bin/sh", "-c",

 "�echo \"start...\" ; sleep 3; echo \"done.\"").

inheritIO(),

 new ProcessBuilder("/bin/sh", "-c",

 "�echo \"start...\" ; sleep 3; echo \"done.\"").

inheritIO(),

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

368

 new ProcessBuilder("/bin/sh", "-c",

 "�echo \"start...\" ; sleep 3; echo \"done.\"").

inheritIO()

);

 builders.parallelStream().forEach(pbs -> {

 try {

 pbs.start();

 } catch (Exception e) {

 log.error("Oops, could not start process!", e);

 }

 });

 ProcessHandle ph = ProcessHandle.current();

 ph.children().forEach(pc -> {

 log.info("Child PID: {}", pc.pid());

 pc.parent().ifPresent(parent ->

 log.info(" Parent PID: {}", parent.pid()));

 });

 System.out.println("Press any key to exit!");

 System.in.read();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

We have grouped the ProcessBuilders in a list and processed the instances using

a parallel stream to make sure that all processes were started almost at the same time.

We printed the results of each of them after termination to make sure all were executed

correctly.

The children() method returns a stream containing ProcessHandle instances

corresponding to the processes started by the current Java process.

The parent() method was called for each child ProcessHandle instance to obtain

the ProcessHandle corresponding to the process that created it.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

369

When running the previous code, in the console you should see an output similar to

what is depicted in the next listing.

start...

start...

start...

22:29:04.593 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child

PID: 3966

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Parent

PID: 3962

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child

PID: 3965

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Parent

PID: 3962

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child

PID: 3964

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Parent

PID: 3962

Press any key to exit!

done.

done.

done.

The improved Java Process API provides a lot more control over running and

spawned processes and in a practical manner. In the past, developers who needed to

work with processes on a more advanced level resorted to native code. A full list of the

Java process API improvements added in Java 9 can be found at https://docs.oracle.

com/javase/9/core/process-api1.htm#JSCOR-GUID-6FAB2491-FD4E-42B4-A883-

DCD181A1CE3E.

�Testing
Debugging is a part of a software process called testing and involves identifying

and correcting code errors. But avoiding technical errors is not enough, testing an

application means much more than that. There is an organization providing very good

materials for training and certifications for software testers. The International Software

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

370

Testing Qualifications Board (ISTQB) is a software testing qualification certification

organization that operates internationally. It established a syllabus and a hierarchy of

qualifications and guidelines for software testing.6 If you think you are more interested in

software testing then you should look into getting an ISTQB certification.

The ISTQB defines testing as “the process consisting of all lifecycle activities, both

static and dynamic, concerned with planning, preparation and evaluation of software

and related work products to determine that they satisfy specified requirements to

demonstrate that they are fit for purpose and to detect defects.”

This is a technical and academic definition. The definition that I propose is “the

process of verifying that an implementation does what it is supposed to in the amount of

time it is expected to, with an acceptable resources consumption and it does not break

anything while doing so.”

�A Small Introduction to Testing
I want to be a developer. Why do I need to know all of these details about testing? The

simple answer is because testing is a constant activity that is performed during every

phase of the lifecycle of a software application. When the design is made, simulations

are done and experienced people review the design to decide if it represents a proper

solution for the problem and if it is realizable. When the code is written, it has to be

tested to make sure the application does not crash and behaves as expected. Before

delivery, there is a phase named acceptance testing when client representatives test

the application in a controlled environment so every action is logged and problems

identified. Testing can be done using debugging, using all the methods presented until

now, but the disadvantage of debugging is that it is manual and repetitive. So, let’s

introduce a way to test the application that is a little bit more automated.

! T esting is an essential part of the development process and should start as
early as possible, because the effort of fixing a defect grows exponentially with the
time it takes to be discovered.7

6�The ISTQB certification path: https://www.istqb.org/certification-path-root.html
7�Clean Code by Robert Martin (Prentice Hall, 2008)

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

371

During the development phase, aside from writing the actual solution, you can also

write code to test your solution. Those tests can run manually or by a build tool when

you build your project. When writing your code, aside from thinking about the solution

to solve the problem, you should also think about how to test the solution. This approach

is called TDD, which is the acronym for test-driven development, a programming

paradigm that states that you should think about how to test your solution, before

implementing it, because if it is difficult to test, it probably is difficult to implement,

maintain on the long run and extend to solve related problems.

The simplest tests are called unit tests, which test small units of functionality. If unit

tests cannot be written easily, your design might be rotten. Unit tests are the first line of

defense against failures. If unit tests fail, the foundation of your solution is bad.

The tests that span across multiple components, testing the communication between

units of functionality and the results of their interactions against an expected results are

called integration tests.

The last type of tests a developer should write are regression tests, which are tests

that are run periodically to make sure that code that was previously tested still performs

correctly after it is changed. These type of tests are crucial for big projects where code

is written by a considerable number of developers, because sometimes dependencies

among components are not obvious, and code one developer wrote might break another

developer’s code.

This section only shows you how to write unit tests using a Java library called JUnit. It

describes a few typical testing components that a developer can build to set up a context

for the unit tests. Thus, as my Scottish colleagues say, let’s get cracking!

�Test Code Location
As you probably remember, in Chapter 3 the java-for-absolute-beginners project

structure was explained. The discussion about tests must start with the structure of the

lowest level modules of the project, the ones that contain the source code and tests.

Figure 9-13 shows the structure of the module containing the sources and test code for

the module used in this section.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

372

The structure shown in Figure 9-13 can be explained as follows.

•	 The src directory contains all code and resources of the project. The

contents are split into two directories main and test.

–– The main directory contains the source code and the application configura-

tion files, split into two directories. The java directory contains the Java

source code and the resources contains configuration files, non-executable

text files(that can be written according to various formats: XML, SQL, CSV,

etc.), media files, PDFs, and so forth. When the application is built and packed

into a jar (or war or ear) only the files in the java directory are taken onto

account, the *.class filed together with the configuration files are packed.

–– The test directory contains code used to test the source code in the src direc-

tory. The Java files are kept under the java directory and in the resources

directory contains configuration files needed to build a test context. The con-

tents of the test directory are not part of the project that is delivered to a client.

They exist to help test the application during development.

�Application to Test
For the examples in this section we build a simple application that uses an embedded

Derby8 database to store data. This is the production database. For the test environment

the database is replaced with various pseudo-constructions that mimic the database

8�If you are interested in finding our more about the Derby database, this is the official resource to
go to: https://db.apache.org/ derby/

Figure 9-13.  The Gradle module structure

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

373

behavior. The application is rudimentary. An AccountService implementation takes

data from the input and uses it to manage Account instances. The Account class is a very

abstract an unrealistic implementation of a banking account. It has a holder field, which

is the account owner, an accountNumber field, and an amount field. The AccountService

implementation uses an AccountRepo implementation to perform all related database

operations with Account instances using an implementation of DBConnection. The

classes and interfaces that are making up this simple application and relationships

between them are depicted in Figure 9-14.

The implementation of these classes is not relevant for this section, but if you are

curious, you can find the full code on this book’s official repository. So, let’s start testing.

The easiest way would be to write a main class and perform some account operations.

But, we do not want that, once the application is in production we can no longer test new

features on it, because there are risks of data corruption. Also, production databases are

usually hosted on costly products, such as Oracle RDBMS (Oracle Relational Database

Management System) or Microsoft SQL Server. They are not really appropriate for

development, or testing. Also, the intention is to run tests automatically, so in-memory

or implementations that can be instantiated are more suitable. So, let’s start by testing

our AccountRepoImpl.

Figure 9-14.  Simple Account management application components

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

374

�Introducing JUnit

JUnit is undoubtedly the most used testing framework in the Java development world.

At the end of 2017, JUnit 59 was released that is the next generation of this framework.

It comes with a new engine, is compatible with Java 9+, and comes with a lot of

lambda-based functionalities. JUnit provides annotations to mark test methods for

automated execution, annotations for initialization and destruction of a test context

and utility methods to practically implement test methods. There are multiple JUnit

annotations that you can use. Five of them (and a utility class) represent the core of

the JUnit framework, which is the best place to learn testing. Below each of them are

a short description that builds a general picture of how JUnit can be used to test your

application.

•	 @BeforeAll from package org.junit.jupiter.api is used on a non-

private static method that returns void used to initialize objects

and variables to be used by all test methods in the current class. This

method is called only once, before all test methods in the class, so

test methods should not modify these objects, because their state is

shared and it might affect the test results. Eventually, the static fields

to be initialized by the annotated method, can be declared final,

so once initialized, they can no longer be changed. More than one

method annotated with @BeforeAll can be declared in a test class,

but what would be the point?

•	 @AfterAll from package org.junit.jupiter.api is the counterpart

of @BeforeAll. It is also used to annotate non-private static

methods that return void, but their purpose is to destroy the context

the test methods were run in and perform cleanup actions.

•	 @BeforeEach from package org.junit.jupiter.api is used on

non-private non-static methods that return void and as its

name says, methods annotated with it are executed before every

method annotated with @Test. These methods can be used to further

customize the test context to populate objects with values that tests

assertions in the test methods.

9�Official JUnit 5 site: https://junit.org/junit5/

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

375

•	 @AfterEach from package org.junit.jupiter.api is used on

public non-static methods that return void and as its name

says, methods annotated with it are executed after every method

annotated with @Test.

•	 @Test from package org.junit.jupiter.api is used on non-private

non-static methods that return void and as its name says, the

method annotated with it is a test method. A test class can have one

or more, depending on the class that is being tested.

•	 Utility class org.junit.jupiter.api.Assertions provides a set of

methods that support asserting conditions in tests.

Another annotation that you might be interested to know it exists is @DisplayName.

It is declared in the same package as all the others and receives a text argument that

represents the test display name, which is displayed by the editor and in the resulting

reports created by the build tool. Let’s write a pseudo test class so you can get an idea of

how test classes look.

package com.apress.bgn.ch9.pseudo;

import org.junit.jupiter.api.*;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import static org.junit.jupiter.api.Assertions.assertFalse;

import static org.junit.jupiter.api.Assertions.assertTrue;

public class PseudoTest {

 private static final Logger log =

 LoggerFactory.getLogger(PseudoTest.class);

 @BeforeAll

 public static void loadCtx() {

 log.info("Loading general test context.");

 }

 @BeforeEach

 public void setUp(){

 log.info("Prepare single test context.");

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

376

 @Test

 @DisplayName("test one")

 public void testOne() {

 log.info("Executing test one.");

 assertTrue(true);

 }

 @Test

 @DisplayName("test two")

 public void testTwo() {

 log.info("Executing test two.");

 assertFalse(false);

 }

 @AfterEach

 public void tearDown(){

 log.info("Destroy single test context.");

 }

 @AfterAll

 public static void unloadCtx(){

 log.info("UnLoading general test context.");

 }

}

Keeping in mind the information that you now have about these annotations, when

running this class, we expect the log messages that each method prints to be in the exact

order that we have defined, because the methods have been strategically placed in the

previous code so the JUnit order of execution is respected. The only thing that cannot

be guaranteed is the order the tests are executed in. Also parallel execution of tests is

possible by adding a file named junit-platform.properties under test\resources

that contains the following properties with values matching the hardware configuration.

junit.jupiter.execution.parallel.enabled=true

junit.jupiter.execution.parallel.config.strategy=fixed

junit.jupiter.execution.parallel.config.fixed.parallelism=8

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

377

Most Java smart editors like IntelliJ IDEA provide you with an option to do so when

you right-click the class. Figure 9-15 shows the menu option to execute a test class in

IntelliJ IDEA.

Figure 9-15.  Menu option to execute a test class in IntelliJ IDEA

After right-clicking the class, select Run ‘PseudoTest.java’ from the menu that

appears. The test class is executed. A launcher is created. Test classes can be executed

in debug mode, and breakpoints can be used. When executing the previous class, even

if the test methods are run in parallel, the output is consistent with the order of the

methods matching the annotation specifications. To make sure that test methods are

executed in parallel, the logger was configured to print the thread ID. The following is a

sample output.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - Loading general test context.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - Prepare single test context.

[1-worker-2] INFO c.a.b.c.p.PseudoTest - Prepare single test context.

[1-worker-2] INFO c.a.b.c.p.PseudoTest - Executing test one.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - Executing test two.

[1-worker-2] INFO c.a.b.c.p.PseudoTest - Destroy single test context.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - Destroy single test context.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - UnLoading general test context.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

378

The testOne() method contains this line: assertTrue(true);, which is put there to

show you how assertion methods look like. The true value is replaced with a condition

in a real test. The same goes for the assertFalse(false); assertion in the textTwo()

method.

And that’s about all the space we can dedicate to JUnit in this book. But my honest

recommendation is to look more into it, because a developer can write code, but a good

developer knows how to make sure it works.

Using Fakes

A fake object is an object that has working implementations, but not the same as

the production object. The code written to implement such an object has simplified

functionality of the one deployed in production.

To test the AccountRepoImpl class, we have to replace the DerbyDBConnection with a

FakeDBConnection that is not backed up by a database, but by something simpler, more

accessible like a Map. The DerbyDBConnection uses a java.sql.Connection and other

classes in that package to perform data operations on the Derby database.

The FakeDBConnection implement the DBConnection interface, so it can be passed to

a AccountRepoImpl and all its methods is called on it.

The rule of thumb when writing tests and test supporting classes is to put them in

the same packages with the objects tested or replaced, but in the test/java directory.

But because we show you more than one approach of testing, each package is named

accordingly. The package to test the application classes using fakes is named com.

apress.bgn.ch9.fake.

Another rule of thumb when writing tests is to write a method to test the correct

outcome of the method being tested, and one to test the incorrect behavior. In unexpected

cases with unexpected data, your application behaves in unexpected ways, so although

this seems paradoxical, you have to expect the unexpected and write tests for it.

The AccountRepoImpl class implements the basic methods to persist or delete an

Account instance to/from the database. The implementation is depicted next.

package com.apress.bgn.ch9.repo;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.db.DbConnection;

import java.util.List;

import java.util.Optional;

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

379

public class AccountRepoImpl implements AccountRepo {

 private DbConnection conn;

 public AccountRepoImpl(DbConnection conn) {

 this.conn = conn;

 }

 @Override

 public Account save(Account account) {

 Account dbAcc = conn.findByHolder(account.getHolder());

 if(dbAcc == null) {

 return conn.insert(account);

 }

 return conn.update(account);

 }

 @Override

 public Optional<Account> findOne(String holder) {

 Account acc = conn.findByHolder(holder);

 if(acc != null) {

 return Optional.of(acc);

 }

 return Optional.empty();

 }

 @Override

 public List<Account> findAll() {

 return conn.findAll();

 }

 @Override

 public int deleteByHolder(String holder) {

 Account acc = conn.findByHolder(holder);

 conn.delete(holder);

 if(acc != null) {

 return 0;

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

380

 return 1;

 }

}

To test this method we need to provide a DbConnection implementation that

simulates a connection to a database. This is where FakeDBConnection comes in.

package com.apress.bgn.ch9.fake.db;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.db.DBException;

import com.apress.bgn.ch9.db.DbConnection;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

public class FakeDBConnection implements DbConnection {

 /**

 * pseudo-database {@code Map<holder, Account>}

 */

 Map<String, Account> database = new HashMap<>();

 @Override

 public void connect() {

 // no implementation needed

 }

 @Override

 public Account insert(Account account) {

 if (database.containsKey(account.getHolder())) {

 throw new DBException("Could not insert " + account);

 }

 database.put(account.getHolder(), account);

 return account;

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

381

 @Override

 public Account findByHolder(String holder) {

 return database.get(holder);

 }

 @Override

 public List<Account> findAll() {

 List<Account> result = new ArrayList<>();

 result.addAll(database.values());

 return result;

 }

 @Override

 public Account update(Account account) {

 if (!database.containsKey(account.getHolder())) {

 �throw new DBException("Could not find account for " + account.

getHolder());

 }

 database.put(account.getHolder(), account);

 return account;

 }

 @Override

 public void delete(String holder) {

 database.remove(holder);

 }

 @Override

 public void disconnect() {

 // no implementation needed

 }

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

382

The FakeDBConnection behaves exactly like a connection object that can be used to

save entries to a database, search for them or delete them, only instead of a database is

backed up by a Map<String, Account>. The map key is the holder’s name, because in

our database the holder name is used as an unique identifier for an Account entry in the

table. Now, that we have the fake object, we can test that our AccountRepoImpl behaves

as expected. Because of practical reasons only one method is tested in this section, but

the full code is available on the official GitHub repo for the book.

The deleteByHolder method in the AccountRepoImpl deletes an account. If the entry

is present, it deletes it and returns 0; otherwise, it returns 1. The deleteByHolder method

is depicted in the next code snippet.

package com.apress.bgn.ch9.repo;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.db.DbConnection;

import java.util.List;

import java.util.Optional;

public class AccountRepoImpl implements AccountRepo {

 private DbConnection conn;

 public AccountRepoImpl(DbConnection conn) {

 this.conn = conn;

 }

 @Override

 public int deleteByHolder(String holder) {

 Account acc = conn.findByHolder(holder);

 conn.delete(holder);

 if(acc != null) {

 return 0;

 }

 return 1;

 }

 ...

}

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

383

The test class is depicted next, and both cases are covered (when there is an entry to

delete and when there isn’t).

 package com.apress.bgn.ch9.fake;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.db.DbConnection;

import com.apress.bgn.ch9.fake.db.FakeDBConnection;

import com.apress.bgn.ch9.repo.AccountRepo;

import com.apress.bgn.ch9.repo.AccountRepoImpl;

import org.junit.jupiter.api.*;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertTrue;

public class AccountRepoTest {

 private static final Logger log =

 LoggerFactory.getLogger(AccountRepoTest.class);

 private static DbConnection conn;

 private AccountRepo repo;

 @BeforeAll

 public static void prepare() {

 conn = new FakeDBConnection();

 }

 @BeforeEach

 public void setUp(){

 repo = new AccountRepoImpl(conn);

 // inserting an entry so we can test update

 repo.save(new Account("Pedala", 200, "2345"));

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

384

 @Test

 public void testFindOneExisting (){

 Optional<Account> expected = repo.findOne("Pedala");

 assertTrue(expected.isPresent());

 }

 @Test

 public void testFindOneNonExisting(){

 Optional<Account> expected = repo.findOne("Dorel");

 assertFalse(expected.isPresent());

 }

 @AfterEach

 public void tearDown(){

 // delete the entry

 repo.deleteByHolder("Pedala");

 }

 @AfterAll

 public static void cleanUp(){

 conn = null;

 log.info("All done!");

 }

}

Notice how, we are creating exactly one entry that is added to our fake database

before a test method is executed and deleted afterwards.

Now that we are sure the repository class does its job properly the next one to test is

the AccountServiceImpl. To test this class we look into a different approach. Fakes, are

useful but writing one for a class with complex functionality can be cost inefficient in

regards to development time. In the next section, we’ll look at stubs.

Using Stubs

A stub is an object that holds predefined data and uses it to answer test calls. An instance

of AccountServiceImpl uses an instance of AccountRepo to retrieve data from the

database or save data to a database. Considering we are writing unit tests, we want to

cover the functionality of the service class, so we can write a stub class to simulate the

behavior of AccountRepo. For the AccountServiceImpl instance to use it the stub must

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

385

implement AccountRepo. In this section the tests cover the method createAccount(...)

because there are multiple points of failure and we can write a lot of different tests for it.

In the following code snippet the createAccount(...) method is depicted.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.repo.AccountRepo;

import java.util.Optional;

/**

 * @author Iuliana Cosmina

 * @since 1.0

 */

public class AccountServiceImpl implements AccountService {

 AccountRepo repo;

 public AccountServiceImpl(AccountRepo repo) {

 this.repo = repo;

 }

 @Override

 public Account createAccount(String holder, String accountNumber,

 String amount) {

 int intAmount;

 try {

 intAmount = Integer.parseInt(amount);

 } catch (NumberFormatException nfe) {

 throw new InvalidDataException(

 "Could not create account with invalid amount!");

 }

 if (accountNumber == null ||

 accountNumber.isEmpty() || accountNumber.length() < 5

 || intAmount < 0) {

 throw new InvalidDataException(

 "Could not create account with invalid account number!");

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

386

 Optional<Account> existing = repo.findOne(holder);

 if (existing.isPresent()) {

 throw new AccountCreationException(

 "Account already exists for holder " + holder);

 }

 Account acc = new Account(holder, intAmount, accountNumber);

 return repo.save(acc);

 }

 ...

}

The createAccount(..) method takes as parameters the holder name, the number

of the account to be created and the initial amount. All of them are provided as String

instances intentionally, so that the method body contains a little bit of logic that would

require serious testing. Let’s analyze the behavior of the previous method and make a list

with all possible returned values and returned exceptions.

•	 If the amount is not a number, an InvalidDataException is thrown.

•	 If the accountNumber argument is empty, an InvalidDataException

is thrown.

•	 If the accountNumber argument is null, an InvalidDataException is

thrown.

•	 If the accountNumber argument has less than five characters, an

InvalidDataException is thrown.

•	 If the amount argument converted to a number is negative, an

InvalidDataException is thrown.

•	 If there is an account for the holder argument already an

AccountCreationException is thrown.

•	 If all the inputs are valid and there is no account for the holder

argument, an Account instance is created, saved to the database, and

the result is returned.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

387

So, if we were to be really obsessive about testing, we would have to write a test

scenario for all of these cases. In the software world, there is something called test

coverage, which is a process that determines whether test cases cover application code

and how much of it. The result is a percentage value and companies usually define a test

coverage percent10 that represents a warranty of quality for the application. So, let’s write

all those tests methods, just for the practice. But before that, let’s see what the repo stub

looks like.

package com.apress.bgn.ch9.stub;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.repo.AccountRepo;

import java.util.List;

import java.util.Optional;

public class AccountRepoStub implements AccountRepo {

 private Integer option = 0;

 public synchronized void set(int val) {

 option = val;

 }

 @Override

 public Account save(Account account) {

 return account;

 }

 @Override

 public Optional<Account> findOne(String holder) {

 if(option == 0) {

 return Optional.of(new Account(holder, 100 ,"22446677"));

 }

 return Optional.empty();

 }

10�A good read about test coverage, by Martin Fowler, one of the most renown Java gurus of this
generation: https://martinfowler.com/ bliki/TestCoverage.html

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

388

 @Override

 public List<Account> findAll() {

 return List.of(new Account("sample", 100, "22446677"));

 }

 @Override

 public int deleteByHolder(String holder) {

 return option;

 }

}

The option field can be used to change behavior of the stub to cover more test

cases. This is useful when test methods are not executed in parallel. Test execution is

done in parallel when time is of the essence, and if stubs are used, each method should

instantiate and use its own stub to avoid collisions with other methods, which will most

probably lead to test failures.

A negative test, passing for the situation when the input represents an invalid

amount can be written in two way using JUnit. The two approaches only differ in how

lambda expressions are used.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.service.stub.AccountRepoStub;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertThrows;

public class AccountServiceTest {

 private static AccountRepoStub repo;

 private AccountService service;

 @BeforeAll

 public static void prepare() {

 repo = new AccountRepoStub();

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

389

 @BeforeEach

 public void setUp() {

 service = new AccountServiceImpl(repo);

 }

 @Test

 public void testNonNumericAmountVersionOne() {

 assertThrows(InvalidDataException.class,

 () -> {

 service.createAccount("Gigi", "223311", "2I00");

 });

 }

 @Test

 public void testNonNumericAmountVersionTwo() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", "223311", "2I00");

 }

);

 assertEquals("Could not create account with invalid amount!"

 , expected.getMessage());

 }

@AfterEach

 public void tearDown() {

 repo.set(0);

 }

 @AfterAll

 public static void destroy() {

 repo = null;

 }

}

The testNonNumericAmountVersionOne() method makes use of assertThrows that

receives two parameters: the type of exception that is expected for the second parameter

of type Executable to throw when executed. Executable is a functional interface defined

in the org.junit.jupiter.api.function, which can be used in a lambda expression to

get the compact test that you see.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

390

The testNonNumericAmountVersionTwo() method saves the result of the

assertThrows(..) call, which allows for the message of the exception to be tested and to

make sure that the execution flow worked exactly as expected.

The other tests are depicted in the following code snippet.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.service.stub.AccountRepoStub;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertThrows;

public class AccountServiceTest {

 private static AccountRepoStub repo;

 private AccountService service;

 @BeforeAll

 public static void prepare() {

 repo = new AccountRepoStub();

 }

 @BeforeEach

 public void setUp() {

 service = new AccountServiceImpl(repo);

 }

 @Test

 public void testEmptyAccountNumber() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", "", "2100");

 }

);

 assertEquals("Could not create account with invalid account number!",

 expected.getMessage());

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

391

 @Test

 public void testNullAccountNumber() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", null, "2100");

 }

);

 assertEquals("Could not create account with invalid account number!",

 expected.getMessage());

 }

 @Test

 public void testInvalidAccountNumber() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", "11", "2100");

 }

);

 assertEquals("Could not create account with invalid account number!",

 expected.getMessage());

 }

 @Test

 public void testNegativeIntAmount() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", "112233", "-2100");

 }

);

 assertEquals("Could not create account with invalid account number!",

 expected.getMessage());

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

392

 @Test

 public void testCreateAccount() {

 repo.set(1);

 Account expected = service.createAccount("Gigi", "112233", "2100");

 assertEquals("Gigi", expected.getHolder());

 assertEquals("112233", expected.getNumber());

 assertEquals(2100, expected.getSum());

 }

 @Test

 public void testCreateAccountAlreadyExists() {

 AccountCreationException expected = assertThrows(

 AccountCreationException.class, () -> {

 service.createAccount("Gigi", "112233", "2100");

 }

);

 assertEquals("Account already exists for holder Gigi",

 expected.getMessage());

 }

 @AfterEach

 public void tearDown() {

 repo.set(0);

 }

 @AfterAll

 public static void destroy() {

 repo = null;

 }

}

Similar methods can be written to test all other service methods. This is left as an

exercise for you. Because there is one more test technique we have to cover in this

chapter: using mocks.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

393

Using Mocks

Mocks are objects that register calls they receive. During execution of a test, using assert

utility methods, the assumption that all expected actions were performed on mocks are

tested. Thankfully, code for mocks does not have to be written by the developer, there are

three well-known libraries that provide the type of classes needed to test using mocks:

Mockito,11 JMock,12 and EasyMock.13 Also, if you are ever in need to mock static methods,

the most common reason being bad design, there is PowerMock.14

Using mocks, you can jump directly to writing the tests. So, let’s write two tests for

the createAccount(..) method that focus on the repository class calling its methods,

because the repository class is being replaced by a mock.

package com.apress.bgn.ch9.mock;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.repo.AccountRepo;

import com.apress.bgn.ch9.service.AccountCreationException;

import com.apress.bgn.ch9.service.AccountServiceImpl;

import com.apress.bgn.ch9.service.InvalidDataException;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.junit.jupiter.MockitoExtension;

import java.util.Optional;

import static org.junit.jupiter.api.Assertions.*;

import static org.mockito.ArgumentMatchers.any;

import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)

public class AccountServiceTest {

11�Mockito official site: http://site.mockito.org/
12�Official site for JMock: http://jmock.org/
13�Official site for EasyMock: http://easymock.org/
14�Official site for PowerMock: http://powermock.github.io/

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

394

 @InjectMocks

 private AccountServiceImpl service;

 @Mock

 private AccountRepo mockRepo;

 @BeforeEach

 public void checkMocks() {

 assertNotNull(service);

 assertNotNull(mockRepo);

 }

 @Test

 public void testCreateAccount() {

 Account expected = new Account("Gigi", 2100, "223311");

 when(mockRepo.findOne("Gigi")).thenReturn(Optional.empty());

 when(mockRepo.save(any(Account.class))).thenReturn(expected);

 Account result = service.createAccount("Gigi", "223311", "2100");

 assertEquals(expected, result);

 }

 @Test

 public void testCreateAccountAlreadyExists() {

 Account expected = new Account("Gigi", 2100, "223311");

 when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

 assertThrows(AccountCreationException.class,

 () -> {

 service.createAccount("Gigi", "223311", "2100");

 });

 }

}

The tests are self-explanatory; the Mockito utility methods names make it easy to

understand what is happening during a test execution. But how the mocks are created and

injected, needs to be explained. So, let’s do that! the @ExtendWith(MockitoExtension.

class) is necessary for JUnit 5 tests to support Mockito annotations. Without it

annotations like @InjectMocks and @Mock have no effect on the code.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

395

The @Mock annotation is to be used on references to mocks created by Mockito. The

preferred way to work with mocks is to specify a reference of an interface type that is

implemented by the real object type and the mock that is created for the test scenario.

But @Mock can be placed on a concrete type reference as well, and the created mock is a

subclass of that class.

The @InjectMocks annotation is used on the object to be tested, so that Mockito

knows to create this object and inject mocks instead of the dependencies.

So, this is basically all you need to know to start using Mockito mocks in your test.

Declaring the objects to be mocked and the object to be injected in is the only setup a

class containing unit tests using mocks needs.

The body of test methods using mocks have a typical structure. The first lines must

declare objects and variables passed as arguments to the method called on the object

being tested or passed as arguments to Mockito utility methods that declare what mocks

take as arguments and what they return. The next lines establish the behavior of the mock

when its methods are called by the object to be tested. The following two lines depict this

for the findOne(..) method. The first line creates an account object. The second lines

define the behavior of the mock. When mockRepo.findOne("Gigi") is called, the previously

created account instance is returned wrapped in an Optional<T> instance.

Account expected = new Account("Gigi", 2100, "223311");

when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

There are many other libraries to make writing tests effortless for developers. Big

frameworks like Spring provide their own testing library to help developers write tests for

applications. Build tools like Ant, Maven, and Gradle can automatically run tests when

the project is built, and generate useful reports related to the failures. Using Gradle,

the project can be built by calling gradle clean build in the console. All test classes

declared in the test module, are picked up automatically if they are named *Test.java.

When writing tests, and not changing application code, you can run the tests only by

calling gradle test. This is a configuration that can be changed by overloading the

Gradle test task; you can look into that if you are curious.

The Gradle reports are in HTML format so they can be opened in the browser, and

they look amazing. The reports are generated as a site with an index.html stat page,

which are located at java-bgn/chapter09/testing/build/reports/tests/test/

index.html.

I’ve chosen to fail a test intentionally so that you can see how that report looks like

(see Figure 9-16).

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

396

Figure 9-16.  The Gradle test reports

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

397

To conclude this section, remember this: no matter how good a development team

is, without a great testing team, the resulting application might actually be far away from

an acceptable quality standard. So, if you ever come across companies that do not have

a dedicated testing team, or at least a company culture that does not compromise in

techniques such as code review and writing tests, think twice before accepting that job.

�Documenting
In the software world, there is a joke about documentation that might not be to

everybody’s liking, but it is worth a mention.

!  Documentation is like sex: when it’s good, it is really, really good. And when it’s
bad, it’s still better than nothing.

A common-sense rule and best practice of programming is to write code that is self-

explanatory, so you won’t need to write documentation. Basically, if you need to write

too much documentation, you’re doing it wrong. There are a lot of things you can do to

avoid writing documentation, like using meaningful names for classes and variables,

respect the language code conventions and many others. But when you are building a

set of classes that is used by other developers, you need to provide a little documentation

for the main APIs. Of course, if your solution requires a very complicated algorithm to be

written, you might want to add comments here and there; although in this case, proper

technical documentation with schemas and diagrams should be written too.

The Javadoc block comments are associated with a public class, interface, method

body, or public field; sometimes even protected, if necessary. The Javadoc comments

contain special tags that link documented elements together, or mark the different type

of information. The Javadoc comments and their associated code can be processed by

Javadoc tools, extracted, and wrapped into an HTML site that is called the Javadoc API

of the project. The Gradle build tool that is used by this project exposes a task named

javadoc that can be executed to generate the Javadoc API site for a module. To compact

the documentation of a project with multiple modules a special plugin is needed.15 Also,

smart editors can access the documentation and display it when the developer tries to

write code using the documented components.

15�Same goes for Maven and any other Java build tool.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

398

Let’s start with a few examples of Javadoc comments to explain the most important

tags used.

Whenever we create a class or interface, we should add Javadoc comments to

explain their purpose, add the version of the application, and link existing resources.

IntSorter is a hierarchy of classes implementing the IntSorter interface that provides

implementations of different sorting algorithms. If these classes are used by other

developers, one of them might want to add a customized algorithm to our hierarchy and

a little information about the IntSorter interface would go a long way. In the following

code snippet, a Javadoc comment was added to the IntSorter interface.

package com.apress.bgn.ch9.algs;

/**

 * Interface {@code IntSorter} is an interface that needs to be implemented

 * by classes that provide a method to sort an array of {@code int} values. <p>

 *

 * {@code int[]} was chosen as a type because this type

 * of values are always sortable.({@link Comparable})

 *

 * @author Iuliana Cosmina

 * @since 1.0

 */

public interface IntSorter {

 ...

}

In the Javadoc comments, HTML tags can be used to format information. In

the previous code, <p> elements were used to make sure the comment is made of

multiple paragraphs. The @author tag was introduced in JDK 1.0. It is useful when

the development team is large, because if you end up working with somebody else’s

code, you know who to look for if issues appear. The @since tag provides the version

of the application in which this interface was added. For an application that has had

a long development and release cycle, this tag can be used to mark the elements of a

specific version, so that a developer using the codebase of your application knows when

elements were added; and in a rollback to a former version, knows where compile-time

errors appear in the application.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

399

The best example here is the Java official Javadoc; let’s take the Optional<T>

interface, which was introduced in version 8. But more methods were added to it in

versions 9, 10, and 11, and each of them are marked with the specific versions.

package java.util;

 ...

 /**

 ...

 * @param <T> the type of value

 * @since 1.8

 */

public final class Optional<T> {

...

 /**

 ...

 * @since 9

 */

 �public void ifPresentOrElse(Consumer<? super T> action, Runnable

emptyAction) {

 if (value != null) {

 action.accept(value);

 } else {

 emptyAction.run();

 }

 }

 /**

 ...

 * @since 10

 */

 public T orElseThrow() {

 if (value == null) {

 throw new NoSuchElementException("No value present");

 }

 return value;

 }

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

400

 /**

 * If a value is not present, returns {@code true}, otherwise

 * {@code false}.

 *

 * �@return {@code true} if a value is not present, otherwise {@code false}

 * @since 11

 */

 public boolean isEmpty() {

 return value == null;

 }

..

}

In the IntSorter example, you see the @code tag that was introduced in Java 1.5.

It displays text in code form, using a special font and escaping symbols that might

break the HTML syntax.(ex: < or >). The @link tag was added in Java 1.2 and inserts a

navigable link to relevant documentation.

Now, let’s document the method declarations to let the developer know what they

should be used for.

package com.apress.bgn.ch9.algs;

/**

 * Interface {@code IntSorter} is an interface that needs to be implemented

 * by classes that provide a method to sort an array of {@code int} values. <p>

 *

 * {@code int[]} was chosen as a type because this type

 * of values are always sortable.({@link Comparable})

 *

 * @author Iuliana Cosmina

 * @since 1.0

 */

public interface IntSorter {

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

401

 /**

 * Sorts {@code arr}

 *

 * @param arr int array to be sorted

 * @param low lower limit of the interval to be sorted

 * @param high higher limit of the interval to be sorted

 */

 void sort(int[] arr, int low, int high);

 /**

 * This method was used to sort arrays using BubbleSort

 * @deprecated As of version 0.1, because the

 * {@link #sort(int[], int, int) ()} should be used instead.

 * To be removed in version 1.1

 * @param arr int array to be sorted

 */

 @Deprecated (since= "0.1", forRemoval = true)

 default void sort(int[] arr) {

 System.out.println("Do not use this! This is deprecated!!");

 }

}

The IntelliJ IDEA editor (and other smart editors) generate small pieces of Javadoc

for you. Once you have declared a class or method body that you want to document, type

/**, and press Enter. The generated block of comment contains the following.

•	 one or more @param tags with the parameter names, all is left for

the developer to do is to add extra documentation to explain their

purpose.

•	 if the method returns a value of a type different than void and

@return is added, documentation must be provided by the

developer to explain what the result represents and if there are

special cases when a certain value is returned. And since we started

using Optional<T> as a study case, here is the Javadoc of the

isPresent(..) method.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

402

/**

 ...

 * @param predicate the predicate to apply to a value, if present

 * @return an {@code Optional} describing the value of this

 * �{@code Optional}, if a value is present and the value

matches the

 * given predicate, otherwise an empty {@code Optional}

 * @throws NullPointerException if the predicate is {@code null}

 */

 public Optional<T> filter(Predicate<? super T> predicate) {

 Objects.requireNonNull(predicate);

 if (!isPresent()) {

 return this;

 } else {

 return predicate.test(value) ? this : empty();

 }

 }

•	 if the methods declare an exception to be thrown, a @throws tag is

generated together with the exception type, the developer’s job is to

explain when and why that type of exception is thrown.

/**

...

 * @param action the action to be performed, if a value is present

 * �@throws NullPointerException if value is present and the

given action is

 * {@code null}

 */

 public void ifPresent(Consumer<? super T> action) {

 if (value != null) {

 action.accept(value);

 }

 }

The @link creates a documentation link to a class page, a method documentation

section, or a field. In the previous sort method declaration example, we created a link to

the other method in the interface.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

403

The @deprecated tag adds text explaining the reasons for deprecation, the version,

and what to use instead. Javadoc generation tools take this text format it with italic and

add it to the main description of the method.

And with this we have covered the most used tags when writing Javadoc comments.

If you want to check out the complete list, you can find it at https://docs.oracle.

com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags. Javadoc

documentation is a wide subject that could provide material for an entire book. We are just

scratching the surface in this section and covering the basics so you have a good start.

To generate the HTML site for the logging-jul module, the easiest way to do

it, is to open the Gradle project view, expand the chapter09:logging-jul ➤ Tasks ➤
Documentation node and under it we find the javadoc task, as depicted in Figure 9-17.

To execute the task, we have to double-click it.

Figure 9-17.  The Gradle javadoc task

00:22:17: Executing task 'javadoc'...

> Task :chapter09:logging-jul:compileJava

/Users/iulianacosmina/apress/workspace/java-bgn/chapter09/logging-jul/

 src/main/java/com/apress/bgn/ch9/algs/InsertionSort.java:59:

 �warning: [removal] sort(int[]) in IntSorter has been deprecated and

marked for removal

 public void sort(int[] arr) {

 ^

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

404

/Users/iulianacosmina/apress/workspace/java-bgn/chapter09/logging-jul/

 src/main/java/com/apress/bgn/ch9/algs/HeapSort.java:55:

 �warning: [removal] sort(int[]) in IntSorter has been deprecated and

marked for removal

 public void sort(int[] arr) {

 ^

2 warnings

> Task :chapter09:logging-jul:processResources

> Task :chapter09:logging-jul:classes

> Task :chapter09:logging-jul:javadoc

BUILD SUCCESSFUL in 2s

3 actionable tasks: 3 executed

00:22:19: Task execution finished 'javadoc'.

The javadoc task identifies the deprecated elements and prints a warning for the

developer to see. After the successful execution of that task, build directory can be

found under the logging-jul directory. That is where all Gradle tasks ran from IntelliJ

IDEA store their results. In this directory there should be a docs ➤ javadoc directory

hierarchy. And if we expand the javadoc hierarchy we should see all the files making up

the Javadoc site of our module. The output to look forward to is depicted in Figure 9-18.

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

405

Any site has a starting page and the default one is index.html. Right-click that file,

and from the context sensitive menu that appears, select Open in Browser and select

your preferred browser. If you think the page resembles the JDK official Javadoc page,

you are not imagining it; the same Doclet API was used to generate that official one. For

a detailed view of all the documentation in the module(project), click the FRAMES link.

This redirects to a page that on the left; it has two frames: one with the packages of the

project and one with the classes/interfaces/enums and the frame on the right, which

displays information about every item clicked in frames on the left. You should be seeing

something similar to the page depicted in Figure 9-19.

Figure 9-18.  Javadoc site generated by execution of the Gradle javadoc task

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

406

Javadoc documentation is picked up by IntelliJ IDEA and other smart editors, and

depicted on the spot when the developer uses the documented components in the

code. When selecting a class, method name, interface method, and so forth, most smart

editors provide some kind of combination of keys that include F1, which the developer

must press so that the documentation is depicted in a pop-up window. In IntelliJ IDEA,

click an element and press F1, and the Javadoc documentation is shown in a pop-up

window and formatted nicely, as depicted in Figure 9-20.

Figure 9-19.  Javadoc site generated by execution of the Gradle javadoc task,
opened in the browser

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

407

You can view Javadoc information in a smart editor for any dependency of your

project (including JDK classes) as long as the code is open source and the module

exports the appropriate packages.

In Java 9, the Doclet API for generating Javadoc received an upgrade and a facelift.

Before Java 9, developers complained about the performance issues of the old version,

the cryptic API, the lack of support and the shallowness of it over all. In Java 9, most

of the problems were resolved. A detailed description of improvements is at http://

openjdk.java.net/jeps/221.

Documentation is really valuable and can make development practical and pleasant

when it is really, really good. So, when writing code, document it as you expect the

dependencies of your project to be.

You might probably have heard of the expression RTFM, which is an abbreviation

for Read The F***ing Manual!. That expression is used a lot in software by experienced

developers when working with newbie developers. Problem is, what should you do when

there is no manual? Most companies on a deadline might have the tendency to allocate

little or no time to documenting a project. So, this section was added to this book to

emphasize the importance of documentation in software development, and teaching

you how to write your documentation while you write your code, because you might not

have time to do it afterwards.

Figure 9-20.  Javadoc information depicted in IntelliJ IDEA

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

408

�Summary
This chapter covered important development tools and techniques, the classes in JDK that

provide support for them, and important Java libraries that could make your development

job more practical and pleasant. The following is the complete list of topics.

•	 how to configure and use logging in a Java application

•	 how to log messages in the console

•	 how to log messages to a file

•	 how to use Java logging

•	 what a logging facade is and why it is recommended

•	 configuring and using SLF4J with Logback

•	 how to program using assertions

•	 how to debug using IntelliJ IDEA

•	 how to monitor and inspect JVM statistics while an application is

running using various JDK tools: jps, jcmd, jconsole, and jmc

•	 how to use the Process API

•	 how to test an application using JUnit

•	 how to write tests using fakes

•	 how to write tests using mocks

•	 how to write tests using stubs

•	 how to document a Java application and generate documentation in

HTML format

Chapter 9 Debugging, Testing, and Documenting

(c) ketabton.com: The Digital Library

409
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_10

CHAPTER 10

Making Your Application
Interactive
So far in the book input for our Java programs data was provided via arrays or variables

that were initialized inside the code or via program arguments. But most applications

nowadays require interaction with the user. The user can be provided access by entering

a username and a password; the user is sometimes required to enter information to

confirm his/her identity or to instruct the application what to do. Java supports multiple

methods for user input to be read. In this chapter a few ways to build interactive Java

applications are covered. Interactive Java application take their input either from the

console, either from Java built interfaces, either desktop or web.

JShell is a command line interface, where a developer can enter variable declarations

and one line statements that are executed when the Enter key is pressed. Command

line interface shells like bash and terminals like Command Prompt from Windows can

issue commands to programs in the form of successive lines of text. JShell was covered

at the beginning of the book for the simple reason that it was a Java 9 novelty. The next

sections cover how to read user-provided data and instructions using the command-line

interface. The sections after that focus on building Java applications with a desktop/web

interface.

�Reading Data from the Command Line
This section is dedicated to reading user input from the command line, whether is the

IntelliJ IDEA console, or if the program is run from an executable jar from any terminal

specific to an operating system. In the JDK, there are two classes that can be used to read

user data from the command line: java.util.Scanner and java.io.Console and this

section cover them both in detail. Without further ado, let’s get into it.

(c) ketabton.com: The Digital Library

410

�Reading User Data Using System.in
Before introducing logging in Chapter 9 to print data in the console, methods under

System.out were used. There is also a counterpart utility object named System.

in used to read data from the console, data that a user of the program introduces to

control the application flow. You might have noticed that until now all Java programs,

when executed they would be started, they would process the data, would execute the

declared statements and then they would terminate, exit gracefully or with an exception

when something went wrong. The most simple and common way to pass decision of

termination to the user is to end the main method with a call to System.in.read(). This

method reads the next byte of data from the input stream and the program is paused

until the user introduces a value, as the value is returned we can even save it and print it.

import java.io.IOException;

public class ReadingFormStdinDemo {

 public static void main(String... args) throws IOException {

 System.out.print("Press any key to terminate:");

 int read = System.in.read();

 System.out.println("Key pressed: " + read);

 }

If you run the class using IntelliJ, you notice that the Press any key to terminate:

message is printed and then the application just hangs. If you click the window where

the message was printed and push any key, the byte value of the pressed key is printed

and then the application terminates. So if you were to execute the previous code and

press Enter, the following is what you see in the console.1

Press any key to terminate:

Key pressed: 10

But reading single bytes from the console is not really useful, right? Thankfully, there

is another form of the read(..) method that saves the user entry into a byte array. But

since the size is fixed, no matter how long the user entry , only what fits in the array is

1�ASCII Table and Description https://www.asciitable.com/

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

411

saved. The final <Enter> that ends the entry is returned as an int value equal to 3, which

is the code for end of text. So, the previous code changes to

package com.apress.bgn.ch10;

import java.io.IOException;

public class ReadingFormStdinDemo {

 public static void main(String... args) throws IOException {

 System.out.print("Press any key to terminate:");

 byte[] b = new byte[3];

 int read = System.in.read(b);

 for (int i = 0; i < b.length; ++i) {

 System.out.println(b[i]);

 }

 System.out.println("Key pressed: " + read);

 }

}

And now the user input is saved in the byte[] b array. But, it is not useful to just read

bytes, right? Well, let’s look at how we can read full text and numeric values from the

user: enter the java.util.Scanner class.

�Using Scanner
The System.in variable is of type java.io.InputStream, which is a JDK special type

extended by all classes representing an input stream of bytes. This means that System.in

can be wrapped in any java.io.Reader extension so bytes can be read as readable data.

But, the one that is really important is a class named Scanner from package java.util.

An instance of this type can be created by calling its constructor and providing System.

in as an argument. The Scanner class provides a lot of next..() methods that can be

used to read almost any type from the console. In Figure 10-1, you can see the next..()

methods list.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

412

The advantage of using Scanner to read data from the console is that the values read

are automatically converted to the proper types, when possible. When it is not possible,

a java.util.InputMismatchException is thrown. The following piece of code was

designed so you can select the type of value you want to read by inserting a text and then

the value. In the code, the appropriate method of the Scanner instance is called to read

the value.

package com.apress.bgn.ch10;

import java.io.IOException;

import java.math.BigInteger;

import java.util.Scanner;

public class ReadingFormStdinDemo {

 public static final String EXIT = "exit";

 public static final String HELP = "help";

 public static final String BYTE = "byte";

 public static final String SHORT = "short";

 public static final String INT = "int";

Figure 10-1.  Scanner methods for reading various types of data

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

413

 public static final String BOOLEAN = "bool";

 public static final String DOUBLE = "double";

 public static final String LINE = "line";

 public static final String BIGINT = "bigint";

 public static final String TEXT = "text";

 public static void main(String... args) throws IOException {

 Scanner sc = new Scanner(System.in);

 String help = getHelpString();

 System.out.println(help);

 String input;

 do {

 System.out.print("Enter option: ");

 input = sc.nextLine();

 switch (input) {

 case HELP:

 System.out.println(help);

 break;

 case EXIT:

 System.out.println("Hope you had fun. Buh-bye!");

 break;

 case BYTE:

 byte b = sc.nextByte();

 System.out.println("Nice byte there: " + b);

 sc.nextLine();

 break;

 case SHORT:

 short s = sc.nextShort();

 System.out.println("Nice short there: " + s);

 sc.nextLine();

 break;

 case INT:

 int i = sc.nextInt();

 System.out.println("Nice int there: " + i);

 sc.nextLine();

 break;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

414

 case BOOLEAN:

 boolean bool = sc.nextBoolean();

 System.out.println("Nice boolean there: " + bool);

 sc.nextLine();

 break;

 case DOUBLE:

 double d = sc.nextDouble();

 System.out.println("Nice double there: " + d);

 sc.nextLine();

 break;

 case LINE:

 String line = sc.nextLine();

 System.out.println("Nice line of text there: " + line);

 break;

 case BIGINT:

 BigInteger bi = sc.nextBigInteger();

 System.out.println("Nice big integer there: " + bi);

 sc.nextLine();

 break;

 case TEXT:

 String text = sc.next();

 System.out.println("Nice text there: " + text);

 sc.nextLine();

 break;

 default:

 System.out.println("No idea what you want bruh!");

 }

 } while (!input.equalsIgnoreCase(EXIT));

 }

 private static String getHelpString() {

 �return new StringBuilder("This application helps you test various

usage of Scanner. Enter type to be read next:")

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

415

 .append("\n\t help > displays this help")

 .append("\n\t exit > leave the application")

 .append("\n\t byte > read a byte")

 .append("\n\t short > read a short")

 .append("\n\t int > read an int")

 .append("\n\t bool > read a boolean")

 .append("\n\t double > read a double")

 .append("\n\t line > read a line of text")

 .append("\n\t bigint > read a BigInteger")

 .append("\n\t text > read a text value").toString();

 }

}

As you probably noticed in the code sample, most scanner methods are called

together with a nextLine(), this is because every input you provide is made of the actual

token and a new line character (the <Enter> pressed to end your input), and before you

can enter your next value, you need to take that character from the stream as well.

Let’s test the previous code a little.

This application helps you test various usage of Scanner. Enter type to be

read next:

 help > displays this help

 exit > leave the application

 byte > read a byte

 short > read a short

 int > read an int

 bool > read a boolean

 double > read a double

 line > read a line of text

 bigint > read a BigInteger

 text > read a text value

Enter option: byte

12

Nice byte there: 12

Enter option: bool

true

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

416

Nice boolean there: true

Enter option: line

some of us are hardly ever here

Nice line of text there: some of us are hardly ever here

Enter option: text

john

Nice text there: john

Enter option: text

the rest of us are made to disappear...

Nice text there: the

Enter option: double

4.2

Nice double there: 4.2

Enter option: int

AAAA

Exception in thread "main" java.util.InputMismatchException

 at java.base/java.util.Scanner.throwFor(Scanner.java:939)

 at java.base/java.util.Scanner.next(Scanner.java:1594)

 at java.base/java.util.Scanner.nextInt(Scanner.java:2258)

 at java.base/java.util.Scanner.nextInt(Scanner.java:2212)

 at chapter.ten/com.apress.bgn.ch10.ReadingFormStdinDemo.main(

 ReadingFormStdinDemo.java:78)

The output that is underlined in the listing, represents the test case for the next()

method. This method should be used to read a single String token. The next token gets

converted to a String instance, and the token ends when a whitespace is encountered.

That is why, in the previous example the only read text ends up being the.

In the last case, the expected option is an integer value, but AAAA is entered, and

that is why the exception is thrown.

When you need to repeatedly read the same type of values from the console you

can peek at the value you want to read, and check it before reading it to avoid the

InputMismatchException being thrown. For this particular scenario, each of the next..()

methods has a pair method named hasNext...(). To show an example of how these

methods can be used, let’s add an option to the previous code to read a list of long

values.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

417

...

public static final String LONGS = "longs";

...

 String input;

 do {

 System.out.print("Enter option: ");

 input = sc.nextLine();

 switch (input) {

 case LONGS:

 List<Long> longList = new ArrayList<>();

 while (sc.hasNextLong()) {

 longList.add(sc.nextLong());

 }

 System.out.println("Nice long list there: " + longList);

 // else all done

 sc.nextLine();

 sc.nextLine();

 break;

 default:

 System.out.println("No idea what you want bruh!");

 }

 } while (!input.equalsIgnoreCase(EXIT));

...

Although seems weird, we need to call the nextLine() method twice. Once for the

character that cannot be converted to long, so the while loop ends and once for the end

of the line character, so the next read..() is the type of the following read value.

There are a few other methods in the Scanner class that can be used to filter the

input and read only desired tokens, but the methods listed in this section are the ones

you will probably use the most.

�Reading User Data with java.io.Console
The java.io.Console class was introduced in Java version 1.6, one version later than

Scanner; it provides methods to access he character-based console device, if any,

associated with the current Java virtual machine. The methods of class java.io.Console

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

418

can thus be also used to write to the console, not only read user input. If the JVM is

started from a background process or a Java editor, the console will not be available, as

the editor redirects the standard input and output streams to its own window. That is

why if we were to write code using Console we can only test it by running the class or jar

from a terminal by calling java ReadingUsingConsoleDemo.class or java -jar using-

console-1.0-SNAPSHOT.jar. The console of a JVM, if available, is represented in the

code by a single instance of the Console class, which can be obtained by calling System.

console().

Figure 10.2.  Console methods

Figure 10-2 shows the methods that can be called on the console instance.

The read*(..) methods are used to read user input from the console and

printf(..) and format(..) are used to print text in the console. The special cases here

are the two readPassword(..) methods that allow text to be read from the console, but

not depicted while it is being written. This means that a Java application supporting

authentication can be written without any actual user interface. Let’s write a sample

code to see all that in action.

package com.apress.bgn.ch10;

import java.io.Console;

import java.util.Calendar;

import java.util.GregorianCalendar;

public class ReadingUsingConsoleDemo {

 public static void main(String... args) {

 Console console = System.console();

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

419

 if (console == null) {

 System.err.println("No console found.");

 return;

 } else {

 console.writer().print("Hello there! (reply to salute)\n");

 console.flush();

 String hello = console.readLine();

 console.printf("You replied with: '" + hello + "'\n");

 Calendar calendar = new GregorianCalendar();

 console.format("Today is : %1$tm %1$te,%1$tY\n", calendar);

 char[] passwordChar =

 console.readPassword("Please provide password: ");

 String password = new String(passwordChar);

 console.printf("Your password starts with '"

 + password.charAt(0) + "' and ends with '"

 + password.charAt(password.length()-1) + "'\n");

 }

 }

}

In the code sample, various methods to read and write data using the console were

used to show you how they should be used.

The console.writer() returns an instance of java.io.PrintWriter that can be

used to print messages to the console. The catch is that the messages are not printed

until console.flush() is called. This means that more messages can be queued up by

the java.io.PrintWriter instance and printed only when flush() is called or when its

internal buffer is full.

The console.format(..) is called to print a formatted message, in this case a

Calendar instance extracts the current date and print it according to the following

template: dd mm,yyyy . Templates accepted by the console methods that use formatters

are defined in the java.util.Formatter class.

And now the good part: running this code in IntelliJ is not possible, so we have to

either execute the class or the jar in a terminal. The easiest way is to create an executable

jar, Gradle creates one when gradle clean build is executed, because

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

420

the configuration was setup for the generated jar to be executable and for the main

class to be ReadingUsingConsoleDemo. The jar produced by Gradle can be found at

/chapter10/using-console/build/libs/using-console-1.0-SNAPSHOT.jar. Open a

terminal in IntelliJ IDEA if you want to by clicking the Terminal button, and go to the

libs directory. Once there, execute java -jar using-console-1.0-SNAPSHOT.jar and

have fun. In the following code listing, you can see the entries I used to test the program.

$ cd chapter10/using-console/build/libs/

$ java -jar using-console-1.0-SNAPSHOT.jar

Hello there! (reply to salute)

Salut!

You replayed with: 'Salut!'

Today is : 08 9,2018

Please provide password:

Your password starts with 'a' and ends with 'e'

And this is all you need to know about using the console, although once working on

a real production-ready project, you might rarely need it.

�Build Applications Using Swing
Swing is a GUI widget toolkit for Java. It is part of the JDK starting with version 1.2 and

was developed to provide more pleasant looking and practical components for building

user applications with complex interfaces with all types of buttons, progress bars,

selectable lists, and so forth. Swing is based on an early version of something called

AWT short for Abstract Window Toolkit, which is the original Java user-interface widget

toolkit. AWT was pretty basic, and had a set of graphical interface components that were

available on any platform, this means AWT was portable, but this did not imply that AWT

code written on one platform would work on another, because of the platform specific

limitations. AWT components depend on the native equivalent components, which is

why they were called heavyweight components. Figure 10-3 shows a simple Java AWT

application.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

421

It’s a simple window that contains a list, a text area and a button. The theme, also

called the look-and-feel of the application, is the same as the operating system it was

built on—macOS in the examples in this chapter— and it cannot be changed, AWT taps

into the OS native graphical interface. If you run the same code on a Windows machine,

the window will look different, because it will use the Windows theme.

Swing components are built in Java, follow the AWT model, but provide a pluggable

look-and-feel. Swing is implemented entirely in Java and includes all features of AWT,

but they are no longer depending on the native GUI, this is why Swing components are

called lightweight components. Swing provides everything AWT does and also extends

the set of components with higher-level ones such as tree view, list box, and tabbed

panes. Also, the theme is pluggable and can be easily changed. This implies a much

better portability than AWT applications, a possibility to write more complex application

design with components that are not platform specific, and because Swing is an

alternative to AWT, there was a lot more development done.

Figure 10-3.  Simple Java AWT application

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

422

When web applications took flight, they were really ugly, because browsers had limited

capabilities. AWT was introduced to build Java web applications called applets. Java applets

were small applications that were launched from the browser and then executed within the

JVM installed on the user’s operating system in a process separate from the browser itself.

That is why an applet can be run in a frame of the web page, a new application window,

or standalone tools designed for testing applets. Java applets were using the GUI from the

operating system, which made them prettier than the bulky initial look of HTML at the time.

They are now deprecated and are scheduled to be removed in Java 11.

As for Java desktop applications written in Swing or AWT, they are rarely used

anymore, and you might learn to build one during school, but are otherwise … they

are considered antique. Nevertheless, there are legacy applications used by certain

institutions and companies that have had a long run in their business, which are built

with Swing. I’ve seen Swing applications used by restaurants to manage tables and

orders and I think most supermarkets use Swing applications to manage shopping

items. And this is why this section exists in this book, because you might end up working

on maintaining such application and it is good to know the basics, because Swing is

still a part of the JDK. All Swing components (AWT too) are part of the java.desktop

module so if you want to use Swing components you have to declare a dependence on

this module. In the following configuration snippet, you can see that the module of our

project that uses Swing declares its dependency on the java.desktop module by using

the requires directive, in its module-info.java.

module chapter.ten.swing {

 requires java.desktop;

}

The application depicted in Figure 10-3 was build using AWT, this section covers

building something similar in Swing and adding more components to it. The core class

of any Swing application is named JFrame and instances of this type are used to create

windows with border and title. So let’s write some code to do just that.

package com.apress.bgn.ch10;

import javax.swing.*;

import java.awt.*;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

423

public class SwingDemo extends JFrame {

 public static void main(String... args) {

 SwingDemo swingDemo = new SwingDemo();

 swingDemo.setTitle("Swing Demo Window");

 swingDemo.setSize(new Dimension(500,500));

 swingDemo.setVisible(true);

 }

}

In the code, an instance of javax.swing.JFrame is created, a title is set for it and

we also set a size so when the window is created we can see something. To display the

window, the setVisible(true) must be called on the JFrame instance. When you run

the previous code, a window like the one depicted in Figure 10-4 is displayed. By default

the window is positioned in the upper left corner of your main monitor, but that can be

changed by using some Swing components to compute a position relative to the screen

size. Determining size and position of a Swing window relative to screen size is only

limited by the amount of math you are willing to get into. Figure 10-4 shows a simple Java

Swing Window.

Figure 10-4.  Simple Java Swing application

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

424

At this moment, if we close the displayed window, the application keeps running.

Because by default, closing the window makes it invisible by calling setVisible(false).

If we want to change the default behavior to exiting the application we have to change

the default operation performed when closing the window. This can be easily done by

adding the following line of code after creating the JFrame instance.

swingDemo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

The JFrame.EXIT_ON_CLOSE constant is part of a set of constants that define

application behavior when the window is closed. This one declares that the application

should exit when the window is closed. The other available options are depicted in the

following list:

•	 DO_NOTHING_ON_CLOSE - does nothing, including closing the window.

•	 HIDE_ON_CLOSE - the default option, which causes

setVisible(false) to be called.

•	 DISPOSE_ON_CLOSE - an application can have more than one window,

this option exits the application when the last displayable window is

closed.

Most Swing applications are written by extending the JFrame class to gain more

control over its component, so the preceding code can also be written like this:

package com.apress.bgn.ch10;

import javax.swing.*;

import java.awt.*;

public class SwingDemo extends JFrame {

 public static void main(String... args) {

 SwingDemo swingDemo = new SwingDemo();

 swingDemo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 swingDemo.setTitle("Swing Demo Window");

 swingDemo.setSize(new Dimension(500,500));

 swingDemo.setVisible(true);

 }

}

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

425

And now that we have a window, let’s start adding components, because changing

the look-and-feel is pointless if we do not have more components so we can notice the

change. Each Swing application has at least one JFrame that is the root, the parent of all

other windows, because windows can be created by using the JDialog class as well. The

JDialog is the main class for creating a dialog window, a special type of window that

contains mostly a message and buttons to select options. Developers can use this class

to create a custom dialogs or use JOptionPane class methods to create a variety of dialog

windows.

Back to adding components to a JFrame instance; components are added to a JFrame

by adding them to its container. A reference to the JFrame container can be retrieved

by calling getContentPane(). The default content pane is a simple intermediate

container that inherits from JComponent, which extends java.awt.Container (Swing

being an extension of AWT, most of its components are AWT extensions). For JFrame,

the default content pane is an instance of JPane. This class has a field of type java.awt.

LayoutManager that defines how other components are arranged in a JPane. The default

content pane of a JFrame instance, uses a java.awt.BorderLayout as its layout manager,

which splits a pane into five regions: EAST, WEST, NORTH, SOUTH, and CENTER. Each

of the zones can be referred by a constant with a matching name defined in the

BorderLayout. So if we would like to add an exit button to our application, we could add

it to the south region by writing the following code.

package com.apress.bgn.ch10;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class SwingDemo extends JFrame {

 private JPanel mainPanel;

 private JButton exitButton;

 public SwingDemo(String title) {

 super(title);

 mainPanel = (JPanel) this.getContentPane();

 exitButton = new JButton("Bye Bye!");

 exitButton.addActionListener(new ActionListener() {

 @Override

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

426

 public void actionPerformed(ActionEvent e) {

 System.exit(0);

 }

 });

 mainPanel.add(exitButton, BorderLayout.SOUTH);

 }

 public static void main(String... args) {

 SwingDemo swingDemo = new SwingDemo("Swing Demo Window");

 swingDemo.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 swingDemo.setSize(new Dimension(500, 500));

 swingDemo.setVisible(true);

 }

}

Figure 10-5 shows the modified application. We’ve added an exit button in the

SOUTH area of the content pane and underlined the overall region arrangement of the

BorderLayout.

Figure 10-5.  Border layout zones

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

427

Also, because the new button has to be the only way to exit our application, the set

DefaultCloseOperation(JFrame.EXIT_ON_CLOSE); was replaced with setDefaultClose

Operation(JFrame.DO_NOTHING_ON_CLOSE); and an java.awt.event.ActionListener

instance was attached to the button, so it could record the event of the button

being clicked and react accordingly, in this case exiting the application. Most Swing

components support listeners that can be defined to capture events that are performed

on the object by the user and react in a certain way.

As you can see, the button expands and fills the entire space of the region, because it

inherits the dimension of the region. To avoid that, the button should be put in another

container and that container should use a different layout: the FlowLayout. As the name

implies, this layout allows for Swing components to be added in a directional flow, like

in a paragraph. Adjustments can be made similar to a text formatting in text document

and constants are defined for components being aligned: in the center (CENTER), left-

justified (LEFT), and so forth. In the next code sample, we wrapped the exitButton in a

JPanel that makes use of the FlowLayout.

...

 public SwingDemo(String title) {

 super(title);

 mainPanel = (JPanel) this.getContentPane();

 exitButton = new JButton("Bye Bye!");

 exitButton.addActionListener(e -> System.exit(0));

 JPanel exitPanel = new JPanel();

 FlowLayout flowLayout = new FlowLayout();

 flowLayout.setAlignment(FlowLayout.RIGHT);

 exitPanel.setLayout(flowLayout);

 �exitPanel.setComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

 exitPanel.add(exitButton);

 mainPanel.add(exitPanel, BorderLayout.SOUTH);

 }

...

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

428

There are more layouts that can be used, but let’s complete the application by adding

a list with a number of entries and add a listener to it so when you click an element it is

added to a text area in the center of the frame. A swing list can be created by instantiating

the JList<T> class. This creates an object that displays a list of objects and allows the

user to select one or more items. The swing JList<T> class contains a field of type

ListModel<T> that manages the data contents displayed by the list. When created and

elements were added, each object is associated with an index, and when the user selects

an object the index can be used for processing as well. In the next snippet the JList

object is declared, initialized, a ListSelectionListener is associated with it, to define

the action to perform when an element from the list is selected. In our case the element

value, must be added to a JTextArea, so this object is depicted in the code.

private static String[] data = {"John Mayer", "Frank Sinatra",

 "Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

 private JList<String> list;

 private JTextArea textArea;

 ...

 textArea = new JTextArea(50, 10);

 //NORTH

 list = new JList<>(data);

 list.addListSelectionListener(new ListSelectionListener() {

 @Override

 public void valueChanged(ListSelectionEvent e) {

 if (!e.getValueIsAdjusting()) {

 textArea.append(list.getSelectedValue() + "\n");

 }

 }

 });

 mainPanel.add(list, BorderLayout.NORTH);

 //CENTER

 JScrollPane txtPanel = new JScrollPane(textArea);

 textArea.setBackground(Color.LIGHT_GRAY);

 mainPanel.add(txtPanel, BorderLayout.CENTER);

 ...

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

429

If you click a list element, two things happen: the previous element is deselected, and

one that was clicked the most recently is selected, so the selected element changes. The

getValueIsAdjusting() method returns whether or not this is one in a series of multiple

events, where changes are still being made, and we test if this method returns false to

check that the selection has been already made, so we can get the value of the current

selected element and add it to the text area.

Regarding the JTextArea instance, this one is added to a JScrollPane instance, which

allows for the textArea contents to still be visible as it fills with text by providing a scrollbar

or two, depending on the configuration. The JScrollPane can also be wrapped around a list

with too many items to make sure all of them are accessible. Also, as we are not interested in

user provided input via the text area, the setEditable(false); method is called.

Now that we have a more complex application, it is time to play with the look-and-

feel of the application. Until now, we’ve used the default one, the one provided by the

underlying Operation System. But with Swing, the look-and-feel can be configured as

one of the defaults supported by the JDK or extra custom ones can be used, which are

provided as dependencies in the project class path, or developers can create their own.

To specify a look-and-feel explicitly, the following line of code must be added in the

main method, before any swing component is created: UIManager.setLookAndFeel(..).

This method receives as parameter a String value representing the fully qualified

name of the appropriate subclass of look-and-feel. Although not necessary, you

could specify explicitly that you want to use the native GUI by calling: UIManager.

setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());. Knowing

this, let’s do something interesting. The UIManager class contains utility methods and

nested classes used to manage look-and-feel for swing applications. One of this methods

is getInstalledLookAndFeels(), which extracts the list of supported look-and-feels

and returns them as a LookAndFeelInfo[]. Knowing this, let’s list all the supported

themes, add them to our list, and when the user selects one of them, let’s apply them.

Unfortunately, as swing is rarely used these days, there are not that many custom look-

and-feels that we could use in our application. So, the only thing to do is to work with

what JDK has. First, let’s initialize the data array with the fully qualified class names.

private static String[] data;

...

 public static void main(String... args) throws Exception {

 �UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeel

ClassName());

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

430

 �UIManager.LookAndFeelInfo[] looks = UIManager.getInstalledLookAnd

Feels();

 data = new String[looks.length];

 int i =0;

 for (UIManager.LookAndFeelInfo look : looks) {

 data[i++] = look.getClassName();

 }

 SwingDemo swingDemo = new SwingDemo("Swing Demo Window");

 swingDemo.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 swingDemo.setSize(new Dimension(500, 500));

 swingDemo.setVisible(true);

 }

...

Now, the ListSelectionListener implementation becomes a little complicated,

because after selecting a new look and feel class, we have to call repaint() on the

JFrame instance to apply the new look and feel, so we’ll take the declaration out into its

own class and provide the SwingDemo object as argument, so repaint() can be

called on it, inside the valueChanged(..) method.

private class LFListener implements ListSelectionListener {

 private JFrame parent;

 public LFListener(JFrame swingDemo) {

 parent = swingDemo;

 }

 @Override

 public void valueChanged(ListSelectionEvent e) {

 if (!e.getValueIsAdjusting()) {

 textArea.append(list.getSelectedValue() + "\n");

 try {

 UIManager.setLookAndFeel(list.getSelectedValue());

 Thread.sleep(1000);

 parent.repaint();

 } catch (Exception ee) {

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

431

 System.err.println(" Could not set look and feel! ");

 }

 }

 }

 }

If we run the modified program, and select each item in the list one by one, we

should see the window look change a little bit. Figure 10-6 shows all windows side by

side; the differences are barely noticeable, but they are there.

This is what you can do with Swing components with a few lines of code. There are

a lot more components that in the Swing library, but as it not really used anymore, as

the focus is on web applications, this section has to end here. If you ever need to create

or maintain a Swing application, Oracle provides an extensive tutorial with a lot of

examples that you can directly copy/paste and adapt to your necessities. 2

2�Oracle extensive Swing tutorial: https://docs.oracle.com/javase/tutorial/uiswing/
examples/layout/index.html

Figure 10-6.  Different Look And Feel provided by JDK

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

432

�Introducing JavaFX
JavaFX Script was a scripting language designed by Sun Microsystems, forming part

of the JavaFX family of technologies on the Java Platform. It was released shortly after

JDK 6 in December 2008 and for a while developers expected it to be dropped because

it really did not catch on that much, being a totally different language and all. But after

acquiring Sun Microsystems, Oracle decided to keep it and they transformed it into

the JavaFX library, which is a set of graphics and media packages that can be used by

developers to design, create, test, debug, and deploy rich client applications that operate

consistently across diverse platforms. And yes, mobile ones too. JavaFX is intended to

replace Swing as the main GUI library of the JDK, but so far, both Swing and JavaFX have

been part of all JDK versions until 10. That changed in JDK 11. Starting with JDK 11,

JavaFX is available as a separate module, decoupled from the JDK. JavaFX is still not used

as much as Oracle hoped, and separating it from the JDK might encourage the OpenJFX

community to contribute with some innovative ideas, which might transform this library

into an actual competitor for the other existing GUI toolkits on the market (e.g., Eclipse

SWT3). So let’s waste no time and start writing code to create an application similar to

the previous one using JavaFX.

Being part of the JDK now, and having classes and other components, JavaFX code is

currently normal Java code, so no more scripting. JavaFX components are defined under

a list of java.fx.* modules. The following configuration snippet, shows that the module

of our project that uses JavaFX declares its dependency on a few java.fx modules by

using the requires directive, in its module-info.java.

module chapter.ten.javafx {

 requires javafx.base;

 requires javafx.graphics;

 requires javafx.controls;

 opens com.apress.bgn.ch10 to javafx.graphics;

}

3�SWT is an open source widget toolkit for Java designed to provide efficient, portable access to the
user-interface facilities of the operating systems on which it is implemented. More about it on
the official site: https://www.eclipse.org/swt/

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

433

And because the JavaFX application launcher uses reflection to launch an

application, you need to open the package containing the implementation; otherwise,

an java.lang.IllegalAccessException is thrown, so that is why in the previous

configuration the opens com.apress.bgn.ch10; exists.

Let’s start with a simple window that has a closing option. I’ll explain how it is

executed because JavaFX is a little different from Swing and AWT. The code to display a

plain square window is depicted next.

package com.apress.bgn.ch10;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class JavaFxDemo extends Application {

 public static void main(String... args) {

 launch(args);

 }

 @Override

 public void start(Stage primaryStage) {

 primaryStage.setTitle("JavaFX Demo Window!");

 StackPane root = new StackPane();

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

}

The first thing you need to know is that the main class of the application must

extend the javafx.application.Application class, because this is the entry point for

a JavaFX application. This is required because JAVA FX applications are run by a new

performance graphics engine named Prism that sits on top of the JVM. Aside from

Prism, the graphic engine, JavaFX comes with its own windowing system named Glass, a

media engine and a web engine. They are not exposed publicly, the only thing available

to developers is the JavaFX API that provides access to any components you might need

to build application with fancy interfaces. All of these engines are tied together by the

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

434

Quantum toolkit, which is the interface between these engines and the layer above in

the stack. The Quantum toolkit manages execution threads and rendering.

The launch(...) method is a static method in the Application class that launches

a standalone application. It is usually called from the main method and can only be

called once; otherwise, a java.lang.IllegalStateException is thrown. The launch

method does not return until the application is exited by closing all windows or calling

Platform.exit(). The launch method creates an JavaFxDemo instance, calls the init()

method on it and then calls start(..). The start(..) method is declared abstract in

the Application class, so the developer is forced to provide a concrete implementation.

A JavaFX application is built using components defined under the javafx.scene

and has a hierarchical organization. The core class of the javafx.scene package is the

javafx.scene.Node that is the root of the Scene hierarchy. Classes in this hierarchy

provide implementations for all of the visual elements of the application’s user interface.

Because all of them have Node as a root class, visual elements are called nodes, which

makes an application a scene graph of nodes and the initial node of this graph is called a

root. Each node has an unique identifier, a style class and a bounding volume, and with

the exception of the root node, each node in the graph has a single parent and zero or

more children. Aside from that a node has the following properties.

•	 effects, such as blurs and shadow - useful when you hover with your

mouse over the interface to make sure you click the right component

•	 opacity

•	 transformations - changing visual state or position

•	 event handlers - similar to listeners in Swing, used to define reaction

on mouse, key and input method

•	 application specific state

The scene graph simplifies building rich interfaces a lot and, because it also includes

graphics primitives as rectangles, text, images and media and also, animating various

graphics can be accomplished by the animation APIs for package javax.animation.

If you are interested in finding out more on what’s under the hood of JavaFX, read the

article at https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.

htm, because the focus of this book is on how to do things rather than how they work,

unless it really influences the design of your future solutions.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

435

We’ve started again with a simple window. The first step is to add a button to quit the

application. As rendering a JavaFX application involves a rendering engine, this means

it has to shutdown gracefully, so calling System.exit(0) is no longer a preferred option.

So the contents of the start(..) methods become the following.

...

public void start(Stage primaryStage) {

 primaryStage.setTitle("JavaFX Demo Window!");

 Button btn = new Button();

 btn.setText("Bye bye! ");

 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override

 public void handle(ActionEvent event) {

 Platform.exit();

 }

 });

 StackPane root = new StackPane();

 root.getChildren().add(btn);

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

...

If we run the JavaFxDemo class, the window depicted in Figure 10-7 pops up on your

screen, and if you click the Bye bye! Button, the application is gracefully closed because

of the Platform.exit(); call.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

436

But the button was just thrown in the window and put in the center by default

because no code was written to position it. JavaFX supports arranging nodes4 in a

window in a manner similar to Swing, but JavaFX provides layout panes that support

several different styles of layouts. The equivalent of a JPane with BorderLayout manager

in JavaFX is a built-in layout named BorderPane. The BorderPane provides five regions

where to place your nodes, with distribution similar to BorderLayout, but different

names. Let’s write the code to place our button in the bottom region in the right corner

and then discuss more about it.

...

 public void start(Stage primaryStage) {

 primaryStage.setTitle("JavaFX Demo Window!");

 Button exitButton = new Button();

 exitButton.setText("Bye bye! ");

 exitButton.setOnAction(event -> Platform.exit());

 BorderPane borderPane = new BorderPane();

 HBox box = new HBox();

4�It was mentioned that the root class for all Java FX components is named Node, so instead of
components, Java FX components is referred as nodes in this section.

Figure 10-7.  JavaFX Window Demo

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

437

 box.setPadding(new Insets(10, 12, 10, 12));

 box.setSpacing(10);

 box.setAlignment(Pos.BASELINE_RIGHT);

 box.setStyle("-fx-background-color: #85929e;");

 box.getChildren().add(exitButton);

 borderPane.setBottom(box);

 StackPane root = new StackPane();

 root.getChildren().add(borderPane);

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

...

If we run the JavaFxDemo class the window depicted in Figure 10-8 pop up on your

screen. The figure has been modified to show the regions of a BorderPane.

Figure 10-8.  JavaFX Window Demo

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

438

The approach to decide where our button should be located is similar to Swing,

with a few differences. The BorderPane has 5 regions named: Top, Bottom, Center, Left

and Right. To place a node in each of those regions a set*(..) method for each of them

has been defined: setTop(..), setBottom(..), setCenter(..), setLeft(..) and

setRight(..). To further customize the position of the node, it should be placed in a

HBox node, another JavaFX element that can be customized extensively. As you can see

from the code, we are setting the background using CSS style elements, we customize

the space between nodes in it and borders of the containing node by using an instance

of class Insets and we customize the alignment of the contained nodes by calling

box.setAlignment(Pos.BASELINE_RIGHT). And there are a lot more things that HBox

supports, so what you can do with a box is limited (mostly) only by your imagination.

So aside from all making pretty code in the preceding code sample, this was

done: the root node became parent to a BorderPane node, in the bottom region of the

BorderPane, a HBox was added, and this HBox instance became parent for a Button. This

organization is hierarchic, with the button being the last node in the hierarchy.

Also, we avoided using a layer pane by styling the HBox node properly.

It is time to add the last functionality to our application: the text area and a list

with selectable elements to add values to the text area. To create a text area in JavaFX

is simple. The class is named in an clear manner: TextArea. We can directly add the

node in the center region of the BorderPane because the JavaFX text area is scrollable

by default. So there is no need to put it in a ScrollPane, although the class does exist in

the javafx.scene.control package and is useful to display nodes inside it that make

a form that is bigger than the window size. The following three lines of code create a

node of type TextArea, declare it to not be editable, and add it to the center region of the

BorderPane.

TextArea textArea = new TextArea();

textArea.setEditable(false);

borderPane.setCenter(textArea);

Next one is the list. The list is a little more complicated, but also a lot more fun

to work with, because using JavaFX there is a lot you can do with a list. The class that

needs to be instantiated to create a list object is named ComboBox. This class is just

one of a bigger family of classes used to create lists, the root class being the abstract

class ComboBoxBase. Depending on the desired behavior of the list, if we want support

for single or multiple selection, if we want the list to be editable or not, the proper

implementation should be chosen. In our case, the ComboBox class matches the

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

439

requirements: we need a non-editable list, which supports single element section.

A ComboBox has a valueProperty() method that returns the current user input. The user

input can be based on a selection from a drop-down list or the input manually provided

by the user when the list is editable. Let’s see the code to add a list to the top section of

the BorderPane and add a listener to record the selected value in the TextArea that we

previously declared.

private static String[] data = {"John Mayer", "Frank Sinatra",

 "Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

...

ComboBox<String> comboBox = new ComboBox<>();

comboBox.getItems().addAll(data);

borderPane.setTop(comboBox);

comboBox.valueProperty().addListener(

 new ChangeListener<String>() {

 @Override

 public void changed(ObservableValue<? extends String> observable,

 String oldValue, String newValue) {

 textArea.appendText(newValue + "\n");

 }

});

The ComboBox value field (accessed by calling comboBox.valueProperty())

is an ObservableValue<T> instance. The listener is an instance of type

ChangeListener<String> is added to this instance by calling the addListener(..)

method. Anytime the comboBox value field changes, the changed(..) method of the

listener is called. The changed(..) method receives as argument the previous list

selected value as well as the currently selected value, because who knows, maybe we

have some logic that requires both.

In AWT and Swing, there was not much that you could do with a list visually. You had

the look and feel and that was that. JavaFX supports more visual customization for nodes

because it even supports CSS. That is why in the next section we’ll make our ComboBox

list interesting. In JavaFX each entry in a list is a cell that can be drawn differently. To do

that, we have to add a CellFactory to this class, which creates an instance of ListCell

for each item in a list. If a CellFactory is not specified the cells is created with the

default style. Let’s see the code first and explain more after.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

440

comboBox.setCellFactory(

 new Callback<>() {

 @Override

 public ListCell<String> call(ListView<String> param) {

 return new ListCell<>() {

 {

 super.setPrefWidth(200);

 }

 @Override

 public void updateItem(String item, boolean empty) {

 super.updateItem(item, empty);

 if (item != null) {

 setText(item);

 if (item.contains("John") || item.contains("BB")) {

 setTextFill(Color.RED);

 } else if (item.contains("Frank") || item.contains("Peggy")) {

 setTextFill(Color.GREEN);

 } else if (item.contains("Seth")) {

 setTextFill(Color.BLUE);

 } else {

 setTextFill(Color.BLACK);

 }

 } else {

 setText(null);

 }

 }

 };

 }

 });

The javafx.util.Callback interface is a practical interface that can be used to

declare a subsequent action for a certain action, if a callback is needed. In this case the

subsequent action is doing the following: after a String value is added to the ListView of

the ComboBox node (ListView is the visual, the interface type of a ComboBox that displays

a horizontal or vertical list of items), a cell is being created and some piece of logic was

inserted there to decide the color of the text depicted in the cell based on its value.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

441

Inside the ListCell declaration there is a block of code that seems out of place.

{

 super.setPrefWidth(200);

 }

The block is an interesting way to call a method from the parent class inside the

declaration of an anonymous class. The setPrefWidth(200) is called here to make sure

all the ListCell<> instances have the same size. The logic in the updateItem(..) is

quite obvious, and thus it does not need any extended explanation. The result of adding

the cell factory can be viewed in Figure 10-9.

And this is all the space we can give to JavaFX in this book. As long as you have a

vague idea of why the JavaFX components are called nodes, you have a pretty good

starting point. If you are curious, Oracle has some pretty good tutorials about it at

https://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

Figure 10-9.  JavaFX Colored ComboBox Demo

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

442

�Internationalization
Interactive applications are usually created to be deployed on more than one server

and available 24/7 and in multiple locations. As not all of us speak the speak the same

language, the key to convince people to become your clients and use your application

is to build it in multiple languages. The process of designing an application so that it

meets user needs in multiple countries and easily adapts to satisfy those needs is called

internationalization. For example we can take the initial Google page. Depending on

the location where it is accessed, it changes language according to that area. When you

create an account, you can select the language you prefer. This does not mean that the

Google has built a web application for each region, it’s a single web application that

displays text in different languages depending on the location. Internationalization

should always be taken into consideration in the design phase of an application,

because adding it later is difficult. We do not have a web application, but we are

internationalizing a JavaFX application in this section.

When you start reading about internationalization you might notice that files or

directories containing the internationalization property files are named i18n, which is

because there are 18 letters between i and n in this word.

Internationalization is based on locale. Locale is the term given to a combination

of language and region. The application locale is the one that decides which

internationalization file customizes the application. The locale concept is implemented

in Java by the java.util.Locale class and a Locale instance represents a geographical,

political or cultural region. When an application depends on the locale we say that it

is locale-sensitive, as most applications are nowadays. But selecting a locale can be

something an user has to do as well. Each Locale can select the corresponding locale

resources, these are files containing locale specific configurations. These files are

grouped per locale and can usually be found under the resources directory. These

resources are used to configure an instance of java.util.ResourceBundle that can

manage locale-specific resources.

To build a proper use case for localization, the previous JavaFX application is

modified; instead of singer names, the list contains a list of pet names with labels that

can be translated in various languages. A list with the available languages is added,

and when a language is selected from this list, a Locale static variable is set with the

corresponding locale and the window is reinitialized so that all labels can be translated

to the new language. Let’s start by creating the resource files.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

443

Resource files have the properties extension that contain a list of properties and

values. Each line respects the following pattern: property_name=property_value, if

it doesn’t, it is not read. Each property name must be unique in the file, if there is a

duplicate it is ignored and IntelliJ IDEA complains by underlining the property with

red. For every language that needs to be supported, we need to create one property file

that contains the same property names, but different values, as the values represent

the translation of that value in each language. All files must have names that contain

a common suffix and end with the language name and the country, separated by

underscores, because these are the two elements needed to create a Locale instance. For

our JavaFX application, we have three files, which are depicted in Figure 10-10.

The suffix is global and this is our resource bundle name as well. This is made clear

by IntelliJ IDEA, which figures out what our files are used for and depicts them in an

obvious way. The contents of the files is depicted in Table 10-1.

Figure 10-10.  Resource Bundle with three resource files

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

444

IntelliJ IDEA can help you edit resource bundle files easily and makes sure you are

not missing any keys from any of them by providing a special view for them. When you

open a resource file, in the bottom left corner you should see two tabs. One is called Text

and when clicked, it allows you to edit a properties file as a normal text file. The other

one is called Resource Bundle and when clicked, it opens a special view that has all the

property names in the resource files and views from all resource files containing values

for property names selected. Figure 10-11 shows this view and the values for the Choose
Language property.

Table 10-1.  Contents of Resource Files

Property Name Property value in
global_en_GB

Property value in
global_fr_FR

Property value in
global_it_IT

English English Anglais Inglese

French French Français Francese

Italian Italian Italien Italiano

Cat Cat Chat Gatto

Dog Dog Chien Cane

Parrot Parrot Chien Pappagallo

Mouse Mouse Souris Topo

Cow Cow Perroquet Mucca

Pig Pig Porc Maiale

WindowTitle JavaFX Demo Window! JavaFX Démo Fenêtre! JavaFX Dimostratione Finestra!

Byebye Bye bye! Bye bye! Ciao!

ChoosePet Choose Pet: Choisissez la langue: Scegli la lingua:

ChooseLanguage Choose Language: Choisir un animal de

compagnie:

Scegli un animale domestico

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

445

The property names can contain special characters as underscore and dots to

separate parts of them. In this book example the property names are simple, because we

only have so little of them. In bigger applications, property names usually contain a prefix

that is relevant to their purpose, for example if the property value is a title the name is

prefixed with title. For example, the property names in our files could be changed to

the following:

English --> label.lang.english

French --> label.lang.french

Italian --> label.lang.italian

Cat --> label.pet.cat

Dog --> label.pet.dog

Parrot --> label.pet.parrot

Mouse --> label.pet.mouse

Cow --> label.pet.cow

Pig --> label.pet.pig

WindowTitle --> title.window

Byebye --> label.button.byebye

ChoosePet --> label.choose.pet

ChooseLanguage --> label.choose.language

Figure 10-11.  Resource Bundle IntelliJ IDEA editor

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

446

Now that we have covered how the resource files should be written, let’s see how

they are used. To create a ResourceBundle instance, we first need a locale. Applications

have a default locale that can be obtained by calling Locale.getDefault(), and a

ResourceBundle instance can be obtained by using a bundle name and a locale instance,

as depicted in the following code snippet.

Locale locale = Locale.getDefault();

ResourceBundle labels = ResourceBundle.getBundle("global", locale);

When a valid ResourceBundle is obtained, it can replace all hard-coded String

instances with calls to return text values from the resource file matching the selected

locale. So, every time we need to set a label for a node, instead of using the actual text, we

use a call to resourceBundle.getString("[property_name]") to get the localized text.

When a JavaFX window is reloaded, all its nodes are re-created. To influence how,

we need to add a couple of static properties to keep the selected locale set. So, for the

application that we’ve build so far, after internationalizing it, the code looks like the one

in the next listing.

package com.apress.bgn.ch10;

import javafx.*;

import java.io.File;

import java.net.URL;

import java.net.URLClassLoader;

import java.util.Locale;

import java.util.ResourceBundle;

public class JavaFxDemo extends Application {

 private static final String BUNDLE_LOCATION =

 "chapter10/using-javafx/src/main/resources";

 private static ResourceBundle resourceBundle = null;

 private static Locale locale = new Locale("en", "GB");

 private static int selectedLang = 0;

 public static void main(String... args) {

 Application.launch(args);

 }

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

447

 @Override

 public void start(Stage primaryStage) throws Exception {

 loadLocale(locale);

 primaryStage.setTitle(resourceBundle.getString("WindowTitle"));

 String[] data = {resourceBundle.getString("Cat"),

 resourceBundle.getString("Dog"),

 resourceBundle.getString("Parrot"),

 resourceBundle.getString("Mouse"),

 resourceBundle.getString("Cow"),

 resourceBundle.getString("Pig")};

 BorderPane borderPane = new BorderPane();

 //Top

 final ComboBox<String> comboBox = new ComboBox<>();

 comboBox.getItems().addAll(data);

 final ComboBox<String> langList = new ComboBox<>();

 String[] languages = {

 resourceBundle.getString("English"),

 resourceBundle.getString("French"),

 resourceBundle.getString("Italian")};

 langList.getItems().addAll(languages);

 langList.getSelectionModel().select(selectedLang);

 GridPane gridPane = new GridPane();

 gridPane.setHgap(10);

 gridPane.setVgap(10);

 �Label labelLang = new Label(resourceBundle.getString("Choose

Language"));

 gridPane.add(labelLang, 0, 0);

 gridPane.add(langList, 1, 0);

 Label labelPet = new Label(resourceBundle.getString("ChoosePet"));

 gridPane.add(labelPet, 0, 1);

 gridPane.add(comboBox, 1, 1);

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

448

 borderPane.setTop(gridPane);

 //Center

 final TextArea textArea = new TextArea();

 textArea.setEditable(false);

 borderPane.setCenter(textArea);

 comboBox.valueProperty().addListener((observable, oldValue, newValue)

 -> textArea.appendText(newValue + "\n"));

 langList.valueProperty().addListener((observable, oldValue, newValue)

 -> {

 int idx = langList.getSelectionModel().getSelectedIndex();

 selectedLang = idx;

 if (idx == 0) {

 //locale = Locale.getDefault();

 new Locale("en", "GB");

 } else if (idx == 1) {

 locale = new Locale("fr", "FR");

 } else {

 locale = new Locale("it", "IT");

 }

 primaryStage.close();

 Platform.runLater(() -> {

 try {

 new JavaFxDemo().start(new Stage());

 } catch (Exception e) {

 System.err.println("Could not reload application!");

 }

 });

 });

 HBox box = new HBox();

 box.setPadding(new Insets(10, 12, 10, 12));

 box.setSpacing(10);

 box.setAlignment(Pos.BASELINE_RIGHT);

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

449

 box.setStyle("-fx-background-color: #85929e;");

 Button exitButton = new Button();

 exitButton.setText(resourceBundle.getString("Byebye"));

 exitButton.setOnAction(event -> Platform.exit());

 box.getChildren().add(exitButton);

 borderPane.setBottom(box);

 //Bottom

 StackPane root = new StackPane();

 root.getChildren().add(borderPane);

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

 private void loadLocale(Locale locale) throws Exception {

 File file = new File(BUNDLE_LOCATION);

 URL[] url = {file.toURI().toURL()};

 ClassLoader loader = new URLClassLoader(url);

 resourceBundle = ResourceBundle.getBundle("global", locale, loader);

 }

}

You might be wondering why we used another way of loading the resource bundle

and why the full relative path to the bundle location was used. Well, if we want the

application to be runnable from the IntelliJ Interface, we have to provide a path relative

to the execution context of the application. When the application is built and packed in a

runnable Java archive, the resource files are part of it and in the classpath. But we run the

application by executing the main() method in an Java IDE, the classpath is relative to

the actual location of the project.

The following code snippet, restarts the scene by closing the Stage, then

instantiating a JavaFxDemo object and calling start(..). This means the whole

hierarchical node structure is re-created; the only state that is kept is the one that was

defined in static objects. This is needed for the locale setting, because the start(..)

method execution now starts with a call to loadLocale(locale), which selects the locale

of the application and loads the ResourceBundle so that, all nodes can be labeled with

texts returned by it.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

450

primaryStage.close();

 Platform.runLater(() -> {

 try {

 new JavaFxDemo().start(new Stage());

 } catch (Exception e) {

 System.err.println("Could not reload application!");

 }

 });

The application we have built until now and played with is a simple one. If you ever

need to build interfaces that are more complex and internationalization is needed, this

means more than translations are configured. You might need to have files with different

number and date formats, or multiple resource bundles. Internationalization is a big

topic and an important one, as rarely an application is built nowadays to be used in a

single region. But for a Java beginner, just knowing what the supporting classes are and

how they can be used is a very good starting point.

�Build a Web Application
Here we are. Things are getting serious. We are building a web application. A web

application is an application that runs on a server and can be accessed using a browser.

Until recently most Java applications needed web servers like Apache Tomcat, Glassfish,

or Enterprise, and servers like JBoss (currently known as WildFly) or TomEE to be hosted

on, so they could be accessed. You would write the web application, with the classes

and HTML or JSP files, pack it in a WAR (Web ARchive) or an EAR (Enterprise ARchive),

deploy it to a server, and start the server. The server would provide the context of the

application and map requests to classes that would provide the answer to be served as

responses. Assuming the application would be deployed on a Tomcat server, Figure 10-12

shows an abstract schema of the deployed application functionality.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

451

Requests to a web application can come from other clients than browsers, but

because this section covers web applications, we’ll assume all requests to our application

come from a browser. Let me explain the Internet a little first.

The Internet is an information system made up of a lot of computers linked together.

Some computers host application servers that provide access to applications, some

computers access these applications and some do both. The communication between

these computers is done over a network through a list of protocols: HTTP, FTP, SMTP,

POP, and so forth. The most popular protocol is HTTP, which stands for Hypertext
Transfer Protocol and it is an asymmetric request-response client-server protocol, this

means that the client makes a request to the server and then the server sends a response.

Subsequent requests have no knowledge of one another and they do not share any state,

thus they are stateless. HTTP requests can be of different types, being categorized by the

action they require the application on the server to perform, but there are four types that

are more commonly used by developers (the ones listed in Figure 10-12 in the request

arrow). I won’t go into the details of request components because it is not really related

to Java; I’ll cover enough information to understand how a web application works. The

following list contains the four most common request types and the responses a server

generates for them:

Figure 10-12.  Web application deployed on an Apache Tomcat server

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

452

•	 GET: Whenever a user enters a URL in the browser (e.g., http://my-

site.com/index.html), the browser transforms the address into a

request message and sends it to the web server. What the browser

does can be easily viewed by opening the debugger view in Firefox.

Click the Network tab, and access www.google.com. Figure 10-13

shows the Firefox debugger view showing the URL being requested

and the contents of the Request message.

Figure 10-13.  Network debugger view in Firefox

In the right part of the image, you can see the URL being requested, the type of

request, also called a request method, which is GET in this case, and the remote
address of the server where the request was sent to. There is also a Raw headers

button that opens a view depicting the contents of the request and response as text.

GET requests are used to retrieve something from the server, in this example, a web

page. If the web page can be found, the response is sent with the page to be displayed

by the browser and other attributes, such a status code, to communicate that all went

fine. There is a list of HTTP status codes, the most important one is the 200 code,

which means all went OK. In Figure 10-13, you can see that to display the page a lot

of additional requests are done, after the initial request is replied, and all subsequent

requests are successful, because the status returned by the server is put in the first

column in the table and it’s always 200.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

453

•	 PUT: This type of request is used when data is sent to the server for

storage. In enterprise applications, a PUT requests is interpreted as

a request to update an existing object, and the request contains the

updated version of the object and means to identify it.

•	 POST: This type of request is used when the server needs to be

instructed to save data for storage as well. The difference from PUT

request is that this data does not exist on the server yet. In enterprise

applications a POST request is used to send credentials so the user

can be authenticated, or to send data that creates a new object. When

a POST request sends credentials the response status code is 200

when the user is authenticated and 401(Unauthorized) when the user

credentials are not good, when a POST request sends data to be saved,

the 201 status code is returned if the object was created.

•	 DELETE: This type of request is used when the server is asked to

delete data. The response code is 200 when the deleting the data was

successful, and any other error code related to the cause why it did

not, otherwise.

There are a few other HTTP methods that are used in more complex applications.

If you are curious about request methods, status codes, and HTTP basics, I

confidently recommend the tutorial at www.ntu.edu.sg/home/ehchua/programming/

webprogramming/http_basics.html. Now let’s get back to writing Java web applications.

Until a while ago, we needed a server to host a web application but this is no

longer the case. As databases were replaced for testing purposes and applications with

minimum functionality with embedded databases, the same happened to web servers.

If you want to quickly write a simple web application you have now the option of using

an embedded server, like Jetty or Tomcat (the embedded version). For this section of the

chapter, we’ll use an embedded Tomcat server and we’ll create a small web application

that displays a simple HTML page. The code is depicted in the next listing.

package com.apress.bgn.ch10;

import org.apache.catalina.Context;

import org.apache.catalina.LifecycleException;

import org.apache.catalina.startup.Tomcat;

import java.io.File;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

454

public class WebDemo {

 public static void main(String... args) throws LifecycleException {

 Tomcat tomcat = new Tomcat();

 tomcat.setBaseDir("chapter10/web-app/out");

 tomcat.setPort(8080);

 String contextPath = "/demo";

 String docBase = new File(".").getAbsolutePath();

 Context context = tomcat.addContext(contextPath, docBase);

 SampleServlet servlet = new SampleServlet();

 tomcat.addServlet(contextPath, servlet.getServletName(), servlet);

 context.addServletMapping(servlet.getUrlPattern(),

 servlet.getServletName());

 tomcat.start();

 tomcat.getServer().await();

 }

}

If you think it is simple, it really is. All we have to do to start an embedded server is

to create a Tomcat instance and select the port we want to expose it on(in this case 8080)

and specify a location for the Tomcat temp files. As we are running our main(..) method

from IntelliJ, the context of the application is relative to the project directory, so the

base directory for Tomcat is set as the out directory where IntelliJ IDEA stores compiled

classes and other temporary files for this project. A Java web application needs a context

path. The context path value is a part of the URL to access the application. An URL is

made up of four parts.

•	 protocol: The application-level protocol used by client and server to

communicate, (e.g., http, https, ftp, etc.).

•	 hostname: The DNS domain name (e.g., www.google.com) or IP

address (e.g., 192.168.0.255) or any alias recognized in a network. For

example when an application is accessed from the same computer

the server is installed on either 127.0.0.1 can be used or localhost.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

455

•	 port: The TCP port number the server is listening for incoming

requests from clients. For web applications it usually is 8080, but

most URLs do not contain this port as there are routing mechanisms

in place to hide it.

•	 path and filename: The name and location of the resource, under

the server document base directory. Users usually request to view

specific pages hosted on servers, which is why URLs look like this:

https://docs.oracle.com/index.html. But a very used practice is

to hide the paths and file names by using internal mappings (called

URL redirection) because of security reasons.

So where does the context path value come in? Well, when we have an embedded

server declared like in the previous code sample, any files that are hosted by it can

be accessed by using the http://localhost:8080/, but because a server can host

more than one application, they must be a way to separate them, right? Here is where

the context path value comes in handy. Because by setting the context path to /demo,

the WebDemo application and the resources it provides to the users can be accessed at

http://localhost:8080/demo/.

Java Web Applications are dynamic, the pages are generated from Java code using

Servlets and JSP(Java Server Pages) pages. Because of that, Java Web Applications are

not running on a server but inside a web container on the server. The web container

provides a Java runtime environment for Java Web applications. Apache Tomcat is

such a container running in the JVM; it supports execution of servlets and JSP pages. A

servlet is a Java class that is a subclass of javax.servlet.http.HttpServlet. Instances

of this type answer HTTP Requests within a web container. A JSP page is a file with

.jsp extension that contains HTML and Java code. A JSP page gets compiled into a

servlet by the web container the first time the page is accessed. In essence the servlet is

the core element of a Java Web application. Also, the server must know that the servlet

exists and how to identify it, this where the call tomcat.addServlet(contextPath,

servlet.getServletName(), servlet); comes in, it basically says: add the servlet

with name servlet.getServletName() to the application context with the contextPath

value context path. Then, to associate an URL pattern to the servlet, the context.

addServletMapping(servlet.getUrlPattern(), servlet.getServletName()); is

called.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

456

When a Java Web Application is running, all its servlets and JSP are running into

its context, but they have to be added into the context in the code and mapped to an

URL pattern. The requests URL that match that URL pattern will access that servlet. In

the previous code sample, you can see that an instance of SampleServlet is created.

It is a custom class extending javax.servlet.http.HttpServlet that overrides the

doGet(..) method to return a response to the client for a GET request with http://

localhost:8080/demo/. The code of this class is depicted next.

package com.apress.bgn.ch10;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

public class SampleServlet extends HttpServlet {

 private final String servletName = "sampleServlet";

 private final String urlPattern = "/";

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException {

 PrintWriter writer = response.getWriter();

 try (BufferedReader reader = new BufferedReader(

 �new FileReader("chapter10/web-app/src/main/resources/static/index.

html"))) {

 String line = "";

 while ((line = reader.readLine()) != null) {

 writer.println(line);

 }

 }

 }

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

457

 @Override

 public String getServletName() {

 return servletName;

 }

 public String getUrlPattern() { }

 return urlPattern;

}

The urlPattern property was added to this class for practical reasons to keep

everything related to this servlet in one place. The same goes for servletName. If the

intention was to instantiate this class multiple times to create multiple servlets, these

two properties should be taken outside of it. Inside the doGet(..) method we only read

the contents of the index.html file and we write them in the response object using the

response PrintWriter.

As you can see, the doGet(..) method receives as arguments two objects: the

HttpServletRequest instance is read and all contents of the request sent from the

client can be accessed using appropriate methods, and the HttpServletResponse

instance, that is used to add information to the response. In the previous code sample,

we are just writing HTML code read from another file, but we can set the status also by

calling response.setStatus(HttpServletResponse.SC_OK); Aside from the doGet(..)

method there are do*(..) methods matching each HTTP method that declare the same

type of parameters.

Another way to write the class (starting with Servlet 3.0) is depicted in the following

code snippet:

package com.apress.bgn.ch10;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

458

@WebServlet(

 name = "sampleServlet",

 urlPatterns = {"/"}

)

public class IndexServlet extends HttpServlet {

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException {

 PrintWriter writer = response.getWriter();

 response.setStatus(HttpServletResponse.SC_OK);

 try (BufferedReader reader = new BufferedReader(

 �new FileReader("chapter10/web-app/src/main/resources/static/index.

html"))) {

 String line = "";

 while ((line = reader.readLine()) != null) {

 writer.println(line);

 }

 }

 writer.flush();

 writer.close();

 }

}

Using the @WebServlet annotation, we no longer need to have properties where we

store the servlet name and URL pattern, but the Tomcat context needs to be modified

a little to tell it to scan for classes annotated with @WebServlet. So, instantiating the

servlet explicitly is no longer necessary. Neither is calling tomcat.addServlet(..)

and context.addServletMapping(..), because adding the servlet to the application

context and mapping it is done automatically using the information provided by the

@WebServlet annotation. But we do have to define where the compiled servlet classes

are by declaring an WebResourceSet instance and adding it to the context resources.

import org.apache.catalina.Context;

import org.apache.catalina.WebResourceRoot;

import org.apache.catalina.startup.Tomcat;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

459

import org.apache.catalina.webresources.DirResourceSet;

import org.apache.catalina.webresources.StandardRoot;

import java.io.File;

public class WebDemo {

 public static void main(String... args) throws Exception {

 Tomcat tomcat = new Tomcat();

 tomcat.setBaseDir("chapter10/web-app/out");

 tomcat.setPort(8080);

 String contextPath = "/demo";

 String docBase = new File(".").getAbsolutePath();

 Context context = tomcat.addContext(contextPath, docBase);

 �File webInfClasses = new File(root.getAbsolutePath(), "production/

classes");

 WebResourceRoot resources = new StandardRoot(context);

 WebResourceSet resourceSet;

 if (webInfClasses.exists()) {

 resourceSet = new DirResourceSet(resources,

 "/WEB-INF/classes", webInfClasses.getAbsolutePath(), "/");

 System.out.println("loading WEB-INF resources from as '"

 + webInfClasses.getAbsolutePath() + "'");

 } else {

 resourceSet = new EmptyResourceSet(resources);

 }

 resources.addPreResources(resourceSet);

 context.setResources(resources);

 tomcat.start();

 tomcat.getServer().await();

 }

}

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

460

So this is how we handle servlets, but how do we handle JSP pages using an

embedded server? First we have to create a directory where the JSP pages are. So the

structure of our project must change as depicted in Figure 10-14.

Figure 10-14.  Web application structure change

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

461

As you can see, the resource/dynamic directory was added to place the JSP pages in.

As our application is getting complicated it is time to clean it up a little and make paths

relative to the execution path of the application, which is the out directory. So, we

introduce the following class.

package com.apress.bgn.ch10;

import java.io.File;

public class LocationUtility {

 public static File getRootFolder() throws Exception {

 String executionPath = WebDemo.class.getProtectionDomain()

 �.getCodeSource().getLocation().toURI().getPath().

replaceAll("\\\\", "/");

 int lastIndexOf = executionPath.lastIndexOf("/production/");

 return lastIndexOf < 0 ? new File("") :

 new File(executionPath.substring(0, lastIndexOf));

 }

}

We now know that when IntelliJ IDEA compiles Gradle applications it creates

under the out directory a directory named production containing compiled Java

classes and resources, properly organized each in their own directory. So that is why,

the root directory of the execution of our application is computed relative to that

directory. As we’ve added an index.jsp page, we have to add a different URL pattern for

SampleServlet and since we also added relative paths, the class code changes a little.

package com.apress.bgn.ch10;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

462

@WebServlet(

 name = "sampleServlet",

 urlPatterns = {"/sample"}

)

public class SampleServlet extends HttpServlet {

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException {

 PrintWriter writer = response.getWriter();

 response.setStatus(HttpServletResponse.SC_OK);

 try (BufferedReader reader = new BufferedReader(

 new FileReader(LocationUtility.getRootFolder()

 + "/production/resources/static/index.html"))) {

 String line = "";

 while ((line = reader.readLine()) != null) {

 writer.println(line);

 }

 } catch (Exception e) {

 writer.println(

 "<html><head><title>Web Application Demo [ERROR] </title></head>" +

 "<body><p style=\"color:#C70039\">Something went wrong." +

 "The page is not available. Error: " + e.getMessage()

 + "</p></body></html>");

 e.printStackTrace();

 }

 writer.flush();

 writer.close();

 }

}

And since we might get the path to index.html wrong, we made sure to display a

proper message in the page. Next is to create a JSP page. There are two ways of writing

JSP pages. JSP scriptlets are the simplest ones to use. They are pieces of Java code

embedded in HTML code using directive tags. There are three type of directive tags.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

463

•	 <%@ page ... %> directive used to provide instructions to the

container. Instructions declared using this directive belong to the

current page and can be used anywhere in the page. Such a directive

can import Java types or define page properties; for example,

<%@ page import="java.util.Date" %>

<%@ page language="java" contentType="text/html; charset=US-ASCII"

 pageEncoding="US-ASCII" %>

•	 <%@ include ... %> directive includes a file during translation

phase. Thus the current JSP file where this directive is used, is a

composition of its content and the content of the file that is declared

using this directive.

<%@ include file = "footer.jsp" >

•	 <%@ taglib ... %> directive declares a tag library with elements

that are used in the JSP page. This directive is important because it

imports a library with custom tags and element that writes the JSP

page. These tags provide dynamic functionality without the need for

scriptlets.

The index.jsp page that we are using in this application is quite simple.

<%@ page import="java.util.Date" %>

<%@ page language="java" contentType="text/html; charset=US-ASCII"

 pageEncoding="US-ASCII" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head><title>Web Application Demo JSP Page</title></head>

 <body bgcolor=black>

 <p style="color:#ffd200"> Today is <%= new Date() %> </p>

 </body>

</html>

The page displays today’s date, and this is done by calling new Date(). We are using

Java code in what it looks like an HTML page. Because those directives are in there at the

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

464

top of the page and the extension is .jsp, the container knows this file must be compiled

into a servlet. The default page a web application opens with when its root domain is

accessed, if nothing was mapped to the default URL pattern "/" is a file named index.

html or index.htm or index.jsp in this case. So, aside from adding the file named

index.jsp in the proper directory and then making sure the container can find the

said application directory, there is nothing more to do so that when we access http://

localhost:8080/demo/ our page is displayed.

So let’s see how the WebDemo class changes to make sure the index.jsp file is found

and displayed properly.

package com.apress.bgn.ch10;

import org.apache.catalina.WebResourceRoot;

import org.apache.catalina.WebResourceSet;

import org.apache.catalina.core.StandardContext;

import org.apache.catalina.startup.Tomcat;

import org.apache.catalina.webresources.DirResourceSet;

import org.apache.catalina.webresources.EmptyResourceSet;

import org.apache.catalina.webresources.StandardRoot;

import java.io.File;

import java.nio.file.Files;

import static com.apress.bgn.ch10.LocationUtility.getRootFolder;

public class WebDemo {

 public static void main(String... args) throws Exception {

 File root = getRootFolder();

 Tomcat tomcat = new Tomcat();

 tomcat.setPort(8080);

 tomcat.setBaseDir(root.getAbsolutePath());

 File webAppFolder = new File(root.getAbsolutePath(),

 "production/resources/dynamic");

 if (!webAppFolder.exists()) {

 System.err.println("Could not find JSP pages directory!");

 }

 StandardContext context = (StandardContext) tomcat.

 addWebapp("/demo", webAppFolder.getAbsolutePath());

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

465

 context.setParentClassLoader(WebDemo.class.getClassLoader());

 �File webInfClasses = new File(root.getAbsolutePath(), "production/

classes");

 WebResourceRoot resources = new StandardRoot(context);

 WebResourceSet resourceSet;

 if (webInfClasses.exists()) {

 resourceSet = new DirResourceSet(resources, "/WEB-INF/classes",

 webInfClasses.getAbsolutePath(), "/");

 } else {

 resourceSet = new EmptyResourceSet(resources);

 }

 resources.addPreResources(resourceSet);

 context.setResources(resources);

 tomcat.start();

 tomcat.getServer().await();

 }

}

So now when we open http://localhost:8080/demo/ URL in the browser, you

should see a simple message like the following.

Today is Mon Aug 20 01:41:29 BST 2018

Of course, the date is the one on your system.

? A s an exercise for you, imagine how the Java servlet class would look like if
you had to write it.

Since taglibs were mentioned, let’s talk a little about them. The most basic tag library

is the JSTL, which stands for JSP Standard Tag Library. Other more evolved tag libraries

are provided by JSF (JavaServerFaces), Thymeleaf, or Spring. Tags defined in this library

can be used to write JSP pages that change behavior. Depending on request attributes,

they can be used to iterate, to test values, and for internationalization and formatting.

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

466

Based on the JSTL functions provided, the tags are grouped into five categories. They

can be used in a JSP page only after specifying the appropriate directives. Next, the five

directives are listed with the overall topic the tags cover.

•	 <%@ taglib uri="http://java.sun.com/jsp/jstl/core"

prefix="c" %> JSTL Core tags provide support for displaying values,

iteration, conditional logic, catch exceptions, URL, and forward or

redirect response.

•	 <%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"

prefix="fmt" %> JSTL Formatting tags are provided for formatting

of numbers, dates, and i18n support through locales and resource

bundles.

•	 <%@ taglib uri="http://java.sun.com/jsp/jstl/sql"

prefix="sql" %> JSTL SQL tags provide support for interaction with

relational databases, but never do this, never use SQL in a web page

because it is very easily hackable (look up SQL Injection on Google).

•	 <%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"

%> JSTL XML tags provide support for handling XML documents,

parsing, transformations and XPath expressions evaluation.

•	 <%@ taglib uri="http://java.sun.com/jsp/jstl/functions"

prefix="fn" %> JSTL Function tags provide a number of functions

that can be used to perform common operations such as text

manipulations.

Now that we know the basic tag categories, which ones do you think we need to use

to redesign our index.jsp page? If you thought about FMT and Core, you are right. Also,

JSP pages that use taglibs are always backed up by a servlet that sets the proper attributes

on the request that is used within the JSP page. So, let’s modify the index.jsp page, as

depicted next.

<%@ page language="java" contentType="text/html;

 charset=US-ASCII" pageEncoding="US-ASCII"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

467

<html>

 <head>

 <title>Web Application Demo JSP Page</title>

 </head>

 <body bgcolor=black>

 <fmt:formatDate value="${requestScope.today}"

 pattern="dd/MM/yyyy" var="todayFormatted"/>

 <p style="color:#ffd200"> Today is <c:out value="${todayFormatted}" />

</p>

 </body>

</html>

And while we are at it, let’s rename it to make it obvious what it is used for, let’s call

it date.jsp and write a servlet class named DateServlet to add the today attribute to

the request, which is formatted by the <fmt:formatDate> tag. The result is saved into the

todayFormatted variable, which is later printed by the <c:out> tag.

package com.apress.bgn.ch10;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.util.Date;

@WebServlet(

 name = "dateServlet",

 urlPatterns = {"/"}

)

public class DateServlet extends HttpServlet {

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

468

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException, ServletException {

 System.out.println(" ->>> Getting date ");

 request.setAttribute("today", new Date());

 �RequestDispatcher rd = getServletContext().getRequestDispatcher

("/date.jsp");

 rd.forward(request, response);

 }

}

This is all. Now, we restart the application and the first page now displays: "Today

is 20/08/2018", You will obviously see the date on your system when the code is run on

your machine.

If you think writing Java Web applications is cumbersome you are right. Pure Java

is tedious for such a task. Professional Java Web applications are usually written by

using frameworks that make the job of creating pages and linking them to the backend

easily. Even more, nowadays the tendency is to create interfaces in JavaScript(also using

advanced CSS4, now many UI Designs can also be done 100% in CSS3 or CSS4) and

communicate to a Java backend application hosted on an enterprise server using Web

Service calls, usually REST. Anyway, look it up if you are curious, the subject is vast, but

frameworks such as Spring make it easy to set up your environment and start developing.

�Summary
This chapter covered important development tools and techniques, the classes in JDK

that provide support, and important Java libraries that could make your development job

more practical and pleasant. The JDK has never shined when it comes to GUI support,

but JavaFX is an evolution from AWT and Swing, and it just might have a future. The

following is a complete list of the topics.

•	 how to write an interactive console application

•	 how to write an interactive application with a Swing interface

•	 the basics of JavaFX architecture

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

469

•	 how to write an interactive application with a JavaFX interface

•	 how to internationalize your application

•	 how to write a web application using an embedded server

•	 what a servlet is

•	 what a JSP scriptlet is

•	 how to use taglibs to write JSP pages

Chapter 10 Making Your Application Interactive

(c) ketabton.com: The Digital Library

471
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_11

CHAPTER 11

Working with Files
One of the most important functions in software is information organizing and storage,

with the goal of using it and sharing it. Before computers were invented information

was written on paper and stored in organized cabinets where it could be retrieved

from manually. Software applications that run on computers do something similar.

Information is written in files, files are organized in directories and in even more

complex structures named databases. Java provides classes to read information from

files and databases and classes to write files and write information to databases. In

Chapter 9, a simple example using a Derby in-memory database was introduced to

show you how heavy dependencies like databases can be mocked to allow faster unit

testing. This chapter is not focused on using Java to perform database operations, but on

how Java can be used to manipulate files.

�File Handlers
Before showing you how to read or write files, I need to show you how to access them

from the code, to check if they exist, to check their size and list their properties, and so

forth. Enough with the literature—let’s get cracking!

When working with files in Java, the most important class is the java.io.File class.

This class is an abstract representation of a file and directory pathname. Instances of this

class are called file handlers because they allow developers to handle files and directories

in the Java code using references of this type, instead of complete pathnames. A File

instance can be created by using different arguments.

The simplest way is to use the constructor that receives as an argument a String

value containing the absolute file pathname. In the following code sample, the

printStats(..) method prints file information. We use it a lot in this section, but the

code won’t be depicted again.

(c) ketabton.com: The Digital Library

472

package com.apress.bgn.ch11;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

public class Demo {

 private static final Logger log = LoggerFactory.getLogger(Demo.class);

 public static void main(String... args) {

 File file = new File("/Users/iulianacosmina/apress/vultures.txt");

 printFileStats(file);

 }

 private static void printFileStats(File f) { if (f.exists()) {

 log.info("File Details:");

 log.info("Type : {}", f.isFile() ? "file" : "directory or symlink");

 log.info("Location :{}", f.getAbsolutePath());

 log.info("Parent :{}", f.getParent());

 log.info("Name : {}", f.getName());

 double kilobytes = f.length() / 1024; log.info("Size : {} ", kilobytes);

 log.info("Is Hidden : {}", f.isHidden());

 log.info("Is Readable? : {}", f.canRead());

 log.info("Is Writable? : {}", f.canWrite());

 }

 }

}

In the previous code snippet, the file handler instance is created by providing the

absolute file pathname on my computer. If you want to run the code on your computer,

you must provide a pathname to a file on your computer. If you are using Windows, keep

in mind that the pathname contains the "\" character that is a special character in Java

and must be escaped by doubling it.

The printStats(..) method makes use of a lot of methods that can be called on a

file handler. The full list of methods that you can call is bigger. This list is in the official

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

473

API documentation https://docs.oracle.com/javase/10/docs/api/java/io/File.

html. All the file handler methods are explained in the following list at: https://docs.

oracle.com/javase/10/docs/api/java/io/File.html.

•	 isFile() returns true if the pathname points to a file and false if

the pathname points to a directory or a symlink (a special type of file

with the purpose to link to another file, can be useful when you want

to shorten the pathname to a file and incredibly useful on Windows

where the pathname length limit is of 256 characters). In the previous

code sample, the method returns true, and the log prints:

[main] INFO com.apress.bgn.ch11.Demo - Type : file

If we want to see if the method works for a directory, we delete the

file name from the pathname.

File file = new File("/Users/iulianacosmina/apress");

And then the log prints:

[main] INFO com.apress.bgn.ch11.Demo - Type : directory or

symlink

•	 getAbsolutePath() returns the absolute pathname to a file or a

directory. When creating a file handler, the absolute pathname is not

always needed, but in case you need to use it later, or to make sure

the relative path was resolved correctly, this method is just what you

need. The following piece of code creates a file handler to a file in

the resources directory by using the path relative to the root project

directory (in our case, the java-for-absolute-beginners directory).

File d = new File("chapter11/read-write-file/src/main/

resources/input/");

And now the getAbsolutePath() method prints the full pathname.

[main] INFO com.apress.bgn.ch11.Demo - Location :/Users/

iulianacosmina/

java-for-absolute-beginners/chapter11/read-write-

file/src/main/resources/input/vultures.txt

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

474

The Java File class is quite powerful; it can also be used to point to

a shared file on another computer. There is a special constructor for

this which receives an argument of type java.net.URI, where URI

stands for Uniform Resource Identifier. To test this constructor, select

a file on your computer, and open it in a browser, so you can get its

URI from the browser address bar.

try {

 �URI uri = new URI("file:///Users/iulianacosmina/

java-for-absolute-beginners/chapter11/"

 �+ "read-write-file/src/main/resources/input/vultures.

txt"); f = new File(uri);

 printFileStats(f);

} catch (URISyntaxException use) {

 log.error("Malformed URI, no file there", use);

}

Because the URI might have an incorrect prefix or not exactly

pointing to a file the URI constructor is declared to throw an

java.net.URISyntaxException, which is why in the code, you must

handle this as well. If an URI is used to create a file handler, the

getAbsolutePath() method returns the absolute pathname of

the file, on the computer and drive where the file is.

•	 getParent() returns the absolute path to the directory containing the

file, because hierarchically, a file cannot have another file as a parent.

•	 getName() returns the file name. The file name contains the extension

as the suffix after "." is called, indicates the type of file and what is

intended to be used for.

•	 length() returns the length of the file in bytes. This method does

not work for directories, as directories can contain files restricted to

the user executing the program and exceptions might be thrown. So,

if you ever need the size of a directory, you have to write the code

yourself.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

475

•	 isHidden() returns true if the file is not visible to the current

user; otherwise, it returns else. On a macOS/Linux system, files

with names starting with "." are hidden, so if we want to see that

method returning true we must create a handler to one of the

system configuration files, such as .bash_profile. So, calling the

printStats(..) on a file handler created using a pathname to a

hidden file results in an output similar to this:

[main] INFO com.apress.bgn.ch11.Demo - File Details:

[main] INFO com.apress.bgn.ch11.Demo - Type : file

[main] INFO com.apress.bgn.ch11.Demo - Location :/Users/

iulianacosmina/.viminfo [main] INFO com.apress.bgn.ch11.

Demo - Parent :/Users/iulianacosmina

[main] INFO com.apress.bgn.ch11.Demo - Name : .viminfo

[main] INFO com.apress.bgn.ch11.Demo - Size : 13.0 [main]

INFO com.apress.bgn.ch11.Demo - Is Hidden : true

[main] INFO com.apress.bgn.ch11.Demo - Is Readable? : true

[main] INFO com.apress.bgn.ch11.Demo - Is Writable? : true

•	 canRead() and canWrite() can secure files from normal users. Both

methods return true when the use has the specific right on the file,

and are false otherwise.

File handlers can be created for pathnames pointing to directories, which means

there are available methods to call that are specific only to directories. The most

common thing to do with a directory is to list its contents. The list() method returns a

String array, containing the names of the files (and directories) under this directory.

We can use a lambda expression to print the entries in the array.

Arrays.stream(d.list()).forEach(ff -> log.info("\t File Name : {}", ff));

But files names are not really useful in most cases, having a File array with file

handlers to each of them would be better. That is why the listFiles() method was

added in version 1.2.

Arrays.stream(d.listFiles()).forEach(ff ->

 log.info("\t File Name : {}", ff.getName()));

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

476

And this method has more than one form, because it filters the files and returns file

handlers only for files matching a certain requirement when called with an instance of

FileFilter.

Arrays.stream(d.listFiles(new FileFilter() {

 @Override

 public boolean accept(File pathname) {

 return pathname.getAbsolutePath().endsWith("yml")

 || pathname.getAbsolutePath().endsWith("properties");

 }

})).forEach(ff -> log.info("\t YML/Properties file : {}", ff.getName()));

The previous code sample is written in expanded form to make it clear that you

should provide a concrete implementation for the accept(..) method. Using lambda

expressions, the code can be simplified and made less prone to exceptions being thrown.

Arrays.stream(Objects.requireNonNull(

 d.listFiles(pathname -> pathname.getAbsolutePath()

 .endsWith("yml") || pathname.getAbsolutePath().endsWith("properties"))))

 .forEach(ff -> log.info("\t YML/Properties file : {}", ff.getName()));

In the previous example, we implemented the accept(..) to filter by extension,

but the filter can involve anything really. But, when the filter you need strictly involves

the file name, you can reduce the boilerplate by using the other version of the method,

which receives a FilenameFilter instance as argument.

Arrays.stream(d.listFiles(new FilenameFilter() {

 @Override

 public boolean accept(File dir, String name) {

 return name.contains("son");

 }

})).forEach(ff -> log.info("\t Namesakes : {}", ff.getName()));

Aside from listing properties of a file, a file handler can also be used to create a file.

To create a file, the createNewFile() method must be called after creating a file handler

with a specific pathname.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

477

File created = new File(

 "chapter11/read-write-file/src/main/resources/output/created.txt");

if (!created.exists()) {

 try {

 created.createNewFile();

 } catch (IOException e) {

 log.error("Could not create file.", e);

 }

}

The exists() method returns true when the file hander is associated with a file, and

false otherwise. It tests if the file we are trying to create is already there. If the file exists,

the method has no effect. If the user does not have proper rights to create the file at the

specified pathname, a SecurityException is thrown. In certain cases, we might need to

create a file that needs only to be used during the execution of the program. This means

we either have to create the file and delete it explicitly, or we can create a temporary

file. Temporary files are created by calling createTempFile(prefix, suffix) and they

are created in the temporary directory defined for the operating system. The prefix

argument is of type String and the created file has the name starting with its value. The

suffix argument is of type String as well and it specifies an extension for the file. The

rest of the file name is generated by the operating system.

try {

 File temp = File.createTempFile("java_bgn_", ".tmp");

 log.info("File created.txt at: {}", temp.getAbsolutePath());

 temp.deleteOnExit();

} catch (IOException e) {

 log.error("Could not create temporary file.", e);

}

Files in the temporary directory of an operating system are periodically deleted

by the operating system, but if you want to make sure it is deleted, you can explicitly

call deleteOnExit() on the file handler for the temporary file. In the code sample, the

absolute path to the file is printed to show the exact location where the temporary file

was created and on a macOS system the full pathname looks very similar to this:

/var/folders/gg/nm_cb2lx72q1lz7xwwdh7tnc0000gn/T/java_

bgn_14652264510049064218.tmp

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

478

A file can also be renamed using a Java file handler, there is a method for that

called rename(f) that is called with a file handler argument, pointing to the location

and desired name that the file should have. The method returns true if the renaming

succeeded and false otherwise.

File file = new File(

 �"chapter11/read-write-file/src/main/resources/output/sample/created.txt");

File renamed = new File(

 �"chapter11/read-write-file/src/main/resources/output/sample/renamed.txt");

boolean result = file.renameTo(renamed);

log.info("Renaming succeeded? : {} ", result);

Most methods in the File class throw IOException when things do not go as

expected, because manipulating a file can fail because of a hardware problem, or an

operating system problem. Methods that require special rights for accessing a file throw

a SecurityException when things do not go as expected.

So, when writing Java applications that need to manipulate files, you must handle

those as well. And now that the bases for working with file handlers have been covered, it

is time for the next section.

�Path Handlers
The java.nio.file.Path interface was introduced in Java 1.7 with the java.nio.file.

Files and java.nio.file.Paths utility classes to provide new and more practical

ways to work with files. They are part of the java.nio package; the word nio means

non-blocking input output. A Path instance may be used to locate a file in a file system,

thus represents a system dependent file path. Path instances are more practical than

File because they can provide methods to access components of a path, to combine

paths, and to compare paths.

Path instances cannot be directly created, because an interface cannot be

instantiated, but the interface provides static utility methods to create them, and so does

the class Paths. The simplest way to create a Path instance is to start with a file handler

and call Paths.get(fileURI).

package com.apress.bgn.ch11;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

479

import java.io.File;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.Iterator;

public class PathDemo {

 private static final Logger log = LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/input/vultures.txt");

 Path path = Paths.get(file.toURI());

 log.info(path.toString());

 }

}

Starting with Java 11, Paths.get(file.toURI()) can be replaced with Path.

of(file.toURI()).

The other way to create a Path instance is to use the other form of the Paths.get(..)

which receives as arguments, multiple pieces of the path.

Path composedPath = Paths.get("/Users/iulianacosmina/apress/workspace",

 �"java-for-absolute-beginners/chapter11/read-write-file/src/main/

resources/input",

 "vultures.txt");

log.info(composedPath.toString());

Both paths point to the same location, thus if compared with each other using the

compareTo(..) method (because Path extends interface Comparable<Path>), the result

returned is 0 (zero), which means the paths are equal.

log.info("Is the same path? : {} ", path.compareTo(composedPath) ==0 ?

"yes" : "no");

// prints : INFO com.apress.bgn.ch11.PathDemo - Is the same path? : yes

In the next code sample, a few Paths methods are called on the path instance.

log.info("Location :{}", path.toAbsolutePath());

log.info("Is Absolute? : {}", path.isAbsolute());

log.info("Parent :{}", path.getParent());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

480

log.info("Root :{}", path.getRoot());

log.info("FileName : {}", path.getFileName());

log.info("FileSystem : {}", path.getFileSystem());

The list explains each method and its outcome:

•	 toAbsolutePath() returns a Path instance representing the absolute

path of this path. When called on the path instance created, as it is

already absolute, the method returns the path object the method is

called on. Also, calling path.isAbsolute()returns true.

•	 getParent() returns the parent Path instance. So, calling this

method on the path instance prints

INFO com.apress.bgn.ch11.PathDemo - Parent :/Users/

iulianacosmina/apress/workspace/java-for-absolute-beginners/

chapter11/read-write-file/src/main/resources/input

•	 getRoot() returns the root component of this path as a Path

instance. On a Linux or macOS system it prints "/", on Windows,

something like "C:\".

•	 getFileName() returns the name of the file or directory denoted by this

path as a Path instance, basically, the path is split by the system path

separator, and the most far away from the root element is returned.

•	 getFileSystem() returns the file system that created this object, for

macOS it is an instance of type

sun.nio.fs.MacOSXFileSystem

Another useful Path method is resolve(..) This method takes a String instance

that is a representation of a path and resolves it against the Path instance it is called

on. This means that path separators are added according to the operating system the

program runs on and a Path instance is returned.

Path chapterPath = Paths.get("/Users/iulianacosmina/apress/workspace",

 "java-for-absolute-beginners/chapter11");

Path filePath = chapterPath.resolve(

 "read-write-file/src/main/resources/input/vultures.txt");

log.info("Resolved Path :{}", filePath.toAbsolutePath());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

481

The sample code prints the following:

INFO com.apress.bgn.ch11.PathDemo - Resolved Path : :/Users/iulianacosmina/

apress/ workspace/java-for-absolute-beginners/chapter11/read-write-file/

src/main/resources/input/vultures.txt

Using Path instances, writing code that manages files, or retrieves their properties

becomes easier to write in combination with Files utility methods. The following code

sample makes use of a few of these methods to print properties of a file, in the same way

we did using a File handler.

Path outputPath = FileSystems.getDefault()

 .getPath("/Users/iulianacosmina/apress/workspace/" +

 �"java-for-absolute-beginners/chapter11/read-write-file/src/main/

resources/output/sample2");

try {

 Files.createDirectory(outputPath);

 log.info("Type: {}", Files.isDirectory(outputPath) ? "yes" : "no");

 Path destPath = Paths.get(outputPath.toAbsolutePath().toString(),

 "vultures.txt");

 Files.copy(path, destPath);

 double kilobytes = Files.size(destPath) / (double)1024;

 log.info("Size : {} ", kilobytes);

 Path newFilePath = Paths.get(outputPath.toAbsolutePath().toString(),

 "vultures2.txt");

 Files.createFile(newFilePath);

 log.info("Type: {}", Files.isRegularFile(newFilePath) ? "yes" : "no");

 log.info("Type: {}", Files.isSymbolicLink(newFilePath) ? "yes" : "no");

 log.info("Is Hidden: {}", Files.isHidden(newFilePath) ? "yes" : "no");

 log.info("Is Readable: {}", Files.isReadable(newFilePath) ? "yes" : "no");

 log.info("Is Writable: {}", Files.isWritable(newFilePath) ? "yes" : "no");

 �Path copyFilePath = Paths.get("/Users/iulianacosmina/temp/",

"vultures3.txt");

 Files.move(newFilePath, copyFilePath);

 log.info("Exists? : {}", Files.exists(copyFilePath)? "yes": "no");

 log.info("File moved to: {}", copyFilePath.toAbsolutePath());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

482

 Files.deleteIfExists(copyFilePath);

} catch (FileAlreadyExistsException e) {

 log.error("Creation failed!", e);

} catch (IOException e) {

 log.error("Something unexpected happened!", e);

}

As you can see, the Files class provides a lot more functionality when working with

files. Also, more specialized exceptions(types that extend IOException) are thrown

depending on the operation, so the failure is obvious. For example,

createFile(...) throws a java.nio.file.FileAlreadyExistsException

if the file already exists, it does not return a Path instance associated with it.

createDirectory(..) has the same behavior and so does move(..).

The delete(..) method that is not used here throws a java.nio.file.

NoSuchFileException if the file to be deleted does not exist. To avoid an exception being

thrown in the code sample, deleteIfExists(..) was used.

And the list of methods is even bigger, but since the size of this chapter is limited,

you can check it out yourself on the official Javadoc API at https://docs.oracle.com/

javase/10/docs/api/java/nio/file/Files.html.

�Reading Files
Files are a succession of bits on a hard drive. A File handler does not provide methods

to read the content of a file, but a group of other classes can be used to do so. Depending

on what is needed to be done with the contents of a file, there is more than one way to

read file contents in Java. Actually, there are a lot of ways and this section covers the most

common.

�Using Scanner to Read Files
The Scanner class was used to read input from the command line, but System.in can be

replaced with File and Scanner methods to read the file contents.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

483

package com.apress.bgn.ch11;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class ReadingFilesDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ReadingFilesDemo.class);

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/input/vultures.txt");

 String content = "";

 Scanner scanner;

 try {

 scanner = new Scanner(file);

 while (scanner.hasNextLine()) {

 content += scanner.nextLine() + "\n";

 }

 scanner.close();

 log.info("Read with Scanner--> {}", content);

 scanner.close();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

A Path instance can be used instead.

scanner = new Scanner(Paths.get(file.toURI()), StandardCharsets.UTF_8.name());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

484

�Using Files Utility Methods to Read Files
Another way to read a file, when its size can be approximated and thus it would not be a

problem storing its contents into a String object (there is enough memory) is to use the

appropriate method of the Files class.

try {

 content = new String(Files.readAllBytes(Paths.get(file.toURI())));

 log.info("Read with Files.readAllBytes --> {}", content);

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

The advantage of using Files.readAllBytes(..) is that no loop is needed and we

do not have to construct the String value line by line, because this method reads all

the bytes in the files that can be given as an argument to the String constructor. The

disadvantage is that no Charset is used, so the text value might not be the one we expect.

But there is a way to overcome this; by calling Files.readAllLines(..). It returns the

file content as a list of String values, and has two forms, one of them declaring a Charset

as a parameter.

try {

 List<String> lyricList = Files.readAllLines(Paths.get(file.toURI()),

 StandardCharsets.UTF_8);

 lyricList.forEach(System.out::println);

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

But what if we do not need a List<String>, but the one String instance? Well, in

Java 11 there’s a method for that and is called readString.

try {

 �content = Files.readString(Paths.get(file.toURI()), StandardCharsets.UTF_8)

 log.info("Read with Files.readAllBytes --> {}", content);

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

485

�Using Readers to Read Files
Before the fancy methods in the Files class, there were other ways, and you might

find yourself in the position of using them, when you are not really interested saving

everything you read from a file. Let’s start with a contraption code that you would write

up to Java 1.6 to read a file line by line.

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

...

BufferedReader reader = null;

try {

 reader = new BufferedReader(new FileReader(

 �new File("chapter11/read-write-file/src/main/resources/input/vultures.

txt")));

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 if(!line.contains("Ooh")) {

 sb.append(line).append("\n");

 }

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 } finally {

 if(reader != null) {

 try {

 reader.close();

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 }

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

486

Whoa, what is that, right? Before Java 1.7 if you wanted to read a file line by line, this

is the code you had to write. You had to create a File handler. Then you needed to wrap

the file handler into a FileReader. This type of instance could do the job of reading, but

only in chunks of char[], which is not very useful when you need the actual text. So,

this instance needs to be wrapped into an instance of BufferedReader that provides this

functionality by reading the characters in an internal buffer. So, the way it works, reader.

readLine() is called until there is nothing more to read—the end of the file was reached

and them we need to call reader.close(); otherwise, a lock might be kept on the file

and it becomes unreadable until a restart.

In Java 1.7, a lot of things made to reduce the boilerplate needed to manage files and

file contents were introduced. One of those things was that all classes used to access

file contents and that could keep a lock on the file were enriched by being declared to

implement the java.io.Closeable interface that marked resources of these types as

closable, and a close() method is invoked to release resources transparently by the JVM

before execution ends. Also, in Java 7, try-with-resources was introduced. Making use of

all these features, the code can be written like this:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

...

try (BufferedReader reader = new BufferedReader(new FileReader(

 �new File("chapter11/read-write-file/src/main/resources/input/

vultures.txt")))){

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 if(!line.contains("Ooh")) {

 sb.append(line).append("\n");

 }

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

} catch (Exception e) {

 log.info("Something went wrong! ", e);

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

487

Still we have that ugly constructor within constructor thing that is quite ugly. Well,

Java 8 comes to the rescue by introducing the Files.newBufferedReader(Path) method.

So, the previous code becomes:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

...

File file = new File(

 �"chapter11/read-write-file/src/main/resources/input/vultures.txt");

Path sourceFile = Paths.get(file.toURI());

try (BufferedReader reader = Files.newBufferedReader(sourceFile)){

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 if(!line.contains("Ooh")) {

 sb.append(line).append("\n");

 }

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

} catch (Exception e) {

 log.info("Something went wrong! ", e);

}

But still, by using a combination of lambda expressions, we could get a similar

behavior when reading the file line by line:

 List<String> lyricList = Files.readAllLines(Paths.get(file.toURI()),

 StandardCharsets.UTF_8)

 .stream()

 .filter(line -> !line.contains("Ooh"))

 .collect(Collectors.toList());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

488

All we would have to do is traverse the lines and add everything to a StringBuilder

and voila!, same result, less boilerplate. Or we can write it this way, using the

Files.lines(..) introduced in Java 1.8 and get all contents as a stream:

Stream<String> lyricStream = Files.lines(file.toPath())

 .filter(s -> !s.contains("Ooh"));

 lyricStream.forEach(System.out::println);

The BufferedReader class is a member of a class group that extends the Reader class.

It is an abstract class used for reading characters streams. The full hierarchy is depicted

in Figure 11-1.

Character streams can have different sources, files being the most common. They

provide sequential access to data stored in the file. The BufferedReader does not provide

support for character encoding, but a BufferedReader can be based on another Reader

instance, and the one that provides reading character streams and taking encoding into

account is InputStreamReader. So, we can replace

try (BufferedReader reader = new BufferedReader(new FileReader(

 �new File("chapter11/read-write-file/src/main/resources/input/vultures.

txt")))){

 ...

}

Figure 11-1.  Reader class hierarchy

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

489

with

import java.nio.charset.StandardCharsets;

import java.io.FileInputStream;

...

try (BufferedReader reader = new BufferedReader(new InputStreamReader(

 new FileInputStream(

 "chapter11/read-write-file/src/main/resources/input/vultures.txt"),

 StandardCharsets.UTF_8))){

 ...

}

But starting with Java 1.7, we don’t have to do that anymore because there is a

version of the Files.newBufferedReader that accepts a Charset instance as argument as

well. So, the code can be safely replaces with the following.

try (BufferedReader reader = Files.newBufferedReader(sourceFile,

 StandardCharsets.UTF_8)){

 ...

}

In Java 11, the Reader was enriched with the nullReader() method, which returns

a Reader instance that does nothing. This was requested by developers for testing

purposes.

�Using InputStream to Read Files
Classes in the Reader family are advanced classes for reading data as text. Files are a

sequence of bytes, so classes are wrappers around classes in a family of classes used

for reading byte streams. This becomes clear when trying to use the proper character

encoding when reading text using the BufferedReader, as the InputStreamReader

instance given as argument is based on a java.io.FileInputStream instance, a type

that is a subclass of java.io.InputStream.

The root class of this hierarchy is java.io.InputStream, which is depicted in

Figure 11-2.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

490

The BufferedInputStream class is equivalent to BufferedReader for reading streams

of bytes. The System.in that we used to read user data from the console is of this type,

and the Scanner instance converts the bytes from its buffer into user understandable

data. When the data we are interested in is not text that was stored using Unicode

conventions, but raw numeric data (binary files such as images, media files, PDF’s, etc.)

classes for using streams of bytes are more suitable. Just for the purpose of showing you

how it’s done, we’ll read the contents of the vultures.txt file using FileInputStream.

package com.apress.bgn.ch11.reading;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

public class FileInputStreamReadingDemo {

 private static final Logger log =

 LoggerFactory.getLogger(FileInputStreamReadingDemo.class);

Figure 11-2.  InputStream class hierarchy

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

491

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/input/vultures.txt");

 try {

 FileInputStream fis = new FileInputStream(file);

 byte[] buffer = new byte[1024];

 StringBuilder sb = new StringBuilder();

 while (fis.read(buffer) != -1) {

 sb.append(new String(buffer));

 buffer = new byte[1024];

 }

 fis.close();

 log.info("Read with FileInputStream --> {}", sb.toString());

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

If you run the code, you notice that the expected output is printed in the console; but

after the text is printed a set of strange characters are printed too. On a macOS system,

they look like what’s shown in Figure 11-3.

Figure 11-3.  Text read with FileInputStream

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

492

Do you have any idea what those characters might be?

It’s ok if you have no idea, I did not either the first time I had to use FileInputStream

to read a file. Those characters appear there because the file size is not a multiple of

1024, so the FileInputReader ends up filling the rest of the last buffer with zeroes. A fix

for this involves computing the size of the file in bytes and making sure we adapt the

byte[] buffer size accordingly. You can try doing that as an exercise if you are in the

mood for some coding. And now that we’ve shown you how to read file in a lot of ways,

we can continue by showing you how to write files, since you already know how to create

them.

In Java 11, the InputStream was also enriched with a method that returns an

InputStream that does nothing named nullInputStream() method, for testing

purposes.

�Writing Files
Writing files in Java is similar to reading them, only different classes have to be used

because streams are unidirectional, which means that a stream that is used for reading

data cannot be used for writing data as well. Almost for any class or method of reading

files there is one for writing files. Without further ado, let’s start.

�Writing Files Using Files Utility Methods
For smaller files, when we just need to write a bunch of bytes, the Files.write(Path,

byte[]) works fine.

package com.apress.bgn.ch11.writing;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

493

public class FilesWritingDemo {

 private static final Logger log =

 LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/output/

vultures.txt");

 byte[] data = "Some of us, we're hardly ever here".getBytes();

 try {

 Path dataPath = Files.write(file.toPath(), data);

 log.info("String written to {}", dataPath.toAbsolutePath());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

If the file already exists, the contents are simply overwritten.

In Java 11, the Files.writeString(..) method was introduced, which allows

specifying a Charset when writing a String instance to a file; no conversion to bytes

needed either.

try {

 Path dataPath = Files.writeString(file.toPath(),

 "Some of us, we're hardly ever here",

 StandardCharsets.UTF_8);

 log.info("String written to {}", dataPath.toAbsolutePath());

} catch (IOException e) {

 e.printStackTrace();

}

There are three Files.write(..) methods in the Files class: the one used in the

previous code snippet and two that can write collections of text values represented by

any instance of type that extends CharSequence. The only difference between the two is

that one of them also takes Charset as an argument.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

494

package com.apress.bgn.ch11.writing;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.IOException;

import java.nio.charset.StandardCharsets;

import java.nio.file.Files;

import java.nio.file.Path;

import java.util.List;

public class FilesWritingDemo {

 private static final Logger log =

 LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 �List<String> dataList = List.of("Some of us, we're hardly ever here",

 "The rest of us, we're born to disappear",

 "How do I stop myself from",

 "Being just a number?");

 try {

 File file2 = new File(

 �"chapter11/read-write-file/src/main/resources/output/

vultures2.txt");

 Path dataPath = Files.write(file2.toPath(), dataList,

 StandardCharsets.UTF_8);

 log.info("String written to {}", dataPath.toAbsolutePath());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

And those are all the methods in the Files class that are used for writing files

available in the Files class. Next, we look into writing files using classes in the Writer

hierarchy.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

495

�Using Writers to Write Files
Similar to the Reader hierarchy for reading files, there is an abstract class named Writer,

but before we get to that let’s introduce the BufferedWriter, the correspondent of

BufferedReader for writing files. This class too has an internal buffer, and when write

methods are called, the arguments are stored into the buffer, and when the buffer is

full, its contents are written to the file. The buffer can be emptied earlier by calling the

flush() method. I definitely recommend calling this method explicitly before calling

close() to make sure all output was written to the file. The next code snippet depicts

how a list of String instances is written to a file.

package com.apress.bgn.ch11.writing;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.List;

public class FilesWritingDemo {

 private static final Logger log =

 LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/output/vultures.txt");

 �List<String> lyricList = List.of("Some of us, we're hardly ever

here",

 "The rest of us, we're born to disappear",

 "How do I stop myself from",

 "Being just a number?");

 BufferedWriter writer = null;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

496

 try {

 writer = new BufferedWriter(new FileWriter(file));

 for (String lyric : lyricList) {

 writer.write(lyric);

 writer.newLine();

 }

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 } finally {

 if(writer!= null) {

 try {

 writer.flush();

 writer.close();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

 }

 }

}

Writing files is a sensitive operation, and the code contraption introduced earlier can

fail for many reasons. That type of code is what you would write before Java 1.7, when

try-with-resources reduced the boilerplate.

try (final BufferedWriter wr = new BufferedWriter(new FileWriter(file))){

 lyricList.forEach(lyric -> {

 try {

 wr.write(lyric);

 log.info("Something went wrong! ", e);wr.newLine();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 });

 wr.flush();

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

497

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

The only real simplification that can be done is by calling Files.newBufferedWriter(..)

to avoid instantiating the BufferedWriter explicitly. This also adds in the advantage of

deciding the charset of the file to be written.

try (final BufferedWriter wr = Files.newBufferedWriter(file.toPath(),

 StandardCharsets.UTF_8)){

 lyricList.forEach(lyric -> {

 try {

 wr.write(lyric);

 wr.newLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 });

 wr.flush();

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

If we did not have the Files.newBufferedWriter(..) method, writing text values

using a given charset would only be possible by using a different Writer class, the

OutputStreamWriter.

try (final OutputStreamWriter wr = new OutputStreamWriter(

 new FileOutputStream(file), StandardCharsets.UTF_8)){

 lyricList.forEach(lyric -> {

 try {

 wr.write(lyric);

 wr.write("\n");

 } catch (IOException e) {

 e.printStackTrace();

 }

 });

 wr.flush();

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

498

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

If the file already exists, calling the write(..) method overrides the contents of the

file. But this is not always needed, sometimes we just need to append new text to an

existing file. BufferedWriter provides the append() method to do that.

try (final BufferedWriter wr = Files.newBufferedWriter(file.toPath(),

 StandardCharsets.UTF_8)){

 lyricList.forEach(lyric -> {

 try {

 wr.append(lyric);

 wr.append("\n");

 } catch (IOException e) {

 e.printStackTrace();

 }

 });

 wr.flush();

} catch (IOException e) {

 log.info("Something went wrong! ", e);

}

Now that the basics of using BufferedWriter have been covered, it’s time to meet the

Writer family, which is depicted in Figure 11-4.

Figure 11-4.  The Writer class hierarchy

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

499

The Writer class is abstract so it cannot be used directly, the appending API comes

from the java.io.Appendable interface, which Writer implements. The other Writer

classes are used for different purposes. As we’ve already seen, the OutputStreamWriter

writes text using a special character set.

The PrintWriter writes formatted representations of objects to a text-output stream.

(We used it to write HTML code in Chapter 10).

The StringWriter collects output into its internal buffer and write it to a String

instance.

In Java 11, the Writer was enriched with the nullWriter() method, which returns a

Writer instance that does nothing. This was requested by developers for testing purposes.

�Using OutputStream to Write Files
Classes in the Writer family are advanced classes for writing data as text using

character streams; but essentially, before data is written, it is turned into bytes. This

means that files can be written by using stream of bytes as well. This probably became

clear when trying to use the proper character encoding when writing text using the

OutputStreamWriter, as the OutputStreamWriter instance given as argument is based

on a FileOutputStream instance, a type that writes byte streams to a file.

The root class of this hierarchy is java.io.OutputStream, which is depicted in

Figure 11-5.

Figure 11-5.  OutputStream class hierarchy

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

500

And since I mentioned FileOutputStream, let’s see how we could use it to write

the same list of entries that we have used before. The code is depicted in the following

listing.

package com.apress.bgn.ch11.writing;

import com.apress.bgn.ch11.reading.FileInputStreamReadingDemo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.List;

public class FileOutputStreamWritingDemo {

 private static final Logger log =

 LoggerFactory.getLogger(FileOutputStreamWritingDemo.class);

 public static void main(String... args) {

 File file = new File(

 �"chapter11/read-write-file/src/main/resources/output/vultures3.txt");

 �List<String> lyricList = List.of("Some of us, we're hardly ever

here",

 "The rest of us, we're born to disappear",

 "How do I stop myself from",

 "Being just a number?");

 try (FileOutputStream output = new FileOutputStream(file)){

 lyricList.forEach(lyric -> {

 try {

 output.write(lyric.getBytes());

 output.write("\n".getBytes());

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

501

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 });

 output.flush();

 } catch (FileNotFoundException e) {

 log.info("Something went wrong! ", e);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

The OutputStream family class is used for writing streams of bytes that represent raw

data, unreadable by users directly, such as the one contained in binary files like images,

media, PDFs, and so forth. For example, the next piece of code, makes a copy of an image

using FileInputStream to read it and FileOutputStream to write it.

package com.apress.bgn.ch11;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.*;

import java.nio.file.Files;

public class DuplicateImageDemo {

 private static final Logger log =

 LoggerFactory.getLogger(DuplicateImageDemo.class);

 public static void main(String... args) {

 File src = new File(

 "chapter11/read-write-file/src/main/resources/input/cat.jpg");

 File dest = new File(

 "chapter11/read-write-file/src/main/resources/output/cat1.jpg");

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

502

 try(FileInputStream fis = new FileInputStream(src);

 FileOutputStream fos = new FileOutputStream(dest)) {

 int content;

 while ((content = fis.read()) != -1) {

 fos.write(content);

 }

 } catch (FileNotFoundException e) {

 log.error("Something bad happened.", e);

 } catch (IOException e) {

 log.error("Something bad happened.", e);

 }

 }

}

But writing code like this is no longer necessary, thanks to the introduction of the

Files.copy(src.toPath(), dest.toPath()) method in Java 1.7.

In Java 11, the OutputStream was enriched with the nullOutputStream() method,

which returns an OutputStream instance that does nothing. This was requested by

developers for testing purposes.

And that’s about all the space that I can allocate in this book for writing files using

byte streams. Since there is a lot more to cover, two things before moving on…

•	 When working with multiple files, do not open too many at the same

time, because some operating systems have a limit of how many files

a process can open at the same time. If you end up going over that

limit an IOException with a Too many open files message is thrown.

•	 We did not cover in this book, but take extra care when working with

threads and files, because a file can be read by more than one thread

simultaneously, but more threads writing to the same file can lead to

unexpected results.

�Serialization and Deserialization
Serialization is the name given to the operation of converting the state of an object to

a byte stream so it can be sent over a network or written to a file and reverted back into

a copy of that object. The operation to covert the byte stream back to an object is called

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

503

deserialization. Java Serialization has been a controversial topic, Java Platform Chief

Architect Mark Reinhold describing it as a horrible mistake done in 1997. Apparently

most Java vulnerabilities are somehow related to the way serialization is done in Java

and there is a project named Amber1 that is dedicated to remove Java serialization

completely and allow developers to choose the serialization in a format of their choice.

Currently, things are unstable in Java; there were a lot of changes introduced in a

short time that an industry addicted to backward compatibility was unable to adapt to.

Sources in the next section might be unstable, but I will do my best to keep them at least

compliable by the time the book is published, and I will maintain the repository and

answer questions as much as possible.

�Binary Serialization
The java.io.Serializable interface has no methods or fields and serves only to mark

classes as being serializable. When an object is serialized, the information that identifies

the object type is serialized as well. Most Java classes are serializable. Any subclass of

a serializable class is by default considered serializable, but if any new fields are non-

serializable an exception of type NotSerializableException is thrown. Classes written

by developers that contain non-serializable fields must implement the Serializable

interface and provide a concrete implementation for the following methods:

private void writeObject(java.io.ObjectOutputStream out)

 throws IOException;

 private void readObject(java.io.ObjectInputStream in)

 throws IOException, ClassNotFoundException;

 private void readObjectNoData()

 throws ObjectStreamException;

The writeObject method is used for writing the state of the object, so that the

readObject method can restore it. The readObjectNoData method initializes the state

of the object when the deserialization operation failed for some reason, so this method

provides a default state despite the issues (e.g., incomplete stream, client application

does not recognize the reserialized class, etc.). This method is not really mandatory if

you are an optimist.

1�Project Amber official page http://openjdk.java.net/projects/amber/

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

504

Also when making a class serializable, a static field of type long must be added as an

unique identifier for the class to make sure both the application that sends the object

as a byte stream and the client application receiving it have the same loaded classes.

If the application that receives the byte stream has a class with a different identifier,

a java.io.InvalidClassException is thrown. When this happens, this means the

application was not updated, or you can even suspect fowl-play from a hacker. The field

has to be named serialVersionUID, and if the developer does not explicitly add one, the

serialization runtime will. The following code snippet depicts a class named Singer that

contains serialization and deserialization methods.

package com.apress.bgn.ch11;

import java.io.*;

import java.time.LocalDate;

import java.util.Objects;

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer() {

 /* required for deserialization */

 }

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 }

 private void writeObject(ObjectOutputStream out)

 throws IOException {

 out.defaultWriteObject();

 }

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

505

 private void readObject(ObjectInputStream in)

 throws IOException, ClassNotFoundException {

 in.defaultReadObject();

 }

 private void readObjectNoData()

 throws ObjectStreamException {

 this.name = "undefined";

 this.rating = 0.0;

 this.birthDate = LocalDate.now();

 }

 @Override

 public String toString() {

 return "Singer{" +

 "name='" + name + '\” +

 ", rating=" + rating +

 ", birthDate=" + birthDate +

 '}';

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Singer singer = (Singer) o;

 return Objects.equals(name, singer.name) &&

 Objects.equals(rating, singer.rating) &&

 Objects.equals(birthDate, singer.birthDate);

 }

 @Override

 public int hashCode() {

 return Objects.hash(name, rating, birthDate);

 }

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

506

Now that we have the class, let’s instantiate it, serialize it, save it to a file and then

deserialize the contents of the file into another object that we compare with the initial object.

package com.apress.bgn.ch11;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.*;

import java.time.LocalDate;

import java.time.Month;

public class SerializationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(SerializationDemo.class);

 public static void main(String... args) throws ClassNotFoundException {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 File file = new File(

 "chapter11/serialization/src/main/resources/output/john.txt");

 try (ObjectOutputStream out =

 new ObjectOutputStream(new FileOutputStream(file))){

 out.writeObject(john);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 try(ObjectInputStream in =

 new ObjectInputStream(new FileInputStream(file))){

 Singer copyOfJohn = (Singer) in.readObject();

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn.toString());

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

507

When the code is run, everything works as expected; the writeObject and the

readObject are called by the ObjectOutputStream, ObjectInputStream respectively. If

you want to test that they are called, you can add logging, or you can place breakpoints

inside them and run the program in debug. If you open the john.txt you won’t be able to

understand much. The text written in there, does not make much sense, because it is binary,

raw data. If you open the file, you might see something like what is depicted in Figure 11-6.

�XML Serialization
But, Java serialization does not have to result in cryptic files, objects can be serialized

to readable formats. One of the most used serialization format is XML and JDK

provides classes to convert objects to XML and from XML back to the initial object. Java
Architecture for XML Binding (JAXB) provides a fast and convenient way to bind XML

schemas and Java representations, making it easy for Java developers to incorporate

XML data and processing functions in Java applications. The operation to serialize an

object to XML is named marshalling. The operation to deserialize an object form XML

is called unmarshalling. For a class to be serializable to XML, it has to be decorated with

JAXB-specific annotations.

•	 @XmlRootElement(name = "...") is a top-level annotation that is

placed at class level to tell JAXB that the class name becomes an XML

element at serialization time; if a different name is needed for the

XML element, it can be specified via the name attribute.

•	 @XmlElement(name = "..") is a method or field level annotation that

tells JAXB that the field or method name becomes an XML element at

serialization time; if a different name is needed for the XML element,

it can be specified via the name attribute.

•	 @XmlAttribute(name = "..") is a method or field level annotation

that tells JAXB that the field or method name becomes an XML

attribute at serialization time; if a different name is needed for the

XML attribute, it can be specified via the name attribute.

Figure 11-6.  Serialized Singer instance

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

508

JAXB was removed from JDK 11, so if you want to use it, you must add external

dependencies. At the moment this chapter is being written it is also more than a little

unstable, class com.sun.xml.internal.bind.v2.ContextFactory is part of the

jaxb-impl library, which cannot be found on any public repository at the moment, at

least not a version that was compiled with Java 11. The following is the code to make the

Singer class serializable with JAXB.

package com.apress.bgn.ch11.xml;

import javax.xml.bind.annotation.XmlAttribute;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import java.io.Serializable;

import java.time.LocalDate;

import java.util.Objects;

@XmlRootElement(name = “singer”)

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer() {

 /* required for deserialization */

 }

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 }

 @XmlAttribute(name = “name”)

 public String getName() {

 return name;

 }

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

509

 @XmlAttribute(name = “rating”)

 public Double getRating() {

 return rating;

 }

 @XmlElement(name = “birthdate”)

 public LocalDate getBirthDate() {

 return birthDate;

 }

...

}

Notice the location where the annotations were placed. Based on the placement of

the annotation in the code when the john object is serialized, the following is what you

find in the john.xml file.

<?xml version="1.0" encoding="utf-8"?>

<singer name="John Mayer" rating="5.0">

 <birthdate>1977-10-16T00:00:00Z</birthdate>

</singer>

More readable than the binary version, right? The next code snippet depicts the code

that saves the Singer instance to the john.xml file; it loads it back into a copy, and then

the two instances are compared.

package com.apress.bgn.ch11.xml;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import java.io.*;

import java.time.LocalDate;

import java.time.Month;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

510

public class JAXBSerializationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(JAXBSerializationDemo.class);

 public static void main(String... args)

 throws ClassNotFoundException, JAXBException {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 File file = new File(

 "chapter11/serialization/src/main/resources/output/john.xml");

 JAXBContext jaxbContext = JAXBContext.newInstance(Singer.class);

 try {

 Marshaller marshaller = jaxbContext.createMarshaller();

 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

 marshaller.marshal(john, file);

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 try {

 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

 Singer copyOfJohn = (Singer) unmarshaller.unmarshal(file);

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 }

}

The class javax.xml.bind.JAXBContext is created by calling the newInstance static

method and is given as argument a list of classes that will be handled (marshalled,

unmarshalled) by this context instance. If none are specified, the JAXBContext only

knows about spec-defined classes and those are the only ones that can be handled by the

instance.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

511

XML serialization has been dominating the development field for a lot of years, being

used in most web services and remote communication. But XML files tend to become

crowded, redundant and painful to read as they become bigger. So, a new format stole

the show: JSON.

�JSON Serialization
JSON(JavaScript Object Notation) is a lightweight data-interchange format. It is readable

for humans and is easy for machines to parse and generate. JSON is the favorite format

for data being used in JavaScript applications, for REST based application and is the

internal format used by quite a few NoSQL databases. So, it is only appropriate that

we show you how to serialize Java objects using this format as well. The advantage of

serializing Java objects to JSON is that there is more than one library providing classes to

do so, which means at least one of them is stable with Java 9+ versions.

The most preferred library for JSON serialization is the Jackson library2, because it can

convert Java objects to JSON objects and back again without much code being needed to

be written. Unfortunately, no version compatible with Java 9+ had been released yet, so for

this section, a less advanced library compatible with Java 9+ will be used.

JSON format is a collection of key-pair values. The values can be arrays, or collections

of key-pairs themselves. Converting Java objects to JSON objects using the JSON library

(yes, it’s named exactly like that) is easy. We create a JSONObject and populate it with the

field names and values of the Singer object, and then we convert the JSONObject to String

and eventually write it to a file. In the following code sample, we skipped the writing to file

part and we transform the String back into a copy of the initial Singer object.

package com.apress.bgn.ch11.json;

import com.apress.bgn.ch11.xml.Singer;

import org.json.JSONObject;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.time.Month;

import java.time.format.DateTimeFormatter;

2�Official GitHub repository for the company that produces the Jackson library https://github.
com/FasterXML

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

512

public class JsonSerializationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(JsonSerializationDemo.class);

 public static void main(String... args) {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("name", john.getName());

 jsonObject.put("rating", john.getRating());

 jsonObject.put("birthdate", john.getBirthDate().toString());

 String jsonData = jsonObject.toString(2);

 log.info("--> Serialized {}", jsonData);

 JSONObject readJson = new JSONObject(jsonData);

 Singer copyOfJohn = new Singer((String) readJson.get("name"),

 �Double.parseDouble(((Integer)readJson.get("rating")).

toString()),

 LocalDate.parse((String)readJson.get("birthdate"),

 DateTimeFormatter.ISO_LOCAL_DATE));

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> Deserialized {}", copyOfJohn);

 }

}

The number given as a parameter to the jsonObject.toString(2); method is

an indentation value used to format the resulted text. When the previous program is

executed, the output you can expect to see in the console should look very similar to this.

[main] INFO com.apress.bgn.ch11.json.JsonSerializationDemo - -->

Serialized {

 "birthdate": "1977-10-16",

 "name": "John Mayer",

 "rating": 5

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

513

[main] INFO com.apress.bgn.ch11.json.JsonSerializationDemo - Are objects

equal? true

[main] INFO com.apress.bgn.ch11.json.JsonSerializationDemo - -->

 Deserialized Singer{name='John Mayer', rating=5.0, birthDate=1977-10-16}

Theoretically this library provides a method to serialize an object directly by calling:

LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

Singer john = new Singer("John Mayer", 5.0, johnBd);

JSONObject jo = new JSONObject(john);

But the version that the project is currently using seems to have a bug and cannot

actually do that. So, the only hope for developers that plan to write Java 9+ applications

to use practical JSON serialization/deserialization is to either build one themselves, or to

hope that a stable version of Jackson built with Java9+ is available soon.

�The Media API
Aside from text data, Java can manipulate binary files such as images. The Java Media

API contains a set of image encoder/decoder (codec) classes for several popular image

storage formats: BMP, GIF (decoder only), FlashPix (decoder only), JPEG, PNG, PNM3,

TIFF, and WBMP.

In Java 9, the Java media API was transformed as well and functionality to

encapsulate many images with different resolutions into a multiresolution image was

added.

The core of the Java Media API is the java.awt.Image class that is the superclass to

represent graphical images. The most important image classes and their relationships

are depicted in Figure 11-7.

3�The portable pixmap format (PPM), the portable graymap format (PGM) and the portable
bitmap format (PBM) are image file formats designed to be easily exchanged between platforms.
They are also sometimes referred to collectively as the portable any map format (PNM). More
details at https://en.wikipedia.org/wiki/Netpbm_format

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

514

Although the java.awt.Image class is the most important in this hierarchy, the

most used is java.awt.BufferedImage, which is an implementation with an accessible

buffer of image data. It provides a lot of methods to create an image, to set its size and its

contents, to extract its contents and analyze them, and so much more. In this section, we

make use of this class to read and write images.

An image file is a complex file, aside from the picture itself, contains a lot of

additional information, the most important nowadays is the location where that image

was created. If you ever wondered how a social network proposes a check-in location

for an image you are posting, this is where the information is found. This might not

seem that important, but posting a picture of your cat, taken in your house, exposes your

location to the whole world getting their hands on it. I’m not sure what you think about

it, but to me this is terrifying. I used to post pictures of my cat sitting comfortable on the

computer I am writing this book on now on my personal blog. I basically exposed my

location and that of an expensive laptop to the whole world. Sure, most people do not

care about my cat, nor the laptop, but somebody that might be looking to make an easy

buck might. So, after a friendly and knowledgeable reader send me a private email telling

be about something called EXIF data and how he knows where I live because of the last

picture I’ve posted on my blog, I looked into it. A photo’s EXIF data contains a ton of

information about your camera, and where the picture was taken (GPS coordinates).

Most smartphones embed EXIF data into pictures taken with their camera. Figure 11-8

shows the EXIF information depicted in the macOS Preview application.

Figure 11-7.  Image classes hierarchy

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

515

The EXIF info contains the exact location (latitude and longitude included) where

the picture was taken. EXIF stands for Exchangeable Image File Format. There are

utilities to remove it, but when you post a lot of pictures on your blog (like I do), it takes

too much time to clean them one by one. This is where Java comes in and I will share

with you a snippet of code that I use to clean my pictures of EXIF data.

package com.apress.bgn.ch11;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

Figure 11-8.  EXIF information on a JPG image

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

516

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

import java.io.*;

import java.util.List;

public class MediaDemo {

 �private static final Logger log = LoggerFactory.getLogger(MediaDemo.

class);

 public static void main(String... args) {

 File src = new File(

 "chapter11/media-handling/src/main/resources/scottish_sky.jpg");

 try {

 log.info(" --- Removing EXIF info ---");

 File destNoExif = new File(

 �"chapter11/media-handling/src/main/resources/scottish_sky_

noexif.jpg");

 removeExifTag(destNoExif, src);

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 private static void removeExifTag(final File dest, final File src)

 throws Exception {

 new ExifRewriter().removeExifMetadata(src, new FileOutputStream(dest));

 }

}

To easily remove EXIF data, a utility class called ExifRewriter is used. It is part of

a library named Sanselan created by Apache. This library is unmaintained, but since

it doesn’t have any dependencies, compiling it with JDK 11 works just fine. I’ve forked

the GitHub repository and created my own branch named feature/jdk11-gradle-

build at https://github.com/iuliana/sanselan. The artifact resulted by building

that branch was added as a dependency to the project. That is why the ExifRewriter.

removeExifMetadata() can be used. This method is given as an argument the source of

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

517

the image and an OutputStream to a location where the new image should be saved. To

test that the resulting image has no EXIF data, open it in an image viewer, any option that

shows EXIF should either be disabled or should display nothing. In the Preview image

viewer in macOS, the option is grayed out.

Now that we got that out of the way, let’s resize the resulted image. To resize an image

we need to create a BufferedImage instance from the original image to get the image

dimensions. After that, we modify the dimensions and use them as arguments to create a

new BufferedImage, which is populated with data by a java.awt.Graphics2D instance,

a special type of class that renders 2D shapes, text, and images. The code is depicted in

the next listing. And the method is called to create an image 25% smaller, an image 50%

smaller, and an image 75% smaller.

package com.apress.bgn.ch11;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

import java.io.*;

import java.util.List;

public class MediaDemo {

 �private static final Logger log = LoggerFactory.getLogger(MediaDemo.

class);

 public static void main(String... args) {

 File src = new File(

 "chapter11/media-handling/src/main/resources/scottish_sky.jpg");

 try {

 log.info(" --- Removing EXIF info ---");

 File destNoExif = new File(

 �"chapter11/media-handling/src/main/resources/scottish_sky_

noexif.jpg");

 removeExifTag(destNoExif, src);

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

518

 log.info(" --- Creating 25% image ---");

 File dest25 = new File(

 �"chapter11/media-handling/src/main/resources/scottish_

sky_25.jpg");

 resize(dest25, destNoExif, 0.25f);

 log.info(" --- Creating 50% image ---");

 File dest50 = new File(

 �"chapter11/media-handling/src/main/resources/scottish_

sky_50.jpg");

 resize(dest50, destNoExif, 0.5f);

 log.info(" --- Creating 75% image ---");

 File dest75 = new File(

 �"chapter11/media-handling/src/main/resources/scottish_

sky_75.jpg");

 resize(dest75, destNoExif, 0.75f);

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 �private static void resize(final File dest, final File src, final float

percent)

 throws IOException {

 BufferedImage originalImage = ImageIO.read(src);

 int scaledWidth = (int) (originalImage.getWidth() * percent);

 int scaledHeight = (int) (originalImage.getHeight() * percent);

 BufferedImage outputImage = new BufferedImage(scaledWidth,

 scaledHeight, originalImage.getType());

 Graphics2D g2d = outputImage.createGraphics();

 g2d.drawImage(originalImage, 0, 0, scaledWidth, scaledHeight, null);

 g2d.dispose();

 outputImage.flush();

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

519

 ImageIO.write(outputImage, “jpg”, dest);

 }

 ...

}

To make things easier, the ImageIO class utility methods come in handy for reading

images from files, or writing them to a specific location. If you want to test that the

resizing works, you can look in the resources directory.

The output files have already been named accordingly, but to make sure, you can

double check in a file viewer. You should see something similar to what is depicted in

Figure 11-9.

The resulting images are not as high in quality as the original image, because

compressing the pixels does not result in higher quality, but they do fit the sizes we

intended.

Now that we have all these versions of the same image we can use them to create a

multiresolution image using the BaseMultiResolutionImage class introduced in Java 9.

An instance of this class is created from a set of images, all copy of a single image,

but with different resolutions. This is why we created more than one resized copy of

the image. A BaseMultiResolutionImage retrieves images based on specific screen

resolutions and it is suitable for applications designed to be accessed from multiple

devices. Let’s see the code first and then explain the results.

package com.apress.bgn.ch11;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

Figure 11-9.  Images resized using Java code

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

520

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

import java.io.*;

import java.util.List;

public class MediaDemo {

 �private static final Logger log = LoggerFactory.getLogger(MediaDemo.

class);

 public static void main(String... args) {

 File src = new File(

 "chapter11/media-handling/src/main/resources/scottish_sky.jpg");

 try {

 Image[] imgList = new Image[]{

 ImageIO.read(dest25), // 1008 x 277

 ImageIO.read(dest50), //2016 x 554

 ImageIO.read(dest75), // 3024 x 831

 ImageIO.read(src) // 4032 x 1108

 };

 log.info(" --- Creating multi-resolution image ---");

 File destVariant = new File(

 �"chapter11/media-handling/src/main/resources/sky_variant.jpg");

 createMultiResImage(destVariant, imgList);

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 �private static void createMultiResImage(final File dest, final Image[]

imgList)

 throws IOException {

 �MultiResolutionImage mrImage = new BaseMultiResolutionImage(0,

imgList);

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

521

 List<Image> variants = mrImage.getResolutionVariants();

 variants.forEach(System.out::println);

 Image img = mrImage.getResolutionVariant(700, 250);

 log.info("Most fit to the requested size<{},{}>: <{},{}>", 700, 250,

 img.getWidth(null), img.getHeight(null));

 if (img instanceof BufferedImage) {

 ImageIO.write((BufferedImage) img, "jpg", dest);

 }

 }

 ...

}

To clearly show which image is selected, the resolution of each image has a comment

next to it. The BaseMultiResolutionImage instance is created from an array of Image

instances. When getResolutionVariant(..) is called, the arguments are compared

to the corresponding image properiest, and if both are less than equal to the values

of one of the images, that image is returned. In the next code snippet, the code of the

BaseMultiResolutionImage.getResolutionVariant(..) is depicted.

@Override

public Image getResolutionVariant(double destImageWidth,

 double destImageHeight) {

 checkSize(destImageWidth, destImageHeight);

 for (Image rvImage : resolutionVariants) {

 if (destImageWidth <= rvImage.getWidth(null)

 && destImageHeight <= rvImage.getHeight(null)) {

 return rvImage;

 }

 }

 return resolutionVariants[resolutionVariants.length - 1];

}

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

522

The previous code leads to two conclusions.

•	 Both the desired width and height that are given as arguments

must be less or equal to the properties of one of the images the

multiresolution image was created from; otherwise, the default image

is returned—the one with the index given as argument for the base

image index in the BaseMultiResolutionImage constructor. This

means that getResolutionVariant(700, 250) returns image dest25

because 700 <= 1008 && 250 <= 277 and (1008 x 277) is the (width

x height) of this image. The call getResolutionVariant(700, 300)

leads to image src being returned, because the previous condition is

no longer evaluated to true while iterating the list, so the last image in

the list is retuned, because the method exits through return

resolutionVariants[resolutionVariants.length - 1];

•	 The array the BaseMultiResolutionImage instance is created from

must be sorted in ascending order of the width and height of the

images; otherwise, an image with the wrong dimensions is returned,

because the decision algorithm is not that efficient.

So, if the algorithm is not efficient what can be done? It’s simple: we can create our

own MultiResolutionImage implementation that extends BaseMultiResolutionImage

and overrides the getResolutionVariant() method. Since we know that all images are

resized copies of the same image, this means width and height are proportional. So, an

algorithm that always returns the variant of the image that is most suitable to the desired

resolution can be written that does not really care about the order of the images in the

array, and that it returns the image that fits most. So, the implementation might look

similar to the following class.

package com.apress.bgn.ch11;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

523

public class SmartMultiResolutionImage

 extends BaseMultiResolutionImage {

 public SmartMultiResolutionImage(int baseImageIndex,

 Image... resolutionVariants) {

 super(baseImageIndex, resolutionVariants);

 }

 @Override

 public Image getResolutionVariant(double destImageWidth,

 double destImageHeight) {

 checkSize(destImageWidth, destImageHeight);

 Map<Double, Image> result = new HashMap<>();

 for (Image rvImage : getResolutionVariants()) {

 �double widthDelta = Math.abs(destImageWidth - rvImage.

getWidth(null));

 �double heightDelta = Math.abs(destImageHeight - rvImage.

getHeight(null));

 double delta = widthDelta + heightDelta;

 result.put(delta, rvImage);

 }

 java.util.List<Double> deltaList = new ArrayList<>(result.keySet());

 deltaList.sort(Double::compare);

 return result.get(deltaList.get(0));

 }

 private static void checkSize(double width, double height) {

 if (width <= 0 || height <= 0) {

 throw new IllegalArgumentException(String.format(

 �"Width (%s) or height (%s) cannot be <= 0", width,

height));

 }

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

524

 if (!Double.isFinite(width) || !Double.isFinite(height)) {

 throw new IllegalArgumentException(String.format(

 �"Width (%s) or height (%s) is not finite", width,

height));

 }

 }

}

The checkSize(..) method must be duplicated, as it is private and used

inside getResolutionVariant(..), so it cannot be called inside a superclass,

but that is a minor inconvenience to having an implementation that has a proper

behavior. In the previous implementation, we no longer need a sorted array. Also,

calls to getResolutionVariant(700, 250), getResolutionVariant(700, 300),

getResolutionVariant(800, 250), getResolutionVariant(800, 400) all return

image dest25.

Image[] imgList = new Image[]{

 ImageIO.read(src), // 4032 x 1108

 ImageIO.read(dest75), // 3024 x 831

 ImageIO.read(dest25), // 1008 x 277

 ImageIO.read(dest50) // 2016 x 554

};

log.info(" --- Creating multi-resolution image ---");

File destVariant = new File(

 "chapter11/media-handling/src/main/resources/sky_variant.jpg");

createMultiResImage(destVariant, imgList);

BufferedImage variantImg = ImageIO.read(destVariant);

BufferedImage dest25Img = ImageIO.read(dest25);

log.info("Are identical? {}", variantImg.equals(dest25Img));

...

private static void createMultiResImage(final File dest, final Image[]

imgList)

 throws IOException {

 MultiResolutionImage mrImage = new SmartMultiResolutionImage(0, imgList);

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

525

 List<Image> variants = mrImage.getResolutionVariants();

 variants.forEach(i -> log.info(i.toString()));

 Image img = mrImage.getResolutionVariant(700, 400);

 log.info("Most fit to the requested size<{},{}>: <{},{}>", 700, 400,

 img.getWidth(null), img.getHeight(null));

 if (img instanceof BufferedImage) {

 ImageIO.write((BufferedImage) img, "jpg", dest);

 }

}

Running the log, the following is printed in the console.

INFO com.apress.bgn.ch11.MediaDemo - --- Creating multi-resolution image

INFO com.apress.bgn.ch11.MediaDemo - BufferedImage@3c9d0b9d: type = 5

ColorModel:

 �#... ByteInterleavedRaster: width = 4032 height = 1108 #numDataElements 3

dataOff[0] = 2

INFO com.apress.bgn.ch11.MediaDemo - BufferedImage@64cd705f: type = 5

ColorModel:

 �#... ByteInterleavedRaster: width = 3024 height = 831 #numDataElements 3

dataOff[0] = 2

INFO com.apress.bgn.ch11.MediaDemo - BufferedImage@9225652: type = 5

ColorModel:

 �#... ByteInterleavedRaster: width = 1008 height = 277 #numDataElements 3

dataOff[0] = 2

INFO com.apress.bgn.ch11.MediaDemo - BufferedImage@654f0d9c: type = 5

ColorModel:

 �#... ByteInterleavedRaster: width = 2016 height = 554 #numDataElements 3

dataOff[0] = 2

INFO com.apress.bgn.ch11.MediaDemo - Most fit to the requested

size<700,400>: <1008,277>

INFO com.apress.bgn.ch11.MediaDemo - Are identical? false

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

526

Wait what? Why are the images not identical? Well, they do have the same resolution,

but as objects are not identical, because drawing pixels is not really that precise. But if

you really want to make sure, you could print the width and height of the two images,

open them with an image viewer and notice that to the naked eye, they look identical.

log.info("variant width x height : {} x {}", variantImg.getWidth(),

 variantImg.getHeight());

log.info("dest25Img width x height : {} x {}", dest25Img.getWidth(),

 dest25Img.getHeight());

The code prints the width and height of the two images, making it obvious that the

two images have the same dimensions, just as expected.

INFO com.apress.bgn.ch11.MediaDemo - variant width x height : 1008 x 277

INFO com.apress.bgn.ch11.MediaDemo - dest25Img width x height : 1008 x 277

�Using JavaFX Image Classes
Aside from the Java Media API, which is centered on components of the java.awt

package, another way to display and edit images is provided by JavaFX. The core class

for the javafx.scene.image package is called Image, which handles images in a few

common formats: PNG, JPEG, BMP, and GIF. JavaFX applications can display images

using an instance of javafx.scene.image.ImageView. The part that I like most about

this class is that the images can be also displayed scaled, without the original image

being modified.

To create a javafx.scene.image.Image instance, all we need is a FileInputStream

instance to read the image from the user-provided location, or a URL location given as

String. The following code snippet creates a JavaFX application that displays an

image with its original width and height, which can be accessed using methods in the

javafx.scene.image.Image class.

package com.apress.bgn.ch11;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.image.Image;

import javafx.scene.image.ImageView;

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

527

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

import java.io.File;

import java.io.FileInputStream;

public class JavaFxMediaDemo extends Application {

 public static void main(String... args) {

 Application.launch(args);

 }

 @Override

 public void start(Stage primaryStage) throws Exception {

 primaryStage.setTitle("JavaFX Image Demo");

 �File src = new File("chapter11/media-handling/src/main/resources/

cover.png");

 Image image = new Image(new FileInputStream(src));

 ImageView imageView = new ImageView(image);

 imageView.setFitHeight(image.getHeight());

 imageView.setFitWidth(image.getWidth());

 imageView.setPreserveRatio(true);

 //Creating a Group object

 StackPane root = new StackPane();

 root.getChildren().add(imageView);

 primaryStage.setScene(new Scene(root,

 image.getWidth()+10,

 image.getHeight()+10));

 primaryStage.show();

 }

}

The Image instance cannot be added to the Scene of the JavaFX instance directly

as it does not implement the Node interface, which is required to be implemented by

all JavaFX elements that make a JavaFX application. That is why this instance must be

wrapped in a javafx.scene.image.ImageView instance that is a class implementing

node, which is a specialized class for painting images loaded with Image class.

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

528

This class resizes the displayed image with or without preserving the original aspect

ratio by calling the setPreserveRatio(..) method with the appropriate argument: true

to keep the original aspect ratio; false otherwise.

In the previous code, we use the values retuned by image.getWidth() and image.

getHeight() to set the size of the ImageView object and the size of the Scene instance.

But let’s get creative and display the scaled image, still preserving the aspect ratio

and also using a better-quality filtering algorithm when scaling the image using the

smooth(..) method.

...

ImageView imageView = new ImageView(image);

imageView.setFitWidth(100);

imageView.setPreserveRatio(true);

imageView.setSmooth(true);

...

The ImageView class also supports a Rectangle2D viewport that rotates the image.

import javafx.geometry.Rectangle2D;

...

ImageView imageView = new ImageView(image);

Rectangle2D viewportRect = new Rectangle2D(2, 2, 600, 600);

imageView.setViewport(viewportRect);

imageView.setRotate(90);

...

Being an implementation of Node, ImageView supports clicking events, and it is easy

to write some code to resize an image on click. Just take a look.

...

ImageView imageView = new ImageView(image);

imageView.setFitHeight(image.getHeight());

imageView.setFitWidth(image.getWidth());

imageView.setPreserveRatio(true);

root.getChildren().add(imageView);

imageView.setPickOnBounds(true);

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

529

imageView.setOnMouseClicked(mouseEvent -> {

 if(imageView.getFitWidth() > 100) {

 imageView.setFitWidth(100);

 imageView.setPreserveRatio(true);

 imageView.setSmooth(true);

 } else {

 imageView.setFitHeight(image.getHeight());

 imageView.setFitWidth(image.getWidth());

 imageView.setPreserveRatio(true);

 }

});

...

By calling onMouseClicked, we attached an EventHandler<? super MouseEvent>

instance to the mouse-clicking event on imageView. The EventHandler<T extends

Event> is a functional interface containing a single method named handle, and its

concrete implementation is the body of the lambda expression in the previous code

listing.

Since JavaFX was taken out of JDK 11, there is no real value in going over more

image processing classes in this section. But if you are interested in learning more about

this subject, this tutorial from Oracle should do the job: https://docs.oracle.com/

javafx/2/image_ops/jfxpub-image_ops.htm. Also, as practice, you can try writing your

own code, based on the code in the book, to add a mouse event that rotates the image.

And this is all the space that I can dedicate to playing with images in the Java. I hope

you found this section useful and might get the chance to test your Java Media API skills

in the future, if not for anything else, at least for cleaning EXIF data from your images.

�Summary
This chapter has covered most of the information that you need to know to work with

various types of files, and to serialize Java objects, save them to a file, and then recover

them through deserialization. When writing Java applications, you typically need to save

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

530

data to files or read data from files and this chapter provides a wide list of components to

do so. The following is a short summary of this chapter.

•	 how to use File and Path instances

•	 how to use utility methods in Files and Paths

•	 how to serialize/deserialize Java objects to/from binary, XML and

JSON

•	 how to resize and modify images using the Java Media API

•	 how to use images in JavaFX applications

Chapter 11 Working with Files

(c) ketabton.com: The Digital Library

531
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_12

CHAPTER 12

The Publish/Subscribe
Framework
All the programming concepts explained so far involved data that needed to be

processed. Regardless of the form in which data is provided, the Java programs we’ve

written so far took that data, modified it, and printed the results, whether to the console,

to files, or to another software component. You could say that all of these components

were communicating with each other and passing processed data from one to another.

Figure 12-1 abstractly describes interactions among Java components in a program.

Each of the arrows is marked with the type of information being passed from

one component to another. In Figure 12-1, you can identify a starting point where

information enters the program (by being read by the Reader), and an end point where

the information is printed to some output component by the Printer. So, you could

say that the Reader provides the data, the Filter and the DocumentCreator are some

internal processor, processing the data and the Printer is the consumer of the data.

What was described so far is resembles a point-to-point (p2p) messaging model,
which describes a concept of one message being send to one consumer. The p2p

model is specific to an Java API called Java Message Service (JMS) that supports the

formal communication known as messaging between computers in a network. In the

example that begins this chapter an analogy was made to show that communication

Figure 12-1.  Interactions between Java components within a program

(c) ketabton.com: The Digital Library

532

between components of a Java Program works in a similar manner. And so, the design

of a solution to implement a process as described in Figure 12-1 could be created by

considering all components linked into a messaging style communication model. There

is more than one communication model—Producer/Consumer, Publish/Subscribe,

Sender/Receiver, each with its own specifics,1 but this chapter is focused on Publish/
Subscribe because it is the model that reactive programming is based on.

�Reactive Programming and the Reactive Manifesto
Reactive programming is a declarative programming style that involves using data

streams and propagation of change. You learned how to use streams in Chapter 8, so

we’re one step closer. Now all we must do is learn how to use reactive streams. Reactive

programming involves using asynchronous data streams or event streams. Using reactive

streams is not a new idea.

The Reactive Manifesto was first made public in 2014.2 It made a request for software

to be developed in such a way that systems are responsive, resilient, elastic, and message

driven, in short they should be reactive. The following explains each of the four terms.

•	 Responsive should provide fast and consistent response times.

•	 Resilient should remain responsive in case of failure and be able to

recover.

•	 Elastic should remain responsive and be able to handle various

workloads.

•	 Message driven should communicate using asynchronous messages,

avoid blocking and applying back pressure when necessary.

Systems designed this way are supposed to be more flexible, loosely coupled, and

scalable, but at the same time they should be easier to develop, amendable to change

and more tolerant of failure. But to accomplish all that, the systems need a common API

for communication. Reactive Streams is an initiative to provide such a standard API for

asynchronous, non-blocking stream processing that also supports back-pressure. We’ll

1�If you are interested more in communication models, you can search the web for Enterprise
Integration Patterns.

2�Read it at https://www.reactivemanifesto.org/

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

533

explain what back-pressure means in a moment. Let’s start with the basics of reactive

stream processing.

Any type of stream processing involves a producer of data, a consumer of data, and

components in the middle between them that process the data. The direction of the data

flow is from the producer to the consumer. The abstract schema of a system is depicted

in Figure 12-2.

The system might end up in a pickle when the producer is faster than the consumer.

So the extra data that cannot be processed must be dealt with. There is more than one

way of doing that.

•	 The extra data is discarded (this is done in network hardware).

•	 The producer is blocked so the consumer has time to catch up.

•	 The data is buffered, but buffers are limited and if we have a fast

producer and a slow consumer there is a danger of the buffer

overflowing.

•	 By applying back pressure, which involves giving the consumer

the power to regulate the producer and control how much data is

produced. Back pressure can be viewed as a message being sent from

the consumer to the producer to let it know it has to slow its data

production rate. With this in mind, we can complete the design in

Figure 12-2, which results in Figure 12-3.

Figure 12-2.  Producer/Consumer system

Figure 12-3.  Reactive Producer/Consumer system

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

534

If producer, processors, and consumer are not synchronized, solving the problem

of too much data by blocking until each one is ready to process it is not an option, as

it would transform the system into a synchronous one. Discarding it is not an option

either, and buffering is, well, unpredictable, so all we’re left with for a reactive system is

applying non-blocking back-pressure.

Writing applications that can be aggregated in reactive systems was not possible in

Java before version 9, so developers had to make do with external libraries. A reactive

application must be designed according to principle of reactive programming and use

reactive streams for handling the data. The standard API for reactive programming was

first described by the reactive-streams library that could be used with Java 8 as well.

But in Java 9, the standard API was added to the JDK. Figure 12-4 shows the interfaces

that are meant to be implemented by components with the roles defined previously. The

reactive streams API is made of four very simple interfaces.

•	 interface Publisher<T> exposes one method named

subscribe(Subscriber<? extendsT>) that is called to add a

Subscriber instance and produces elements of type T, which are

consumed by the Subscriber.

•	 interface Subscriber<R>, consumes elements from the Publisher

and exposes four methods that must be implemented to define

concrete behavior of the instance depending on the event type

received by the Publisher instance.

–– void onSubscribe(Subscription) is the first method called on a

subscriber and this is the method that links the Publisher to the

Subscriber instance using the Subscription argument, if this method

throws an exception the following behavior is not guaranteed.

Figure 12-4.  Reactive Streams interfaces

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

535

–– void onNext(T) is the method invoked with a Subscription’s next item to

receive the data, if it throws an exception, the Subscription might be

cancelled.

–– void onError(Throwable) is the method invoked upon an unrecoverable

error encountered by a Publisher or Subscription.

–– void onComplete()is the method called when there is not more data to

consume, thus no additional Subscriber method invocations occur.

•	 interface Processor<T,R> extends both Publisher<T> and

Subscriber<R>, because it needs to consume data and produce it to

send it further upstream.

•	 interface Subscription, its implementation should link the

Publisher and the Subscriber and can be used to apply back-

pressure by calling the request(long) to set he number of items to

be produced and sent to the consumer. It also allows the cancellation

of a flow by calling the cancel() method to tell a Subscriber to stop

receiving messages.

In the JDK, all the previously listed interfaces are defined within the java.util.

concurrent.Flow class. The name of this class is obvious in nature, as the previous

interfaces are used to create flow-controlled components that can be linked together

to create a reactive application. Aside from these four interfaces, there is a single

JDK implementation, the java.util.concurrent.SubmissionPublisher<T> class

implementing Publisher<T> that is a convenient base for subclasses that generate items

and use the methods in this class to publish them.

The Flow interfaces are basic and can be used when writing reactive applications,

but this requires a lot of work. Currently, there are multiple implementations by

various teams that provide a more practical way to develop reactive applications. Using

implementations of these interfaces, you can write reactive applications without needing

to write the logic for synchronization of threads processing the data.

The following list is of the most well-known reactive streams API implementations.

•	 Project Reactor (https://projectreactor.io/) embraced by Spring

for its Web Reactive Framework

•	 Akka Streams (https://doc.akka.io/docs/akka/current/stream/

stream-flows-and-basics.html)

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

536

•	 MongoDB Reactive Streams Java Driver (http://mongodb.github.io/

mongo-java-driver-reactivestreams/1.9/)

•	 Ratpack (https://ratpack.io/)

•	 RxJava (http://reactivex.io/)

And there are more, because in a big data world, reactive data processing is no

longer a luxury, but a necessity.

This concludes the introduction into what reactive programming and what reactive

streams are. It is about time we get down to the code.

�Using the JDK Reactive Streams API
As the JDK provided interfaces for reactive programming are quite basic, implementing

them to build something really useful is quite cumbersome, but nevertheless we will try.

In this section, an application that generates an infinite number of integer values, filters

these values, and selects the ones that are smaller than 127 is being built. For the ones

that are even and between 98 and 122, we subtract 32 (basically converting small letters

to uppercase). Then we convert them to a character and print them.

Clearly, the most basic solution is

private static final Logger log = LoggerFactory.getLogger(ReactiveMain.class);

private static final Random random = new Random();

public static void main(String... args) {

 while (true){

 int rndNo = random.nextInt(150);

 if (rndNo >=0 && rndNo < 127) {

 log.info("Initial value: {} ", rndNo);

 if(rndNo % 2 == 0 && rndNo >=98 && rndNo <=122) {

 rndNo -=32;

 }

 char res = (char) rndNo;

 log.info("Result: {}", res);

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

537

 } else {

 log.debug("Number {} discarded.", rndNo);

 }

 }

}

Each line of code in the previous code listing has a purpose, a desired outcome.

This approach is called imperative programming, because it sequentially executes a

series of statements to produce a desired output.

But this is not what we are aiming for. In this section, we implement a reactive

solution using implementations of the JDK reactive interfaces. So we’ll need the

following.

•	 A publisher component that makes use of an infinite stream to

generate random integer values. The class should implement the

Flow.Publisher<Integer> interface.

•	 A processor that selects only integer values that can be converted

to visible characters, let’s say all characters with codes between

[0,127). The class should implement the Flow.Processor<Integer,

Integer>.

•	 A processor that modifies elements received, that are even, and

between 98 and 122, by subtracting 32. This class should also

implement the Flow.Processor<Integer, Integer>.

•	 A processor that transforms integer elements into the equivalent

characters. This is a special type of processor that maps one

value to another, of another type and should implement

Flow.Processor<Integer, Character>.

•	 A subscriber that prints the received elements from the

last processor in the chain. This class implements the

Flow.Subscriber<Character> interface.

Let’s start by declaring the Publisher that wraps around an infinite stream to

produce values to be consumed. We implement the Flow.Publisher<Integer>

interface, but provide a full concrete implementation to submit the elements

asynchronously. To buffer them in case of need is a little much, so we’ll make use of Subm

issionPublisher<Integer> in our class. The code for the publisher is depicted next.

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

538

package com.apress.bgn.ch12.jdkstreams;

import java.util.Random;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

import java.util.stream.IntStream;

public class IntPublisher implements Flow.Publisher<Integer> {

 private static final Random random = new Random();

 �private final IntStream intStream = IntStream.generate(() -> random.

nextInt(150));

 private final SubmissionPublisher<Integer>

 submissionPublisher = new SubmissionPublisher<>();

 @Override

 public void subscribe(Flow.Subscriber<? super Integer> subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

 public void start() {

 intStream.forEach(element -> {

 submissionPublisher.submit(element);

 sleep();

 });

 }

 private void sleep() {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 throw new RuntimeException("could not sleep!");

 }

 }

}

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

539

As expected, we’ve provided an implementation for the subscribe() method, and

in this case, we have to forward the subscriber to the internal submissionPublisher.

Also, we’ve added a start() method that takes elements from the infinite IntStream

and submits them using the internal submissionPublisher. The IntStream makes use

of a Random instance to generate integer values in the [0,150] interval. This interval was

chosen so we can see how values bigger than 127 are discarded by the first Processor

instance connected to the publisher. To slow down the elements’ submission, we added

a call to Thread.sleep(1000) that basically guarantees one element per second is send

up the chain.

The name of the first processor is FilterCharProcessor and makes use of an internal

SubmissionPublisher<Integer> instance to send the elements it processes onward to

the next processor. Exceptions thrown are forwarded using the SubmissionPublisher

<Integer> also. The processor acts as a publisher, but as a subscriber as well, so the

implementation on the onNext(..) method has to include a call to subscription.

request(..) to apply back pressure. From the figures presented earlier in the chapter,

you could see that the processor is basically a component that allows data flow in both

directions, and it does that by implementing both Publisher and Subscriber.

The processor must subscribe to the publisher, and when the publisher’s

subscribe(..) method is called, it causes the onSubscribe(Flow.Subscription

subscription) method to be invoked. The subscription must be stored locally, so that

it can be used to apply back pressure. But when accepting a subscription, we must make

sure that the field was not already initialized, because according to reactive streams

specification there can only be one subscriber for a publisher; otherwise, the results are

unpredictable. So if and when a new subscription arrives, it must be cancelled, and this

is done by calling cancel(). The full code for the processor is depicted next.

package com.apress.bgn.ch12.jdkstreams;

import com.apress.bgn.ch12.dummy.BasicIntTransformer;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

540

public class FilterCharProcessor implements

 Flow.Processor<Integer, Integer> {

 private static final Logger log =

 LoggerFactory.getLogger(FilterCharProcessor.class);

 private final SubmissionPublisher<Integer>

 submissionPublisher = new SubmissionPublisher<>();

 private Flow.Subscription subscription;

 @Override

 public void subscribe(Flow.Subscriber<? super Integer> subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

 @Override

 public void onSubscribe(Flow.Subscription subscription) {

 if (this.subscription == null) {

 this.subscription = subscription;

 // apply back pressure - request one element

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(Integer element) {

 if (element >=0 && element < 127){

 submit(element);

 } else {

 log.debug("Element {} discarded.", element);

 }

 subscription.request(1);

 }

 @Override

 public void onError(Throwable throwable) {

 submissionPublisher.closeExceptionally(throwable);

 }

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

541

 @Override

 public void onComplete() {

 submissionPublisher.close();

 }

 protected void submit(Integer element){

 submissionPublisher.submit(element);

 }

}

We have three processor classes to build, and aside from the code in the

onNext(..) method body, the rest is boilerplate code that allows processor instances

to be linked together in the flow we are designing. So it would be practical to wrap up

this code in an AbstractProcessor that all processors needed for this solution can

extend. As the last processor we need to implement needs to convert the received

Integer value to a Character we keep this implementation generic regarding to the

type of value being sent to the next processor or subscriber in the flow. The code is

depicted next.

package com.apress.bgn.ch12.jdkstreams;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

public abstract class AbstractProcessor<T>

 implements Flow.Processor<Integer, T> {

 protected final SubmissionPublisher<T>

 submissionPublisher = new SubmissionPublisher<>();

 protected Flow.Subscription subscription;

 @Override

 public void subscribe(Flow.Subscriber<? super T> subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

542

 @Override

 public void onSubscribe(Flow.Subscription subscription) {

 if (this.subscription == null) {

 this.subscription = subscription;

 // apply back pressure - ask one or more than one

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onError(Throwable throwable) {

 submissionPublisher.closeExceptionally(throwable);

 }

 @Override

 public void onComplete() {

 submissionPublisher.close();

 }

 protected void submit(T element) {

 submissionPublisher.submit(element);

 }

}

This simplifies a lot the implementation of the FilterCharProcessor and the other

processors as well.

package com.apress.bgn.ch12.jdkstreams;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class FilterCharProcessor extends AbstractProcessor<Integer> {

 private static final Logger log =

 LoggerFactory.getLogger(FilterCharProcessor.class);

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

543

 @Override

 public void onNext(Integer element) {

 if (element >= 0 && element < 127) {

 submit(element);

 } else {

 log.debug("Element {} discarded.", element);

 }

 subscription.request(1);

 }

}

We have a publisher and a processor, now what ? We connect them of course. The

dots (...) in the next code snippet, replace all the processors and the subscribers being

connected to each other later in the chapter.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher();

 �FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 publisher.subscribe(filterCharProcessor);

 ...

 publisher.start();

 }

}

The next processor implementation is the one that transforms lower case letters

into upper case letters by subtracting 32. It can be easily implemented by extending

AbstractProcessor as well.

package com.apress.bgn.ch12.jdkstreams;

public class TransformerProcessor extends

 AbstractProcessor<Integer> {

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

544

 @Override

 public void onNext(Integer element) {

 if(element % 2 == 0 && element >=98 && element <=122) {

 element -=32;

 }

 submit(element);

 subscription.request(1);

 }

}

To plug in this processor into the flow, we need instantiate it and call the

filterCharProcessor.subscribe(..) and provide this instance as an argument.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher();

 �FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 �TransformerProcessor transformerProcessor = new

TransformerProcessor();

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 ...

 publisher.start();

 }

}

The next one to implement is the final processor needed for the solution. It converts

an Integer value to a Character value. To keep the implementation as declarative as

possible, the processor is provided the mapping function as an argument.

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

545

package com.apress.bgn.ch12.jdkstreams;

import java.util.function.Function;

public class MappingProcessor extends

 AbstractProcessor<Character> {

 private final Function<Integer, Character> function;

 public MappingProcessor(Function<Integer, Character> function) {

 this.function = function;

 }

 @Override

 public void onNext(Integer element) {

 submit(function.apply(element));

 subscription.request(1);

 }

}

And now, to plug it in.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher();

 FilterCharProcessor filterCharProcessor = new FilterCharProcessor();

 �TransformerProcessor transformerProcessor = new

TransformerProcessor();

 MappingProcessor mappingProcessor =

 new MappingProcessor(element -> (char) element.intValue());

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 transformerProcessor.subscribe(mappingProcessor);

 ...

 publisher.start();

 }

}

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

546

The last component of this flow is the subscriber that does nothing more than print

the values received from the transformerProcessor. The class implements the Flow.

Subscriber<Character> and most of it is identical to the code we’ve isolated in the

AbstractProcessor, but it is what it is.

package com.apress.bgn.ch12.jdkstreams;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;

public class CharPrinter implements Flow.Subscriber<Character> {

 private static final Logger log =

 LoggerFactory.getLogger(CharPrinter.class);

 private Flow.Subscription subscription;

 @Override

 public void onSubscribe(Flow.Subscription subscription) {

 if (this.subscription == null) {

 this.subscription = subscription;

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(Character element) {

 log.info("Result: {}", element);

 //apply back-pressure again

 subscription.request(1);

 }

 @Override

 public void onError(Throwable throwable) {

 log.error("Something went wrong.", throwable);

 }

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

547

 @Override

 public void onComplete() {

 log.info("Printing complete.");

 }

}

So now that we have a subscriber, we can plug it in and run the application.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher();

 FilterCharProcessor filterCharProcessor = new FilterCharProcessor();

 �TransformerProcessor transformerProcessor = new

TransformerProcessor();

 MappingProcessor mappingProcessor =

 new MappingProcessor(element -> (char) element.intValue());

 CharPrinter charPrinter = new CharPrinter();

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 transformerProcessor.subscribe(mappingProcessor);

 mappingProcessor.subscribe(charPrinter);

 publisher.start();

 }

}

It would be nice if the subscribe method returns the caller instance so we could

chain the subscribe(..) calls, but we work with what is provided for us. When the

previous code is run, a log similar to the following is printed in the console.

..

DEBUG c.a.b.c.j.FilterCharProcessor - Element 149 discarded.

INFO c.a.b.c.j.CharPrinter - Result: >

INFO c.a.b.c.j.CharPrinter - Result: B

INFO c.a.b.c.j.CharPrinter - Result: 4

INFO c.a.b.c.j.CharPrinter - Result: Z

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

548

INFO c.a.b.c.j.CharPrinter - Result: *

INFO c.a.b.c.j.CharPrinter - Result: o

DEBUG c.a.b.c.j.FilterCharProcessor - Element 141 discarded.

INFO c.a.b.c.j.CharPrinter - Result: 4

DEBUG c.a.b.c.j.FilterCharProcessor - Element 142 discarded.

INFO c.a.b.c.j.CharPrinter - Result: Q

DEBUG c.a.b.c.j.FilterCharProcessor - Element 132 discarded.

..

The example uses an infinite IntStream to generate elements to be published,

processed, and consumed. This leads to the execution program running forever, so you

have to stop it manually. Another consequence of this is that the onComplete() methods

will never be called. If we want to use them, we have to make sure the number of items

being published is a finite one.

The support for reactive streams is thin in the JDK, even in version 11, released

September 23, 2018. It was expected that more useful classes would be added in versions

following Java 9, but apparently Oracle is focused on other aspects, such as reorganizing

the module structure and deciding how to better monetize usage of the JDK, because

two releases after there’s still nothing new on the reactive front. That is why the next

section covers a short example of reactive programming done with the Project Reactor

library.

�Reactive Streams Technology Compatibility Kit
When building applications that use reactive streams a lot of things can go wrong. To

make sure that you are building a proper reactive application, you can use the Reactive
Streams Technology Compatibility Kit project (also known as TCK) to write tests.

This library contains classes that can test reactive implementations against the reactive

streams specifications. TCK is intended to verify the interfaces contained in Java 9 (under

java.util.concurrent.Flow.*) and for some reason the team that created the library

decided to use TestNG as a testing library. The project sources are available on GitHub at

https://github.com/reactive-streams/reactive-streams-jvm/tree/master/

tck-flow, which contains four classes that have to be implemented to provide their

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

549

Flow.Publisher, Flow.Subscriber, Flow.Processor implementations for the test

harness to validate. The four classes are

•	 FlowPublisherVerification tests Publisher implementations.

•	 FlowSubscriberWhiteboxVerification is used for whitebox testing

Subscriber implementations and Subscription instances.

•	 FlowSubscriberBlackboxVerification is used for blackbox testing

Subscriber implementations and Subscription instances.

•	 IdentityFlowProcessorVerification tests Processor

implementations.

To make the purpose of each test clear, the library test methods names follow this

pattern: TYPE_spec####_DESC where TYPE is one of required, optional, stochastic, or

untested, which refers to the importance of the rule being tested, the number signs in

spec#### represent the rule number with the first one being 1 for Publisher instances

and the 2 for Subscribers and the DESC is a short explanation of the test purpose.

Let’s see how we could test the IntPublisher that we defined previously. For this,

we’ll modify this class to allow the class to use a limited IntStream as a source.

package com.apress.bgn.ch12.jdkstreams;

import java.util.Random;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

import java.util.stream.IntStream;

public class IntPublisher implements Flow.Publisher<Integer> {

 private static final Random random = new Random();

 protected final IntStream intStream;

 public IntPublisher(int limit) {

 �intStream = limit == 0 ? IntStream.generate(() -> random.

nextInt(150)) :

 IntStream.generate(() -> random.nextInt(150)).limit(30);

 }

 ...

}

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

550

We also need to provide access to the stream source of the IntStream so we can use

it in our test. Now let’s test our publisher by implementing the FlowPublisherVerificat

ion<Integer>.

package com.apress.bgn.ch12.jdkstreams;

import org.reactivestreams.tck.TestEnvironment;

import org.reactivestreams.tck.flow.FlowPublisherVerification;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;

public class IntPublisherTest extends FlowPublisherVerification<Integer> {

 private static final Logger log =

 LoggerFactory.getLogger(FilterCharProcessor.class);

 public IntPublisherTest() {

 super(new TestEnvironment(300));

 }

 @Override

 public Flow.Publisher<Integer> createFlowPublisher(final long elements) {

 return new IntPublisher(30) {

 @Override

 �public void subscribe(Flow.Subscriber<? super Integer>

subscriber) {

 intStream.forEach(subscriber::onNext);

 subscriber.onComplete();

 }

 };

 }

 @Override

 public Flow.Publisher<Integer> createFailedFlowPublisher() {

 return new IntPublisher(0) {

 @Override

 �public void subscribe(Flow.Subscriber<? super Integer>

subscriber) {

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

551

 subscriber.onError(new RuntimeException(

 "There be dragons!"));

 }

 };

 }

}

To make it clear, a Publisher implementation might not pass all the tests, because

of design decisions that are specific to the application you are building. In our case,

the IntPublisher is simplistic; and when running the createFlowPublisher method

of all the executed tests, not many of them pass and most are ignored, as depicted in

Figure 12-5.

The reason tests do not pass or are ignored is that the purpose of our

implementation does not match those specific tests (e.g., maySupportMultiSubscribe,

maySignalLessThanRequestedAndTerminateSubscription, and mustSignalOn

MethodsSequentially).

Figure 12-5.  Test NG Reactive Publisher

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

552

We can test the processor and subscriber that we defined in the previous section by

extending the testing classes, but I’ll leave that as an exercise to you, because there is one

more interesting thing I would like to cover in this chapter.

�Using Project Reactor
As I’ve mentioned, the JDK support for reactive programming is scarce. Publishers,

processors, and subscribers should function asynchronously and all that behavior must

be implemented by the developer, which can be a bit of a pain. The only thing that the

JDK is suitable for at the moment is providing a common interface between all the other

already existing implementations. And there are a lot of them, providing a lot more

useful classes for more specialized reactive components and utility methods to create

and connect them easier. The one I personally fancy the most as a Spring aficionado is

Project Reactor, the same one favored by the Spring development team.

Project Reactor is one of the first libraries for reactive programming and its classes

provide a non-blocking stable foundation with efficient demand management for

building reactive applications. It works with Java 8, but does provide adapter classes for

JDK9 reactive streams classes that can be used within a JDK 11 project as well. Project

Reactor is suitable for microservices applications and provides a lot more classes

designed to make programming reactive application more practical than the JDK

does. Project Reactor provides two main publisher implementations: reactor.core.

publisher.Mono<T> which is a reactive stream publisher limited to publishing zero or one

element and reactor.core.publisher.Flux<T>, which is a reactive stream publisher

with basic flow operators.

The advantage of using Project Reactor is that we have a lot more classes and

methods to work with. There are static factories that can create publishers and methods

that allow operations to be chained way more easily.

The Project Reactor team did not like the name Processor, so the intermediary

components are called operators.

If you look in the official documentation, you will most likely encounter the schema

in Figure 12-6 .3

3�Image source: Project Reactor Public API JavaDoc http://projectreactor.io/docs/core/
release/api/reactor/core/ publisher/Flux.html

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

553

Figure 12-6 is an abstract schema of how the Flux publisher works. It emits elements,

throws exceptions, and completes when there are no more elements to publish. The

Project Reactor team found a prettier way to draw it.

The drawing for the Mono implementation is similar (see http://projectreactor.

io/docs/core/release/api/reactor/core/publisher/Mono.html).

But let’s put that aside and look at a few code samples. Creating Flux instances is

very easy using the multiple utility methods in this class. But before starting to publish

elements, let’s design a general subscriber that does nothing else than print values,

because we need it to make sure our Flux publisher actually works.

To write a subscriber using Project Reactor API, you have multiple options. You can

implement the org.reactivestreams.Subscriber<T> directly.

package com.apress.bgn.ch12.reactor;

import org.reactivestreams.Subscriber;

import org.reactivestreams.Subscription;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class GenericSubscriber<T> implements Subscriber<T> {

 private static final Logger log =

 LoggerFactory.getLogger(GenericSubscriber.class);

 private Subscription subscription;

 @Override

Figure 12-6.  Project Reactor Flux Publisher implementation

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

554

 public void onSubscribe(Subscription subscription) {

 if (this.subscription == null) {

 this.subscription = subscription;

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(T element) {

 log.info("consumed {} ", element);

 subscription.request(1);

 }

 @Override

 public void onError(Throwable t) {

 log.error("Unexpected issue!", t);

 }

 @Override

 public void onComplete() {

 log.info("All done!");

 }

}

But, this can be avoided by either implementing reactor.core.CoreSubscriber<T>,

the reactor base interface for subscribers, or even better, by extending

BaseSubscriber<T> class, which provides basic subscriber functionality. The behavior

of subscriber typical methods can be modified by overriding methods with then same

name, but prefixed with hook. In the next code snippet, you can see how easy it is to write

a subscriber using Project Reactor.

package com.apress.bgn.ch12.reactor;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import reactor.core.publisher.BaseSubscriber;

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

555

public class GenericSubscriber<T> extends BaseSubscriber<T> {

 private static final Logger log =

 LoggerFactory.getLogger(GenericSubscriber.class);

 @Override

 protected void hookOnNext(T value) {

 log.info("consumed {} ", value);

 super.hookOnNext(value);

 }

}

Ta, da! Now we have a subscriber class, let’s create a reactive publisher that serves

integers from an infinite integer stream to use an instance of this class.

package com.apress.bgn.ch12.reactor;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import reactor.core.publisher.Flux;

import java.util.Random;

import java.util.stream.Stream;

public class ReactorDemo {

 �private static final Logger log = LoggerFactory.getLogger(ReactorDemo.

class);

 private static final Random random = new Random();

 public static void main(String... args) {

 Flux<Integer> intFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

 intFlux.subscribe(new GenericSubscriber<>());

 }

}

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

556

If you run the code, you see that all the generated integer values are printed. A Flux

can be created from a multiple of sources, including arrays and other publishers. And

for special situations, to avoid returning a null value, an empty Flux can be created by

calling the empty() method.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};

Flux.fromArray(names).subscribe(new GenericSubscriber<>());

Flux<Integer> intFlux = Flux.empty();

intFlux.subscribe(new GenericSubscriber<>());

But the most awesome method is named just(..) and it is provided for Flux

and Mono both. It takes one or more values and returns a publisher, a Flux or a Mono,

depending on the type being called on.

Flux<String> dummyStr = Flux.just("one", "two", "three");

Flux<Integer> dummyInt = Flux.just(1,2,3);

Mono<Integer> one = Mono.just(1);

Mono<String> empty = Mono.empty();

Another method that you might find useful is concat(), which allows us to

concatenate two Flux instances.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};

Flux<String> namesFlux = Flux.fromArray(names);

 String[] names2 = {"Hanna", "Eugen", "Anthony", "David"};

Flux<String> names2Flux = Flux.fromArray(names2);

Flux<String> combined = Flux.concat(namesFlux, names2Flux);

combined.subscribe(new GenericSubscriber<>());

And another thing that you might like, remember how the IntPublisher class had to

be slowed down using a Thread.sleep(1000) call? With Flux you do not need to do that,

because there are two utility methods that combined lead to the same behavior.

Flux<Integer> infiniteFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

557

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));

Flux<Integer> delayedInfiniteFlux = infiniteFlux.zipWith(delay, (s,l) -> s);

delayedInfiniteFlux.subscribe(new GenericSubscriber<>());

The interval(..) method creates a publisher that emits long values starting with 0

incrementing at specified time intervals on the global timer. It receives an argument of

type Duration. In the previous example, seconds were used. The zipWith(..) method

zips the Flux instance received as a parameter. The zip operation is a specific stream

operation that translates as both publishers emitting one element and combining these

elements using a java.util.function.BiFunction<T, U, R>. In our case, the function

discards the seconds element, and returns the elements of the calling stream slowed

down by the generated seconds of the stream given as an argument.

The good part about the components provided by Project Reactor is that they return

mostly the same type of objects they are being called on and this means they can be

easily chained. A reactive piece of code equivalent to the previously JDK-based example

can be written with reactor API as follows.

Flux<Integer> infiniteFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));

Flux<Integer> delayedInfiniteFlux =

 infiniteFlux.zipWith(delay, (s, l) -> s);

delayedInfiniteFlux

 .filter(element -> (element >= 0 && element < 127))

 .map(item -> {

 if (item % 2 == 0 && item >= 98 && item <= 122) {

 item -= 32;

 }

 return item; })

 .map(element -> (char) element.intValue())

 .subscribe(new GenericSubscriber<>());

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

558

Most functions that you remember from the Stream API have been implemented for

a reactive usage in Project Reactor, so if this code seems familiar, this is the reason why.

As proven with the code samples in this section, programming using reactive streams

is way more practical using the Project Reactor API, so if you are ever in need of a

reactive library you could consider this one first. You can find the official documentation

at http://projectreactor.io/docs/core/milestone/reference/, it’s good and full of

examples. If ever Oracle decides to provide their own rich API for programming reactive

applications using reactive streams, they will probably be too late to the table.

�Summary
Reactive programming is not an easy topic, but it does seem to be the future of

programming. What you have to keep in mind is that reactive implementations are quite

useless with implementations that are not reactive. I mean, there is no use to design and

use reactive components with non-reactive components, because you might introduce

failure points and slow things down. For example, if you are using an Oracle database,

there is no point in defining a repository class that returns elements using reactive

streams, because an Oracle database does not support reactive access. So you add a

reactive layer that provides extra implementation, because there are no real benefits in

this case. But if your database of choice is MongoDB, you can use reactive programming

confidently, because MongoDB databases support reactive access. Also, if you are

building a web application with a ReactJS or angular interface, you can design your

controller classes to provide data reactively to be displayed by the interface.

This chapter covered

•	 reactive programming

•	 the behavior of reactive streams

•	 JDK reactive streams support

•	 the Reactive Streams Technology Compatibility Kit

•	 Project Reactor components

Chapter 12 The Publish/Subscribe Framework

(c) ketabton.com: The Digital Library

559
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_13

CHAPTER 13

Garbage Collection
When executing Java code, objects are created, used and discarded repeatedly from

memory. The process through which unused Java objects are discarded is called

memory management, but is most commonly known as garbage collection (GC).

garbage collection was mentioned in Chapter 5 as it was needed for explaining the

difference between primitive and reference types, but in this chapter we go deep

under the hood of the JVM to resolve yet another mystery of a running Java application.

When the Java garbage collector does its job properly, the memory is cleaned up,

before new objects are created and it does not fill up, so you could say that the memory

allocated to a program is recycled. Programs of low complexity, like the ones we’ve

been writing so far do not require that much memory to function, but depending on

their design (remember recursivity?) they could end up using more memory than it

is available to them. In Java, the garbage collector runs automatically. In more low

level languages, like C there is no automatic memory management, and the developer

is responsible for writing the code to allocate memory as needed, and deallocate it

when it is no longer needed. Although it seems practical to have automatic memory

management, the garbage collector can be a problem if managed incorrectly. So this

chapter provides enough information about the garbage collector to make sure it is used

wisely, and when problems arise, at least you have a good place to start solving them.

Although some ways to tune the garbage collector will be covered in this chapter

introduced, keep in mind that garbage collection tuning should not be necessary, a

program should be written in such a way that creates only objects that are needed to

perform its function and references are managed correctly, estimations should be done

before the application is put into production and the maximum amount of memory

needed by it should be known and configured before that. If the memory allocated to a

Java program is not enough, there is usually something rotten in the implementation.

(c) ketabton.com: The Digital Library

560

�Garbage Collection Basics
The Java automatic garbage collection is one of the major features of the of the Java

Programming language. The JVM is a virtual machine used to execute Java programs.

As the Java programs uses resources of the system the JVM is running on top of, it has to

have a way to release those resources safely. This job is done by the garbage collector.

To understand the garbage collector, we have to take a look at the JVM architecture.

�Oracle Hotspot JVM Architecture
Over the years, some big companies have produced their own variations of the JVM

(e.g., IBM) and now that Java is moving into the module age and rapid delivery style,

more and more companies appear that maintain a specific version of the JDK/JVM

(e.g., Azul), because migration to 9+ is difficult for big applications with legacy

dependencies. Also, another important economic factor here is that Java is paid software

as of January 1, 2019, and developers have to pay for the software they have developed,

which many are going to call bait and switch as Oracle first said, Here it is free now use

it, and then, Now that you have developed your Java apps, you have to pay us. If you

think about it, it is the same thing as buying the ground your house is built on, and the

bricks, and everything else. Because the only thing that is yours when building a Java

application is the application purpose and the design; everything you are using to build

it is part of the JDK, which belongs to Oracle.

Still, Oracle’s HotSpot is by far the most commonly used JVM when it comes to

garbage collection. This JVM provides a mature set of garbage collection options. Its

architecture is depicted in Figure 13-1.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

561

The heap memory area is managed by the garbage collector, and is split into multiple

zones. Objects are moved between these zones until being discarded. The zones are

depicted in Figure 13-2 for old-fashioned garbage collector and the new style of garbage

collector that follows the model of the current default garbage collector used by the JDK,

the G1GC, introduced in JDK 8.

Figure 13-1.  Oracle HotSpot JVM Architecture

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

562

The G1GC is a next-generation garbage collector designed for machines with a lot of

resources, which is why its approach to the partitioning of the heap is different. Its heap

is partitioned into a set of equal-sized heap regions, each a contiguous range of virtual

memory. Certain region sets are assigned the same roles (Eden, survivor, old) as in the older

collectors, but there is not a fixed size for them. This provides greater flexibility in memory

usage. You can read more about the different types of garbage collectors in the next section,

for now the focus remain on the heap memory and its zones that are called generations.

When an application is running, objects created by it are stored in the young
generation area. When an object is created it starts its life in a subdivision of this

generation called the Eden space. When the Eden space is filled, this triggers a

minor garbage collection(minor GC run) that cleans up this area of unreferenced

objects, and moves referenced objects to the first survivor space (S0). The next time

the Eden space is filled, another minor GC run is triggered, which again deletes

unreferenced objects, and referenced objects are moved to the next survivor space (S1).

The objects in S0 have been there for a minor GC run, so their age is incremented and

they are moved to S1, so S0 and the Eden can be cleaned up. At the next minor GC run,

Figure 13-2.  The heap structure

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

563

the operation is repeated again, but this time referenced objects are saved into the empty

S0 and the older objects form S1, have their age incremented and moved here as well,

so the S1 and Eden can be cleaned up. After the objects in survivor space reach a certain

age, they are moved to the old generation space during minor GC runs.

The previous steps are depicted in Figure 13-3, and the o1 and o2 objects age until

they are moved to the old generation area.

Figure 13-3.  Minor GC runs in the young generation space

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

564

Minor GC collections happen until the old generation space is filled, which is when a

major garbage collection(major GC run) is triggered. That deletes unreferenced objects,

compacts the memory, and moves objects around so that the empty memory left is one

big compact space. The minor garbage collection event is a stop the world event, this

process basically takes over the run of the application and pauses its execution so it can

free the memory. As the young generation space is small in size (as you see in the next

section), the application pause is usually negligible. If no memory can be reclaimed from

the young generation area after a minor GC run takes place, a major GC run is triggered.

The permanent generation area is reserved for JVM metadata such as classes and

methods. This area is cleaned too from time to time to remove classes that are no longer

used in the application. The cleanup of this area is triggered when there is no more

available memory left in the heap.

The garbage collection process described up to this paragraph is specific to

generational garbage collectors, such as the G1GC; but before JDK 8, garbage collection

was done using an older garbage collector that uses an algorithm called Concurrent
Mark Sweep. This type of garbage collector runs in parallel with the application marking

used and unused zones of memory. Then it would delete unreferenced objects and

would compact the memory into a contiguous zone by moving objects around. This

process is inefficient and time consuming. Because as more and more objects were

created, the garbage collection takes more and more time to be performed. But as most

objects are short-lived, this is not really a problem. So the CMS garbage collector was OK

for a while.

The G1GC has a similar approach, but after the mark phase is finished, G1 focuses on

regions that are mostly empty to recover as much unused memory as possible. That is why

this garbage collector is also called garbage-first. G1 also uses a pause prediction model to

decide how many memory regions can be processed based on the pause time set for the

application. Objects from the processed region are copied to a single region of the heap,

thus realizing a memory compaction at the same time. Also G1GC does not have a fixed

size for the eden and survivor spaces, it decides their size after every minor GC run.

�How Many Garbage Collectors Are There?
The Oracle HotSpot JVM provides the following types of garbage collectors:

•	 serial collector: All garbage collection events are conducted serially

in one thread. Memory compaction happens after each garbage

collection.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

565

•	 parallel collector: Multiple threads are used for minor garbage

collection. A single thread is used for a major garbage collection and

Old Generation compaction.

•	 CMS (Concurrent Mark Sweep): Multiple threads are used for

minor garbage collection using the same algorithm as the parallel

GC. Major garbage collection is multithreaded, but CMS runs

concurrently alongside application processes to minimize stop the

world events. No memory compaction is done. This type of garbage

collector is suitable for applications requiring shorter garbage

collection pauses and that can afford to share processor resources

with the garbage collector while the application is running. This was

the default garbage collector until Java 8, when G1 was introduced

officially as default.

•	 G1 (garbage first): Introduced in Oracle JDK 7, update 4, was

designed to permanently replace the CMS GC and is suitable for

applications that can operate concurrently with CMS collector, need

memory compaction, need more predictable GC pause durations,

and do not require a much larger heap. The G1 collector is a server-

style garbage collector, targeted for multiprocessor machines with

large memories, and considering that most laptops now have at

least eight cores and 16 GB RAM it is suitable for them. G1 has both

concurrent (runs along with application threads—e.g., refinement,

marking, cleanup) and parallel (multithreaded—e.g., stop the world)

phases. Full garbage collections are still single threaded, but if tuned

properly your applications should avoid full garbage collections.

•	 Epsilon no-op collector: Introduced in Java 11, this type of collector

is a dummy GC that does not recycle or clean up the memory. When

the heap is full, the JVM shuts down. This type of collector can be

used for performance tests, for memory allocation analysis, VM

interface testing, and extremely short-lived jobs and applications

that are very limited when it comes to memory usage and developers

must estimate the application memory footprint as precisely

as possible.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

566

OK, I’ve listed the garbage collector types, but how do we know which is the one

used by our local JVM? There is more than one way. The simplest way is to add the

-verbose:gc as a VM option when running a simple main class. Using Java 11 JDK,

without any other configuration will print this in the console.

[0.016s][info][gc] Using G1

So it’s clear; G1 garbage collector is used. We can see the details of this garbage

collector by adding another VM option: -Xlog:gc*1.

[0.012s][info][gc,heap] Heap region size: 1M

[0.017s][info][gc] Using G1

[0.017s][info][gc,heap,coops] Heap address: 0x0000000700000000, size: 4096 MB,

 Compressed Oops mode: Zero based, Oop shift amount: 3

[0.216s][info][gc,heap,exit] Heap

[0.216s][info][gc,heap,exit] garbage-first heap total 262144K, used 3072K

 [0x0000000700000000, 0x0000000800000000)

[0.216s][info][gc,heap,exit] region size 1024K, 4 young (4096K), 0

survivors (0K)

[0.216s][info][gc,heap,exit] Metaspace used 7246K, capacity 7364K,

committed 7680K, reserved 1056768K

[0.216s][info][gc,heap,exit] class space used 663K, capacity 709K,

committed 768K, reserved 1048576K

Now we can see the heap maximum size (4096 GB), the memory region size (1 M),

and the size and occupation for each generation.

But we can tell JVM to use any of the garbage collectors listed previously by using

their specific VM options.

•	 -XX:+UseSerialGC to use the serial GC (in this case, adding

-verbose:gc -Xlog:gc* as the VM option) produces the following

output.

1�This VM option replaces deprecated -XX:+PrintGCDetails

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

567

[0.012s][info][gc] Using Serial

[0.012s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:

4096 MB,

 Compressed Oops mode: Zero based, Oop shift amount: 3 [0.209s]

[info][gc,heap,exit] Heap

[0.209s][info][gc,heap,exit] def new generation total 78656K,

used 9794K

 [0x0000000700000000, 0x0000000705550000, 0x0000000755550000)

[0.209s][info][gc,heap,exit] eden space 69952K, 14% used

 [0x0000000700000000, 0x0000000700990808, 0x0000000704450000)

[0.209s][info][gc,heap,exit] from space 8704K, 0% used

 [0x0000000704450000, 0x0000000704450000, 0x0000000704cd0000)

[0.209s][info][gc,heap,exit] to space 8704K, 0% used

 [0x0000000704cd0000, 0x0000000704cd0000, 0x0000000705550000)

[0.209s][info][gc,heap,exit] tenured generation total 174784K,

used 0K

 [0x0000000755550000, 0x0000000760000000, 0x0000000800000000)

[0.209s][info][gc,heap,exit] the space 174784K, 0% used

 �[0x0000000755550000, 0x0000000755550000, 0x0000000755550200,

0x0000000760000000)

[0.209s][info][gc,heap,exit] Metaspace used 7246K,

capacity 7364K, committed 7680K,

 reserved 1056768K

[0.209s][info][gc,heap,exit] class space used 663K, capacity

709K, committed 768K,

 reserved 1048576K

•	 -XX:+UseParallelGC to use the serial GC (in this case, adding

-verbose:gc -Xlog:gc* as the VM option) produces the following

output.

[0.017s][info][gc] Using Parallel

[0.017s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:

4096 MB,

 Compressed Oops mode: Zero based, Oop shift amount: 3 [0.231s]

[info][gc,heap,exit] Heap

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

568

[0.231s][info][gc,heap,exit] PSYoungGen total 76288K, used 9175K

[0x00000007aab00000, 0x00000007b0000000, 0x0000000800000000)

[0.231s][info][gc,heap,exit] eden space 65536K, 14% used

 [0x00000007aab00000,0x00000007ab3f5f38,0x00000007aeb00000)

[0.231s][info][gc,heap,exit] from space 10752K, 0% used

 [0x00000007af580000,0x00000007af580000,0x00000007b0000000)

[0.231s][info][gc,heap,exit] to space 10752K, 0% used

 [0x00000007aeb00000,0x00000007aeb00000,0x00000007af580000)

[0.231s][info][gc,heap,exit] ParOldGen total 175104K, used 0K

 [0x0000000700000000, 0x000000070ab00000, 0x00000007aab00000)

[0.231s][info][gc,heap,exit] object space 175104K, 0% used

 [0x0000000700000000,0x0000000700000000,0x000000070ab00000)

[0.231s][info][gc,heap,exit] Metaspace used 7245K, capacity

7364K, committed 7680K,

 reserved 1056768K

[0.231s][info][gc,heap,exit] class space used 663K, capacity

709K, committed 768K,

 reserved 1048576K

•	 -XX:+UseConcMarkSweepGC to use the serial GC (in this case, adding

-verbose:gc -Xlog:gc* as the VM option) produces the following

output.

[0.018s][info][gc] Using Concurrent Mark Sweep

[0.018s][info][gc,heap,coops] Heap address: 0x0000000700000000,

size: 4096 MB,

 �Compressed Oops mode: Zero based, Oop shift amount: 3 [0.260s]

[info][gc,heap,exit] Heap

[0.260s][info][gc,heap,exit] par new generation total 78656K,

used 9794K

 [0x0000000700000000, 0x0000000705550000, 0x0000000729990000)

[0.260s][info][gc,heap,exit] eden space 69952K, 14% used

 [0x0000000700000000, 0x0000000700990850, 0x0000000704450000)

[0.260s][info][gc,heap,exit] from space 8704K, 0% used

 [0x0000000704450000, 0x0000000704450000, 0x0000000704cd0000)

[0.260s][info][gc,heap,exit] to space 8704K, 0% used

 [0x0000000704cd0000, 0x0000000704cd0000, 0x0000000705550000)

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

569

[0.260s][info][gc,heap,exit] concurrent mark-sweep generation total

174784K,

 �used 0K [0x0000000729990000, 0x0000000734440000,

0x0000000800000000)

[0.260s][info][gc,heap,exit] Metaspace used 7336K,

capacity 7428K, committed 7680K,

 reserved 1056768K

[0.260s][info][gc,heap,exit] class space used 668K, capacity

709K, committed 768K,

 reserved 1048576K

•	 -XX:+UseG1GC, the default garbage collector, we already covered this one

•	 -XX:+UseEpsilonGC, the no-op garbage collector. If you see a

message in the console that asks you to also add the -XX:+UnlockExp

erimentalVMOptions before the option to enable the Epsilon garbage

collector, do so. This VM option is needed to unlock experimental

features and at the moment when this book is being written this

garbage collector is an experimental feature. Adding -verbose:gc

-Xlog:gc* as the VM option produces the following output.

[0.013s][info][gc] Resizeable heap; starting at 256M, max: 4096M,

step: 128M

[0.013s][info][gc] Using TLAB allocation; max: 4096K

[0.013s][info][gc] Elastic TLABs enabled; elasticity: 1.10x

[0.013s][info][gc] Elastic TLABs decay enabled; decay time: 1000ms

[0.013s][info][gc] Using Epsilon

[0.013s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:

4096 MB,

 �Compressed Oops mode: Zero based, Oop shift amount: 3 [0.213s]

[info][gc,heap,exit] Heap

[0.213s][info][gc,heap,exit] Epsilon Heap

[0.213s][info][gc,heap,exit] Allocation space:

[0.213s][info][gc,heap,exit] space 262144K, 1% used

 [0x0000000700000000, 0x000000070030e8f0, 0x0000000710000000)

[0.213s][info][gc] Total allocated: 3130 KB

[0.213s][info][gc] Average allocation rate: 14691 KB/sec

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

570

The data printed for these garbage collectors has common elements, such as the size

of heap, which is always 256 MB at the start of the application and has a maximum size of

4096 MB on my system. The eden and the young generation differ; the G1 uses 4096 KB

for the young generation, whereas the CMS requires 78656 KB (a lot more).

The most interesting is the Epislon garbage collector, because as expected, it does

not have a heap split into generation areas, as this type of garbage collector does not

perform garbage collection at all. The TLAB is an acronym for thread local allocation

buffer, which is the memory area where objects are stored. Only bigger objects are stored

outside of TLABs. The TLABs are dynamically resized during the execution for each

thread individually. So, if a thread allocates very much, the new TLABs that it gets from

the heap increase in size. The minimum size of a TLAB can be controlled using two VM

options: -XX:MinTLABSize.

For the small empty class that we ran with the previous VM options, this output is not

really relevant, but you can play with these options when running the code from the next

sections, because that is when the statistics printed here have some relevance.

Also, there is a VM option named -XX:+PrintCommandLineFlags that can be used

when a class is run to depict configurations of the garbage collector: the number of

threads it uses, heap size, and so on.

-XX:G1ConcRefinementThreads=8

-XX:GCDrainStackTargetSize=64

-XX:InitialHeapSize=268435456

-XX:MaxHeapSize=4294967296

-XX:+PrintCommandLineFlags

-XX:ReservedCodeCacheSize=251658240

-XX:+SegmentedCodeCache

-XX:+UseCompressedClassPointers

-XX:+UseCompressedOops -XX:

+UseG1GC

Most of these VM options have obvious names that allow a developer to infer

what they are used for. Also, there is the official documentation from Oracle. If you

ever need to dissect the Oracle memory management, the article at www.oracle.com/

technetwork/java/javase/tech/index-jsp-136373.html is very good.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

571

�Working with GC from the Code
For most applications garbage collection is not something a developer must really take

into account. The JVM starts a GC thread that does its job without hindering the execution

of the application (usually). But for developers who want to have more than Java basic

skills, understanding how the Java garbage collection works and how can it be tuned

is a must. The first thing that a developer must accept about Java garbage collection is

that it cannot be controlled at runtime. As you see in the next section, there is a way to

suggest the JVM that some memory cleaning is necessary, but there is no guarantee that

a memory cleaning be performed. The only thing that can be done is specify some code

to be run when an object is discarded.

�Using the finalize() Method
Every Java class is automatically a subclass of the JDK java.lang.Object class. This

class is at the root of the JDK hierarchy and is the root of all classes in an application.

It provides a few useful methods that can be extended or overwritten to implement

behavior specific to the subclass. The equals(), hashcode() and toString() were

already mentioned. The finalize() method was deprecated in Java 9, but it was not

removed from the JDK. This method is called by the garbage collector when there are no

longer any references to that object in the code. Before we move forward, let’s look at the

following piece of code.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.NameGenerator;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.Random;

public class Main {

 private static final Logger log = LoggerFactory.getLogger(Main.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random rnd = new Random();

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

572

 public static void main(String... args) {

 while (true) {

 genSinger();

 }

 }

 private static void genSinger() {

 Singer s = new Singer(nameGenerator.genName(),

 rnd.nextDouble(), LocalDate.now());

 log.info("JVM created: {}", s.getName());

 }

}

The action performed by the code should be clear, even without knowing how the

what the NameGenerator or the Singer class look like. The main method calls the

genSinger() method in an infinite loop. This means that an infinite number of Singer

instances is created. So, what happens? Will the code run? For how long? If you were able

to reply these questions in your mind, my work here is complete. You can stop reading

the book now.

In Chapter 5, there were some figures representing the memory contents for a small

program. Figure 13-4 represents how the Java heap and stack memory might look during

the execution of the previous program.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

573

Of course, only one genSinger() call was represented and only one Singer instance.

When the main(..) method is called, references to the static instances are created,

which will be relevant to the program until the end of its execution. Then, genSinger()

methods is called repeatedly. Each of these methods has its own stack where it saves

references to the objects created within the context of that method, in this case the

Singer instance. This reference is used to print the name of the Singer instance that

was created in the body of this method. Then the method terminates without returning

the reference. This means that the instance that was created is no longer necessary,

as it was created to be used only in the context of this method. When the execution of

the genSinger() method ends, the reference to the Singer instance is discarded from

the stack. The Singer instance still exists, in the heap memory, but can no longer be

accessed from the program, thus it is no longer necessary to it. It now keeps a memory

block occupied with its own contents, its references to other instances, in this case, a

String, a Double and a LocalDate.

Considering that the genString() method is called an infinite number of times (in

Figure 13-4 this is represented with the (*n)), more Singer instances are created, which

keep the memory occupied. At some point, the program becomes unable to create

others because there is no memory available.

Figure 13-4.  Java stack and heap memory during execution of the Main.class

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

574

This is where the garbage collector comes into the picture. The Singer instances that

are no longer being referenced from the program (and thus unreachable) are considered

garbage. Now you know where the name came from. These instances are no longer

necessary and the memory can be safely cleaned up. The garbage collector is a cleanup

thread that runs in parallel with the main execution thread. It occasionally deletes the

unreferenced objects from the heap memory. And because the finalize() method is

still available for use, we overwrite it for the Singer type to print a log message so that

we can see when the garbage collector is destroying an instance, because before deleting

an object from the heap memory the finalize() method of the object is called. The

following code snippet depicts the Singer instance.

package com.apress.bgn.ch13;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.*;

import java.time.LocalDate;

import java.util.Objects;

public class Singer implements Serializable {

 private static final Logger log = LoggerFactory.getLogger(Singer.class);

 private final long birthtime;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 this.birthtime = System.nanoTime();

 }

 public String getName() {

 return name;

 }

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

575

 @Override

 protected void finalize() throws Throwable {

 try {

 long deathtime = System.nanoTime();

 long lifespan = (deathtime - birthtime) / 1_000_000_000;

 log.info("GC Destroyed: {} after {} seconds", name, lifespan);

 } finally {

 super.finalize();

 }

 }

}

The birthtime field was added to calculate the time that passes between when an

instance constructor is called and the time that the garbage collector calls the finalize()

method; basically we are calculating the lifespan of the instance. As the time is counted in

nanoseconds, we are dividing the difference by 109 to get the time in seconds.

The code sample used in this section gives the garbage collector a lot of work to do,

as every Singer instance being created is being used very little before being discarded. If

you run the code you will see a lot of log messages in the console, first a lot of messages

about objects being created, but if you wait, messages about objects being discarded will

appear as well. All output is directed to a file, because the IntelliJ IDEA console is based

on a buffer that resets from time to time to prevent the editor from crashing. You have

to stop the program manually, because the while(true) loop never ends, because its

condition never evaluates to false. After you stopped the program, you notice a log file

at the following location: /chapter13/out/gc.log. If you don’t, modify the IntelliJ IDEA

launcher for this class, add the -Dlogback.configurationFile=chapter13/src/main/

resources/logback.xml VM option, and run it again.

The gc.log contents should look a lot like the snippet depicted next.

INFO c.a.b.c.Main - JVM created: Ngvuamtkrfeavt

INFO c.a.b.c.Main - JVM created: Weeqhwssuddcatm

INFO c.a.b.c.Main - JVM created: Zrtfrjsjwhwlzh

INFO c.a.b.c.Main - JVM created: Ymsdzcpkatryscf

INFO c.a.b.c.Main - JVM created: T dkqgjujyz moj

INFO c.a.b.c.Main - JVM created: Jjqzzetnwzi itu

INFO c.a.b.c.Main - JVM created: Iuivwasfailc fi

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

576

INFO c.a.b.c.Singer - GC Destroyed: Qtzr gwe ifujbn after 1 seconds

INFO c.a.b.c.Main - JVM created: Djlui rbftvepf

INFO c.a.b.c.Singer - GC Destroyed: Wzdwcc cqhisbbq after 0 seconds

INFO c.a.b.c.Main - JVM created: Caqw iddgborajm

INFO c.a.b.c.Singer - GC Destroyed: Ntiarzdzbhzolnn after 4 seconds

INFO c.a.b.c.Main - JVM created: Crtayuigzccufqj

INFO c.a.b.c.Singer - GC Destroyed: Irsovagekpc hca after 0 seconds

INFO c.a.b.c.Singer - GC Destroyed: Hqkzodfrnhuhqwk after 0 seconds

INFO c.a.b.c.Singer - GC Destroyed: Norlcmkzjvkhiev after 0 seconds

INFO c.a.b.c.Singer - GC Destroyed: Gbjknkffngfaghf after 0 seconds

INFO c.a.b.c.Singer - GC Destroyed: Mhkn zpfogcc jm after 0 seconds

INFO c.a.b.c.Main - JVM created: Cningetinfmbunh

INFO c.a.b.c.Main - JVM created: Ipwomacdhzoywce

INFO c.a.b.c.Main - JVM created: Ydobktlzwcqvkfl

INFO c.a.b.c.Main - JVM created: Abjggajzbifghpa

INFO c.a.b.c.Main - JVM created: Hnwdvhnkwc rmbz

INFO c.a.b.c.Main - JVM created: Hvcwmekbyhjfncc

INFO c.a.b.c.Singer - GC Destroyed: Rbefgb cmvlnfgm after 1 seconds

INFO c.a.b.c.Singer - GC Destroyed: Kusmvtkkikjtzzj after 1 seconds

INFO c.a.b.c.Singer - GC Destroyed: Ouybfhckbtkichc after 1 seconds

INFO c.a.b.c.Singer - GC Destroyed: Djzozlssperibka after 1 seconds

...

When you have the file, you can open it and start analyzing its contents. But because

IntelliJ might not open such a big file, try to open it with a specialized text editor like

Notepad++ or Sublime. Or, if you use a Unix/Linux operating system, open your console

and use the grep command like this:

grep -a 'seconds' gc.log

This displays all log entries printed when the finalize() method is called. Then, you

can select the name of an instance can do something like this:

$ grep -a 'Lybhpococssuoz' gc.log

INFO c.a.b.c.Main - JVM created: Lybhpococssuoz

INFO c.a.b.c.Singer - GC Destroyed: Lybhpococssuoz after 7 seconds

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

577

The time it takes for a Singer instance to be deleted from the heap varies, and this

is because the GC is called randomly, the developer has no control over it. There is a

way to explicitly request garbage collection to be done, well two ways. You can call the

following.

System.gc() or

Runtime.getRuntime().gc();

This doesn’t mean that the GC immediately start cleaning up the memory; it is more

like a suggestion to the JVM that it should make an effort to recycle unused objects and

reclaim unused memory, because it is needed.

Now, back to the finalize() method. It was marked as deprecated in Java 9. This

method is meant to be overridden by classes that handle resources that are stored

outside of the heap. The example is the I/O handling classes used to read resources

as files or URLs and databases. The finalize() would be called by the JVM when an

object can no longer be accessed by any alive thread of the running application to make

sure that those resources were released and available for other external and unrelated

programs to use.

** I n older versions of Apache Tomcat (a Java based web server), there was
a bug on Windows related to release of resources. When the server crashed or
stopped, it couldn’t be restarted because some of its log files were not released
properly, and the new server instance could not get access to them to start writing
the new log entries.

With the introduction of the java.lang. AutoCloseable interface in JDK 1.7,

the finalize() method became less and less used. Also, another problem with this

method is that the JVM cannot guarantee which thread call this method for any

given object. So any thread that has access to it can call it, and we might end up with

resources being released while the object is still needed. Also, what happens if the

custom implementation is not correct, throws exceptions or does not releases resources

properly? The finalize() method should be called only once by the JVM, but this

cannot be guaranteed. Another downside is that finalize() calls, are not automatically

chained, so an implementation of a finalize() method, must always explicitly call the

finalize() method of the superclass. And another one for you: once finalize()

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

578

was called, there is no way to stop the method from executing or undo its effect, so you are

basically left with a reference to an object that no longer has access to its resources. As you

probably figured out by now, there is a lot of freedom given to the developer when it comes

to implementing this method, and this means there is a lot of room for errors to happen.

This is why the finalization mechanism in Java is flawed and was deprecated in JDK

9 to discourage its use. Improper finalize() implementations could lead to: memory

leaks (memory contents are not discarded), deadlocks (resource is blocked by two

processes) and hangs(process is in a waiting state it cannot go out of). But, in order to

help with memory management the java.lang.ref.Cleaner class was introduced. But

before getting into that, I must show you how to check out the status of your memory

programmatically.

�Heap Memory Statistics
The Runtime class is useful when trying to interact with the internals of the JVM while

a program is running. Its gc() method can be called to suggest to the JVM that the

memory should be cleaned. A few chapters ago we used methods in this class to start

processes from the Java code. There are three methods in this class that are useful to see

the status of the memory assigned to a Java program.

•	 runtime.maxMemory() returns the maximum amount of memory the

JVM attempts to use for its heap, if needed. The value returned by this

method varies from machine to machine and is being set implicitly to

a quarter of the total existing RAM memory on the machine, unless

is set it is set explicitly by using the JVM option -Xmx followed by the

amount of memory, (e.g., -Xmx8G allows the JVM to use a maximum

of 8 GB of memory).

•	 runtime.totalMemory() returns the total amount of memory of

the JVM. The value returned by this method varies from machine to

machine too and is implementation-dependent, unless explicitly set

by using the JVM option -Xms followed by the amount of memory

(e.g., -Xms1G tells the JVM that is the initial size of its heap memory

should be 1 GB of memory).

•	 runtime.freeMemory() returns an approximation of the amount of

free memory for the Java virtual machine.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

579

Using the runtime.totalMemory() and the runtime.freeMemory() methods, we can

write some code to check how much of our memory is occupied at various times during

the execution of the program. For this we create a class named MemAudit that uses the

current logger to print memory values.

package com.apress.bgn.ch13.util;

import org.slf4j.Logger;

public class MemAudit {

 private static final long MEGABYTE = 1024L * 1024L;

 private static final Runtime runtime = Runtime.getRuntime();

 public static void printBusyMemory(Logger log) {

 long memory = runtime.totalMemory() - runtime.freeMemory();

 log.info("Occupied memory: {} MB", (memory / MEGABYTE));

 }

 public static void printTotalMemory(Logger log) {

 �log.info("Total Program memory: {} MB", (runtime.totalMemory()/

MEGABYTE));

 �log.info("Max Program memory: {} MB", (runtime.maxMemory()/MEGABYTE));

 }

}

And the methods in this class are called during the execution of our program as it

follows.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.NameGenerator;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.Random;

import static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;

import static com.apress.bgn.ch13.util.MemAudit.printBusyMemory;

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

580

public class Main {

 private static final Logger log = LoggerFactory.getLogger(Main.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random random = new Random();

 public static void main(String... args) {

 printTotalMemory(log);

 int count =0;

 while (true) {

 genSinger();

 count++;

 if (count % 1000 == 0) {

 printBusyMemory(log);

 }

 }

 }

 private static void genSinger() {

 Singer s = new Singer(nameGenerator.genName(),

 random.nextDouble(), LocalDate.now());

 log.info("JVM created: {}", s.getName());

 }

}

Now, after we delete the old log file, we should run it again, and leave it for a little

while. And because it is impossible again to see the output, we’ll use the grep method to

extract all lines containing the memory word, and the result should look quite similar to

the next listing.

$ grep -a 'memory' gc.log

INFO c.a.b.c.Main - Total Program memory: 256 MB

INFO c.a.b.c.Main - Max Program memory: 4096 MB

INFO c.a.b.c.Main - Occupied memory: 5 MB

INFO c.a.b.c.Main - Occupied memory: 3 MB

INFO c.a.b.c.Main - Occupied memory: 4 MB

INFO c.a.b.c.Main - Occupied memory: 5 MB

INFO c.a.b.c.Main - Occupied memory: 5 MB

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

581

INFO c.a.b.c.Main - Occupied memory: 4 MB

INFO c.a.b.c.Main - Occupied memory: 4 MB

INFO c.a.b.c.Main - Occupied memory: 7 MB

INFO c.a.b.c.Main - Occupied memory: 8 MB

INFO c.a.b.c.Main - Occupied memory: 8 MB

INFO c.a.b.c.Main - Occupied memory: 9 MB

INFO c.a.b.c.Main - Occupied memory: 7 MB

INFO c.a.b.c.Main - Occupied memory: 3 MB

INFO c.a.b.c.Main - Occupied memory: 15 MB

INFO c.a.b.c.Main - Occupied memory: 7 MB

...

The max memory is 4096MB, which means my machine has a total of 16 GB of

RAM, and the occupied memory is very little, not even close to the initial 256MB the

JVM is given to use. If we want to see real memory being occupied we can modify the

genSinger() method to return the created references and add them to a list.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.NameGenerator;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import static com.apress.bgn.ch13.util.MemAudit.printBusyMemory;

import static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;

public class MemoryConsumptionDemo {

 private static final Logger log =

 LoggerFactory.getLogger(MemoryConsumptionDemo.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random random = new Random();

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

582

 public static void main(String... args) {

 printTotalMemory(log);

 List<Singer> singers = new ArrayList<>();

 for (int i = 0; i < 1_000_000; ++i) {

 singers.add(genSinger());

 if (i % 1000 == 0) {

 printBusyMemory(log);

 }

 }

 }

 private static Singer genSinger() {

 Singer s = new Singer(nameGenerator.genName(),

 random.nextDouble(), LocalDate.now());

 log.info("JVM created: {}", s.getName());

 return s;

 }

}

After running the program, we can actually see the memory being used increasing

gradually. A look in the log filtered magically by the grep command shows us that the

program keeps the memory occupied until its end, since the references now are saved in

to the List<Singer> instance.

 $ grep -a 'memory' gc.log

INFO c.a.b.c.MemoryConsumptionDemo - Total Program memory: 256 MB

INFO c.a.b.c.MemoryConsumptionDemo - Max Program memory: 4096 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 13 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 16 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 18 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 21 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 6 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 9 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 12 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 15 MB

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

583

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 17 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 20 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 23 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 26 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 28 MB

...

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 428 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 430 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 433 MB

And as we print the occupied memory every 1000 steps, we can draw the conclusion

that 1000 Singer instances occupy approximatively 2 MB. The code no longer uses an

infinite loop to generate instances, if it would do that, at some point in time the program

will abruptly crash throwing the following exception.

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

 at chapter.thirteen/com.apress.bgn.ch13.MemoryConsumptionDemo

 .genSinger(MemoryConsumptionDemo.java:64)

 at chapter.thirteen/com.apress.bgn.ch13.MemoryConsumptionDemo

 .main(MemoryConsumptionDemo.java:55)

Remember the value returned by the runtime.maxMemory()? On my machine, it was

4096MB. If I look in the console, right before the exception, I will see the following.

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

So the JVM was struggling to create another Singer instance, but there was no more

memory left. The last value printed before the exception was 4095MB, which is 1 MB less

than 4096MB the maximum amount of memory that the JVM was allowed to use. So the

poor JVM crashed because there was no more heap memory available. If a program ever

ends like that, the problem is always in the design of the solution. Also the values for

total and maximum memory for the JVM can influence the behavior of the GC as well.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

584

The -Xms and -Xmx are important because they decide the initial and the maximum

size of the heap memory. Configured properly they can increase performance, but when

unsuitable values are used they have the adverse effect. For example, never set an initial

size for the heap too small, because if there is not enough space to fit all objects created

by the application the JVM has to allocate more memory, rebuilding the heap basically.

So if this happens a few times during the application run, the overall time consumption

is affected. The maximum size for the heap is very important, allocating too little might

cause an application crash, allocating too much might hinder other programs from

running. Deciding these values is usually done through repeated experiments and

starting with JDK 11, the new Epsilon garbage collector comes in handy for this purpose.

If you want to learn more about GC tuning, the best documentation is the official one

at https://docs.oracle.com/javase/10/gctuning/toc.htm.

So, now that you know what to expect from the GC, let’s look at other methods of

customizing its behavior so problems are avoided.

�Using Cleaner
After the finalize() method is taken out of the JDK, if needed, classes can be

developed to implement java.lang.AutoCloseable and provide an implementation

for the close() method and make sure you use your objects in a try-with-resources

statement. But if you want to avoid implementing the interface there is another way,

use a java.lang.ref.Cleaner object. This class can be instantiated and objects can be

registered to it together with an action to perform when the object is being discarded by

the garbage collector. Using a Cleaner instance, the previous code can be rewritten as

depicted in the next code listing.

 package com.apress.bgn.ch13.cleaner;

import com.apress.bgn.ch13.util.NameGenerator;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.lang.ref.Cleaner;

import java.time.LocalDate;

import java.util.Random;

import static com.apress.bgn.ch13.util.MemAudit.printBusyMemory;

import static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

585

public class CleanerDemo {

 �private static final Logger log = LoggerFactory.getLogger(CleanerDemo.

class);

 public static final Cleaner cleaner = Cleaner.create();

 private static NameGenerator nameGenerator = new NameGenerator();

 public static void main(String... args) {

 printTotalMemory(log);

 int count = 0;

 for (int i = 0; i < 100_000; ++i) {

 genActor();

 count++;

 if (count % 1000 == 0) {

 printBusyMemory(log);

 System.gc();

 }

 }

 �//filling memory with arrays of String to force GC to clean up

Actor objects

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 }

 private static Cleaner.Cleanable genActor() {

 Actor a = new Actor(nameGenerator.genName(), LocalDate.now());

 log.info("JVM created: {}", a.getName());

 Cleaner.Cleanable handle = cleaner.register(a,

 new ActorRunnable(a.getName(), log));

 return handle;

 }

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

586

 static class ActorRunnable implements Runnable {

 private final String actorName;

 private final Logger log;

 public ActorRunnable(String actorName, Logger log) {

 this.actorName = actorName;

 this.log = log;

 }

 @Override

 public void run() {

 log.info("GC Destroyed: {} ", actorName);

 }

 }

}

Because we wanted to make it easier for you to browse the code, as all these sources

are part of the same project, we are using here a class modelling an Actor instead of a

Singer, but no worries, the implementation is quite similar. The Cleaner instance has a

method named register(..) that is called to register the action to be performed when

the object is cleaned. The action to be performed is specified as a Runnable instance,

and the decision to create a class by implementing it, ActorRunnable in this example,

was taken so we could save the name of the object to be destroyed into a field, without

keeping a reference to the object to be destroyed; otherwise, the Cleaner.Cleanable

handle would not be used by the GC during the execution of the program, as the object

would appear as if it still had references to it.

The cleaner.register(..) method returns an instance of type Cleaner.Cleanable

that explicitly performs the action by calling the clean() method. If you run the

preceding code, the printed log would look similar to this:

INFO c.a.b.c.c.CleanerDemo - Total Program memory: 256 MB

INFO c.a.b.c.c.CleanerDemo - Max Program memory: 4096 MB

INFO c.a.b.c.c.CleanerDemo - JVM created: Vgyfr uayznrtu

INFO c.a.b.c.c.CleanerDemo - JVM created: Cowplkbzshwudhb

INFO c.a.b.c.c.CleanerDemo - JVM created: Ijwqydlvzldequd

INFO c.a.b.c.c.CleanerDemo - JVM created: Jfnjgopzmrdacim

INFO c.a.b.c.c.CleanerDemo - JVM created: Tnnwizmtipgmvsz

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

587

INFO c.a.b.c.c.CleanerDemo - JVM created: Wffuzkzrhrfjrsj

INFO c.a.b.c.c.CleanerDemo - JVM created: Vlfsvprbtfytdzm

...

INFO c.a.b.c.c.CleanerDemo - Occupied memory: 16 MB

INFO c.a.b.c.c.CleanerDemo - JVM created: Vrjflltszakvzgp

INFO c.a.b.c.c.CleanerDemo - JVM created: Ofu ugogizfwkci

...

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Dvhwsacmrytebor

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Sutwbmtegacrgvz

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Posqthfridobvit

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Bebmsdraphkpdbs

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Jrgekcgrkhcfkfv

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Ugffjeapvbjbqwz

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Mzkgezhkejfgc e

INFO c.a.b.c.c.CleanerDemo - JVM created: Rlamcgwypkktkah

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Tefdzrt zqilo

...

So, the same result as using finalize() was obtained, but without implementing

a deprecated method. As a good practice to take from here, if you are writing your

application using Java 9+, avoid using finalize(), because this method is clearly on the

path of being removed. Use Cleaner and you might have less of a hassle when upgrading

the Java version your application is using.

�Preventing GC from Deleting an Object
In the two previous sections, we focused on objects that are eligible for garbage

collection. But in an application, there are objects that should not be discarded while the

program runs, because they are needed. The most obvious references in our classes that

were discarded only at the end of the execution were the static fields, and they are final,

so they cannot be reinitialized.

private static final Logger log = LoggerFactory.getLogger(CleanerDemo.

class);

public static final Cleaner cleaner = Cleaner.create();

private static NameGenerator nameGenerator = new NameGenerator();

private static final Random random = new Random();

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

588

The problem with these static values is that they occupy the memory. What if you

need a big Map that contains a dictionary that is not needed when the application starts?

To solve this, enter the Singleton design pattern. The Singleton pattern is a specific

design of a class that ensures the class can only be instantiated once during the execution

of the program. This is done by hiding the constructor (declare it private), and declaring

a private static reference of the class type and a static method to return it. There is more

than one way to write a class according to the Singleton pattern, but the most common

way is depicted in the next code listing.

package com.apress.bgn.ch13.util;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.HashMap;

import java.util.Map;

public final class SingletonDictionary {

 private static final Logger log =

 LoggerFactory.getLogger(SingletonDictionary.class);

 private static SingletonDictionary instance = new SingletonDictionary();

 private Map<String, String> dictionary = new HashMap<>();

 private SingletonDictionary(){

 // init dictionary

 �log.info("Starting to create dictionary: {}", System.

currentTimeMillis());

 final NameGenerator keyGen = new NameGenerator(20);

 final NameGenerator valGen = new NameGenerator(200);

 for (int i = 0; i < 100_000; ++i) {

 dictionary.put(keyGen.genName(), valGen.genName());

 }

 log.info("Done creating dictionary: {}", System.currentTimeMillis());

 }

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

589

 public synchronized static SingletonDictionary getInstance(){

 return instance;

 }

}

In the code, we simulated a dictionary with 100,000 entries, all generated by

a modified version of the NameGenerator class. Log messages were printed in its

constructor to be really obvious when the instance is created. There are four things you

have to remember about the Singleton pattern.

•	 The constructor must be private, as it should not be called outside

the class.

•	 The class must contain a static reference to an object of its type that

can be initialized in place by calling the private constructor.

•	 A method to retrieve this instance must be defined, so it has to be

static.

•	 The method to retrieve the static instance also has to be synchronized

so no two threads can call it at the same and gain access to the

instance, because the core idea of the Singleton pattern is to allow the

class to be instantiated only once during the duration of the execution

of the program and ensure that no concurrent access is allowed, as it

might lead to unexpected behavior. Also, there is an implementation

version that initializes the instance in the method that retrieves it, so

concurrent access might lead to more than one instance being created.

In a singleton class, a static reference to an instance is created and this static

reference prevents the garbage collector from cleaning up this instance during the

execution of the program. To test this, we’ll write a main class that declares a Cleaner

instance, and register a Cleanable for the SingletonDictionary instance. The main

method creates a lot of String arrays to fill up the memory to convince the GC to delete

the SingletonDictionary instance, and we’ll even set its own reference to it to null.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.SingletonDictionary;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

590

import java.lang.ref.Cleaner;

public class SingletonDictionaryDemo {

 public static final Cleaner cleaner = Cleaner.create();

 private static final Logger log =

 LoggerFactory.getLogger(SingletonDictionaryDemo.class);

 public static void main(String... args) {

 log.info("Testing SingletonDictionary...");

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 SingletonDictionary singletonDictionary =

 SingletonDictionary.getInstance();

 cleaner.register(singletonDictionary, ()-> {

 log.info("Cleaned up the dictionary!");

 });

 // we delete the reference

 singletonDictionary = null;

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 log.info("DONE.");

 }

}

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

591

If we run the code and expect to see the "Cleaned up the dictionary!" message in

the console, we’re expecting in vain. That static reference in the SingletonDictionary

will not allow GC to touch that object until the program ends. The static reference that

we have in class SingletonDictionary is also called a strong reference, because it

prevents the object from being discarded from memory.

�Using Weak References
If there are strong references, we should be able to use weak references for objects that

we want cleaned, right? Right. In Java, there are three classes that can be used to create

a reference to an object that does not protect that object from garbage collection. This

is useful for objects that are too big, and it makes it inefficient to keep them in memory.

With this kind of objects it is worth the cost of time consumed to be reinitialized, because

keeping them in memory would slow done the overall performance of the application.

The three classes are:

•	 java.lang.ref.SoftReference<T>: objects referred by these type

of references are cleared at the discretion of the garbage collector in

response to memory demand. Soft references are most often used to

implement memory-sensitive caches.

•	 java.lang.ref.WeakReference<T>: objects referred by these type of

references do not prevent their referents from being made finalizable,

finalized, and then reclaimed. Weak references are most often used

to implement canonicalizing mappings. Canonicalizing mapping

refers to containers where weak references can be kept in and can

be accessed by other objects, but their link to the container, does not

prevent them from being collected.

•	 java.lang.ref.PhantomReference<T>: objects referred by these type

of references are enqueued after the collector determines that their

referents may otherwise be reclaimed. Phantom references are most

often used to schedule post-mortem cleanup actions.

Our SingletonDictionary contains a Map<> that is the big object stored in memory.

This map can be wrapped in a WeakReference, and we can write some logic that it should

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

592

be reinitialized if it is not there when accessed. Because we need to access the map, the

implementation changes a little, aside from wrapping the Map into a WeakReference. The

new class, named WeakDictionary, is depicted in the following code listing.

package com.apress.bgn.ch13.util;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.lang.ref.WeakReference;

import java.util.HashMap;

import java.util.Map;

public class WeakDictionary {

 private static final Logger log =

 LoggerFactory.getLogger(WeakDictionary.class);

 private static WeakDictionary instance = new WeakDictionary();

 private WeakReference<Map<Integer, String>> dictionary;

 private static Cleaner cleaner;

 private WeakDictionary() {

 cleaner = Cleaner.create();

 dictionary = new WeakReference<>(initDictionary());

 }

 public synchronized String getExplanationFor(Integer key) {

 Map<Integer, String> dict = dictionary.get();

 if (dict == null) {

 dict = initDictionary();

 dictionary = new WeakReference<>(dict);

 return dict.get(key);

 } else {

 return dict.get(key);

 }

 }

 public synchronized static WeakDictionary getInstance() {

 return instance;

 }

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

593

 private Map<Integer, String> initDictionary() {

 Map<Integer, String> dict = new HashMap<>();

 �log.info("Starting to create dictionary: {}", System.

currentTimeMillis());

 final NameGenerator keyGen = new NameGenerator(20);

 final NameGenerator valGen = new NameGenerator(200);

 for (int i = 0; i < 100_000; ++i) {

 dict.put(i, valGen.genName());

 }

 �log.info("Done creating dictionary: {}", System.

currentTimeMillis());

 �cleaner.register(dict, ()-> log.info("Cleaned up the

dictionary!"));

 return dict;

 }

}

The getExplanationFor accesses the map and gets the value corresponding a key.

But before doing that, we have to check if the Map is still there. This is done by calling the

get() method on the dictionary reference that is of type WeakReference<Map<Integer,

String>>. If the map was not collected by the GC, the key is extracted and returned;

otherwise, the Map is reinitialized and the weak reference is re-created.

The Cleaner instance was moved in the WeakDictionary class, and registered a

Cleanable for the Map so we can see the map being collected. So, how do we test this? In

a similar way we tested SingletonDictionary.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.WeakDictionary;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class WeakDictionaryDemo {

 private static final Logger log =

 LoggerFactory.getLogger(WeakDictionaryDemo.class);

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

594

 public static void main(String... args) {

 log.info("Testing WeakDictionaryDemo...");

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 WeakDictionary weakDictionary = WeakDictionary.getInstance();

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 �log.info("Getting val for 3 = {}", weakDictionary.

getExplanationFor(3));

 log.info("DONE.");

 }

}

So, after retrieving the WeakDictionary reference, a lot of String arrays are created

to force GC to delete the map from memory. After that, we try to access the problematic

map. Will it work?

INFO c.a.b.c.WeakDictionaryDemo - Testing WeakDictionaryDemo...

INFO c.a.b.c.u.WeakDictionary - Starting to create dictionary: 1536633126455

INFO c.a.b.c.u.WeakDictionary - Done creating dictionary: 1536633126701

INFO c.a.b.c.u.WeakDictionary - Cleaned up the dictionary!

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

595

INFO c.a.b.c.u.WeakDictionary - Starting to create dictionary: 1536633139512

INFO c.a.b.c.u.WeakDictionary - Done creating dictionary: 1536633139742

INFO c.a.b.c.WeakDictionaryDemo - Getting val for 3 = Ingermy...

INFO c.a.b.c.WeakDictionaryDemo - DONE.

The log proves this works. And not only that, we can see the map being discarded by

GC and then reinitialized when needed. This is the power of soft references.

Although the garbage collection process is un-deterministic, because it cannot be

controlled much from the code, a Java program cannot tell it to start, pause or stop, but

using the appropriate VM options we can control the resources it has and from the code

using the proper implementation we can tell it what to collect or not and most of the

times this is enough.2

�Garbage Collection Exceptions and Causes
If objects cannot be discarded from the memory, an exception of type OutOfMemoryError

is thrown. I’m not sure if you noticed, but this is not actually an exception. The exception

class hierarchy was mentioned in Chapter 5. If you remember, in that hierarchy

there was a class named java.lang.Error that implements java.lang.Throwable.

These types of objects are thrown by a program when there is a critical issue that the

program cannot recover from. The following is the full hierarchy of the java.lang.

OutOfMemoryError.

java.lang.Object

 java.lang.Throwable

 java.lang.Error

 java.lang.VirtualMachineError

 java.lang.OutOfMemoryError

So, OutOfMemoryError is one of those ugly things you do not want thrown when your

program is running, because this means your program is no longer running. In this case,

it is not running because it has no memory left to store new objects being created.

2�If you want more details about GC this article is on point: https://www.oracle.com/
technetwork/tutorials/tutorials-1876574.html

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

596

This error is being thrown by the JVM when anything goes wrong when doing

memory management. Although, the most common cause is that the heap memory is

depleted, there are other causes.

When heap memory allocated to the JVM is depleted, the error has the following

message:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

But there is another message that you might see.

Exception in thread "main" java.lang.OutOfMemoryError: GC Overhead Limit

Exceeded

This message is still related to the heap size. The error is thrown with this message

when the data for the program barely fits the size of the heap, so the heap is almost full,

which allows the GC to run, but because it cannot redeem any memory, the GC keeps

running, and it is hindering the normal execution of the application. This message

is added to the error when the GC spends 98% of execution time and the application

spends the other 2%.

These two are the most common error messages you see when GC cannot do its job

properly for whatever reason. A complete list can be found at https://docs.oracle.

com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html, but since

most GC issues relate to the heap size, G1GC mostly throws errors with the Java heap

space message.

�Summary
This section ends this book. When it comes to the Java ecosystem, there are a lot of books

and tutorials on the Internet. This book only scratches the surface to give you a good

starting point as a Java developer. The whole team that worked on it hopes it satisfies

your needs and sparks your curiosity to find out more. Just keep in mind that there is no

panacea solution to make sure the memory is always managed right regardless of the

application scope. If you get in trouble, experimentation is always a step in determining

the right collector for your JVM.

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

597

This chapter has covered the following topics.

•	 what garbage collection is and the steps involved

•	 how the heap memory is structured

•	 how many types of garbage collectors there are in the Oracle HotSpot

JVM and how can we switch between them

•	 how to view a garbage collector configurations and statistics using

VM options

•	 how to view the garbage collection in action using finalize and

Cleaner

•	 how to stop the garbage collector from collecting important objects

•	 how to create objects that are easily collected using soft references

Chapter 13 Garbage Collection

(c) ketabton.com: The Digital Library

599
© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6

Index

A
Abstract Window Toolkit (AWT),

9, 14, 420–422
Access modifiers

compilation error, 62
member-level accessors, 60, 63
package-private modifier, 61
public class, 60
top-level, 60

anonymous class, 285
anyMatch(..) method, 309
Apache Tomcat, 577
Arrays, 92
Assignment operator (=), 209–210
AudioType, 299

B
Binary operators, 217
Binary representation, 168–169
Binary serialization, 503–507
Bitwise operators, 227

AND, 228, 230
NOT, 227–228
OR, 230–231
XOR, 231–232

Boxing, 190
Bubble sort algorithm, 256, 267
Building blocks

access modifiers, 60
class, 56
fields, 56
JAR, 58
library, 59
methods, 56
modules, 60
package-info.java, 57

C
Checked exceptions, 143–144
Classes

abstraction
Actor class, 123
Human class, 121–122
Java compiler error, 122
Musician class, 123
parent class/superclass, 122
subclass, 122
UML diagram, IntelliJ

IDEA, 123–124
constructors, 117–120
data encapsulation, 111–114
fields, 108–110
instantiation, 107–108
methods, 115–117
variables, 110–111

Comments, 107
Compact String, 187

(c) ketabton.com: The Digital Library

600

Concurrent mark sweep (CMS), 565
Constructors

Actor class, 120
Human instance, 117–119
Musician class, 120
polymorphism, 119
return statement, 118

Control flow statements
flowchart elements, 244
if-else

code, 248
flowchart, Complex if-else, 247
flowchart, missing else branch, 246
IntelliJ IDEA launcher, 249
parameters, 249

using exception, 277–279
using try catch, 277–278

D
Data encapsulation, 111–114
Debugging

assertions
java.lang.AssertionError, 346–347
rules, 348
VM options, 346

breakpoints, 317
definition, 317
IntelliJ IDEA breakpoints, 348–349
Java tools

jcmd, 353–355
jconsole, 355–358
JMC, 359–362
jps, 351–352

logging
main(..) method, 324
merge sort, 319–322
sort(..) method, 325

sorting class hierarchy, 319
System.out.print class family, 318
System.out.print method, 322–324

logging with JUL
FileHandler class, 330
IntelliJ IDEA, 334
java.util.logging.ConsoleHandler, 329
java.util.logging.Level class, 336
java.util.logging.

SimpleFormatter, 329
logging libraries, 325
logging output, 331
log messages, 335
MergeSort class, 326, 328
SimpleFormatter, 330
SorterJulDemo class, 326
SortingJulDemo class, 329, 332–333
StreamFormatter class, 329
StringBuilder, 326
WARNING, 335, 336
XMLFormatter, 330

SLF4J and Logback, 337
ch.qos.logback.core.

ConsoleAppender class, 340
ch.qos.logback.core.FileAppender

class, 341
ch.qos.logback.core.rolling.

RollingFileAppender, 342–343
ch.qos.logback.core.rolling.

RollingPolicy, 342
configuration file, XML/Groovy, 339
info.debug(..) logs, 339
info.error(..) logs, 338
info.warn(..) logs, 339
logging implementation, 337, 339
log.info(..) logs, 339
LogManager, 337
log.trace(..) logs, 339

Index

(c) ketabton.com: The Digital Library

601

MergeSort class, 340
<rollingPolicy> element, 343
SortingSlf4jDemo class, 340–341
SortingSlf4jDemo.main(..)

method, 344
StringBuilder, 344
<timeBasedFileNamingAnd

TriggeringPolicy>, 343
SortingSlf4jDemo class, 349–351
techniques, 317

Deserialization, 503
distinct() method, 306
Documentation, Javadoc

@author tag, 398
classes and variables, 397
@deprecated tag, 403
Doclet API, 407
expression RTFM, 407
Gradle javadoc task, 403–406
HTML tags, 398
IntelliJ IDEA, 406–407
IntSorter interface, 398
@link tag, 400, 402
method declarations, 400–401
Optional<T> interface, 399–400
@param tags, 401
@return tags, 401
special tags, 397
@throws tag, 402

E
Eden space, 562
Elvis operator, 241
empty() method, 295
Enums

comment() method, 128
field values, 126

Gender enum, 125
getComment(), 127
Human class, 128, 129
private modifier, 125

Epsilon no-op collector, 565
equals() method, 224
Exceptions

checked, 143–144
compiler error, 144
definition, 139
EmptyPerformerException, 143
finally block, 144
hierarchy, 140
NullPointerException, 143
PerformerGenerator, 142–143
RuntimeException, 141
StackOverFlowError, 140–141
swallowing, 141
throwable, 140
try/catch block, 143–144
unchecked, 143

Exchangeable Image File Format (EXIF)
data, 514–517

Explicit type conversion, 212, 214

F
File handlers

accept(..) method, 476
canRead() and canWrite(), 475
createNewFile(), 476
createTempFile(prefix, suffix), 477
deleteOnExit(), 477
description, 471
exists(), 477
FileFilter, 476
FilenameFilter, 476
getAbsolutePath(), 473

Index

(c) ketabton.com: The Digital Library

602

getName(), 474
getParent(), 474
IOException, 478
isFile(), 473
isHidden(), 475
lambda expressions, 476
length(), 474
list() method, 475
listFiles(), 475
pathnames, 473, 475
printStats(..) method, 471–472
rename(f), 478
SecurityException, 477
String value, 471
URI, 474

FileInputStream, 489–492
FileOutputStream, 499–502
FilterCharProcessor, 539
Finite streams, 289
flatMap(..) method, 304–305
Flattening, 305
Floating-point types, 170
Flow.Processor, 549
Flow.Publisher, 549
FlowPublisherVerification

<Integer>, 550
Flow.Subscriber, 549
forEach(..) method, 285, 301
Functional interfaces, 138

G
Garbage collection (GC)

Cleaner instance, 584, 585
cleaner.register() method, 586–587
CMS, 564–565, 568
code

finalize() methods, 571, 574–575, 577
genSinger() methods, 572, 573
grep command, 576
IntelliJ IDEA launcher, 575–576

deleting object, 587
eden space, 562
Epsilon no-op collector, 565, 569
exceptions and causes, 595–596
G1, 565, 569
garbage first (G1), 564
generations, 562
genSinger() method, 581–582
go() method, 578
grep method, 580, 582
head memory, 578, 583
heap structure, 561–562
Java heap and stack memory, 572–573
java.lang.ref.Cleaner object, 584
old generation space, 563
Oracle Hotspot JVM

architecture, 560–561
parallel collector, 565, 567
permanent generation space, 564
runtime.freeMemory() method, 578
runtime.maxMemory()

method, 578, 583
runtime.totalMemory() method, 578
serial collector, 564, 566
SingletonDictionary

instance, 589, 590
Singleton pattern, 588–589
strong reference, 591
TLAB, 570
VM option, 566–568, 570
weak references, 591, 593–595
-Xms and-Xmx, 584
young generation space, 562–563

File handlers (cont.)

Index

(c) ketabton.com: The Digital Library

603

Garbage first (G1), 565
generate(..) method, 290
Generics, 145–147
Git, 24, 38
Gradle, 24, 37–38, 85
Gradle multimodule-level structure, 87–88
Gradle project, 86, 88–89

H
Heavyweight components, 14
Hello World! class

class declaration, 90
configuration, 93–94
IntelliJ IDEA editor, 89
java.util.List, 94
main() method, 90–92, 94
package declaration, 90
println() method, 95, 96

I
Identifiers, 106
Imperative programming, 537
Installation

Download JDK button, 26
Git, 38
Gradle, 37–38
JDK 8 vs. contents comparison, 28
JDK 10 vs. JRE contents, 28

Integer primitives
byte, 169
int, 169
long, 170
short, 169

Integrated development environment
(IDE), 23

Integration tests, 371
IntelliJ IDEA, 23, 41, 62, 88–89, 249

IntelliJ IDEA, HelloWorld project
build menu, 76
build project option, 76
change directory, 79
commands execution, 80
compile, 77, 80
configuration, 72
create new project option, 70–71
directory structure, 82
HelloWorld.java file, 74, 79
Java class, 75, 78–79
Java module, 71
Java 11 project, 71
JRE, 78
language level, 73
menu option, 76
modules, 73–74
move class, 82
object types, 76
package option, 81
project SDK, 73
project settings, 73
project view, 72
refactor button, 82
sandbox, 72
src directory, 75
terminal button, 79

Interactions, Java components, 531
Interface Publisher<T>, 534
Interfaces

vs. abstract classes, 134
annotations, 129, 137–139
API, 135
Artist interface, 133, 135

compiler errors, 136
isCreative method, 137
Java broken hierarchy, 136
Performer class, 135–136

Index

(c) ketabton.com: The Digital Library

604

default methods, 135
definition, 129
diamond class hierarchy, 130
marker, 129
Musician and Actor classes, 129–130
normal, 129
Performer class, 129–133

Interface Subscriber<R>, 534
Intermediate operations, 282, 298
Internationalization

contents of resource files, 444
description, 442
JavaFX, 446–449
locale, 442
property names, 445
Resource Bundle IntelliJ IDEA

editor, 444–445
resource files, 443, 449
Stage.close(), 449–450

International Software Testing
Qualifications Board (ISTQB), 370

Interning, 184
IntPublisher class, 556
IntStream interface, 292

J, K
Jar hell, 60, 69
Java

applications, 21
code, 2–3
conventions, 4
Gradle, 3, 20, 22
Hello World!, 2
history, 1–2
machine code, 9–10
Node.js, 21

portable, 8–9
real applications in, 2
Sun Microsystems

automatic memory management, 7
Duke, 5
Green Team, 5
Java logo, 7
logo, 6
multithreaded execution, 7
portability, 7
security, 7

version 9, 21
Java Archives (JARs), 58
Java Architecture for XML Binding

(JAXB), 507–510
Java building blocks, 59, 66
Java code, 100
Java coding conventions, 106
Java editors, 62
JavaFX

applications, 526–529
BorderPane, 438
CellFactory, 439–440
colored ComboBox demo, 441
ComboBox, 438–440
components, 432
CSS style elements, 438
graphics, 434
GUI library, 432
java.lang.IllegalAccessException, 433
launch(...) method, 434
ListCell declaration, 441
modules, 432
nodes, 434
Oracle, 432
Prism, 433
properties, 434
Quantum toolkit, 434

Interfaces (cont.)

Index

(c) ketabton.com: The Digital Library

605

start(..) methods, 435
Swing and AWT, 433
TextArea, 438–439
Window Demo, 435–437

JAVA_HOME environment variable
on Linux, 36–37
on macOS, 35–36
on Windows system

dialog window, 31
menu item, 30
Path variable, 33
system variable, 32, 34

Java IDE
GitHub user, 42–43
IntelliJ IDEA

configure Git plugin, 41
configure Gradle plugin, 41
configure plugins dialog section, 40
Gradle project view, 46
IDE Feature Trainer plugin, 42
java-for-absolute-beginners

project, 43–45
JetBrains, 39

Java keywords, 147–150
Java Media API

BaseMultiResolutionImage class,
519–523

BufferedImage, 517
checkSize(..), 524
EXIF data, 514–517
getResolutionVariant(), 521, 522,

524–525
image classes hierarchy, 513–514
image file, 514
ImageIO class, 519
image storage formats, 513
java.awt.Graphics2D, 517–519
java.awt.Image class, 513–514

output files, 519
width and height of images, 526

Java Message Service (JMS), 531
Java Mission Control (JMC)

description, 359
flight recording menu and dialog

window, 361–362
Java Flight Recorder, 359
Memory tab, 360–361
Oracle article, 362
SortingSlf4jDemo main class, 359
start JMX console, 359–360

Java Native Interface (JNI), 29
Java 2 Platform, Enterprise Edition

(J2EE), 11
Java 2 Platform, Micro Edition (J2ME), 11
Java 2 Platform, Standard Edition (J2SE), 11
Java Process API

BufferedReader, 363
children() method, 368
creating, 362–363
InputStream, 363
JAVA_HOME environment variable, 366
Linux shell commands, 367
onExit(), 367
parent() method, 368
ProcessBuilder, 367–368
ProcessDemo class, 366
ProcessHandle, 364
ProcessHandle.Info, 365

Java Runtime Environment (JRE), 10, 28
JavaScript Object Notation (JSON), 511–513
Java Server Pages (JSP), 455–456, 461, 463
Java Shell tool (JShell)

code completion, 53
defined, 49
help, 50
java.lang.String, 52

Index

(c) ketabton.com: The Digital Library

606

Java statements, 55
JDK, 50
+ operator, 51
Oracle, 55
REPL, 49
scratch variable, 51
String method, 52
string variable, 54
variables, 51
vars command, 54, 55
verbose mode, 50

Java syntax
comments, 107
exceptions, 139–141, 143–145
generics, 145–147
grammar

block delimiters, 105
case sensitive, 103
Java keywords, 104
line terminators, 105
variables, 104

identifiers, 106
import section, 101–103
Java code, 100
lambda expressions, 99
languages, 99
object types (see Object types)
package declaration, 101
variables, 106

java.util.Optional<T> instances, 295
java.util.stream.Stream.Builder<T>, 289
Java Virtual Machine (JVM), 29, 49
jcmd, 353–355
jconsole, 355–358
JDK reactive streams API

AbstractProcessor, 541, 543, 546
calling cancel(), 539

FilterCharProcessor, 539, 542
filterCharProcessor.subscribe(..), 544
Flow.Publisher<Integer>

interface, 537
imperative programming, 537
implementations, 537
infinite IntStream, 548
mapping function, 544–545
processor/subscriber, flow, 541–542
publisher subscribe(..), 539
start() method, 539
SubmissionPublisher

<Integer>, 537–539
subscribe(..) calls, 547
subscribe() method, 539
subscription.request(..), 539
transformerProcessor, 546

JetBrains, 39
jlink, 67
jps, 351–352
JShell, 409
JSP Standard Tag

Library (JSTL), 465–466
JUnit

@AfterAll, 374
@AfterEach, 375
annotations, 374
@BeforeAll, 374
@BeforeEach, 374
@DisplayName, 375
FakeDBConnection

Account instance, 378
AccountRepoImpl, 378–380
DbConnection implementation,

380, 381
deleteByHolder method, 382–384
DerbyDBConnection, 378
Map<String, Account>, 382

Java Shell tool (JShell) (cont.)

Index

(c) ketabton.com: The Digital Library

607

mocks
classes, 393
createAccount(..) method, 393, 394
findOne(..) method, 395
Gradle test reports, 395–396
@InjectMocks and @Mock,

394–395
libraries, 395
objects and variables, 395
PowerMock, 393

pseudo test class, 375–376
execution, 377
junit-platform.properties, 376
menu option, IntelliJ IDEA, 377
testOne() method, 378

stubs
AccountServiceImpl, 384
assertThrows, 389–392
createAccount(...)

method, 385–386
option field, 388
repo stub, 387–388
returned values and

exceptions, 386
test coverage, 387
testNonNumericAmountVersion

One() method, 389, 390
write test, 388–389

@Test, 375

L
Lambda expression, 95
Last In, First Out (LIFO), 154
Lazy loading, 178
Looping statements, 257

do-while
code block execution, 268

implementation, 268, 270–271
vs. while flowcharts, 269

for
Arrays utility class, 263
code, 257, 260–261
condition, 259–260
enhanced syntax, 262
flowchart, 258
square brackets, 258

Loops, breaking
break statement, 271–273
continue statement, 271, 273–274
return statement, 271, 275–276

M
Maven repository, 85
Member-level accessors, 63
Methods, 115–117
Module descriptor, 64
Module hell, 60
Modules

compile, manually, 84
defined, 64
directives, 67
IDE generate, 83
Java 9 project, 65, 66
Java 10, 67
java--list-modules, 66
JDK, 64
keywords, 67–68
limit access, 69
module-info.class descriptor, 84
module-info.java, 64, 68
public types, 68
requires keyword, 68
SimpleReader class, 65

Modulus operator, 222

Index

(c) ketabton.com: The Digital Library

608

N
NetBeans, 23
NG reactive publisher, 551
Non-blocking back-pressure, 534
NullPointerException, 283
Numerical operators, 214

O
Object types

classes (see Classes)
enums, 125–128
interfaces (see Interfaces)

Operators
assignment, 209–210
category, 207–208
explicit conversion, 211–213
numerical

binary, 217, 219–223
Elvis operator, 241
logical, 233–237
negation, 216
relational, 223, 225–226
shift, 238, 240–241
sign, 215–216
unary, 214–215

Oracle, 55
JavaFX 2.0, 16
Java SE 7, 15–16
Java SE 8, 16–17
Java SE 9, 17–18
Java SE 10, 19
Java SE 11, 20

P, Q
Package, 56, 81
Parallel collector, 565

parallelStream() method, 286
Path handlers

compareTo(..) method, 479
createFile(...), 482
delete(..), 482
getFileName(), 480
getFileSystem(), 480
getRoot(), 480
IOException, 482
java.nio.file.Path, 478
Paths.get(fileURI), 478–479
properties, 481
resolve(..), 480
sample code, 481
toAbsolutePath(), 480

peek(..) method, 308, 310
Performer hierarchy, 211
Point-to-point (p2p) messaging

model, 531
Polymorphism, 119
Primitive data types

binary representation, 168–169
boolean type, 165–166
byte, 169
char type, 166–167
= (equals) operator, 159
float and double, 170–171
int, 169
integer primitives, 167
long, 170
numeric types, 167–168
numeric values, 171, 173
real primitives, 170–171, 173
short, 169
stack, 160–161
swap() method, 160

Project Jigsaw, 64
Project reactor

Index

(c) ketabton.com: The Digital Library

609

advantage, 552
empty() method, 556
Flux and Mono, 556
flux publisher implementation, 553
interval(..) method, 557
JDK-based implementation, 557
operators, 552
org.reactivestreams.

Subscriber<T>, 553, 554
reactive publisher, 555
reactor.core.CoreSubscriber<T>, 554
subscriber, write, 553–554

Public class, 61

R
Reactive Manifesto, 532
Reactive producer/consumer system, 533
Reactive programming

flow interfaces, 535
producer/consumer system, 533
reactive streams API, 534–535
standard API, 534
streams API implementations, 535–536

Reactive streams API
implementations, 535–536

Reactive streams interfaces, 534–535
Reactive Streams Technology

Compatibility Kit, 548, 550–551
Read-Eval-Print Loop (REPL), 49
Reading files, 482

Files.readAllBytes(..), 484
InputStream, 489–492
Reader class

BufferedReader, 485–486, 488
Files.newBufferedReader, 489
Files.newBufferedReader(Path)

method, 487

hierarchy, 488
java.io.Closeable interface, 486
lambda expressions, 487
nullReader(), 489
StringBuilder, 488

Scanner class, 482
utility methods, 484

Reading user data
Scanner

advantage, 412
console.format(..), 419
console methods, 418
java.io.Console, 417
long values, 416
next..() methods list, 411–412
ReadingUsingConsoleDemo, 420
read value, 412–415
sample code, 418–419
System.in, 411
templates, 419
usage, 415–416

System.in, 410–411
Real primitives

boxing and unboxing, 173
double, 171
float, 170
numeric values, 171, 173

Reference data types
arrays

initialization, 178–179
int type, 179
lazy loading, 178
null keyword, 177–178
square brackets, 179

class and interface hierarchy, 174
class constructor, 173
collections, 196
date time API, 191

Index

(c) ketabton.com: The Digital Library

610

escaping characters, 187
heap, 161–163
java.lang.Thread class, 201–202
lambda expressions, 205
run() method, 202
CounterRunnable code, 205
runnable code, 204–205
stack and heap memory, 174–176
start() method, 203
string, 183
swap() method, 163–165
Thread.currentThread() method, 205
thread management, 206
wrapper classes, 189

Regression tests, 371
Run-time polymorphism, 119

S
Serial collector, 564
Serialization, 502

binary, 503–507
JSON, 511–513
XML, 507–511

sorted() operation, 313
Stack and heap memory

add() method, 157
definition, 153–154
java.lang.String class, 154
JVM parameters, 154
main() method, 158
object declaration, 156
String Pool, 155
variable declaration, 155–156

Stream API
Consumer, 285–286
creation

from arrays, 287, 289
collection interfaces and

classes, 284
empty streams, 289
finite streams, 289
IntStream instance, 292–293
LongStream instances, 293
stream of primitives, 292
stream of strings, 294

debugging, code, 310
anyMatch(..), 309–310
findAny(), 309–310
peek(..), 310

dropWhile, 292
functions, 282
interfaces, 293
intermediate operation

add(..), 289
allMatch(..), 309–310
anyMatch(..) method, 309
collect(..) method, 303
count(), 306
distinct() method, 306
filter(..) method, 302
findAny(), 309–310
findFirst(), 306
flatMap(..) method, 304–305
limit(..) method, 307
map(..) method, 303
noneMatch, 310
Optimal<T> instance, 309
parallelStream(), 286–287
peek(..), 310
sorted() method, 306
toArray() method, 302

iterate, 285
java.util.function.Supplier, 290
java.util.stream.BaseStream, 282

Reference data types (cont.)

Index

(c) ketabton.com: The Digital Library

611

limit, 289–290, 307
NullPointerException, 283
Optimal, 309
Optional, 283, 295–298, 303–306, 309
parallel data processing, 282
range, 293
rangeClosed, 293
Stream, 281–294, 298–300
Stream.builder(), 289
Stream.generate(), 289
takeWhile, 291–292
terminal functions

forEach and forEachOrdered,
300, 302

sum and reduce, 307–308
terminal operations, 283

min() and max(), 307
transform collections into streams, 283

String.format(..) method, 231–232
String Pool, 154, 183–184

splitAsStream, 294
Sun Microsystem’s Java Versions

features, 11–12
J2EE, 11
J2ME, 11
J2SE, 11
J2SE 5.0, 12–13
Java FX 1.0 SDK, 14
Java official logo, 12
JRE, 10
Mac OS X, 13
Oracle features, 14

Swing
AWT model, 420–422
border layout zones, 426
components, 14
FlowLayout, 427
getInstalledLookAndFeels(), 429

getValueIsAdjusting(), 429
java.awt.BorderLayout, 425–426
java.awt.event.ActionListener, 427
javax.swing.JFrame, 423
JComponent, 425
JFrame, 424–425
JFrame.EXIT_ON_CLOSE, 424
JList<T> class, 428
JScrollPane, 429
JTextArea, 428
ListSelectionListener

implementation, 430, 431
Operation System, 429
UIManager class, 429
Windows, 423, 431

Switch Statement
code, 250–251
flowchart, 252, 255–256
NullPointerExceptions, 254–255

T
Terminal operations, 283, 298
Test-driven development (TDD), 371
Testing

application
account management, 373
AccountRepo, 373
AccountService, 373
JUnit (see JUnit)
Oracle RDBMS, 373

development phase, 371
Gradle module structure, 371–372
integration tests, 371
ISTQB, 370
lifecycle of software application, 370
regression tests, 371
src directory, 372

Index

(c) ketabton.com: The Digital Library

612

TDD, 371
unit tests, 371

Thread local allocation buffer
(TLAB), 570

toBinaryString method, 227

U, V
Unboxing, 190
Unchecked exceptions, 143
Uniform Resource Identifier (URI), 474
Unit tests, 371

W
Web application

Apache Tomcat server, 451
DateServlet, 467–468
embedded Tomcat server, 453–454
HttpServletRequest, 457–458
index.jsp page, 463–466
Internet, 451
JavaScript, 468
javax.servlet.http.HttpServlet, 456–457
JSP scriptlets, directive tags, 463
JSTL, 465–466
network debugger view, Firefox, 452
request method, 452–453
resource/dynamic directory, 461

SampleServlet, 461–462
servers, 450
servlets and JSP, 455–456
structure, 460–461
URL, context path value, 454–455
urlPattern property, 457
@WebServlet, 458–459

Writing files
Files.write(..), 493–494
Files.write(Path, byte[]), 492
Files.writeString(..), 493
OutputStream, 499–502
Writer class

BufferedWriter, 495, 498
Files.newBufferedWriter(..), 497
flush() method, 495
hierarchy, 498
nullWriter(), 499
OutputStreamWriter, 499
PrintWriter, 499
String instances, 495, 496
StringWriter, 499

X, Y
XML serialization, 507–511

Z
zipWith(..) method, 557

Testing (cont.)

Index

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

