
Ketabton.com

Welcome to Swift

(c) ketabton.com: The Digital Library

About Swift

Swift is a new programming language for iOS and OS X apps that builds on the best of C and Objective-C,
without the constraints of C compatibility. Swift adopts safe programming patterns and adds modern features to
make programming easier, more flexible, and more fun. Swift’s clean slate, backed by the mature and much-
loved Cocoa and Cocoa Touch frameworks, is an opportunity to reimagine how software development works.

Swift has been years in the making. Apple laid the foundation for Swift by advancing our existing compiler,
debugger, and framework infrastructure. We simplified memory management with Automatic Reference
Counting (ARC). Our framework stack, built on the solid base of Foundation and Cocoa, has been modernized
and standardized throughout. Objective-C itself has evolved to support blocks, collection literals, and modules,
enabling framework adoption of modern language technologies without disruption. Thanks to this groundwork,
we can now introduce a new language for the future of Apple software development.

Swift feels familiar to Objective-C developers. It adopts the readability of Objective-C’s named parameters and
the power of Objective-C’s dynamic object model. It provides seamless access to existing Cocoa frameworks
and mix-and-match interoperability with Objective-C code. Building from this common ground, Swift introduces
many new features and unifies the procedural and object-oriented portions of the language.

Swift is friendly to new programmers. It is the first industrial-quality systems programming language that is as
expressive and enjoyable as a scripting language. It supports playgrounds, an innovative feature that allows
programmers to experiment with Swift code and see the results immediately, without the overhead of building
and running an app.

Swift combines the best in modern language thinking with wisdom from the wider Apple engineering culture.
The compiler is optimized for performance, and the language is optimized for development, without
compromising on either. It’s designed to scale from “hello, world” to an entire operating system. All this makes
Swift a sound future investment for developers and for Apple.

Swift is a fantastic way to write iOS and OS X apps, and will continue to evolve with new features and
capabilities. Our goals for Swift are ambitious. We can’t wait to see what you create with it.

(c) ketabton.com: The Digital Library

A Swift Tour

Tradition suggests that the first program in a new language should print the words “Hello, world” on the screen.
In Swift, this can be done in a single line:

1 println("Hello,	world")

If you have written code in C or Objective-C, this syntax looks familiar to you—in Swift, this line of code is a
complete program. You don’t need to import a separate library for functionality like input/output or string
handling. Code written at global scope is used as the entry point for the program, so you don’t need a main
function. You also don’t need to write semicolons at the end of every statement.

This tour gives you enough information to start writing code in Swift by showing you how to accomplish a
variety of programming tasks. Don’t worry if you don’t understand something—everything introduced in this
tour is explained in detail in the rest of this book.

N O T E

For the best experience, open this chapter as a playground in Xcode. Playgrounds allow you to edit
the code listings and see the result immediately.

Simple Values

Use let to make a constant and var to make a variable. The value of a constant doesn’t need to be known at
compile time, but you must assign it a value exactly once. This means you can use constants to name a value
that you determine once but use in many places.

(c) ketabton.com: The Digital Library

1 var	myVariable	=	42
2 myVariable	=	50
3 let	myConstant	=	42

A constant or variable must have the same type as the value you want to assign to it. However, you don’t
always have to write the type explicitly. Providing a value when you create a constant or variable lets the
compiler infer its type. In the example above, the compiler infers that myVariable is an integer because its
initial value is a integer.

If the initial value doesn’t provide enough information (or if there is no initial value), specify the type by writing it
after the variable, separated by a colon.

1 let	implicitInteger	=	70
2 let	implicitDouble	=	70.0
3 let	explicitDouble:	Double	=	70

E X P E R I M E N T

Create a constant with an explicit type of Float and a value of 4.

Values are never implicitly converted to another type. If you need to convert a value to a different type, explicitly
make an instance of the desired type.

1 let	label	=	"The	width	is	"
2 let	width	=	94
3 let	widthLabel	=	label	+	String(width)

E X P E R I M E N T

(c) ketabton.com: The Digital Library

Try removing the conversion to String from the last line. What error do you get?

There’s an even simpler way to include values in strings: Write the value in parentheses, and write a backslash
(\) before the parentheses. For example:

1 let	apples	=	3
2 let	oranges	=	5
3 let	appleSummary	=	"I	have	\(apples)	apples."
4 let	fruitSummary	=	"I	have	\(apples	+	oranges)	pieces	of	fruit."

E X P E R I M E N T

Use \() to include a floating-point calculation in a string and to include someone’s name in a
greeting.

Create arrays and dictionaries using brackets ([]), and access their elements by writing the index or key in
brackets.

1 var	shoppingList	=	["catfish",	"water",	"tulips",	"blue	paint"]
2 shoppingList[1]	=	"bottle	of	water"
3 	
4 var	occupations	=	[
5 				"Malcolm":	"Captain",
6 				"Kaylee":	"Mechanic",
7]
8 occupations["Jayne"]	=	"Public	Relations"

To create an empty array or dictionary, use the initializer syntax.

(c) ketabton.com: The Digital Library

1 let	emptyArray	=	String[]()
2 let	emptyDictionary	=	Dictionary<String,	Float>()

If type information can be inferred, you can write an empty array as [] and an empty dictionary as [:]—for
example, when you set a new value for a variable or pass an argument to a function.

1 shoppingList	=	[]			//	Went	shopping	and	bought	everything.

Control Flow

Use if and switch to make conditionals, and use for-in, for, while, and do-while to make loops.
Parentheses around the condition or loop variable are optional. Braces around the body are required.

1 let	individualScores	=	[75,	43,	103,	87,	12]
2 var	teamScore	=	0
3 for	score	in	individualScores	{
4 				if	score	>	50	{
5 								teamScore	+=	3
6 				}	else	{
7 								teamScore	+=	1
8 				}
9 }

10 teamScore

In an if statement, the conditional must be a Boolean expression—this means that code such as if	score
{	...	} is an error, not an implicit comparison to zero.

You can use if and let together to work with values that might be missing. These values are represented as
optionals. An optional value either contains a value or contains nil to indicate that the value is missing. Write a
question mark (?) after the type of a value to mark the value as optional.

1 var	optionalString:	String?	=	"Hello"

(c) ketabton.com: The Digital Library

2 optionalString	==	nil
3 	
4 var	optionalName:	String?	=	"John	Appleseed"
5 var	greeting	=	"Hello!"
6 if	let	name	=	optionalName	{
7 				greeting	=	"Hello,	\(name)"
8 }

E X P E R I M E N T

Change optionalName to nil. What greeting do you get? Add an else clause that sets a
different greeting if optionalName is nil.

If the optional value is nil, the conditional is false and the code in braces is skipped. Otherwise, the optional
value is unwrapped and assigned to the constant after let, which makes the unwrapped value available inside
the block of code.

Switches support any kind of data and a wide variety of comparison operations—they aren’t limited to integers
and tests for equality.

1 let	vegetable	=	"red	pepper"
2 switch	vegetable	{
3 case	"celery":
4 				let	vegetableComment	=	"Add	some	raisins	and	make	ants	on	a	log."
5 case	"cucumber",	"watercress":
6 				let	vegetableComment	=	"That	would	make	a	good	tea	sandwich."
7 case	let	x	where	x.hasSuffix("pepper"):
8 				let	vegetableComment	=	"Is	it	a	spicy	\(x)?"
9 default:

10 				let	vegetableComment	=	"Everything	tastes	good	in	soup."
11 }

(c) ketabton.com: The Digital Library

E X P E R I M E N T

Try removing the default case. What error do you get?

After executing the code inside the switch case that matched, the program exits from the switch statement.
Execution doesn’t continue to the next case, so there is no need to explicitly break out of the switch at the end of
each case’s code.

You use for-in to iterate over items in a dictionary by providing a pair of names to use for each key-value
pair.

1 let	interestingNumbers	=	[
2 				"Prime":	[2,	3,	5,	7,	11,	13],
3 				"Fibonacci":	[1,	1,	2,	3,	5,	8],
4 				"Square":	[1,	4,	9,	16,	25],
5]
6 var	largest	=	0
7 for	(kind,	numbers)	in	interestingNumbers	{
8 				for	number	in	numbers	{
9 								if	number	>	largest	{

10 												largest	=	number
11 								}
12 				}
13 }
14 largest

E X P E R I M E N T

Add another variable to keep track of which kind of number was the largest, as well as what that
largest number was.

(c) ketabton.com: The Digital Library

Use while to repeat a block of code until a condition changes. The condition of a loop can be at the end instead,
ensuring that the loop is run at least once.

1 var	n	=	2
2 while	n	<	100	{
3 				n	=	n	*	2
4 }
5 n
6 	
7 var	m	=	2
8 do	{
9 				m	=	m	*	2

10 }	while	m	<	100
11 m

You can keep an index in a loop—either by using .. to make a range of indexes or by writing an explicit
initialization, condition, and increment. These two loops do the same thing:

1 var	firstForLoop	=	0
2 for	i	in	0..3	{
3 				firstForLoop	+=	i
4 }
5 firstForLoop
6 	
7 var	secondForLoop	=	0
8 for	var	i	=	0;	i	<	3;	++i	{
9 				secondForLoop	+=	1

10 }
11 secondForLoop

Use .. to make a range that omits its upper value, and use ... to make a range that includes both values.

Functions and Closures

(c) ketabton.com: The Digital Library

Use func to declare a function. Call a function by following its name with a list of arguments in parentheses.
Use -> to separate the parameter names and types from the function’s return type.

1 func	greet(name:	String,	day:	String)	->	String	{
2 				return	"Hello	\(name),	today	is	\(day)."
3 }
4 greet("Bob",	"Tuesday")

E X P E R I M E N T

Remove the day parameter. Add a parameter to include today’s lunch special in the greeting.

Use a tuple to return multiple values from a function.

1 func	getGasPrices()	->	(Double,	Double,	Double)	{
2 				return	(3.59,	3.69,	3.79)
3 }
4 getGasPrices()

Functions can also take a variable number of arguments, collecting them into an array.

1 func	sumOf(numbers:	Int...)	->	Int	{
2 				var	sum	=	0
3 				for	number	in	numbers	{
4 								sum	+=	number
5 				}
6 				return	sum
7 }
8 sumOf()
9 sumOf(42,	597,	12)

(c) ketabton.com: The Digital Library

E X P E R I M E N T

Write a function that calculates the average of its arguments.

Functions can be nested. Nested functions have access to variables that were declared in the outer function.
You can use nested functions to organize the code in a function that is long or complex.

1 func	returnFifteen()	->	Int	{
2 				var	y	=	10
3 				func	add()	{
4 								y	+=	5
5 				}
6 				add()
7 				return	y
8 }
9 returnFifteen()

Functions are a first-class type. This means that a function can return another function as its value.

1 func	makeIncrementer()	->	(Int	->	Int)	{
2 				func	addOne(number:	Int)	->	Int	{
3 								return	1	+	number
4 				}
5 				return	addOne
6 }
7 var	increment	=	makeIncrementer()
8 increment(7)

A function can take another function as one of its arguments.

1 func	hasAnyMatches(list:	Int[],	condition:	Int	->	Bool)	->	Bool	{

(c) ketabton.com: The Digital Library

2 				for	item	in	list	{
3 								if	condition(item)	{
4 												return	true
5 								}
6 				}
7 				return	false
8 }
9 func	lessThanTen(number:	Int)	->	Bool	{

10 				return	number	<	10
11 }
12 var	numbers	=	[20,	19,	7,	12]
13 hasAnyMatches(numbers,	lessThanTen)

Functions are actually a special case of closures. You can write a closure without a name by surrounding code
with braces ({}). Use in to separate the arguments and return type from the body.

1 numbers.map({
2 				(number:	Int)	->	Int	in
3 				let	result	=	3	*	number
4 				return	result
5 				})

E X P E R I M E N T

Rewrite the closure to return zero for all odd numbers.

You have several options for writing closures more concisely. When a closure’s type is already known, such as
the callback for a delegate, you can omit the type of its parameters, its return type, or both. Single statement
closures implicitly return the value of their only statement.

1 numbers.map({	number	in	3	*	number	})

(c) ketabton.com: The Digital Library

You can refer to parameters by number instead of by name—this approach is especially useful in very short
closures. A closure passed as the last argument to a function can appear immediately after the parentheses.

1 sort([1,	5,	3,	12,	2])	{	$0	>	$1	}

Objects and Classes

Use class followed by the class’s name to create a class. A property declaration in a class is written the
same way as a constant or variable declaration, except that it is in the context of a class. Likewise, method and
function declarations are written the same way.

1 class	Shape	{
2 				var	numberOfSides	=	0
3 				func	simpleDescription()	->	String	{
4 								return	"A	shape	with	\(numberOfSides)	sides."
5 				}
6 }

E X P E R I M E N T

Add a constant property with let, and add another method that takes an argument.

Create an instance of a class by putting parentheses after the class name. Use dot syntax to access the
properties and methods of the instance.

1 var	shape	=	Shape()
2 shape.numberOfSides	=	7
3 var	shapeDescription	=	shape.simpleDescription()

(c) ketabton.com: The Digital Library

This version of the Shape class is missing something important: an initializer to set up the class when an
instance is created. Use init to create one.

1 class	NamedShape	{
2 				var	numberOfSides:	Int	=	0
3 				var	name:	String
4 				
5 				init(name:	String)	{
6 								self.name	=	name
7 				}
8 				
9 				func	simpleDescription()	->	String	{

10 								return	"A	shape	with	\(numberOfSides)	sides."
11 				}
12 }

Notice how self is used to distinguish the name property from the name argument to the initializer. The
arguments to the initializer are passed like a function call when you create an instance of the class. Every
property needs a value assigned—either in its declaration (as with numberOfSides) or in the initializer (as
with name).

Use deinit to create a deinitializer if you need to perform some cleanup before the object is deallocated.

Subclasses include their superclass name after their class name, separated by a colon. There is no
requirement for classes to subclass any standard root class, so you can include or omit a superclass as
needed.

Methods on a subclass that override the superclass’s implementation are marked with override—overriding
a method by accident, without override, is detected by the compiler as an error. The compiler also detects
methods with override that don’t actually override any method in the superclass.

1 class	Square:	NamedShape	{
2 				var	sideLength:	Double
3 				
4 				init(sideLength:	Double,	name:	String)	{

(c) ketabton.com: The Digital Library

5 								self.sideLength	=	sideLength
6 								super.init(name:	name)
7 								numberOfSides	=	4
8 				}
9 				

10 				func	area()	->		Double	{
11 								return	sideLength	*	sideLength
12 				}
13 				
14 				override	func	simpleDescription()	->	String	{
15 								return	"A	square	with	sides	of	length	\(sideLength)."
16 				}
17 }
18 let	test	=	Square(sideLength:	5.2,	name:	"my	test	square")
19 test.area()
20 test.simpleDescription()

E X P E R I M E N T

Make another subclass of NamedShape called Circle that takes a radius and a name as
arguments to its initializer. Implement an area and a describe method on the Circle class.

In addition to simple properties that are stored, properties can have a getter and a setter.

1 class	EquilateralTriangle:	NamedShape	{
2 				var	sideLength:	Double	=	0.0
3 				
4 				init(sideLength:	Double,	name:	String)	{
5 								self.sideLength	=	sideLength
6 								super.init(name:	name)
7 								numberOfSides	=	3
8 				}

(c) ketabton.com: The Digital Library

9 				
10 				var	perimeter:	Double	{
11 				get	{
12 								return	3.0	*	sideLength
13 				}
14 				set	{
15 								sideLength	=	newValue	/	3.0
16 				}
17 				}
18 				
19 				override	func	simpleDescription()	->	String	{
20 								return	"An	equilateral	triagle	with	sides	of	length	\

(sideLength)."
21 				}
22 }
23 var	triangle	=	EquilateralTriangle(sideLength:	3.1,	name:	"a	

triangle")
24 triangle.perimeter
25 triangle.perimeter	=	9.9
26 triangle.sideLength

In the setter for perimeter, the new value has the implicit name newValue. You can provide an explicit
name in parentheses after set.

Notice that the initializer for the EquilateralTriangle class has three different steps:

1. Setting the value of properties that the subclass declares.

2. Calling the superclass’s initializer.

3. Changing the value of properties defined by the superclass. Any additional setup work that uses
methods, getters, or setters can also be done at this point.

If you don’t need to compute the property but still need to provide code that is run before and after setting a new
value, use willSet and didSet. For example, the class below ensures that the side length of its triangle is
always the same as the side length of its square.

(c) ketabton.com: The Digital Library

1 class	TriangleAndSquare	{
2 				var	triangle:	EquilateralTriangle	{
3 				willSet	{
4 								square.sideLength	=	newValue.sideLength
5 				}
6 				}
7 				var	square:	Square	{
8 				willSet	{
9 								triangle.sideLength	=	newValue.sideLength

10 				}
11 				}
12 				init(size:	Double,	name:	String)	{
13 								square	=	Square(sideLength:	size,	name:	name)
14 								triangle	=	EquilateralTriangle(sideLength:	size,	name:	

name)
15 				}
16 }
17 var	triangleAndSquare	=	TriangleAndSquare(size:	10,	name:	

"another	test	shape")
18 triangleAndSquare.square.sideLength
19 triangleAndSquare.triangle.sideLength
20 triangleAndSquare.square	=	Square(sideLength:	50,	name:	"larger	

square")
21 triangleAndSquare.triangle.sideLength

Methods on classes have one important difference from functions. Parameter names in functions are used only
within the function, but parameters names in methods are also used when you call the method (except for the
first parameter). By default, a method has the same name for its parameters when you call it and within the
method itself. You can specify a second name, which is used inside the method.

1 class	Counter	{
2 				var	count:	Int	=	0
3 				func	incrementBy(amount:	Int,	numberOfTimes	times:	Int)	{
4 								count	+=	amount	*	times
5 				}
6 }

(c) ketabton.com: The Digital Library

7 var	counter	=	Counter()
8 counter.incrementBy(2,	numberOfTimes:	7)

When working with optional values, you can write ? before operations like methods, properties, and
subscripting. If the value before the ? is nil, everything after the ? is ignored and the value of the whole
expression is nil. Otherwise, the optional value is unwrapped, and everything after the ? acts on the
unwrapped value. In both cases, the value of the whole expression is an optional value.

1 let	optionalSquare:	Square?	=	Square(sideLength:	2.5,	name:	"optional	
square")

2 let	sideLength	=	optionalSquare?.sideLength

Enumerations and Structures

Use enum to create an enumeration. Like classes and all other named types, enumerations can have methods
associated with them.

1 enum	Rank:	Int	{
2 				case	Ace	=	1
3 				case	Two,	Three,	Four,	Five,	Six,	Seven,	Eight,	Nine,	Ten
4 				case	Jack,	Queen,	King
5 				func	simpleDescription()	->	String	{
6 								switch	self	{
7 								case	.Ace:
8 												return	"ace"
9 								case	.Jack:

10 												return	"jack"
11 								case	.Queen:
12 												return	"queen"
13 								case	.King:
14 												return	"king"
15 								default:
16 												return	String(self.toRaw())

(c) ketabton.com: The Digital Library

17 								}
18 				}
19 }
20 let	ace	=	Rank.Ace
21 let	aceRawValue	=	ace.toRaw()

E X P E R I M E N T

Write a function that compares two Rank values by comparing their raw values.

In the example above, the raw value type of the enumeration is Int, so you only have to specify the first raw
value. The rest of the raw values are assigned in order. You can also use strings or floating-point numbers as
the raw type of an enumeration.

Use the toRaw and fromRaw functions to convert between the raw value and the enumeration value.

1 if	let	convertedRank	=	Rank.fromRaw(3)	{
2 				let	threeDescription	=	convertedRank.simpleDescription()
3 }

The member values of an enumeration are actual values, not just another way of writing their raw values. In
fact, in cases where there isn’t a meaningful raw value, you don’t have to provide one.

1 enum	Suit	{
2 				case	Spades,	Hearts,	Diamonds,	Clubs
3 				func	simpleDescription()	->	String	{
4 								switch	self	{
5 								case	.Spades:
6 												return	"spades"
7 								case	.Hearts:
8 												return	"hearts"

(c) ketabton.com: The Digital Library

9 								case	.Diamonds:
10 												return	"diamonds"
11 								case	.Clubs:
12 												return	"clubs"
13 								}
14 				}
15 }
16 let	hearts	=	Suit.Hearts
17 let	heartsDescription	=	hearts.simpleDescription()

E X P E R I M E N T

Add a color method to Suit that returns “black” for spades and clubs, and returns “red” for hearts
and diamonds.

Notice the two ways that the Hearts member of the enumeration is referred to above: When assigning a value
to the hearts constant, the enumeration member Suit.Hearts is referred to by its full name because the
constant doesn’t have an explicit type specified. Inside the switch, the enumeration is referred to by the
abbreviated form .Hearts because the value of self is already known to be a suit. You can use the
abbreviated form anytime the value’s type is already known.

Use struct to create a structure. Structures support many of the same behaviors as classes, including
methods and initializers. One of the most important differences between structures and classes is that
structures are always copied when they are passed around in your code, but classes are passed by reference.

1 struct	Card	{
2 				var	rank:	Rank
3 				var	suit:	Suit
4 				func	simpleDescription()	->	String	{
5 								return	"The	\(rank.simpleDescription())	of	\

(suit.simpleDescription())"
6 				}

(c) ketabton.com: The Digital Library

7 }
8 let	threeOfSpades	=	Card(rank:	.Three,	suit:	.Spades)
9 let	threeOfSpadesDescription	=	threeOfSpades.simpleDescription()

E X P E R I M E N T

Add a method to Card that creates a full deck of cards, with one card of each combination of rank
and suit.

An instance of an enumeration member can have values associated with the instance. Instances of the same
enumeration member can have different values associated with them. You provide the associated values when
you create the instance. Associated values and raw values are different: The raw value of an enumeration
member is the same for all of its instances, and you provide the raw value when you define the enumeration.

For example, consider the case of requesting the sunrise and sunset time from a server. The server either
responds with the information or it responds with some error information.

1 enum	ServerResponse	{
2 				case	Result(String,	String)
3 				case	Error(String)
4 }
5 	
6 let	success	=	ServerResponse.Result("6:00	am",	"8:09	pm")
7 let	failure	=	ServerResponse.Error("Out	of	cheese.")
8 	
9 switch	success	{

10 case	let	.Result(sunrise,	sunset):
11 				let	serverResponse	=	"Sunrise	is	at	\(sunrise)	and	sunset	

is	at	\(sunset)."
12 case	let	.Error(error):
13 				let	serverResponse	=	"Failure...		\(error)"
14 }

(c) ketabton.com: The Digital Library

E X P E R I M E N T

Add a third case to ServerResponse and to the switch.

Notice how the sunrise and sunset times are extracted from the ServerResponse value as part of matching
the value against the switch cases.

Protocols and Extensions

Use protocol to declare a protocol.

1 protocol	ExampleProtocol	{
2 				var	simpleDescription:	String	{	get	}
3 				mutating	func	adjust()
4 }

Classes, enumerations, and structs can all adopt protocols.

1 class	SimpleClass:	ExampleProtocol	{
2 				var	simpleDescription:	String	=	"A	very	simple	class."
3 				var	anotherProperty:	Int	=	69105
4 				func	adjust()	{
5 								simpleDescription	+=	"		Now	100%	adjusted."
6 				}
7 }
8 var	a	=	SimpleClass()
9 a.adjust()

10 let	aDescription	=	a.simpleDescription
11 	
12 struct	SimpleStructure:	ExampleProtocol	{

(c) ketabton.com: The Digital Library

13 				var	simpleDescription:	String	=	"A	simple	structure"
14 				mutating	func	adjust()	{
15 								simpleDescription	+=	"	(adjusted)"
16 				}
17 }
18 var	b	=	SimpleStructure()
19 b.adjust()
20 let	bDescription	=	b.simpleDescription

E X P E R I M E N T

Write an enumeration that conforms to this protocol.

Notice the use of the mutating keyword in the declaration of SimpleStructure to mark a method that
modifies the structure. The declaration of SimpleClass doesn’t need any of its methods marked as mutating
because methods on a class can always modify the class.

Use extension to add functionality to an existing type, such as new methods and computed properties. You
can use an extension to add protocol conformance to a type that is declared elsewhere, or even to a type that
you imported from a library or framework.

1 extension	Int:	ExampleProtocol	{
2 				var	simpleDescription:	String	{
3 				return	"The	number	\(self)"
4 				}
5 				mutating	func	adjust()	{
6 								self	+=	42
7 				}
8 }
9 7.simpleDescription

(c) ketabton.com: The Digital Library

E X P E R I M E N T

Write an extension for the Double type that adds an absoluteValue property.

You can use a protocol name just like any other named type—for example, to create a collection of objects that
have different types but that all conform to a single protocol. When you work with values whose type is a
protocol type, methods outside the protocol definition are not available.

1 let	protocolValue:	ExampleProtocol	=	a
2 protocolValue.simpleDescription
3 //	protocolValue.anotherProperty		//	Uncomment	to	see	the	error

Even though the variable protocolValue has a runtime type of SimpleClass, the compiler treats it as the
given type of ExampleProtocol. This means that you can’t accidentally access methods or properties that
the class implements in addition to its protocol conformance.

Generics

Write a name inside angle brackets to make a generic function or type.

1 func	repeat<ItemType>(item:	ItemType,	times:	Int)	->	ItemType[]	{
2 				var	result	=	ItemType[]()
3 				for	i	in	0..times	{
4 								result	+=	item
5 				}
6 				return	result
7 }
8 repeat("knock",	4)

You can make generic forms of functions and methods, as well as classes, enumerations, and structures.

(c) ketabton.com: The Digital Library

1 //	Reimplement	the	Swift	standard	library's	optional	type
2 enum	OptionalValue<T>	{
3 				case	None
4 				case	Some(T)
5 }
6 var	possibleInteger:	OptionalValue<Int>	=	.None
7 possibleInteger	=	.Some(100)

Use where after the type name to specify a list of requirements—for example, to require the type to implement
a protocol, to require two types to be the same, or to require a class to have a particular superclass.

1 func	anyCommonElements	<T,	U	where	T:	Sequence,	U:	Sequence,	
T.GeneratorType.Element:	Equatable,	
T.GeneratorType.Element	==	U.GeneratorType.Element>	
(lhs:	T,	rhs:	U)	->	Bool	{

2 				for	lhsItem	in	lhs	{
3 								for	rhsItem	in	rhs	{
4 												if	lhsItem	==	rhsItem	{
5 																return	true
6 												}
7 								}
8 				}
9 				return	false

10 }
11 anyCommonElements([1,	2,	3],	[3])

E X P E R I M E N T

Modify the anyCommonElements function to make a function that returns an array of the
elements that any two sequences have in common.

In the simple cases, you can omit where and simply write the protocol or class name after a colon. Writing

(c) ketabton.com: The Digital Library

<T:	Equatable> is the same as writing <T	where	T:	Equatable>.

(c) ketabton.com: The Digital Library

Language Guide

(c) ketabton.com: The Digital Library

The Basics

Swift is a new programming language for iOS and OS X app development. Nonetheless, many parts of Swift
will be familiar from your experience of developing in C and Objective-C.

Swift provides its own versions of all fundamental C and Objective-C types, including Int for integers;
Double and Float for floating-point values; Bool for Boolean values; and String for textual data. Swift
also provides powerful versions of the two primary collection types, Array and Dictionary, as described
in Collection Types.

Like C, Swift uses variables to store and refer to values by an identifying name. Swift also makes extensive use
of variables whose values cannot be changed. These are known as constants, and are much more powerful
than constants in C. Constants are used throughout Swift to make code safer and clearer in intent when you
work with values that do not need to change.

In addition to familiar types, Swift introduces advanced types not found in Objective-C. These include tuples,
which enable you to create and pass around groupings of values. Tuples can return multiple values from a
function as a single compound value.

Swift also introduces optional types, which handle the absence of a value. Optionals say either “there is a value,
and it equals x” or “there isn’t a value at all”. Optionals are similar to using nil with pointers in Objective-C,
but they work for any type, not just classes. Optionals are safer and more expressive than nil pointers in
Objective-C and are at the heart of many of Swift’s most powerful features.

Optionals are an example of the fact that Swift is a type safe language. Swift helps you to be clear about the
types of values your code can work with. If part of your code expects a String, type safety prevents you from
passing it an Int by mistake. This enables you to catch and fix errors as early as possible in the development
process.

Constants and Variables

Constants and variables associate a name (such as maximumNumberOfLoginAttempts or
welcomeMessage) with a value of a particular type (such as the number 10 or the string "Hello"). The

(c) ketabton.com: The Digital Library

value of a constant cannot be changed once it is set, whereas a variable can be set to a different value in the
future.

Declaring Constants and Variables

Constants and variables must be declared before they are used. You declare constants with the let keyword
and variables with the var keyword. Here’s an example of how constants and variables can be used to track
the number of login attempts a user has made:

1 let	maximumNumberOfLoginAttempts	=	10
2 var	currentLoginAttempt	=	0

This code can be read as:

“Declare a new constant called maximumNumberOfLoginAttempts, and give it a value of 10. Then,
declare a new variable called currentLoginAttempt, and give it an initial value of 0.”

In this example, the maximum number of allowed login attempts is declared as a constant, because the
maximum value never changes. The current login attempt counter is declared as a variable, because this value
must be incremented after each failed login attempt.

You can declare multiple constants or multiple variables on a single line, separated by commas:

1 var	x	=	0.0,	y	=	0.0,	z	=	0.0

N O T E

If a stored value in your code is not going to change, always declare it as a constant with the let
keyword. Use variables only for storing values that need to be able to change.

(c) ketabton.com: The Digital Library

Type Annotations

You can provide a type annotation when you declare a constant or variable, to be clear about the kind of values
the constant or variable can store. Write a type annotation by placing a colon after the constant or variable
name, followed by a space, followed by the name of the type to use.

This example provides a type annotation for a variable called welcomeMessage, to indicate that the variable
can store String values:

1 var	welcomeMessage:	String

The colon in the declaration means “…of type…,” so the code above can be read as:

“Declare a variable called welcomeMessage that is of type String.”

The phrase “of type String” means “can store any String value.” Think of it as meaning “the type of thing”
(or “the kind of thing”) that can be stored.

The welcomeMessage variable can now be set to any string value without error:

1 welcomeMessage	=	"Hello"

N O T E

It is rare that you need to write type annotations in practice. If you provide an initial value for a
constant or variable at the point that it is defined, Swift can almost always infer the type to be used
for that constant or variable, as described in Type Safety and Type Inference. In the
welcomeMessage example above, no initial value is provided, and so the type of the
welcomeMessage variable is specified with a type annotation rather than being inferred from an
initial value.

(c) ketabton.com: The Digital Library

Naming Constants and Variables

You can use almost any character you like for constant and variable names, including Unicode characters:

1 let	π	=	3.14159
2 let	你好	=	"你好世界"
3 let	����	=	"dogcow"

Constant and variable names cannot contain mathematical symbols, arrows, private-use (or invalid) Unicode
code points, or line- and box-drawing characters. Nor can they begin with a number, although numbers may be
included elsewhere within the name.

Once you’ve declared a constant or variable of a certain type, you can’t redeclare it again with the same name,
or change it to store values of a different type. Nor can you change a constant into a variable or a variable into a
constant.

N O T E

If you need to give a constant or variable the same name as a reserved Swift keyword, you can do
so by surrounding the keyword with back ticks (`) when using it as a name. However, you should
avoid using keywords as names unless you have absolutely no choice.

You can change the value of an existing variable to another value of a compatible type. In this example, the value
of friendlyWelcome is changed from "Hello!" to "Bonjour!":

1 var	friendlyWelcome	=	"Hello!"
2 friendlyWelcome	=	"Bonjour!"
3 //	friendlyWelcome	is	now	"Bonjour!"

Unlike a variable, the value of a constant cannot be changed once it is set. Attempting to do so is reported as an

(c) ketabton.com: The Digital Library

error when your code is compiled:

1 let	languageName	=	"Swift"
2 languageName	=	"Swift++"
3 //	this	is	a	compile-time	error	-	languageName	cannot	be	changed

Printing Constants and Variables

You can print the current value of a constant or variable with the println function:

1 println(friendlyWelcome)
2 //	prints	"Bonjour!"

println is a global function that prints a value, followed by a line break, to an appropriate output. If you are
working in Xcode, for example, println prints its output in Xcode’s “console” pane. (A second function,
print, performs the same task without appending a line break to the end of the value to be printed.)

The println function prints any String value you pass to it:

1 println("This	is	a	string")
2 //	prints	"This	is	a	string"

The println function can print more complex logging messages, in a similar manner to Cocoa’s NSLog
function. These messages can include the current values of constants and variables.

Swift uses string interpolation to include the name of a constant or variable as a placeholder in a longer string,
and to prompt Swift to replace it with the current value of that constant or variable. Wrap the name in
parentheses and escape it with a backslash before the opening parenthesis:

1 println("The	current	value	of	friendlyWelcome	is	\(friendlyWelcome)")
2 //	prints	"The	current	value	of	friendlyWelcome	is	Bonjour!"

(c) ketabton.com: The Digital Library

N O T E

All options you can use with string interpolation are described in String Interpolation.

Comments

Use comments to include non-executable text in your code, as a note or reminder to yourself. Comments are
ignored by the Swift compiler when your code is compiled.

Comments in Swift are very similar to comments in C. Single-line comments begin with two forward-slashes
(//):

1 //	this	is	a	comment

You can also write multiline comments, which start with a forward-slash followed by an asterisk (/*) and end
with an asterisk followed by a forward-slash (*/):

1 /*	this	is	also	a	comment,
2 but	written	over	multiple	lines	*/

Unlike multiline comments in C, multiline comments in Swift can be nested inside other multiline comments.
You write nested comments by starting a multiline comment block and then starting a second multiline
comment within the first block. The second block is then closed, followed by the first block:

1 /*	this	is	the	start	of	the	first	multiline	comment
2 /*	this	is	the	second,	nested	multiline	comment	*/
3 this	is	the	end	of	the	first	multiline	comment	*/

Nested multiline comments enable you to comment out large blocks of code quickly and easily, even if the code

(c) ketabton.com: The Digital Library

already contains multiline comments.

Semicolons

Unlike many other languages, Swift does not require you to write a semicolon (;) after each statement in your
code, although you can do so if you wish. Semicolons are required, however, if you want to write multiple
separate statements on a single line:

1 let	cat	=	"��";	println(cat)
2 //	prints	"��"

Integers

Integers are whole numbers with no fractional component, such as 42 and -23. Integers are either signed
(positive, zero, or negative) or unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit forms. These integers follow a naming
convention similar to C, in that an 8-bit unsigned integer is of type UInt8, and a 32-bit signed integer is of type
Int32. Like all types in Swift, these integer types have capitalized names.

Integer Bounds

You can access the minimum and maximum values of each integer type with its min and max properties:

1 let	minValue	=	UInt8.min		//	minValue	is	equal	to	0,	and	is	of	type	
UInt8

2 let	maxValue	=	UInt8.max		//	maxValue	is	equal	to	255,	and	is	of	type	
UInt8

The values of these properties are of the appropriate-sized number type (such as UInt8 in the example above)

(c) ketabton.com: The Digital Library

and can therefore be used in expressions alongside other values of the same type.

Int

In most cases, you don’t need to pick a specific size of integer to use in your code. Swift provides an additional
integer type, Int, which has the same size as the current platform’s native word size:

Unless you need to work with a specific size of integer, always use Int for integer values in your code. This
aids code consistency and interoperability. Even on 32-bit platforms, Int can store any value between -
2,147,483,648 and 2,147,483,647, and is large enough for many integer ranges.

UInt

Swift also provides an unsigned integer type, UInt, which has the same size as the current platform’s native
word size:

N O T E

Use UInt only when you specifically need an unsigned integer type with the same size as the
platform’s native word size. If this is not the case, Int is preferred, even when the values to be
stored are known to be non-negative. A consistent use of Int for integer values aids code
interoperability, avoids the need to convert between different number types, and matches integer
type inference, as described in Type Safety and Type Inference.

On a 32-bit platform, Int is the same size as Int32.

On a 64-bit platform, Int is the same size as Int64.

On a 32-bit platform, UInt is the same size as UInt32.

On a 64-bit platform, UInt is the same size as UInt64.

(c) ketabton.com: The Digital Library

Floating-Point Numbers

Floating-point numbers are numbers with a fractional component, such as 3.14159, 0.1, and -273.15.

Floating-point types can represent a much wider range of values than integer types, and can store numbers that
are much larger or smaller than can be stored in an Int. Swift provides two signed floating-point number
types:

N O T E

Double has a precision of at least 15 decimal digits, whereas the precision of Float can be as
little as 6 decimal digits. The appropriate floating-point type to use depends on the nature and range
of values you need to work with in your code.

Type Safety and Type Inference

Swift is a type safe language. A type safe language encourages you to be clear about the types of values your
code can work with. If part of your code expects a String, you can’t pass it an Int by mistake.

Because Swift is type safe, it performs type checks when compiling your code and flags any mismatched types
as errors. This enables you to catch and fix errors as early as possible in the development process.

Type-checking helps you avoid errors when you’re working with different types of values. However, this doesn’t
mean that you have to specify the type of every constant and variable that you declare. If you don’t specify the

Double represents a 64-bit floating-point number. Use it when floating-point values must be
very large or particularly precise.

Float represents a 32-bit floating-point number. Use it when floating-point values do not
require 64-bit precision.

(c) ketabton.com: The Digital Library

type of value you need, Swift uses type inference to work out the appropriate type. Type inference enables a
compiler to deduce the type of a particular expression automatically when it compiles your code, simply by
examining the values you provide.

Because of type inference, Swift requires far fewer type declarations than languages such as C or Objective-C.
Constants and variables are still explicitly typed, but much of the work of specifying their type is done for you.

Type inference is particularly useful when you declare a constant or variable with an initial value. This is often
done by assigning a literal value (or literal) to the constant or variable at the point that you declare it. (A literal
value is a value that appears directly in your source code, such as 42 and 3.14159 in the examples below.)

For example, if you assign a literal value of 42 to a new constant without saying what type it is, Swift infers that
you want the constant to be an Int, because you have initialized it with a number that looks like an integer:

1 let	meaningOfLife	=	42
2 //	meaningOfLife	is	inferred	to	be	of	type	Int

Likewise, if you don’t specify a type for a floating-point literal, Swift infers that you want to create a Double:

1 let	pi	=	3.14159
2 //	pi	is	inferred	to	be	of	type	Double

Swift always chooses Double (rather than Float) when inferring the type of floating-point numbers.

If you combine integer and floating-point literals in an expression, a type of Double will be inferred from the
context:

1 let	anotherPi	=	3	+	0.14159
2 //	anotherPi	is	also	inferred	to	be	of	type	Double

The literal value of 3 has no explicit type in and of itself, and so an appropriate output type of Double is inferred
from the presence of a floating-point literal as part of the addition.

(c) ketabton.com: The Digital Library

Numeric Literals

Integer literals can be written as:

All of these integer literals have a decimal value of 17:

1 let	decimalInteger	=	17
2 let	binaryInteger	=	0b10001							//	17	in	binary	notation
3 let	octalInteger	=	0o21											//	17	in	octal	notation
4 let	hexadecimalInteger	=	0x11					//	17	in	hexadecimal	notation

Floating-point literals can be decimal (with no prefix), or hexadecimal (with a 0x prefix). They must always
have a number (or hexadecimal number) on both sides of the decimal point. They can also have an optional
exponent, indicated by an uppercase or lowercase e for decimal floats, or an uppercase or lowercase p for
hexadecimal floats.

For decimal numbers with an exponent of exp, the base number is multiplied by 10exp:

For hexadecimal numbers with an exponent of exp, the base number is multiplied by 2exp:

All of these floating-point literals have a decimal value of 12.1875:

A decimal number, with no prefix

A binary number, with a 0b prefix

An octal number, with a 0o prefix

A hexadecimal number, with a 0x prefix

1.25e2 means 1.25 × 102, or 125.0.

1.25e-2 means 1.25 × 10-2, or 0.0125.

0xFp2 means 15 × 22, or 60.0.

0xFp-2 means 15 × 2-2, or 3.75.

(c) ketabton.com: The Digital Library

1 let	decimalDouble	=	12.1875
2 let	exponentDouble	=	1.21875e1
3 let	hexadecimalDouble	=	0xC.3p0

Numeric literals can contain extra formatting to make them easier to read. Both integers and floats can be
padded with extra zeroes and can contain underscores to help with readability. Neither type of formatting affects
the underlying value of the literal:

1 let	paddedDouble	=	000123.456
2 let	oneMillion	=	1_000_000
3 let	justOverOneMillion	=	1_000_000.000_000_1

Numeric Type Conversion

Use the Int type for all general-purpose integer constants and variables in your code, even if they are known to
be non-negative. Using the default integer type in everyday situations means that integer constants and
variables are immediately interoperable in your code and will match the inferred type for integer literal values.

Use other integer types only when they are are specifically needed for the task at hand, because of explicitly-
sized data from an external source, or for performance, memory usage, or other necessary optimization. Using
explicitly-sized types in these situations helps to catch any accidental value overflows and implicitly documents
the nature of the data being used.

Integer Conversion

The range of numbers that can be stored in an integer constant or variable is different for each numeric type. An
Int8 constant or variable can store numbers between -128 and 127, whereas a UInt8 constant or variable
can store numbers between 0 and 255. A number that will not fit into a constant or variable of a sized integer
type is reported as an error when your code is compiled:

1 let	cannotBeNegative:	UInt8	=	-1
2 //	UInt8	cannot	store	negative	numbers,	and	so	this	will	report	an	

(c) ketabton.com: The Digital Library

error
3 let	tooBig:	Int8	=	Int8.max	+	1
4 //	Int8	cannot	store	a	number	larger	than	its	maximum	value,
5 //	and	so	this	will	also	report	an	error

Because each numeric type can store a different range of values, you must opt in to numeric type conversion on
a case-by-case basis. This opt-in approach prevents hidden conversion errors and helps make type conversion
intentions explicit in your code.

To convert one specific number type to another, you initialize a new number of the desired type with the existing
value. In the example below, the constant twoThousand is of type UInt16, whereas the constant one is of
type UInt8. They cannot be added together directly, because they are not of the same type. Instead, this
example calls UInt16(one) to create a new UInt16 initialized with the value of one, and uses this value in
place of the original:

1 let	twoThousand:	UInt16	=	2_000
2 let	one:	UInt8	=	1
3 let	twoThousandAndOne	=	twoThousand	+	UInt16(one)

Because both sides of the addition are now of type UInt16, the addition is allowed. The output constant
(twoThousandAndOne) is inferred to be of type UInt16, because it is the sum of two UInt16 values.

SomeType(ofInitialValue) is the default way to call the initializer of a Swift type and pass in an initial
value. Behind the scenes, UInt16 has an initializer that accepts a UInt8 value, and so this initializer is used
to make a new UInt16 from an existing UInt8. You can’t pass in any type here, however—it has to be a type
for which UInt16 provides an initializer. Extending existing types to provide initializers that accept new types
(including your own type definitions) is covered in Extensions.

Integer and Floating-Point Conversion

Conversions between integer and floating-point numeric types must be made explicit:

1 let	three	=	3

(c) ketabton.com: The Digital Library

2 let	pointOneFourOneFiveNine	=	0.14159
3 let	pi	=	Double(three)	+	pointOneFourOneFiveNine
4 //	pi	equals	3.14159,	and	is	inferred	to	be	of	type	Double

Here, the value of the constant three is used to create a new value of type Double, so that both sides of the
addition are of the same type. Without this conversion in place, the addition would not be allowed.

The reverse is also true for floating-point to integer conversion, in that an integer type can be initialized with a
Double or Float value:

1 let	integerPi	=	Int(pi)
2 //	integerPi	equals	3,	and	is	inferred	to	be	of	type	Int

Floating-point values are always truncated when used to initialize a new integer value in this way. This means
that 4.75 becomes 4, and -3.9 becomes -3.

N O T E

The rules for combining numeric constants and variables are different from the rules for numeric
literals. The literal value 3 can be added directly to the literal value 0.14159, because number
literals do not have an explicit type in and of themselves. Their type is inferred only at the point that
they are evaluated by the compiler.

Type Aliases

Type aliases define an alternative name for an existing type. You define type aliases with the typealias
keyword.

Type aliases are useful when you want to refer to an existing type by a name that is contextually more
appropriate, such as when working with data of a specific size from an external source:

(c) ketabton.com: The Digital Library

1 typealias	AudioSample	=	UInt16

Once you define a type alias, you can use the alias anywhere you might use the original name:

1 var	maxAmplitudeFound	=	AudioSample.min
2 //	maxAmplitudeFound	is	now	0

Here, AudioSample is defined as an alias for UInt16. Because it is an alias, the call to
AudioSample.min actually calls UInt16.min, which provides an initial value of 0 for the
maxAmplitudeFound variable.

Booleans

Swift has a basic Boolean type, called Bool. Boolean values are referred to as logical, because they can only
ever be true or false. Swift provides two Boolean constant values, true and false:

1 let	orangesAreOrange	=	true
2 let	turnipsAreDelicious	=	false

The types of orangesAreOrange and turnipsAreDelicious have been inferred as Bool from the
fact that they were initialized with Boolean literal values. As with Int and Double above, you don’t need to
declare constants or variables as Bool if you set them to true or false as soon as you create them. Type
inference helps make Swift code more concise and readable when it initializes constants or variables with other
values whose type is already known.

Boolean values are particularly useful when you work with conditional statements such as the if statement:

1 if	turnipsAreDelicious	{
2 				println("Mmm,	tasty	turnips!")
3 }	else	{
4 				println("Eww,	turnips	are	horrible.")
5 }

(c) ketabton.com: The Digital Library

6 //	prints	"Eww,	turnips	are	horrible."

Conditional statements such as the if statement are covered in more detail in Control Flow.

Swift’s type safety prevents non-Boolean values from being be substituted for Bool. The following example
reports a compile-time error:

1 let	i	=	1
2 if	i	{
3 				//	this	example	will	not	compile,	and	will	report	an	error
4 }

However, the alternative example below is valid:

1 let	i	=	1
2 if	i	==	1	{
3 				//	this	example	will	compile	successfully
4 }

The result of the i	==	1 comparison is of type Bool, and so this second example passes the type-check.
Comparisons like i	==	1 are discussed in Basic Operators.

As with other examples of type safety in Swift, this approach avoids accidental errors and ensures that the
intention of a particular section of code is always clear.

Tuples

Tuples group multiple values into a single compound value. The values within a tuple can be of any type and do
not have to be of the same type as each other.

In this example, (404,	"Not	Found") is a tuple that describes an HTTP status code. An HTTP status
code is a special value returned by a web server whenever you request a web page. A status code of 404	Not
Found is returned if you request a webpage that doesn’t exist.

(c) ketabton.com: The Digital Library

1 let	http404Error	=	(404,	"Not	Found")
2 //	http404Error	is	of	type	(Int,	String),	and	equals	(404,	"Not	

Found")

The (404,	"Not	Found") tuple groups together an Int and a String to give the HTTP status code two
separate values: a number and a human-readable description. It can be described as “a tuple of type (Int,
String)”.

You can create tuples from any permutation of types, and they can contain as many different types as you like.
There’s nothing stopping you from having a tuple of type (Int,	Int,	Int), or (String,	Bool), or
indeed any other permutation you require.

You can decompose a tuple’s contents into separate constants or variables, which you then access as usual:

1 let	(statusCode,	statusMessage)	=	http404Error
2 println("The	status	code	is	\(statusCode)")
3 //	prints	"The	status	code	is	404"
4 println("The	status	message	is	\(statusMessage)")
5 //	prints	"The	status	message	is	Not	Found"

If you only need some of the tuple’s values, ignore parts of the tuple with an underscore (_) when you
decompose the tuple:

1 let	(justTheStatusCode,	_)	=	http404Error
2 println("The	status	code	is	\(justTheStatusCode)")
3 //	prints	"The	status	code	is	404"

Alternatively, access the individual element values in a tuple using index numbers starting at zero:

1 println("The	status	code	is	\(http404Error.0)")
2 //	prints	"The	status	code	is	404"
3 println("The	status	message	is	\(http404Error.1)")
4 //	prints	"The	status	message	is	Not	Found"

(c) ketabton.com: The Digital Library

You can name the individual elements in a tuple when the tuple is defined:

1 let	http200Status	=	(statusCode:	200,	description:	"OK")

If you name the elements in a tuple, you can use the element names to access the values of those elements:

1 println("The	status	code	is	\(http200Status.statusCode)")
2 //	prints	"The	status	code	is	200"
3 println("The	status	message	is	\(http200Status.description)")
4 //	prints	"The	status	message	is	OK"

Tuples are particularly useful as the return values of functions. A function that tries to retrieve a web page might
return the (Int,	String) tuple type to describe the success or failure of the page retrieval. By returning a
tuple with two distinct values, each of a different type, the function provides more useful information about its
outcome than if it could only return a single value of a single type. For more information, see Functions with
Multiple Return Values.

N O T E

Tuples are useful for temporary groups of related values. They are not suited to the creation of
complex data structures. If your data structure is likely to persist beyond a temporary scope, model
it as a class or structure, rather than as a tuple. For more information, see Classes and Structures.

Optionals

You use optionals in situations where a value may be absent. An optional says:

or

There is a value, and it equals x

(c) ketabton.com: The Digital Library

N O T E

The concept of optionals doesn’t exist in C or Objective-C. The nearest thing in Objective-C is the
ability to return nil from a method that would otherwise return an object, with nil meaning “the
absence of a valid object.” However, this only works for objects—it doesn’t work for structs, basic C
types, or enumeration values. For these types, Objective-C methods typically return a special value
(such as NSNotFound) to indicate the absence of a value. This approach assumes that the
method’s caller knows there is a special value to test against and remembers to check for it. Swift’s
optionals let you indicate the absence of a value for any type at all, without the need for special
constants.

Here’s an example. Swift’s String type has a method called toInt, which tries to convert a String value
into an Int value. However, not every string can be converted into an integer. The string "123" can be
converted into the numeric value 123, but the string "hello,	world" does not have an obvious numeric
value to convert to.

The example below uses the toInt method to try to convert a String into an Int:

1 let	possibleNumber	=	"123"
2 let	convertedNumber	=	possibleNumber.toInt()
3 //	convertedNumber	is	inferred	to	be	of	type	"Int?",	or	"optional	Int"

Because the toInt method might fail, it returns an optional Int, rather than an Int. An optional Int is
written as Int?, not Int. The question mark indicates that the value it contains is optional, meaning that it
might contain some Int value, or it might contain no value at all. (It can’t contain anything else, such as a
Bool value or a String value. It’s either an Int, or it’s nothing at all.)

If Statements and Forced Unwrapping

There isn’t a value at all

(c) ketabton.com: The Digital Library

You can use an if statement to find out whether an optional contains a value. If an optional does have a value, it
evaluates to true; if it has no value at all, it evaluates to false.

Once you’re sure that the optional does contain a value, you can access its underlying value by adding an
exclamation mark (!) to the end of the optional’s name. The exclamation mark effectively says, “I know that
this optional definitely has a value; please use it.” This is known as forced unwrapping of the optional’s value:

1 if	convertedNumber	{
2 				println("\(possibleNumber)	has	an	integer	value	of	\

(convertedNumber!)")
3 }	else	{
4 				println("\(possibleNumber)	could	not	be	converted	to	an	integer")
5 }
6 //	prints	"123	has	an	integer	value	of	123"

For more on the if statement, see Control Flow.

N O T E

Trying to use ! to access a non-existent optional value triggers a runtime error. Always make sure
that an optional contains a non-nil value before using ! to force-unwrap its value.

Optional Binding

You use optional binding to find out whether an optional contains a value, and if so, to make that value available
as a temporary constant or variable. Optional binding can be used with if and while statements to check for
a value inside an optional, and to extract that value into a constant or variable, as part of a single action. if and
while statements are described in more detail in Control Flow.

(c) ketabton.com: The Digital Library

Write optional bindings for the if statement as follows:

if	let	 constantName 	=	 someOptional 	{

				 statements

}

You can rewrite the possibleNumber example from above to use optional binding rather than forced
unwrapping:

1 if	let	actualNumber	=	possibleNumber.toInt()	{
2 				println("\(possibleNumber)	has	an	integer	value	of	\

(actualNumber)")
3 }	else	{
4 				println("\(possibleNumber)	could	not	be	converted	to	an	integer")
5 }
6 //	prints	"123	has	an	integer	value	of	123"

This can be read as:

“If the optional Int returned by possibleNumber.toInt contains a value, set a new constant called
actualNumber to the value contained in the optional.”

If the conversion is successful, the actualNumber constant becomes available for use within the first branch
of the if statement. It has already been initialized with the value contained within the optional, and so there is no
need to use the ! suffix to access its value. In this example, actualNumber is simply used to print the result
of the conversion.

You can use both constants and variables with optional binding. If you wanted to manipulate the value of
actualNumber within the first branch of the if statement, you could write if	var	actualNumber
instead, and the value contained within the optional would be made available as a variable rather than a
constant.

(c) ketabton.com: The Digital Library

nil

You set an optional variable to a valueless state by assigning it the special value nil:

1 var	serverResponseCode:	Int?	=	404
2 //	serverResponseCode	contains	an	actual	Int	value	of	404
3 serverResponseCode	=	nil
4 //	serverResponseCode	now	contains	no	value

N O T E

nil cannot be used with non-optional constants and variables. If a constant or variable in your code
needs to be able to cope with the absence of a value under certain conditions, always declare it as an
optional value of the appropriate type.

If you define an optional constant or variable without providing a default value, the constant or variable is
automatically set to nil for you:

1 var	surveyAnswer:	String?
2 //	surveyAnswer	is	automatically	set	to	nil

N O T E

Swift’s nil is not the same as nil in Objective-C. In Objective-C, nil is a pointer to a non-
existent object. In Swift, nil is not a pointer—it is the absence of a value of a certain type. Optionals
of any type can be set to nil, not just object types.

(c) ketabton.com: The Digital Library

Implicitly Unwrapped Optionals

As described above, optionals indicate that a constant or variable is allowed to have “no value”. Optionals can
be checked with an if statement to see if a value exists, and can be conditionally unwrapped with optional
binding to access the optional’s value if it does exist.

Sometimes it is clear from a program’s structure that an optional will always have a value, after that value is
first set. In these cases, it is useful to remove the need to check and unwrap the optional’s value every time it is
accessed, because it can be safely assumed to have a value all of the time.

These kinds of optionals are defined as implicitly unwrapped optionals. You write an implicitly unwrapped
optional by placing an exclamation mark (String!) rather than a question mark (String?) after the type
that you want to make optional.

Implicitly unwrapped optionals are useful when an optional’s value is confirmed to exist immediately after the
optional is first defined and can definitely be assumed to exist at every point thereafter. The primary use of
implicitly unwrapped optionals in Swift is during class initialization, as described in Unowned References and
Implicitly Unwrapped Optional Properties.

An implicitly unwrapped optional is a normal optional behind the scenes, but can also be used like a nonoptional
value, without the need to unwrap the optional value each time it is accessed. The following example shows the
difference in behavior between an optional String and an implicitly unwrapped optional String:

1 let	possibleString:	String?	=	"An	optional	string."
2 println(possibleString!)	//	requires	an	exclamation	mark	to	access	its

value
3 //	prints	"An	optional	string."
4 	
5 let	assumedString:	String!	=	"An	implicitly	unwrapped	optional	

string."
6 println(assumedString)		//	no	exclamation	mark	is	needed	to	access	its

value
7 //	prints	"An	implicitly	unwrapped	optional	string."

You can think of an implicitly unwrapped optional as giving permission for the optional to be unwrapped
automatically whenever it is used. Rather than placing an exclamation mark after the optional’s name each time

(c) ketabton.com: The Digital Library

you use it, you place an exclamation mark after the optional’s type when you declare it.

N O T E

If you try to access an implicitly unwrapped optional when it does not contain a value, you will trigger
a runtime error. The result is exactly the same as if you place an exclamation mark after a normal
optional that does not contain a value.

You can still treat an implicitly unwrapped optional like a normal optional, to check if it contains a value:

1 if	assumedString	{
2 				println(assumedString)
3 }
4 //	prints	"An	implicitly	unwrapped	optional	string."

You can also use an implicitly unwrapped optional with optional binding, to check and unwrap its value in a
single statement:

1 if	let	definiteString	=	assumedString	{
2 				println(definiteString)
3 }
4 //	prints	"An	implicitly	unwrapped	optional	string."

N O T E

Implicitly unwrapped optionals should not be used when there is a possibility of a variable becoming
nil at a later point. Always use a normal optional type if you need to check for a nil value during
the lifetime of a variable.

(c) ketabton.com: The Digital Library

Assertions

Optionals enable you to check for values that may or may not exist, and to write code that copes gracefully with
the absence of a value. In some cases, however, it is simply not possible for your code to continue execution if a
value does not exist, or if a provided value does not satisfy certain conditions. In these situations, you can trigger
an assertion in your code to end code execution and to provide an opportunity to debug the cause of the absent or
invalid value.

Debugging with Assertions

An assertion is a runtime check that a logical condition definitely evaluates to true. Literally put, an assertion
“asserts” that a condition is true. You use an assertion to make sure that an essential condition is satisfied
before executing any further code. If the condition evaluates to true, code execution continues as usual; if the
condition evaluates to false, code execution ends, and your app is terminated.

If your code triggers an assertion while running in a debug environment, such as when you build and run an app
in Xcode, you can see exactly where the invalid state occurred and query the state of your app at the time that
the assertion was triggered. An assertion also lets you provide a suitable debug message as to the nature of the
assert.

You write an assertion by calling the global assert function. You pass the assert function an expression that
evaluates to true or false and a message that should be displayed if the result of the condition is false:

1 let	age	=	-3
2 assert(age	>=	0,	"A	person's	age	cannot	be	less	than	zero")
3 //	this	causes	the	assertion	to	trigger,	because	age	is	not	>=	0

In this example, code execution will continue only if age	>=	0 evaluates to true, that is, if the value of age
is non-negative. If the value of age is negative, as in the code above, then age	>=	0 evaluates to false, and
the assertion is triggered, terminating the application.

Assertion messages cannot use string interpolation. The assertion message can be omitted if desired, as in the
following example:

(c) ketabton.com: The Digital Library

1 assert(age	>=	0)

When to Use Assertions

Use an assertion whenever a condition has the potential to be false, but must definitely be true in order for your
code to continue execution. Suitable scenarios for an assertion check include:

See also Subscripts and Functions.

N O T E

Assertions cause your app to terminate and are not a substitute for designing your code in such a
way that invalid conditions are unlikely to arise. Nonetheless, in situations where invalid conditions
are possible, an assertion is an effective way to ensure that such conditions are highlighted and
noticed during development, before your app is published.

An integer subscript index is passed to a custom subscript implementation, but the subscript
index value could be too low or too high.

A value is passed to a function, but an invalid value means that the function cannot fulfill its task.

An optional value is currently nil, but a non-nil value is essential for subsequent code to
execute successfully.

(c) ketabton.com: The Digital Library

Basic Operators

An operator is a special symbol or phrase that you use to check, change, or combine values. For example, the
addition operator (+) adds two numbers together (as in let	i	=	1	+	2). More complex examples include
the logical AND operator && (as in if	enteredDoorCode	&&	passedRetinaScan) and the increment
operator ++i, which is a shortcut to increase the value of i by 1.

Swift supports most standard C operators and improves several capabilities to eliminate common coding
errors. The assignment operator (=) does not return a value, to prevent it from being mistakenly used when the
equal to operator (==) is intended. Arithmetic operators (+, -, *, /, % and so forth) detect and disallow value
overflow, to avoid unexpected results when working with numbers that become larger or smaller than the
allowed value range of the type that stores them. You can opt in to value overflow behavior by using Swift’s
overflow operators, as described in Overflow Operators.

Unlike C, Swift lets you perform remainder (%) calculations on floating-point numbers. Swift also provides two
range operators (a..b and a...b) not found in C, as a shortcut for expressing a range of values.

This chapter describes the common operators in Swift. Advanced Operators covers Swift’s advanced
operators, and describes how to define your own custom operators and implement the standard operators for
your own custom types.

Terminology

Operators are unary, binary, or ternary:

Unary operators operate on a single target (such as -a). Unary prefix operators appear
immediately before their target (such as !b), and unary postfix operators appear immediately
after their target (such as i++).

Binary operators operate on two targets (such as 2	+	3) and are infix because they appear in
between their two targets.

Ternary operators operate on three targets. Like C, Swift has only one ternary operator, the
ternary conditional operator (a	?	b	:	c).

(c) ketabton.com: The Digital Library

The values that operators affect are operands. In the expression 1	+	2, the + symbol is a binary operator and
its two operands are the values 1 and 2.

Assignment Operator

The assignment operator (a	=	b) initializes or updates the value of a with the value of b:

1 let	b	=	10
2 var	a	=	5
3 a	=	b
4 //	a	is	now	equal	to	10

If the right side of the assignment is a tuple with multiple values, its elements can be decomposed into multiple
constants or variables at once:

1 let	(x,	y)	=	(1,	2)
2 //	x	is	equal	to	1,	and	y	is	equal	to	2

Unlike the assignment operator in C and Objective-C, the assignment operator in Swift does not itself return a
value. The following statement is not valid:

1 if	x	=	y	{
2 				//	this	is	not	valid,	because	x	=	y	does	not	return	a	value
3 }

This feature prevents the assignment operator (=) from being used by accident when the equal to operator (==)
is actually intended. By making if	x	=	y invalid, Swift helps you to avoid these kinds of errors in your code.

Arithmetic Operators

(c) ketabton.com: The Digital Library

Swift supports the four standard arithmetic operators for all number types:

1 1	+	2							//	equals	3
2 5	-	3							//	equals	2
3 2	*	3							//	equals	6
4 10.0	/	2.5		//	equals	4.0

Unlike the arithmetic operators in C and Objective-C, the Swift arithmetic operators do not allow values to
overflow by default. You can opt in to value overflow behavior by using Swift’s overflow operators (such as a
&+	b). See Overflow Operators.

The addition operator is also supported for String concatenation:

1 "hello,	"	+	"world"		//	equals	"hello,	world"

Two Character values, or one Character value and one String value, can be added together to make a
new String value:

1 let	dog:	Character	=	"��"
2 let	cow:	Character	=	"��"
3 let	dogCow	=	dog	+	cow
4 //	dogCow	is	equal	to	"����"

See also Concatenating Strings and Characters.

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

(c) ketabton.com: The Digital Library

Remainder Operator

The remainder operator (a	%	b) works out how many multiples of b will fit inside a and returns the value that
is left over (known as the remainder).

N O T E

The remainder operator (%) is also known as a modulo operator in other languages. However, its
behavior in Swift for negative numbers means that it is, strictly speaking, a remainder rather than a
modulo operation.

Here’s how the remainder operator works. To calculate 9	%	4, you first work out how many 4s will fit inside
9:

You can fit two 4s inside 9, and the remainder is 1 (shown in orange).

In Swift, this would be written as:

1 9	%	4				//	equals	1

To determine the answer for a	%	b, the % operator calculates the following equation and returns remainder
as its output:

a = (b × some	multiplier) + remainder

(c) ketabton.com: The Digital Library

where some	multiplier is the largest number of multiples of b that will fit inside a.

Inserting 9 and 4 into this equation yields:

9 = (4 × 2) + 1

The same method is applied when calculating the remainder for a negative value of a:

1 -9	%	4			//	equals	-1

Inserting -9 and 4 into the equation yields:

-9 = (4 × -2) + -1

giving a remainder value of -1.

The sign of b is ignored for negative values of b. This means that a	%	b and a	%	-b always give the same
answer.

Floating-Point Remainder Calculations

Unlike the remainder operator in C and Objective-C, Swift’s remainder operator can also operate on floating-
point numbers:

1 8	%	2.5			//	equals	0.5

In this example, 8 divided by 2.5 equals 3, with a remainder of 0.5, so the remainder operator returns a
Double value of 0.5.

(c) ketabton.com: The Digital Library

Increment and Decrement Operators

Like C, Swift provides an increment operator (++) and a decrement operator (--) as a shortcut to increase or
decrease the value of a numeric variable by 1. You can use these operators with variables of any integer or
floating-point type.

1 var	i	=	0
2 ++i						//	i	now	equals	1

Each time you call ++i, the value of i is increased by 1. Essentially, ++i is shorthand for saying i	=	i	+
1. Likewise, --i can be used as shorthand for i	=	i	-	1.

The ++ and -- symbols can be used as prefix operators or as postfix operators. ++i and i++ are both valid
ways to increase the value of i by 1. Similarly, --i and i-- are both valid ways to decrease the value of i by
1.

Note that these operators modify i and also return a value. If you only want to increment or decrement the value
stored in i, you can ignore the returned value. However, if you do use the returned value, it will be different
based on whether you used the prefix or postfix version of the operator, according to the following rules:

For example:

1 var	a	=	0

If the operator is written before the variable, it increments the variable before returning its value.

If the operator is written after the variable, it increments the variable after returning its value.

(c) ketabton.com: The Digital Library

2 let	b	=	++a
3 //	a	and	b	are	now	both	equal	to	1
4 let	c	=	a++
5 //	a	is	now	equal	to	2,	but	c	has	been	set	to	the	pre-increment	value	

of	1

In the example above, let	b	=	++a increments a before returning its value. This is why both a and b are
equal to to the new value of 1.

However, let	c	=	a++ increments a after returning its value. This means that c gets the old value of 1, and
a is then updated to equal 2.

Unless you need the specific behavior of i++, it is recommended that you use ++i and --i in all cases,
because they have the typical expected behavior of modifying i and returning the result.

Unary Minus Operator

The sign of a numeric value can be toggled using a prefixed -, known as the unary minus operator:

1 let	three	=	3
2 let	minusThree	=	-three							//	minusThree	equals	-3
3 let	plusThree	=	-minusThree			//	plusThree	equals	3,	or	"minus	minus	

three"

The unary minus operator (-) is prepended directly before the value it operates on, without any white space.

Unary Plus Operator

The unary plus operator (+) simply returns the value it operates on, without any change:

1 let	minusSix	=	-6

(c) ketabton.com: The Digital Library

2 let	alsoMinusSix	=	+minusSix		//	alsoMinusSix	equals	-6

Although the unary plus operator doesn’t actually do anything, you can use it to provide symmetry in your code
for positive numbers when also using the unary minus operator for negative numbers.

Compound Assignment Operators

Like C, Swift provides compound assignment operators that combine assignment (=) with another operation.
One example is the addition assignment operator (+=):

1 var	a	=	1
2 a	+=	2
3 //	a	is	now	equal	to	3

The expression a	+=	2 is shorthand for a	=	a	+	2. Effectively, the addition and the assignment are
combined into one operator that performs both tasks at the same time.

N O T E

The compound assignment operators do not return a value. You cannot write let	b	=	a	+=	2,
for example. This behavior is different from the increment and decrement operators mentioned
above.

A complete list of compound assignment operators can be found in Expressions.

Comparison Operators

Swift supports all standard C comparison operators:

(c) ketabton.com: The Digital Library

N O T E

Swift also provides two identity operators (=== and !==), which you use to test whether two object
references both refer to the same object instance. For more information, see Classes and
Structures.

Each of the comparison operators returns a Bool value to indicate whether or not the statement is true:

1 1	==	1			//	true,	because	1	is	equal	to	1
2 2	!=	1			//	true,	because	2	is	not	equal	to	1
3 2	>	1				//	true,	because	2	is	greater	than	1
4 1	<	2				//	true,	because	1	is	less	than	2
5 1	>=	1			//	true,	because	1	is	greater	than	or	equal	to	1
6 2	<=	1			//	false,	because	2	is	not	less	than	or	equal	to	1

Comparison operators are often used in conditional statements, such as the if statement:

1 let	name	=	"world"
2 if	name	==	"world"	{
3 				println("hello,	world")
4 }	else	{
5 				println("I'm	sorry	\(name),	but	I	don't	recognize	you")

Equal to (a	==	b)

Not equal to (a	!=	b)

Greater than (a	>	b)

Less than (a	<	b)

Greater than or equal to (a	>=	b)

Less than or equal to (a	<=	b)

(c) ketabton.com: The Digital Library

6 }
7 //	prints	"hello,	world",	because	name	is	indeed	equal	to	"world"

For more on the if statement, see Control Flow.

Ternary Conditional Operator

The ternary conditional operator is a special operator with three parts, which takes the form question	?
answer1	:	answer2. It is a shortcut for evaluating one of two expressions based on whether question is
true or false. If question is true, it evaluates answer1 and returns its value; otherwise, it evaluates
answer2 and returns its value.

The ternary conditional operator is shorthand for the code below:

1 if	question	{
2 				answer1
3 }	else	{
4 				answer2
5 }

Here’s an example, which calculates the pixel height for a table row. The row height should be 50 pixels taller
than the content height if the row has a header, and 20 pixels taller if the row doesn’t have a header:

1 let	contentHeight	=	40
2 let	hasHeader	=	true
3 let	rowHeight	=	contentHeight	+	(hasHeader	?	50	:	20)
4 //	rowHeight	is	equal	to	90

The preceding example is shorthand for the code below:

1 let	contentHeight	=	40
2 let	hasHeader	=	true

(c) ketabton.com: The Digital Library

3 var	rowHeight	=	contentHeight
4 if	hasHeader	{
5 				rowHeight	=	rowHeight	+	50
6 }	else	{
7 				rowHeight	=	rowHeight	+	20
8 }
9 //	rowHeight	is	equal	to	90

The first example’s use of the ternary conditional operator means that rowHeight can be set to the correct
value on a single line of code. This is more concise than the second example, and removes the need for
rowHeight to be a variable, because its value does not need to be modified within an if statement.

The ternary conditional operator provides an efficient shorthand for deciding which of two expressions to
consider. Use the ternary conditional operator with care, however. Its conciseness can lead to hard-to-read
code if overused. Avoid combining multiple instances of the ternary conditional operator into one compound
statement.

Range Operators

Swift includes two range operators, which are shortcuts for expressing a range of values.

Closed Range Operator

The closed range operator (a...b) defines a range that runs from a to b, and includes the values a and b.

The closed range operator is useful when iterating over a range in which you want all of the values to be used,
such as with a for-in loop:

1 for	index	in	1...5	{
2 				println("\(index)	times	5	is	\(index	*	5)")
3 }
4 //	1	times	5	is	5

(c) ketabton.com: The Digital Library

5 //	2	times	5	is	10
6 //	3	times	5	is	15
7 //	4	times	5	is	20
8 //	5	times	5	is	25

For more on for-in loops, see Control Flow.

Half-Closed Range Operator

The half-closed range operator (a..b) defines a range that runs from a to b, but does not include b. It is said to
be half-closed because it contains its first value, but not its final value.

Half-closed ranges are particularly useful when you work with zero-based lists such as arrays, where it is
useful to count up to (but not including) the length of the list:

1 let	names	=	["Anna",	"Alex",	"Brian",	"Jack"]
2 let	count	=	names.count
3 for	i	in	0..count	{
4 				println("Person	\(i	+	1)	is	called	\(names[i])")
5 }
6 //	Person	1	is	called	Anna
7 //	Person	2	is	called	Alex
8 //	Person	3	is	called	Brian
9 //	Person	4	is	called	Jack

Note that the array contains four items, but 0..count only counts as far as 3 (the index of the last item in the
array), because it is a half-closed range. For more on arrays, see Arrays.

Logical Operators

Logical operators modify or combine the Boolean logic values true and false. Swift supports the three
standard logical operators found in C-based languages:

(c) ketabton.com: The Digital Library

Logical NOT Operator

The logical NOT operator (!a) inverts a Boolean value so that true becomes false, and false becomes
true.

The logical NOT operator is a prefix operator, and appears immediately before the value it operates on, without
any white space. It can be read as “not a”, as seen in the following example:

1 let	allowedEntry	=	false
2 if	!allowedEntry	{
3 				println("ACCESS	DENIED")
4 }
5 //	prints	"ACCESS	DENIED"

The phrase if	!allowedEntry can be read as “if not allowed entry.” The subsequent line is only executed
if “not allowed entry” is true; that is, if allowedEntry is false.

As in this example, careful choice of Boolean constant and variable names can help to keep code readable and
concise, while avoiding double negatives or confusing logic statements.

Logical AND Operator

The logical AND operator (a	&&	b) creates logical expressions where both values must be true for the
overall expression to also be true.

If either value is false, the overall expression will also be false. In fact, if the first value is false, the
second value won’t even be evaluated, because it can’t possibly make the overall expression equate to true.

Logical NOT (!a)

Logical AND (a	&&	b)

Logical OR (a	||	b)

(c) ketabton.com: The Digital Library

This is known as short-circuit evaluation.

This example considers two Bool values and only allows access if both values are true:

1 let	enteredDoorCode	=	true
2 let	passedRetinaScan	=	false
3 if	enteredDoorCode	&&	passedRetinaScan	{
4 				println("Welcome!")
5 }	else	{
6 				println("ACCESS	DENIED")
7 }
8 //	prints	"ACCESS	DENIED"

Logical OR Operator

The logical OR operator (a	||	b) is an infix operator made from two adjacent pipe characters. You use it to
create logical expressions in which only one of the two values has to be true for the overall expression to be
true.

Like the Logical AND operator above, the Logical OR operator uses short-circuit evaluation to consider its
expressions. If the left side of a Logical OR expression is true, the right side is not evaluated, because it
cannot change the outcome of the overall expression.

In the example below, the first Bool value (hasDoorKey) is false, but the second value
(knowsOverridePassword) is true. Because one value is true, the overall expression also evaluates
to true, and access is allowed:

1 let	hasDoorKey	=	false
2 let	knowsOverridePassword	=	true
3 if	hasDoorKey	||	knowsOverridePassword	{
4 				println("Welcome!")
5 }	else	{
6 				println("ACCESS	DENIED")
7 }

(c) ketabton.com: The Digital Library

8 //	prints	"Welcome!"

Combining Logical Operators

You can combine multiple logical operators to create longer compound expressions:

1 if	enteredDoorCode	&&	passedRetinaScan	||	hasDoorKey	||	
knowsOverridePassword	{

2 				println("Welcome!")
3 }	else	{
4 				println("ACCESS	DENIED")
5 }
6 //	prints	"Welcome!"

This example uses multiple && and || operators to create a longer compound expression. However, the &&
and || operators still operate on only two values, so this is actually three smaller expressions chained
together. It can be read as:

If we’ve entered the correct door code and passed the retina scan; or if we have a valid door key; or if we know
the emergency override password, then allow access.

Based on the values of enteredDoorCode, passedRetinaScan, and hasDoorKey, the first two mini-
expressions are false. However, the emergency override password is known, so the overall compound
expression still evaluates to true.

Explicit Parentheses

It is sometimes useful to include parentheses when they are not strictly needed, to make the intention of a
complex expression easier to read. In the door access example above, it is useful to add parentheses around
the first part of the compound expression to make its intent explicit:

(c) ketabton.com: The Digital Library

1 if	(enteredDoorCode	&&	passedRetinaScan)	||	hasDoorKey	||	
knowsOverridePassword	{

2 				println("Welcome!")
3 }	else	{
4 				println("ACCESS	DENIED")
5 }
6 //	prints	"Welcome!"

The parentheses make it clear that the first two values are considered as part of a separate possible state in the
overall logic. The output of the compound expression doesn’t change, but the overall intention is clearer to the
reader. Readability is always preferred over brevity; use parentheses where they help to make your intentions
clear.

(c) ketabton.com: The Digital Library

Strings and Characters

A string is an ordered collection of characters, such as "hello,	world" or "albatross". Swift strings
are represented by the String type, which in turn represents a collection of values of Character type.

Swift’s String and Character types provide a fast, Unicode-compliant way to work with text in your code.
The syntax for string creation and manipulation is lightweight and readable, with a similar syntax to C strings.
String concatenation is as simple as adding together two strings with the + operator, and string mutability is
managed by choosing between a constant or a variable, just like any other value in Swift.

Despite this simplicity of syntax, Swift’s String type is a fast, modern string implementation. Every string is
composed of encoding-independent Unicode characters, and provides support for accessing those characters in
various Unicode representations.

Strings can also be used to insert constants, variables, literals, and expressions into longer strings, in a process
known as string interpolation. This makes it easy to create custom string values for display, storage, and
printing.

N O T E

Swift’s String type is bridged seamlessly to Foundation’s NSString class. If you are working
with the Foundation framework in Cocoa or Cocoa Touch, the entire NSString API is available to
call on any String value you create, in addition to the String features described in this chapter.
You can also use a String value with any API that requires an NSString instance.

For more information about using String with Foundation and Cocoa, see Using Swift with Cocoa
and Objective-C.

String Literals

(c) ketabton.com: The Digital Library

You can include predefined String values within your code as string literals. A string literal is a fixed
sequence of textual characters surrounded by a pair of double quotes ("").

A string literal can be used to provide an initial value for a constant or variable:

1 let	someString	=	"Some	string	literal	value"

Note that Swift infers a type of String for the someString constant, because it is initialized with a string
literal value.

String literals can include the following special characters:

The code below shows an example of each kind of special character. The wiseWords constant contains two
escaped double quote characters. The dollarSign, blackHeart, and sparklingHeart constants
demonstrate the three different Unicode scalar character formats:

1 let	wiseWords	=	"\"Imagination	is	more	important	than	knowledge\"	-	
Einstein"

2 //	"Imagination	is	more	important	than	knowledge"	-	Einstein
3 let	dollarSign	=	"\x24"								//	$,		Unicode	scalar	U+0024
4 let	blackHeart	=	"\u2665"						//	♥,		Unicode	scalar	U+2665
5 let	sparklingHeart	=	"\U0001F496"		//	��,	Unicode	scalar	U+1F496

Initializing an Empty String

The escaped special characters \0 (null character), \\ (backslash), \t (horizontal tab), \n
(line feed), \r (carriage return), \" (double quote) and \' (single quote)

Single-byte Unicode scalars, written as \xnn, where nn is two hexadecimal digits

Two-byte Unicode scalars, written as \unnnn, where nnnn is four hexadecimal digits

Four-byte Unicode scalars, written as \Unnnnnnnn, where nnnnnnnn is eight hexadecimal
digits

(c) ketabton.com: The Digital Library

To create an empty String value as the starting point for building a longer string, either assign an empty
string literal to a variable, or initialize a new String instance with initializer syntax:

1 var	emptyString	=	""															//	empty	string	literal
2 var	anotherEmptyString	=	String()		//	initializer	syntax
3 //	these	two	strings	are	both	empty,	and	are	equivalent	to	each	other

You can find out whether a String value is empty by checking its Boolean isEmpty property:

1 if	emptyString.isEmpty	{
2 				println("Nothing	to	see	here")
3 }
4 //	prints	"Nothing	to	see	here"

String Mutability

You indicate whether a particular String can be modified (or mutated) by assigning it to a variable (in which
case it can be modified), or to a constant (in which case it cannot be modified):

1 var	variableString	=	"Horse"
2 variableString	+=	"	and	carriage"
3 //	variableString	is	now	"Horse	and	carriage"
4 	
5 let	constantString	=	"Highlander"
6 constantString	+=	"	and	another	Highlander"
7 //	this	reports	a	compile-time	error	-	a	constant	string	cannot	be	

modified

N O T E

This approach is different from string mutation in Objective-C and Cocoa, where you choose

(c) ketabton.com: The Digital Library

between two classes (NSString and NSMutableString) to indicate whether a string can be
mutated.

Strings Are Value Types

Swift’s String type is a value type. If you create a new String value, that String value is copied when it
is passed to a function or method, or when it is assigned to a constant or variable. In each case, a new copy of
the existing String value is created, and the new copy is passed or assigned, not the original version. Value
types are described in Structures and Enumerations Are Value Types.

N O T E

This behavior differs from that of NSString in Cocoa. When you create an NSString instance in
Cocoa, and pass it to a function or method or assign it to a variable, you are always passing or
assigning a reference to the same single NSString. No copying of the string takes place, unless
you specifically request it.

Swift’s copy-by-default String behavior ensures that when a function or method passes you a String value,
it is clear that you own that exact String value, regardless of where it came from. You can be confident that
the string you are passed will not be modified unless you modify it yourself.

Behind the scenes, Swift’s compiler optimizes string usage so that actual copying takes place only when
absolutely necessary. This means you always get great performance when working with strings as value types.

Working with Characters

Swift’s String type represents a collection of Character values in a specified order. Each Character
value represents a single Unicode character. You can access the individual Character values in a string by

(c) ketabton.com: The Digital Library

iterating over that string with a for-in loop:

1 for	character	in	"Dog!��"	{
2 				println(character)
3 }
4 //	D
5 //	o
6 //	g
7 //	!
8 //	��

The for-in loop is described in For Loops.

Alternatively, create a stand-alone Character constant or variable from a single-character string literal by
providing a Character type annotation:

1 let	yenSign:	Character	=	"¥"

Counting Characters

To retrieve a count of the characters in a string, call the global countElements function and pass in a string
as the function’s sole parameter:

1 let	unusualMenagerie	=	"Koala	��,	Snail	��,	Penguin	��,	Dromedary	�
�"

2 println("unusualMenagerie	has	\(countElements(unusualMenagerie))	
characters")

3 //	prints	"unusualMenagerie	has	40	characters"

N O T E

(c) ketabton.com: The Digital Library

Different Unicode characters and different representations of the same Unicode character can
require different amounts of memory to store. Because of this, characters in Swift do not each take
up the same amount of memory within a string’s representation. As a result, the length of a string
cannot be calculated without iterating through the string to consider each of its characters in turn. If
you are working with particularly long string values, be aware that the countElements function
must iterate over the characters within a string in order to calculate an accurate character count for
that string.

Note also that the character count returned by countElements is not always the same as the
length property of an NSString that contains the same characters. The length of an NSString
is based on the number of 16-bit code units within the string’s UTF-16 representation and not the
number of Unicode characters within the string. To reflect this fact, the length property from
NSString is called utf16count when it is accessed on a Swift String value.

Concatenating Strings and Characters

String and Character values can be added together (or concatenated) with the addition operator (+) to
create a new String value:

1 let	string1	=	"hello"
2 let	string2	=	"	there"
3 let	character1:	Character	=	"!"
4 let	character2:	Character	=	"?"
5 	
6 let	stringPlusCharacter	=	string1	+	character1								//	equals	

"hello!"
7 let	stringPlusString	=	string1	+	string2														//	equals	"hello

there"
8 let	characterPlusString	=	character1	+	string1								//	equals	

"!hello"
9 let	characterPlusCharacter	=	character1	+	character2		//	equals	"!?"

You can also append a String or Character value to an existing String variable with the addition
assignment operator (+=):

(c) ketabton.com: The Digital Library

1 var	instruction	=	"look	over"
2 instruction	+=	string2
3 //	instruction	now	equals	"look	over	there"
4 	
5 var	welcome	=	"good	morning"
6 welcome	+=	character1
7 //	welcome	now	equals	"good	morning!"

N O T E

You can’t append a String or Character to an existing Character variable, because a
Character value must contain a single character only.

String Interpolation

String interpolation is a way to construct a new String value from a mix of constants, variables, literals, and
expressions by including their values inside a string literal. Each item that you insert into the string literal is
wrapped in a pair of parentheses, prefixed by a backslash:

1 let	multiplier	=	3
2 let	message	=	"\(multiplier)	times	2.5	is	\(Double(multiplier)	*	2.5)"
3 //	message	is	"3	times	2.5	is	7.5"

In the example above, the value of multiplier is inserted into a string literal as \(multiplier). This
placeholder is replaced with the actual value of multiplier when the string interpolation is evaluated to
create an actual string.

The value of multiplier is also part of a larger expression later in the string. This expression calculates the
value of Double(multiplier)	*	2.5 and inserts the result (7.5) into the string. In this case, the
expression is written as \(Double(multiplier)	*	2.5) when it is included inside the string literal.

(c) ketabton.com: The Digital Library

N O T E

The expressions you write inside parentheses within an interpolated string cannot contain an
unescaped double quote (") or backslash (\), and cannot contain a carriage return or line feed.

Comparing Strings

Swift provides three ways to compare String values: string equality, prefix equality, and suffix equality.

String Equality

Two String values are considered equal if they contain exactly the same characters in the same order:

1 let	quotation	=	"We're	a	lot	alike,	you	and	I."
2 let	sameQuotation	=	"We're	a	lot	alike,	you	and	I."
3 if	quotation	==	sameQuotation	{
4 				println("These	two	strings	are	considered	equal")
5 }
6 //	prints	"These	two	strings	are	considered	equal"

Prefix and Suffix Equality

To check whether a string has a particular string prefix or suffix, call the string’s hasPrefix and
hasSuffix methods, both of which take a single argument of type String and return a Boolean value. Both
methods perform a character-by-character comparison between the base string and the prefix or suffix string.

The examples below consider an array of strings representing the scene locations from the first two acts of
Shakespeare’s Romeo and Juliet:

(c) ketabton.com: The Digital Library

1 let	romeoAndJuliet	=	[
2 				"Act	1	Scene	1:	Verona,	A	public	place",
3 				"Act	1	Scene	2:	Capulet's	mansion",
4 				"Act	1	Scene	3:	A	room	in	Capulet's	mansion",
5 				"Act	1	Scene	4:	A	street	outside	Capulet's	mansion",
6 				"Act	1	Scene	5:	The	Great	Hall	in	Capulet's	mansion",
7 				"Act	2	Scene	1:	Outside	Capulet's	mansion",
8 				"Act	2	Scene	2:	Capulet's	orchard",
9 				"Act	2	Scene	3:	Outside	Friar	Lawrence's	cell",

10 				"Act	2	Scene	4:	A	street	in	Verona",
11 				"Act	2	Scene	5:	Capulet's	mansion",
12 				"Act	2	Scene	6:	Friar	Lawrence's	cell"
13]

You can use the hasPrefix method with the romeoAndJuliet array to count the number of scenes in Act
1 of the play:

1 var	act1SceneCount	=	0
2 for	scene	in	romeoAndJuliet	{
3 				if	scene.hasPrefix("Act	1	")	{
4 								++act1SceneCount
5 				}
6 }
7 println("There	are	\(act1SceneCount)	scenes	in	Act	1")
8 //	prints	"There	are	5	scenes	in	Act	1"

Similarly, use the hasSuffix method to count the number of scenes that take place in or around Capulet’s
mansion and Friar Lawrence’s cell:

1 var	mansionCount	=	0
2 var	cellCount	=	0
3 for	scene	in	romeoAndJuliet	{
4 				if	scene.hasSuffix("Capulet's	mansion")	{

(c) ketabton.com: The Digital Library

5 								++mansionCount
6 				}	else	if	scene.hasSuffix("Friar	Lawrence's	cell")	{
7 								++cellCount
8 				}
9 }

10 println("\(mansionCount)	mansion	scenes;	\(cellCount)	cell	
scenes")

11 //	prints	"6	mansion	scenes;	2	cell	scenes"

Uppercase and Lowercase Strings

You can access an uppercase or lowercase version of a string with its uppercaseString and
lowercaseString properties:

1 let	normal	=	"Could	you	help	me,	please?"
2 let	shouty	=	normal.uppercaseString
3 //	shouty	is	equal	to	"COULD	YOU	HELP	ME,	PLEASE?"
4 let	whispered	=	normal.lowercaseString
5 //	whispered	is	equal	to	"could	you	help	me,	please?"

Unicode

Unicode is an international standard for encoding and representing text. It enables you to represent almost any
character from any language in a standardized form, and to read and write those characters to and from an
external source such as a text file or web page.

Swift’s String and Character types are fully Unicode-compliant. They support a number of different
Unicode encodings, as described below.

Unicode Terminology

(c) ketabton.com: The Digital Library

Every character in Unicode can be represented by one or more unicode scalars. A unicode scalar is a unique
21-bit number (and name) for a character or modifier, such as U+0061 for LOWERCASE	LATIN	LETTER	A
("a"), or U+1F425 for FRONT-FACING	BABY	CHICK ("��").

When a Unicode string is written to a text file or some other storage, these unicode scalars are encoded in one
of several Unicode-defined formats. Each format encodes the string in small chunks known as code units.
These include the UTF-8 format (which encodes a string as 8-bit code units) and the UTF-16 format (which
encodes a string as 16-bit code units).

Unicode Representations of Strings

Swift provides several different ways to access Unicode representations of strings.

You can iterate over the string with a for-in statement, to access its individual Character values as
Unicode characters. This process is described in Working with Characters.

Alternatively, access a String value in one of three other Unicode-compliant representations:

Each example below shows a different representation of the following string, which is made up of the characters
D, o, g, !, and the �� character (DOG	FACE, or Unicode scalar U+1F436):

1 let	dogString	=	"Dog!��"

UTF-8

You can access a UTF-8 representation of a String by iterating over its utf8 property. This property is of

A collection of UTF-8 code units (accessed with the string’s utf8 property)

A collection of UTF-16 code units (accessed with the string’s utf16 property)

A collection of 21-bit Unicode scalar values (accessed with the string’s unicodeScalars
property)

(c) ketabton.com: The Digital Library

type UTF8View, which is a collection of unsigned 8-bit (UInt8) values, one for each byte in the string’s UTF-
8 representation:

1 for	codeUnit	in	dogString.utf8	{
2 				print("\(codeUnit)	")
3 }
4 print("\n")
5 //	68	111	103	33	240	159	144	182

In the example above, the first four decimal codeUnit values (68, 111, 103, 33) represent the characters D,
o, g, and !, whose UTF-8 representation is the same as their ASCII representation. The last four codeUnit
values (240, 159, 144, 182) are a four-byte UTF-8 representation of the DOG	FACE character.

UTF-16

You can access a UTF-16 representation of a String by iterating over its utf16 property. This property is of
type UTF16View, which is a collection of unsigned 16-bit (UInt16) values, one for each 16-bit code unit in
the string’s UTF-16 representation:

1 for	codeUnit	in	dogString.utf16	{
2 				print("\(codeUnit)	")
3 }
4 print("\n")
5 //	68	111	103	33	55357	56374

Again, the first four codeUnit values (68, 111, 103, 33) represent the characters D, o, g, and !, whose
UTF-16 code units have the same values as in the string’s UTF-8 representation.

The fifth and sixth codeUnit values (55357 and 56374) are a UTF-16 surrogate pair representation of the
DOG	FACE character. These values are a lead surrogate value of U+D83D (decimal value 55357) and a trail
surrogate value of U+DC36 (decimal value 56374).

(c) ketabton.com: The Digital Library

Unicode Scalars

You can access a Unicode scalar representation of a String value by iterating over its unicodeScalars
property. This property is of type UnicodeScalarView, which is a collection of values of type
UnicodeScalar. A Unicode scalar is any 21-bit Unicode code point that is not a lead surrogate or trail
surrogate code point.

Each UnicodeScalar has a value property that returns the scalar’s 21-bit value, represented within a
UInt32 value:

1 for	scalar	in	dogString.unicodeScalars	{
2 				print("\(scalar.value)	")
3 }
4 print("\n")
5 //	68	111	103	33	128054

The value properties for the first four UnicodeScalar values (68, 111, 103, 33) once again represent
the characters D, o, g, and !. The value property of the fifth and final UnicodeScalar, 128054, is a
decimal equivalent of the hexadecimal value 1F436, which is equivalent to the Unicode scalar U+1F436 for
the DOG	FACE character.

As an alternative to querying their value properties, each UnicodeScalar value can also be used to
construct a new String value, such as with string interpolation:

1 for	scalar	in	dogString.unicodeScalars	{
2 				println("\(scalar)	")
3 }
4 //	D
5 //	o
6 //	g
7 //	!
8 //	��

(c) ketabton.com: The Digital Library

Collection Types

Swift provides two collection types, known as arrays and dictionaries, for storing collections of values. Arrays
store ordered lists of values of the same type. Dictionaries store unordered collections of values of the same
type, which can be referenced and looked up through a unique identifier (also known as a key).

Arrays and dictionaries in Swift are always clear about the types of values and keys that they can store. This
means that you cannot insert a value of the wrong type into an array or dictionary by mistake. It also means you
can be confident about the types of values you will retrieve from an array or dictionary. Swift’s use of explicitly
typed collections ensures that your code is always clear about the types of values it can work with and enables
you to catch any type mismatches early in your code’s development.

N O T E

Swift’s Array type exhibits different behavior to other types when assigned to a constant or
variable, or when passed to a function or method. For more information, see Mutability of
Collections and Assignment and Copy Behavior for Collection Types.

Arrays

An array stores multiple values of the same type in an ordered list. The same value can appear in an array
multiple times at different positions.

Swift arrays are specific about the kinds of values they can store. They differ from Objective-C’s NSArray and
NSMutableArray classes, which can store any kind of object and do not provide any information about the
nature of the objects they return. In Swift, the type of values that a particular array can store is always made
clear, either through an explicit type annotation, or through type inference, and does not have to be a class type.
If you create an array of Int values, for example, you can’t insert any value other than Int values into that
array. Swift arrays are type safe, and are always clear about what they may contain.

(c) ketabton.com: The Digital Library

Array Type Shorthand Syntax

The type of a Swift array is written in full as Array<SomeType>, where SomeType is the type that the array
is allowed to store. You can also write the type of an array in shorthand form as SomeType[]. Although the
two forms are functionally identical, the shorthand form is preferred, and is used throughout this guide when
referring to the type of an array.

Array Literals

You can initialize an array with an array literal, which is a shorthand way to write one or more values as an
array collection. An array literal is written as a list of values, separated by commas, surrounded by a pair of
square brackets:

[value	1 ,	 value	2 ,	 value	3]

The example below creates an array called shoppingList to store String values:

1 var	shoppingList:	String[]	=	["Eggs",	"Milk"]
2 //	shoppingList	has	been	initialized	with	two	initial	items

The shoppingList variable is declared as “an array of String values”, written as String[]. Because
this particular array has specified a value type of String, it is only allowed to store String values. Here, the
shoppingList array is initialized with two String values ("Eggs" and "Milk"), written within an array
literal.

N O T E

The shoppingList array is declared as a variable (with the var introducer) and not a constant
(with the let introducer) because more items are added to the shopping list in the examples below.

(c) ketabton.com: The Digital Library

In this case, the array literal contains two String values and nothing else. This matches the type of the
shoppingList variable’s declaration (an array that can only contain String values), and so the
assignment of the array literal is permitted as a way to initialize shoppingList with two initial items.

Thanks to Swift’s type inference, you don’t have to write the type of the array if you’re initializing it with an array
literal containing values of the same type. The initialization of shoppingList could have been written in a
shorter form instead:

1 var	shoppingList	=	["Eggs",	"Milk"]

Because all values in the array literal are of the same type, Swift can infer that String[] is the correct type to
use for the shoppingList variable.

Accessing and Modifying an Array

You access and modify an array through its methods and properties, or by using subscript syntax.

To find out the number of items in an array, check its read-only count property:

1 println("The	shopping	list	contains	\(shoppingList.count)	items.")
2 //	prints	"The	shopping	list	contains	2	items."

Use the Boolean isEmpty property as a shortcut for checking whether the count property is equal to 0:

1 if	shoppingList.isEmpty	{
2 				println("The	shopping	list	is	empty.")
3 }	else	{
4 				println("The	shopping	list	is	not	empty.")
5 }
6 //	prints	"The	shopping	list	is	not	empty."

(c) ketabton.com: The Digital Library

You can add a new item to the end of an array by calling the array’s append method:

1 shoppingList.append("Flour")
2 //	shoppingList	now	contains	3	items,	and	someone	is	making	pancakes

Alternatively, add a new item to the end of an array with the addition assignment operator (+=):

1 shoppingList	+=	"Baking	Powder"
2 //	shoppingList	now	contains	4	items

You can also append an array of compatible items with the addition assignment operator (+=):

1 shoppingList	+=	["Chocolate	Spread",	"Cheese",	"Butter"]
2 //	shoppingList	now	contains	7	items

Retrieve a value from the array by using subscript syntax, passing the index of the value you want to retrieve
within square brackets immediately after the name of the array:

1 var	firstItem	=	shoppingList[0]
2 //	firstItem	is	equal	to	"Eggs"

Note that the first item in the array has an index of 0, not 1. Arrays in Swift are always zero-indexed.

You can use subscript syntax to change an existing value at a given index:

1 shoppingList[0]	=	"Six	eggs"
2 //	the	first	item	in	the	list	is	now	equal	to	"Six	eggs"	rather	than	

"Eggs"

You can also use subscript syntax to change a range of values at once, even if the replacement set of values has
a different length than the range you are replacing. The following example replaces "Chocolate	Spread",
"Cheese", and "Butter" with "Bananas" and "Apples":

(c) ketabton.com: The Digital Library

1 shoppingList[4...6]	=	["Bananas",	"Apples"]
2 //	shoppingList	now	contains	6	items

N O T E

You can’t use subscript syntax to append a new item to the end of an array. If you try to use subscript
syntax to retrieve or set a value for an index that is outside of an array’s existing bounds, you will
trigger a runtime error. However, you can check that an index is valid before using it, by comparing
it to the array’s count property. Except when count is 0 (meaning the array is empty), the largest
valid index in an array will always be count	-	1, because arrays are indexed from zero.

To insert an item into the array at a specified index, call the array’s insert(atIndex:) method:

1 shoppingList.insert("Maple	Syrup",	atIndex:	0)
2 //	shoppingList	now	contains	7	items
3 //	"Maple	Syrup"	is	now	the	first	item	in	the	list

This call to the insert method inserts a new item with a value of "Maple	Syrup" at the very beginning of
the shopping list, indicated by an index of 0.

Similarly, you remove an item from the array with the removeAtIndex method. This method removes the
item at the specified index and returns the removed item (although you can ignore the returned value if you do
not need it):

1 let	mapleSyrup	=	shoppingList.removeAtIndex(0)
2 //	the	item	that	was	at	index	0	has	just	been	removed
3 //	shoppingList	now	contains	6	items,	and	no	Maple	Syrup
4 //	the	mapleSyrup	constant	is	now	equal	to	the	removed	"Maple	Syrup"	

string

Any gaps in an array are closed when an item is removed, and so the value at index 0 is once again equal to
"Six	eggs":

(c) ketabton.com: The Digital Library

1 firstItem	=	shoppingList[0]
2 //	firstItem	is	now	equal	to	"Six	eggs"

If you want to remove the final item from an array, use the removeLast method rather than the
removeAtIndex method to avoid the need to query the array’s count property. Like the removeAtIndex
method, removeLast returns the removed item:

1 let	apples	=	shoppingList.removeLast()
2 //	the	last	item	in	the	array	has	just	been	removed
3 //	shoppingList	now	contains	5	items,	and	no	cheese
4 //	the	apples	constant	is	now	equal	to	the	removed	"Apples"	string

Iterating Over an Array

You can iterate over the entire set of values in an array with the for-in loop:

1 for	item	in	shoppingList	{
2 				println(item)
3 }
4 //	Six	eggs
5 //	Milk
6 //	Flour
7 //	Baking	Powder
8 //	Bananas

If you need the integer index of each item as well as its value, use the global enumerate function to iterate
over the array instead. The enumerate function returns a tuple for each item in the array composed of the
index and the value for that item. You can decompose the tuple into temporary constants or variables as part of
the iteration:

1 for	(index,	value)	in	enumerate(shoppingList)	{

(c) ketabton.com: The Digital Library

2 				println("Item	\(index	+	1):	\(value)")
3 }
4 //	Item	1:	Six	eggs
5 //	Item	2:	Milk
6 //	Item	3:	Flour
7 //	Item	4:	Baking	Powder
8 //	Item	5:	Bananas

For more about the for-in loop, see For Loops.

Creating and Initializing an Array

You can create an empty array of a certain type (without setting any initial values) using initializer syntax:

1 var	someInts	=	Int[]()
2 println("someInts	is	of	type	Int[]	with	\(someInts.count)	items.")
3 //	prints	"someInts	is	of	type	Int[]	with	0	items."

Note that the type of the someInts variable is inferred to be Int[], because it is set to the output of an
Int[] initializer.

Alternatively, if the context already provides type information, such as a function argument or an already-typed
variable or constant, you can create an empty array with an empty array literal, which is written as [] (an
empty pair of square brackets):

1 someInts.append(3)
2 //	someInts	now	contains	1	value	of	type	Int
3 someInts	=	[]
4 //	someInts	is	now	an	empty	array,	but	is	still	of	type	Int[]

Swift’s Array type also provides an initializer for creating an array of a certain size with all of its values set to
a provided default value. You pass this initializer the number of items to be added to the new array (called
count) and a default value of the appropriate type (called repeatedValue):

(c) ketabton.com: The Digital Library

1 var	threeDoubles	=	Double[](count:	3,	repeatedValue:	0.0)
2 //	threeDoubles	is	of	type	Double[],	and	equals	[0.0,	0.0,	0.0]

Thanks to type inference, you don’t need to specify the type to be stored in the array when using this initializer,
because it can be inferred from the default value:

1 var	anotherThreeDoubles	=	Array(count:	3,	repeatedValue:	2.5)
2 //	anotherThreeDoubles	is	inferred	as	Double[],	and	equals	[2.5,	2.5,	

2.5]

Finally, you can create a new array by adding together two existing arrays of compatible type with the addition
operator (+). The new array’s type is inferred from the type of the two arrays you add together:

1 var	sixDoubles	=	threeDoubles	+	anotherThreeDoubles
2 //	sixDoubles	is	inferred	as	Double[],	and	equals	[0.0,	0.0,	0.0,	2.5,

2.5,	2.5]

Dictionaries

A dictionary is a container that stores multiple values of the same type. Each value is associated with a unique
key, which acts as an identifier for that value within the dictionary. Unlike items in an array, items in a
dictionary do not have a specified order. You use a dictionary when you need to look up values based on their
identifier, in much the same way that a real-world dictionary is used to look up the definition for a particular
word.

Swift dictionaries are specific about the types of keys and values they can store. They differ from Objective-C’s
NSDictionary and NSMutableDictionary classes, which can use any kind of object as their keys and
values and do not provide any information about the nature of these objects. In Swift, the type of keys and values
that a particular dictionary can store is always made clear, either through an explicit type annotation or through
type inference.

Swift’s dictionary type is written as Dictionary<KeyType,	ValueType>, where KeyType is the type

(c) ketabton.com: The Digital Library

of value that can be used as a dictionary key, and ValueType is the type of value that the dictionary stores for
those keys.

The only restriction is that KeyType must be hashable—that is, it must provide a way to make itself uniquely
representable. All of Swift’s basic types (such as String, Int, Double, and Bool) are hashable by default,
and all of these types can be used as the keys of a dictionary. Enumeration member values without associated
values (as described in Enumerations) are also hashable by default.

Dictionary Literals

You can initialize a dictionary with with a dictionary literal, which has a similar syntax to the array literal seen
earlier. A dictionary literal is a shorthand way to write one or more key-value pairs as a Dictionary
collection.

A key-value pair is a combination of a key and a value. In a dictionary literal, the key and value in each key-
value pair are separated by a colon. The key-value pairs are written as a list, separated by commas,
surrounded by a pair of square brackets:

[key	1 :	 value	1 ,	 key	2 :	 value	2 ,	 key	3 :	 value	3]

The example below creates a dictionary to store the names of international airports. In this dictionary, the keys
are three-letter International Air Transport Association codes, and the values are airport names:

1 var	airports:	Dictionary<String,	String>	=	["TYO":	"Tokyo",	"DUB":	
"Dublin"]

The airports dictionary is declared as having a type of Dictionary<String,	String>, which
means “a Dictionary whose keys are of type String, and whose values are also of type String”.

N O T E

(c) ketabton.com: The Digital Library

The airports dictionary is declared as a variable (with the var introducer), and not a constant
(with the let introducer), because more airports will be added to the dictionary in the examples
below.

The airports dictionary is initialized with a dictionary literal containing two key-value pairs. The first pair
has a key of "TYO" and a value of "Tokyo". The second pair has a key of "DUB" and a value of "Dublin".

This dictionary literal contains two String:	String pairs. This matches the type of the airports
variable declaration (a dictionary with only String keys, and only String values) and so the assignment of
the dictionary literal is permitted as a way to initialize the airports dictionary with two initial items.

As with arrays, you don’t have to write the type of the dictionary if you’re initializing it with a dictionary literal
whose keys and values have consistent types. The initialization of airports could have been be written in a
shorter form instead:

1 var	airports	=	["TYO":	"Tokyo",	"DUB":	"Dublin"]

Because all keys in the literal are of the same type as each other, and likewise all values are of the same type
as each other, Swift can infer that Dictionary<String,	String> is the correct type to use for the
airports dictionary.

Accessing and Modifying a Dictionary

You access and modify a dictionary through its methods and properties, or by using subscript syntax. As with
an array, you can find out the number of items in a Dictionary by checking its read-only count property:

1 println("The	dictionary	of	airports	contains	\(airports.count)	
items.")

2 //	prints	"The	dictionary	of	airports	contains	2	items."

You can add a new item to a dictionary with subscript syntax. Use a new key of the appropriate type as the

(c) ketabton.com: The Digital Library

subscript index, and assign a new value of the appropriate type:

1 airports["LHR"]	=	"London"
2 //	the	airports	dictionary	now	contains	3	items

You can also use subscript syntax to change the value associated with a particular key:

1 airports["LHR"]	=	"London	Heathrow"
2 //	the	value	for	"LHR"	has	been	changed	to	"London	Heathrow"

As an alternative to subscripting, use a dictionary’s updateValue(forKey:) method to set or update the
value for a particular key. Like the subscript examples above, the updateValue(forKey:) method sets a
value for a key if none exists, or updates the value if that key already exists. Unlike a subscript, however, the
updateValue(forKey:) method returns the old value after performing an update. This enables you to
check whether or not an update took place.

The updateValue(forKey:) method returns an optional value of the dictionary’s value type. For a
dictionary that stores String values, for example, the method returns a value of type String?, or “optional
String”. This optional value contains the old value for that key if one existed before the update, or nil if no
value existed:

1 if	let	oldValue	=	airports.updateValue("Dublin	International",	forKey:
"DUB")	{

2 				println("The	old	value	for	DUB	was	\(oldValue).")
3 }
4 //	prints	"The	old	value	for	DUB	was	Dublin."

You can also use subscript syntax to retrieve a value from the dictionary for a particular key. Because it is
possible to request a key for which no value exists, a dictionary’s subscript returns an optional value of the
dictionary’s value type. If the dictionary contains a value for the requested key, the subscript returns an optional
value containing the existing value for that key. Otherwise, the subscript returns nil:

1 if	let	airportName	=	airports["DUB"]	{
2 				println("The	name	of	the	airport	is	\(airportName).")

(c) ketabton.com: The Digital Library

3 }	else	{
4 				println("That	airport	is	not	in	the	airports	dictionary.")
5 }
6 //	prints	"The	name	of	the	airport	is	Dublin	International."

You can use subscript syntax to remove a key-value pair from a dictionary by assigning a value of nil for that
key:

1 airports["APL"]	=	"Apple	International"
2 //	"Apple	International"	is	not	the	real	airport	for	APL,	so	delete	it
3 airports["APL"]	=	nil
4 //	APL	has	now	been	removed	from	the	dictionary

Alternatively, remove a key-value pair from a dictionary with the removeValueForKey method. This
method removes the key-value pair if it exists and returns the removed value, or returns nil if no value
existed:

1 if	let	removedValue	=	airports.removeValueForKey("DUB")	{
2 				println("The	removed	airport's	name	is	\(removedValue).")
3 }	else	{
4 				println("The	airports	dictionary	does	not	contain	a	value	for	

DUB.")
5 }
6 //	prints	"The	removed	airport's	name	is	Dublin	International."

Iterating Over a Dictionary

You can iterate over the key-value pairs in a dictionary with a for-in loop. Each item in the dictionary is
returned as a (key,	value) tuple, and you can decompose the tuple’s members into temporary constants
or variables as part of the iteration:

1 for	(airportCode,	airportName)	in	airports	{

(c) ketabton.com: The Digital Library

2 				println("\(airportCode):	\(airportName)")
3 }
4 //	TYO:	Tokyo
5 //	LHR:	London	Heathrow

For more about the for-in loop, see For Loops.

You can also retrieve an iteratable collection of a dictionary’s keys or values by accessing its keys and
values properties:

1 for	airportCode	in	airports.keys	{
2 				println("Airport	code:	\(airportCode)")
3 }
4 //	Airport	code:	TYO
5 //	Airport	code:	LHR
6 	
7 for	airportName	in	airports.values	{
8 				println("Airport	name:	\(airportName)")
9 }

10 //	Airport	name:	Tokyo
11 //	Airport	name:	London	Heathrow

If you need to use a dictionary’s keys or values with an API that takes an Array instance, initialize a new array
with the keys or values property:

1 let	airportCodes	=	Array(airports.keys)
2 //	airportCodes	is	["TYO",	"LHR"]
3 	
4 let	airportNames	=	Array(airports.values)
5 //	airportNames	is	["Tokyo",	"London	Heathrow"]

N O T E

(c) ketabton.com: The Digital Library

Swift’s Dictionary type is an unordered collection. The order in which keys, values, and key-
value pairs are retrieved when iterating over a dictionary is not specified.

Creating an Empty Dictionary

As with arrays, you can create an empty Dictionary of a certain type by using initializer syntax:

1 var	namesOfIntegers	=	Dictionary<Int,	String>()
2 //	namesOfIntegers	is	an	empty	Dictionary<Int,	String>

This example creates an empty dictionary of type Int, String to store human-readable names of integer
values. Its keys are of type Int, and its values are of type String.

If the context already provides type information, create an empty dictionary with an empty dictionary literal,
which is written as [:] (a colon inside a pair of square brackets):

1 namesOfIntegers[16]	=	"sixteen"
2 //	namesOfIntegers	now	contains	1	key-value	pair
3 namesOfIntegers	=	[:]
4 //	namesOfIntegers	is	once	again	an	empty	dictionary	of	type	Int,	

String

N O T E

Behind the scenes, Swift’s array and dictionary types are implemented as generic collections. For
more on generic types and collections, see Generics.

(c) ketabton.com: The Digital Library

Mutability of Collections

Arrays and dictionaries store multiple values together in a single collection. If you create an array or a
dictionary and assign it to a variable, the collection that is created will be mutable. This means that you can
change (or mutate) the size of the collection after it is created by adding more items to the collection, or by
removing existing items from the ones it already contains. Conversely, if you assign an array or a dictionary to
a constant, that array or dictionary is immutable, and its size cannot be changed.

For dictionaries, immutability also means that you cannot replace the value for an existing key in the dictionary.
An immutable dictionary’s contents cannot be changed once they are set.

Immutability has a slightly different meaning for arrays, however. You are still not allowed to perform any action
that has the potential to change the size of an immutable array, but you are allowed to set a new value for an
existing index in the array. This enables Swift’s Array type to provide optimal performance for array
operations when the size of an array is fixed.

The mutability behavior of Swift’s Array type also affects how array instances are assigned and modified. For
more information, see Assignment and Copy Behavior for Collection Types.

N O T E

It is good practice to create immutable collections in all cases where the collection’s size does not
need to change. Doing so enables the Swift compiler to optimize the performance of the collections
you create.

(c) ketabton.com: The Digital Library

Control Flow

Swift provides all the familiar control flow constructs of C-like languages. These include for and while loops
to perform a task multiple times; if and switch statements to execute different branches of code based on
certain conditions; and statements such as break and continue to transfer the flow of execution to another
point in your code.

In addition to the traditional for-condition-increment loop found in C, Swift adds a for-in loop that
makes it easy to iterate over arrays, dictionaries, ranges, strings, and other sequences.

Swift’s switch statement is also considerably more powerful than its counterpart in C. The cases of a
switch statement do not “fall through” to the next case in Swift, avoiding common C errors caused by missing
break statements. Cases can match many different types of pattern, including range matches, tuples, and
casts to a specific type. Matched values in a switch case can be bound to temporary constants or variables
for use within the case’s body, and complex matching conditions can be expressed with a where clause for
each case.

For Loops

A for loop performs a set of statements a certain number of times. Swift provides two kinds of for loop:

For-In

You use the for-in loop to iterate over collections of items, such as ranges of numbers, items in an array, or
characters in a string.

for-in performs a set of statements for each item in a range, sequence, collection, or
progression.

for-condition-increment performs a set of statements until a specific condition is met,
typically by incrementing a counter each time the loop ends.

(c) ketabton.com: The Digital Library

This example prints the first few entries in the five-times-table:

1 for	index	in	1...5	{
2 				println("\(index)	times	5	is	\(index	*	5)")
3 }
4 //	1	times	5	is	5
5 //	2	times	5	is	10
6 //	3	times	5	is	15
7 //	4	times	5	is	20
8 //	5	times	5	is	25

The collection of items being iterated is a closed range of numbers from 1 to 5 inclusive, as indicated by the
use of the closed range operator (...). The value of index is set to the first number in the range (1), and the
statements inside the loop are executed. In this case, the loop contains only one statement, which prints an entry
from the five-times-table for the current value of index. After the statement is executed, the value of index is
updated to contain the second value in the range (2), and the println function is called again. This process
continues until the end of the range is reached.

In the example above, index is a constant whose value is automatically set at the start of each iteration of the
loop. As such, it does not have to be declared before it is used. It is implicitly declared simply by its inclusion in
the loop declaration, without the need for a let declaration keyword.

N O T E

The index constant exists only within the scope of the loop. If you want to check the value of
index after the loop completes, or if you want to work with its value as a variable rather than a
constant, you must declare it yourself before its use in the loop.

If you don’t need each value from the range, you can ignore the values by using an underscore in place of a
variable name:

1 let	base	=	3

(c) ketabton.com: The Digital Library

2 let	power	=	10
3 var	answer	=	1
4 for	_	in	1...power	{
5 				answer	*=	base
6 }
7 println("\(base)	to	the	power	of	\(power)	is	\(answer)")
8 //	prints	"3	to	the	power	of	10	is	59049"

This example calculates the value of one number to the power of another (in this case, 3 to the power of 10). It
multiplies a starting value of 1 (that is, 3 to the power of 0) by 3, ten times, using a half-closed loop that starts
with 0 and ends with 9. This calculation doesn’t need to know the individual counter values each time through
the loop—it simply needs to execute the loop the correct number of times. The underscore character _ (used in
place of a loop variable) causes the individual values to be ignored and does not provide access to the current
value during each iteration of the loop.

Use the for-in loop with an array to iterate over its items:

1 let	names	=	["Anna",	"Alex",	"Brian",	"Jack"]
2 for	name	in	names	{
3 				println("Hello,	\(name)!")
4 }
5 //	Hello,	Anna!
6 //	Hello,	Alex!
7 //	Hello,	Brian!
8 //	Hello,	Jack!

You can also iterate over a dictionary to access its key-value pairs. Each item in the dictionary is returned as a
(key,	value) tuple when the dictionary is iterated, and you can decompose the (key,	value) tuple’s
members as explicitly named constants for use within in the body of the for-in loop. Here, the dictionary’s
keys are decomposed into a constant called animalName, and the dictionary’s values are decomposed into a
constant called legCount:

1 let	numberOfLegs	=	["spider":	8,	"ant":	6,	"cat":	4]
2 for	(animalName,	legCount)	in	numberOfLegs	{
3 				println("\(animalName)s	have	\(legCount)	legs")

(c) ketabton.com: The Digital Library

4 }
5 //	spiders	have	8	legs
6 //	ants	have	6	legs
7 //	cats	have	4	legs

Items in a Dictionary may not necessarily be iterated in the same order as they were inserted. The
contents of a Dictionary are inherently unordered, and iterating over them does not guarantee the order in
which they will be retrieved. For more on arrays and dictionaries, see Collection Types.)

In addition to arrays and dictionaries, you can also use the for-in loop to iterate over the Character values
in a string:

1 for	character	in	"Hello"	{
2 				println(character)
3 }
4 //	H
5 //	e
6 //	l
7 //	l
8 //	o

For-Condition-Increment

In addition to for-in loops, Swift supports traditional C-style for loops with a condition and an incrementer:

1 for	var	index	=	0;	index	<	3;	++index	{
2 				println("index	is	\(index)")
3 }
4 //	index	is	0
5 //	index	is	1
6 //	index	is	2

Here’s the general form of this loop format:

(c) ketabton.com: The Digital Library

for	 initialization ;	 condition ;	 increment 	{

				 statements

}

Semicolons separate the three parts of the loop’s definition, as in C. However, unlike C, Swift doesn’t need
parentheses around the entire “initialization; condition; increment” block.

The loop is executed as follows:

1. When the loop is first entered, the initialization expression is evaluated once, to set up any constants
or variables that are needed for the loop.

2. The condition expression is evaluated. If it evaluates to false, the loop ends, and code execution
continues after the for loop’s closing brace (}). If the expression evaluates to true, code
execution continues by executing the statements inside the braces.

3. After all statements are executed, the increment expression is evaluated. It might increase or
decrease the value of a counter, or set one of the initialized variables to a new value based on the
outcome of the statements. After the increment expression has been evaluated, execution returns to
step 2, and the condition expression is evaluated again.

The loop format and execution process described above is shorthand for (and equivalent to) the outline below:

initialization

while	 condition 	{

				 statements

				 increment

}

Constants and variables declared within the initialization expression (such as var	index	=	0) are only
valid within the scope of the for loop itself. To retrieve the final value of index after the loop ends, you must
declare index before the loop’s scope begins:

(c) ketabton.com: The Digital Library

1 var	index:	Int
2 for	index	=	0;	index	<	3;	++index	{
3 				println("index	is	\(index)")
4 }
5 //	index	is	0
6 //	index	is	1
7 //	index	is	2
8 println("The	loop	statements	were	executed	\(index)	times")
9 //	prints	"The	loop	statements	were	executed	3	times"

Note that the final value of index after this loop is completed is 3, not 2. The last time the increment statement
++index is called, it sets index to 3, which causes index	<	3 to equate to false, ending the loop.

While Loops

A while loop performs a set of statements until a condition becomes false. These kinds of loops are best
used when the number of iterations is not known before the first iteration begins. Swift provides two kinds of
while loop:

While

A while loop starts by evaluating a single condition. If the condition is true, a set of statements is repeated
until the condition becomes false.

Here’s the general form of a while loop:

while	 condition 	{

while evaluates its condition at the start of each pass through the loop.

do-while evaluates its condition at the end of each pass through the loop.

(c) ketabton.com: The Digital Library

				 statements

}

This example plays a simple game of Snakes and Ladders (also known as Chutes and Ladders):

The rules of the game are as follows:

The board has 25 squares, and the aim is to land on or beyond square 25.

Each turn, you roll a six-sided dice and move by that number of squares, following the horizontal
path indicated by the dotted arrow above.

If your turn ends at the bottom of a ladder, you move up that ladder.

(c) ketabton.com: The Digital Library

The game board is represented by an array of Int values. Its size is based on a constant called
finalSquare, which is used to initialize the array and also to check for a win condition later in the example.
The board is initialized with 26 zero Int values, not 25 (one each at indices 0 through 25 inclusive):

1 let	finalSquare	=	25
2 var	board	=	Int[](count:	finalSquare	+	1,	repeatedValue:	0)

Some squares are then set to have more specific values for the snakes and ladders. Squares with a ladder base
have a positive number to move you up the board, whereas squares with a snake head have a negative number
to move you back down the board:

1 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	+02
2 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	-08

Square 3 contains the bottom of a ladder that moves you up to square 11. To represent this, board[03] is
equal to +08, which is equivalent to an integer value of 8 (the difference between 3 and 11). The unary plus
operator (+i) balances with the unary minus operator (-i), and numbers lower than 10 are padded with zeros
so that all board definitions align. (Neither stylistic tweak is strictly necessary, but they lead to neater code.)

The player’s starting square is “square zero”, which is just off the bottom left corner of the board. The first dice
roll always moves the player on to the board:

1 var	square	=	0
2 var	diceRoll	=	0
3 while	square	<	finalSquare	{
4 				//	roll	the	dice
5 				if	++diceRoll	==	7	{	diceRoll	=	1	}
6 				//	move	by	the	rolled	amount
7 				square	+=	diceRoll
8 				if	square	<	board.count	{
9 								//	if	we're	still	on	the	board,	move	up	or	down	for	a	snake	or

a	ladder

If your turn ends at the head of a snake, you move down that snake.

(c) ketabton.com: The Digital Library

10 								square	+=	board[square]
11 				}
12 }
13 println("Game	over!")

This example uses a very simple approach to dice rolling. Instead of a random number generator, it starts with
a diceRoll value of 0. Each time through the while loop, diceRoll is incremented with the prefix
increment operator (++i), and is then checked to see if it has become too large. The return value of
++diceRoll is equal to the value of diceRoll after it is incremented. Whenever this return value equals 7,
the dice roll has become too large, and is reset to a value of 1. This gives a sequence of diceRoll values that
is always 1, 2, 3, 4, 5, 6, 1, 2 and so on.

After rolling the dice, the player moves forward by diceRoll squares. It’s possible that the dice roll may have
moved the player beyond square 25, in which case the game is over. To cope with this scenario, the code
checks that square is less than the board array’s count property before adding the value stored in
board[square] onto the current square value to move the player up or down any ladders or snakes.

Had this check not been performed, board[square] might try to access a value outside the bounds of the
board array, which would trigger an error. If square is now equal to 26, the code would try to check the
value of board[26], which is larger than the size of the array.

The current while loop execution then ends, and the loop’s condition is checked to see if the loop should be
executed again. If the player has moved on or beyond square number 25, the loop’s condition evaluates to
false, and the game ends.

A while loop is appropriate in this case because the length of the game is not clear at the start of the while
loop. Instead, the loop is executed until a particular condition is satisfied.

Do-While

The other variation of the while loop, known as the do-while loop, performs a single pass through the loop
block first, before considering the loop’s condition. It then continues to repeat the loop until the condition is
false.

(c) ketabton.com: The Digital Library

Here’s the general form of a do-while loop:

do	{

				 statements

}	while	 condition

Here’s the Snakes and Ladders example again, written as a do-while loop rather than a while loop. The
values of finalSquare, board, square, and diceRoll are initialized in exactly the same way as with a
while loop:

1 let	finalSquare	=	25
2 var	board	=	Int[](count:	finalSquare	+	1,	repeatedValue:	0)
3 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	+02
4 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	-08
5 var	square	=	0
6 var	diceRoll	=	0

In this version of the game, the first action in the loop is to check for a ladder or a snake. No ladder on the board
takes the player straight to square 25, and so it is not possible to win the game by moving up a ladder.
Therefore, it is safe to check for a snake or a ladder as the first action in the loop.

At the start of the game, the player is on “square zero”. board[0] always equals 0, and has no effect:

1 do	{
2 				//	move	up	or	down	for	a	snake	or	ladder
3 				square	+=	board[square]
4 				//	roll	the	dice
5 				if	++diceRoll	==	7	{	diceRoll	=	1	}
6 				//	move	by	the	rolled	amount
7 				square	+=	diceRoll
8 }	while	square	<	finalSquare
9 println("Game	over!")

(c) ketabton.com: The Digital Library

After the code checks for snakes and ladders, the dice is rolled, and the player is moved forward by diceRoll
squares. The current loop execution then ends.

The loop’s condition (while	square	<	finalSquare) is the same as before, but this time it is not
evaluated until the end of the first run through the loop. The structure of the do-while loop is better suited to
this game than the while loop in the previous example. In the do-while loop above, square	+=
board[square] is always executed immediately after the loop’s while condition confirms that square is
still on the board. This behavior removes the need for the array bounds check seen in the earlier version of the
game.

Conditional Statements

It is often useful to execute different pieces of code based on certain conditions. You might want to run an extra
piece of code when an error occurs, or to display a message when a value becomes too high or too low. To do
this, you make parts of your code conditional.

Swift provides two ways to add conditional branches to your code, known as the if statement and the switch
statement. Typically, you use the if statement to evaluate simple conditions with only a few possible
outcomes. The switch statement is better suited to more complex conditions with multiple possible
permutations, and is useful in situations where pattern-matching can help select an appropriate code branch to
execute.

If

In its simplest form, the if statement has a single if condition. It executes a set of statements only if that
condition is true:

1 var	temperatureInFahrenheit	=	30
2 if	temperatureInFahrenheit	<=	32	{
3 				println("It's	very	cold.	Consider	wearing	a	scarf.")
4 }
5 //	prints	"It's	very	cold.	Consider	wearing	a	scarf."

(c) ketabton.com: The Digital Library

The preceding example checks whether the temperature is less than or equal to 32 degrees Fahrenheit (the
freezing point of water). If it is, a message is printed. Otherwise, no message is printed, and code execution
continues after the if statement’s closing brace.

The if statement can provide an alternative set of statements, known as an else clause, for when the if
condition is false. These statements are indicated by the else keyword:

1 temperatureInFahrenheit	=	40
2 if	temperatureInFahrenheit	<=	32	{
3 				println("It's	very	cold.	Consider	wearing	a	scarf.")
4 }	else	{
5 				println("It's	not	that	cold.	Wear	a	t-shirt.")
6 }
7 //	prints	"It's	not	that	cold.	Wear	a	t-shirt."

One of these two branches is always executed. Because the temperature has increased to 40 degrees
Fahrenheit, it is no longer cold enough to advise wearing a scarf, and so the else branch is triggered instead.

You can chain multiple if statements together, to consider additional clauses:

1 temperatureInFahrenheit	=	90
2 if	temperatureInFahrenheit	<=	32	{
3 				println("It's	very	cold.	Consider	wearing	a	scarf.")
4 }	else	if	temperatureInFahrenheit	>=	86	{
5 				println("It's	really	warm.	Don't	forget	to	wear	sunscreen.")
6 }	else	{
7 				println("It's	not	that	cold.	Wear	a	t-shirt.")
8 }
9 //	prints	"It's	really	warm.	Don't	forget	to	wear	sunscreen."

Here, an additional if statement is added to respond to particularly warm temperatures. The final else clause
remains, and prints a response for any temperatures that are neither too warm nor too cold.

The final else clause is optional, however, and can be excluded if the set of conditions does not need to be
complete:

(c) ketabton.com: The Digital Library

1 temperatureInFahrenheit	=	72
2 if	temperatureInFahrenheit	<=	32	{
3 				println("It's	very	cold.	Consider	wearing	a	scarf.")
4 }	else	if	temperatureInFahrenheit	>=	86	{
5 				println("It's	really	warm.	Don't	forget	to	wear	sunscreen.")
6 }

In this example, the temperature is neither too cold nor too warm to trigger the if or else	if conditions, and
so no message is printed.

Switch

A switch statement considers a value and compares it against several possible matching patterns. It then
executes an appropriate block of code, based on the first pattern that matches successfully. A switch
statement provides an alternative to the if statement for responding to multiple potential states.

In its simplest form, a switch statement compares a value against one or more values of the same type:

switch	 some	value	to	consider 	{

case	 value	1 :

				 respond	to	value	1

case	 value	2 ,

value	3 :

				 respond	to	value	2	or	3

default:

				 otherwise,	do	something	else

}

Every switch statement consists of multiple possible cases, each of which begins with the case keyword. In
addition to comparing against specific values, Swift provides several ways for each case to specify more

(c) ketabton.com: The Digital Library

complex matching patterns. These options are described later in this section.

The body of each switch case is a separate branch of code execution, in a similar manner to the branches of
an if statement. The switch statement determines which branch should be selected. This is known as
switching on the value that is being considered.

Every switch statement must be exhaustive. That is, every possible value of the type being considered must
be matched by one of the switch cases. If it is not appropriate to provide a switch case for every possible
value, you can define a default catch-all case to cover any values that are not addressed explicitly. This catch-
all case is indicated by the keyword default, and must always appear last.

This example uses a switch statement to consider a single lowercase character called someCharacter:

1 let	someCharacter:	Character	=	"e"
2 switch	someCharacter	{
3 case	"a",	"e",	"i",	"o",	"u":
4 				println("\(someCharacter)	is	a	vowel")
5 case	"b",	"c",	"d",	"f",	"g",	"h",	"j",	"k",	"l",	"m",
6 "n",	"p",	"q",	"r",	"s",	"t",	"v",	"w",	"x",	"y",	"z":
7 				println("\(someCharacter)	is	a	consonant")
8 default:
9 				println("\(someCharacter)	is	not	a	vowel	or	a	consonant")

10 }
11 //	prints	"e	is	a	vowel"

The switch statement’s first case matches all five lowercase vowels in the English language. Similarly, its
second case matches all lowercase English consonants.

It is not practical to write all other possible characters as part of a switch case, and so this switch
statement provides a default case to match all other characters that are not vowels or consonants. This
provision ensures that the switch statement is exhaustive.

No Implicit Fallthrough

(c) ketabton.com: The Digital Library

In contrast with switch statements in C and Objective-C, switch statements in Swift do not fall through the
bottom of each case and into the next one by default. Instead, the entire switch statement finishes its execution
as soon as the first matching switch case is completed, without requiring an explicit break statement. This
makes the switch statement safer and easier to use than in C, and avoids executing more than one switch
case by mistake.

N O T E

You can still break out of a matched switch case before that case has completed its execution if
you need to. See Break in a Switch Statement for details.

The body of each case must contain at least one executable statement. It is not valid to write the following code,
because the first case is empty:

1 let	anotherCharacter:	Character	=	"a"
2 switch	anotherCharacter	{
3 case	"a":
4 case	"A":
5 				println("The	letter	A")
6 default:
7 				println("Not	the	letter	A")
8 }
9 //	this	will	report	a	compile-time	error

Unlike a switch statement in C, this switch statement does not match both "a" and "A". Rather, it reports
a compile-time error that case	"a": does not contain any executable statements. This approach avoids
accidental fallthrough from one case to another, and makes for safer code that is clearer in its intent.

Multiple matches for a single switch case can be separated by commas, and can be written over multiple
lines if the list is long:

(c) ketabton.com: The Digital Library

switch	 some	value	to	consider 	{

case	 value	1 ,

value	2 :

				 statements

}

N O T E

To opt in to fallthrough behavior for a particular switch case, use the fallthrough keyword, as
described in Fallthrough.

Range Matching

Values in switch cases can be checked for their inclusion in a range. This example uses number ranges to
provide a natural-language count for numbers of any size:

1 let	count	=	3_000_000_000_000
2 let	countedThings	=	"stars	in	the	Milky	Way"
3 var	naturalCount:	String
4 switch	count	{
5 case	0:
6 				naturalCount	=	"no"
7 case	1...3:
8 				naturalCount	=	"a	few"
9 case	4...9:

10 				naturalCount	=	"several"
11 case	10...99:
12 				naturalCount	=	"tens	of"

(c) ketabton.com: The Digital Library

13 case	100...999:
14 				naturalCount	=	"hundreds	of"
15 case	1000...999_999:
16 				naturalCount	=	"thousands	of"
17 default:
18 				naturalCount	=	"millions	and	millions	of"
19 }
20 println("There	are	\(naturalCount)	\(countedThings).")
21 //	prints	"There	are	millions	and	millions	of	stars	in	the	

Milky	Way."

Tuples

You can use tuples to test multiple values in the same switch statement. Each element of the tuple can be
tested against a different value or range of values. Alternatively, use the underscore (_) identifier to match any
possible value.

The example below takes an (x, y) point, expressed as a simple tuple of type (Int,	Int), and categorizes it
on the graph that follows the example:

1 let	somePoint	=	(1,	1)
2 switch	somePoint	{
3 case	(0,	0):
4 				println("(0,	0)	is	at	the	origin")
5 case	(_,	0):
6 				println("(\(somePoint.0),	0)	is	on	the	x-axis")
7 case	(0,	_):
8 				println("(0,	\(somePoint.1))	is	on	the	y-axis")
9 case	(-2...2,	-2...2):

10 				println("(\(somePoint.0),	\(somePoint.1))	is	inside	the	
box")

11 default:
12 				println("(\(somePoint.0),	\(somePoint.1))	is	outside	of	the	

box")

(c) ketabton.com: The Digital Library

13 }
14 //	prints	"(1,	1)	is	inside	the	box"

The switch statement determines if the point is at the origin (0, 0); on the red x-axis; on the orange y-axis;
inside the blue 4-by-4 box centered on the origin; or outside of the box.

Unlike C, Swift allows multiple switch cases to consider the same value or values. In fact, the point (0, 0)
could match all four of the cases in this example. However, if multiple matches are possible, the first matching
case is always used. The point (0, 0) would match case	(0,	0) first, and so all other matching cases would
be ignored.

Value Bindings

(c) ketabton.com: The Digital Library

A switch case can bind the value or values it matches to temporary constants or variables, for use in the body
of the case. This is known as value binding, because the values are “bound” to temporary constants or variables
within the case’s body.

The example below takes an (x, y) point, expressed as a tuple of type (Int,	Int) and categorizes it on the
graph that follows:

1 let	anotherPoint	=	(2,	0)
2 switch	anotherPoint	{
3 case	(let	x,	0):
4 				println("on	the	x-axis	with	an	x	value	of	\(x)")
5 case	(0,	let	y):
6 				println("on	the	y-axis	with	a	y	value	of	\(y)")
7 case	let	(x,	y):
8 				println("somewhere	else	at	(\(x),	\(y))")
9 }

10 //	prints	"on	the	x-axis	with	an	x	value	of	2"

(c) ketabton.com: The Digital Library

The switch statement determines if the point is on the red x-axis, on the orange y-axis, or elsewhere, on
neither axis.

The three switch cases declare placeholder constants x and y, which temporarily take on one or both tuple
values from anotherPoint. The first case, case	(let	x,	0), matches any point with a y value of 0
and assigns the point’s x value to the temporary constant x. Similarly, the second case, case	(0,	let	y),
matches any point with an x value of 0 and assigns the point’s y value to the temporary constant y.

Once the temporary constants are declared, they can be used within the case’s code block. Here, they are used
as shorthand for printing the values with the println function.

Note that this switch statement does not have a default case. The final case, case	let	(x,	y),
declares a tuple of two placeholder constants that can match any value. As a result, it matches all possible
remaining values, and a default case is not needed to make the switch statement exhaustive.

(c) ketabton.com: The Digital Library

In the example above, x and y are declared as constants with the let keyword, because there is no need to
modify their values within the body of the case. However, they could have been declared as variables instead,
with the var keyword. If this had been done, a temporary variable would have been created and initialized with
the appropriate value. Any changes to that variable would only have an effect within the body of the case.

Where

A switch case can use a where clause to check for additional conditions.

The example below categorizes an (x, y) point on the following graph:

1 let	yetAnotherPoint	=	(1,	-1)
2 switch	yetAnotherPoint	{
3 case	let	(x,	y)	where	x	==	y:
4 				println("(\(x),	\(y))	is	on	the	line	x	==	y")
5 case	let	(x,	y)	where	x	==	-y:
6 				println("(\(x),	\(y))	is	on	the	line	x	==	-y")
7 case	let	(x,	y):
8 				println("(\(x),	\(y))	is	just	some	arbitrary	point")
9 }

10 //	prints	"(1,	-1)	is	on	the	line	x	==	-y"

(c) ketabton.com: The Digital Library

The switch statement determines if the point is on the green diagonal line where x	==	y, on the purple
diagonal line where x	==	-y, or neither.

The three switch cases declare placeholder constants x and y, which temporarily take on the two tuple
values from point. These constants are used as part of a where clause, to create a dynamic filter. The
switch case matches the current value of point only if the where clause’s condition evaluates to true for
that value.

As in the previous example, the final case matches all possible remaining values, and so a default case is
not needed to make the switch statement exhaustive.

Control Transfer Statements

(c) ketabton.com: The Digital Library

Control transfer statements change the order in which your code is executed, by transferring control from one
piece of code to another. Swift has four control transfer statements:

The control, break and fallthrough statements are described below. The return statement is
described in Functions.

Continue

The continue statement tells a loop to stop what it is doing and start again at the beginning of the next
iteration through the loop. It says “I am done with the current loop iteration” without leaving the loop altogether.

N O T E

In a for-condition-increment loop, the incrementer is still evaluated after calling the
continue statement. The loop itself continues to work as usual; only the code within the loop’s
body is skipped.

The following example removes all vowels and spaces from a lowercase string to create a cryptic puzzle
phrase:

1 let	puzzleInput	=	"great	minds	think	alike"
2 var	puzzleOutput	=	""
3 for	character	in	puzzleInput	{
4 				switch	character	{

continue

break

fallthrough

return

(c) ketabton.com: The Digital Library

5 				case	"a",	"e",	"i",	"o",	"u",	"	":
6 								continue
7 				default:
8 								puzzleOutput	+=	character
9 				}

10 }
11 println(puzzleOutput)
12 //	prints	"grtmndsthnklk"

The code above calls the continue keyword whenever it matches a vowel or a space, causing the current
iteration of the loop to end immediately and to jump straight to the start of the next iteration. This behavior
enables the switch block to match (and ignore) only the vowel and space characters, rather than requiring the
block to match every character that should get printed.

Break

The break statement ends execution of an entire control flow statement immediately. The break statement
can be used inside a switch statement or loop statement when you want to terminate the execution of the
switch or loop statement earlier than would otherwise be the case.

Break in a Loop Statement

When used inside a loop statement, break ends the loop’s execution immediately, and transfers control to the
first line of code after the loop’s closing brace (}). No further code from the current iteration of the loop is
executed, and no further iterations of the loop are started.

Break in a Switch Statement

When used inside a switch statement, break causes the switch statement to end its execution
immediately, and to transfer control to the first line of code after the switch statement’s closing brace (}).

(c) ketabton.com: The Digital Library

This behavior can be used to match and ignore one or more cases in a switch statement. Because Swift’s
switch statement is exhaustive and does not allow empty cases, it is sometimes necessary to deliberately
match and ignore a case in order to make your intentions explicit. You do this by writing the break statement
as the entire body of the case you want to ignore. When that case is matched by the switch statement, the
break statement inside the case ends the switch statement’s execution immediately.

N O T E

A switch case that only contains a comment is reported as a compile-time error. Comments are
not statements and do not cause a switch case to be ignored. Always use a break statement to
ignore a switch case.

The following example switches on a Character value and determines whether it represents a number
symbol in one of four languages. Multiple values are covered in a single switch case for brevity:

1 let	numberSymbol:	Character	=	"三"		//	Simplified	Chinese	for	the	
number	3

2 var	possibleIntegerValue:	Int?
3 switch	numberSymbol	{
4 case	"1",	"١",	"⼀",	"๑":
5 				possibleIntegerValue	=	1
6 case	"2",	"٢",	"⼆",	"๒":
7 				possibleIntegerValue	=	2
8 case	"3",	"٣",	"三",	"๓":
9 				possibleIntegerValue	=	3

10 case	"4",	"٤",	"四",	"๔":
11 				possibleIntegerValue	=	4
12 default:
13 				break
14 }
15 if	let	integerValue	=	possibleIntegerValue	{
16 				println("The	integer	value	of	\(numberSymbol)	is	\

(c) ketabton.com: The Digital Library

(integerValue).")
17 }	else	{
18 				println("An	integer	value	could	not	be	found	for	\

(numberSymbol).")
19 }
20 //	prints	"The	integer	value	of	三	is	3."

This example checks numberSymbol to determine whether it is a Latin, Arabic, Chinese, or Thai symbol for
the numbers 1 to 4. If a match is found, one of the switch statement’s cases sets an optional Int? variable
called possibleIntegerValue to an appropriate integer value.

After the switch statement completes its execution, the example uses optional binding to determine whether a
value was found. The possibleIntegerValue variable has an implicit initial value of nil by virtue of
being an optional type, and so the optional binding will succeed only if possibleIntegerValue was set to
an actual value by one of the switch statement’s first four cases.

It is not practical to list every possible Character value in the example above, so a default case provides
a catchall for any characters that are not matched. This default case does not need to perform any action,
and so it is written with a single break statement as its body. As soon as the default statement is matched,
the break statement ends the switch statement’s execution, and code execution continues from the if	let
statement.

Fallthrough

Switch statements in Swift do not fall through the bottom of each case and into the next one. Instead, the entire
switch statement completes its execution as soon as the first matching case is completed. By contrast, C
requires you to insert an explicit break statement at the end of every switch case to prevent fallthrough.
Avoiding default fallthrough means that Swift switch statements are much more concise and predictable than
their counterparts in C, and thus they avoid executing multiple switch cases by mistake.

If you really need C-style fallthrough behavior, you can opt in to this behavior on a case-by-case basis with the
fallthrough keyword. The example below uses fallthrough to create a textual description of a
number:

(c) ketabton.com: The Digital Library

1 let	integerToDescribe	=	5
2 var	description	=	"The	number	\(integerToDescribe)	is"
3 switch	integerToDescribe	{
4 case	2,	3,	5,	7,	11,	13,	17,	19:
5 				description	+=	"	a	prime	number,	and	also"
6 				fallthrough
7 default:
8 				description	+=	"	an	integer."
9 }

10 println(description)
11 //	prints	"The	number	5	is	a	prime	number,	and	also	an	

integer."

This example declares a new String variable called description and assigns it an initial value. The
function then considers the value of integerToDescribe using a switch statement. If the value of
integerToDescribe is one of the prime numbers in the list, the function appends text to the end of
description, to note that the number is prime. It then uses the fallthrough keyword to “fall into” the
default case as well. The default case adds some extra text to the end of the description, and the
switch statement is complete.

If the value of integerToDescribe is not in the list of known prime numbers, it is not matched by the first
switch case at all. There are no other specific cases, and so integerToDescribe is matched by the
catchall default case.

After the switch statement has finished executing, the number’s description is printed using the println
function. In this example, the number 5 is correctly identified as a prime number.

N O T E

The fallthrough keyword does not check the case conditions for the switch case that it
causes execution to fall into. The fallthrough keyword simply causes code execution to move
directly to the statements inside the next case (or default case) block, as in C’s standard
switch statement behavior.

(c) ketabton.com: The Digital Library

Labeled Statements

You can nest loops and switch statements inside other loops and switch statements in Swift to create
complex control flow structures. However, loops and switch statements can both use the break statement
to end their execution prematurely. Therefore, it is sometimes useful to be explicit about which loop or switch
statement you want a break statement to terminate. Similarly, if you have multiple nested loops, it can be
useful to be explicit about which loop the continue statement should affect.

To achieve these aims, you can mark a loop statement or switch statement with a statement label, and use
this label with the break statement or continue statement to end or continue the execution of the labeled
statement.

A labeled statement is indicated by placing a label on the same line as the statement’s introducer keyword,
followed by a colon. Here’s an example of this syntax for a while loop, although the principle is the same for
all loops and switch statements:

label	name :	while	 condition 	{

				 statements

}

The following example uses the break and continue statements with a labeled while loop for an adapted
version of the Snakes and Ladders game that you saw earlier in this chapter. This time around, the game has an
extra rule:

If a particular dice roll would take you beyond square 25, you must roll again until you roll the exact number
needed to land on square 25.

The game board is the same as before:

To win, you must land exactly on square 25.

(c) ketabton.com: The Digital Library

The values of finalSquare, board, square, and diceRoll are initialized in the same way as before:

1 let	finalSquare	=	25
2 var	board	=	Int[](count:	finalSquare	+	1,	repeatedValue:	0)
3 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	+02
4 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	-08
5 var	square	=	0
6 var	diceRoll	=	0

This version of the game uses a while loop and a switch statement to implement the game’s logic. The
while loop has a statement label called gameLoop, to indicate that it is the main game loop for the Snakes
and Ladders game.

(c) ketabton.com: The Digital Library

The while loop’s condition is while	square	!=	finalSquare, to reflect that you must land exactly on
square 25:

1 gameLoop:	while	square	!=	finalSquare	{
2 				if	++diceRoll	==	7	{	diceRoll	=	1	}
3 				switch	square	+	diceRoll	{
4 				case	finalSquare:
5 								//	diceRoll	will	move	us	to	the	final	square,	so	the	game	is	

over
6 								break	gameLoop
7 				case	let	newSquare	where	newSquare	>	finalSquare:
8 								//	diceRoll	will	move	us	beyond	the	final	square,	so	roll	

again
9 								continue	gameLoop

10 				default:
11 								//	this	is	a	valid	move,	so	find	out	its	effect
12 								square	+=	diceRoll
13 								square	+=	board[square]
14 				}
15 }
16 println("Game	over!")

The dice is rolled at the start of each loop. Rather than moving the player immediately, a switch statement is
used to consider the result of the move, and to work out if the move is allowed:

If the dice roll will move the player onto the final square, the game is over. The break
gameLoop statement transfers control to the first line of code outside of the while loop, which
ends the game.

If the dice roll will move the player beyond the final square, the move is invalid, and the player
needs to roll again. The continue	gameLoop statement ends the current while loop
iteration and begins the next iteration of the loop.

In all other cases, the dice roll is a valid move. The player moves forward by diceRoll
squares, and the game logic checks for any snakes and ladders. The loop then ends, and control
returns to the while condition to decide whether another turn is required.

(c) ketabton.com: The Digital Library

N O T E

If the break statement above did not use the gameLoop label, it would break out of the switch
statement, not the while statement. Using the gameLoop label makes it clear which control
statement should be terminated.

Note also that it is not strictly necessary to use the gameLoop label when calling continue
gameLoop to jump to the next iteration of the loop. There is only one loop in the game, and so there
is no ambiguity as to which loop the continue statement will affect. However, there is no harm in
using the gameLoop label with the continue statement. Doing so is consistent with the label’s
use alongside the break statement, and helps make the game’s logic clearer to read and
understand.

(c) ketabton.com: The Digital Library

Functions

Functions are self-contained chunks of code that perform a specific task. You give a function a name that
identifies what it does, and this name is used to “call” the function to perform its task when needed.

Swift’s unified function syntax is flexible enough to express anything from a simple C-style function with no
parameter names to a complex Objective-C-style method with local and external parameter names for each
parameter. Parameters can provide default values to simplify function calls and can be passed as in-out
parameters, which modify a passed variable once the function has completed its execution.

Every function in Swift has a type, consisting of the function’s parameter types and return type. You can use this
type like any other type in Swift, which makes it easy to pass functions as parameters to other functions, and to
return functions from functions. Functions can also be written within other functions to encapsulate useful
functionality within a nested function scope.

Defining and Calling Functions

When you define a function, you can optionally define one or more named, typed values that the function takes
as input (known as parameters), and/or a type of value that the function will pass back as output when it is done
(known as its return type).

Every function has a function name, which describes the task that the function performs. To use a function, you
“call” that function with its name and pass it input values (known as arguments) that match the types of the
function’s parameters. A function’s arguments must always be provided in the same order as the function’s
parameter list.

The function in the example below is called greetingForPerson, because that’s what it does—it takes a
person’s name as input and returns a greeting for that person. To accomplish this, you define one input
parameter—a String value called personName—and a return type of String, which will contain a
greeting for that person:

1 func	sayHello(personName:	String)	->	String	{
2 				let	greeting	=	"Hello,	"	+	personName	+	"!"

(c) ketabton.com: The Digital Library

3 				return	greeting
4 }

All of this information is rolled up into the function’s definition, which is prefixed with the func keyword. You
indicate the function’s return type with the return arrow -> (a hyphen followed by a right angle bracket), which
is followed by the name of the type to return.

The definition describes what the function does, what it expects to receive, and what it returns when it is done.
The definition makes it easy for the function to be called elsewhere in your code in a clear and unambiguous
way:

1 println(sayHello("Anna"))
2 //	prints	"Hello,	Anna!"
3 println(sayHello("Brian"))
4 //	prints	"Hello,	Brian!"

You call the sayHello function by passing it a String argument value in parentheses, such as
sayHello("Anna"). Because the function returns a String value, sayHello can be wrapped in a call to
the println function to print that string and see its return value, as shown above.

The body of the sayHello function starts by defining a new String constant called greeting and setting it
to a simple greeting message for personName. This greeting is then passed back out of the function using the
return keyword. As soon as return	greeting is called, the function finishes its execution and returns
the current value of greeting.

You can call the sayHello function multiple times with different input values. The example above shows what
happens if it is called with an input value of "Anna", and an input value of "Brian". The function returns a
tailored greeting in each case.

To simplify the body of this function, combine the message creation and the return statement into one line:

1 func	sayHelloAgain(personName:	String)	->	String	{
2 				return	"Hello	again,	"	+	personName	+	"!"
3 }
4 println(sayHelloAgain("Anna"))

(c) ketabton.com: The Digital Library

5 //	prints	"Hello	again,	Anna!"

Function Parameters and Return Values

Function parameters and return values are extremely flexible in Swift. You can define anything from a simple
utility function with a single unnamed parameter to a complex function with expressive parameter names and
different parameter options.

Multiple Input Parameters

Functions can have multiple input parameters, which are written within the function’s parentheses, separated by
commas.

This function takes a start and an end index for a half-open range, and works out how many elements the range
contains:

1 func	halfOpenRangeLength(start:	Int,	end:	Int)	->	Int	{
2 				return	end	-	start
3 }
4 println(halfOpenRangeLength(1,	10))
5 //	prints	"9"

Functions Without Parameters

Functions are not required to define input parameters. Here’s a function with no input parameters, which always
returns the same String message whenever it is called:

1 func	sayHelloWorld()	->	String	{
2 				return	"hello,	world"
3 }

(c) ketabton.com: The Digital Library

4 println(sayHelloWorld())
5 //	prints	"hello,	world"

The function definition still needs parentheses after the function’s name, even though it does not take any
parameters. The function name is also followed by an empty pair of parentheses when the function is called.

Functions Without Return Values

Functions are not required to define a return type. Here’s a version of the sayHello function, called
waveGoodbye, which prints its own String value rather than returning it:

1 func	sayGoodbye(personName:	String)	{
2 				println("Goodbye,	\(personName)!")
3 }
4 sayGoodbye("Dave")
5 //	prints	"Goodbye,	Dave!"

Because it does not need to return a value, the function’s definition does not include the return arrow (->) or a
return type.

N O T E

Strictly speaking, the sayGoodbye function does still return a value, even though no return value is
defined. Functions without a defined return type return a special value of type Void. This is simply
an empty tuple, in effect a tuple with zero elements, which can be written as ().

The return value of a function can be ignored when it is called:

1 func	printAndCount(stringToPrint:	String)	->	Int	{

(c) ketabton.com: The Digital Library

2 				println(stringToPrint)
3 				return	countElements(stringToPrint)
4 }
5 func	printWithoutCounting(stringToPrint:	String)	{
6 				printAndCount(stringToPrint)
7 }
8 printAndCount("hello,	world")
9 //	prints	"hello,	world"	and	returns	a	value	of	12

10 printWithoutCounting("hello,	world")
11 //	prints	"hello,	world"	but	does	not	return	a	value

The first function, printAndCount, prints a string, and then returns its character count as an Int. The
second function, printWithoutCounting, calls the first function, but ignores its return value. When the
second function is called, the message is still printed by the first function, but the returned value is not used.

N O T E

Return values can be ignored, but a function that says it will return a value must always do so. A
function with a defined return type cannot allow control to fall out of the bottom of the function without
returning a value, and attempting to do so will result in a compile-time error.

Functions with Multiple Return Values

You can use a tuple type as the return type for a function to return multiple values as part of one compound
return value.

The example below defines a function called count, which counts the number of vowels, consonants, and
other characters in a string, based on the standard set of vowels and consonants used in American English:

1 func	count(string:	String)	->	(vowels:	Int,	consonants:	Int,	others:	

(c) ketabton.com: The Digital Library

Int)	{
2 				var	vowels	=	0,	consonants	=	0,	others	=	0
3 				for	character	in	string	{
4 								switch	String(character).lowercaseString	{
5 								case	"a",	"e",	"i",	"o",	"u":
6 												++vowels
7 								case	"b",	"c",	"d",	"f",	"g",	"h",	"j",	"k",	"l",	"m",
8 								"n",	"p",	"q",	"r",	"s",	"t",	"v",	"w",	"x",	"y",	"z":
9 												++consonants

10 								default:
11 												++others
12 								}
13 				}
14 				return	(vowels,	consonants,	others)
15 }

You can use this count function to count the characters in an arbitrary string, and to retrieve the counted totals
as a tuple of three named Int values:

1 let	total	=	count("some	arbitrary	string!")
2 println("\(total.vowels)	vowels	and	\(total.consonants)	consonants")
3 //	prints	"6	vowels	and	13	consonants"

Note that the tuple’s members do not need to be named at the point that the tuple is returned from the function,
because their names are already specified as part of the function’s return type.

Function Parameter Names

All of the above functions define parameter names for their parameters:

1 func	someFunction(parameterName:	Int)	{
2 				//	function	body	goes	here,	and	can	use	parameterName
3 				//	to	refer	to	the	argument	value	for	that	parameter

(c) ketabton.com: The Digital Library

4 }

However, these parameter names are only used within the body of the function itself, and cannot be used when
calling the function. These kinds of parameter names are known as local parameter names, because they are
only available for use within the function’s body.

External Parameter Names

Sometimes it’s useful to name each parameter when you call a function, to indicate the purpose of each
argument you pass to the function.

If you want users of your function to provide parameter names when they call your function, define an external
parameter name for each parameter, in addition to the local parameter name. You write an external parameter
name before the local parameter name it supports, separated by a space:

1 func	someFunction(externalParameterName	localParameterName:	Int)	{
2 				//	function	body	goes	here,	and	can	use	localParameterName
3 				//	to	refer	to	the	argument	value	for	that	parameter
4 }

N O T E

If you provide an external parameter name for a parameter, that external name must always be used
when calling the function.

As an example, consider the following function, which joins two strings by inserting a third “joiner” string
between them:

1 func	join(s1:	String,	s2:	String,	joiner:	String)	->	String	{
2 				return	s1	+	joiner	+	s2

(c) ketabton.com: The Digital Library

3 }

When you call this function, the purpose of the three strings that you pass to the function is unclear:

1 join("hello",	"world",	",	")
2 //	returns	"hello,	world"

To make the purpose of these String values clearer, define external parameter names for each join
function parameter:

1 func	join(string	s1:	String,	toString	s2:	String,	withJoiner	joiner:	
String)

2 				->	String	{
3 								return	s1	+	joiner	+	s2
4 }

In this version of the join function, the first parameter has an external name of string and a local name of
s1; the second parameter has an external name of toString and a local name of s2; and the third parameter
has an external name of withJoiner and a local name of joiner.

You can now use these external parameter names to call the function in a clear and unambiguous way:

1 join(string:	"hello",	toString:	"world",	withJoiner:	",	")
2 //	returns	"hello,	world"

The use of external parameter names enables this second version of the join function to be called in an
expressive, sentence-like manner by users of the function, while still providing a function body that is readable
and clear in intent.

N O T E

Consider using external parameter names whenever the purpose of a function’s arguments would

(c) ketabton.com: The Digital Library

be unclear to someone reading your code for the first time. You do not need to specify external
parameter names if the purpose of each parameter is clear and unambiguous when the function is
called.

Shorthand External Parameter Names

If you want to provide an external parameter name for a function parameter, and the local parameter name is
already an appropriate name to use, you do not need to write the same name twice for that parameter. Instead,
write the name once, and prefix the name with a hash symbol (#). This tells Swift to use that name as both the
local parameter name and the external parameter name.

This example defines a function called containsCharacter, which defines external parameter names for
both of its parameters by placing a hash symbol before their local parameter names:

1 func	containsCharacter(#string:	String,	#characterToFind:	Character)	-
>	Bool	{

2 				for	character	in	string	{
3 								if	character	==	characterToFind	{
4 												return	true
5 								}
6 				}
7 				return	false
8 }

This function’s choice of parameter names makes for a clear, readable function body, while also enabling the
function to be called without ambiguity:

1 let	containsAVee	=	containsCharacter(string:	"aardvark",	
characterToFind:	"v")

2 //	containsAVee	equals	true,	because	"aardvark"	contains	a	"v"

(c) ketabton.com: The Digital Library

Default Parameter Values

You can define a default value for any parameter as part of a function’s definition. If a default value is defined,
you can omit that parameter when calling the function.

N O T E

Place parameters with default values at the end of a function’s parameter list. This ensures that all
calls to the function use the same order for their non-default arguments, and makes it clear that the
same function is being called in each case.

Here’s a version of the join function from earlier, which provides a default value for its joiner parameter:

1 func	join(string	s1:	String,	toString	s2:	String,
2 				withJoiner	joiner:	String	=	"	")	->	String	{
3 								return	s1	+	joiner	+	s2
4 }

If a string value for joiner is provided when the join function is called, that string value is used to join the
two strings together, as before:

1 join(string:	"hello",	toString:	"world",	withJoiner:	"-")
2 //	returns	"hello-world"

However, if no value of joiner is provided when the function is called, the default value of a single space ("
") is used instead:

1 join(string:	"hello",	toString:	"world")
2 //	returns	"hello	world"

(c) ketabton.com: The Digital Library

External Names for Parameters with Default Values

In most cases, it is useful to provide (and therefore require) an external name for any parameter with a default
value. This ensures that the argument for that parameter is clear in purpose if a value is provided when the
function is called.

To make this process easier, Swift provides an automatic external name for any defaulted parameter you
define, if you do not provide an external name yourself. The automatic external name is the same as the local
name, as if you had written a hash symbol before the local name in your code.

Here’s a version of the join function from earlier, which does not provide external names for any of its
parameters, but still provides a default value for its joiner parameter:

1 func	join(s1:	String,	s2:	String,	joiner:	String	=	"	")	->	String	{
2 				return	s1	+	joiner	+	s2
3 }

In this case, Swift automatically provides an external parameter name of joiner for the defaulted parameter.
The external name must therefore be provided when calling the function, making the parameter’s purpose clear
and unambiguous:

1 join("hello",	"world",	joiner:	"-")
2 //	returns	"hello-world"

N O T E

You can opt out of this behavior by writing an underscore (_) instead of an explicit external name
when you define the parameter. However, external names for defaulted parameters are always
preferred where appropriate.

(c) ketabton.com: The Digital Library

Variadic Parameters

A variadic parameter accepts zero or more values of a specified type. You use a variadic parameter to specify
that the parameter can be passed a varying number of input values when the function is called. Write variadic
parameters by inserting three period characters (...) after the parameter’s type name.

The values passed to a variadic parameter are made available within the function’s body as an array of the
appropriate type. For example, a variadic parameter with a name of numbers and a type of Double... is
made available within the function’s body as a constant array called numbers of type Double[].

The example below calculates the arithmetic mean (also known as the average) for a list of numbers of any
length:

1 func	arithmeticMean(numbers:	Double...)	->	Double	{
2 				var	total:	Double	=	0
3 				for	number	in	numbers	{
4 								total	+=	number
5 				}
6 				return	total	/	Double(numbers.count)
7 }
8 arithmeticMean(1,	2,	3,	4,	5)
9 //	returns	3.0,	which	is	the	arithmetic	mean	of	these	five	numbers

10 arithmeticMean(3,	8,	19)
11 //	returns	10.0,	which	is	the	arithmetic	mean	of	these	three	

numbers

N O T E

A function may have at most one variadic parameter, and it must always appear last in the
parameter list, to avoid ambiguity when calling the function with multiple parameters.

If your function has one or more parameters with a default value, and also has a variadic parameter,
place the variadic parameter after all the defaulted parameters at the very end of the list.

(c) ketabton.com: The Digital Library

Constant and Variable Parameters

Function parameters are constants by default. Trying to change the value of a function parameter from within
the body of that function results in a compile-time error. This means that you can’t change the value of a
parameter by mistake.

However, sometimes it is useful for a function to have a variable copy of a parameter’s value to work with. You
can avoid defining a new variable yourself within the function by specifying one or more parameters as variable
parameters instead. Variable parameters are available as variables rather than as constants, and give a new
modifiable copy of the parameter’s value for your function to work with.

Define variable parameters by prefixing the parameter name with the keyword var:

1 func	alignRight(var	string:	String,	count:	Int,	pad:	Character)	->	
String	{

2 				let	amountToPad	=	count	-	countElements(string)
3 				for	_	in	1...amountToPad	{
4 								string	=	pad	+	string
5 				}
6 				return	string
7 }
8 let	originalString	=	"hello"
9 let	paddedString	=	alignRight(originalString,	10,	"-")

10 //	paddedString	is	equal	to	"-----hello"
11 //	originalString	is	still	equal	to	"hello"

This example defines a new function called alignRight, which aligns an input string to the right edge of a
longer output string. Any space on the left is filled with a specified padding character. In this example, the string
"hello" is converted to the string "-----hello".

The alignRight function defines the input parameter string to be a variable parameter. This means that
string is now available as a local variable, initialized with the passed-in string value, and can be manipulated
within the body of the function.

(c) ketabton.com: The Digital Library

The function starts by working out how many characters need to be added to the left of string in order to
right-align it within the overall string. This value is stored in a local constant called amountToPad. The
function then adds amountToPad copies of the pad character to the left of the existing string and returns the
result. It uses the string variable parameter for all its string manipulation.

N O T E

The changes you make to a variable parameter do not persist beyond the end of each call to the
function, and are not visible outside the function’s body. The variable parameter only exists for the
lifetime of that function call.

In-Out Parameters

Variable parameters, as described above, can only be changed within the function itself. If you want a function to
modify a parameter’s value, and you want those changes to persist after the function call has ended, define that
parameter as an in-out parameter instead.

You write an in-out parameter by placing the inout keyword at the start of its parameter definition. An in-out
parameter has a value that is passed in to the function, is modified by the function, and is passed back out of the
function to replace the original value.

You can only pass a variable as the argument for an in-out parameter. You cannot pass a constant or a literal
value as the argument, because constants and literals cannot be modified. You place an ampersand (&) directly
before a variable’s name when you pass it as an argument to an inout parameter, to indicate that it can be
modified by the function.

N O T E

In-out parameters cannot have default values, and variadic parameters cannot be marked as
inout. If you mark a parameter as inout, it cannot also be marked as var or let.

(c) ketabton.com: The Digital Library

Here’s an example of a function called swapTwoInts, which has two in-out integer parameters called a and
b:

1 func	swapTwoInts(inout	a:	Int,	inout	b:	Int)	{
2 				let	temporaryA	=	a
3 				a	=	b
4 				b	=	temporaryA
5 }

The swapTwoInts function simply swaps the value of b into a, and the value of a into b. The function
performs this swap by storing the value of a in a temporary constant called temporaryA, assigning the value
of b to a, and then assigning temporaryA to b.

You can call the swapTwoInts function with two variables of type Int to swap their values. Note that the
names of someInt and anotherInt are prefixed with an ampersand when they are passed to the
swapTwoInts function:

1 var	someInt	=	3
2 var	anotherInt	=	107
3 swapTwoInts(&someInt,	&anotherInt)
4 println("someInt	is	now	\(someInt),	and	anotherInt	is	now	\

(anotherInt)")
5 //	prints	"someInt	is	now	107,	and	anotherInt	is	now	3"

The example above shows that the original values of someInt and anotherInt are modified by the
swapTwoInts function, even though they were originally defined outside of the function.

N O T E

(c) ketabton.com: The Digital Library

In-out parameters are not the same as returning a value from a function. The swapTwoInts
example above does not define a return type or return a value, but it still modifies the values of
someInt and anotherInt. In-out parameters are an alternative way for a function to have an
effect outside of the scope of its function body.

Function Types

Every function has a specific function type, made up of the parameter types and the return type of the function.

For example:

1 func	addTwoInts(a:	Int,	b:	Int)	->	Int	{
2 				return	a	+	b
3 }
4 func	multiplyTwoInts(a:	Int,	b:	Int)	->	Int	{
5 				return	a	*	b
6 }

This example defines two simple mathematical functions called addTwoInts and multiplyTwoInts.
These functions each take two Int values, and return an Int value, which is the result of performing an
appropriate mathematical operation.

The type of both of these functions is (Int,	Int)	->	Int. This can be read as:

“A function type that has two parameters, both of type Int, and that returns a value of type Int.”

Here’s another example, for a function with no parameters or return value:

1 func	printHelloWorld()	{
2 				println("hello,	world")
3 }

(c) ketabton.com: The Digital Library

The type of this function is ()	->	(), or “a function that has no parameters, and returns Void.” Functions
that don’t specify a return value always return Void, which is equivalent to an empty tuple in Swift, shown as
().

Using Function Types

You use function types just like any other types in Swift. For example, you can define a constant or variable to
be of a function type and assign an appropriate function to that variable:

1 var	mathFunction:	(Int,	Int)	->	Int	=	addTwoInts

This can be read as:

“Define a variable called mathFunction, which has a type of ‘a function that takes two Int values, and
returns an Int value.’ Set this new variable to refer to the function called addTwoInts.”

The addTwoInts function has the same type as the mathFunction variable, and so this assignment is
allowed by Swift’s type-checker.

You can now call the assigned function with the name mathFunction:

1 println("Result:	\(mathFunction(2,	3))")
2 //	prints	"Result:	5"

A different function with the same matching type can be assigned to the same variable, in the same way as for
non-function types:

1 mathFunction	=	multiplyTwoInts
2 println("Result:	\(mathFunction(2,	3))")
3 //	prints	"Result:	6"

As with any other type, you can leave it to Swift to infer the function type when you assign a function to a

(c) ketabton.com: The Digital Library

constant or variable:

1 let	anotherMathFunction	=	addTwoInts
2 //	anotherMathFunction	is	inferred	to	be	of	type	(Int,	Int)	->	Int

Function Types as Parameter Types

You can use a function type such as (Int,	Int)	->	Int as a parameter type for another function. This
enables you to leave some aspects of a function’s implementation for the function’s caller to provide when the
function is called.

Here’s an example to print the results of the math functions from above:

1 func	printMathResult(mathFunction:	(Int,	Int)	->	Int,	a:	Int,	b:	Int)	
{

2 				println("Result:	\(mathFunction(a,	b))")
3 }
4 printMathResult(addTwoInts,	3,	5)
5 //	prints	"Result:	8"

This example defines a function called printMathResult, which has three parameters. The first parameter
is called mathFunction, and is of type (Int,	Int)	->	Int. You can pass any function of that type as
the argument for this first parameter. The second and third parameters are called a and b, and are both of type
Int. These are used as the two input values for the provided math function.

When printMathResult is called, it is passed the addTwoInts function, and the integer values 3 and 5.
It calls the provided function with the values 3 and 5, and prints the result of 8.

The role of printMathResult is to print the result of a call to a math function of an appropriate type. It
doesn’t matter what that function’s implementation actually does—it matters only that the function is of the
correct type. This enables printMathResult to hand off some of its functionality to the caller of the function
in a type-safe way.

(c) ketabton.com: The Digital Library

Function Types as Return Types

You can use a function type as the return type of another function. You do this by writing a complete function type
immediately after the return arrow (->) of the returning function.

The next example defines two simple functions called stepForward and stepBackward. The
stepForward function returns a value one more than its input value, and the stepBackward function
returns a value one less than its input value. Both functions have a type of (Int)	->	Int:

1 func	stepForward(input:	Int)	->	Int	{
2 				return	input	+	1
3 }
4 func	stepBackward(input:	Int)	->	Int	{
5 				return	input	-	1
6 }

Here’s a function called chooseStepFunction, whose return type is “a function of type (Int)	->	Int”.
chooseStepFunction returns the stepForward function or the stepBackward function based on a
Boolean parameter called backwards:

1 func	chooseStepFunction(backwards:	Bool)	->	(Int)	->	Int	{
2 				return	backwards	?	stepBackward	:	stepForward
3 }

You can now use chooseStepFunction to obtain a function that will step in one direction or the other:

1 var	currentValue	=	3
2 let	moveNearerToZero	=	chooseStepFunction(currentValue	>	0)
3 //	moveNearerToZero	now	refers	to	the	stepBackward()	function

The preceding example works out whether a positive or negative step is needed to move a variable called
currentValue progressively closer to zero. currentValue has an initial value of 3, which means that

(c) ketabton.com: The Digital Library

currentValue	>	0 returns true, causing chooseStepFunction to return the stepBackward
function. A reference to the returned function is stored in a constant called moveNearerToZero.

Now that moveNearerToZero refers to the correct function, it can be used to count to zero:

1 println("Counting	to	zero:")
2 //	Counting	to	zero:
3 while	currentValue	!=	0	{
4 				println("\(currentValue)...	")
5 				currentValue	=	moveNearerToZero(currentValue)
6 }
7 println("zero!")
8 //	3...
9 //	2...

10 //	1...
11 //	zero!

Nested Functions

All of the functions you have encountered so far in this chapter have been examples of global functions, which
are defined at a global scope. You can also define functions inside the bodies of other functions, known as nested
functions.

Nested functions are hidden from the outside world by default, but can still be called and used by their enclosing
function. An enclosing function can also return one of its nested functions to allow the nested function to be used
in another scope.

You can rewrite the chooseStepFunction example above to use and return nested functions:

1 func	chooseStepFunction(backwards:	Bool)	->	(Int)	->	Int	{
2 				func	stepForward(input:	Int)	->	Int	{	return	input	+	1	}
3 				func	stepBackward(input:	Int)	->	Int	{	return	input	-	1	}
4 				return	backwards	?	stepBackward	:	stepForward
5 }

(c) ketabton.com: The Digital Library

6 var	currentValue	=	-4
7 let	moveNearerToZero	=	chooseStepFunction(currentValue	>	0)
8 //	moveNearerToZero	now	refers	to	the	nested	stepForward()	function
9 while	currentValue	!=	0	{

10 				println("\(currentValue)...	")
11 				currentValue	=	moveNearerToZero(currentValue)
12 }
13 println("zero!")
14 //	-4...
15 //	-3...
16 //	-2...
17 //	-1...
18 //	zero!

(c) ketabton.com: The Digital Library

Closures

Closures are self-contained blocks of functionality that can be passed around and used in your code. Closures
in Swift are similar to blocks in C and Objective-C and to lambdas in other programming languages.

Closures can capture and store references to any constants and variables from the context in which they are
defined. This is known as closing over those constants and variables, hence the name “closures”. Swift handles
all of the memory management of capturing for you.

N O T E

Don’t worry if you are not familiar with the concept of “capturing”. It is explained in detail below in
Capturing Values.

Global and nested functions, as introduced in Functions, are actually special cases of closures. Closures take
one of three forms:

Swift’s closure expressions have a clean, clear style, with optimizations that encourage brief, clutter-free
syntax in common scenarios. These optimizations include:

Global functions are closures that have a name and do not capture any values.

Nested functions are closures that have a name and can capture values from their enclosing
function.

Closure expressions are unnamed closures written in a lightweight syntax that can capture
values from their surrounding context.

Inferring parameter and return value types from context

Implicit returns from single-expression closures

Shorthand argument names

(c) ketabton.com: The Digital Library

Closure Expressions

Nested functions, as introduced in Nested Functions, are a convenient means of naming and defining self-
contained blocks of code as part of a larger function. However, it is sometimes useful to write shorter versions
of function-like constructs without a full declaration and name. This is particularly true when you work with
functions that take other functions as one or more of their arguments.

Closure expressions are a way to write inline closures in a brief, focused syntax. Closure expressions provide
several syntax optimizations for writing closures in their simplest form without loss of clarity or intent. The
closure expression examples below illustrate these optimizations by refining a single example of the sort
function over several iterations, each of which expresses the same functionality in a more succinct way.

The Sort Function

Swift’s standard library provides a function called sort, which sorts an array of values of a known type, based
on the output of a sorting closure that you provide. Once it completes the sorting process, the sort function
returns a new array of the same type and size as the old one, with its elements in the correct sorted order.

The closure expression examples below use the sort function to sort an array of String values in reverse
alphabetical order. Here’s the initial array to be sorted:

1 let	names	=	["Chris",	"Alex",	"Ewa",	"Barry",	"Daniella"]

The sort function takes two arguments:

Trailing closure syntax

An array of values of a known type.

A closure that takes two arguments of the same type as the array’s contents, and returns a Bool
value to say whether the first value should appear before or after the second value once the
values are sorted. The sorting closure needs to return true if the first value should appear
before the second value, and false otherwise.

(c) ketabton.com: The Digital Library

This example is sorting an array of String values, and so the sorting closure needs to be a function of type
(String,	String)	->	Bool.

One way to provide the sorting closure is to write a normal function of the correct type, and to pass it in as the
sort function’s second parameter:

1 func	backwards(s1:	String,	s2:	String)	->	Bool	{
2 				return	s1	>	s2
3 }
4 var	reversed	=	sort(names,	backwards)
5 //	reversed	is	equal	to	["Ewa",	"Daniella",	"Chris",	"Barry",	"Alex"]

If the first string (s1) is greater than the second string (s2), the backwards function will return true,
indicating that s1 should appear before s2 in the sorted array. For characters in strings, “greater than” means
“appears later in the alphabet than”. This means that the letter "B" is “greater than” the letter "A", and the
string "Tom" is greater than the string "Tim". This gives a reverse alphabetical sort, with "Barry" being
placed before "Alex", and so on.

However, this is a rather long-winded way to write what is essentially a single-expression function (a	>	b). In
this example, it would be preferable to write the sorting closure inline, using closure expression syntax.

Closure Expression Syntax

Closure expression syntax has the following general form:

{	(parameters)	->	 return	type 	in

				 statements

}

Closure expression syntax can use constant parameters, variable parameters, and inout parameters. Default

(c) ketabton.com: The Digital Library

values cannot be provided. Variadic parameters can be used if you name the variadic parameter and place it
last in the parameter list. Tuples can also be used as parameter types and return types.

The example below shows a closure expression version of the backwards function from earlier:

1 reversed	=	sort(names,	{	(s1:	String,	s2:	String)	->	Bool	in
2 				return	s1	>	s2
3 				})

Note that the declaration of parameters and return type for this inline closure is identical to the declaration from
the backwards function. In both cases, it is written as (s1:	String,	s2:	String)	->	Bool.
However, for the inline closure expression, the parameters and return type are written inside the curly braces,
not outside of them.

The start of the closure’s body is introduced by the in keyword. This keyword indicates that the definition of the
closure’s parameters and return type has finished, and the body of the closure is about to begin.

Because the body of the closure is so short, it can even be written on a single line:

1 reversed	=	sort(names,	{	(s1:	String,	s2:	String)	->	Bool	in	return	s1
>	s2	})

This illustrates that the overall call to the sort function has remained the same. A pair of parentheses still
wrap the entire set of arguments for the function. However, one of those arguments is now an inline closure.

Inferring Type From Context

Because the sorting closure is passed as an argument to a function, Swift can infer the types of its parameters
and the type of the value it returns from the type of the sort function’s second parameter. This parameter is
expecting a function of type (String,	String)	->	Bool. This means that the String, String, and
Bool types do not need to be written as part of the closure expression’s definition. Because all of the types can
be inferred, the return arrow (->) and the parentheses around the names of the parameters can also be omitted:

(c) ketabton.com: The Digital Library

1 reversed	=	sort(names,	{	s1,	s2	in	return	s1	>	s2	})

It is always possible to infer parameter types and return type when passing a closure to a function as an inline
closure expression. As a result, you rarely need to write an inline closure in its fullest form.

Nonetheless, you can make the types explicit if you wish, and doing so is encouraged if it avoids ambiguity for
readers of your code. In the case of the sort function, the purpose of the closure is clear from the fact that
sorting is taking place, and it is safe for a reader to assume that the closure is likely to be working with String
values, because it is assisting with the sorting of an array of strings.

Implicit Returns from Single-Expression Closures

Single-expression closures can implicitly return the result of their single expression by omitting the return
keyword from their declaration, as in this version of the previous example:

1 reversed	=	sort(names,	{	s1,	s2	in	s1	>	s2	})

Here, the function type of the sort function’s second argument makes it clear that a Bool value must be
returned by the closure. Because the closure’s body contains a single expression (s1	>	s2) that returns a
Bool value, there is no ambiguity, and the return keyword can be omitted.

Shorthand Argument Names

Swift automatically provides shorthand argument names to inline closures, which can be used to refer to the
values of the closure’s arguments by the names $0, $1, $2, and so on.

If you use these shorthand argument names within your closure expression, you can omit the closure’s
argument list from its definition, and the number and type of the shorthand argument names will be inferred
from the expected function type. The in keyword can also be omitted, because the closure expression is made
up entirely of its body:

1 reversed	=	sort(names,	{	$0	>	$1	})

(c) ketabton.com: The Digital Library

Here, $0 and $1 refer to the closure’s first and second String arguments.

Operator Functions

There’s actually an even shorter way to write the closure expression above. Swift’s String type defines its
string-specific implementation of the greater-than operator (>) as a function that has two parameters of type
String, and returns a value of type Bool. This exactly matches the function type needed for the sort
function’s second parameter. Therefore, you can simply pass in the greater-than operator, and Swift will infer
that you want to use its string-specific implementation:

1 reversed	=	sort(names,	>)

For more about operator functions, see Operator Functions.

Trailing Closures

If you need to pass a closure expression to a function as the function’s final argument and the closure
expression is long, it can be useful to write it as a trailing closure instead. A trailing closure is a closure
expression that is written outside of (and after) the parentheses of the function call it supports:

1 func	someFunctionThatTakesAClosure(closure:	()	->	())	{
2 				//	function	body	goes	here
3 }
4 	
5 //	here's	how	you	call	this	function	without	using	a	trailing	closure:
6 	
7 someFunctionThatTakesAClosure({
8 				//	closure's	body	goes	here
9 				})

10 	

(c) ketabton.com: The Digital Library

11 //	here's	how	you	call	this	function	with	a	trailing	closure	
instead:

12 	
13 someFunctionThatTakesAClosure()	{
14 				//	trailing	closure's	body	goes	here
15 }

N O T E

If a closure expression is provided as the function’s only argument and you provide that expression
as a trailing closure, you do not need to write a pair of parentheses () after the function’s name
when you call the function.

The string-sorting closure from the Closure Expression Syntax section above can be written outside of the
sort function’s parentheses as a trailing closure:

1 reversed	=	sort(names)	{	$0	>	$1	}

Trailing closures are most useful when the closure is sufficiently long that it is not possible to write it inline on a
single line. As an example, Swift’s Array type has a map method which takes a closure expression as its
single argument. The closure is called once for each item in the array, and returns an alternative mapped value
(possibly of some other type) for that item. The nature of the mapping and the type of the returned value is left up
to the closure to specify.

After applying the provided closure to each array element, the map method returns a new array containing all of
the new mapped values, in the same order as their corresponding values in the original array.

Here’s how you can use the map method with a trailing closure to convert an array of Int values into an array
of String values. The array [16,	58,	510] is used to create the new array ["OneSix",
"FiveEight",	"FiveOneZero"]:

1 let	digitNames	=	[

(c) ketabton.com: The Digital Library

2 				0:	"Zero",	1:	"One",	2:	"Two",			3:	"Three",	4:	"Four",
3 				5:	"Five",	6:	"Six",	7:	"Seven",	8:	"Eight",	9:	"Nine"
4]
5 let	numbers	=	[16,	58,	510]

The code above creates a dictionary of mappings between the integer digits and English-language versions of
their names. It also defines an array of integers, ready to be converted into strings.

You can now use the numbers array to create an array of String values, by passing a closure expression to
the array’s map method as a trailing closure. Note that the call to numbers.map does not need to include any
parentheses after map, because the map method has only one parameter, and that parameter is provided as a
trailing closure:

1 let	strings	=	numbers.map	{
2 				(var	number)	->	String	in
3 				var	output	=	""
4 				while	number	>	0	{
5 								output	=	digitNames[number	%	10]!	+	output
6 								number	/=	10
7 				}
8 				return	output
9 }

10 //	strings	is	inferred	to	be	of	type	String[]
11 //	its	value	is	["OneSix",	"FiveEight",	"FiveOneZero"]

The map function calls the closure expression once for each item in the array. You do not need to specify the
type of the closure’s input parameter, number, because the type can be inferred from the values in the array to
be mapped.

In this example, the closure’s number parameter is defined as a variable parameter, as described in Constant
and Variable Parameters, so that the parameter’s value can be modified within the closure body, rather than
declaring a new local variable and assigning the passed number value to it. The closure expression also
specifies a return type of String, to indicate the type that will be stored in the mapped output array.

The closure expression builds a string called output each time it is called. It calculates the last digit of

(c) ketabton.com: The Digital Library

number by using the remainder operator (number	%	10), and uses this digit to look up an appropriate string
in the digitNames dictionary.

N O T E

The call to the digitNames dictionary’s subscript is followed by an exclamation mark (!),
because dictionary subscripts return an optional value to indicate that the dictionary lookup can fail if
the key does not exist. In the example above, it is guaranteed that number	%	10 will always be a
valid subscript key for the digitNames dictionary, and so an exclamation mark is used to force-
unwrap the String value stored in the subscript’s optional return value.

The string retrieved from the digitNames dictionary is added to the front of output, effectively building a
string version of the number in reverse. (The expression number	%	10 gives a value of 6 for 16, 8 for 58,
and 0 for 510.)

The number variable is then divided by 10. Because it is an integer, it is rounded down during the division, so
16 becomes 1, 58 becomes 5, and 510 becomes 51.

The process is repeated until number	/=	10 is equal to 0, at which point the output string is returned by
the closure, and is added to the output array by the map function.

The use of trailing closure syntax in the example above neatly encapsulates the closure’s functionality
immediately after the function that closure supports, without needing to wrap the entire closure within the map
function’s outer parentheses.

Capturing Values

A closure can capture constants and variables from the surrounding context in which it is defined. The closure
can then refer to and modify the values of those constants and variables from within its body, even if the original
scope that defined the constants and variables no longer exists.

The simplest form of a closure in Swift is a nested function, written within the body of another function. A nested

(c) ketabton.com: The Digital Library

function can capture any of its outer function’s arguments and can also capture any constants and variables
defined within the outer function.

Here’s an example of a function called makeIncrementor, which contains a nested function called
incrementor. The nested incrementor function captures two values, runningTotal and amount,
from its surrounding context. After capturing these values, incrementor is returned by
makeIncrementor as a closure that increments runningTotal by amount each time it is called.

1 func	makeIncrementor(forIncrement	amount:	Int)	->	()	->	Int	{
2 				var	runningTotal	=	0
3 				func	incrementor()	->	Int	{
4 								runningTotal	+=	amount
5 								return	runningTotal
6 				}
7 				return	incrementor
8 }

The return type of makeIncrementor is ()	->	Int. This means that it returns a function, rather than a
simple value. The function it returns has no parameters, and returns an Int value each time it is called. To
learn how functions can return other functions, see Function Types as Return Types.

The makeIncrementor function defines an integer variable called runningTotal, to store the current
running total of the incrementor that will be returned. This variable is initialized with a value of 0.

The makeIncrementor function has a single Int parameter with an external name of forIncrement,
and a local name of amount. The argument value passed to this parameter specifies how much
runningTotal should be incremented by each time the returned incrementor function is called.

makeIncrementor defines a nested function called incrementor, which performs the actual
incrementing. This function simply adds amount to runningTotal, and returns the result.

When considered in isolation, the nested incrementor function might seem unusual:

1 func	incrementor()	->	Int	{
2 				runningTotal	+=	amount

(c) ketabton.com: The Digital Library

3 				return	runningTotal
4 }

The incrementor function doesn’t have any parameters, and yet it refers to runningTotal and amount
from within its function body. It does this by capturing the existing values of runningTotal and amount
from its surrounding function and using them within its own function body.

Because it does not modify amount, incrementor actually captures and stores a copy of the value stored in
amount. This value is stored along with the new incrementor function.

However, because it modifies the runningTotal variable each time it is called, incrementor captures a
reference to the current runningTotal variable, and not just a copy of its initial value. Capturing a reference
ensures sure that runningTotal does not disappear when the call to makeIncrementor ends, and
ensures that runningTotal will continue to be available the next time that the incrementor function is called.

N O T E

Swift determines what should be captured by reference and what should be copied by value. You
don’t need to annotate amount or runningTotal to say that they can be used within the nested
incrementor function. Swift also handles all memory management involved in disposing of
runningTotal when it is no longer needed by the incrementor function.

Here’s an example of makeIncrementor in action:

1 let	incrementByTen	=	makeIncrementor(forIncrement:	10)

This example sets a constant called incrementByTen to refer to an incrementor function that adds 10 to its
runningTotal variable each time it is called. Calling the function multiple times shows this behavior in
action:

1 incrementByTen()

(c) ketabton.com: The Digital Library

2 //	returns	a	value	of	10
3 incrementByTen()
4 //	returns	a	value	of	20
5 incrementByTen()
6 //	returns	a	value	of	30

If you create another incrementor, it will have its own stored reference to a new, separate runningTotal
variable. In the example below, incrementBySeven captures a reference to a new runningTotal
variable, and this variable is unconnected to the one captured by incrementByTen:

1 let	incrementBySeven	=	makeIncrementor(forIncrement:	7)
2 incrementBySeven()
3 //	returns	a	value	of	7
4 incrementByTen()
5 //	returns	a	value	of	40

N O T E

If you assign a closure to a property of a class instance, and the closure captures that instance by
referring to the instance or its members, you will create a strong reference cycle between the
closure and the instance. Swift uses capture lists to break these strong reference cycles. For more
information, see Strong Reference Cycles for Closures.

Closures Are Reference Types

In the example above, incrementBySeven and incrementByTen are constants, but the closures these
constants refer to are still able to increment the runningTotal variables that they have captured. This is
because functions and closures are reference types.

Whenever you assign a function or a closure to a constant or a variable, you are actually setting that constant or
variable to be a reference to the function or closure. In the example above, it is the choice of closure that

(c) ketabton.com: The Digital Library

incrementByTen refers to that is constant, and not the contents of the closure itself.

This also means that if you assign a closure to two different constants or variables, both of those constants or
variables will refer to the same closure:

1 let	alsoIncrementByTen	=	incrementByTen
2 alsoIncrementByTen()
3 //	returns	a	value	of	50

(c) ketabton.com: The Digital Library

Enumerations

An enumeration defines a common type for a group of related values and enables you to work with those values
in a type-safe way within your code.

If you are familiar with C, you will know that C enumerations assign related names to a set of integer values.
Enumerations in Swift are much more flexible, and do not have to provide a value for each member of the
enumeration. If a value (known as a “raw” value) is provided for each enumeration member, the value can be a
string, a character, or a value of any integer or floating-point type.

Alternatively, enumeration members can specify associated values of any type to be stored along with each
different member value, much as unions or variants do in other languages. You can define a common set of
related members as part of one enumeration, each of which has a different set of values of appropriate types
associated with it.

Enumerations in Swift are first-class types in their own right. They adopt many features traditionally supported
only by classes, such as computed properties to provide additional information about the enumeration’s current
value, and instance methods to provide functionality related to the values the enumeration represents.
Enumerations can also define initializers to provide an initial member value; can be extended to expand their
functionality beyond their original implementation; and can conform to protocols to provide standard
functionality.

For more on these capabilities, see Properties, Methods, Initialization, Extensions, and Protocols.

Enumeration Syntax

You introduce enumerations with the enum keyword and place their entire definition within a pair of braces:

1 enum	SomeEnumeration	{
2 				//	enumeration	definition	goes	here
3 }

(c) ketabton.com: The Digital Library

Here’s an example for the four main points of a compass:

1 enum	CompassPoint	{
2 				case	North
3 				case	South
4 				case	East
5 				case	West
6 }

The values defined in an enumeration (such as North, South, East, and West) are the member values (or
members) of that enumeration. The case keyword indicates that a new line of member values is about to be
defined.

N O T E

Unlike C and Objective-C, Swift enumeration members are not assigned a default integer value
when they are created. In the CompassPoints example above, North, South, East and West
do not implicitly equal 0, 1, 2 and 3. Instead, the different enumeration members are fully-fledged
values in their own right, with an explicitly-defined type of CompassPoint.

Multiple member values can appear on a single line, separated by commas:

1 enum	Planet	{
2 				case	Mercury,	Venus,	Earth,	Mars,	Jupiter,	Saturn,	Uranus,	Neptune
3 }

Each enumeration definition defines a brand new type. Like other types in Swift, their names (such as
CompassPoint and Planet) should start with a capital letter. Give enumeration types singular rather than
plural names, so that they read as self-evident:

1 var	directionToHead	=	CompassPoint.West

(c) ketabton.com: The Digital Library

The type of directionToHead is inferred when it is initialized with one of the possible values of
CompassPoint. Once directionToHead is declared as a CompassPoint, you can set it to a different
CompassPoint value using a shorter dot syntax:

1 directionToHead	=	.East

The type of directionToHead is already known, and so you can drop the type when setting its value. This
makes for highly readable code when working with explicitly-typed enumeration values.

Matching Enumeration Values with a Switch Statement

You can match individual enumeration values with a switch statement:

1 directionToHead	=	.South
2 switch	directionToHead	{
3 case	.North:
4 				println("Lots	of	planets	have	a	north")
5 case	.South:
6 				println("Watch	out	for	penguins")
7 case	.East:
8 				println("Where	the	sun	rises")
9 case	.West:

10 				println("Where	the	skies	are	blue")
11 }
12 //	prints	"Watch	out	for	penguins"

You can read this code as:

“Consider the value of directionToHead. In the case where it equals .North, print "Lots	of
planets	have	a	north". In the case where it equals .South, print "Watch	out	for
penguins".”

…and so on.

(c) ketabton.com: The Digital Library

As described in Control Flow, a switch statement must be exhaustive when considering an enumeration’s
members. If the case for .West is omitted, this code does not compile, because it does not consider the
complete list of CompassPoint members. Requiring exhaustiveness ensures that enumeration members
are not accidentally omitted.

When it is not appropriate to provide a case for every enumeration member, you can provide a default
case to cover any members that are not addressed explicitly:

1 let	somePlanet	=	Planet.Earth
2 switch	somePlanet	{
3 case	.Earth:
4 				println("Mostly	harmless")
5 default:
6 				println("Not	a	safe	place	for	humans")
7 }
8 //	prints	"Mostly	harmless"

Associated Values

The examples in the previous section show how the members of an enumeration are a defined (and typed)
value in their own right. You can set a constant or variable to Planet.Earth, and check for this value later.
However, it is sometimes useful to be able to store associated values of other types alongside these member
values. This enables you to store additional custom information along with the member value, and permits this
information to vary each time you use that member in your code.

You can define Swift enumerations to store associated values of any given type, and the value types can be
different for each member of the enumeration if needed. Enumerations similar to these are known as
discriminated unions, tagged unions, or variants in other programming languages.

For example, suppose an inventory tracking system needs to track products by two different types of barcode.
Some products are labeled with 1D barcodes in UPC-A format, which uses the numbers 0 to 9. Each barcode
has a “number system” digit, followed by ten “identifier” digits. These are followed by a “check” digit to verify
that the code has been scanned correctly:

(c) ketabton.com: The Digital Library

Other products are labeled with 2D barcodes in QR code format, which can use any ISO 8859-1 character and
can encode a string up to 2,953 characters long:

It would be convenient for an inventory tracking system to be able to store UPC-A barcodes as a tuple of three
integers, and QR code barcodes as a string of any length.

In Swift, an enumeration to define product barcodes of either type might look like this:

1 enum	Barcode	{
2 				case	UPCA(Int,	Int,	Int)
3 				case	QRCode(String)

(c) ketabton.com: The Digital Library

4 }

This can be read as:

“Define an enumeration type called Barcode, which can take either a value of UPCA with an associated value
of type (Int, Int, Int), or a value of QRCode with an associated value of type String.”

This definition does not provide any actual Int or String values—it just defines the type of associated values
that Barcode constants and variables can store when they are equal to Barcode.UPCA or
Barcode.QRCode.

New barcodes can then be created using either type:

1 var	productBarcode	=	Barcode.UPCA(8,	85909_51226,	3)

This example creates a new variable called productBarcode and assigns it a value of Barcode.UPCA
with an associated tuple value of (8,	8590951226,	3). The provided “identifier” value has an underscore
within its integer literal—85909_51226—to make it easier to read as a barcode.

The same product can be assigned a different type of barcode:

1 productBarcode	=	.QRCode("ABCDEFGHIJKLMNOP")

At this point, the original Barcode.UPCA and its integer values are replaced by the new Barcode.QRCode
and its string value. Constants and variables of type Barcode can store either a .UPCA or a .QRCode
(together with their associated values), but they can only store one of them at any given time.

The different barcode types can be checked using a switch statement, as before. This time, however, the
associated values can be extracted as part of the switch statement. You extract each associated value as a
constant (with the let prefix) or a variable (with the var prefix) for use within the switch case’s body:

1 switch	productBarcode	{
2 case	.UPCA(let	numberSystem,	let	identifier,	let	check):
3 				println("UPC-A	with	value	of	\(numberSystem),	\(identifier),	\

(c) ketabton.com: The Digital Library

(check).")
4 case	.QRCode(let	productCode):
5 				println("QR	code	with	value	of	\(productCode).")
6 }
7 //	prints	"QR	code	with	value	of	ABCDEFGHIJKLMNOP."

If all of the associated values for a enumeration member are extracted as constants, or if all are extracted as
variables, you can place a single var or let annotation before the member name, for brevity:

1 switch	productBarcode	{
2 case	let	.UPCA(numberSystem,	identifier,	check):
3 				println("UPC-A	with	value	of	\(numberSystem),	\(identifier),	\

(check).")
4 case	let	.QRCode(productCode):
5 				println("QR	code	with	value	of	\(productCode).")
6 }
7 //	prints	"QR	code	with	value	of	ABCDEFGHIJKLMNOP."

Raw Values

The barcode example in Associated Values shows how members of an enumeration can declare that they store
associated values of different types. As an alternative to associated values, enumeration members can come
prepopulated with default values (called raw values), which are all of the same type.

Here’s an example that stores raw ASCII values alongside named enumeration members:

1 enum	ASCIIControlCharacter:	Character	{
2 				case	Tab	=	"\t"
3 				case	LineFeed	=	"\n"
4 				case	CarriageReturn	=	"\r"
5 }

Here, the raw values for an enumeration called ASCIIControlCharacter are defined to be of type

(c) ketabton.com: The Digital Library

Character, and are set to some of the more common ASCII control characters. Character values are
described in Strings and Characters.

Note that raw values are not the same as associated values. Raw values are set to prepopulated values when
you first define the enumeration in your code, like the three ASCII codes above. The raw value for a particular
enumeration member is always the same. Associated values are set when you create a new constant or
variable based on one of the enumeration’s members, and can be different each time you do so.

Raw values can be strings, characters, or any of the integer or floating-point number types. Each raw value
must be unique within its enumeration declaration. When integers are used for raw values, they auto-increment
if no value is specified for some of the enumeration members.

The enumeration below is a refinement of the earlier Planet enumeration, with raw integer values to
represent each planet’s order from the sun:

1 enum	Planet:	Int	{
2 				case	Mercury	=	1,	Venus,	Earth,	Mars,	Jupiter,	Saturn,	Uranus,	

Neptune
3 }

Auto-incrementation means that Planet.Venus has a raw value of 2, and so on.

Access the raw value of an enumeration member with its toRaw method:

1 let	earthsOrder	=	Planet.Earth.toRaw()
2 //	earthsOrder	is	3

Use an enumeration’s fromRaw method to try to find an enumeration member with a particular raw value.
This example identifies Uranus from its raw value of 7:

1 let	possiblePlanet	=	Planet.fromRaw(7)
2 //	possiblePlanet	is	of	type	Planet?	and	equals	Planet.Uranus

Not all possible Int values will find a matching planet, however. Because of this, the fromRaw method

(c) ketabton.com: The Digital Library

returns an optional enumeration member. In the example above, possiblePlanet is of type Planet?, or
“optional Planet.”

If you try to find a Planet with a position of 9, the optional Planet value returned by fromRaw will be nil:

1 let	positionToFind	=	9
2 if	let	somePlanet	=	Planet.fromRaw(positionToFind)	{
3 				switch	somePlanet	{
4 				case	.Earth:
5 								println("Mostly	harmless")
6 				default:
7 								println("Not	a	safe	place	for	humans")
8 				}
9 }	else	{

10 				println("There	isn't	a	planet	at	position	\
(positionToFind)")

11 }
12 //	prints	"There	isn't	a	planet	at	position	9"

This example uses optional binding to try to access a planet with a raw value of 9. The statement if	let
somePlanet	=	Planet.fromRaw(9) retrieves an optional Planet, and sets somePlanet to the
contents of that optional Planet if it can be retrieved. In this case, it is not possible to retrieve a planet with a
position of 9, and so the else branch is executed instead.

(c) ketabton.com: The Digital Library

Classes and Structures

Classes and structures are general-purpose, flexible constructs that become the building blocks of your
program’s code. You define properties and methods to add functionality to your classes and structures by using
exactly the same syntax as for constants, variables, and functions.

Unlike other programming languages, Swift does not require you to create separate interface and
implementation files for custom classes and structures. In Swift, you define a class or a structure in a single
file, and the external interface to that class or structure is automatically made available for other code to use.

N O T E

An instance of a class is traditionally known as an object. However, Swift classes and structures are
much closer in functionality than in other languages, and much of this chapter describes functionality
that can apply to instances of either a class or a structure type. Because of this, the more general
term instance is used.

Comparing Classes and Structures

Classes and structures in Swift have many things in common. Both can:

Define properties to store values

Define methods to provide functionality

Define subscripts to provide access to their values using subscript syntax

Define initializers to set up their initial state

Be extended to expand their functionality beyond a default implementation

Conform to protocols to provide standard functionality of a certain kind

(c) ketabton.com: The Digital Library

For more information, see Properties, Methods, Subscripts, Initialization, Extensions, and Protocols.

Classes have additional capabilities that structures do not:

For more information, see Inheritance, Type Casting, Initialization, and Automatic Reference Counting.

N O T E

Structures are always copied when they are passed around in your code, and do not use reference
counting.

Definition Syntax

Classes and structures have a similar definition syntax. You introduce classes with the class keyword and
structures with the struct keyword. Both place their entire definition within a pair of braces:

1 class	SomeClass	{
2 				//	class	definition	goes	here
3 }
4 struct	SomeStructure	{
5 				//	structure	definition	goes	here
6 }

Inheritance enables one class to inherit the characteristics of another.

Type casting enables you to check and interpret the type of a class instance at runtime.

Deinitializers enable an instance of a class to free up any resources it has assigned.

Reference counting allows more than one reference to a class instance.

(c) ketabton.com: The Digital Library

N O T E

Whenever you define a new class or structure, you effectively define a brand new Swift type. Give
types UpperCamelCase names (such as SomeClass and SomeStructure here) to match
the capitalization of standard Swift types (such as String, Int, and Bool). Conversely, always
give properties and methods lowerCamelCase names (such as frameRate and
incrementCount) to differentiate them from type names.

Here’s an example of a structure definition and a class definition:

1 struct	Resolution	{
2 				var	width	=	0
3 				var	height	=	0
4 }
5 class	VideoMode	{
6 				var	resolution	=	Resolution()
7 				var	interlaced	=	false
8 				var	frameRate	=	0.0
9 				var	name:	String?

10 }

The example above defines a new structure called Resolution, to describe a pixel-based display resolution.
This structure has two stored properties called width and height. Stored properties are constants or
variables that are bundled up and stored as part of the class or structure. These two properties are inferred to be
of type Int by setting them to an initial integer value of 0.

The example above also defines a new class called VideoMode, to describe a specific video mode for video
display. This class has four variable stored properties. The first, resolution, is initialized with a new
Resolution structure instance, which infers a property type of Resolution. For the other three properties,
new VideoMode instances will be initialized with an interlaced setting of false (meaning “non-
interlaced video”), a playback frame rate of 0.0, and an optional String value called name. The name
property is automatically given a default value of nil, or “no name value”, because it is of an optional type.

(c) ketabton.com: The Digital Library

Class and Structure Instances

The Resolution structure definition and the VideoMode class definition only describe what a
Resolution or VideoMode will look like. They themselves do not describe a specific resolution or video
mode. To do that, you need to create an instance of the structure or class.

The syntax for creating instances is very similar for both structures and classes:

1 let	someResolution	=	Resolution()
2 let	someVideoMode	=	VideoMode()

Structures and classes both use initializer syntax for new instances. The simplest form of initializer syntax
uses the type name of the class or structure followed by empty parentheses, such as Resolution() or
VideoMode(). This creates a new instance of the class or structure, with any properties initialized to their
default values. Class and structure initialization is described in more detail in Initialization.

Accessing Properties

You can access the properties of an instance using dot syntax. In dot syntax, you write the property name
immediately after the instance name, separated by a period (.), without any spaces:

1 println("The	width	of	someResolution	is	\(someResolution.width)")
2 //	prints	"The	width	of	someResolution	is	0"

In this example, someResolution.width refers to the width property of someResolution, and
returns its default initial value of 0.

You can drill down into sub-properties, such as the width property in the resolution property of a
VideoMode:

1 println("The	width	of	someVideoMode	is	\
(someVideoMode.resolution.width)")

(c) ketabton.com: The Digital Library

2 //	prints	"The	width	of	someVideoMode	is	0"

You can also use dot syntax to assign a new value to a variable property:

1 someVideoMode.resolution.width	=	1280
2 println("The	width	of	someVideoMode	is	now	\

(someVideoMode.resolution.width)")
3 //	prints	"The	width	of	someVideoMode	is	now	1280"

N O T E

Unlike Objective-C, Swift enables you to set sub-properties of a structure property directly. In the
last example above, the width property of the resolution property of someVideoMode is set
directly, without your needing to set the entire resolution property to a new value.

Memberwise Initializers for Structure Types

All structures have an automatically-generated memberwise initializer, which you can use to initialize the
member properties of new structure instances. Initial values for the properties of the new instance can be
passed to the memberwise initializer by name:

1 let	vga	=	Resolution(width:	640,	height:	480)

Unlike structures, class instances do not receive a default memberwise initializer. Initializers are described in
more detail in Initialization.

Structures and Enumerations Are Value Types

(c) ketabton.com: The Digital Library

A value type is a type that is copied when it is assigned to a variable or constant, or when it is passed to a
function.

You’ve actually been using value types extensively throughout the previous chapters. In fact, all of the basic
types in Swift—integers, floating-point numbers, Booleans, strings, arrays and dictionaries—are value types,
and are implemented as structures behind the scenes.

All structures and enumerations are value types in Swift. This means that any structure and enumeration
instances you create—and any value types they have as properties—are always copied when they are passed
around in your code.

Consider this example, which uses the Resolution structure from the previous example:

1 let	hd	=	Resolution(width:	1920,	height:	1080)
2 var	cinema	=	hd

This example declares a constant called hd and sets it to a Resolution instance initialized with the width
and height of full HD video (1920 pixels wide by 1080 pixels high).

It then declares a variable called cinema and sets it to the current value of hd. Because Resolution is a
structure, a copy of the existing instance is made, and this new copy is assigned to cinema. Even though hd
and cinema now have the same width and height, they are two completely different instances behind the
scenes.

Next, the width property of cinema is amended to be the width of the slightly-wider 2K standard used for
digital cinema projection (2048 pixels wide and 1080 pixels high):

1 cinema.width	=	2048

Checking the width property of cinema shows that it has indeed changed to be 2048:

1 println("cinema	is	now	\(cinema.width)	pixels	wide")
2 //	prints	"cinema	is	now	2048	pixels	wide"

(c) ketabton.com: The Digital Library

However, the width property of the original hd instance still has the old value of 1920:

1 println("hd	is	still	\(hd.width)	pixels	wide")
2 //	prints	"hd	is	still	1920	pixels	wide"

When cinema was given the current value of hd, the values stored in hd were copied into the new cinema
instance. The end result is two completely separate instances, which just happened to contain the same
numeric values. Because they are separate instances, setting the width of cinema to 2048 doesn’t affect the
width stored in hd.

The same behavior applies to enumerations:

1 enum	CompassPoint	{
2 				case	North,	South,	East,	West
3 }
4 var	currentDirection	=	CompassPoint.West
5 let	rememberedDirection	=	currentDirection
6 currentDirection	=	.East
7 if	rememberedDirection	==	.West	{
8 				println("The	remembered	direction	is	still	.West")
9 }

10 //	prints	"The	remembered	direction	is	still	.West"

When rememberedDirection is assigned the value of currentDirection, it is actually set to a copy
of that value. Changing the value of currentDirection thereafter does not affect the copy of the original
value that was stored in rememberedDirection.

Classes Are Reference Types

Unlike value types, reference types are not copied when they are assigned to a variable or constant, or when
they are passed to a function. Rather than a copy, a reference to the same existing instance is used instead.

Here’s an example, using the VideoMode class defined above:

(c) ketabton.com: The Digital Library

1 let	tenEighty	=	VideoMode()
2 tenEighty.resolution	=	hd
3 tenEighty.interlaced	=	true
4 tenEighty.name	=	"1080i"
5 tenEighty.frameRate	=	25.0

This example declares a new constant called tenEighty and sets it to refer to a new instance of the
VideoMode class. The video mode is assigned a copy of the HD resolution of 1920 by 1080 from before. It
is set to be interlaced, and is given a name of "1080i". Finally, it is set to a frame rate of 25.0 frames per
second.

Next, tenEighty is assigned to a new constant, called alsoTenEighty, and the frame rate of
alsoTenEighty is modified:

1 let	alsoTenEighty	=	tenEighty
2 alsoTenEighty.frameRate	=	30.0

Because classes are reference types, tenEighty and alsoTenEighty actually both refer to the same
VideoMode instance. Effectively, they are just two different names for the same single instance.

Checking the frameRate property of tenEighty shows that it correctly reports the new frame rate of 30.0
from the underlying VideoMode instance:

1 println("The	frameRate	property	of	tenEighty	is	now	\
(tenEighty.frameRate)")

2 //	prints	"The	frameRate	property	of	tenEighty	is	now	30.0"

Note that tenEighty and alsoTenEighty are declared as constants, rather than variables. However, you
can still change tenEighty.frameRate and alsoTenEighty.frameRate because the values of the
tenEighty and alsoTenEighty constants themselves do not actually change. tenEighty and
alsoTenEighty themselves do not “store” the VideoMode instance—instead, they both refer to a
VideoMode instance behind the scenes. It is the frameRate property of the underlying VideoMode that is
changed, not the values of the constant references to that VideoMode.

(c) ketabton.com: The Digital Library

Identity Operators

Because classes are reference types, it is possible for multiple constants and variables to refer to the same
single instance of a class behind the scenes. (The same is not true for structures and enumerations, because
they are value types and are always copied when they are assigned to a constant or variable, or passed to a
function.)

It can sometimes be useful to find out if two constants or variables refer to exactly the same instance of a class.
To enable this, Swift provides two identity operators:

Use these operators to check whether two constants or variables refer to the same single instance:

1 if	tenEighty	===	alsoTenEighty	{
2 				println("tenEighty	and	alsoTenEighty	refer	to	the	same	Resolution	

instance.")
3 }
4 //	prints	"tenEighty	and	alsoTenEighty	refer	to	the	same	Resolution	

instance."

Note that “identical to” (represented by three equals signs, or ===) does not mean the same thing as “equal to”
(represented by two equals signs, or ==):

When you define your own custom classes and structures, it is your responsibility to decide what qualifies as
two instances being “equal”. The process of defining your own implementations of the “equal to” and “not equal
to” operators is described in Equivalence Operators.

Identical to (===)

Not identical to (!==)

“Identical to” means that two constants or variables of class type refer to exactly the same class
instance.

“Equal to” means that two instances are considered “equal” or “equivalent” in value, for some
appropriate meaning of “equal”, as defined by the type’s designer.

(c) ketabton.com: The Digital Library

Pointers

If you have experience with C, C++, or Objective-C, you may know that these languages use pointers to refer to
addresses in memory. A Swift constant or variable that refers to an instance of some reference type is similar
to a pointer in C, but is not a direct pointer to an address in memory, and does not require you to write an
asterisk (*) to indicate that you are creating a reference. Instead, these references are defined like any other
constant or variable in Swift.

Choosing Between Classes and Structures

You can use both classes and structures to define custom data types to use as the building blocks of your
program’s code.

However, structure instances are always passed by value, and class instances are always passed by
reference. This means that they are suited to different kinds of tasks. As you consider the data constructs and
functionality that you need for a project, decide whether each data construct should be defined as a class or as a
structure.

As a general guideline, consider creating a structure when one or more of these conditions apply:

Examples of good candidates for structures include:

The structure’s primary purpose is to encapsulate a few relatively simple data values.

It is reasonable to expect that the encapsulated values will be copied rather than referenced when
you assign or pass around an instance of that structure.

Any properties stored by the structure are themselves value types, which would also be
expected to be copied rather than referenced.

The structure does not need to inherit properties or behavior from another existing type.

The size of a geometric shape, perhaps encapsulating a width property and a height
property, both of type Double.

A way to refer to ranges within a series, perhaps encapsulating a start property and a

(c) ketabton.com: The Digital Library

In all other cases, define a class, and create instances of that class to be managed and passed by reference. In
practice, this means that most custom data constructs should be classes, not structures.

Assignment and Copy Behavior for Collection Types

Swift’s Array and Dictionary types are implemented as structures. However, arrays have slightly
different copying behavior from dictionaries and other structures when they are assigned to a constant or
variable, and when they are passed to a function or method.

The behavior described for Array and Dictionary below is different again from the behavior of NSArray
and NSDictionary in Foundation, which are implemented as classes, not structures. NSArray and
NSDictionary instances are always assigned and passed around as a reference to an existing instance,
rather than as a copy.

N O T E

The descriptions below refer to the “copying” of arrays, dictionaries, strings, and other values.
Where copying is mentioned, the behavior you see in your code will always be as if a copy took
place. However, Swift only performs an actual copy behind the scenes when it is absolutely
necessary to do so. Swift manages all value copying to ensure optimal performance, and you should
not avoid assignment to try to preempt this optimization.

Assignment and Copy Behavior for Dictionaries

Whenever you assign a Dictionary instance to a constant or variable, or pass a Dictionary instance as
an argument to a function or method call, the dictionary is copied at the point that the assignment or call takes

length property, both of type Int.

A point in a 3D coordinate system, perhaps encapsulating x, y and z properties, each of type
Double.

(c) ketabton.com: The Digital Library

place. This process is described in Structures and Enumerations Are Value Types.

If the keys and/or values stored in the Dictionary instance are value types (structures or enumerations),
they too are copied when the assignment or call takes place. Conversely, if the keys and/or values are
reference types (classes or functions), the references are copied, but not the class instances or functions that
they refer to. This copy behavior for a dictionary’s keys and values is the same as the copy behavior for a
structure’s stored properties when the structure is copied.

The example below defines a dictionary called ages, which stores the names and ages of four people. The
ages dictionary is then assigned to a new variable called copiedAges and is copied when this assignment
takes place. After the assignment, ages and copiedAges are two separate dictionaries.

1 var	ages	=	["Peter":	23,	"Wei":	35,	"Anish":	65,	"Katya":	19]
2 var	copiedAges	=	ages

The keys for this dictionary are of type String, and the values are of type Int. Both types are value types in
Swift, and so the keys and values are also copied when the dictionary copy takes place.

You can prove that the ages dictionary has been copied by changing an age value in one of the dictionaries and
checking the corresponding value in the other. If you set the value for "Peter" in the copiedAges dictionary
to 24, the ages dictionary still returns the old value of 23 from before the copy took place:

1 copiedAges["Peter"]	=	24
2 println(ages["Peter"])
3 //	prints	"23"

Assignment and Copy Behavior for Arrays

The assignment and copy behavior for Swift’s Array type is more complex than for its Dictionary type.
Array provides C-like performance when you work with an array’s contents and copies an array’s contents
only when copying is necessary.

If you assign an Array instance to a constant or variable, or pass an Array instance as an argument to a

(c) ketabton.com: The Digital Library

function or method call, the contents of the array are not copied at the point that the assignment or call takes
place. Instead, both arrays share the same sequence of element values. When you modify an element value
through one array, the result is observable through the other.

For arrays, copying only takes place when you perform an action that has the potential to modify the length of
the array. This includes appending, inserting, or removing items, or using a ranged subscript to replace a range
of items in the array. If and when array copying does take place, the copy behavior for an array’s contents is the
same as for a dictionary’s keys and values, as described in Assignment and Copy Behavior for Dictionaries.

The example below assigns a new array of Int values to a variable called a. This array is also assigned to
two further variables called b and c:

1 var	a	=	[1,	2,	3]
2 var	b	=	a
3 var	c	=	a

You can retrieve the first value in the array with subscript syntax on either a, b, or c:

1 println(a[0])
2 //	1
3 println(b[0])
4 //	1
5 println(c[0])
6 //	1

If you set an item in the array to a new value with subscript syntax, all three of a, b, and c will return the new
value. Note that the array is not copied when you set a new value with subscript syntax, because setting a single
value with subscript syntax does not have the potential to change the array’s length:

1 a[0]	=	42
2 println(a[0])
3 //	42
4 println(b[0])
5 //	42
6 println(c[0])

(c) ketabton.com: The Digital Library

7 //	42

However, if you append a new item to a, you do modify the array’s length. This prompts Swift to create a new
copy of the array at the point that you append the new value. Henceforth, a is a separate, independent copy of the
array.

If you change a value in a after the copy is made, a will return a different value from b and c, which both still
reference the original array contents from before the copy took place:

1 a.append(4)
2 a[0]	=	777
3 println(a[0])
4 //	777
5 println(b[0])
6 //	42
7 println(c[0])
8 //	42

Ensuring That an Array Is Unique

It can be useful to ensure that you have a unique copy of an array before performing an action on that array’s
contents, or before passing that array to a function or method. You ensure the uniqueness of an array reference
by calling the unshare method on a variable of array type. (The unshare method cannot be called on a
constant array.)

If multiple variables currently refer to the same array, and you call the unshare method on one of those
variables, the array is copied, so that the variable has its own independent copy of the array. However, no
copying takes place if the variable is already the only reference to the array.

At the end of the previous example, b and c both reference the same array. Call the unshare method on b to
make it become a unique copy:

1 b.unshare()

(c) ketabton.com: The Digital Library

If you change the first value in b after calling the unshare method, all three arrays will now report a different
value:

1 b[0]	=	-105
2 println(a[0])
3 //	777
4 println(b[0])
5 //	-105
6 println(c[0])
7 //	42

Checking Whether Two Arrays Share the Same Elements

Check whether two arrays or subarrays share the same storage and elements by comparing them with the
identity operators (=== and !==).

The example below uses the “identical to” operator (===) to check whether b and c still share the same array
elements:

1 if	b	===	c	{
2 				println("b	and	c	still	share	the	same	array	elements.")
3 }	else	{
4 				println("b	and	c	now	refer	to	two	independent	sets	of	array	

elements.")
5 }
6 //	prints	"b	and	c	now	refer	to	two	independent	sets	of	array	

elements."

Alternatively, use the identity operators to check whether two subarrays share the same elements. The
example below compares two identical subarrays from b and confirms that they refer to the same elements:

1 if	b[0...1]	===	b[0...1]	{
2 				println("These	two	subarrays	share	the	same	elements.")

(c) ketabton.com: The Digital Library

3 }	else	{
4 				println("These	two	subarrays	do	not	share	the	same	elements.")
5 }
6 //	prints	"These	two	subarrays	share	the	same	elements."

Forcing a Copy of an Array

Force an explicit copy of an array by calling the array’s copy method. This method performs a shallow copy of
the array and returns a new array containing the copied items.

The example below defines an array called names, which stores the names of seven people. A new variable
called copiedNames is set to the result of calling the copy method on the names array:

1 var	names	=	["Mohsen",	"Hilary",	"Justyn",	"Amy",	"Rich",	"Graham",	
"Vic"]

2 var	copiedNames	=	names.copy()

You can prove that the names array has been copied by changing an item in one of the arrays and checking the
corresponding item in the other. If you set the first item in the copiedNames array to "Mo" rather than
"Mohsen", the names array still returns the old value of "Mohsen" from before the copy took place:

1 copiedNames[0]	=	"Mo"
2 println(names[0])
3 //	prints	"Mohsen"

N O T E

If you simply need to be sure that your reference to an array’s contents is the only reference in
existence, call the unshare method, not the copy method. The unshare method does not make
a copy of the array unless it is necessary to do so. The copy method always copies the array, even
if it is already unshared.

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Properties

Properties associate values with a particular class, structure, or enumeration. Stored properties store constant
and variable values as part of an instance, whereas computed properties calculate (rather than store) a value.
Computed properties are provided by classes, structures, and enumerations. Stored properties are provided
only by classes and structures.

Stored and computed properties are usually associated with instances of a particular type. However, properties
can also be associated with the type itself. Such properties are known as type properties.

In addition, you can define property observers to monitor changes in a property’s value, which you can respond
to with custom actions. Property observers can be added to stored properties you define yourself, and also to
properties that a subclass inherits from its superclass.

Stored Properties

In its simplest form, a stored property is a constant or variable that is stored as part of an instance of a
particular class or structure. Stored properties can be either variable stored properties (introduced by the var
keyword) or constant stored properties (introduced by the let keyword).

You can provide a default value for a stored property as part of its definition, as described in Default Property
Values. You can also set and modify the initial value for a stored property during initialization. This is true even
for constant stored properties, as described in Modifying Constant Properties During Initialization.

The example below defines a structure called FixedLengthRange, which describes a range of integers
whose range length cannot be changed once it is created:

1 struct	FixedLengthRange	{
2 				var	firstValue:	Int
3 				let	length:	Int
4 }
5 var	rangeOfThreeItems	=	FixedLengthRange(firstValue:	0,	length:	3)

(c) ketabton.com: The Digital Library

6 //	the	range	represents	integer	values	0,	1,	and	2
7 rangeOfThreeItems.firstValue	=	6
8 //	the	range	now	represents	integer	values	6,	7,	and	8

Instances of FixedLengthRange have a variable stored property called firstValue and a constant
stored property called length. In the example above, length is initialized when the new range is created
and cannot be changed thereafter, because it is a constant property.

Stored Properties of Constant Structure Instances

If you create an instance of a structure and assign that instance to a constant, you cannot modify the instance’s
properties, even if they were declared as variable properties:

1 let	rangeOfFourItems	=	FixedLengthRange(firstValue:	0,	length:	4)
2 //	this	range	represents	integer	values	0,	1,	2,	and	3
3 rangeOfFourItems.firstValue	=	6
4 //	this	will	report	an	error,	even	thought	firstValue	is	a	variable	

property

Because rangeOfFourItems is declared as a constant (with the let keyword), it is not possible to change
its firstValue property, even though firstValue is a variable property.

This behavior is due to structures being value types. When an instance of a value type is marked as a constant,
so are all of its properties.

The same is not true for classes, which are reference types. If you assign an instance of a reference type to a
constant, you can still change that instance’s variable properties.

Lazy Stored Properties

A lazy stored property is a property whose initial value is not calculated until the first time it is used. You
indicate a lazy stored property by writing the @lazy attribute before its declaration.

(c) ketabton.com: The Digital Library

N O T E

You must always declare a lazy property as a variable (with the var keyword), because its initial
value may not be retrieved until after instance initialization completes. Constant properties must
always have a value before initialization completes, and therefore cannot be declared as lazy.

Lazy properties are useful when the initial value for a property is dependent on outside factors whose values are
not known until after an instance’s initialization is complete. Lazy properties are also useful when the initial
value for a property requires complex or computationally expensive setup that should not be performed unless
or until it is needed.

The example below uses a lazy stored property to avoid unnecessary initialization of a complex class. This
example defines two classes called DataImporter and DataManager, neither of which is shown in full:

1 class	DataImporter	{
2 				/*
3 				DataImporter	is	a	class	to	import	data	from	an	external	file.
4 				The	class	is	assumed	to	take	a	non-trivial	amount	of	time	to	

initialize.
5 				*/
6 				var	fileName	=	"data.txt"
7 				//	the	DataImporter	class	would	provide	data	importing	

functionality	here
8 }
9 	

10 class	DataManager	{
11 				@lazy	var	importer	=	DataImporter()
12 				var	data	=	String[]()
13 				//	the	DataManager	class	would	provide	data	management	

functionality	here
14 }
15 	
16 let	manager	=	DataManager()
17 manager.data	+=	"Some	data"

(c) ketabton.com: The Digital Library

18 manager.data	+=	"Some	more	data"
19 //	the	DataImporter	instance	for	the	importer	property	has	not	

yet	been	created

The DataManager class has a stored property called data, which is initialized with a new, empty array of
String values. Although the rest of its functionality is not shown, the purpose of this DataManager class is
to manage and provide access to this array of String data.

Part of the functionality of the DataManager class is the ability to import data from a file. This functionality is
provided by the DataImporter class, which is assumed to take a non-trivial amount of time to initialize. This
might be because a DataImporter instance needs to open a file and read its contents into memory when the
DataImporter instance is initialized.

It is possible for a DataManager instance to manage its data without ever importing data from a file, so there
is no need to create a new DataImporter instance when the DataManager itself is created. Instead, it
makes more sense to create the DataImporter instance if and when it is first used.

Because it is marked with the @lazy attribute, the DataImporter instance for the importer property is
only created when the importer property is first accessed, such as when its fileName property is queried:

1 println(manager.importer.fileName)
2 //	the	DataImporter	instance	for	the	importer	property	has	now	been	

created
3 //	prints	"data.txt"

Stored Properties and Instance Variables

If you have experience with Objective-C, you may know that it provides two ways to store values and
references as part of a class instance. In addition to properties, you can use instance variables as a backing
store for the values stored in a property.

Swift unifies these concepts into a single property declaration. A Swift property does not have a corresponding
instance variable, and the backing store for a property is not accessed directly. This approach avoids confusion

(c) ketabton.com: The Digital Library

about how the value is accessed in different contexts and simplifies the property’s declaration into a single,
definitive statement. All information about the property—including its name, type, and memory management
characteristics—is defined in a single location as part of the type’s definition.

Computed Properties

In addition to stored properties, classes, structures, and enumerations can define computed properties, which
do not actually store a value. Instead, they provide a getter and an optional setter to retrieve and set other
properties and values indirectly.

1 struct	Point	{
2 				var	x	=	0.0,	y	=	0.0
3 }
4 struct	Size	{
5 				var	width	=	0.0,	height	=	0.0
6 }
7 struct	Rect	{
8 				var	origin	=	Point()
9 				var	size	=	Size()

10 				var	center:	Point	{
11 				get	{
12 								let	centerX	=	origin.x	+	(size.width	/	2)
13 								let	centerY	=	origin.y	+	(size.height	/	2)
14 								return	Point(x:	centerX,	y:	centerY)
15 				}
16 				set(newCenter)	{
17 								origin.x	=	newCenter.x	-	(size.width	/	2)
18 								origin.y	=	newCenter.y	-	(size.height	/	2)
19 				}
20 				}
21 }
22 var	square	=	Rect(origin:	Point(x:	0.0,	y:	0.0),
23 				size:	Size(width:	10.0,	height:	10.0))
24 let	initialSquareCenter	=	square.center
25 square.center	=	Point(x:	15.0,	y:	15.0)

(c) ketabton.com: The Digital Library

26 println("square.origin	is	now	at	(\(square.origin.x),	\
(square.origin.y))")

27 //	prints	"square.origin	is	now	at	(10.0,	10.0)"

This example defines three structures for working with geometric shapes:

The Rect structure also provides a computed property called center. The current center position of a Rect
can always be determined from its origin and size, and so you don’t need to store the center point as an
explicit Point value. Instead, Rect defines a custom getter and setter for a computed variable called
center, to enable you to work with the rectangle’s center as if it were a real stored property.

The preceding example creates a new Rect variable called square. The square variable is initialized with
an origin point of (0,	0), and a width and height of 10. This square is represented by the blue square in the
diagram below.

The square variable’s center property is then accessed through dot syntax (square.center), which
causes the getter for center to be called, to retrieve the current property value. Rather than returning an
existing value, the getter actually calculates and returns a new Point to represent the center of the square. As
can be seen above, the getter correctly returns a center point of (5,	5).

The center property is then set to a new value of (15,	15), which moves the square up and to the right, to
the new position shown by the orange square in the diagram below. Setting the center property calls the
setter for center, which modifies the x and y values of the stored origin property, and moves the square to
its new position.

Point encapsulates an (x,	y) coordinate.

Size encapsulates a width and a height.

Rect defines a rectangle by an origin point and a size.

(c) ketabton.com: The Digital Library

Shorthand Setter Declaration

If a computed property’s setter does not define a name for the new value to be set, a default name of newValue
is used. Here’s an alternative version of the Rect structure, which takes advantage of this shorthand notation:

(c) ketabton.com: The Digital Library

1 struct	AlternativeRect	{
2 				var	origin	=	Point()
3 				var	size	=	Size()
4 				var	center:	Point	{
5 				get	{
6 								let	centerX	=	origin.x	+	(size.width	/	2)
7 								let	centerY	=	origin.y	+	(size.height	/	2)
8 								return	Point(x:	centerX,	y:	centerY)
9 				}

10 				set	{
11 								origin.x	=	newValue.x	-	(size.width	/	2)
12 								origin.y	=	newValue.y	-	(size.height	/	2)
13 				}
14 				}
15 }

Read-Only Computed Properties

A computed property with a getter but no setter is known as a read-only computed property. A read-only
computed property always returns a value, and can be accessed through dot syntax, but cannot be set to a
different value.

N O T E

You must declare computed properties—including read-only computed properties—as variable
properties with the var keyword, because their value is not fixed. The let keyword is only used for
constant properties, to indicate that their values cannot be changed once they are set as part of
instance initialization.

You can simplify the declaration of a read-only computed property by removing the get keyword and its
braces:

(c) ketabton.com: The Digital Library

1 struct	Cuboid	{
2 				var	width	=	0.0,	height	=	0.0,	depth	=	0.0
3 				var	volume:	Double	{
4 				return	width	*	height	*	depth
5 				}
6 }
7 let	fourByFiveByTwo	=	Cuboid(width:	4.0,	height:	5.0,	depth:	2.0)
8 println("the	volume	of	fourByFiveByTwo	is	\(fourByFiveByTwo.volume)")
9 //	prints	"the	volume	of	fourByFiveByTwo	is	40.0"

This example defines a new structure called Cuboid, which represents a 3D rectangular box with width,
height, and depth properties. This structure also has a read-only computed property called volume, which
calculates and returns the current volume of the cuboid. It doesn’t make sense for volume to be settable,
because it would be ambiguous as to which values of width, height, and depth should be used for a
particular volume value. Nonetheless, it is useful for a Cuboid to provide a read-only computed property to
enable external users to discover its current calculated volume.

Property Observers

Property observers observe and respond to changes in a property’s value. Property observers are called every
time a property’s value is set, even if the new value is the same as the property’s current value.

You can add property observers to any stored properties you define, apart from lazy stored properties. You can
also add property observers to any inherited property (whether stored or computed) by overriding the property
within a subclass. Property overriding is described in Overriding.

N O T E

You don’t need to define property observers for non-overridden computed properties, because you
can observe and respond to changes to their value from directly within the computed property’s
setter.

(c) ketabton.com: The Digital Library

You have the option to define either or both of these observers on a property:

If you implement a willSet observer, it is passed the new property value as a constant parameter. You can
specify a name for this parameter as part of your willSet implementation. If you choose not to write the
parameter name and parentheses within your implementation, the parameter will still be made available with a
default parameter name of newValue.

Similarly, if you implement a didSet observer, it will be passed a constant parameter containing the old
property value. You can name the parameter if you wish, or use the default parameter name of oldValue.

N O T E

willSet and didSet observers are not called when a property is first initialized. They are only
called when the property’s value is set outside of an initialization context.

Here’s an example of willSet and didSet in action. The example below defines a new class called
StepCounter, which tracks the total number of steps that a person takes while walking. This class might be
used with input data from a pedometer or other step counter to keep track of a person’s exercise during their
daily routine.

1 class	StepCounter	{
2 				var	totalSteps:	Int	=	0	{
3 				willSet(newTotalSteps)	{
4 								println("About	to	set	totalSteps	to	\(newTotalSteps)")
5 				}
6 				didSet	{
7 								if	totalSteps	>	oldValue		{
8 												println("Added	\(totalSteps	-	oldValue)	steps")

willSet is called just before the value is stored.

didSet is called immediately after the new value is stored.

(c) ketabton.com: The Digital Library

9 								}
10 				}
11 				}
12 }
13 let	stepCounter	=	StepCounter()
14 stepCounter.totalSteps	=	200
15 //	About	to	set	totalSteps	to	200
16 //	Added	200	steps
17 stepCounter.totalSteps	=	360
18 //	About	to	set	totalSteps	to	360
19 //	Added	160	steps
20 stepCounter.totalSteps	=	896
21 //	About	to	set	totalSteps	to	896
22 //	Added	536	steps

The StepCounter class declares a totalSteps property of type Int. This is a stored property with
willSet and didSet observers.

The willSet and didSet observers for totalSteps are called whenever the property is assigned a new
value. This is true even if the new value is the same as the current value.

This example’s willSet observer uses a custom parameter name of newTotalSteps for the upcoming
new value. In this example, it simply prints out the value that is about to be set.

The didSet observer is called after the value of totalSteps is updated. It compares the new value of
totalSteps against the old value. If the total number of steps has increased, a message is printed to indicate
how many new steps have been taken. The didSet observer does not provide a custom parameter name for
the old value, and the default name of oldValue is used instead.

N O T E

If you assign a value to a property within its own didSet observer, the new value that you assign
will replace the one that was just set.

(c) ketabton.com: The Digital Library

Global and Local Variables

The capabilities described above for computing and observing properties are also available to global variables
and local variables. Global variables are variables that are defined outside of any function, method, closure, or
type context. Local variables are variables that are defined within a function, method, or closure context.

The global and local variables you have encountered in previous chapters have all been stored variables. Stored
variables, like stored properties, provide storage for a value of a certain type and allow that value to be set and
retrieved.

However, you can also define computed variables and define observers for stored variables, in either a global
or local scope. Computed variables calculate rather than store a value, and are written in the same way as
computed properties.

N O T E

Global constants and variables are always computed lazily, in a similar manner to Lazy Stored
Properties. Unlike lazy stored properties, global constants and variables do not need to be marked
with the @lazy attribute.

Local constants and variables are never computed lazily.

Type Properties

Instance properties are properties that belong to an instance of a particular type. Every time you create a new
instance of that type, it has its own set of property values, separate from any other instance.

You can also define properties that belong to the type itself, not to any one instance of that type. There will only
ever be one copy of these properties, no matter how many instances of that type you create. These kinds of
properties are called type properties.

(c) ketabton.com: The Digital Library

Type properties are useful for defining values that are universal to all instances of a particular type, such as a
constant property that all instances can use (like a static constant in C), or a variable property that stores a
value that is global to all instances of that type (like a static variable in C).

For value types (that is, structures and enumerations), you can define stored and computed type properties. For
classes, you can define computed type properties only.

Stored type properties for value types can be variables or constants. Computed type properties are always
declared as variable properties, in the same way as computed instance properties.

N O T E

Unlike stored instance properties, you must always give stored type properties a default value. This
is because the type itself does not have an initializer that can assign a value to a stored type property
at initialization time.

Type Property Syntax

In C and Objective-C, you define static constants and variables associated with a type as global static variables.
In Swift, however, type properties are written as part of the type’s definition, within the type’s outer curly braces,
and each type property is explicitly scoped to the type it supports.

You define type properties for value types with the static keyword, and type properties for class types with
the class keyword. The example below shows the syntax for stored and computed type properties:

1 struct	SomeStructure	{
2 				static	var	storedTypeProperty	=	"Some	value."
3 				static	var	computedTypeProperty:	Int	{
4 				//	return	an	Int	value	here
5 				}
6 }

(c) ketabton.com: The Digital Library

7 enum	SomeEnumeration	{
8 				static	var	storedTypeProperty	=	"Some	value."
9 				static	var	computedTypeProperty:	Int	{

10 				//	return	an	Int	value	here
11 				}
12 }
13 class	SomeClass	{
14 				class	var	computedTypeProperty:	Int	{
15 				//	return	an	Int	value	here
16 				}
17 }

N O T E

The computed type property examples above are for read-only computed type properties, but you
can also define read-write computed type properties with the same syntax as for computed instance
properties.

Querying and Setting Type Properties

Type properties are queried and set with dot syntax, just like instance properties. However, type properties are
queried and set on the type, not on an instance of that type. For example:

1 println(SomeClass.computedTypeProperty)
2 //	prints	"42"
3 	
4 println(SomeStructure.storedTypeProperty)
5 //	prints	"Some	value."
6 SomeStructure.storedTypeProperty	=	"Another	value."
7 println(SomeStructure.storedTypeProperty)
8 //	prints	"Another	value."

(c) ketabton.com: The Digital Library

The examples that follow use two stored type properties as part of a structure that models an audio level meter
for a number of audio channels. Each channel has an integer audio level between 0 and 10 inclusive.

The figure below illustrates how two of these audio channels can be combined to model a stereo audio level
meter. When a channel’s audio level is 0, none of the lights for that channel are lit. When the audio level is 10,
all of the lights for that channel are lit. In this figure, the left channel has a current level of 9, and the right channel
has a current level of 7:

(c) ketabton.com: The Digital Library

The audio channels described above are represented by instances of the AudioChannel structure:

1 struct	AudioChannel	{
2 				static	let	thresholdLevel	=	10
3 				static	var	maxInputLevelForAllChannels	=	0
4 				var	currentLevel:	Int	=	0	{
5 				didSet	{
6 								if	currentLevel	>	AudioChannel.thresholdLevel	{
7 												//	cap	the	new	audio	level	to	the	threshold	level
8 												currentLevel	=	AudioChannel.thresholdLevel
9 								}

10 								if	currentLevel	>	
AudioChannel.maxInputLevelForAllChannels	{

11 												//	store	this	as	the	new	overall	maximum	input	
level

12 												AudioChannel.maxInputLevelForAllChannels	=	
currentLevel

13 								}
14 				}
15 				}
16 }

The AudioChannel structure defines two stored type properties to support its functionality. The first,
thresholdLevel, defines the maximum threshold value an audio level can take. This is a constant value of
10 for all AudioChannel instances. If an audio signal comes in with a higher value than 10, it will be capped
to this threshold value (as described below).

The second type property is a variable stored property called maxInputLevelForAllChannels. This
keeps track of the maximum input value that has been received by any AudioChannel instance. It starts with
an initial value of 0.

The AudioChannel structure also defines a stored instance property called currentLevel, which
represents the channel’s current audio level on a scale of 0 to 10.

The currentLevel property has a didSet property observer to check the value of currentLevel

(c) ketabton.com: The Digital Library

whenever it is set. This observer performs two checks:

N O T E

In the first of these two checks, the didSet observer sets currentLevel to a different value.
This does not, however, cause the observer to be called again.

You can use the AudioChannel structure to create two new audio channels called leftChannel and
rightChannel, to represent the audio levels of a stereo sound system:

1 var	leftChannel	=	AudioChannel()
2 var	rightChannel	=	AudioChannel()

If you set the currentLevel of the left channel to 7, you can see that the
maxInputLevelForAllChannels type property is updated to equal 7:

1 leftChannel.currentLevel	=	7
2 println(leftChannel.currentLevel)
3 //	prints	"7"
4 println(AudioChannel.maxInputLevelForAllChannels)
5 //	prints	"7"

If you try to set the currentLevel of the right channel to 11, you can see that the right channel’s
currentLevel property is capped to the maximum value of 10, and the

If the new value of currentLevel is greater than the allowed thresholdLevel, the
property observer caps currentLevel to thresholdLevel.

If the new value of currentLevel (after any capping) is higher than any value previously
received by any AudioChannel instance, the property observer stores the new
currentLevel value in the maxInputLevelForAllChannels static property.

(c) ketabton.com: The Digital Library

maxInputLevelForAllChannels type property is updated to equal 10:

1 rightChannel.currentLevel	=	11
2 println(rightChannel.currentLevel)
3 //	prints	"10"
4 println(AudioChannel.maxInputLevelForAllChannels)
5 //	prints	"10"

(c) ketabton.com: The Digital Library

Methods

Methods are functions that are associated with a particular type. Classes, structures, and enumerations can all
define instance methods, which encapsulate specific tasks and functionality for working with an instance of a
given type. Classes, structures, and enumerations can also define type methods, which are associated with the
type itself. Type methods are similar to class methods in Objective-C.

The fact that structures and enumerations can define methods in Swift is a major difference from C and
Objective-C. In Objective-C, classes are the only types that can define methods. In Swift, you can choose
whether to define a class, structure, or enumeration, and still have the flexibility to define methods on the type
you create.

Instance Methods

Instance methods are functions that belong to instances of a particular class, structure, or enumeration. They
support the functionality of those instances, either by providing ways to access and modify instance properties,
or by providing functionality related to the instance’s purpose. Instance methods have exactly the same syntax
as functions, as described in Functions.

You write an instance method within the opening and closing braces of the type it belongs to. An instance
method has implicit access to all other instance methods and properties of that type. An instance method can be
called only on a specific instance of the type it belongs to. It cannot be called in isolation without an existing
instance.

Here’s an example that defines a simple Counter class, which can be used to count the number of times an
action occurs:

1 class	Counter	{
2 				var	count	=	0
3 				func	increment()	{
4 								count++
5 				}
6 				func	incrementBy(amount:	Int)	{

(c) ketabton.com: The Digital Library

7 								count	+=	amount
8 				}
9 				func	reset()	{

10 								count	=	0
11 				}
12 }

The Counter class defines three instance methods:

The Counter class also declares a variable property, count, to keep track of the current counter value.

You call instance methods with the same dot syntax as properties:

1 let	counter	=	Counter()
2 //	the	initial	counter	value	is	0
3 counter.increment()
4 //	the	counter's	value	is	now	1
5 counter.incrementBy(5)
6 //	the	counter's	value	is	now	6
7 counter.reset()
8 //	the	counter's	value	is	now	0

Local and External Parameter Names for Methods

Function parameters can have both a local name (for use within the function’s body) and an external name (for
use when calling the function), as described in External Parameter Names. The same is true for method
parameters, because methods are just functions that are associated with a type. However, the default behavior
of local names and external names is different for functions and methods.

increment increments the counter by 1.

incrementBy(amount:	Int) increments the counter by an specified integer amount.

reset resets the counter to zero.

(c) ketabton.com: The Digital Library

Methods in Swift are very similar to their counterparts in Objective-C. As in Objective-C, the name of a method
in Swift typically refers to the method’s first parameter using a preposition such as with, for, or by, as seen
in the incrementBy method from the preceding Counter class example. The use of a preposition enables
the method to be read as a sentence when it is called. Swift makes this established method naming convention
easy to write by using a different default approach for method parameters than it uses for function parameters.

Specifically, Swift gives the first parameter name in a method a local parameter name by default, and gives the
second and subsequent parameter names both local and external parameter names by default. This convention
matches the typical naming and calling convention you will be familiar with from writing Objective-C methods,
and makes for expressive method calls without the need to qualify your parameter names.

Consider this alternative version of the Counter class, which defines a more complex form of the
incrementBy method:

1 class	Counter	{
2 				var	count:	Int	=	0
3 				func	incrementBy(amount:	Int,	numberOfTimes:	Int)	{
4 								count	+=	amount	*	numberOfTimes
5 				}
6 }

This incrementBy method has two parameters—amount and numberOfTimes. By default, Swift treats
amount as a local name only, but treats numberOfTimes as both a local and an external name. You call the
method as follows:

1 let	counter	=	Counter()
2 counter.incrementBy(5,	numberOfTimes:	3)
3 //	counter	value	is	now	15

You don’t need to define an external parameter name for the first argument value, because its purpose is clear
from the function name incrementBy. The second argument, however, is qualified by an external parameter
name to make its purpose clear when the method is called.

This default behavior effectively treats the method as if you had written a hash symbol (#) before the
numberOfTimes parameter:

(c) ketabton.com: The Digital Library

1 func	incrementBy(amount:	Int,	#numberOfTimes:	Int)	{
2 				count	+=	amount	*	numberOfTimes
3 }

The default behavior described above mean that method definitions in Swift are written with the same
grammatical style as Objective-C, and are called in a natural, expressive way.

Modifying External Parameter Name Behavior for Methods

Sometimes it’s useful to provide an external parameter name for a method’s first parameter, even though this is
not the default behavior. You can either add an explicit external name yourself, or you can prefix the first
parameter’s name with a hash symbol to use the local name as an external name too.

Conversely, if you do not want to provide an external name for the second or subsequent parameter of a
method, override the default behavior by using an underscore character (_) as an explicit external parameter
name for that parameter.

The self Property

Every instance of a type has an implicit property called self, which is exactly equivalent to the instance itself.
You use this implicit self property to refer to the current instance within its own instance methods.

The increment method in the example above could have been written like this:

1 func	increment()	{
2 				self.count++
3 }

In practice, you don’t need to write self in your code very often. If you don’t explicitly write self, Swift
assumes that you are referring to a property or method of the current instance whenever you use a known
property or method name within a method. This assumption is demonstrated by the use of count (rather than
self.count) inside the three instance methods for Counter.

(c) ketabton.com: The Digital Library

The main exception to this rule occurs when a parameter name for an instance method has the same name as
a property of that instance. In this situation, the parameter name takes precedence, and it becomes necessary to
refer to the property in a more qualified way. You use the implicit self property to distinguish between the
parameter name and the property name.

Here, self disambiguates between a method parameter called x and an instance property that is also called
x:

1 struct	Point	{
2 				var	x	=	0.0,	y	=	0.0
3 				func	isToTheRightOfX(x:	Double)	->	Bool	{
4 								return	self.x	>	x
5 				}
6 }
7 let	somePoint	=	Point(x:	4.0,	y:	5.0)
8 if	somePoint.isToTheRightOfX(1.0)	{
9 				println("This	point	is	to	the	right	of	the	line	where	x	==	1.0")

10 }
11 //	prints	"This	point	is	to	the	right	of	the	line	where	x	==	

1.0"

Without the self prefix, Swift would assume that both uses of x referred to the method parameter called x.

Modifying Value Types from Within Instance Methods

Structures and enumerations are value types. By default, the properties of a value type cannot be modified from
within its instance methods.

However, if you need to modify the properties of your structure or enumeration within a particular method, you
can opt in to mutating behavior for that method. The method can then mutate (that is, change) its properties from
within the method, and any changes that it makes are written back to the original structure when the method
ends. The method can also assign a completely new instance to its implicit self property, and this new
instance will replace the existing one when the method ends.

(c) ketabton.com: The Digital Library

You can opt in to this behavior by placing the mutating keyword before the func keyword for that method:

1 struct	Point	{
2 				var	x	=	0.0,	y	=	0.0
3 				mutating	func	moveByX(deltaX:	Double,	y	deltaY:	Double)	{
4 								x	+=	deltaX
5 								y	+=	deltaY
6 				}
7 }
8 var	somePoint	=	Point(x:	1.0,	y:	1.0)
9 somePoint.moveByX(2.0,	y:	3.0)

10 println("The	point	is	now	at	(\(somePoint.x),	\(somePoint.y))")
11 //	prints	"The	point	is	now	at	(3.0,	4.0)"

The Point structure above defines a mutating moveByX method, which moves a Point instance by a
certain amount. Instead of returning a new point, this method actually modifies the point on which it is called.
The mutating keyword is added to its definition to enable it to modify its properties.

Note that you cannot call a mutating method on a constant of structure type, because its properties cannot be
changed, even if they are variable properties, as described in Stored Properties of Constant Structure Instances:

1 let	fixedPoint	=	Point(x:	3.0,	y:	3.0)
2 fixedPoint.moveByX(2.0,	y:	3.0)
3 //	this	will	report	an	error

Assigning to self Within a Mutating Method

Mutating methods can assign an entirely new instance to the implicit self property. The Point example
shown above could have been written in the following way instead:

1 struct	Point	{
2 				var	x	=	0.0,	y	=	0.0
3 				mutating	func	moveByX(deltaX:	Double,	y	deltaY:	Double)	{

(c) ketabton.com: The Digital Library

4 								self	=	Point(x:	x	+	deltaX,	y:	y	+	deltaY)
5 				}
6 }

This version of the mutating moveByX method creates a brand new structure whose x and y values are set to
the target location. The end result of calling this alternative version of the method will be exactly the same as for
calling the earlier version.

Mutating methods for enumerations can set the implicit self parameter to be a different member from the
same enumeration:

1 enum	TriStateSwitch	{
2 				case	Off,	Low,	High
3 				mutating	func	next()	{
4 								switch	self	{
5 								case	Off:
6 												self	=	Low
7 								case	Low:
8 												self	=	High
9 								case	High:

10 												self	=	Off
11 								}
12 				}
13 }
14 var	ovenLight	=	TriStateSwitch.Low
15 ovenLight.next()
16 //	ovenLight	is	now	equal	to	.High
17 ovenLight.next()
18 //	ovenLight	is	now	equal	to	.Off

This example defines an enumeration for a three-state switch. The switch cycles between three different power
states (Off, Low and High) every time its next method is called.

(c) ketabton.com: The Digital Library

Type Methods

Instance methods, as described above, are methods that are called on an instance of a particular type. You can
also define methods that are called on the type itself. These kinds of methods are called type methods. You
indicate type methods for classes by writing the keyword class before the method’s func keyword, and type
methods for structures and enumerations by writing the keyword static before the method’s func keyword.

N O T E

In Objective-C, you can define type-level methods only for Objective-C classes. In Swift, you can
define type-level methods for all classes, structures, and enumerations. Each type method is
explicitly scoped to the type it supports.

Type methods are called with dot syntax, like instance methods. However, you call type methods on the type,
not on an instance of that type. Here’s how you call a type method on a class called SomeClass:

1 class	SomeClass	{
2 				class	func	someTypeMethod()	{
3 								//	type	method	implementation	goes	here
4 				}
5 }
6 SomeClass.someTypeMethod()

Within the body of a type method, the implicit self property refers to the type itself, rather than an instance of
that type. For structures and enumerations, this means that you can use self to disambiguate between static
properties and static method parameters, just as you do for instance properties and instance method
parameters.

More generally, any unqualified method and property names that you use within the body of a type method will
refer to other type-level methods and properties. A type method can call another type method with the other
method’s name, without needing to prefix it with the type name. Similarly, type methods on structures and
enumerations can access static properties by using the static property’s name without a type name prefix.

(c) ketabton.com: The Digital Library

The example below defines a structure called LevelTracker, which tracks a player’s progress through the
different levels or stages of a game. It is a single-player game, but can store information for multiple players on
a single device.

All of the game’s levels (apart from level one) are locked when the game is first played. Every time a player
finishes a level, that level is unlocked for all players on the device. The LevelTracker structure uses static
properties and methods to keep track of which levels of the game have been unlocked. It also tracks the current
level for an individual player.

1 struct	LevelTracker	{
2 				static	var	highestUnlockedLevel	=	1
3 				static	func	unlockLevel(level:	Int)	{
4 								if	level	>	highestUnlockedLevel	{	highestUnlockedLevel	=	level

}
5 				}
6 				static	func	levelIsUnlocked(level:	Int)	->	Bool	{
7 								return	level	<=	highestUnlockedLevel
8 				}
9 				var	currentLevel	=	1

10 				mutating	func	advanceToLevel(level:	Int)	->	Bool	{
11 								if	LevelTracker.levelIsUnlocked(level)	{
12 												currentLevel	=	level
13 												return	true
14 								}	else	{
15 												return	false
16 								}
17 				}
18 }

The LevelTracker structure keeps track of the highest level that any player has unlocked. This value is
stored in a static property called highestUnlockedLevel.

LevelTracker also defines two type functions to work with the highestUnlockedLevel property. The
first is a type function called unlockLevel, which updates the value of highestUnlockedLevel
whenever a new level is unlocked. The second is a convenience type function called levelIsUnlocked,
which returns true if a particular level number is already unlocked. (Note that these type methods can access

(c) ketabton.com: The Digital Library

the highestUnlockedLevel static property without your needing to write it as
LevelTracker.highestUnlockedLevel.)

In addition to its static property and type methods, LevelTracker tracks an individual player’s progress
through the game. It uses an instance property called currentLevel to track the level that a player is
currently playing.

To help manage the currentLevel property, LevelTracker defines an instance method called
advanceToLevel. Before updating currentLevel, this method checks whether the requested new level
is already unlocked. The advanceToLevel method returns a Boolean value to indicate whether or not it was
actually able to set currentLevel.

The LevelTracker structure is used with the Player class, shown below, to track and update the progress
of an individual player:

1 class	Player	{
2 				var	tracker	=	LevelTracker()
3 				let	playerName:	String
4 				func	completedLevel(level:	Int)	{
5 								LevelTracker.unlockLevel(level	+	1)
6 								tracker.advanceToLevel(level	+	1)
7 				}
8 				init(name:	String)	{
9 								playerName	=	name

10 				}
11 }

The Player class creates a new instance of LevelTracker to track that player’s progress. It also provides
a method called completedLevel, which is called whenever a player completes a particular level. This
method unlocks the next level for all players and updates the player’s progress to move them to the next level.
(The Boolean return value of advanceToLevel is ignored, because the level is known to have been unlocked
by the call to LevelTracker.unlockLevel on the previous line.)

You can create a instance of the Player class for a new player, and see what happens when the player
completes level one:

(c) ketabton.com: The Digital Library

1 var	player	=	Player(name:	"Argyrios")
2 player.completedLevel(1)
3 println("highest	unlocked	level	is	now	\

(LevelTracker.highestUnlockedLevel)")
4 //	prints	"highest	unlocked	level	is	now	2"

If you create a second player, whom you try to move to a level that is not yet unlocked by any player in the
game, the attempt to set the player’s current level fails:

1 player	=	Player(name:	"Beto")
2 if	player.tracker.advanceToLevel(6)	{
3 				println("player	is	now	on	level	6")
4 }	else	{
5 				println("level	6	has	not	yet	been	unlocked")
6 }
7 //	prints	"level	6	has	not	yet	been	unlocked"

(c) ketabton.com: The Digital Library

Subscripts

Classes, structures, and enumerations can define subscripts, which are shortcuts for accessing the member
elements of a collection, list, or sequence. You use subscripts to set and retrieve values by index without
needing separate methods for setting and retrieval. For example, you access elements in an Array instance
as someArray[index] and elements in a Dictionary instance as someDictionary[key].

You can define multiple subscripts for a single type, and the appropriate subscript overload to use is selected
based on the type of index value you pass to the subscript. Subscripts are not limited to a single dimension, and
you can define subscripts with multiple input parameters to suit your custom type’s needs.

Subscript Syntax

Subscripts enable you to query instances of a type by writing one or more values in square brackets after the
instance name. Their syntax is similar to both instance method syntax and computed property syntax. You write
subscript definitions with the subscript keyword, and specify one or more input parameters and a return
type, in the same way as instance methods. Unlike instance methods, subscripts can be read-write or read-
only. This behavior is communicated by a getter and setter in the same way as for computed properties:

1 subscript(index:	Int)	->	Int	{
2 				get	{
3 								//	return	an	appropriate	subscript	value	here
4 				}
5 				set(newValue)	{
6 								//	perform	a	suitable	setting	action	here
7 				}
8 }

The type of newValue is the same as the return value of the subscript. As with computed properties, you can
choose not to specify the setter’s (newValue) parameter. A default parameter called newValue is provided
to your setter if you do not provide one yourself.

(c) ketabton.com: The Digital Library

As with read-only computed properties, you can drop the get keyword for read-only subscripts:

1 subscript(index:	Int)	->	Int	{
2 				//	return	an	appropriate	subscript	value	here
3 }

Here’s an example of a read-only subscript implementation, which defines a TimesTable structure to
represent an n-times-table of integers:

1 struct	TimesTable	{
2 				let	multiplier:	Int
3 				subscript(index:	Int)	->	Int	{
4 								return	multiplier	*	index
5 				}
6 }
7 let	threeTimesTable	=	TimesTable(multiplier:	3)
8 println("six	times	three	is	\(threeTimesTable[6])")
9 //	prints	"six	times	three	is	18"

In this example, a new instance of TimesTable is created to represent the three-times-table. This is indicated
by passing a value of 3 to the structure’s initializer as the value to use for the instance’s multiplier
parameter.

You can query the threeTimesTable instance by calling its subscript, as shown in the call to
threeTimesTable[6]. This requests the sixth entry in the three-times-table, which returns a value of 18,
or 3 times 6.

N O T E

An n-times-table is based on a fixed mathematical rule. It is not appropriate to set
threeTimesTable[someIndex] to a new value, and so the subscript for TimesTable is
defined as a read-only subscript.

(c) ketabton.com: The Digital Library

Subscript Usage

The exact meaning of “subscript” depends on the context in which it is used. Subscripts are typically used as a
shortcut for accessing the member elements in a collection, list, or sequence. You are free to implement
subscripts in the most appropriate way for your particular class or structure’s functionality.

For example, Swift’s Dictionary type implements a subscript to set and retrieve the values stored in a
Dictionary instance. You can set a value in a dictionary by providing a key of the dictionary’s key type
within subscript braces, and assigning a value of the dictionary’s value type to the subscript:

1 var	numberOfLegs	=	["spider":	8,	"ant":	6,	"cat":	4]
2 numberOfLegs["bird"]	=	2

The example above defines a variable called numberOfLegs and initializes it with a dictionary literal
containing three key-value pairs. The type of the numberOfLegs dictionary is inferred to be
Dictionary<String,	Int>. After creating the dictionary, this example uses subscript assignment to add
a String key of "bird" and an Int value of 2 to the dictionary.

For more information about Dictionary subscripting, see Accessing and Modifying a Dictionary.

N O T E

Swift’s Dictionary type implements its key-value subscripting as a subscript that takes and
receives an optional type. For the numberOfLegs dictionary above, the key-value subscript takes
and returns a value of type Int?, or “optional int”. The Dictionary type uses an optional
subscript type to model the fact that not every key will have a value, and to give a way to delete a
value for a key by assigning a nil value for that key.

Subscript Options

(c) ketabton.com: The Digital Library

Subscripts can take any number of input parameters, and these input parameters can be of any type. Subscripts
can also return any type. Subscripts can use variable parameters and variadic parameters, but cannot use in-
out parameters or provide default parameter values.

A class or structure can provide as many subscript implementations as it needs, and the appropriate subscript
to be used will be inferred based on the types of the value or values that are contained within the subscript
braces at the point that the subscript is used. This definition of multiple subscripts is known as subscript
overloading.

While it is most common for a subscript to take a single parameter, you can also define a subscript with
multiple parameters if it is appropriate for your type. The following example defines a Matrix structure, which
represents a two-dimensional matrix of Double values. The Matrix structure’s subscript takes two integer
parameters:

1 struct	Matrix	{
2 				let	rows:	Int,	columns:	Int
3 				var	grid:	Double[]
4 				init(rows:	Int,	columns:	Int)	{
5 								self.rows	=	rows
6 								self.columns	=	columns
7 								grid	=	Array(count:	rows	*	columns,	repeatedValue:	0.0)
8 				}
9 				func	indexIsValidForRow(row:	Int,	column:	Int)	->	Bool	{

10 								return	row	>=	0	&&	row	<	rows	&&	column	>=	0	&&	column	
<	columns

11 				}
12 				subscript(row:	Int,	column:	Int)	->	Double	{
13 								get	{
14 												assert(indexIsValidForRow(row,	column:	column),	

"Index	out	of	range")
15 												return	grid[(row	*	columns)	+	column]
16 								}
17 								set	{
18 												assert(indexIsValidForRow(row,	column:	column),	

"Index	out	of	range")
19 												grid[(row	*	columns)	+	column]	=	newValue

(c) ketabton.com: The Digital Library

20 								}
21 				}
22 }

Matrix provides an initializer that takes two parameters called rows and columns, and creates an array
that is large enough to store rows	*	columns values of type Double. Each position in the matrix is given
an initial value of 0.0. To achieve this, the array’s size, and an initial cell value of 0.0, are passed to an array
initializer that creates and initializes a new array of the correct size. This initializer is described in more detail
in Creating and Initializing an Array.

You can construct a new Matrix instance by passing an appropriate row and column count to its initializer:

1 var	matrix	=	Matrix(rows:	2,	columns:	2)

The preceding example creates a new Matrix instance with two rows and two columns. The grid array for
this Matrix instance is effectively a flattened version of the matrix, as read from top left to bottom right:

Values in the matrix can be set by passing row and column values into the subscript, separated by a comma:

1 matrix[0,	1]	=	1.5

(c) ketabton.com: The Digital Library

2 matrix[1,	0]	=	3.2

These two statements call the subscript’s setter to set a value of 1.5 in the top right position of the matrix
(where row is 0 and column is 1), and 3.2 in the bottom left position (where row is 1 and column is 0):

The Matrix subscript’s getter and setter both contain an assertion to check that the subscript’s row and
column values are valid. To assist with these assertions, Matrix includes a convenience method called
indexIsValid, which checks whether the requested row or column is outside the bounds of the matrix:

1 func	indexIsValidForRow(row:	Int,	column:	Int)	->	Bool	{
2 				return	row	>=	0	&&	row	<	rows	&&	column	>=	0	&&	column	<	columns
3 }

An assertion is triggered if you try to access a subscript that is outside of the matrix bounds:

1 let	someValue	=	matrix[2,	2]
2 //	this	triggers	an	assert,	because	[2,	2]	is	outside	of	the	matrix	

bounds

(c) ketabton.com: The Digital Library

Inheritance

A class can inherit methods, properties, and other characteristics from another class. When one class inherits
from another, the inheriting class is known as a subclass, and the class it inherits from is known as its
superclass. Inheritance is a fundamental behavior that differentiates classes from other types in Swift.

Classes in Swift can call and access methods, properties, and subscripts belonging to their superclass and can
provide their own overriding versions of those methods, properties, and subscripts to refine or modify their
behavior. Swift helps to ensure your overrides are correct by checking that the override definition has a
matching superclass definition.

Classes can also add property observers to inherited properties in order to be notified when the value of a
property changes. Property observers can be added to any property, regardless of whether it was originally
defined as a stored or computed property.

Defining a Base Class

Any class that does not inherit from another class is known as a base class.

N O T E

Swift classes do not inherit from a universal base class. Classes you define without specifying a
superclass automatically become base classes for you to build upon.

The example below defines a base class called Vehicle. This base class declares two properties
(numberOfWheels and maxPassengers) that are universal to all vehicles. These properties are used by a
method called description, which returns a String description of the vehicle’s characteristics:

(c) ketabton.com: The Digital Library

1 class	Vehicle	{
2 				var	numberOfWheels:	Int
3 				var	maxPassengers:	Int
4 				func	description()	->	String	{
5 								return	"\(numberOfWheels)	wheels;	up	to	\(maxPassengers)	

passengers"
6 				}
7 				init()	{
8 								numberOfWheels	=	0
9 								maxPassengers	=	1

10 				}
11 }

The Vehicle class also defines an initializer to set up its properties. Initializers are described in detail in
Initialization, but a brief introduction is required here in order to illustrate how inherited properties can be
modified by subclasses.

You use initializers to create a new instance of a type. Although initializers are not methods, they are written in a
very similar syntax to instance methods. An initializer prepares a new instance for use, and ensures that all
properties of the instance have valid initial values.

In its simplest form, an initializer is like an instance method with no parameters, written using the init
keyword:

1 init()	{
2 				//	perform	some	initialization	here
3 }

To create a new instance of Vehicle, call this initializer with initializer syntax, written as TypeName
followed by empty parentheses:

1 let	someVehicle	=	Vehicle()

The initializer for Vehicle sets some initial property values (numberOfWheels	=	0 and
maxPassengers	=	1) for an arbitrary vehicle.

(c) ketabton.com: The Digital Library

The Vehicle class defines common characteristics for an arbitrary vehicle, but is not much use in itself. To
make it more useful, you need to refine it to describe more specific kinds of vehicle.

Subclassing

Subclassing is the act of basing a new class on an existing class. The subclass inherits characteristics from the
existing class, which you can refine. You can also add new characteristics to the subclass.

To indicate that a class has a superclass, write the superclass name after the original class name, separated by
a colon:

1 class	SomeClass:	SomeSuperclass	{
2 				//	class	definition	goes	here
3 }

The next example defines a second, more specific vehicle called Bicycle. This new class is based on the
existing capabilities of Vehicle. You indicate this by placing the name of the class the subclass builds upon
(Vehicle) after its own name (Bicycle), separated by a colon.

This can be read as:

“Define a new class called Bicycle, which inherits the characteristics of Vehicle”:

1 class	Bicycle:	Vehicle	{
2 				init()	{
3 								super.init()
4 								numberOfWheels	=	2
5 				}
6 }

Bicycle is a subclass of Vehicle, and Vehicle is the superclass of Bicycle. The new Bicycle class
automatically gains all characteristics of Vehicle, such as its maxPassengers and numberOfWheels

(c) ketabton.com: The Digital Library

properties. You can tailor those characteristics and add new ones to better match the requirements of the
Bicycle class.

The Bicycle class also defines an initializer to set up its tailored characteristics. The initializer for Bicycle
calls super.init(), the initializer for the Bicycle class’s superclass, Vehicle, and ensures that all of
the inherited properties are initialized by Vehicle before Bicycle tries to modify them.

N O T E

Unlike Objective-C, initializers are not inherited by default in Swift. For more information, see
Initializer Inheritance and Overriding.

The default value of maxPassengers provided by Vehicle is already correct for a bicycle, and so it is not
changed within the initializer for Bicycle. The original value of numberOfWheels is not correct, however,
and is replaced with a new value of 2.

As well as inheriting the properties of Vehicle, Bicycle also inherits its methods. If you create an instance
of Bicycle, you can call its inherited description method to see how its properties have been updated:

1 let	bicycle	=	Bicycle()
2 println("Bicycle:	\(bicycle.description())")
3 //	Bicycle:	2	wheels;	up	to	1	passengers

Subclasses can themselves be subclassed:

1 class	Tandem:	Bicycle	{
2 				init()	{
3 								super.init()
4 								maxPassengers	=	2
5 				}
6 }

(c) ketabton.com: The Digital Library

This example creates a subclass of Bicycle for a two-seater bicycle known as a “tandem”. Tandem inherits
the two properties from Bicycle, which in turn inherits these properties from Vehicle. Tandem doesn’t
change the number of wheels—it’s still a bicycle, after all—but it does update maxPassengers to have the
correct value for a tandem.

N O T E

Subclasses are only allowed to modify variable properties of superclasses during initialization. You
can’t modify inherited constant properties of subclasses.

Creating an instance of Tandem and printing its description shows how its properties have been updated:

1 let	tandem	=	Tandem()
2 println("Tandem:	\(tandem.description())")
3 //	Tandem:	2	wheels;	up	to	2	passengers

Note that the description method is also inherited by Tandem. Instance methods of a class are inherited
by any and all subclasses of that class.

Overriding

A subclass can provide its own custom implementation of an instance method, class method, instance property,
or subscript that it would otherwise inherit from a superclass. This is known as overriding.

To override a characteristic that would otherwise be inherited, you prefix your overriding definition with the
override keyword. Doing so clarifies that you intend to provide an override and have not provided a matching
definition by mistake. Overriding by accident can cause unexpected behavior, and any overrides without the
override keyword are diagnosed as an error when your code is compiled.

The override keyword also prompts the Swift compiler to check that your overriding class’s superclass (or

(c) ketabton.com: The Digital Library

one of its parents) has a declaration that matches the one you provided for the override. This check ensures that
your overriding definition is correct.

Accessing Superclass Methods, Properties, and Subscripts

When you provide a method, property, or subscript override for a subclass, it is sometimes useful to use the
existing superclass implementation as part of your override. For example, you can refine the behavior of that
existing implementation or store a modified value in an existing inherited variable.

Where this is appropriate, you access the superclass version of a method, property, or subscript by using the
super prefix:

Overriding Methods

You can override an inherited instance or class method to provide a tailored or alternative implementation of the
method within your subclass.

The following example defines a new subclass of Vehicle called Car, which overrides the description
method it inherits from Vehicle:

1 class	Car:	Vehicle	{
2 				var	speed:	Double	=	0.0
3 				init()	{
4 								super.init()

An overridden method named someMethod can call the superclass version of someMethod
by calling super.someMethod() within the overriding method implementation.

An overridden property called someProperty can access the superclass version of
someProperty as super.someProperty within the overriding getter or setter
implementation.

An overridden subscript for someIndex can access the superclass version of the same
subscript as super[someIndex] from within the overriding subscript implementation.

(c) ketabton.com: The Digital Library

5 								maxPassengers	=	5
6 								numberOfWheels	=	4
7 				}
8 				override	func	description()	->	String	{
9 								return	super.description()	+	";	"

10 												+	"traveling	at	\(speed)	mph"
11 				}
12 }

Car declares a new stored Double property called speed. This property defaults to 0.0, meaning “zero
miles per hour”. Car also has a custom initializer, which sets the maximum number of passengers to 5, and
the default number of wheels to 4.

Car overrides its inherited description method by providing a method with the same declaration as the
description method from Vehicle. The overriding method definition is prefixed with the override
keyword.

Rather than providing a completely custom implementation of description, the overriding method actually
starts by calling super.description to retrieve the description provided by Vehicle. It then appends
some additional information about the car’s current speed.

If you create a new instance of Car, and print the output of its description method, you can see that the
description has indeed changed:

1 let	car	=	Car()
2 println("Car:	\(car.description())")
3 //	Car:	4	wheels;	up	to	5	passengers;	traveling	at	0.0	mph

Overriding Properties

You can override an inherited instance or class property to provide your own custom getter and setter for that
property, or to add property observers to enable the overriding property to observe when the underlying property
value changes.

(c) ketabton.com: The Digital Library

Overriding Property Getters and Setters

You can provide a custom getter (and setter, if appropriate) to override any inherited property, regardless of
whether the inherited property is implemented as a stored or computed property at its source. The stored or
computed nature of an inherited property is not known by a subclass—it only knows that the inherited property
has a certain name and type. You must always state both the name and the type of the property you are
overriding, to enable the compiler to check that your override matches a superclass property with the same
name and type.

You can present an inherited read-only property as a read-write property by providing both a getter and a setter
in your subclass property override. You cannot, however, present an inherited read-write property as a read-
only property.

N O T E

If you provide a setter as part of a property override, you must also provide a getter for that override.
If you don’t want to modify the inherited property’s value within the overriding getter, you can simply
pass through the inherited value by returning super.someProperty from the getter, as in the
SpeedLimitedCar example below.

The following example defines a new class called SpeedLimitedCar, which is a subclass of Car. The
SpeedLimitedCar class represents a car that has been fitted with a speed-limiting device, which prevents
the car from traveling faster than 40mph. You implement this limitation by overriding the inherited speed
property:

1 class	SpeedLimitedCar:	Car	{
2 				override	var	speed:	Double		{
3 				get	{
4 								return	super.speed
5 				}
6 				set	{

(c) ketabton.com: The Digital Library

7 								super.speed	=	min(newValue,	40.0)
8 				}
9 				}

10 }

Whenever you set the speed property of a SpeedLimitedCar instance, the property’s setter
implementation checks the new value and limits it to 40mph. It does this by setting the underlying speed
property of its superclass to be the smaller of newValue and 40.0. The smaller of these two values is
determined by passing them to the min function, which is a global function provided by the Swift standard
library. The min function takes two or more values and returns the smallest one of those values.

If you try to set the speed property of a SpeedLimitedCar instance to more than 40mph, and then print the
output of its description method, you see that the speed has been limited:

1 let	limitedCar	=	SpeedLimitedCar()
2 limitedCar.speed	=	60.0
3 println("SpeedLimitedCar:	\(limitedCar.description())")
4 //	SpeedLimitedCar:	4	wheels;	up	to	5	passengers;	traveling	at	40.0	

mph

Overriding Property Observers

You can use property overriding to add property observers to an inherited property. This enables you to be
notified when the value of the inherited property changes, regardless of how that property was originally
implemented. For more information on property observers, see Property Observers.

N O T E

You cannot add property observers to inherited constant stored properties or inherited read-only
computed properties. The value of these properties cannot be set, and so it is not appropriate to
provide a willSet or didSet implementation as part of an override.

Note also that you cannot provide both an overriding setter and an overriding property observer. If

(c) ketabton.com: The Digital Library

you want to observe changes to a property’s value, and you are already providing a custom setter for
that property, you can simply observe any value changes from within the custom setter.

The following example defines a new class called AutomaticCar, which is a subclass of Car. The
AutomaticCar class represents a car with an automatic gearbox, which automatically selects an
appropriate gear to use based on the current speed. AutomaticCar also provides a custom description
method to print the current gear.

1 class	AutomaticCar:	Car	{
2 				var	gear	=	1
3 				override	var	speed:	Double	{
4 				didSet	{
5 								gear	=	Int(speed	/	10.0)	+	1
6 				}
7 				}
8 				override	func	description()	->	String	{
9 								return	super.description()	+	"	in	gear	\(gear)"

10 				}
11 }

Whenever you set the speed property of an AutomaticCar instance, the property’s didSet observer
automatically sets the gear property to an appropriate choice of gear for the new speed. Specifically, the
property observer chooses a gear which is the new speed value divided by 10, rounded down to the nearest
integer, plus 1. A speed of 10.0 produces a gear of 1, and a speed of 35.0 produces a gear of 4:

1 let	automatic	=	AutomaticCar()
2 automatic.speed	=	35.0
3 println("AutomaticCar:	\(automatic.description())")
4 //	AutomaticCar:	4	wheels;	up	to	5	passengers;	traveling	at	35.0	mph	

in	gear	4

(c) ketabton.com: The Digital Library

Preventing Overrides

You can prevent a method, property, or subscript from being overridden by marking it as final. Do this by
writing the @final attribute before its introducer keyword (such as @final	var, @final	func, @final
class	func, and @final	subscript).

Any attempts to override a final method, property, or subscript in a subclass are reported as a compile-time
error. Methods, properties or subscripts that you add to a class in an extension can also be marked as final
within the extension’s definition.

You can mark an entire class as final by writing the @final attribute before the class keyword in its class
definition (@final	class). Any attempts to subclass a final class will be reported as a compile-time error.

(c) ketabton.com: The Digital Library

Initialization

Initialization is the process of preparing an instance of a class, structure, or enumeration for use. This process
involves setting an initial value for each stored property on that instance and performing any other setup or
initialization that is required before the new instance is ready to for use.

You implement this initialization process by defining initializers, which are like special methods that can be
called to create a new instance of a particular type. Unlike Objective-C initializers, Swift initializers do not
return a value. Their primary role is to ensure that new instances of a type are correctly initialized before they
are used for the first time.

Instances of class types can also implement a deinitializer, which performs any custom cleanup just before an
instance of that class is deallocated. For more information about deinitializers, see Deinitialization.

Setting Initial Values for Stored Properties

Classes and structures must set all of their stored properties to an appropriate initial value by the time an
instance of that class or structure is created. Stored properties cannot be left in an indeterminate state.

You can set an initial value for a stored property within an initializer, or by assigning a default property value as
part of the property’s definition. These actions are described in the following sections.

N O T E

When you assign a default value to a stored property, or set its initial value within an initializer, the
value of that property is set directly, without calling any property observers.

(c) ketabton.com: The Digital Library

Initializers

Initializers are called to create a new instance of a particular type. In its simplest form, an initializer is like an
instance method with no parameters, written using the init keyword.

The example below defines a new structure called Fahrenheit to store temperatures expressed in the
Fahrenheit scale. The Fahrenheit structure has one stored property, temperature, which is of type
Double:

1 struct	Fahrenheit	{
2 				var	temperature:	Double
3 				init()	{
4 								temperature	=	32.0
5 				}
6 }
7 var	f	=	Fahrenheit()
8 println("The	default	temperature	is	\(f.temperature)°	Fahrenheit")
9 //	prints	"The	default	temperature	is	32.0°	Fahrenheit"

The structure defines a single initializer, init, with no parameters, which initializes the stored temperature
with a value of 32.0 (the freezing point of water when expressed in the Fahrenheit scale).

Default Property Values

You can set the initial value of a stored property from within an initializer, as shown above. Alternatively, specify
a default property value as part of the property’s declaration. You specify a default property value by assigning
an initial value to the property when it is defined.

N O T E

If a property always takes the same initial value, provide a default value rather than setting a value
within an initializer. The end result is the same, but the default value ties the property’s initialization
more closely to its declaration. It makes for shorter, clearer initializers and enables you to infer the

(c) ketabton.com: The Digital Library

type of the property from its default value. The default value also makes it easier for you to take
advantage of default initializers and initializer inheritance, as described later in this chapter.

You can write the Fahrenheit structure from above in a simpler form by providing a default value for its
temperature property at the point that the property is declared:

1 struct	Fahrenheit	{
2 				var	temperature	=	32.0
3 }

Customizing Initialization

You can customize the initialization process with input parameters and optional property types, or by modifying
constant properties during initialization, as described in the following sections.

Initialization Parameters

You can provide initialization parameters as part of an initializer’s definition, to define the types and names of
values that customize the initialization process. Initialization parameters have the same capabilities and syntax
as function and method parameters.

The following example defines a structure called Celsius, which stores temperatures expressed in the
Celsius scale. The Celsius structure implements two custom initializers called
init(fromFahrenheit:) and init(fromKelvin:), which initialize a new instance of the structure
with a value from a different temperature scale:

1 struct	Celsius	{
2 				var	temperatureInCelsius:	Double	=	0.0
3 				init(fromFahrenheit	fahrenheit:	Double)	{
4 								temperatureInCelsius	=	(fahrenheit	-	32.0)	/	1.8

(c) ketabton.com: The Digital Library

5 				}
6 				init(fromKelvin	kelvin:	Double)	{
7 								temperatureInCelsius	=	kelvin	-	273.15
8 				}
9 }

10 let	boilingPointOfWater	=	Celsius(fromFahrenheit:	212.0)
11 //	boilingPointOfWater.temperatureInCelsius	is	100.0
12 let	freezingPointOfWater	=	Celsius(fromKelvin:	273.15)
13 //	freezingPointOfWater.temperatureInCelsius	is	0.0

The first initializer has a single initialization parameter with an external name of fromFahrenheit and a
local name of fahrenheit. The second initializer has a single initialization parameter with an external name
of fromKelvin and a local name of kelvin. Both initializers convert their single argument into a value in the
Celsius scale and store this value in a property called temperatureInCelsius.

Local and External Parameter Names

As with function and method parameters, initialization parameters can have both a local name for use within the
initializer’s body and an external name for use when calling the initializer.

However, initializers do not have an identifying function name before their parentheses in the way that functions
and methods do. Therefore, the names and types of an initializer’s parameters play a particularly important role
in identifying which initializer should be called. Because of this, Swift provides an automatic external name for
every parameter in an initializer if you don’t provide an external name yourself. This automatic external name is
the same as the local name, as if you had written a hash symbol before every initialization parameter.

N O T E

If you do not want to provide an external name for a parameter in an initializer, provide an
underscore (_) as an explicit external name for that parameter to override the default behavior
described above.

(c) ketabton.com: The Digital Library

The following example defines a structure called Color, with three constant properties called red, green,
and blue. These properties store a value between 0.0 and 1.0 to indicate the amount of red, green, and blue
in the color.

Color provides an initializer with three appropriately named parameters of type Double:

1 struct	Color	{
2 				let	red	=	0.0,	green	=	0.0,	blue	=	0.0
3 				init(red:	Double,	green:	Double,	blue:	Double)	{
4 								self.red			=	red
5 								self.green	=	green
6 								self.blue		=	blue
7 				}
8 }

Whenever you create a new Color instance, you call its initializer using external names for each of the three
color components:

1 let	magenta	=	Color(red:	1.0,	green:	0.0,	blue:	1.0)

Note that it is not possible to call this initializer without using the external names. External names must always
be used in an intializer if they are defined, and omitting them is a compile-time error:

1 let	veryGreen	=	Color(0.0,	1.0,	0.0)
2 //	this	reports	a	compile-time	error	-	external	names	are	required

Optional Property Types

If your custom type has a stored property that is logically allowed to have “no value”—perhaps because its
value cannot be set during initialization, or because it is allowed to have “no value” at some later point—declare
the property with an optional type. Properties of optional type are automatically initialized with a value of nil,
indicating that the property is deliberately intended to have “no value yet” during initialization.

(c) ketabton.com: The Digital Library

The following example defines a class called SurveyQuestion, with an optional String property called
response:

1 class	SurveyQuestion	{
2 				var	text:	String
3 				var	response:	String?
4 				init(text:	String)	{
5 								self.text	=	text
6 				}
7 				func	ask()	{
8 								println(text)
9 				}

10 }
11 let	cheeseQuestion	=	SurveyQuestion(text:	"Do	you	like	

cheese?")
12 cheeseQuestion.ask()
13 //	prints	"Do	you	like	cheese?"
14 cheeseQuestion.response	=	"Yes,	I	do	like	cheese."

The response to a survey question cannot be known until it is asked, and so the response property is
declared with a type of String?, or “optional String”. It is automatically assigned a default value of nil,
meaning “no string yet”, when a new instance of SurveyQuestion is initialized.

Modifying Constant Properties During Initialization

You can modify the value of a constant property at any point during initialization, as long as it is set to a definite
value by the time initialization finishes.

N O T E

For class instances, a constant property can only be modified during initialization by the class that
introduces it. It cannot be modified by a subclass.

(c) ketabton.com: The Digital Library

You can revise the SurveyQuestion example from above to use a constant property rather than a variable
property for the text property of the question, to indicate that the question does not change once an instance of
SurveyQuestion is created. Even though the text property is now a constant, it can still be set within the
class’s initializer:

1 class	SurveyQuestion	{
2 				let	text:	String
3 				var	response:	String?
4 				init(text:	String)	{
5 								self.text	=	text
6 				}
7 				func	ask()	{
8 								println(text)
9 				}

10 }
11 let	beetsQuestion	=	SurveyQuestion(text:	"How	about	beets?")
12 beetsQuestion.ask()
13 //	prints	"How	about	beets?"
14 beetsQuestion.response	=	"I	also	like	beets.	(But	not	with	

cheese.)"

Default Initializers

Swift provides a default initializer for any structure or base class that provides default values for all of its
properties and does not provide at least one initializer itself. The default initializer simply creates a new
instance with all of its properties set to their default values.

This example defines a class called ShoppingListItem, which encapsulates the name, quantity, and
purchase state of an item in a shopping list:

1 class	ShoppingListItem	{

(c) ketabton.com: The Digital Library

2 				var	name:	String?
3 				var	quantity	=	1
4 				var	purchased	=	false
5 }
6 var	item	=	ShoppingListItem()

Because all properties of the ShoppingListItem class have default values, and because it is a base class
with no superclass, ShoppingListItem automatically gains a default initializer implementation that creates
a new instance with all of its properties set to their default values. (The name property is an optional String
property, and so it automatically receives a default value of nil, even though this value is not written in the
code.) The example above uses the default initializer for the ShoppingListItem class to create a new
instance of the class with initializer syntax, written as ShoppingListItem(), and assigns this new
instance to a variable called item.

Memberwise Initializers for Structure Types

In addition to the default initializers mentioned above, structure types automatically receive a memberwise
initializer if they provide default values for all of their stored properties and do not define any of their own custom
initializers.

The memberwise initializer is a shorthand way to initialize the member properties of new structure instances.
Initial values for the properties of the new instance can be passed to the memberwise initializer by name.

The example below defines a structure called Size with two properties called width and height. Both
properties are inferred to be of type Double by assigning a default value of 0.0.

Because both stored properties have a default value, the Size structure automatically receives an
init(width:height:) memberwise initializer, which you can use to initialize a new Size instance:

1 struct	Size	{
2 				var	width	=	0.0,	height	=	0.0
3 }
4 let	twoByTwo	=	Size(width:	2.0,	height:	2.0)

(c) ketabton.com: The Digital Library

Initializer Delegation for Value Types

Initializers can call other initializers to perform part of an instance’s initialization. This process, known as
initializer delegation, avoids duplicating code across multiple initializers.

The rules for how initializer delegation works, and for what forms of delegation are allowed, are different for
value types and class types. Value types (structures and enumerations) do not support inheritance, and so their
initializer delegation process is relatively simple, because they can only delegate to another initializer that they
provide themselves. Classes, however, can inherit from other classes, as described in Inheritance. This means
that classes have additional responsibilities for ensuring that all stored properties they inherit are assigned a
suitable value during initialization. These responsibilities are described in Class Inheritance and Initialization
below.

For value types, you use self.init to refer to other initializers from the same value type when writing your
own custom initializers. You can only call self.init from within an initializer.

Note that if you define a custom initializer for a value type, you will no longer have access to the default
initializer (or the memberwise structure initializer, if it is a structure) for that type. This constraint prevents a
situation in which you provide a more complex initializer that performs additional essential setup is
circumvented by someone accidentally using one of the automatic initializers instead.

N O T E

If you want your custom value type to be initializable with the default initializer and memberwise
initializer, and also with your own custom initializers, write your custom initializers in an extension
rather than as part of the value type’s original implementation. For more information, see
Extensions.

The following example defines a custom Rect structure to represent a geometric rectangle. The example
requires two supporting structures called Size and Point, both of which provide default values of 0.0 for all
of their properties:

(c) ketabton.com: The Digital Library

1 struct	Size	{
2 				var	width	=	0.0,	height	=	0.0
3 }
4 struct	Point	{
5 				var	x	=	0.0,	y	=	0.0
6 }

You can initialize the Rect structure below in one of three ways—by using its default zero-initialized origin
and size property values, by providing a specific origin point and size, or by providing a specific center point
and size. These initialization options are represented by three custom initializers that are part of the Rect
structure’s definition:

1 struct	Rect	{
2 				var	origin	=	Point()
3 				var	size	=	Size()
4 				init()	{}
5 				init(origin:	Point,	size:	Size)	{
6 								self.origin	=	origin
7 								self.size	=	size
8 				}
9 				init(center:	Point,	size:	Size)	{

10 								let	originX	=	center.x	-	(size.width	/	2)
11 								let	originY	=	center.y	-	(size.height	/	2)
12 								self.init(origin:	Point(x:	originX,	y:	originY),	size:	

size)
13 				}
14 }

The first Rect initializer, init(), is functionally the same as the default initializer that the structure would
have received if it did not have its own custom initializers. This initializer has an empty body, represented by an
empty pair of curly braces {}, and does not perfom any initialization. Calling this initializer returns a Rect
instance whose origin and size properties are both initialized with the default values of Point(x:	0.0,
y:	0.0) and Size(width:	0.0,	height:	0.0) from their property definitions:

1 let	basicRect	=	Rect()

(c) ketabton.com: The Digital Library

2 //	basicRect's	origin	is	(0.0,	0.0)	and	its	size	is	(0.0,	0.0)

The second Rect initializer, init(origin:size:), is functionally the same as the memberwise initializer
that the structure would have received if it did not have its own custom initializers. This initializer simply
assigns the origin and size argument values to the appropriate stored properties:

1 let	originRect	=	Rect(origin:	Point(x:	2.0,	y:	2.0),
2 				size:	Size(width:	5.0,	height:	5.0))
3 //	originRect's	origin	is	(2.0,	2.0)	and	its	size	is	(5.0,	5.0)

The third Rect initializer, init(center:size:), is slightly more complex. It starts by calculating an
appropriate origin point based on a center point and a size value. It then calls (or delegates) to the
init(origin:size:) initializer, which stores the new origin and size values in the appropriate properties:

1 let	centerRect	=	Rect(center:	Point(x:	4.0,	y:	4.0),
2 				size:	Size(width:	3.0,	height:	3.0))
3 //	centerRect's	origin	is	(2.5,	2.5)	and	its	size	is	(3.0,	3.0)

The init(center:size:) initializer could have assigned the new values of origin and size to the
appropriate properties itself. However, it is more convenient (and clearer in intent) for the
init(center:size:) initializer to take advantage of an existing initializer that already provides exactly
that functionality.

N O T E

For an alternative way to write this example without defining the init() and
init(origin:size:) initializers yourself, see Extensions.

Class Inheritance and Initialization

(c) ketabton.com: The Digital Library

All of a class’s stored properties—including any properties the class inherits from its superclass—must be
assigned an initial value during initialization.

Swift defines two kinds of initializers for class types to help ensure all stored properties receive an initial value.
These are known as designated initializers and convenience initializers.

Designated Initializers and Convenience Initializers

Designated initializers are the primary initializers for a class. A designated initializer fully initializes all
properties introduced by that class and calls an appropriate superclass initializer to continue the initialization
process up the superclass chain.

Classes tend to have very few designated initializers, and it is quite common for a class to have only one.
Designated initializers are “funnel” points through which initialization takes place, and through which the
initialization process continues up the superclass chain.

Every class must have at least one designated initializer. In some cases, this requirement is satisfied by
inheriting one or more designated initializers from a superclass, as described in Automatic Initializer
Inheritance below.

Convenience initializers are secondary, supporting initializers for a class. You can define a convenience
initializer to call a designated initializer from the same class as the convenience initializer with some of the
designated initializer’s parameters set to default values. You can also define a convenience initializer to create
an instance of that class for a specific use case or input value type.

You do not have to provide convenience initializers if your class does not require them. Create convenience
initializers whenever a shortcut to a common initialization pattern will save time or make initialization of the
class clearer in intent.

Initializer Chaining

To simplify the relationships between designated and convenience initializers, Swift applies the following three
rules for delegation calls between initializers:

(c) ketabton.com: The Digital Library

Designated initializers must call a designated initializer from their immediate superclass.

Convenience initializers must call another initializer available in the same class.

Convenience initializers must ultimately end up calling a designated initializer.

A simple way to remember this is:

These rules are illustrated in the figure below:

Here, the superclass has a single designated initializer and two convenience initializers. One convenience
initializer calls another convenience initializer, which in turn calls the single designated initializer. This satisfies

Rule 1

Rule 2

Rule 3

Designated initializers must always delegate up.

Convenience initializers must always delegate across.

(c) ketabton.com: The Digital Library

rules 2 and 3 from above. The superclass does not itself have a further superclass, and so rule 1 does not apply.

The subclass in this figure has two designated initializers and one convenience initializer. The convenience
initializer must call one of the two designated initializers, because it can only call another initializer from the
same class. This satisfies rules 2 and 3 from above. Both designated initializers must call the single designated
initializer from the superclass, to satisfy rule 1 from above.

N O T E

These rules don’t affect how users of your classes create instances of each class. Any initializer in
the diagram above can be used to create a fully-initialized instance of the class they belong to. The
rules only affect how you write the class’s implementation.

The figure below shows a more complex class hierarchy for four classes. It illustrates how the designated
initializers in this hierarchy act as “funnel” points for class initialization, simplifying the interrelationships
among classes in the chain:

(c) ketabton.com: The Digital Library

Two-Phase Initialization

(c) ketabton.com: The Digital Library

Class initialization in Swift is a two-phase process. In the first phase, each stored property is assigned an initial
value by the class that introduced it. Once the initial state for every stored property has been determined, the
second phase begins, and each class is given the opportunity to customize its stored properties further before
the new instance is considered ready for use.

The use of a two-phase initialization process makes initialization safe, while still giving complete flexibility to
each class in a class hierarchy. Two-phase initialization prevents property values from being accessed before
they are initialized, and prevents property values from being set to a different value by another initializer
unexpectedly.

N O T E

Swift’s two-phase initialization process is similar to initialization in Objective-C. The main
difference is that during phase 1, Objective-C assigns zero or null values (such as 0 or nil) to
every property. Swift’s initialization flow is more flexible in that it lets you set custom initial values,
and can cope with types for which 0 or nil is not a valid default value.

Swift’s compiler performs four helpful safety-checks to make sure that two-phase initialization is completed
without error:

A designated initializer must ensure that all of the properties introduced by its class are initialized
before it delegates up to a superclass initializer.

As mentioned above, the memory for an object is only considered fully initialized once the initial state of all of its
stored properties is known. In order for this rule to be satisfied, a designated initializer must make sure that all
its own properties are initialized before it hands off up the chain.

A designated initializer must delegate up to a superclass initializer before assigning a value to an
inherited property. If it doesn’t, the new value the designated initializer assigns will be overwritten
by the superclass as part of its own initialization.

Safety check 1

Safety check 2

Safety check 3

(c) ketabton.com: The Digital Library

A convenience initializer must delegate to another initializer before assigning a value to any
property (including properties defined by the same class). If it doesn’t, the new value the
convenience initializer assigns will be overwritten by its own class’s designated initializer.

An initializer cannot call any instance methods, read the values of any instance properties, or refer
to self as a value until after the first phase of initialization is complete.

The class instance is not fully valid until the first phase ends. Properties can only be accessed, and methods
can only be called, once the class instance is known to be valid at the end of the first phase.

Here’s how two-phase initialization plays out, based on the four safety checks above:

Phase 1

Phase 2

Here’s how phase 1 looks for an initialization call for a hypothetical subclass and superclass:

Safety check 4

A designated or convenience initializer is called on a class.

Memory for a new instance of that class is allocated. The memory is not yet initialized.

A designated initializer for that class confirms that all stored properties introduced by that class
have a value. The memory for these stored properties is now initialized.

The designated initializer hands off to a superclass initializer to perform the same task for its
own stored properties.

This continues up the class inheritance chain until the top of the chain is reached.

Once the top of the chain is reached, and the final class in the chain has ensured that all of its
stored properties have a value, the instance’s memory is considered to be fully initialized, and
phase 1 is complete.

Working back down from the top of the chain, each designated initializer in the chain has the
option to customize the instance further. Initializers are now able to access self and can
modify its properties, call its instance methods, and so on.

Finally, any convenience initializers in the chain have the option to customize the instance and to
work with self.

(c) ketabton.com: The Digital Library

In this example, initialization begins with a call to a convenience initializer on the subclass. This convenience
initializer cannot yet modify any properties. It delegates across to a designated initializer from the same class.

The designated initializer makes sure that all of the subclass’s properties have a value, as per safety check 1. It
then calls a designated initializer on its superclass to continue the initialization up the chain.

The superclass’s designated initializer makes sure that all of the superclass properties have a value. There are
no further superclasses to initialize, and so no further delegation is needed.

As soon as all properties of the superclass have an initial value, its memory is considered fully initialized, and
Phase 1 is complete.

Here’s how phase 2 looks for the same initialization call:

(c) ketabton.com: The Digital Library

The superclass’s designated initializer now has an opportunity to customize the instance further (although it
does not have to).

Once the superclass’s designated initializer is finished, the subclass’s designated initializer can perform
additional customization (although again, it does not have to).

Finally, once the subclass’s designated initializer is finished, the convenience initializer that was originally
called can perform additional customization.

Initializer Inheritance and Overriding

Unlike subclasses in Objective-C, Swift subclasses do not not inherit their superclass initializers by default.
Swift’s approach prevents a situation in which a simple initializer from a superclass is automatically inherited
by a more specialized subclass and is used to create a new instance of the subclass that is not fully or correctly
initialized.

If you want your custom subclass to present one or more of the same initializers as its superclass—perhaps to
perform some customization during initialization—you can provide an overriding implementation of the same

(c) ketabton.com: The Digital Library

initializer within your custom subclass.

If the initializer you are overriding is a designated initializer, you can override its implementation in your
subclass and call the superclass version of the initializer from within your overriding version.

If the initializer you are overriding is a convenience initializer, your override must call another designated
initializer from its own subclass, as per the rules described above in Initializer Chaining.

N O T E

Unlike methods, properties, and subscripts, you do not need to write the override keyword when
overriding an initializer.

Automatic Initializer Inheritance

As mentioned above, subclasses do not not inherit their superclass initializers by default. However, superclass
initializers are automatically inherited if certain conditions are met. In practice, this means that you do not need
to write initializer overrides in many common scenarios, and can inherit your superclass initializers with
minimal effort whenever it is safe to do so.

Assuming that you provide default values for any new properties you introduce in a subclass, the following two
rules apply:

If your subclass doesn’t define any designated initializers, it automatically inherits all of its
superclass designated initializers.

If your subclass provides an implementation of all of its superclass designated initializers—either
by inheriting them as per rule 1, or by providing a custom implementation as part of its definition—
then it automatically inherits all of the superclass convenience initializers.

Rule 1

Rule 2

(c) ketabton.com: The Digital Library

These rules apply even if your subclass adds further convenience initializers.

N O T E

A subclass can implement a superclass designated initializer as a subclass convenience initializer
as part of satisfying rule 2.

Syntax for Designated and Convenience Initializers

Designated initializers for classes are written in the same way as simple initializers for value types:

init(parameters)	{

				 statements

}

Convenience initializers are written in the same style, but with the convenience keyword placed before the
init keyword, separated by a space:

convenience	init(parameters)	{

				 statements

}

Designated and Convenience Initializers in Action

The following example shows designated initializers, convenience initializers, and automatic initializer

(c) ketabton.com: The Digital Library

inheritance in action. This example defines a hierarchy of three classes called Food, RecipeIngredient,
and ShoppingListItem, and demonstrates how their initializers interact.

The base class in the hierarchy is called Food, which is a simple class to encapsulate the name of a foodstuff.
The Food class introduces a single String property called name and provides two initializers for creating
Food instances:

1 class	Food	{
2 				var	name:	String
3 				init(name:	String)	{
4 								self.name	=	name
5 				}
6 				convenience	init()	{
7 								self.init(name:	"[Unnamed]")
8 				}
9 }

The figure below shows the initializer chain for the Food class:

Classes do not have a default memberwise initializer, and so the Food class provides a designated initializer
that takes a single argument called name. This initializer can be used to create a new Food instance with a
specific name:

(c) ketabton.com: The Digital Library

1 let	namedMeat	=	Food(name:	"Bacon")
2 //	namedMeat's	name	is	"Bacon"

The init(name:	String) initializer from the Food class is provided as a designated initializer, because
it ensures that all stored properties of a new Food instance are fully initialized. The Food class does not have
a superclass, and so the init(name:	String) initializer does not need to call super.init() to
complete its initialization.

The Food class also provides a convenience initializer, init(), with no arguments. The init() initializer
provides a default placeholder name for a new food by delegating across to the Food class’s init(name:
String) with a name value of [Unnamed]:

1 let	mysteryMeat	=	Food()
2 //	mysteryMeat's	name	is	"[Unnamed]"

The second class in the hierarchy is a subclass of Food called RecipeIngredient. The
RecipeIngredient class models an ingredient in a cooking recipe. It introduces an Int property called
quantity (in addition to the name property it inherits from Food) and defines two initializers for creating
RecipeIngredient instances:

1 class	RecipeIngredient:	Food	{
2 				var	quantity:	Int
3 				init(name:	String,	quantity:	Int)	{
4 								self.quantity	=	quantity
5 								super.init(name:	name)
6 				}
7 				convenience	init(name:	String)	{
8 								self.init(name:	name,	quantity:	1)
9 				}

10 }

The figure below shows the initializer chain for the RecipeIngredient class:

(c) ketabton.com: The Digital Library

The RecipeIngredient class has a single designated initializer, init(name:	String,	quantity:
Int), which can be used to populate all of the properties of a new RecipeIngredient instance. This
initializer starts by assigning the passed quantity argument to the quantity property, which is the only
new property introduced by RecipeIngredient. After doing so, the initializer delegates up to the
init(name:	String) initializer of the Food class. This process satisfies safety check 1 from Two-Phase
Initialization above.

RecipeIngredient also defines a convenience initializer, init(name:	String), which is used to
create a RecipeIngredient instance by name alone. This convenience initializer assumes a quantity of 1
for any RecipeIngredient instance that is created without an explicit quantity. The definition of this
convenience initializer makes RecipeIngredient instances quicker and more convenient to create, and
avoids code duplication when creating several single-quantity RecipeIngredient instances. This
convenience initializer simply delegates across to the class’s designated initializer.

(c) ketabton.com: The Digital Library

Note that the init(name:	String) convenience initializer provided by RecipeIngredient takes the
same parameters as the init(name:	String) designated initializer from Food. Even though
RecipeIngredient provides this initializer as a convenience initializer, RecipeIngredient has
nonetheless provided an implementation of all of its superclass’s designated initializers. Therefore,
RecipeIngredient automatically inherits all of its superclass’s convenience initializers too.

In this example, the superclass for RecipeIngredient is Food, which has a single convenience initializer
called init(). This initializer is therefore inherited by RecipeIngredient. The inherited version of
init() functions in exactly the same way as the Food version, except that it delegates to the
RecipeIngredient version of init(name:	String) rather than the Food version.

All three of these initializers can be used to create new RecipeIngredient instances:

1 let	oneMysteryItem	=	RecipeIngredient()
2 let	oneBacon	=	RecipeIngredient(name:	"Bacon")
3 let	sixEggs	=	RecipeIngredient(name:	"Eggs",	quantity:	6)

The third and final class in the hierarchy is a subclass of RecipeIngredient called
ShoppingListItem. The ShoppingListItem class models a recipe ingredient as it appears in a
shopping list.

Every item in the shopping list starts out as “unpurchased”. To represent this fact, ShoppingListItem
introduces a Boolean property called purchased, with a default value of false. ShoppingListItem also
adds a computed description property, which provides a textual description of a ShoppingListItem
instance:

1 class	ShoppingListItem:	RecipeIngredient	{
2 				var	purchased	=	false
3 				var	description:	String	{
4 				var	output	=	"\(quantity)	x	\(name.lowercaseString)"
5 								output	+=	purchased	?	"	✔"	:	"	✘"
6 								return	output
7 				}
8 }

(c) ketabton.com: The Digital Library

N O T E

ShoppingListItem does not define an initializer to provide an initial value for purchased,
because items in a shopping list (as modeled here) always start out unpurchased.

Because it provides a default value for all of the properties it introduces and does not define any initializers itself,
ShoppingListItem automatically inherits all of the designated and convenience initializers from its
superclass.

The figure below shows the overall initializer chain for all three classes:

(c) ketabton.com: The Digital Library

You can use all three of the inherited initializers to create a new ShoppingListItem instance:

1 var	breakfastList	=	[

(c) ketabton.com: The Digital Library

2 				ShoppingListItem(),
3 				ShoppingListItem(name:	"Bacon"),
4 				ShoppingListItem(name:	"Eggs",	quantity:	6),
5]
6 breakfastList[0].name	=	"Orange	juice"
7 breakfastList[0].purchased	=	true
8 for	item	in	breakfastList	{
9 				println(item.description)

10 }
11 //	1	x	orange	juice	✔
12 //	1	x	bacon	✘
13 //	6	x	eggs	✘

Here, a new array called breakfastList is created from an array literal containing three new
ShoppingListItem instances. The type of the array is inferred to be ShoppingListItem[]. After the
array is created, the name of the ShoppingListItem at the start of the array is changed from "
[Unnamed]" to "Orange	juice" and it is marked as having been purchased. Printing the description of
each item in the array shows that their default states have been set as expected.

Setting a Default Property Value with a Closure or Function

If a stored property’s default value requires some customization or setup, you can use a closure or global
function to provide a customized default value for that property. Whenever a new instance of the type that the
property belongs to is initialized, the closure or function is called, and its return value is assigned as the
property’s default value.

These kinds of closures or functions typically create a temporary value of the same type as the property, tailor
that value to represent the desired initial state, and then return that temporary value to be used as the property’s
default value.

Here’s a skeleton outline of how a closure can be used to provide a default property value:

1 class	SomeClass	{
2 				let	someProperty:	SomeType	=	{

(c) ketabton.com: The Digital Library

3 								//	create	a	default	value	for	someProperty	inside	this	closure
4 								//	someValue	must	be	of	the	same	type	as	SomeType
5 								return	someValue
6 								}()
7 }

Note that the closure’s end curly brace is followed by an empty pair of parentheses. This tells Swift to execute
the closure immediately. If you omit these parentheses, you are trying to assign the closure itself to the
property, and not the return value of the closure.

N O T E

If you use a closure to initialize a property, remember that the rest of the instance has not yet been
initialized at the point that the closure is executed. This means that you cannot access any other
property values from within your closure, even if those properties have default values. You also
cannot use the implicit self property, or call any of the instance’s methods.

The example below defines a structure called Checkerboard, which models a board for the game of
Checkers (also known as Draughts):

(c) ketabton.com: The Digital Library

The game of Checkers is played on a ten-by-ten board, with alternating black and white squares. To represent
this game board, the Checkerboard structure has a single property called boardColors, which is an
array of 100 Bool values. A value of true in the array represents a black square and a value of false
represents a white square. The first item in the array represents the top left square on the board and the last
item in the array represents the bottom right square on the board.

The boardColors array is initialized with a closure to set up its color values:

1 struct	Checkerboard	{
2 				let	boardColors:	Bool[]	=	{
3 								var	temporaryBoard	=	Bool[]()
4 								var	isBlack	=	false
5 								for	i	in	1...10	{
6 												for	j	in	1...10	{

(c) ketabton.com: The Digital Library

7 																temporaryBoard.append(isBlack)
8 																isBlack	=	!isBlack
9 												}

10 												isBlack	=	!isBlack
11 								}
12 								return	temporaryBoard
13 								}()
14 				func	squareIsBlackAtRow(row:	Int,	column:	Int)	->	Bool	{
15 								return	boardColors[(row	*	10)	+	column]
16 				}
17 }

Whenever a new Checkerboard instance is created, the closure is executed, and the default value of
boardColors is calculated and returned. The closure in the example above calculates and sets the
appropriate color for each square on the board in a temporary array called temporaryBoard, and returns
this temporary array as the closure’s return value once its setup is complete. The returned array value is stored
in boardColors and can be queried with the squareIsBlackAtRow utility function:

1 let	board	=	Checkerboard()
2 println(board.squareIsBlackAtRow(0,	column:	1))
3 //	prints	"true"
4 println(board.squareIsBlackAtRow(9,	column:	9))
5 //	prints	"false"

(c) ketabton.com: The Digital Library

Deinitialization

A deinitializer is called immediately before a class instance is deallocated. You write deinitializers with the
deinit keyword, similar to how intializers are written with the init keyword. Deinitializers are only
available on class types.

How Deinitialization Works

Swift automatically deallocates your instances when they are no longer needed, to free up resources. Swift
handles the memory management of instances through automatic reference counting (ARC), as described in
Automatic Reference Counting. Typically you don’t need to perform manual clean-up when your instances are
deallocated. However, when you are working with your own resources, you might need to perform some
additional clean-up yourself. For example, if you create a custom class to open a file and write some data to it,
you might need to close the file before the class instance is deallocated.

Class definitions can have at most one deinitializer per class. The deinitializer does not take any parameters
and is written without parentheses:

1 deinit	{
2 				//	perform	the	deinitialization
3 }

Deinitializers are called automatically, just before instance deallocation takes place. You are not allowed to call
a deinitializer yourself. Superclass deinitializers are inherited by their subclasses, and the superclass
deinitializer is called automatically at the end of a subclass deinitializer implementation. Superclass
deinitializers are always called, even if a subclass does not provide its own deinitializer.

Because an instance is not deallocated until after its deinitializer is called, a deinitializer can access all
properties of the instance it is called on and can modify its behavior based on those properties (such as looking
up the name of a file that needs to be closed).

(c) ketabton.com: The Digital Library

Deinitializers in Action

Here’s an example of a deinitializer in action. This example defines two new types, Bank and Player, for a
simple game. The Bank structure manages a made-up currency, which can never have more than 10,000
coins in circulation. There can only ever be one Bank in the game, and so the Bank is implemented as a
structure with static properties and methods to store and manage its current state:

1 struct	Bank	{
2 				static	var	coinsInBank	=	10_000
3 				static	func	vendCoins(var	numberOfCoinsToVend:	Int)	->	Int	{
4 								numberOfCoinsToVend	=	min(numberOfCoinsToVend,	coinsInBank)
5 								coinsInBank	-=	numberOfCoinsToVend
6 								return	numberOfCoinsToVend
7 				}
8 				static	func	receiveCoins(coins:	Int)	{
9 								coinsInBank	+=	coins

10 				}
11 }

Bank keeps track of the current number of coins it holds with its coinsInBank property. It also offers two
methods—vendCoins and receiveCoins—to handle the distribution and collection of coins.

vendCoins checks that there are enough coins in the bank before distributing them. If there are not enough
coins, Bank returns a smaller number than the number that was requested (and returns zero if no coins are left
in the bank). vendCoins declares numberOfCoinsToVend as a variable parameter, so that the number
can be modified within the method’s body without the need to declare a new variable. It returns an integer value
to indicate the actual number of coins that were provided.

The receiveCoins method simply adds the received number of coins back into the bank’s coin store.

The Player class describes a player in the game. Each player has a certain number of coins stored in their
purse at any time. This is represented by the player’s coinsInPurse property:

1 class	Player	{
2 				var	coinsInPurse:	Int

(c) ketabton.com: The Digital Library

3 				init(coins:	Int)	{
4 								coinsInPurse	=	Bank.vendCoins(coins)
5 				}
6 				func	winCoins(coins:	Int)	{
7 								coinsInPurse	+=	Bank.vendCoins(coins)
8 				}
9 				deinit	{

10 								Bank.receiveCoins(coinsInPurse)
11 				}
12 }

Each Player instance is initialized with a starting allowance of a specified number of coins from the bank
during initialization, although a Player instance may receive fewer than that number if not enough coins are
available.

The Player class defines a winCoins method, which retrieves a certain number of coins from the bank and
adds them to the player’s purse. The Player class also implements a deinitializer, which is called just before
a Player instance is deallocated. Here, the deinitializer simply returns all of the player’s coins to the bank:

1 var	playerOne:	Player?	=	Player(coins:	100)
2 println("A	new	player	has	joined	the	game	with	\

(playerOne!.coinsInPurse)	coins")
3 //	prints	"A	new	player	has	joined	the	game	with	100	coins"
4 println("There	are	now	\(Bank.coinsInBank)	coins	left	in	the	bank")
5 //	prints	"There	are	now	9900	coins	left	in	the	bank"

A new Player instance is created, with a request for 100 coins if they are available. This Player instance is
stored in an optional Player variable called playerOne. An optional variable is used here, because players
can leave the game at any point. The optional lets you track whether there is currently a player in the game.

Because playerOne is an optional, it is qualified with an exclamation mark (!) when its coinsInPurse
property is accessed to print its default number of coins, and whenever its winCoins method is called:

1 playerOne!.winCoins(2_000)
2 println("PlayerOne	won	2000	coins	&	now	has	\(playerOne!.coinsInPurse)

(c) ketabton.com: The Digital Library

coins")
3 //	prints	"PlayerOne	won	2000	coins	&	now	has	2100	coins"
4 println("The	bank	now	only	has	\(Bank.coinsInBank)	coins	left")
5 //	prints	"The	bank	now	only	has	7900	coins	left"

Here, the player has won 2,000 coins. The player’s purse now contains 2,100 coins, and the bank has only 7,900
coins left.

1 playerOne	=	nil
2 println("PlayerOne	has	left	the	game")
3 //	prints	"PlayerOne	has	left	the	game"
4 println("The	bank	now	has	\(Bank.coinsInBank)	coins")
5 //	prints	"The	bank	now	has	10000	coins"

The player has now left the game. This is indicated by setting the optional playerOne variable to nil,
meaning “no Player instance.” At the point that this happens, the playerOne variable’s reference to the
Player instance is broken. No other properties or variables are still referring to the Player instance, and so
it is deallocated in order to free up its memory. Just before this happens, its deinitializer is called automatically,
and its coins are returned to the bank.

(c) ketabton.com: The Digital Library

Automatic Reference Counting

Swift uses Automatic Reference Counting (ARC) to track and manage your app’s memory usage. In most
cases, this means that memory management “just works” in Swift, and you do not need to think about memory
management yourself. ARC automatically frees up the memory used by class instances when those instances
are no longer needed.

However, in a few cases ARC requires more information about the relationships between parts of your code in
order to manage memory for you. This chapter describes those situations and shows how you enable ARC to
manage all of your app’s memory.

N O T E

Reference counting only applies to instances of classes. Structures and enumerations are value
types, not reference types, and are not stored and passed by reference.

How ARC Works

Every time you create a new instance of a class, ARC allocates a chunk of memory to store information about
that instance. This memory holds information about the type of the instance, together with the values of any
stored properties associated with that instance.

Additionally, when an instance is no longer needed, ARC frees up the memory used by that instance so that the
memory can be used for other purposes instead. This ensures that class instances do not take up space in
memory when they are no longer needed.

However, if ARC were to deallocate an instance that was still in use, it would no longer be possible to access
that instance’s properties, or call that instance’s methods. Indeed, if you tried to access the instance, your app
would most likely crash.

(c) ketabton.com: The Digital Library

To make sure that instances don’t disappear while they are still needed, ARC tracks how many properties,
constants, and variables are currently referring to each class instance. ARC will not deallocate an instance as
long as at least one active reference to that instance still exists.

To make this possible, whenever you assign a class instance to a property, constant, or variable, that property,
constant, or variable makes a strong reference to the instance. The reference is called a “strong“ reference
because it keeps a firm hold on that instance, and does not allow it to be deallocated for as long as that strong
reference remains.

ARC in Action

Here’s an example of how Automatic Reference Counting works. This example starts with a simple class
called Person, which defines a stored constant property called name:

1 class	Person	{
2 				let	name:	String
3 				init(name:	String)	{
4 								self.name	=	name
5 								println("\(name)	is	being	initialized")
6 				}
7 				deinit	{
8 								println("\(name)	is	being	deinitialized")
9 				}

10 }

The Person class has an initializer that sets the instance’s name property and prints a message to indicate
that initialization is underway. The Person class also has a deinitializer that prints a message when an
instance of the class is deallocated.

The next code snippet defines three variables of type Person?, which are used to set up multiple references to
a new Person instance in subsequent code snippets. Because these variables are of an optional type
(Person?, not Person), they are automatically initialized with a value of nil, and do not currently reference
a Person instance.

(c) ketabton.com: The Digital Library

1 var	reference1:	Person?
2 var	reference2:	Person?
3 var	reference3:	Person?

You can now create a new Person instance and assign it to one of these three variables:

1 reference1	=	Person(name:	"John	Appleseed")
2 //	prints	"John	Appleseed	is	being	initialized"

Note that the message "John	Appleseed	is	being	initialized" is printed at the point that you
call the Person class’s initializer. This confirms that initialization has taken place.

Because the new Person instance has been assigned to the reference1 variable, there is now a strong
reference from reference1 to the new Person instance. Because there is at least one strong reference,
ARC makes sure that this Person is kept in memory and is not deallocated.

If you assign the same Person instance to two more variables, two more strong references to that instance
are established:

1 reference2	=	reference1
2 reference3	=	reference1

There are now three strong references to this single Person instance.

If you break two of these strong references (including the original reference) by assigning nil to two of the
variables, a single strong reference remains, and the Person instance is not deallocated:

1 reference1	=	nil
2 reference2	=	nil

ARC does not deallocate the Person instance until the third and final strong reference is broken, at which point
it is clear that you are no longer using the Person instance:

(c) ketabton.com: The Digital Library

1 reference3	=	nil
2 //	prints	"John	Appleseed	is	being	deinitialized"

Strong Reference Cycles Between Class Instances

In the examples above, ARC is able to track the number of references to the new Person instance you create
and to deallocate that Person instance when it is no longer needed.

However, it is possible to write code in which an instance of a class never gets to a point where it has zero
strong references. This can happen if two class instances hold a strong reference to each other, such that each
instance keeps the other alive. This is known as a strong reference cycle.

You resolve strong reference cycles by defining some of the relationships between classes as weak or
unowned references instead of as strong references. This process is described in Resolving Strong Reference
Cycles Between Class Instances. However, before you learn how to resolve a strong reference cycle, it is
useful to understand how such a cycle is caused.

Here’s an example of how a strong reference cycle can be created by accident. This example defines two
classes called Person and Apartment, which model a block of apartments and its residents:

1 class	Person	{
2 				let	name:	String
3 				init(name:	String)	{	self.name	=	name	}
4 				var	apartment:	Apartment?
5 				deinit	{	println("\(name)	is	being	deinitialized")	}
6 }
7 	
8 class	Apartment	{
9 				let	number:	Int

10 				init(number:	Int)	{	self.number	=	number	}
11 				var	tenant:	Person?
12 				deinit	{	println("Apartment	#\(number)	is	being	

deinitialized")	}
13 }

(c) ketabton.com: The Digital Library

Every Person instance has a name property of type String and an optional apartment property that is
initially nil. The apartment property is optional, because a person may not always have an apartment.

Similarly, every Apartment instance has a number property of type Int and has an optional tenant
property that is initially nil. The tenant property is optional because an apartment may not always have a
tenant.

Both of these classes also define a deinitializer, which prints the fact that an instance of that class is being
deinitialized. This enables you to see whether instances of Person and Apartment are being deallocated as
expected.

This next code snippet defines two variables of optional type called john and number73, which will be set to
a specific Apartment and Person instance below. Both of these variables have an initial value of nil, by
virtue of being optional:

1 var	john:	Person?
2 var	number73:	Apartment?

You can now create a specific Person instance and Apartment instance and assign these new instances to
the john and number73 variables:

1 john	=	Person(name:	"John	Appleseed")
2 number73	=	Apartment(number:	73)

Here’s how the strong references look after creating and assigning these two instances. The john variable
now has a strong reference to the new Person instance, and the number73 variable has a strong reference to
the new Apartment instance:

(c) ketabton.com: The Digital Library

You can now link the two instances together so that the person has an apartment, and the apartment has a
tenant. Note that an exclamation mark (!) is used to unwrap and access the instances stored inside the john
and number73 optional variables, so that the properties of those instances can be set:

1 john!.apartment	=	number73
2 number73!.tenant	=	john

Here’s how the strong references look after you link the two instances together:

(c) ketabton.com: The Digital Library

Unfortunately, linking these two instances creates a strong reference cycle between them. The Person
instance now has a strong reference to the Apartment instance, and the Apartment instance has a strong
reference to the Person instance. Therefore, when you break the strong references held by the john and
number73 variables, the reference counts do not drop to zero, and the instances are not deallocated by ARC:

1 john	=	nil
2 number73	=	nil

Note that neither deinitializer was called when you set these two variables to nil. The strong reference cycle
prevents the Person and Apartment instances from ever being deallocated, causing a memory leak in your
app.

Here’s how the strong references look after you set the john and number73 variables to nil:

(c) ketabton.com: The Digital Library

The strong references between the Person instance and the Apartment instance remain and cannot be
broken.

Resolving Strong Reference Cycles Between Class Instances

Swift provides two ways to resolve strong reference cycles when you work with properties of class type: weak
references and unowned references.

Weak and unowned references enable one instance in a reference cycle to refer to the other instance without
keeping a strong hold on it. The instances can then refer to each other without creating a strong reference cycle.

Use a weak reference whenever it is valid for that reference to become nil at some point during its lifetime.
Conversely, use an unowned reference when you know that the reference will never be nil once it has been
set during initialization.

Weak References

(c) ketabton.com: The Digital Library

A weak reference is a reference that does not keep a strong hold on the instance it refers to, and so does not
stop ARC from disposing of the referenced instance. This behavior prevents the reference from becoming part
of a strong reference cycle. You indicate a weak reference by placing the weak keyword before a property or
variable declaration.

Use a weak reference to avoid reference cycles whenever it is possible for that reference to have “no value” at
some point in its life. If the reference will always have a value, use an unowned reference instead, as described
in Unowned References. In the Apartment example above, it is appropriate for an apartment to be able to
have “no tenant” at some point in its lifetime, and so a weak reference is an appropriate way to break the
reference cycle in this case.

N O T E

Weak references must be declared as variables, to indicate that their value can change at runtime. A
weak reference cannot be declared as a constant.

Because weak references are allowed to have “no value”, you must declare every weak reference as having an
optional type. Optional types are the preferred way to represent the possibility for “no value” in Swift.

Because a weak reference does not keep a strong hold on the instance it refers to, it is possible for that instance
to be deallocated while the weak reference is still referring to it. Therefore, ARC automatically sets a weak
reference to nil when the instance that it refers to is deallocated. You can check for the existence of a value in
the weak reference, just like any other optional value, and you will never end up with a reference to an invalid
instance that no longer exists.

The example below is identical to the Person and Apartment example from above, with one important
difference. This time around, the Apartment type’s tenant property is declared as a weak reference:

1 class	Person	{
2 				let	name:	String
3 				init(name:	String)	{	self.name	=	name	}
4 				var	apartment:	Apartment?
5 				deinit	{	println("\(name)	is	being	deinitialized")	}

(c) ketabton.com: The Digital Library

6 }
7 	
8 class	Apartment	{
9 				let	number:	Int

10 				init(number:	Int)	{	self.number	=	number	}
11 				weak	var	tenant:	Person?
12 				deinit	{	println("Apartment	#\(number)	is	being	

deinitialized")	}
13 }

The strong references from the two variables (john and number73) and the links between the two instances
are created as before:

1 var	john:	Person?
2 var	number73:	Apartment?
3 	
4 john	=	Person(name:	"John	Appleseed")
5 number73	=	Apartment(number:	73)
6 	
7 john!.apartment	=	number73
8 number73!.tenant	=	john

Here’s how the references look now that you’ve linked the two instances together:

(c) ketabton.com: The Digital Library

The Person instance still has a strong reference to the Apartment instance, but the Apartment instance
now has a weak reference to the Person instance. This means that when you break the strong reference held
by the john variables, there are no more strong references to the Person instance:

(c) ketabton.com: The Digital Library

Because there are no more strong references to the Person instance, it is deallocated:

1 john	=	nil
2 //	prints	"John	Appleseed	is	being	deinitialized"

The only remaining strong reference to the Apartment instance is from the number73 variable. If you break
that strong reference, there are no more strong references to the Apartment instance:

Because there are no more strong references to the Apartment instance, it too is deallocated:

1 number73	=	nil
2 //	prints	"Apartment	#73	is	being	deinitialized"

The final two code snippets above show that the deinitializers for the Person instance and Apartment
instance print their “deinitialized” messages after the john and number73 variables are set to nil. This
proves that the reference cycle has been broken.

(c) ketabton.com: The Digital Library

Unowned References

Like weak references, an unowned reference does not keep a strong hold on the instance it refers to. Unlike a
weak reference, however, an unowned reference is assumed to always have a value. Because of this, an
unowned reference is always defined as a non-optional type. You indicate an unowned reference by placing the
unowned keyword before a property or variable declaration.

Because an unowned reference is non-optional, you don’t need to unwrap the unowned reference each time it is
used. An unowned reference can always be accessed directly. However, ARC cannot set the reference to nil
when the instance it refers to is deallocated, because variables of a non-optional type cannot be set to nil.

N O T E

If you try to access an unowned reference after the instance that it references is deallocated, you will
trigger a runtime error. Use unowned references only when you are sure that the reference will
always refer to an instance.

Note also that Swift guarantees your app will crash if you try to access an unowned reference after
the instance it references is deallocated. You will never encounter unexpected behavior in this
situation. Your app will always crash reliably, although you should, of course, prevent it from doing
so.

The following example defines two classes, Customer and CreditCard, which model a bank customer and
a possible credit card for that customer. These two classes each store an instance of the other class as a
property. This relationship has the potential to create a strong reference cycle.

The relationship between Customer and CreditCard is slightly different from the relationship between
Apartment and Person seen in the weak reference example above. In this data model, a customer may or
may not have a credit card, but a credit card will always be associated with a customer. To represent this, the
Customer class has an optional card property, but the CreditCard class has a non-optional customer
property.

Furthermore, a new CreditCard instance can only be created by passing a number value and a
customer instance to a custom CreditCard initializer. This ensures that a CreditCard instance always
has a customer instance associated with it when the CreditCard instance is created.

(c) ketabton.com: The Digital Library

Because a credit card will always have a customer, you define its customer property as an unowned
reference, to avoid a strong reference cycle:

1 class	Customer	{
2 				let	name:	String
3 				var	card:	CreditCard?
4 				init(name:	String)	{
5 								self.name	=	name
6 				}
7 				deinit	{	println("\(name)	is	being	deinitialized")	}
8 }
9 	

10 class	CreditCard	{
11 				let	number:	Int
12 				unowned	let	customer:	Customer
13 				init(number:	Int,	customer:	Customer)	{
14 								self.number	=	number
15 								self.customer	=	customer
16 				}
17 				deinit	{	println("Card	#\(number)	is	being	deinitialized")	

}
18 }

This next code snippet defines an optional Customer variable called john, which will be used to store a
reference to a specific customer. This variable has an initial value of nil, by virtue of being optional:

1 var	john:	Customer?

You can now create a Customer instance, and use it to initialize and assign a new CreditCard instance as
that customer’s card property:

1 john	=	Customer(name:	"John	Appleseed")
2 john!.card	=	CreditCard(number:	1234_5678_9012_3456,	customer:	john!)

(c) ketabton.com: The Digital Library

Here’s how the references look, now that you’ve linked the two instances:

The Customer instance now has a strong reference to the CreditCard instance, and the CreditCard
instance has an unowned reference to the Customer instance.

Because of the unowned customer reference, when you break the strong reference held by the john
variable, there are no more strong references to the Customer instance:

(c) ketabton.com: The Digital Library

Because there are no more strong references to the Customer instance, it is deallocated. After this happens,
there are no more strong references to the CreditCard instance, and it too is deallocated:

1 john	=	nil
2 //	prints	"John	Appleseed	is	being	deinitialized"
3 //	prints	"Card	#1234567890123456	is	being	deinitialized"

The final code snippet above shows that the deinitializers for the Customer instance and CreditCard
instance both print their “deinitialized” messages after the john variable is set to nil.

Unowned References and Implicitly Unwrapped Optional
Properties

The examples for weak and unowned references above cover two of the more common scenarios in which it is
necessary to break a strong reference cycle.

The Person and Apartment example shows a situation where two properties, both of which are allowed to
be nil, have the potential to cause a strong reference cycle. This scenario is best resolved with a weak

(c) ketabton.com: The Digital Library

reference.

The Customer and CreditCard example shows a situation where one property that is allowed to be nil
and another property that cannot be nil have the potential to cause a strong reference cycle. This scenario is
best resolved with an unowned reference.

However, there is a third scenario, in which both properties should always have a value, and neither property
should ever be nil once initialization is complete. In this scenario, it is useful to combine an unowned property
on one class with an implicitly unwrapped optional property on the other class.

This enables both properties to be accessed directly (without optional unwrapping) once initialization is
complete, while still avoiding a reference cycle. This section shows you how to set up such a relationship.

The example below defines two classes, Country and City, each of which stores an instance of the other
class as a property. In this data model, every country must always have a capital city, and every city must
always belong to a country. To represent this, the Country class has a capitalCity property, and the
City class has a country property:

1 class	Country	{
2 				let	name:	String
3 				let	capitalCity:	City!
4 				init(name:	String,	capitalName:	String)	{
5 								self.name	=	name
6 								self.capitalCity	=	City(name:	capitalName,	country:	self)
7 				}
8 }
9 	

10 class	City	{
11 				let	name:	String
12 				unowned	let	country:	Country
13 				init(name:	String,	country:	Country)	{
14 								self.name	=	name
15 								self.country	=	country
16 				}
17 }

(c) ketabton.com: The Digital Library

To set up the interdependency between the two classes, the initializer for City takes a Country instance, and
stores this instance in its country property.

The initializer for City is called from within the initializer for Country. However, the initializer for Country
cannot pass self to the City initializer until a new Country instance is fully initialized, as described in
Two-Phase Initialization.

To cope with this requirement, you declare the capitalCity property of Country as an implicitly
unwrapped optional property, indicated by the exclamation mark at the end of its type annotation (City!). This
means that the capitalCity property has a default value of nil, like any other optional, but can be
accessed without the need to unwrap its value as described in Implicitly Unwrapped Optionals.

Because capitalCity has a default nil value, a new Country instance is considered fully initialized as
soon as the Country instance sets its name property within its initializer. This means that the Country
initializer can start to reference and pass around the implicit self property as soon as the name property is
set. The Country initializer can therefore pass self as one of the parameters for the City initializer when
the Country initializer is setting its own capitalCity property.

All of this means that you can create the Country and City instances in a single statement, without creating
a strong reference cycle, and the capitalCity property can be accessed directly, without needing to use an
exclamation mark to unwrap its optional value:

1 var	country	=	Country(name:	"Canada",	capitalName:	"Ottawa")
2 println("\(country.name)'s	capital	city	is	called	\

(country.capitalCity.name)")
3 //	prints	"Canada's	capital	city	is	called	Ottawa"

In the example above, the use of an implicitly unwrapped optional means that all of the two-phase class
initializer requirements are satisfied. The capitalCity property can be used and accessed like a non-
optional value once initialization is complete, while still avoiding a strong reference cycle.

Strong Reference Cycles for Closures

You saw above how a strong reference cycle can be created when two class instance properties hold a strong

(c) ketabton.com: The Digital Library

reference to each other. You also saw how to use weak and unowned references to break these strong
reference cycles.

A strong reference cycle can also occur if you assign a closure to a property of a class instance, and the body of
that closure captures the instance. This capture might occur because the closure’s body accesses a property of
the instance, such as self.someProperty, or because the closure calls a method on the instance, such as
self.someMethod(). In either case, these accesses cause the closure to “capture” self, creating a
strong reference cycle.

This strong reference cycle occurs because closures, like classes, are reference types. When you assign a
closure to a property, you are assigning a reference to that closure. In essence, it’s the same problem as above
—two strong references are keeping each other alive. However, rather than two class instances, this time it’s a
class instance and a closure that are keeping each other alive.

Swift provides an elegant solution to this problem, known as a closure capture list. However, before you learn
how to break a strong reference cycle with a closure capture list, it is useful to understand how such a cycle can
be caused.

The example below shows how you can create a strong reference cycle when using a closure that references
self. This example defines a class called HTMLElement, which provides a simple model for an individual
element within an HTML document:

1 class	HTMLElement	{
2 				
3 				let	name:	String
4 				let	text:	String?
5 				
6 				@lazy	var	asHTML:	()	->	String	=	{
7 								if	let	text	=	self.text	{
8 												return	"<\(self.name)>\(text)</\(self.name)>"
9 								}	else	{

10 												return	"<\(self.name)	/>"
11 								}
12 				}
13 				
14 				init(name:	String,	text:	String?	=	nil)	{
15 								self.name	=	name

(c) ketabton.com: The Digital Library

16 								self.text	=	text
17 				}
18 				
19 				deinit	{
20 								println("\(name)	is	being	deinitialized")
21 				}
22 				
23 }

The HTMLElement class defines a name property, which indicates the name of the element, such as "p" for
a paragraph element, or "br" for a line break element. HTMLElement also defines an optional text
property, which you can set to a string that represents the text to be rendered within that HTML element.

In addition to these two simple properties, the HTMLElement class defines a lazy property called asHTML.
This property references a closure that combines name and text into an HTML string fragment. The asHTML
property is of type ()	->	String, or “a function that takes no parameters, and returns a String value”.

By default, the asHTML property is assigned a closure that returns a string representation of an HTML tag. This
tag contains the optional text value if it exists, or no text content if text does not exist. For a paragraph
element, the closure would return "<p>some	text</p>" or "<p	/>", depending on whether the text
property equals "some	text" or nil.

The asHTML property is named and used somewhat like an instance method. However, because asHTML is a
closure property rather than an instance method, you can replace the default value of the asHTML property with
a custom closure, if you want to change the HTML rendering for a particular HTML element.

N O T E

The asHTML property is declared as a lazy property, because it is only needed if and when the
element actually needs to be rendered as a string value for some HTML output target. The fact that
asHTML is a lazy property means that you can refer to self within the default closure, because the
lazy property will not be accessed until after initialization has been completed and self is known to
exist.

(c) ketabton.com: The Digital Library

The HTMLElement class provides a single initializer, which takes a name argument and (if desired) a text
argument to initialize a new element. The class also defines a deinitializer, which prints a message to show
when an HTMLElement instance is deallocated.

Here’s how you use the HTMLElement class to create and print a new instance:

1 var	paragraph:	HTMLElement?	=	HTMLElement(name:	"p",	text:	"hello,	
world")

2 println(paragraph!.asHTML())
3 //	prints	"<p>hello,	world</p>"

N O T E

The paragraph variable above is defined as an optional HTMLElement, so that it can be set to
nil below to demonstrate the presence of a strong reference cycle.

Unfortunately, the HTMLElement class, as written above, creates a strong reference cycle between an
HTMLElement instance and the closure used for its default asHTML value. Here’s how the cycle looks:

(c) ketabton.com: The Digital Library

The instance’s asHTML property holds a strong reference to its closure. However, because the closure refers
to self within its body (as a way to reference self.name and self.text), the closure captures self,
which means that it holds a strong reference back to the HTMLElement instance. A strong reference cycle is
created between the two. (For more information about capturing values in a closure, see Capturing Values.)

N O T E

Even though the closure refers to self multiple times, it only captures one strong reference to the
HTMLElement instance.

If you set the paragraph variable to nil and break its strong reference to the HTMLElement instance,
neither the HTMLElement instance nor its closure are deallocated, because of the strong reference cycle:

1 paragraph	=	nil

(c) ketabton.com: The Digital Library

Note that the message in the HTMLElement deinitializer is not printed, which shows that the HTMLElement
instance is not deallocated.

Resolving Strong Reference Cycles for Closures

You resolve a strong reference cycle between a closure and a class instance by defining a capture list as part of
the closure’s definition. A capture list defines the rules to use when capturing one or more reference types
within the closure’s body. As with strong reference cycles between two class instances, you declare each
captured reference to be a weak or unowned reference rather than a strong reference. The appropriate choice of
weak or unowned depends on the relationships between the different parts of your code.

N O T E

Swift requires you to write self.someProperty or self.someMethod (rather than just
someProperty or someMethod) whenever you refer to a member of self within a closure.
This helps you remember that it’s possible to capture self by accident.

Defining a Capture List

Each item in a capture list is a pairing of the weak or unowned keyword with a reference to a class instance
(such as self or someInstance). These pairings are written within a pair of square braces, separated by
commas.

Place the capture list before a closure’s parameter list and return type if they are provided:

1 @lazy	var	someClosure:	(Int,	String)	->	String	=	{
2 				[unowned	self]	(index:	Int,	stringToProcess:	String)	->	String	in
3 				//	closure	body	goes	here
4 }

(c) ketabton.com: The Digital Library

If a closure does not specify a parameter list or return type because they can be inferred from context, place the
capture list at the very start of the closure, followed by the in keyword:

1 @lazy	var	someClosure:	()	->	String	=	{
2 				[unowned	self]	in
3 				//	closure	body	goes	here
4 }

Weak and Unowned References

Define a capture in a closure as an unowned reference when the closure and the instance it captures will
always refer to each other, and will always be deallocated at the same time.

Conversely, define a capture as a weak reference when the captured reference may become nil at some point
in the future. Weak references are always of an optional type, and automatically become nil when the instance
they reference is deallocated. This enables you to check for their existence within the closure’s body.

N O T E

If the captured reference will never become nil, it should always be captured as an unowned
reference, rather than a weak reference.

An unowned reference is the appropriate capture method to use to resolve the strong reference cycle in the
HTMLElement example from earlier. Here’s how you write the HTMLElement class to avoid the cycle:

1 class	HTMLElement	{
2 				
3 				let	name:	String
4 				let	text:	String?
5 				

(c) ketabton.com: The Digital Library

6 				@lazy	var	asHTML:	()	->	String	=	{
7 								[unowned	self]	in
8 								if	let	text	=	self.text	{
9 												return	"<\(self.name)>\(text)</\(self.name)>"

10 								}	else	{
11 												return	"<\(self.name)	/>"
12 								}
13 				}
14 				
15 				init(name:	String,	text:	String?	=	nil)	{
16 								self.name	=	name
17 								self.text	=	text
18 				}
19 				
20 				deinit	{
21 								println("\(name)	is	being	deinitialized")
22 				}
23 				
24 }

This implementation of HTMLElement is identical to the previous implementation, apart from the addition of a
capture list within the asHTML closure. In this case, the capture list is [unowned	self], which means
“capture self as an unowned reference rather than a strong reference”.

You can create and print an HTMLElement instance as before:

1 var	paragraph:	HTMLElement?	=	HTMLElement(name:	"p",	text:	"hello,	
world")

2 println(paragraph!.asHTML())
3 //	prints	"<p>hello,	world</p>"

Here’s how the references look with the capture list in place:

(c) ketabton.com: The Digital Library

This time, the capture of self by the closure is an unowned reference, and does not keep a strong hold on the
HTMLElement instance it has captured. If you set the strong reference from the paragraph variable to nil,
the HTMLElement instance is deallocated, as can be seen from the printing of its deinitializer message in the
example below:

1 paragraph	=	nil
2 //	prints	"p	is	being	deinitialized"

(c) ketabton.com: The Digital Library

Optional Chaining

Optional chaining is a process for querying and calling properties, methods, and subscripts on an optional that
might currently be nil. If the optional contains a value, the property, method, or subscript call succeeds; if the
optional is nil, the property, method, or subscript call returns nil. Multiple queries can be chained together,
and the entire chain fails gracefully if any link in the chain is nil.

N O T E

Optional chaining in Swift is similar to messaging nil in Objective-C, but in a way that works for
any type, and that can be checked for success or failure.

Optional Chaining as an Alternative to Forced Unwrapping

You specify optional chaining by placing a question mark (?) after the optional value on which you wish to call a
property, method or subscript if the optional is non-nil. This is very similar to placing an exclamation mark
(!) after an optional value to force the unwrapping of its value. The main difference is that optional chaining fails
gracefully when the optional is nil, whereas forced unwrapping triggers a runtime error when the optional is
nil.

To reflect the fact that optional chaining can be called on a nil value, the result of an optional chaining call is
always an optional value, even if the property, method, or subscript you are querying returns a non-optional
value. You can use this optional return value to check whether the optional chaining call was successful (the
returned optional contains a value), or did not succeed due to a nil value in the chain (the returned optional
value is nil).

Specifically, the result of an optional chaining call is of the same type as the expected return value, but wrapped
in an optional. A property that normally returns an Int will return an Int? when accessed through optional

(c) ketabton.com: The Digital Library

chaining.

The next several code snippets demonstrate how optional chaining differs from forced unwrapping and enables
you to check for success.

First, two classes called Person and Residence are defined:

1 class	Person	{
2 				var	residence:	Residence?
3 }
4 	
5 class	Residence	{
6 				var	numberOfRooms	=	1
7 }

Residence instances have a single Int property called numberOfRooms, with a default value of 1.
Person instances have an optional residence property of type Residence?.

If you create a new Person instance, its residence property is default initialized to nil, by virtue of being
optional. In the code below, john has a residence property value of nil:

1 let	john	=	Person()

If you try to access the numberOfRooms property of this person’s residence, by placing an exclamation
mark after residence to force the unwrapping of its value, you trigger a runtime error, because there is no
residence value to unwrap:

1 let	roomCount	=	john.residence!.numberOfRooms
2 //	this	triggers	a	runtime	error

The code above succeeds when john.residence has a non-nil value and will set roomCount to an Int
value containing the appropriate number of rooms. However, this code always triggers a runtime error when
residence is nil, as illustrated above.

(c) ketabton.com: The Digital Library

Optional chaining provides an alternative way to access the value of numberOfRooms. To use optional
chaining, use a question mark in place of the exclamation mark:

1 if	let	roomCount	=	john.residence?.numberOfRooms	{
2 				println("John's	residence	has	\(roomCount)	room(s).")
3 }	else	{
4 				println("Unable	to	retrieve	the	number	of	rooms.")
5 }
6 //	prints	"Unable	to	retrieve	the	number	of	rooms."

This tells Swift to “chain” on the optional residence property and to retrieve the value of numberOfRooms
if residence exists.

Because the attempt to access numberOfRooms has the potential to fail, the optional chaining attempt returns
a value of type Int?, or “optional Int”. When residence is nil, as in the example above, this optional
Int will also be nil, to reflect the fact that it was not possible to access numberOfRooms.

Note that this is true even though numberOfRooms is a non-optional Int. The fact that it is queried through an
optional chain means that the call to numberOfRooms will always return an Int? instead of an Int.

You can assign a Residence instance to john.residence, so that it no longer has a nil value:

1 john.residence	=	Residence()

john.residence now contains an actual Residence instance, rather than nil. If you try to access
numberOfRooms with the same optional chaining as before, it will now return an Int? that contains the
default numberOfRooms value of 1:

1 if	let	roomCount	=	john.residence?.numberOfRooms	{
2 				println("John's	residence	has	\(roomCount)	room(s).")
3 }	else	{
4 				println("Unable	to	retrieve	the	number	of	rooms.")
5 }
6 //	prints	"John's	residence	has	1	room(s)."

(c) ketabton.com: The Digital Library

Defining Model Classes for Optional Chaining

You can use optional chaining with calls to properties, methods, and subscripts that are more than one level
deep. This enables you to drill down into subproperties within complex models of interrelated types, and to
check whether it is possible to access properties, methods, and subscripts on those subproperties.

The code snippets below define four model classes for use in several subsequent examples, including
examples of multilevel optional chaining. These classes expand upon the Person and Residence model
from above by adding a Room and Address class, with associated properties, methods, and subscripts.

The Person class is defined in the same way as before:

1 class	Person	{
2 				var	residence:	Residence?
3 }

The Residence class is more complex than before. This time, the Residence class defines a variable
property called rooms, which is initialized with an empty array of type Room[]:

1 class	Residence	{
2 				var	rooms	=	Room[]()
3 				var	numberOfRooms:	Int	{
4 				return	rooms.count
5 				}
6 				subscript(i:	Int)	->	Room	{
7 								return	rooms[i]
8 				}
9 				func	printNumberOfRooms()	{

10 								println("The	number	of	rooms	is	\(numberOfRooms)")
11 				}
12 				var	address:	Address?
13 }

(c) ketabton.com: The Digital Library

Because this version of Residence stores an array of Room instances, its numberOfRooms property is
implemented as a computed property, not a stored property. The computed numberOfRooms property simply
returns the value of the count property from the rooms array.

As a shortcut to accessing its rooms array, this version of Residence provides a read-only subscript, which
starts by asserting that the index passed to the subscript is valid. If the index is valid, the subscript returns the
room at the requested index in the rooms array.

This version of Residence also provides a method called printNumberOfRooms, which simply prints the
number of rooms in the residence.

Finally, Residence defines an optional property called address, with a type of Address?. The Address
class type for this property is defined below.

The Room class used for the rooms array is a simple class with one property called name, and an initializer to
set that property to a suitable room name:

1 class	Room	{
2 				let	name:	String
3 				init(name:	String)	{	self.name	=	name	}
4 }

The final class in this model is called Address. This class has three optional properties of type String?.
The first two properties, buildingName and buildingNumber, are alternative ways to identify a
particular building as part of an address. The third property, street, is used to name the street for that
address:

1 class	Address	{
2 				var	buildingName:	String?
3 				var	buildingNumber:	String?
4 				var	street:	String?
5 				func	buildingIdentifier()	->	String?	{
6 								if	buildingName	{
7 												return	buildingName
8 								}	else	if	buildingNumber	{

(c) ketabton.com: The Digital Library

9 												return	buildingNumber
10 								}	else	{
11 												return	nil
12 								}
13 				}
14 }

The Address class also provides a method called buildingIdentifier, which has a return type of
String?. This method checks the buildingName and buildingNumber properties and returns
buildingName if it has a value, or buildingNumber if it has a value, or nil if neither property has a
value.

Calling Properties Through Optional Chaining

As demonstrated in Optional Chaining as an Alternative to Forced Unwrapping, you can use optional chaining to
access a property on an optional value, and to check if that property access is successful. You cannot, however,
set a property’s value through optional chaining.

Use the classes defined above to create a new Person instance, and try to access its numberOfRooms
property as before:

1 let	john	=	Person()
2 if	let	roomCount	=	john.residence?.numberOfRooms	{
3 				println("John's	residence	has	\(roomCount)	room(s).")
4 }	else	{
5 				println("Unable	to	retrieve	the	number	of	rooms.")
6 }
7 //	prints	"Unable	to	retrieve	the	number	of	rooms."

Because john.residence is nil, this optional chaining call fails in the same way as before, without error.

Calling Methods Through Optional Chaining

(c) ketabton.com: The Digital Library

You can use optional chaining to call a method on an optional value, and to check whether that method call is
successful. You can do this even if that method does not define a return value.

The printNumberOfRooms method on the Residence class prints the current value of
numberOfRooms. Here’s how the method looks:

1 func	printNumberOfRooms()	{
2 				println("The	number	of	rooms	is	\(numberOfRooms)")
3 }

This method does not specify a return type. However, functions and methods with no return type have an
implicit return type of Void, as described in Functions Without Return Values.

If you call this method on an optional value with optional chaining, the method’s return type will be Void?, not
Void, because return values are always of an optional type when called through optional chaining. This enables
you to use an if statement to check whether it was possible to call the printNumberOfRooms method,
even though the method does not itself define a return value. The implicit return value from the
printNumberOfRooms will be equal to Void if the method was called succesfully through optional
chaining, or nil if was not:

1 if	john.residence?.printNumberOfRooms()	{
2 				println("It	was	possible	to	print	the	number	of	rooms.")
3 }	else	{
4 				println("It	was	not	possible	to	print	the	number	of	rooms.")
5 }
6 //	prints	"It	was	not	possible	to	print	the	number	of	rooms."

Calling Subscripts Through Optional Chaining

You can use optional chaining to try to retrieve a value from a subscript on an optional value, and to check
whether that subscript call is successful. You cannot, however, set a subscript through optional chaining.

(c) ketabton.com: The Digital Library

N O T E

When you access a subscript on an optional value through optional chaining, you place the question
mark before the subscript’s braces, not after. The optional chaining question mark always follows
immediately after the part of the expression that is optional.

The example below tries to retrieve the name of the first room in the rooms array of the john.residence
property using the subscript defined on the Residence class. Because john.residence is currently nil,
the subscript call fails:

1 if	let	firstRoomName	=	john.residence?[0].name	{
2 				println("The	first	room	name	is	\(firstRoomName).")
3 }	else	{
4 				println("Unable	to	retrieve	the	first	room	name.")
5 }
6 //	prints	"Unable	to	retrieve	the	first	room	name."

The optional chaining question mark in this subscript call is placed immediately after john.residence,
before the subscript brackets, because john.residence is the optional value on which optional chaining is
being attempted.

If you create and assign an actual Residence instance to john.residence, with one or more Room
instances in its rooms array, you can use the Residence subscript to access the actual items in the rooms
array through optional chaining:

1 let	johnsHouse	=	Residence()
2 johnsHouse.rooms	+=	Room(name:	"Living	Room")
3 johnsHouse.rooms	+=	Room(name:	"Kitchen")
4 john.residence	=	johnsHouse
5 	
6 if	let	firstRoomName	=	john.residence?[0].name	{
7 				println("The	first	room	name	is	\(firstRoomName).")
8 }	else	{

(c) ketabton.com: The Digital Library

9 				println("Unable	to	retrieve	the	first	room	name.")
10 }
11 //	prints	"The	first	room	name	is	Living	Room."

Linking Multiple Levels of Chaining

You can link together multiple levels of optional chaining to drill down to properties, methods, and subscripts
deeper within a model. However, multiple levels of optional chaining do not add more levels of optionality to the
returned value.

To put it another way:

Therefore:

The example below tries to access the street property of the address property of the residence
property of john. There are two levels of optional chaining in use here, to chain through the residence and
address properties, both of which are of optional type:

1 if	let	johnsStreet	=	john.residence?.address?.street	{
2 				println("John's	street	name	is	\(johnsStreet).")
3 }	else	{
4 				println("Unable	to	retrieve	the	address.")
5 }

If the type you are trying to retrieve is not optional, it will become optional because of the optional
chaining.

If the type you are trying to retrieve is already optional, it will not become more optional because
of the chaining.

If you try to retrieve an Int value through optional chaining, an Int? is always returned, no
matter how many levels of chaining are used.

Similarly, if you try to retrieve an Int? value through optional chaining, an Int? is always
returned, no matter how many levels of chaining are used.

(c) ketabton.com: The Digital Library

6 //	prints	"Unable	to	retrieve	the	address."

The value of john.residence currently contains a valid Residence instance. However, the value of
john.residence.address is currently nil. Because of this, the call to
john.residence?.address?.street fails.

Note that in the example above, you are trying to retrieve the value of the street property. The type of this
property is String?. The return value of john.residence?.address?.street is therefore also
String?, even though two levels of optional chaining are applied in addition to the underlying optional type of
the property.

If you set an actual Address instance as the value for john.street.address, and set an an actual value
for the address’s street property, you can access the value of property through the multi-level optional
chaining:

1 let	johnsAddress	=	Address()
2 johnsAddress.buildingName	=	"The	Larches"
3 johnsAddress.street	=	"Laurel	Street"
4 john.residence!.address	=	johnsAddress
5 	
6 if	let	johnsStreet	=	john.residence?.address?.street	{
7 				println("John's	street	name	is	\(johnsStreet).")
8 }	else	{
9 				println("Unable	to	retrieve	the	address.")

10 }
11 //	prints	"John's	street	name	is	Laurel	Street."

Note the use of an exclamation mark during the assignment of an address instance to
john.residence.address. The john.residence property has an optional type, and so you need to
unwrap its actual value with an exclamation mark before accessing the residence’s address property.

Chaining on Methods With Optional Return Values

The previous example shows how to retrieve the value of a property of optional type through optional chaining.

(c) ketabton.com: The Digital Library

You can also use optional chaining to call a method that returns a value of optional type, and to chain on that
method’s return value if needed.

The example below calls the Address class’s buildingIdentifier method through optional chaining.
This method returns a value of type String?. As described above, the ultimate return type of this method call
after optional chaining is also String?:

1 if	let	buildingIdentifier	=	
john.residence?.address?.buildingIdentifier()	{

2 				println("John's	building	identifier	is	\(buildingIdentifier).")
3 }
4 //	prints	"John's	building	identifier	is	The	Larches."

If you want to perform further optional chaining on this method’s return value, place the optional chaining
question mark after the method’s parentheses:

1 if	let	upper	=	
john.residence?.address?.buildingIdentifier()?.uppercaseString
{

2 				println("John's	uppercase	building	identifier	is	\(upper).")
3 }
4 //	prints	"John's	uppercase	building	identifier	is	THE	LARCHES."

N O T E

In the example above, you place the optional chaining question mark after the parentheses, because
the optional value you are chaining on is the buildingIdentifier method’s return value, and
not the buildingIdentifier method itself.

(c) ketabton.com: The Digital Library

Type Casting

Type casting is a way to check the type of an instance, and/or to treat that instance as if it is a different
superclass or subclass from somewhere else in its own class hierarchy.

Type casting in Swift is implemented with the is and as operators. These two operators provide a simple and
expressive way to check the type of a value or cast a value to a different type.

You can also use type casting to check whether a type conforms to a protocol, as described in Checking for
Protocol Conformance.

Defining a Class Hierarchy for Type Casting

You can use type casting with a hierarchy of classes and subclasses to check the type of a particular class
instance and to cast that instance to another class within the same hierarchy. The three code snippets below
define a hierarchy of classes and an array containing instances of those classes, for use in an example of type
casting.

The first snippet defines a new base class called MediaItem. This class provides basic functionality for any
kind of item that appears in a digital media library. Specifically, it declares a name property of type String,
and an init	name initializer. (It is assumed that all media items, including all movies and songs, will have a
name.)

1 class	MediaItem	{
2 				var	name:	String
3 				init(name:	String)	{
4 								self.name	=	name
5 				}
6 }

The next snippet defines two subclasses of MediaItem. The first subclass, Movie, encapsulates additional
information about a movie or film. It adds a director property on top of the base MediaItem class, with a

(c) ketabton.com: The Digital Library

corresponding initializer. The second subclass, Song, adds an artist property and initializer on top of the
base class:

1 class	Movie:	MediaItem	{
2 				var	director:	String
3 				init(name:	String,	director:	String)	{
4 								self.director	=	director
5 								super.init(name:	name)
6 				}
7 }
8 	
9 class	Song:	MediaItem	{

10 				var	artist:	String
11 				init(name:	String,	artist:	String)	{
12 								self.artist	=	artist
13 								super.init(name:	name)
14 				}
15 }

The final snippet creates a constant array called library, which contains two Movie instances and three
Song instances. The type of the library array is inferred by initializing it with the contents of an array literal.
Swift’s type checker is able to deduce that Movie and Song have a common superclass of MediaItem, and
so it infers a type of MediaItem[] for the library array:

1 let	library	=	[
2 				Movie(name:	"Casablanca",	director:	"Michael	Curtiz"),
3 				Song(name:	"Blue	Suede	Shoes",	artist:	"Elvis	Presley"),
4 				Movie(name:	"Citizen	Kane",	director:	"Orson	Welles"),
5 				Song(name:	"The	One	And	Only",	artist:	"Chesney	Hawkes"),
6 				Song(name:	"Never	Gonna	Give	You	Up",	artist:	"Rick	Astley")
7]
8 //	the	type	of	"library"	is	inferred	to	be	MediaItem[]

The items stored in library are still Movie and Song instances behind the scenes. However, if you iterate
over the contents of this array, the items you receive back are typed as MediaItem, and not as Movie or

(c) ketabton.com: The Digital Library

Song. In order to work with them as their native type, you need to check their type, or downcast them to a
different type, as described below.

Checking Type

Use the type check operator (is) to check whether an instance is of a certain subclass type. The type check
operator returns true if the instance is of that subclass type and false if it is not.

The example below defines two variables, movieCount and songCount, which count the number of Movie
and Song instances in the library array:

1 var	movieCount	=	0
2 var	songCount	=	0
3 	
4 for	item	in	library	{
5 				if	item	is	Movie	{
6 								++movieCount
7 				}	else	if	item	is	Song	{
8 								++songCount
9 				}

10 }
11 	
12 println("Media	library	contains	\(movieCount)	movies	and	\

(songCount)	songs")
13 //	prints	"Media	library	contains	2	movies	and	3	songs"

This example iterates through all items in the library array. On each pass, the for-in loop sets the item
constant to the next MediaItem in the array.

item	is	Movie returns true if the current MediaItem is a Movie instance and false if it is not.
Similarly, item	is	Song checks whether the item is a Song instance. At the end of the for-in loop, the
values of movieCount and songCount contain a count of how many MediaItem instances were found of
each type.

(c) ketabton.com: The Digital Library

Downcasting

A constant or variable of a certain class type may actually refer to an instance of a subclass behind the scenes.
Where you believe this is the case, you can try to downcast to the subclass type with the type cast operator
(as).

Because downcasting can fail, the type cast operator comes in two different forms. The optional form, as?,
returns an optional value of the type you are trying to downcast to. The forced form, as, attempts the downcast
and force-unwraps the result as a single compound action.

Use the optional form of the type cast operator (as?) when you are not sure if the downcast will succeed. This
form of the operator will always return an optional value, and the value will be nil if the downcast was not
possible. This enables you to check for a successful downcast.

Use the forced form of the type cast operator (as) only when you are sure that the downcast will always
succeed. This form of the operator will trigger a runtime error if you try to downcast to an incorrect class type.

The example below iterates over each MediaItem in library, and prints an appropriate description for
each item. To do this, it needs to access each item as a true Movie or Song, and not just as a MediaItem.
This is necessary in order for it to be able to access the director or artist property of a Movie or Song
for use in the description.

In this example, each item in the array might be a Movie, or it might be a Song. You don’t know in advance
which actual class to use for each item, and so it is appropriate to use the optional form of the type cast operator
(as?) to check the downcast each time through the loop:

1 for	item	in	library	{
2 				if	let	movie	=	item	as?	Movie	{
3 								println("Movie:	'\(movie.name)',	dir.	\(movie.director)")
4 				}	else	if	let	song	=	item	as?	Song	{
5 								println("Song:	'\(song.name)',	by	\(song.artist)")
6 				}
7 }
8 	

(c) ketabton.com: The Digital Library

9 //	Movie:	'Casablanca',	dir.	Michael	Curtiz
10 //	Song:	'Blue	Suede	Shoes',	by	Elvis	Presley
11 //	Movie:	'Citizen	Kane',	dir.	Orson	Welles
12 //	Song:	'The	One	And	Only',	by	Chesney	Hawkes
13 //	Song:	'Never	Gonna	Give	You	Up',	by	Rick	Astley

The example starts by trying to downcast the current item as a Movie. Because item is a MediaItem
instance, it’s possible that it might be a Movie; equally, it’s also possible that it might a Song, or even just a
base MediaItem. Because of this uncertainty, the as? form of the type cast operator returns an optional value
when attempting to downcast to a subclass type. The result of item	as	Movie is of type Movie?, or
“optional Movie”.

Downcasting to Movie fails when applied to the two Song instances in the library array. To cope with this, the
example above uses optional binding to check whether the optional Movie actually contains a value (that is, to
find out whether the downcast succeeded.) This optional binding is written “if	let	movie	=	item	as?
Movie”, which can be read as:

“Try to access item as a Movie. If this is successful, set a new temporary constant called movie to the
value stored in the returned optional Movie.”

If the downcasting succeeds, the properties of movie are then used to print a description for that Movie
instance, including the name of its director. A similar principle is used to check for Song instances, and to
print an appropriate description (including artist name) whenever a Song is found in the library.

N O T E

Casting does not actually modify the instance or change its values. The underlying instance remains
the same; it is simply treated and accessed as an instance of the type to which it has been cast.

Type Casting for Any and AnyObject

(c) ketabton.com: The Digital Library

Swift provides two special type aliases for working with non-specific types:

N O T E

Use Any and AnyObject only when you explicitly need the behavior and capabilities they provide.
It is always better to be specific about the types you expect to work with in your code.

AnyObject

When working with Cocoa APIs, it is common to receive an array with a type of AnyObject[], or “an array
of values of any object type”. This is because Objective-C does not have explicitly typed arrays. However, you
can often be confident about the type of objects contained in such an array just from the information you know
about the API that provided the array.

In these situations, you can use the forced version of the type cast operator (as) to downcast each item in the
array to a more specific class type than AnyObject, without the need for optional unwrapping.

The example below defines an array of type AnyObject[] and populates this array with three instances of
the Movie class:

1 let	someObjects:	AnyObject[]	=	[
2 				Movie(name:	"2001:	A	Space	Odyssey",	director:	"Stanley	Kubrick"),
3 				Movie(name:	"Moon",	director:	"Duncan	Jones"),
4 				Movie(name:	"Alien",	director:	"Ridley	Scott")
5]

AnyObject can represent an instance of any class type.

Any can represent an instance of any type at all, apart from function types.

(c) ketabton.com: The Digital Library

Because this array is known to contain only Movie instances, you can downcast and unwrap directly to a non-
optional Movie with the forced version of the type cast operator (as):

1 for	object	in	someObjects	{
2 				let	movie	=	object	as	Movie
3 				println("Movie:	'\(movie.name)',	dir.	\(movie.director)")
4 }
5 //	Movie:	'2001:	A	Space	Odyssey',	dir.	Stanley	Kubrick
6 //	Movie:	'Moon',	dir.	Duncan	Jones
7 //	Movie:	'Alien',	dir.	Ridley	Scott

For an even shorter form of this loop, downcast the someObjects array to a type of Movie[] instead of
downcasting each item:

1 for	movie	in	someObjects	as	Movie[]	{
2 				println("Movie:	'\(movie.name)',	dir.	\(movie.director)")
3 }
4 //	Movie:	'2001:	A	Space	Odyssey',	dir.	Stanley	Kubrick
5 //	Movie:	'Moon',	dir.	Duncan	Jones
6 //	Movie:	'Alien',	dir.	Ridley	Scott

Any

Here’s an example of using Any to work with a mix of different types, including non-class types. The example
creates an array called things, which can store values of type Any:

1 var	things	=	Any[]()
2 	
3 things.append(0)
4 things.append(0.0)
5 things.append(42)
6 things.append(3.14159)
7 things.append("hello")

(c) ketabton.com: The Digital Library

8 things.append((3.0,	5.0))
9 things.append(Movie(name:	"Ghostbusters",	director:	"Ivan	Reitman"))

The things array contains two Int values, two Double values, a String value, a tuple of type
(Double,	Double), and the movie “Ghostbusters”, directed by Ivan Reitman.

You can use the is and as operators in a switch statement’s cases to discover the specific type of a constant
or variable that is known only to be of type Any or AnyObject. The example below iterates over the items in
the things array and queries the type of each item with a switch statement. Several of the switch
statement’s cases bind their matched value to a constant of the specified type to enable its value to be printed:

1 for	thing	in	things	{
2 				switch	thing	{
3 				case	0	as	Int:
4 								println("zero	as	an	Int")
5 				case	0	as	Double:
6 								println("zero	as	a	Double")
7 				case	let	someInt	as	Int:
8 								println("an	integer	value	of	\(someInt)")
9 				case	let	someDouble	as	Double	where	someDouble	>	0:

10 								println("a	positive	double	value	of	\(someDouble)")
11 				case	is	Double:
12 								println("some	other	double	value	that	I	don't	want	to	

print")
13 				case	let	someString	as	String:
14 								println("a	string	value	of	\"\(someString)\"")
15 				case	let	(x,	y)	as	(Double,	Double):
16 								println("an	(x,	y)	point	at	\(x),	\(y)")
17 				case	let	movie	as	Movie:
18 								println("a	movie	called	'\(movie.name)',	dir.	\

(movie.director)")
19 				default:
20 								println("something	else")
21 				}
22 }

(c) ketabton.com: The Digital Library

23 	
24 //	zero	as	an	Int
25 //	zero	as	a	Double
26 //	an	integer	value	of	42
27 //	a	positive	double	value	of	3.14159
28 //	a	string	value	of	"hello"
29 //	an	(x,	y)	point	at	3.0,	5.0
30 //	a	movie	called	'Ghostbusters',	dir.	Ivan	Reitman

N O T E

The cases of a switch statement use the forced version of the type cast operator (as, not as?) to
check and cast to a specific type. This check is always safe within the context of a switch case
statement.

(c) ketabton.com: The Digital Library

Nested Types

Enumerations are often created to support a specific class or structure’s functionality. Similarly, it can be
convenient to define utility classes and structures purely for use within the context of a more complex type. To
accomplish this, Swift enables you to define nested types, whereby you nest supporting enumerations, classes,
and structures within the definition of the type they support.

To nest a type within another type, write its definition within the outer braces of the type it supports. Types can
be nested to as many levels as are required.

Nested Types in Action

The example below defines a structure called BlackjackCard, which models a playing card as used in the
game of Blackjack. The BlackJack structure contains two nested enumeration types called Suit and Rank.

In Blackjack, the Ace cards have a value of either one or eleven. This feature is represented by a structure
called Values, which is nested within the Rank enumeration:

1 struct	BlackjackCard	{
2 				
3 				//	nested	Suit	enumeration
4 				enum	Suit:	Character	{
5 								case	Spades	=	"♠",	Hearts	=	"♡",	Diamonds	=	"♢",	Clubs	=	"♣"
6 				}
7 				
8 				//	nested	Rank	enumeration
9 				enum	Rank:	Int	{

10 								case	Two	=	2,	Three,	Four,	Five,	Six,	Seven,	Eight,	
Nine,	Ten

11 								case	Jack,	Queen,	King,	Ace
12 								struct	Values	{
13 												let	first:	Int,	second:	Int?

(c) ketabton.com: The Digital Library

14 								}
15 								var	values:	Values	{
16 								switch	self	{
17 								case	.Ace:
18 												return	Values(first:	1,	second:	11)
19 								case	.Jack,	.Queen,	.King:
20 												return	Values(first:	10,	second:	nil)
21 								default:
22 												return	Values(first:	self.toRaw(),	second:	nil)
23 												}
24 								}
25 				}
26 				
27 				//	BlackjackCard	properties	and	methods
28 				let	rank:	Rank,	suit:	Suit
29 				var	description:	String	{
30 				var	output	=	"suit	is	\(suit.toRaw()),"
31 								output	+=	"	value	is	\(rank.values.first)"
32 								if	let	second	=	rank.values.second	{
33 												output	+=	"	or	\(second)"
34 								}
35 								return	output
36 				}
37 }

The Suit enumeration describes the four common playing card suits, together with a raw Character value
to represent their symbol.

The Rank enumeration describes the thirteen possible playing card ranks, together with a raw Int value to
represent their face value. (This raw Int value is not used for the Jack, Queen, King, and Ace cards.)

As mentioned above, the Rank enumeration defines a further nested structure of its own, called Values. This
structure encapsulates the fact that most cards have one value, but the Ace card has two values. The Values
structure defines two properties to represent this:

first, of type Int

(c) ketabton.com: The Digital Library

Rank also defines a computed property, values, which returns an instance of the Values structure. This
computed property considers the rank of the card and initializes a new Values instance with appropriate
values based on its rank. It uses special values for Jack, Queen, King, and Ace. For the numeric cards, it
uses the rank’s raw Int value.

The BlackjackCard structure itself has two properties—rank and suit. It also defines a computed
property called description, which uses the values stored in rank and suit to build a description of the
name and value of the card. The description property uses optional binding to check whether there is a
second value to display, and if so, inserts additional description detail for that second value.

Because BlackjackCard is a structure with no custom initializers, it has an implicit memberwise initializer,
as described in Memberwise Initializers for Structure Types. You can use this initializer to initialize a new
constant called theAceOfSpades:

1 let	theAceOfSpades	=	BlackjackCard(rank:	.Ace,	suit:	.Spades)
2 println("theAceOfSpades:	\(theAceOfSpades.description)")
3 //	prints	"theAceOfSpades:	suit	is	♠,	value	is	1	or	11"

Even though Rank and Suit are nested within BlackjackCard, their type can be inferred from context, and
so the initialization of this instance is able to refer to the enumeration members by their member names (.Ace
and .Spades) alone. In the example above, the description property correctly reports that the Ace of
Spades has a value of 1 or 11.

Referring to Nested Types

To use a nested type outside of its definition context, prefix its name with the name of the type it is nested within:

1 let	heartsSymbol	=	BlackjackCard.Suit.Hearts.toRaw()
2 //	heartsSymbol	is	"♡"

second, of type Int?, or “optional Int”

(c) ketabton.com: The Digital Library

For the example above, this enables the names of Suit, Rank, and Values to be kept deliberately short,
because their names are naturally qualified by the context in which they are defined.

(c) ketabton.com: The Digital Library

Extensions

Extensions add new functionality to an existing class, structure, or enumeration type. This includes the ability to
extend types for which you do not have access to the original source code (known as retroactive modeling).
Extensions are similar to categories in Objective-C. (Unlike Objective-C categories, Swift extensions do not
have names.)

Extensions in Swift can:

N O T E

If you define an extension to add new functionality to an existing type, the new functionality will be
available on all existing instances of that type, even if they were created before the extension was
defined.

Extension Syntax

Declare extensions with the extension keyword:

Add computed properties and computed static properties

Define instance methods and type methods

Provide new initializers

Define subscripts

Define and use new nested types

Make an existing type conform to a protocol

(c) ketabton.com: The Digital Library

1 extension	SomeType	{
2 				//	new	functionality	to	add	to	SomeType	goes	here
3 }

An extension can extend an existing type to make it adopt one or more protocols. Where this is the case, the
protocol names are written in exactly the same way as for a class or structure:

1 extension	SomeType:	SomeProtocol,	AnotherProtocol	{
2 				//	implementation	of	protocol	requirements	goes	here
3 }

Adding protocol conformance in this way is described in Adding Protocol Conformance with an Extension.

Computed Properties

Extensions can add computed instance properties and computed type properties to existing types. This example
adds five computed instance properties to Swift’s built-in Double type, to provide basic support for working
with distance units:

1 extension	Double	{
2 				var	km:	Double	{	return	self	*	1_000.0	}
3 				var	m:	Double	{	return	self	}
4 				var	cm:	Double	{	return	self	/	100.0	}
5 				var	mm:	Double	{	return	self	/	1_000.0	}
6 				var	ft:	Double	{	return	self	/	3.28084	}
7 }
8 let	oneInch	=	25.4.mm
9 println("One	inch	is	\(oneInch)	meters")

10 //	prints	"One	inch	is	0.0254	meters"
11 let	threeFeet	=	3.ft
12 println("Three	feet	is	\(threeFeet)	meters")
13 //	prints	"Three	feet	is	0.914399970739201	meters"

(c) ketabton.com: The Digital Library

These computed properties express that a Double value should be considered as a certain unit of length.
Although they are implemented as computed properties, the names of these properties can be appended to a
floating-point literal value with dot syntax, as a way to use that literal value to perform distance conversions.

In this example, a Double value of 1.0 is considered to represent “one meter”. This is why the m computed
property returns self—the expression 1.m is considered to calculate a Double value of 1.0.

Other units require some conversion to be expressed as a value measured in meters. One kilometer is the
same as 1,000 meters, so the km computed property multiplies the value by 1_000.00 to convert into a
number expressed in meters. Similarly, there are 3.28024 feet in a meter, and so the ft computed property
divides the underlying Double value by 3.28024, to convert it from feet to meters.

These properties are read-only computed properties, and so they are expressed without the get keyword, for
brevity. Their return value is of type Double, and can be used within mathematical calculations wherever a
Double is accepted:

1 let	aMarathon	=	42.km	+	195.m
2 println("A	marathon	is	\(aMarathon)	meters	long")
3 //	prints	"A	marathon	is	42195.0	meters	long"

N O T E

Extensions can add new computed properties, but they cannot add stored properties, or add property
observers to existing properties.

Initializers

Extensions can add new initializers to existing types. This enables you to extend other types to accept your own
custom types as initializer parameters, or to provide additional initialization options that were not included as
part of the type’s original implementation.

(c) ketabton.com: The Digital Library

Extensions can add new convenience initializers to a class, but they cannot add new designated initializers or
deinitializers to a class. Designated initializers and deinitializers must always be provided by the original class
implementation.

N O T E

If you use an extension to add an initializer to a value type that provides default values for all of its
stored properties and does not define any custom initializers, you can call the default initializer and
memberwise initializer for that value type from within your extension’s initializer.

This would not be the case if you had written the initializer as part of the value type’s original
implementation, as described in Initializer Delegation for Value Types.

The example below defines a custom Rect structure to represent a geometric rectangle. The example also
defines two supporting structures called Size and Point, both of which provide default values of 0.0 for all of
their properties:

1 struct	Size	{
2 				var	width	=	0.0,	height	=	0.0
3 }
4 struct	Point	{
5 				var	x	=	0.0,	y	=	0.0
6 }
7 struct	Rect	{
8 				var	origin	=	Point()
9 				var	size	=	Size()

10 }

Because the Rect structure provides default values for all of its properties, it receives a default initializer and a
memberwise initializer automatically, as described in Default Initializers. These initializers can be used to
create new Rect instances:

1 let	defaultRect	=	Rect()

(c) ketabton.com: The Digital Library

2 let	memberwiseRect	=	Rect(origin:	Point(x:	2.0,	y:	2.0),
3 				size:	Size(width:	5.0,	height:	5.0))

You can extend the Rect structure to provide an additional initializer that takes a specific center point and size:

1 extension	Rect	{
2 				init(center:	Point,	size:	Size)	{
3 								let	originX	=	center.x	-	(size.width	/	2)
4 								let	originY	=	center.y	-	(size.height	/	2)
5 								self.init(origin:	Point(x:	originX,	y:	originY),	size:	size)
6 				}
7 }

This new initializer starts by calculating an appropriate origin point based on the provided center point and
size value. The initializer then calls the structure’s automatic memberwise initializer
init(origin:size:), which stores the new origin and size values in the appropriate properties:

1 let	centerRect	=	Rect(center:	Point(x:	4.0,	y:	4.0),
2 				size:	Size(width:	3.0,	height:	3.0))
3 //	centerRect's	origin	is	(2.5,	2.5)	and	its	size	is	(3.0,	3.0)

N O T E

If you provide a new initializer with an extension, you are still responsible for making sure that each
instance is fully initialized once the initializer completes.

Methods

Extensions can add new instance methods and type methods to existing types. The following example adds a

(c) ketabton.com: The Digital Library

new instance method called repetitions to the Int type:

1 extension	Int	{
2 				func	repetitions(task:	()	->	())	{
3 								for	i	in	0..self	{
4 												task()
5 								}
6 				}
7 }

The repetitions method takes a single argument of type ()	->	(), which indicates a function that has no
parameters and does not return a value.

After defining this extension, you can call the repetitions method on any integer number to perform a task
that many number of times:

1 3.repetitions({
2 				println("Hello!")
3 				})
4 //	Hello!
5 //	Hello!
6 //	Hello!

Use trailing closure syntax to make the call more succinct:

1 3.repetitions	{
2 				println("Goodbye!")
3 }
4 //	Goodbye!
5 //	Goodbye!
6 //	Goodbye!

(c) ketabton.com: The Digital Library

Mutating Instance Methods

Instance methods added with an extension can also modify (or mutate) the instance itself. Structure and
enumeration methods that modify self or its properties must mark the instance method as mutating, just
like mutating methods from an original implementation.

The example below adds a new mutating method called square to Swift’s Int type, which squares the
original value:

1 extension	Int	{
2 				mutating	func	square()	{
3 								self	=	self	*	self
4 				}
5 }
6 var	someInt	=	3
7 someInt.square()
8 //	someInt	is	now	9

Subscripts

Extensions can add new subscripts to an existing type. This example adds an integer subscript to Swift’s built-
in Int type. This subscript [n] returns the decimal digit n places in from the right of the number:

…and so on:

1 extension	Int	{
2 				subscript(digitIndex:	Int)	->	Int	{
3 								var	decimalBase	=	1
4 												for	_	in	1...digitIndex	{
5 																decimalBase	*=	10

123456789[0] returns 9

123456789[1] returns 8

(c) ketabton.com: The Digital Library

6 												}
7 												return	(self	/	decimalBase)	%	10
8 				}
9 }

10 746381295[0]
11 //	returns	5
12 746381295[1]
13 //	returns	9
14 746381295[2]
15 //	returns	2
16 746381295[8]
17 //	returns	7

If the Int value does not have enough digits for the requested index, the subscript implementation returns 0, as
if the number had been padded with zeroes to the left:

1 746381295[9]
2 //	returns	0,	as	if	you	had	requested:
3 0746381295[9]

Nested Types

Extensions can add new nested types to existing classes, structures and enumerations:

1 extension	Character	{
2 				enum	Kind	{
3 								case	Vowel,	Consonant,	Other
4 				}
5 				var	kind:	Kind	{
6 				switch	String(self).lowercaseString	{
7 				case	"a",	"e",	"i",	"o",	"u":
8 								return	.Vowel
9 				case	"b",	"c",	"d",	"f",	"g",	"h",	"j",	"k",	"l",	"m",

(c) ketabton.com: The Digital Library

10 				"n",	"p",	"q",	"r",	"s",	"t",	"v",	"w",	"x",	"y",	"z":
11 								return	.Consonant
12 				default:
13 								return	.Other
14 								}
15 				}
16 }

This example adds a new nested enumeration to Character. This enumeration, called Kind, expresses the
kind of letter that a particular character represents. Specifically, it expresses whether the character is a vowel
or a consonant in a standard Latin script (without taking into account accents or regional variations), or whether
it is another kind of character.

This example also adds a new computed instance property to Character, called kind, which returns the
appropriate Kind enumeration member for that character.

The nested enumeration can now be used with Character values:

1 func	printLetterKinds(word:	String)	{
2 				println("'\(word)'	is	made	up	of	the	following	kinds	of	letters:")
3 				for	character	in	word	{
4 								switch	character.kind	{
5 								case	.Vowel:
6 												print("vowel	")
7 								case	.Consonant:
8 												print("consonant	")
9 								case	.Other:

10 												print("other	")
11 								}
12 				}
13 				print("\n")
14 }
15 printLetterKinds("Hello")
16 //	'Hello'	is	made	up	of	the	following	kinds	of	letters:
17 //	consonant	vowel	consonant	consonant	vowel

(c) ketabton.com: The Digital Library

This function, printLetterKinds, takes an input String value and iterates over its characters. For each
character, it considers the kind computed property for that character, and prints an appropriate description of
that kind. The printLetterKinds function can then be called to print the kinds of letters in an entire word,
as shown here for the word "Hello".

N O T E

character.kind is already known to be of type Character.Kind. Because of this, all of the
Character.Kind member values can be written in shorthand form inside the switch
statement, such as .Vowel rather than Character.Kind.Vowel.

(c) ketabton.com: The Digital Library

Protocols

A protocol defines a blueprint of methods, properties, and other requirements that suit a particular task or piece
of functionality. The protocol doesn’t actually provide an implementation for any of these requirements—it only
describes what an implementation will look like. The protocol can then be adopted by a class, structure, or
enumeration to provide an actual implementation of those requirements. Any type that satisfies the
requirements of a protocol is said to conform to that protocol.

Protocols can require that conforming types have specific instance properties, instance methods, type methods,
operators, and subscripts.

Protocol Syntax

You define protocols in a very similar way to classes, structures, and enumerations:

1 protocol	SomeProtocol	{
2 				//	protocol	definition	goes	here
3 }

Custom types state that they adopt a particular protocol by placing the protocol’s name after the type’s name,
separated by a colon, as part of their definition. Multiple protocols can be listed, and are separated by commas:

1 struct	SomeStructure:	FirstProtocol,	AnotherProtocol	{
2 				//	structure	definition	goes	here
3 }

If a class has a superclass, list the superclass name before any protocols it adopts, followed by a comma:

1 class	SomeClass:	SomeSuperclass,	FirstProtocol,	AnotherProtocol	{
2 				//	class	definition	goes	here
3 }

(c) ketabton.com: The Digital Library

Property Requirements

A protocol can require any conforming type to provide an instance property or type property with a particular
name and type. The protocol doesn’t specify whether the property should be a stored property or a computed
property—it only specifies the required property name and type. The protocol also specifies whether each
property must be gettable or gettable and settable.

If a protocol requires a property to be gettable and settable, that property requirement cannot be fulfilled by a
constant stored property or a read-only computed property. If the protocol only requires a property to be
gettable, the requirement can be satisfied by any kind of property, and it is valid for it also to be settable if this is
useful for your own code.

Property requirements are always declared as variable properties, prefixed with the var keyword. Gettable
and settable properties are indicated by writing {	get	set	} after their type declaration, and gettable
properties are indicated by writing {	get	}.

1 protocol	SomeProtocol	{
2 				var	mustBeSettable:	Int	{	get	set	}
3 				var	doesNotNeedToBeSettable:	Int	{	get	}
4 }

Always prefix type property requirements with the class keyword when you define them in a protocol. This is
true even though type property requirements are prefixed with the static keyword when implemented by a
structure or enumeration:

1 protocol	AnotherProtocol	{
2 				class	var	someTypeProperty:	Int	{	get	set	}
3 }

Here’s an example of a protocol with a single instance property requirement:

1 protocol	FullyNamed	{

(c) ketabton.com: The Digital Library

2 				var	fullName:	String	{	get	}
3 }

The FullyNamed protocol defines any kind of thing that has a fully-qualified name. It doesn’t specify what kind
of thing it must be—it only specifies that the thing must be able to provide a full name for itself. It specifies this
requirement by stating that any FullyNamed type must have a gettable instance property called fullName,
which is of type String.

Here’s an example of a simple structure that adopts and conforms to the FullyNamed protocol:

1 struct	Person:	FullyNamed	{
2 				var	fullName:	String
3 }
4 let	john	=	Person(fullName:	"John	Appleseed")
5 //	john.fullName	is	"John	Appleseed"

This example defines a structure called Person, which represents a specific named person. It states that it
adopts the FullyNamed protocol as part of the first line of its definition.

Each instance of Person has a single stored property called fullName, which is of type String. This
matches the single requirement of the FullyNamed protocol, and means that Person has correctly
conformed to the protocol. (Swift reports an error at compile-time if a protocol requirement is not fulfilled.)

Here’s a more complex class, which also adopts and conforms to the FullyNamed protocol:

1 class	Starship:	FullyNamed	{
2 				var	prefix:	String?
3 				var	name:	String
4 				init(name:	String,	prefix:	String?	=	nil)	{
5 								self.name	=	name
6 								self.prefix	=	prefix
7 				}
8 				var	fullName:	String	{
9 				return	(prefix	?	prefix!	+	"	"	:	"")	+	name

10 				}

(c) ketabton.com: The Digital Library

11 }
12 var	ncc1701	=	Starship(name:	"Enterprise",	prefix:	"USS")
13 //	ncc1701.fullName	is	"USS	Enterprise"

This class implements the fullName property requirement as a computed read-only property for a starship.
Each Starship class instance stores a mandatory name and an optional prefix. The fullName property
uses the prefix value if it exists, and prepends it to the beginning of name to create a full name for the
starship.

Method Requirements

Protocols can require specific instance methods and type methods to be implemented by conforming types.
These methods are written as part of the protocol’s definition in exactly the same way as for normal instance
and type methods, but without curly braces or a method body. Variadic parameters are allowed, subject to the
same rules as for normal methods.

N O T E

Protocols use the same syntax as normal methods, but are not allowed to specify default values for
method parameters.

As with type property requirements, you always prefix type method requirements with the class keyword
when they are defined in a protocol. This is true even though type method requirements are prefixed with the
static keyword when implemented by a structure or enumeration:

1 protocol	SomeProtocol	{
2 				class	func	someTypeMethod()
3 }

The following example defines a protocol with a single instance method requirement:

(c) ketabton.com: The Digital Library

1 protocol	RandomNumberGenerator	{
2 				func	random()	->	Double
3 }

This protocol, RandomNumberGenerator, requires any conforming type to have an instance method called
random, which returns a Double value whenever it is called. (Although it is not specified as part of the
protocol, it is assumed that this value will be a number between 0.0 and 1.0 inclusive.)

The RandomNumberGenerator protocol does not make any assumptions about how each random number
will be generated—it simply requires the generator to provide a standard way to generate a new random
number.

Here’s an implementation of a class that adopts and conforms to the RandomNumberGenerator protocol.
This class implements a pseudorandom number generator algorithm known as a linear congruential generator:

1 class	LinearCongruentialGenerator:	RandomNumberGenerator	{
2 				var	lastRandom	=	42.0
3 				let	m	=	139968.0
4 				let	a	=	3877.0
5 				let	c	=	29573.0
6 				func	random()	->	Double	{
7 								lastRandom	=	((lastRandom	*	a	+	c)	%	m)
8 								return	lastRandom	/	m
9 				}

10 }
11 let	generator	=	LinearCongruentialGenerator()
12 println("Here's	a	random	number:	\(generator.random())")
13 //	prints	"Here's	a	random	number:	0.37464991998171"
14 println("And	another	one:	\(generator.random())")
15 //	prints	"And	another	one:	0.729023776863283"

Mutating Method Requirements

(c) ketabton.com: The Digital Library

It is sometimes necessary for a method to modify (or mutate) the instance it belongs to. For instance methods
on value types (that is, structures and enumerations) you place the mutating keyword before a method’s
func keyword to indicate that the method is allowed to modify the instance it belongs to and/or any properties
of that instance. This process is described in Modifying Value Types from Within Instance Methods.

If you define a protocol instance method requirement that is intended to mutate instances of any type that adopts
the protocol, mark the method with the mutating keyword as part of the protocol’s definition. This enables
structures and enumerations to adopt the protocol and satisfy that method requirement.

N O T E

If you mark a protocol instance method requirement as mutating, you do not need to write the
mutating keyword when writing an implementation of that method for a class. The mutating
keyword is only used by structures and enumerations.

The example below defines a protocol called Togglable, which defines a single instance method
requirement called toggle. As its name suggests, the toggle method is intended to toggle or invert the state
of any conforming type, typically by modifying a property of that type.

The toggle method is marked with the mutating keyword as part of the Togglable protocol definition, to
indicate that the method is expected to mutate the state of a conforming instance when it is called:

1 protocol	Togglable	{
2 				mutating	func	toggle()
3 }

If you implement the Togglable protocol for a structure or enumeration, that structure or enumeration can
conform to the protocol by providing an implementation of the toggle method that is also marked as
mutating.

The example below defines an enumeration called OnOffSwitch. This enumeration toggles between two
states, indicated by the enumeration cases On and Off. The enumeration’s toggle implementation is

(c) ketabton.com: The Digital Library

marked as mutating, to match the Togglable protocol’s requirements:

1 enum	OnOffSwitch:	Togglable	{
2 				case	Off,	On
3 				mutating	func	toggle()	{
4 								switch	self	{
5 								case	Off:
6 												self	=	On
7 								case	On:
8 												self	=	Off
9 								}

10 				}
11 }
12 var	lightSwitch	=	OnOffSwitch.Off
13 lightSwitch.toggle()
14 //	lightSwitch	is	now	equal	to	.On

Protocols as Types

Protocols do not actually implement any functionality themselves. Nonetheless, any protocol you create will
become a fully-fledged type for use in your code.

Because it is a type, you can use a protocol in many places where other types are allowed, including:

N O T E

Because protocols are types, begin their names with a capital letter (such as FullyNamed and

As a parameter type or return type in a function, method, or initializer

As the type of a constant, variable, or property

As the type of items in an array, dictionary, or other container

(c) ketabton.com: The Digital Library

RandomNumberGenerator) to match the names of other types in Swift (such as Int, String,
and Double).

Here’s an example of a protocol used as a type:

1 class	Dice	{
2 				let	sides:	Int
3 				let	generator:	RandomNumberGenerator
4 				init(sides:	Int,	generator:	RandomNumberGenerator)	{
5 								self.sides	=	sides
6 								self.generator	=	generator
7 				}
8 				func	roll()	->	Int	{
9 								return	Int(generator.random()	*	Double(sides))	+	1

10 				}
11 }

This example defines a new class called Dice, which represents an n-sided dice for use in a board game.
Dice instances have an integer property called sides, which represents how many sides they have, and a
property called generator, which provides a random number generator from which to create dice roll
values.

The generator property is of type RandomNumberGenerator. Therefore, you can set it to an instance of
any type that adopts the RandomNumberGenerator protocol. Nothing else is required of the instance you
assign to this property, except that the instance must adopt the RandomNumberGenerator protocol.

Dice also has an initializer, to set up its initial state. This initializer has a parameter called generator,
which is also of type RandomNumberGenerator. You can pass a value of any conforming type in to this
parameter when initializing a new Dice instance.

Dice provides one instance method, roll, which returns an integer value between 1 and the number of sides
on the dice. This method calls the generator’s random method to create a new random number between 0.0
and 1.0, and uses this random number to create a dice roll value within the correct range. Because

(c) ketabton.com: The Digital Library

generator is known to adopt RandomNumberGenerator, it is guaranteed to have a random method to
call.

Here’s how the Dice class can be used to create a six-sided dice with a
LinearCongruentialGenerator instance as its random number generator:

1 var	d6	=	Dice(sides:	6,	generator:	LinearCongruentialGenerator())
2 for	_	in	1...5	{
3 				println("Random	dice	roll	is	\(d6.roll())")
4 }
5 //	Random	dice	roll	is	3
6 //	Random	dice	roll	is	5
7 //	Random	dice	roll	is	4
8 //	Random	dice	roll	is	5
9 //	Random	dice	roll	is	4

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or delegate) some of its
responsibilities to an instance of another type. This design pattern is implemented by defining a protocol that
encapsulates the delegated responsibilities, such that a conforming type (known as a delegate) is guaranteed to
provide the functionality that has been delegated. Delegation can be used to respond to a particular action, or to
retrieve data from an external source without needing to know the underlying type of that source.

The example below defines two protocols for use with dice-based board games:

1 protocol	DiceGame	{
2 				var	dice:	Dice	{	get	}
3 				func	play()
4 }
5 protocol	DiceGameDelegate	{
6 				func	gameDidStart(game:	DiceGame)
7 				func	game(game:	DiceGame,	didStartNewTurnWithDiceRoll	diceRoll:	

Int)

(c) ketabton.com: The Digital Library

8 				func	gameDidEnd(game:	DiceGame)
9 }

The DiceGame protocol is a protocol that can be adopted by any game that involves dice. The
DiceGameDelegate protocol can be adopted by any type to track the progress of a DiceGame.

Here’s a version of the Snakes and Ladders game originally introduced in Control Flow. This version is adapted
to use a Dice instance for its dice-rolls; to adopt the DiceGame protocol; and to notify a
DiceGameDelegate about its progress:

1 class	SnakesAndLadders:	DiceGame	{
2 				let	finalSquare	=	25
3 				let	dice	=	Dice(sides:	6,	generator:	

LinearCongruentialGenerator())
4 				var	square	=	0
5 				var	board:	Int[]
6 				init()	{
7 								board	=	Int[](count:	finalSquare	+	1,	repeatedValue:	0)
8 								board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=

+02
9 								board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=

-08
10 				}
11 				var	delegate:	DiceGameDelegate?
12 				func	play()	{
13 								square	=	0
14 								delegate?.gameDidStart(self)
15 								gameLoop:	while	square	!=	finalSquare	{
16 												let	diceRoll	=	dice.roll()
17 												delegate?.game(self,	didStartNewTurnWithDiceRoll:	

diceRoll)
18 												switch	square	+	diceRoll	{
19 												case	finalSquare:
20 																break	gameLoop
21 												case	let	newSquare	where	newSquare	>	finalSquare:
22 																continue	gameLoop

(c) ketabton.com: The Digital Library

23 												default:
24 																square	+=	diceRoll
25 																square	+=	board[square]
26 												}
27 								}
28 								delegate?.gameDidEnd(self)
29 				}
30 }

For a description of the Snakes and Ladders gameplay, see the Break section of the Control Flow chapter.

This version of the game is wrapped up as a class called SnakesAndLadders, which adopts the
DiceGame protocol. It provides a gettable dice property and a play method in order to conform to the
protocol. (The dice property is declared as a constant property because it does not need to change after
initialization, and the protocol only requires that it is gettable.)

The Snakes and Ladders game board setup takes place within the class’s init() initializer. All game logic is
moved into the protocol’s play method, which uses the protocol’s required dice property to provide its dice
roll values.

Note that the delegate property is defined as an optional DiceGameDelegate, because a delegate isn’t
required in order to play the game. Because it is of an optional type, the delegate property is automatically
set to an initial value of nil. Thereafter, the game instantiator has the option to set the property to a suitable
delegate.

DiceGameDelegate provides three methods for tracking the progress of a game. These three methods have
been incorporated into the game logic within the play method above, and are called when a new game starts, a
new turn begins, or the game ends.

Because the delegate property is an optional DiceGameDelegate, the play method uses optional
chaining each time it calls a method on the delegate. If the delegate property is nil, these delegate calls fail
gracefully and without error. If the delegate property is non-nil, the delegate methods are called, and are
passed the SnakesAndLadders instance as a parameter.

This next example shows a class called DiceGameTracker, which adopts the DiceGameDelegate
protocol:

(c) ketabton.com: The Digital Library

1 class	DiceGameTracker:	DiceGameDelegate	{
2 				var	numberOfTurns	=	0
3 				func	gameDidStart(game:	DiceGame)	{
4 								numberOfTurns	=	0
5 								if	game	is	SnakesAndLadders	{
6 												println("Started	a	new	game	of	Snakes	and	Ladders")
7 								}
8 								println("The	game	is	using	a	\(game.dice.sides)-sided	dice")
9 				}

10 				func	game(game:	DiceGame,	didStartNewTurnWithDiceRoll	
diceRoll:	Int)	{

11 								++numberOfTurns
12 								println("Rolled	a	\(diceRoll)")
13 				}
14 				func	gameDidEnd(game:	DiceGame)	{
15 								println("The	game	lasted	for	\(numberOfTurns)	turns")
16 				}
17 }

DiceGameTracker implements all three methods required by DiceGameDelegate. It uses these
methods to keep track of the number of turns a game has taken. It resets a numberOfTurns property to zero
when the game starts; increments it each time a new turn begins; and prints out the total number of turns once
the game has ended.

The implementation of gameDidStart shown above uses the game parameter to print some introductory
information about the game that is about to be played. The game parameter has a type of DiceGame, not
SnakesAndLadders, and so gameDidStart can access and use only methods and properties that are
implemented as part of the DiceGame protocol. However, the method is still able to use type casting to query
the type of the underlying instance. In this example, it checks whether game is actually an instance of
SnakesAndLadders behind the scenes, and prints an appropriate message if so.

gameDidStart also accesses the dice property of the passed game parameter. Because game is known
to conform to the DiceGame protocol, it is guaranteed to have a dice property, and so the gameDidStart
method is able to access and print the dice’s sides property, regardless of what kind of game is being played.

Here’s how DiceGameTracker looks in action:

(c) ketabton.com: The Digital Library

1 let	tracker	=	DiceGameTracker()
2 let	game	=	SnakesAndLadders()
3 game.delegate	=	tracker
4 game.play()
5 //	Started	a	new	game	of	Snakes	and	Ladders
6 //	The	game	is	using	a	6-sided	dice
7 //	Rolled	a	3
8 //	Rolled	a	5
9 //	Rolled	a	4

10 //	Rolled	a	5
11 //	The	game	lasted	for	4	turns

Adding Protocol Conformance with an Extension

You can extend an existing type to adopt and conform to a new protocol, even if you do not have access to the
source code for the existing type. Extensions can add new properties, methods, and subscripts to an existing
type, and are therefore able to add any requirements that a protocol may demand. For more about extensions,
see Extensions.

N O T E

Existing instances of a type automatically adopt and conform to a protocol when that conformance is
added to the instance’s type in an extension.

For example, this protocol, called TextRepresentable, can be implemented by any type that has a way to
be represented as text. This might be a description of itself, or a text version of its current state:

1 protocol	TextRepresentable	{
2 				func	asText()	->	String
3 }

(c) ketabton.com: The Digital Library

The Dice class from earlier can be extended to adopt and conform to TextRepresentable:

1 extension	Dice:	TextRepresentable	{
2 				func	asText()	->	String	{
3 								return	"A	\(sides)-sided	dice"
4 				}
5 }

This extension adopts the new protocol in exactly the same way as if Dice had provided it in its original
implementation. The protocol name is provided after the type name, separated by a colon, and an
implementation of all requirements of the protocol is provided within the extension’s curly braces.

Any Dice instance can now be treated as TextRepresentable:

1 let	d12	=	Dice(sides:	12,	generator:	LinearCongruentialGenerator())
2 println(d12.asText())
3 //	prints	"A	12-sided	dice"

Similarly, the SnakesAndLadders game class can be extended to adopt and conform to the
TextRepresentable protocol:

1 extension	SnakesAndLadders:	TextRepresentable	{
2 				func	asText()	->	String	{
3 								return	"A	game	of	Snakes	and	Ladders	with	\(finalSquare)	

squares"
4 				}
5 }
6 println(game.asText())
7 //	prints	"A	game	of	Snakes	and	Ladders	with	25	squares"

Declaring Protocol Adoption with an Extension

(c) ketabton.com: The Digital Library

If a type already conforms to all of the requirements of a protocol, but has not yet stated that it adopts that
protocol, you can make it adopt the protocol with an empty extension:

1 struct	Hamster	{
2 				var	name:	String
3 				func	asText()	->	String	{
4 								return	"A	hamster	named	\(name)"
5 				}
6 }
7 extension	Hamster:	TextRepresentable	{}

Instances of Hamster can now be used wherever TextRepresentable is the required type:

1 let	simonTheHamster	=	Hamster(name:	"Simon")
2 let	somethingTextRepresentable:	TextRepresentable	=	simonTheHamster
3 println(somethingTextRepresentable.asText())
4 //	prints	"A	hamster	named	Simon"

N O T E

Types do not automatically adopt a protocol just by satisfying its requirements. They must always
explicitly declare their adoption of the protocol.

Collections of Protocol Types

A protocol can be used as the type to be stored in a collection such as an array or a dictionary, as mentioned in
Protocols as Types. This example creates an array of TextRepresentable things:

1 let	things:	TextRepresentable[]	=	[game,	d12,	simonTheHamster]

(c) ketabton.com: The Digital Library

It is now possible to iterate over the items in the array, and print each item’s textual representation:

1 for	thing	in	things	{
2 				println(thing.asText())
3 }
4 //	A	game	of	Snakes	and	Ladders	with	25	squares
5 //	A	12-sided	dice
6 //	A	hamster	named	Simon

Note that the thing constant is of type TextRepresentable. It is not of type Dice, or DiceGame, or
Hamster, even if the actual instance behind the scenes is of one of those types. Nonetheless, because it is of
type TextRepresentable, and anything that is TextRepresentable is known to have an asText
method, it is safe to call thing.asText each time through the loop.

Protocol Inheritance

A protocol can inherit one or more other protocols and can add further requirements on top of the requirements
it inherits. The syntax for protocol inheritance is similar to the syntax for class inheritance, but with the option to
list multiple inherited protocols, separated by commas:

1 protocol	InheritingProtocol:	SomeProtocol,	AnotherProtocol	{
2 				//	protocol	definition	goes	here
3 }

Here’s an example of a protocol that inherits the TextRepresentable protocol from above:

1 protocol	PrettyTextRepresentable:	TextRepresentable	{
2 				func	asPrettyText()	->	String
3 }

This example defines a new protocol, PrettyTextRepresentable, which inherits from
TextRepresentable. Anything that adopts PrettyTextRepresentable must satisfy all of the

(c) ketabton.com: The Digital Library

requirements enforced by TextRepresentable, plus the additional requirements enforced by
PrettyTextRepresentable. In this example, PrettyTextRepresentable adds a single
requirement to provide an instance method called asPrettyText that returns a String.

The SnakesAndLadders class can be extended to adopt and conform to PrettyTextRepresentable:

1 extension	SnakesAndLadders:	PrettyTextRepresentable	{
2 				func	asPrettyText()	->	String	{
3 								var	output	=	asText()	+	":\n"
4 								for	index	in	1...finalSquare	{
5 												switch	board[index]	{
6 												case	let	ladder	where	ladder	>	0:
7 																output	+=	"▲	"
8 												case	let	snake	where	snake	<	0:
9 																output	+=	"▼	"

10 												default:
11 																output	+=	"○	"
12 												}
13 								}
14 								return	output
15 				}
16 }

This extension states that it adopts the PrettyTextRepresentable protocol and provides an
implementation of the asPrettyText method for the SnakesAndLadders type. Anything that is
PrettyTextRepresentable must also be TextRepresentable, and so the asPrettyText
implementation starts by calling the asText method from the TextRepresentable protocol to begin an
output string. It appends a colon and a line break, and uses this as the start of its pretty text representation. It
then iterates through the array of board squares, and appends an emoji representation for each square:

The method implementation can now be used to print a pretty text description of any SnakesAndLadders

If the square’s value is greater than 0, it is the base of a ladder, and is represented by ▲.

If the square’s value is less than 0, it is the head of a snake, and is represented by ▼.

Otherwise, the square’s value is 0, and it is a “free” square, represented by ○.

(c) ketabton.com: The Digital Library

instance:

1 println(game.asPrettyText())
2 //	A	game	of	Snakes	and	Ladders	with	25	squares:
3 //	○	○	▲	○	○	▲	○	○	▲	▲	○	○	○	▼	○	○	○	○	▼	○	○	▼	○	▼	○

Protocol Composition

It can be useful to require a type to conform to multiple protocols at once. You can combine multiple protocols
into a single requirement with a protocol composition. Protocol compositions have the form
protocol<SomeProtocol,	AnotherProtocol>. You can list as many protocols within the pair of
angle brackets (<>) as you need, separated by commas.

Here’s an example that combines two protocols called Named and Aged into a single protocol composition
requirement on a function parameter:

1 protocol	Named	{
2 				var	name:	String	{	get	}
3 }
4 protocol	Aged	{
5 				var	age:	Int	{	get	}
6 }
7 struct	Person:	Named,	Aged	{
8 				var	name:	String
9 				var	age:	Int

10 }
11 func	wishHappyBirthday(celebrator:	protocol<Named,	Aged>)	{
12 				println("Happy	birthday	\(celebrator.name)	-	you're	\

(celebrator.age)!")
13 }
14 let	birthdayPerson	=	Person(name:	"Malcolm",	age:	21)
15 wishHappyBirthday(birthdayPerson)
16 //	prints	"Happy	birthday	Malcolm	-	you're	21!"

(c) ketabton.com: The Digital Library

This example defines a protocol called Named, with a single requirement for a gettable String property
called name. It also defines a protocol called Aged, with a single requirement for a gettable Int property
called age. Both of these protocols are adopted by a structure called Person.

The example also defines a function called wishHappyBirthday, which takes a single parameter called
celebrator. The type of this parameter is protocol<Named,	Aged>, which means “any type that
conforms to both the Named and Aged protocols.” It doesn’t matter what specific type is passed to the function,
as long as it conforms to both of the required protocols.

The example then creates a new Person instance called birthdayPerson and passes this new instance to
the wishHappyBirthday function. Because Person conforms to both protocols, this is a valid call, and the
wishHappyBirthday function is able to print its birthday greeting.

N O T E

Protocol compositions do not define a new, permanent protocol type. Rather, they define a
temporary local protocol that has the combined requirements of all protocols in the composition.

Checking for Protocol Conformance

You can use the is and as operators described in Type Casting to check for protocol conformance, and to cast
to a specific protocol. Checking for and casting to a protocol follows exactly the same syntax as checking for
and casting to a type:

The is operator returns true if an instance conforms to a protocol and returns false if it does
not.

The as? version of the downcast operator returns an optional value of the protocol’s type, and
this value is nil if the instance does not conform to that protocol.

The as version of the downcast operator forces the downcast to the protocol type and triggers a
runtime error if the downcast does not succeed.

(c) ketabton.com: The Digital Library

This example defines a protocol called HasArea, with a single property requirement of a gettable Double
property called area:

1 @objc	protocol	HasArea	{
2 				var	area:	Double	{	get	}
3 }

N O T E

You can check for protocol conformance only if your protocol is marked with the @objc attribute, as
seen for the HasArea protocol above. This attribute indicates that the protocol should be exposed to
Objective-C code and is described in Using Swift with Cocoa and Objective-C. Even if you are not
interoperating with Objective-C, you need to mark your protocols with the @objc attribute if you
want to be able to check for protocol conformance.

Note also that @objc protocols can be adopted only by classes, and not by structures or
enumerations. If you mark your protocol as @objc in order to check for conformance, you will be
able to apply that protocol only to class types.

Here are two classes, Circle and Country, both of which conform to the HasArea protocol:

1 class	Circle:	HasArea	{
2 				let	pi	=	3.1415927
3 				var	radius:	Double
4 				var	area:	Double	{	return	pi	*	radius	*	radius	}
5 				init(radius:	Double)	{	self.radius	=	radius	}
6 }
7 class	Country:	HasArea	{
8 				var	area:	Double
9 				init(area:	Double)	{	self.area	=	area	}

10 }

(c) ketabton.com: The Digital Library

The Circle class implements the area property requirement as a computed property, based on a stored
radius property. The Country class implements the area requirement directly as a stored property. Both
classes correctly conform to the HasArea protocol.

Here’s a class called Animal, which does not conform to the HasArea protocol:

1 class	Animal	{
2 				var	legs:	Int
3 				init(legs:	Int)	{	self.legs	=	legs	}
4 }

The Circle, Country and Animal classes do not have a shared base class. Nonetheless, they are all
classes, and so instances of all three types can be used to initialize an array that stores values of type
AnyObject:

1 let	objects:	AnyObject[]	=	[
2 				Circle(radius:	2.0),
3 				Country(area:	243_610),
4 				Animal(legs:	4)
5]

The objects array is initialized with an array literal containing a Circle instance with a radius of 2 units; a
Country instance initialized with the surface area of the United Kingdom in square kilometers; and an
Animal instance with four legs.

The objects array can now be iterated, and each object in the array can be checked to see if it conforms to
the HasArea protocol:

1 for	object	in	objects	{
2 				if	let	objectWithArea	=	object	as?	HasArea	{
3 								println("Area	is	\(objectWithArea.area)")
4 				}	else	{
5 								println("Something	that	doesn't	have	an	area")
6 				}

(c) ketabton.com: The Digital Library

7 }
8 //	Area	is	12.5663708
9 //	Area	is	243610.0

10 //	Something	that	doesn't	have	an	area

Whenever an object in the array conforms to the HasArea protocol, the optional value returned by the as?
operator is unwrapped with optional binding into a constant called objectWithArea. The
objectWithArea constant is known to be of type HasArea, and so its area property can be accessed and
printed in a type-safe way.

Note that the underlying objects are not changed by the casting process. They continue to be a Circle, a
Country and an Animal. However, at the point that they are stored in the objectWithArea constant, they
are only known to be of type HasArea, and so only their area property can be accessed.

Optional Protocol Requirements

You can define optional requirements for protocols, These requirements do not have to be implemented by
types that conform to the protocol. Optional requirements are prefixed by the @optional keyword as part of
the protocol’s definition.

An optional protocol requirement can be called with optional chaining, to account for the possibility that the
requirement was not implemented by a type that conforms to the protocol. For information on optional chaining,
see Optional Chaining.

You check for an implementation of an optional requirement by writing a question mark after the name of the
requirement when it is called, such as someOptionalMethod?(someArgument). Optional property
requirements, and optional method requirements that return a value, will always return an optional value of the
appropriate type when they are accessed or called, to reflect the fact that the optional requirement may not have
been implemented.

N O T E

Optional protocol requirements can only be specified if your protocol is marked with the @objc

(c) ketabton.com: The Digital Library

attribute. Even if you are not interoperating with Objective-C, you need to mark your protocols with
the @objc attribute if you want to specify optional requirements.

Note also that @objc protocols can be adopted only by classes, and not by structures or
enumerations. If you mark your protocol as @objc in order to specify optional requirements, you
will only be able to apply that protocol to class types.

The following example defines an integer-counting class called Counter, which uses an external data source
to provide its increment amount. This data source is defined by the CounterDataSource protocol, which
has two optional requirements:

1 @objc	protocol	CounterDataSource	{
2 				@optional	func	incrementForCount(count:	Int)	->	Int
3 				@optional	var	fixedIncrement:	Int	{	get	}
4 }

The CounterDataSource protocol defines an optional method requirement called incrementForCount
and an optional property requirement called fixedIncrement. These requirements define two different
ways for data sources to provide an appropriate increment amount for a Counter instance.

N O T E

Strictly speaking, you can write a custom class that conforms to CounterDataSource without
implementing either protocol requirement. They are both optional, after all. Although technically
allowed, this wouldn’t make for a very good data source.

The Counter class, defined below, has an optional dataSource property of type
CounterDataSource?:

1 @objc	class	Counter	{
2 				var	count	=	0

(c) ketabton.com: The Digital Library

3 				var	dataSource:	CounterDataSource?
4 				func	increment()	{
5 								if	let	amount	=	dataSource?.incrementForCount?(count)	{
6 												count	+=	amount
7 								}	else	if	let	amount	=	dataSource?.fixedIncrement?	{
8 												count	+=	amount
9 								}

10 				}
11 }

The Counter class stores its current value in a variable property called count. The Counter class also
defines a method called increment, which increments the count property every time the method is called.

The increment method first tries to retrieve an increment amount by looking for an implementation of the
incrementForCount method on its data source. The increment method uses optional chaining to try to
call incrementForCount, and passes the current count value as the method’s single argument.

Note two levels of optional chaining at play here. Firstly, it is possible that dataSource may be nil, and so
dataSource has a question mark after its name to indicate that incrementForCount should only be
called if dataSource is non-nil. Secondly, even if dataSource does exist, there is no guarantee that it
implements incrementForCount, because it is an optional requirement. This is why
incrementForCount is also written with a question mark after its name.

Because the call to incrementForCount can fail for either of these two reasons, the call returns an optional
Int value. This is true even though incrementForCount is defined as returning a non-optional Int value
in the definition of CounterDataSource.

After calling incrementForCount, the optional Int that it returns is unwrapped into a constant called
amount, using optional binding. If the optional Int does contain a value—that is, if the delegate and method
both exist, and the method returned a value—the unwrapped amount is added onto the stored count property,
and incrementation is complete.

If it is not possible to retrieve a value from the incrementForCount method—either because
dataSource is nil, or because the data source does not implement incrementForCount—then the
increment method tries to retrieve a value from the data source’s fixedIncrement property instead. The
fixedIncrement property is also an optional requirement, and so its name is also written using optional

(c) ketabton.com: The Digital Library

chaining with a question mark on the end, to indicate that the attempt to access the property’s value can fail. As
before, the returned value is an optional Int value, even though fixedIncrement is defined as a non-
optional Int property as part of the CounterDataSource protocol definition.

Here’s a simple CounterDataSource implementation where the data source returns a constant value of 3
every time it is queried. It does this by implementing the optional fixedIncrement property requirement:

1 class	ThreeSource:	CounterDataSource	{
2 				let	fixedIncrement	=	3
3 }

You can use an instance of ThreeSource as the data source for a new Counter instance:

1 var	counter	=	Counter()
2 counter.dataSource	=	ThreeSource()
3 for	_	in	1...4	{
4 				counter.increment()
5 				println(counter.count)
6 }
7 //	3
8 //	6
9 //	9

10 //	12

The code above creates a new Counter instance; sets its data source to be a new ThreeSource instance;
and calls the counter’s increment method four times. As expected, the counter’s count property increases
by three each time increment is called.

Here’s a more complex data source called TowardsZeroSource, which makes a Counter instance count
up or down towards zero from its current count value:

1 class	TowardsZeroSource:	CounterDataSource	{
2 				func	incrementForCount(count:	Int)	->	Int	{
3 								if	count	==	0	{

(c) ketabton.com: The Digital Library

4 												return	0
5 								}	else	if	count	<	0	{
6 												return	1
7 								}	else	{
8 												return	-1
9 								}

10 				}
11 }

The TowardsZeroSource class implements the optional incrementForCount method from the
CounterDataSource protocol and uses the count argument value to work out which direction to count in.
If count is already zero, the method returns 0 to indicate that no further counting should take place.

You can use an instance of TowardsZeroSource with the existing Counter instance to count from -4 to
zero. Once the counter reaches zero, no more counting takes place:

1 counter.count	=	-4
2 counter.dataSource	=	TowardsZeroSource()
3 for	_	in	1...5	{
4 				counter.increment()
5 				println(counter.count)
6 }
7 //	-3
8 //	-2
9 //	-1

10 //	0
11 //	0

(c) ketabton.com: The Digital Library

Generics

Generic code enables you to write flexible, reusable functions and types that can work with any type, subject to
requirements that you define. You can write code that avoids duplication and expresses its intent in a clear,
abstracted manner.

Generics are one of the most powerful features of Swift, and much of the Swift standard library is built with
generic code. In fact, you’ve been using generics throughout this Language Guide, even if you didn’t realize it.
For example, Swift’s Array and Dictionary types are both generic collections. You can create an array
that holds Int values, or an array that holds String values, or indeed an array for any other type that can be
created in Swift. Similarly, you can create a dictionary to store values of any specified type, and there are no
limitations on what that type can be.

The Problem That Generics Solve

Here’s a standard, non-generic function called swapTwoInts, which swaps two Int values:

1 func	swapTwoInts(inout	a:	Int,	inout	b:	Int)	{
2 				let	temporaryA	=	a
3 				a	=	b
4 				b	=	temporaryA
5 }

This function makes use of in-out parameters to swap the values of a and b, as described in In-Out
Parameters.

The swapTwoInts function swaps the original value of b into a, and the original value of a into b. You can call
this function to swap the values in two Int variables:

1 var	someInt	=	3
2 var	anotherInt	=	107

(c) ketabton.com: The Digital Library

3 swapTwoInts(&someInt,	&anotherInt)
4 println("someInt	is	now	\(someInt),	and	anotherInt	is	now	\

(anotherInt)")
5 //	prints	"someInt	is	now	107,	and	anotherInt	is	now	3"

The swapTwoInts function is useful, but it can only be used with Int values. If you want to swap two
String values, or two Double values, you have to write more functions, such as the swapTwoStrings
and swapTwoDoubles functions shown below:

1 func	swapTwoStrings(inout	a:	String,	inout	b:	String)	{
2 				let	temporaryA	=	a
3 				a	=	b
4 				b	=	temporaryA
5 }
6 	
7 func	swapTwoDoubles(inout	a:	Double,	inout	b:	Double)	{
8 				let	temporaryA	=	a
9 				a	=	b

10 				b	=	temporaryA
11 }

You may have noticed that the bodies of the swapTwoInts, swapTwoStrings, and swapTwoDoubles
functions are identical. The only difference is the type of the values that they accept (Int, String, and
Double).

It would be much more useful, and considerably more flexible, to write a single function that could swap two
values of any type. This is the kind of problem that generic code can solve. (A generic version of these functions
is defined below.)

N O T E

In all three functions, it is important that the types of a and b are defined to be the same as each
other. If a and b were not of the same type, it would not be possible to swap their values. Swift is a
type-safe language, and does not allow (for example) a variable of type String and a variable of

(c) ketabton.com: The Digital Library

type Double to swap values with each other. Attempting to do so would be reported as a compile-
time error.

Generic Functions

Generic functions can work with any type. Here’s a generic version of the swapTwoInts function from above,
called swapTwoValues:

1 func	swapTwoValues<T>(inout	a:	T,	inout	b:	T)	{
2 				let	temporaryA	=	a
3 				a	=	b
4 				b	=	temporaryA
5 }

The body of the swapTwoValues function is identical to the body of the swapTwoInts function. However,
the first line of swapTwoValues is slightly different from swapTwoInts. Here’s how the first lines
compare:

1 func	swapTwoInts(inout	a:	Int,	inout	b:	Int)
2 func	swapTwoValues<T>(inout	a:	T,	inout	b:	T)

The generic version of the function uses a placeholder type name (called T, in this case) instead of an actual
type name (such as Int, String, or Double). The placeholder type name doesn’t say anything about what T
must be, but it does say that both a and b must be of the same type T, whatever T represents. The actual type to
use in place of T will be determined each time the swapTwoValues function is called.

The other difference is that the generic function’s name (swapTwoValues) is followed by the placeholder type
name (T) inside angle brackets (<T>). The brackets tell Swift that T is a placeholder type name within the
swapTwoValues function definition. Because T is a placeholder, Swift does not look for an actual type called
T.

(c) ketabton.com: The Digital Library

The swapTwoValues function can now be called in the same way as swapTwoInts, except that it can be
passed two values of any type, as long as both of those values are of the same type as each other. Each time
swapTwoValues is called, the type to use for T is inferred from the types of values passed to the function.

In the two examples below, T is inferred to be Int and String respectively:

1 var	someInt	=	3
2 var	anotherInt	=	107
3 swapTwoValues(&someInt,	&anotherInt)
4 //	someInt	is	now	107,	and	anotherInt	is	now	3
5 	
6 var	someString	=	"hello"
7 var	anotherString	=	"world"
8 swapTwoValues(&someString,	&anotherString)
9 //	someString	is	now	"world",	and	anotherString	is	now	"hello"

N O T E

The swapTwoValues function defined above is inspired by a generic function called swap, which
is part of the Swift standard library, and is automatically made available for you to use in your apps.
If you need the behavior of the swapTwoValues function in your own code, you can use Swift’s
existing swap function rather than providing your own implementation.

Type Parameters

In the swapTwoValues example above, the placeholder type T is an example of a type parameter. Type
parameters specify and name a placeholder type, and are written immediately after the function’s name,
between a pair of matching angle brackets (such as <T>).

Once specified, a type parameter can be used to define the type of a function’s parameters (such as the a and b
parameters of the swapTwoValues function); or as the function’s return type; or as a type annotation within

(c) ketabton.com: The Digital Library

the body of the function. In each case, the placeholder type represented by the type parameter is replaced with
an actual type whenever the function is called. (In the swapTwoValues example above, T was replaced with
Int the first time the function was called, and was replaced with String the second time it was called.)

You can provide more than one type parameter by writing multiple type parameter names within the angle
brackets, separated by commas.

Naming Type Parameters

In simple cases where a generic function or generic type needs to refer to a single placeholder type (such as the
swapTwoValues generic function above, or a generic collection that stores a single type, such as Array), it
is traditional to use the single-character name T for the type parameter. However, you are can use any valid
identifier as the type parameter name.

If you are defining more complex generic functions, or generic types with multiple parameters, it can be useful
to provide more descriptive type parameter names. For example, Swift’s Dictionary type has two type
parameters—one for its keys and one for its values. If you were writing Dictionary yourself, you might
name these two type parameters KeyType and ValueType to remind you of their purpose as you use them
within your generic code.

N O T E

Always give type parameters UpperCamelCase names (such as T and KeyType) to indicate
that they are a placeholder for a type, not a value.

Generic Types

In addition to generic functions, Swift enables you to define your own generic types. These are custom classes,
structures, and enumerations that can work with any type, in a similar way to Array and Dictionary.

(c) ketabton.com: The Digital Library

This section shows you how to write a generic collection type called Stack. A stack is an ordered set of
values, similar to an array, but with a more restricted set of operations than Swift’s Array type. An array
allows new items to be inserted and removed at any location in the array. A stack, however, allows new items
to be appended only to the end of the collection (known as pushing a new value on to the stack). Similarly, a
stack allows items to be removed only from the end of the collection (known as popping a value off the stack).

N O T E

The concept of a stack is used by the UINavigationController class to model the view
controllers in its navigation hierarchy. You call the UINavigationController class
pushViewController:animated: method to add (or push) a view controller on to the
navigation stack, and its popViewControllerAnimated: method to remove (or pop) a view
controller from the navigation stack. A stack is a useful collection model whenever you need a strict
“last in, first out” approach to managing a collection.

The illustration below shows the push / pop behavior for a stack:

(c) ketabton.com: The Digital Library

1. There are currently three values on the stack.

2. A fourth value is “pushed” on to the top of the stack.

3. The stack now holds four values, with the most recent one at the top.

4. The top item in the stack is removed, or “popped”.

5. After popping a value, the stack once again holds three values.

Here’s how to write a non-generic version of a stack, in this case for a stack of Int values:

1 struct	IntStack	{
2 				var	items	=	Int[]()
3 				mutating	func	push(item:	Int)	{
4 								items.append(item)
5 				}

(c) ketabton.com: The Digital Library

6 				mutating	func	pop()	->	Int	{
7 								return	items.removeLast()
8 				}
9 }

This structure uses an Array property called items to store the values in the stack. Stack provides two
methods, push and pop, to push and pop values on and off the stack. These methods are marked as
mutating, because they need to modify (or mutate) the structure’s items array.

The IntStack type shown above can only be used with Int values, however. It would be much more useful
to define a generic Stack class, that can manage a stack of any type of value.

Here’s a generic version of the same code:

1 struct	Stack<T>	{
2 				var	items	=	T[]()
3 				mutating	func	push(item:	T)	{
4 								items.append(item)
5 				}
6 				mutating	func	pop()	->	T	{
7 								return	items.removeLast()
8 				}
9 }

Note how the generic version of Stack is essentially the same as the non-generic version, but with a
placeholder type parameter called T instead of an actual type of Int. This type parameter is written within a
pair of angle brackets (<T>) immediately after the structure’s name.

T defines a placeholder name for “some type T” to be provided later on. This future type can be referred to as
“T” anywhere within the structure’s definition. In this case, T is used as a placeholder in three places:

To create a property called items, which is initialized with an empty array of values of type T

To specify that the push method has a single parameter called item, which must be of type T

To specify that the value returned by the pop method will be a value of type T

(c) ketabton.com: The Digital Library

You create instances of Stack in a similar way to Array and Dictionary, by writing the actual type to be
used for this specific stack within angle brackets after the type name when creating a new instance with
initializer syntax:

1 var	stackOfStrings	=	Stack<String>()
2 stackOfStrings.push("uno")
3 stackOfStrings.push("dos")
4 stackOfStrings.push("tres")
5 stackOfStrings.push("cuatro")
6 //	the	stack	now	contains	4	strings

Here’s how stackOfStrings looks after pushing these four values on to the stack:

Popping a value from the stack returns and removes the top value, "cuatro":

1 let	fromTheTop	=	stackOfStrings.pop()

(c) ketabton.com: The Digital Library

2 //	fromTheTop	is	equal	to	"cuatro",	and	the	stack	now	contains	3	
strings

Here’s how the stack looks after popping its top value:

Because it is a generic type, Stack can be used to create a stack of any valid type in Swift, in a similar manner
to Array and Dictionary.

Type Constraints

The swapTwoValues function and the Stack type can work with any type. However, it is sometimes useful
to enforce certain type constraints on the types that can be used with generic functions and generic types. Type
constraints specify that a type parameter must inherit from a specific class, or conform to a particular protocol
or protocol composition.

For example, Swift’s Dictionary type places a limitation on the types that can be used as keys for a
dictionary. As described in Dictionaries, the type of a dictionary’s keys must be hashable. That is, it must

(c) ketabton.com: The Digital Library

provide a way to make itself uniquely representable. Dictionary needs its keys to be hashable so that it can
check whether it already contains a value for a particular key. Without this requirement, Dictionary could
not tell whether it should insert or replace a value for a particular key, nor would it be able to find a value for a
given key that is already in the dictionary.

This requirement is enforced by a type constraint on the key type for Dictionary, which specifies that the
key type must conform to the Hashable protocol, a special protocol defined in the Swift standard library. All of
Swift’s basic types (such as String, Int, Double, and Bool) are hashable by default.

You can define your own type constraints when creating custom generic types, and these constraints provide
much of the power of generic programming. Abstract concepts like Hashable characterize types in terms of
their conceptual characteristics, rather than their explicit type.

Type Constraint Syntax

You write type constraints by placing a single class or protocol constraint after a type parameter’s name,
separated by a colon, as part of the type parameter list. The basic syntax for type constraints on a generic
function is shown below (although the syntax is the same for generic types):

1 func	someFunction<T:	SomeClass,	U:	SomeProtocol>(someT:	T,	someU:	U)	{
2 				//	function	body	goes	here
3 }

The hypothetical function above has two type parameters. The first type parameter, T, has a type constraint that
requires T to be a subclass of SomeClass. The second type parameter, U, has a type constraint that requires
U to conform to the protocol SomeProtocol.

Type Constraints in Action

Here’s a non-generic function called findStringIndex, which is given a String value to find and an
array of String values within which to find it. The findStringIndex function returns an optional Int
value, which will be the index of the first matching string in the array if it is found, or nil if the string cannot be
found:

(c) ketabton.com: The Digital Library

1 func	findStringIndex(array:	String[],	valueToFind:	String)	->	Int?	{
2 				for	(index,	value)	in	enumerate(array)	{
3 								if	value	==	valueToFind	{
4 												return	index
5 								}
6 				}
7 				return	nil
8 }

The findStringIndex function can be used to find a string value in an array of strings:

1 let	strings	=	["cat",	"dog",	"llama",	"parakeet",	"terrapin"]
2 if	let	foundIndex	=	findStringIndex(strings,	"llama")	{
3 				println("The	index	of	llama	is	\(foundIndex)")
4 }
5 //	prints	"The	index	of	llama	is	2"

The principle of finding the index of a value in an array isn’t useful only for strings, however. You can write the
same functionality as a generic function called findIndex, by replacing any mention of strings with values of
some type T instead.

Here’s how you might expect a generic version of findStringIndex, called findIndex, to be written.
Note that the return type of this function is still Int?, because the function returns an optional index number, not
an optional value from the array. Be warned, though—this function does not compile, for reasons explained after
the example:

1 func	findIndex<T>(array:	T[],	valueToFind:	T)	->	Int?	{
2 				for	(index,	value)	in	enumerate(array)	{
3 								if	value	==	valueToFind	{
4 												return	index
5 								}
6 				}
7 				return	nil

(c) ketabton.com: The Digital Library

8 }

This function does not compile as written above. The problem lies with the equality check, “if	value	==
valueToFind”. Not every type in Swift can be compared with the equal to operator (==). If you create your
own class or structure to represent a complex data model, for example, then the meaning of “equal to” for that
class or structure is not something that Swift can guess for you. Because of this, it is not possible to guarantee
that this code will work for every possible type T, and an appropriate error is reported when you try to compile
the code.

All is not lost, however. The Swift standard library defines a protocol called Equatable, which requires any
conforming type to implement the equal to operator (==) and the not equal to operator (!=) to compare any two
values of that type. All of Swift’s standard types automatically support the Equatable protocol.

Any type that is Equatable can be used safely with the findIndex function, because it is guaranteed to
support the equal to operator. To express this fact, you write a type constraint of Equatable as part of the type
parameter’s definition when you define the function:

1 func	findIndex<T:	Equatable>(array:	T[],	valueToFind:	T)	->	Int?	{
2 				for	(index,	value)	in	enumerate(array)	{
3 								if	value	==	valueToFind	{
4 												return	index
5 								}
6 				}
7 				return	nil
8 }

The single type parameter for findIndex is written as T:	Equatable, which means “any type T that
conforms to the Equatable protocol.”

The findIndex function now compiles successfully and can be used with any type that is Equatable, such
as Double or String:

1 let	doubleIndex	=	findIndex([3.14159,	0.1,	0.25],	9.3)
2 //	doubleIndex	is	an	optional	Int	with	no	value,	because	9.3	is	not	in

the	array

(c) ketabton.com: The Digital Library

3 let	stringIndex	=	findIndex(["Mike",	"Malcolm",	"Andrea"],	"Andrea")
4 //	stringIndex	is	an	optional	Int	containing	a	value	of	2

Associated Types

When defining a protocol, it is sometimes useful to declare one or more associated types as part of the
protocol’s definition. An associated type gives a placeholder name (or alias) to a type that is used as part of the
protocol. The actual type to use for that associated type is not specified until the protocol is adopted. Associated
types are specified with the typealias keyword.

Associated Types in Action

Here’s an example of a protocol called Container, which declares an associated type called ItemType:

1 protocol	Container	{
2 				typealias	ItemType
3 				mutating	func	append(item:	ItemType)
4 				var	count:	Int	{	get	}
5 				subscript(i:	Int)	->	ItemType	{	get	}
6 }

The Container protocol defines three required capabilities that any container must provide:

This protocol doesn’t specify how the items in the container should be stored or what type they are allowed to
be. The protocol only specifies the three bits of functionality that any type must provide in order to be considered

It must be possible to add a new item to the container with an append method.

It must be possible to access a count of the items in the container through a count property that
returns an Int value.

It must be possible to retrieve each item in the container with a subscript that takes an Int index
value.

(c) ketabton.com: The Digital Library

a Container. A conforming type can provide additional functionality, as long as it satisfies these three
requirements.

Any type that conforms to the Container protocol must be able to specify the type of values it stores.
Specifically, it must ensure that only items of the right type are added to the container, and it must be clear about
the type of the items returned by its subscript.

To define these requirements, the Container protocol needs a way to refer to the type of the elements that a
container will hold, without knowing what that type is for a specific container. The Container protocol needs
to specify that any value passed to the append method must have the same type as the container’s element
type, and that the value returned by the container’s subscript will be of the same type as the container’s element
type.

To achieve this, the Container protocol declares an associated type called ItemType, written as
typealias	ItemType. The protocol does not define what ItemType is an alias for—that information is
left for any conforming type to provide. Nonetheless, the ItemType alias provides a way to refer to the type of
the items in a Container, and to define a type for use with the append method and subscript, to ensure that
the expected behavior of any Container is enforced.

Here’s a version of the non-generic IntStack type from earlier, adapted to conform to the Container
protocol:

1 struct	IntStack:	Container	{
2 				//	original	IntStack	implementation
3 				var	items	=	Int[]()
4 				mutating	func	push(item:	Int)	{
5 								items.append(item)
6 				}
7 				mutating	func	pop()	->	Int	{
8 								return	items.removeLast()
9 				}

10 				//	conformance	to	the	Container	protocol
11 				typealias	ItemType	=	Int
12 				mutating	func	append(item:	Int)	{
13 								self.push(item)
14 				}

(c) ketabton.com: The Digital Library

15 				var	count:	Int	{
16 				return	items.count
17 				}
18 				subscript(i:	Int)	->	Int	{
19 								return	items[i]
20 				}
21 }

The IntStack type implements all three of the Container protocol’s requirements, and in each case
wraps part of the IntStack type’s existing functionality to satisfy these requirements.

Moreover, IntStack specifies that for this implementation of Container, the appropriate ItemType to
use is a type of Int. The definition of typealias	ItemType	=	Int turns the abstract type of ItemType
into a concrete type of Int for this implementation of the Container protocol.

Thanks to Swift’s type inference, you don’t actually need to declare a concrete ItemType of Int as part of the
definition of IntStack. Because IntStack conforms to all of the requirements of the Container protocol,
Swift can infer the appropriate ItemType to use, simply by looking at the type of the append method’s item
parameter and the return type of the subscript. Indeed, if you delete the typealias	ItemType	=	Int line
from the code above, everything still works, because it is clear what type should be used for ItemType.

You can also make the generic Stack type conform to the Container protocol:

1 struct	Stack<T>:	Container	{
2 				//	original	Stack<T>	implementation
3 				var	items	=	T[]()
4 				mutating	func	push(item:	T)	{
5 								items.append(item)
6 				}
7 				mutating	func	pop()	->	T	{
8 								return	items.removeLast()
9 				}

10 				//	conformance	to	the	Container	protocol
11 				mutating	func	append(item:	T)	{
12 								self.push(item)

(c) ketabton.com: The Digital Library

13 				}
14 				var	count:	Int	{
15 				return	items.count
16 				}
17 				subscript(i:	Int)	->	T	{
18 								return	items[i]
19 				}
20 }

This time, the placeholder type parameter T is used as the type of the append method’s item parameter and
the return type of the subscript. Swift can therefore infer that T is the appropriate type to use as the ItemType
for this particular container.

Extending an Existing Type to Specify an Associated Type

You can extend an existing type to add conformance to a protocol, as described in Adding Protocol
Conformance with an Extension. This includes a protocol with an associated type.

Swift’s Array type already provides an append method, a count property, and a subscript with an Int
index to retrieve its elements. These three capabilities match the requirements of the Container protocol.
This means that you can extend Array to conform to the Container protocol simply by declaring that
Array adopts the protocol. You do this with an empty extension, as described in Declaring Protocol Adoption
with an Extension:

1 extension	Array:	Container	{}

Array’s existing append method and subscript enable Swift to infer the appropriate type to use for ItemType,
just as for the generic Stack type above. After defining this extension, you can use any Array as a
Container.

Where Clauses

(c) ketabton.com: The Digital Library

Type constraints, as described in Type Constraints, enable you to define requirements on the type parameters
associated with a generic function or type.

It can also be useful to define requirements for associated types. You do this by defining where clauses as part
of a type parameter list. A where clause enables you to require that an associated type conforms to a certain
protocol, and/or that certain type parameters and associated types be the same. You write a where clause by
placing the where keyword immediately after the list of type parameters, followed by one or more constraints
for associated types, and/or one or more equality relationships between types and associated types.

The example below defines a generic function called allItemsMatch, which checks to see if two
Container instances contain the same items in the same order. The function returns a Boolean value of
true if all items match and a value of false if they do not.

The two containers to be checked do not have to be the same type of container (although they can be), but they
do have to hold the same type of items. This requirement is expressed through a combination of type
constraints and where clauses:

1 func	allItemsMatch<
2 				C1:	Container,	C2:	Container
3 				where	C1.ItemType	==	C2.ItemType,	C1.ItemType:	Equatable>
4 				(someContainer:	C1,	anotherContainer:	C2)	->	Bool	{
5 								
6 								//	check	that	both	containers	contain	the	same	number	of	items
7 								if	someContainer.count	!=	anotherContainer.count	{
8 												return	false
9 								}

10 								
11 								//	check	each	pair	of	items	to	see	if	they	are	

equivalent
12 								for	i	in	0..someContainer.count	{
13 												if	someContainer[i]	!=	anotherContainer[i]	{
14 																return	false
15 												}
16 								}
17 								
18 								//	all	items	match,	so	return	true

(c) ketabton.com: The Digital Library

19 								return	true
20 								
21 }

This function takes two arguments called someContainer and anotherContainer. The
someContainer argument is of type C1, and the anotherContainer argument is of type C2. Both C1
and C2 are placeholder type parameters for two container types to be determined when the function is called.

The function’s type parameter list places the following requirements on the two type parameters:

The third and fourth requirements are defined as part of a where clause, and are written after the where
keyword as part of the function’s type parameter list.

These requirements mean:

The third and fourth requirements combine to mean that the items in anotherContainer can also be
checked with the != operator, because they are exactly the same type as the items in someContainer.

These requirements enable the allItemsMatch function to compare the two containers, even if they are of a
different container type.

C1 must conform to the Container protocol (written as C1:	Container).

C2 must also conform to the Container protocol (written as C2:	Container).

The ItemType for C1 must be the same as the ItemType for C2 (written as C1.ItemType
==	C2.ItemType).

The ItemType for C1 must conform to the Equatable protocol (written as C1.ItemType:
Equatable).

someContainer is a container of type C1.

anotherContainer is a container of type C2.

someContainer and anotherContainer contain the same type of items.

The items in someContainer can be checked with the not equal operator (!=) to see if they
are different from each other.

(c) ketabton.com: The Digital Library

The allItemsMatch function starts by checking that both containers contain the same number of items. If
they contain a different number of items, there is no way that they can match, and the function returns false.

After making this check, the function iterates over all of the items in someContainer with a for-in loop and
the half-closed range operator (..). For each item, the function checks whether the item from
someContainer is not equal to the corresponding item in anotherContainer. If the two items are not
equal, then the two containers do not match, and the function returns false.

If the loop finishes without finding a mismatch, the two containers match, and the function returns true.

Here’s how the allItemsMatch function looks in action:

1 var	stackOfStrings	=	Stack<String>()
2 stackOfStrings.push("uno")
3 stackOfStrings.push("dos")
4 stackOfStrings.push("tres")
5 	
6 var	arrayOfStrings	=	["uno",	"dos",	"tres"]
7 	
8 if	allItemsMatch(stackOfStrings,	arrayOfStrings)	{
9 				println("All	items	match.")

10 }	else	{
11 				println("Not	all	items	match.")
12 }
13 //	prints	"All	items	match."

The example above creates a Stack instance to store String values, and pushes three strings onto the
stack. The example also creates an Array instance initialized with an array literal containing the same three
strings as the stack. Even though the stack and the array are of a different type, they both conform to the
Container protocol, and both contain the same type of values. You can therefore call the allItemsMatch
function with these two containers as its arguments. In the example above, the allItemsMatch function
correctly reports that all of the items in the two containers match.

(c) ketabton.com: The Digital Library

Advanced Operators

In addition to the operators described in Basic Operators, Swift provides several advanced operators that
perform more complex value manipulation. These include all of the bitwise and bit shifting operators you will be
familiar with from C and Objective-C.

Unlike arithmetic operators in C, arithmetic operators in Swift do not overflow by default. Overflow behavior is
trapped and reported as an error. To opt in to overflow behavior, use Swift’s second set of arithmetic operators
that overflow by default, such as the overflow addition operator (&+). All of these overflow operators begin with
an ampersand (&).

When you define your own structures, classes, and enumerations, it can be useful to provide your own
implementations of the standard Swift operators for these custom types. Swift makes it easy to provide tailored
implementations of these operators and to determine exactly what their behavior should be for each type you
create.

You’re not just limited to the predefined operators. Swift gives you the freedom to define your own custom infix,
prefix, postfix, and assignment operators, with custom precedence and associativity values. These operators
can be used and adopted in your code just like any of the predefined operators, and you can even extend existing
types to support the custom operators you define.

Bitwise Operators

Bitwise operators enable you to manipulate the individual raw data bits within a data structure. They are often
used in low-level programming, such as graphics programming and device driver creation. Bitwise operators
can also be useful when you work with raw data from external sources, such as encoding and decoding data for
communication over a custom protocol.

Swift supports all of the bitwise operators found in C, as described below.

Bitwise NOT Operator

(c) ketabton.com: The Digital Library

The bitwise NOT operator (~) inverts all bits in a number:

The bitwise NOT operator is a prefix operator, and appears immediately before the value it operates on, without
any white space:

1 let	initialBits:	UInt8	=	0b00001111
2 let	invertedBits	=	~initialBits		//	equals	11110000

UInt8 integers have eight bits and can store any value between 0 and 255. This example initializes a UInt8
integer with the binary value 00001111, which has its first four bits set to 0, and its second four bits set to 1.
This is equivalent to a decimal value of 15.

The bitwise NOT operator is then used to create a new constant called invertedBits, which is equal to
initialBits, but with all of the bits inverted. Zeroes become ones, and ones become zeroes. The value of
invertedBits is 11110000, which is equal to an unsigned decimal value of 240.

Bitwise AND Operator

The bitwise AND operator (&) combines the bits of two numbers. It returns a new number whose bits are set to
1 only if the bits were equal to 1 in both input numbers:

(c) ketabton.com: The Digital Library

In the example below, the values of firstSixBits and lastSixBits both have four middle bits equal to
1. The bitwise AND operator combines them to make the number 00111100, which is equal to an unsigned
decimal value of 60:

1 let	firstSixBits:	UInt8	=	0b11111100
2 let	lastSixBits:	UInt8		=	0b00111111
3 let	middleFourBits	=	firstSixBits	&	lastSixBits		//	equals	00111100

Bitwise OR Operator

The bitwise OR operator (|) compares the bits of two numbers. The operator returns a new number whose bits
are set to 1 if the bits are equal to 1 in either input number:

(c) ketabton.com: The Digital Library

In the example below, the values of someBits and moreBits have different bits set to 1. The bitwise OR
operator combines them to make the number 11111110, which equals an unsigned decimal of 254:

1 let	someBits:	UInt8	=	0b10110010
2 let	moreBits:	UInt8	=	0b01011110
3 let	combinedbits	=	someBits	|	moreBits		//	equals	11111110

Bitwise XOR Operator

The bitwise XOR operator, or “exclusive OR operator” (^), compares the bits of two numbers. The operator
returns a new number whose bits are set to 1 where the input bits are different and are set to 0 where the input
bits are the same:

(c) ketabton.com: The Digital Library

In the example below, the values of firstBits and otherBits each have a bit set to 1 in a location that the
other does not. The bitwise XOR operator sets both of these bits to 1 in its output value. All of the other bits in
firstBits and otherBits match and are set to 0 in the output value:

1 let	firstBits:	UInt8	=	0b00010100
2 let	otherBits:	UInt8	=	0b00000101
3 let	outputBits	=	firstBits	^	otherBits		//	equals	00010001

Bitwise Left and Right Shift Operators

The bitwise left shift operator (<<) and bitwise right shift operator (>>) move all bits in a number to the left or
the right by a certain number of places, according to the rules defined below.

Bitwise left and right shifts have the effect of multiplying or dividing an integer number by a factor of two. Shifting
an integer’s bits to the left by one position doubles its value, whereas shifting it to the right by one position halves
its value.

(c) ketabton.com: The Digital Library

Shifting Behavior for Unsigned Integers

The bit-shifting behavior for unsigned integers is as follows:

1. Existing bits are moved to the left or right by the requested number of places.

2. Any bits that are moved beyond the bounds of the integer’s storage are discarded.

3. Zeroes are inserted in the spaces left behind after the original bits are moved to the left or right.

This approach is known as a logical shift.

The illustration below shows the results of 11111111	<<	1 (which is 11111111 shifted to the left by 1
place), and 11111111	>>	1 (which is 11111111 shifted to the right by 1 place). Blue numbers are shifted,
gray numbers are discarded, and orange zeroes are inserted:

Here’s how bit shifting looks in Swift code:

1 let	shiftBits:	UInt8	=	4			//	00000100	in	binary
2 shiftBits	<<	1													//	00001000
3 shiftBits	<<	2													//	00010000
4 shiftBits	<<	5													//	10000000
5 shiftBits	<<	6													//	00000000
6 shiftBits	>>	2													//	00000001

(c) ketabton.com: The Digital Library

You can use bit shifting to encode and decode values within other data types:

1 let	pink:	UInt32	=	0xCC6699
2 let	redComponent	=	(pink	&	0xFF0000)	>>	16				//	redComponent	is	0xCC,

or	204
3 let	greenComponent	=	(pink	&	0x00FF00)	>>	8			//	greenComponent	is	

0x66,	or	102
4 let	blueComponent	=	pink	&	0x0000FF											//	blueComponent	is	

0x99,	or	153

This example uses a UInt32 constant called pink to store a Cascading Style Sheets color value for the color
pink. The CSS color value #CC6699 is written as 0xCC6699 in Swift’s hexadecimal number representation.
This color is then decomposed into its red (CC), green (66), and blue (99) components by the bitwise AND
operator (&) and the bitwise right shift operator (>>).

The red component is obtained by performing a bitwise AND between the numbers 0xCC6699 and
0xFF0000. The zeroes in 0xFF0000 effectively “mask” the second and third bytes of 0xCC6699, causing
the 6699 to be ignored and leaving 0xCC0000 as the result.

This number is then shifted 16 places to the right (>>	16). Each pair of characters in a hexadecimal number
uses 8 bits, so a move 16 places to the right will convert 0xCC0000 into 0x0000CC. This is the same as
0xCC, which has a decimal value of 204.

Similarly, the green component is obtained by performing a bitwise AND between the numbers 0xCC6699 and
0x00FF00, which gives an output value of 0x006600. This output value is then shifted eight places to the
right, giving a a value of 0x66, which has a decimal value of 102.

Finally, the blue component is obtained by performing a bitwise AND between the numbers 0xCC6699 and
0x0000FF, which gives an output value of 0x000099. There’s no need to shift this to the right, as 0x000099
already equals 0x99, which has a decimal value of 153.

Shifting Behavior for Signed Integers

The shifting behavior is more complex for signed integers than for unsigned integers, because of the way signed

(c) ketabton.com: The Digital Library

integers are represented in binary. (The examples below are based on 8-bit signed integers for simplicity, but
the same principles apply for signed integers of any size.)

Signed integers use their first bit (known as the sign bit) to indicate whether the integer is positive or negative. A
sign bit of 0 means positive, and a sign bit of 1 means negative.

The remaining bits (known as the value bits) store the actual value. Positive numbers are stored in exactly the
same way as for unsigned integers, counting upwards from 0. Here’s how the bits inside an Int8 look for the
number 4:

The sign bit is 0 (meaning “positive”), and the seven value bits are just the number 4, written in binary notation.

Negative numbers, however, are stored differently. They are stored by subtracting their absolute value from 2
to the power of n, where n is the number of value bits. An eight-bit number has seven value bits, so this means
2 to the power of 7, or 128.

Here’s how the bits inside an Int8 look for the number -4:

(c) ketabton.com: The Digital Library

This time, the sign bit is 1 (meaning “negative”), and the seven value bits have a binary value of 124 (which is
128	-	4):

The encoding for negative numbers is known as a two’s complement representation. It may seem an unusual
way to represent negative numbers, but it has several advantages.

First, you can add -1 to -4, simply by performing a standard binary addition of all eight bits (including the sign
bit), and discarding anything that doesn’t fit in the eight bits once you’re done:

Second, the two’s complement representation also lets you shift the bits of negative numbers to the left and right
like positive numbers, and still end up doubling them for every shift you make to the left, or halving them for

(c) ketabton.com: The Digital Library

every shift you make to the right. To achieve this, an extra rule is used when signed integers are shifted to the
right:

This action ensures that signed integers have the same sign after they are shifted to the right, and is known as
an arithmetic shift.

Because of the special way that positive and negative numbers are stored, shifting either of them to the right
moves them closer to zero. Keeping the sign bit the same during this shift means that negative integers remain
negative as their value moves closer to zero.

Overflow Operators

If you try to insert a number into an integer constant or variable that cannot hold that value, by default Swift
reports an error rather than allowing an invalid value to be created. This behavior gives extra safety when you
work with numbers that are too large or too small.

For example, the Int16 integer type can hold any signed integer number between -32768 and 32767.
Trying to set a UInt16 constant or variable to a number outside of this range causes an error:

1 var	potentialOverflow	=	Int16.max

When you shift signed integers to the right, apply the same rules as for unsigned integers, but fill
any empty bits on the left with the sign bit, rather than with a zero.

(c) ketabton.com: The Digital Library

2 //	potentialOverflow	equals	32767,	which	is	the	largest	value	an	Int16
can	hold

3 potentialOverflow	+=	1
4 //	this	causes	an	error

Providing error handling when values get too large or too small gives you much more flexibility when coding for
boundary value conditions.

However, when you specifically want an overflow condition to truncate the number of available bits, you can opt
in to this behavior rather than triggering an error. Swift provides five arithmetic overflow operators that opt in to
the overflow behavior for integer calculations. These operators all begin with an ampersand (&):

Value Overflow

Here’s an example of what happens when an unsigned value is allowed to overflow, using the overflow addition
operator (&+):

1 var	willOverflow	=	UInt8.max
2 //	willOverflow	equals	255,	which	is	the	largest	value	a	UInt8	can	

hold
3 willOverflow	=	willOverflow	&+	1
4 //	willOverflow	is	now	equal	to	0

The variable willOverflow is initialized with the largest value a UInt8 can hold (255, or 11111111 in
binary). It is then incremented by 1 using the overflow addition operator (&+). This pushes its binary
representation just over the size that a UInt8 can hold, causing it to overflow beyond its bounds, as shown in

Overflow addition (&+)

Overflow subtraction (&-)

Overflow multiplication (&*)

Overflow division (&/)

Overflow remainder (&%)

(c) ketabton.com: The Digital Library

the diagram below. The value that remains within the bounds of the UInt8 after the overflow addition is
00000000, or zero:

Value Underflow

Numbers can also become too small to fit in their type’s maximum bounds. Here’s an example.

The smallest value that a UInt8 can hold is 0 (which is 00000000 in eight-bit binary form). If you subtract 1
from 00000000 using the overflow subtraction operator, the number will overflow back round to 11111111,
or 255 in decimal:

(c) ketabton.com: The Digital Library

Here’s how that looks in Swift code:

1 var	willUnderflow	=	UInt8.min
2 //	willUnderflow	equals	0,	which	is	the	smallest	value	a	UInt8	can	

hold
3 willUnderflow	=	willUnderflow	&-	1
4 //	willUnderflow	is	now	equal	to	255

A similar underflow occurs for signed integers. All subtraction for signed integers is performed as straight
binary subtraction, with the sign bit included as part of the numbers being subtracted, as described in Bitwise
Left and Right Shift Operators. The smallest number that an Int8 can hold is -128, which is 10000000 in
binary. Subtracting 1 from this binary number with the overflow operator gives a binary value of 01111111,
which toggles the sign bit and gives positive 127, the largest positive value that an Int8 can hold:

(c) ketabton.com: The Digital Library

Here’s the same thing in Swift code:

1 var	signedUnderflow	=	Int8.min
2 //	signedUnderflow	equals	-128,	which	is	the	smallest	value	an	Int8	

can	hold
3 signedUnderflow	=	signedUnderflow	&-	1
4 //	signedUnderflow	is	now	equal	to	127

The end result of the overflow and underflow behavior described above is that for both signed and unsigned
integers, overflow always wraps around from the largest valid integer value back to the smallest, and underflow
always wraps around from the smallest value to the largest.

Division by Zero

Dividing a number by zero (i	/	0), or trying to calculate remainder by zero (i	%	0), causes an error:

1 let	x	=	1
2 let	y	=	x	/	0

(c) ketabton.com: The Digital Library

However, the overflow versions of these operators (&/ and &%) return a value of zero if you divide by zero:

1 let	x	=	1
2 let	y	=	x	&/	0
3 //	y	is	equal	to	0

Precedence and Associativity

Operator precedence gives some operators higher priority than others; these operators are calculated first.

Operator associativity defines how operators of the same precedence are grouped together (or associated)—
either grouped from the left, or grouped from the right. Think of it as meaning “they associate with the
expression to their left,” or “they associate with the expression to their right.”

It is important to consider each operator’s precedence and associativity when working out the order in which a
compound expression will be calculated. Here’s an example. Why does the following expression equal 4?

1 2	+	3	*	4	%	5
2 //	this	equals	4

Taken strictly from left to right, you might expect this to read as follows:

However, the actual answer is 4, not 0. Higher-precedence operators are evaluated before lower-precedence
ones. In Swift, as in C, the multiplication operator (*) and the remainder operator (%) have a higher precedence
than the addition operator (+). As a result, they are both evaluated before the addition is considered.

However, multiplication and remainder have the same precedence as each other. To work out the exact

2 plus 3 equals 5;

5 times 4 equals 20;

20 remainder 5 equals 0

(c) ketabton.com: The Digital Library

evaluation order to use, you also need to consider their associativity. Multiplication and remainder both
associate with the expression to their left. Think of this as adding implicit parentheses around these parts of the
expression, starting from their left:

1 2	+	((3	*	4)	%	5)

(3	*	4) is 12, so this is equivalent to:

1 2	+	(12	%	5)

(12	%	5) is 2, so this is equivalent to:

1 2	+	2

This calculation yields the final answer of 4.

For a complete list of Swift operator precedences and associativity rules, see Expressions.

N O T E

Swift’s operator precedences and associativity rules are simpler and more predictable than those
found in C and Objective-C. However, this means that they are not the same as in C-based
languages. Be careful to ensure that operator interactions still behave in the way you intend when
porting existing code to Swift.

Operator Functions

Classes and structures can provide their own implementations of existing operators. This is known as
overloading the existing operators.

(c) ketabton.com: The Digital Library

The example below shows how to implement the arithmetic addition operator (+) for a custom structure. The
arithmetic addition operator is a binary operator because it operates on two targets and is said to be infix
because it appears in between those two targets.

The example defines a Vector2D structure for a two-dimensional position vector (x,	y), followed by a
definition of an operator function to add together instances of the Vector2D structure:

1 struct	Vector2D	{
2 				var	x	=	0.0,	y	=	0.0
3 }
4 @infix	func	+	(left:	Vector2D,	right:	Vector2D)	->	Vector2D	{
5 				return	Vector2D(x:	left.x	+	right.x,	y:	left.y	+	right.y)
6 }

The operator function is defined as a global function called +, which takes two input parameters of type
Vector2D and returns a single output value, also of type Vector2D. You implement an infix operator by
writing the @infix attribute before the func keyword when declaring the operator function.

In this implementation, the input parameters are named left and right to represent the Vector2D
instances that will be on the left side and right side of the + operator. The function returns a new Vector2D
instance, whose x and y properties are initialized with the sum of the x and y properties from the two
Vector2D instances that are added together.

The function is defined globally, rather than as a method on the Vector2D structure, so that it can be used as
an infix operator between existing Vector2D instances:

1 let	vector	=	Vector2D(x:	3.0,	y:	1.0)
2 let	anotherVector	=	Vector2D(x:	2.0,	y:	4.0)
3 let	combinedVector	=	vector	+	anotherVector
4 //	combinedVector	is	a	Vector2D	instance	with	values	of	(5.0,	5.0)

This example adds together the vectors (3.0,	1.0) and (2.0,	4.0) to make the vector (5.0,	5.0),
as illustrated below.

(c) ketabton.com: The Digital Library

Prefix and Postfix Operators

The example shown above demonstrates a custom implementation of a binary infix operator. Classes and
structures can also provide implementations of the standard unary operators. Unary operators operate on a
single target. They are prefix if they precede their target (such as -a) and postfix operators if they follow their

(c) ketabton.com: The Digital Library

target (such as i++).

You implement a prefix or postfix unary operator by writing the @prefix or @postfix attribute before the
func keyword when declaring the operator function:

1 @prefix	func	-	(vector:	Vector2D)	->	Vector2D	{
2 				return	Vector2D(x:	-vector.x,	y:	-vector.y)
3 }

The example above implements the unary minus operator (-a) for Vector2D instances. The unary minus
operator is a prefix operator, and so this function has to be qualified with the @prefix attribute.

For simple numeric values, the unary minus operator converts positive numbers into their negative equivalent
and vice versa. The corresponding implementation for Vector2D instances performs this operation on both
the x and y properties:

1 let	positive	=	Vector2D(x:	3.0,	y:	4.0)
2 let	negative	=	-positive
3 //	negative	is	a	Vector2D	instance	with	values	of	(-3.0,	-4.0)
4 let	alsoPositive	=	-negative
5 //	alsoPositive	is	a	Vector2D	instance	with	values	of	(3.0,	4.0)

Compound Assignment Operators

Compound assignment operators combine assignment (=) with another operation. For example, the addition
assignment operator (+=) combines addition and assignment into a single operation. Operator functions that
implement compound assignment must be qualified with the @assignment attribute. You must also mark a
compound assignment operator’s left input parameter as inout, because the parameter’s value will be
modified directly from within the operator function.

The example below implements an addition assignment operator function for Vector2D instances:

1 @assignment	func	+=	(inout	left:	Vector2D,	right:	Vector2D)	{

(c) ketabton.com: The Digital Library

2 				left	=	left	+	right
3 }

Because an addition operator was defined earlier, you don’t need to reimplement the addition process here.
Instead, the addition assignment operator function takes advantage of the existing addition operator function, and
uses it to set the left value to be the left value plus the right value:

1 var	original	=	Vector2D(x:	1.0,	y:	2.0)
2 let	vectorToAdd	=	Vector2D(x:	3.0,	y:	4.0)
3 original	+=	vectorToAdd
4 //	original	now	has	values	of	(4.0,	6.0)

You can combine the @assignment attribute with either the @prefix or @postfix attribute, as in this
implementation of the prefix increment operator (++a) for Vector2D instances:

1 @prefix	@assignment	func	++	(inout	vector:	Vector2D)	->	Vector2D	{
2 				vector	+=	Vector2D(x:	1.0,	y:	1.0)
3 				return	vector
4 }

The prefix increment operator function above takes advantage of the addition assignment operator defined
earlier. It adds a Vector2D with x and y values of 1.0 to the Vector2D on which it is called, and returns the
result:

1 var	toIncrement	=	Vector2D(x:	3.0,	y:	4.0)
2 let	afterIncrement	=	++toIncrement
3 //	toIncrement	now	has	values	of	(4.0,	5.0)
4 //	afterIncrement	also	has	values	of	(4.0,	5.0)

N O T E

It is not possible to overload the default assignment operator (=). Only the compound assignment

(c) ketabton.com: The Digital Library

operators can be overloaded. Similarly, the ternary conditional operator (a	?	b	:	c) cannot be
overloaded.

Equivalence Operators

Custom classes and structures do not receive a default implementation of the equivalence operators, known as
the “equal to” operator (==) and “not equal to” operator (!=). It is not possible for Swift to guess what would
qualify as “equal” for your own custom types, because the meaning of “equal” depends on the roles that those
types play in your code.

To use the equivalence operators to check for equivalence of your own custom type, provide an implementation
of the operators in the same way as for other infix operators:

1 @infix	func	==	(left:	Vector2D,	right:	Vector2D)	->	Bool	{
2 				return	(left.x	==	right.x)	&&	(left.y	==	right.y)
3 }
4 @infix	func	!=	(left:	Vector2D,	right:	Vector2D)	->	Bool	{
5 				return	!(left	==	right)
6 }

The above example implements an “equal to” operator (==) to check if two Vector2D instances have
equivalent values. In the context of Vector2D, it makes sense to consider “equal” as meaning “both instances
have the same x values and y values”, and so this is the logic used by the operator implementation. The
example also implements the “not equal to” operator (!=), which simply returns the inverse of the result of the
“equal to” operator.

You can now use these operators to check whether two Vector2D instances are equivalent:

1 let	twoThree	=	Vector2D(x:	2.0,	y:	3.0)
2 let	anotherTwoThree	=	Vector2D(x:	2.0,	y:	3.0)
3 if	twoThree	==	anotherTwoThree	{
4 				println("These	two	vectors	are	equivalent.")

(c) ketabton.com: The Digital Library

5 }
6 //	prints	"These	two	vectors	are	equivalent."

Custom Operators

You can declare and implement your own custom operators in addition to the standard operators provided by
Swift. Custom operators can be defined only with the characters /	=	-	+	*	%	<	>	!	&	|	^	.	~.

New operators are declared at a global level using the operator keyword, and can be declared as prefix,
infix or postfix:

1 operator	prefix	+++	{}

The example above defines a new prefix operator called +++. This operator does not have an existing meaning
in Swift, and so it is given its own custom meaning below in the specific context of working with Vector2D
instances. For the purposes of this example, +++ is treated as a new “prefix doubling incrementer” operator. It
doubles the x and y values of a Vector2D instance, by adding the vector to itself with the addition assignment
operator defined earlier:

1 @prefix	@assignment	func	+++	(inout	vector:	Vector2D)	->	Vector2D	{
2 				vector	+=	vector
3 				return	vector
4 }

This implementation of +++ is very similar to the implementation of ++ for Vector2D, except that this
operator function adds the vector to itself, rather than adding Vector2D(1.0,	1.0):

1 var	toBeDoubled	=	Vector2D(x:	1.0,	y:	4.0)
2 let	afterDoubling	=	+++toBeDoubled
3 //	toBeDoubled	now	has	values	of	(2.0,	8.0)
4 //	afterDoubling	also	has	values	of	(2.0,	8.0)

(c) ketabton.com: The Digital Library

Precedence and Associativity for Custom Infix Operators

Custom infix operators can also specify a precedence and an associativity. See Precedence and
Associativity for an explanation of how these two characteristics affect an infix operator’s interaction with other
infix operators.

The possible values for associativity are left, right, and none. Left-associative operators associate
to the left if written next to other left-associative operators of the same precedence. Similarly, right-associative
operators associate to the right if written next to other right-associative operators of the same precedence. Non-
associative operators cannot be written next to other operators with the same precedence.

The associativity value defaults to none if it is not specified. The precedence value defaults to 100 if
it is not specified.

The following example defines a new custom infix operator called +-, with left associativity and a
precedence of 140:

1 operator	infix	+-	{	associativity	left	precedence	140	}
2 func	+-	(left:	Vector2D,	right:	Vector2D)	->	Vector2D	{
3 				return	Vector2D(x:	left.x	+	right.x,	y:	left.y	-	right.y)
4 }
5 let	firstVector	=	Vector2D(x:	1.0,	y:	2.0)
6 let	secondVector	=	Vector2D(x:	3.0,	y:	4.0)
7 let	plusMinusVector	=	firstVector	+-	secondVector
8 //	plusMinusVector	is	a	Vector2D	instance	with	values	of	(4.0,	-2.0)

This operator adds together the x values of two vectors, and subtracts the y value of the second vector from the
first. Because it is in essence an “additive” operator, it has been given the same associativity and precedence
values (left and 140) as default additive infix operators such as + and -. For a complete list of the default
Swift operator precedence and associativity settings, see Expressions.

(c) ketabton.com: The Digital Library

Language Reference

(c) ketabton.com: The Digital Library

About the Language Reference

This part of the book describes the formal grammar of the Swift programming language. The grammar
described here is intended to help you understand the language in more detail, rather than to allow you to
directly implement a parser or compiler.

The Swift language is relatively small, because many common types, functions, and operators that appear
virtually everywhere in Swift code are actually defined in the Swift standard library. Although these types,
functions, and operators are not part of the Swift language itself, they are used extensively in the discussions
and code examples in this part of the book.

How to Read the Grammar

The notation used to describe the formal grammar of the Swift programming language follows a few
conventions:

As an example, the grammar of a getter-setter block is defined as follows:

G R A M M A R O F A G E T T E R - S E T T E R B L O C K

An arrow (→) is used to mark grammar productions and can be read as “can consist of.“

Syntactic categories are indicated by italic text and appear on both sides of a grammar
production rule.

Literal words and punctuation are indicated by boldface constant	width text and appear
only on the right-hand side of a grammar production rule.

Alternative grammar productions are separated by vertical bars (|). When alternative
productions are too long to read easily, they are broken into multiple grammar production rules
on new lines.

In a few cases, regular font text is used to describe the right-hand side of a grammar production
rule.

Optional syntactic categories and literals are marked by a trailing subscript, opt.

(c) ketabton.com: The Digital Library

 getter-setter-block → { getter-clause setter-clause opt } { setter-clause getter-
clause }

This definition indicates that a getter-setter block can consist of a getter clause followed by an optional setter
clause, enclosed in braces, or a setter clause followed by a getter clause, enclosed in braces. The grammar
production above is equivalent to the following two productions, where the alternatives are spelled out explicitly:

G R A M M A R O F A G E T T E R S E T T E R B L O C K

 getter-setter-block → { getter-clause setter-clause opt }
 getter-setter-block → { setter-clause getter-clause }

(c) ketabton.com: The Digital Library

Lexical Structure

The lexical structure of Swift describes what sequence of characters form valid tokens of the language. These
valid tokens form the lowest-level building blocks of the language and are used to describe the rest of the
language in subsequent chapters.

In most cases, tokens are generated from the characters of a Swift source file by considering the longest
possible substring from the input text, within the constraints of the grammar that are specified below. This
behavior is referred to as longest match or maximal munch.

Whitespace and Comments

Whitespace has two uses: to separate tokens in the source file and to help determine whether an operator is a
prefix or postfix (see Operators), but is otherwise ignored. The following characters are considered whitespace:
space (U+0020), line feed (U+000A), carriage return (U+000D), horizontal tab (U+0009), vertical tab
(U+000B), form feed (U+000C) and null (U+0000).

Comments are treated as whitespace by the compiler. Single line comments begin with // and continue until the
end of the line. Multiline comments begin with /* and end with */. Nesting is allowed, but the comment
markers must be balanced.

Identifiers

Identifiers begin with an upper case or lower case letter A through Z, an underscore (_), a noncombining
alphanumeric Unicode character in the Basic Multilingual Plane, or a character outside the Basic Multilingual
Plan that isn’t in a Private Use Area. After the first character, digits and combining Unicode characters are also
allowed.

To use a reserved word as an identifier, put a backtick (`) before and after it. For example, class is not a
valid identifier, but `class` is valid. The backticks are not considered part of the identifier; `x` and x have
the same meaning.

(c) ketabton.com: The Digital Library

Inside a closure with no explicit parameter names, the parameters are implicitly named $0, $1, $2, and so on.
These names are valid identifiers within the scope of the closure.

G R A M M A R O F A N I D E N T I F I E R

 identifier → identifier-head identifier-characters opt
 identifier → ` identifier-head identifier-characters opt `
 identifier → implicit-parameter-name
 identifier-list → identifier identifier , identifier-list

 identifier-head → Upper- or lowercase letter A through Z
 identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5, or U+00B7–U+00BA
 identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6, or U+00F8–U+00FF
 identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or U+180F–U+1DBF
 identifier-head → U+1E00–U+1FFF
 identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040, U+2054, or U+2060–

U+206F
 identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or U+2776–U+2793
 identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
 identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or U+3040–U+D7FF
 identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F, or U+FE30–U+FE44
 identifier-head → U+FE47–U+FFFD
 identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–U+3FFFD, or U+40000–

U+4FFFD
 identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–U+7FFFD, or U+80000–

U+8FFFD
 identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–U+BFFFD, or U+C0000–

U+CFFFD
 identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD

 identifier-character → Digit 0 through 9
 identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–U+20FF, or U+FE20–

U+FE2F
 identifier-character → identifier-head
 identifier-characters → identifier-character identifier-characters opt

 implicit-parameter-name → $ decimal-digits

Keywords

The following keywords are reserved and may not be used as identifiers, unless they’re escaped with
backticks, as described above in Identifiers.

(c) ketabton.com: The Digital Library

Literals

A literal is the source code representation of a value of an integer, floating-point number, or string type. The
following are examples of literals:

1 42															//	Integer	literal
2 3.14159										//	Floating-point	literal
3 "Hello,	world!"		//	String	literal

G R A M M A R O F A L I T E R A L

 literal → integer-literal floating-point-literal string-literal

Integer Literals

Integer literals represent integer values of unspecified precision. By default, integer literals are expressed in
decimal; you can specify an alternate base using a prefix. Binary literals begin with 0b, octal literals begin with
0o, and hexadecimal literals begin with 0x.

Keywords used in declarations: class, deinit, enum, extension, func, import, init,
let, protocol, static, struct, subscript, typealias, and var.

Keywords used in statements: break, case, continue, default, do, else,
fallthrough, if, in, for, return, switch, where, and while.

Keywords used in expressions and types: as, dynamicType, is, new, super, self, Self,
Type, __COLUMN__, __FILE__, __FUNCTION__, and __LINE__.

Keywords reserved in particular contexts: associativity, didSet, get, infix, inout,
left, mutating, none, nonmutating, operator, override, postfix,
precedence, prefix, right, set, unowned, unowned(safe), unowned(unsafe),
weak and willSet. Outside the context in which they appear in the grammar, they can be
used as identifiers.

(c) ketabton.com: The Digital Library

Decimal literals contain the digits 0 through 9. Binary literals contain 0 and 1, octal literals contain 0 through 7,
and hexadecimal literals contain 0 through 9 as well as A through F in upper- or lowercase.

Negative integers literals are expressed by prepending a minus sign (-) to an integer literal, as in -42.

Underscores (_) are allowed between digits for readability, but are ignored and therefore don’t affect the value
of the literal. Integer literals can begin with leading zeros (0), but are likewise ignored and don’t affect the base
or value of the literal.

Unless otherwise specified, the default type of an integer literal is the Swift standard library type Int. The Swift
standard library also defines types for various sizes of signed and unsigned integers, as described in Integers.

G R A M M A R O F A N I N T E G E R L I T E R A L

 integer-literal → binary-literal
 integer-literal → octal-literal
 integer-literal → decimal-literal
 integer-literal → hexadecimal-literal

 binary-literal → 0b binary-digit binary-literal-characters opt
 binary-digit → Digit 0 or 1
 binary-literal-character → binary-digit _
 binary-literal-characters → binary-literal-character binary-literal-characters opt

 octal-literal → 0o octal-digit octal-literal-characters opt
 octal-digit → Digit 0 through 7
 octal-literal-character → octal-digit _
 octal-literal-characters → octal-literal-character octal-literal-characters opt

 decimal-literal → decimal-digit decimal-literal-characters opt
 decimal-digit → Digit 0 through 9
 decimal-digits → decimal-digit decimal-digits opt
 decimal-literal-character → decimal-digit _
 decimal-literal-characters → decimal-literal-character decimal-literal-characters opt

 hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-characters opt
 hexadecimal-digit → Digit 0 through 9, a through f, or A through F
 hexadecimal-literal-character → hexadecimal-digit _
 hexadecimal-literal-characters → hexadecimal-literal-character hexadecimal-literal-

characters opt

(c) ketabton.com: The Digital Library

Floating-Point Literals

Floating-point literals represent floating-point values of unspecified precision.

By default, floating-point literals are expressed in decimal (with no prefix), but they can also be expressed in
hexadecimal (with a 0x prefix).

Decimal floating-point literals consist of a sequence of decimal digits followed by either a decimal fraction, a
decimal exponent, or both. The decimal fraction consists of a decimal point (.) followed by a sequence of
decimal digits. The exponent consists of an upper- or lowercase e prefix followed by sequence of decimal digits
that indicates what power of 10 the value preceding the e is multiplied by. For example, 1.25e2 represents
1.25 ⨉ 102, which evaluates to 125.0. Similarly, 1.25e-2 represents 1.25 ⨉ 10-2, which evaluates to
0.0125.

Hexadecimal floating-point literals consist of a 0x prefix, followed by an optional hexadecimal fraction, followed
by a hexadecimal exponent. The hexadecimal fraction consists of a decimal point followed by a sequence of
hexadecimal digits. The exponent consists of an upper- or lowercase p prefix followed by sequence of decimal
digits that indicates what power of 2 the value preceding the p is multiplied by. For example, 0xFp2 represents
15 ⨉ 22, which evaluates to 60. Similarly, 0xFp-2 represents 15 ⨉ 2-2, which evaluates to 3.75.

Unlike with integer literals, negative floating-point numbers are expressed by applying the unary minus operator
(-) to a floating-point literal, as in -42.0. The result is an expression, not a floating-point integer literal.

Underscores (_) are allowed between digits for readability, but are ignored and therefore don’t affect the value
of the literal. Floating-point literals can begin with leading zeros (0), but are likewise ignored and don’t affect the
base or value of the literal.

Unless otherwise specified, the default type of a floating-point literal is the Swift standard library type Double,
which represents a 64-bit floating-point number. The Swift standard library also defines a Float type, which
represents a 32-bit floating-point number.

G R A M M A R O F A F L O A T I N G - P O I N T L I T E R A L

 floating-point-literal → decimal-literal decimal-fraction opt decimal-exponent opt
 floating-point-literal → hexadecimal-literal hexadecimal-fraction opt hexadecimal-exponent

 decimal-fraction → . decimal-literal
 decimal-exponent → floating-point-e sign opt decimal-literal

(c) ketabton.com: The Digital Library

 hexadecimal-fraction → . hexadecimal-literal opt
 hexadecimal-exponent → floating-point-p sign opt hexadecimal-literal

 floating-point-e → e E
 floating-point-p → p P
 sign → + -

String Literals

A string literal is a sequence of characters surrounded by double quotes, with the following form:

" characters "

String literals cannot contain an unescaped double quote ("), an unescaped backslash (\), a carriage return, or
a line feed.

Special characters can be included in string literals using the following escape sequences:

Characters can also be expressed by \x followed by two hexadecimal digits, \u followed by four hexadecimal
digits, or \U followed by eight hexadecimal digits. The digits in these escape sequences identify a Unicode
codepoint.

The value of an expression can be inserted into a string literal by placing the expression in parentheses after a
backslash (\). The interpolated expression must not contain an unescaped double quote ("), an unescaped

Null Character (\0)

Backslash (\\)

Horizontal Tab (\t)

Line Feed (\n)

Carriage Return (\r)

Double Quote (\")

Single Quote (\')

(c) ketabton.com: The Digital Library

backslash (\), a carriage return, or a line feed. The expression must evaluate to a value of a type that the
String class has an initializer for.

For example, all the following string literals have the same value:

1 "1	2	3"
2 "1	2	\(3)"
3 "1	2	\(1	+	2)"
4 var	x	=	3;	"1	2	\(x)"

The default type of a string literal is String. The characters that make up a string are of type Character.
For more information about the String and Character types, see Strings and Characters.

G R A M M A R O F A S T R I N G L I T E R A L

 string-literal → " quoted-text "
 quoted-text → quoted-text-item quoted-text opt
 quoted-text-item → escaped-character
 quoted-text-item → \(expression)
 quoted-text-item → Any Unicode extended grapheme cluster except " , \ , U+000A, or U+000D

 escaped-character → \0 \\ \t \n \r \" \'
 escaped-character → \x hexadecimal-digit hexadecimal-digit
 escaped-character → \u hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit
 escaped-character → \U hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-
digit hexadecimal-digit

Operators

The Swift standard library defines a number of operators for your use, many of which are discussed in Basic
Operators and Advanced Operators. The present section describes which characters can be used as operators.

Operators are made up of one or more of the following characters: /, =, -, +, !, *, %, <, >, &, |, ^, ~, and ..
That said, the tokens =, ->, //, /*, */, ., and the unary prefix operator & are reserved. These tokens can’t be
overloaded, nor can they be used to define custom operators.

(c) ketabton.com: The Digital Library

The whitespace around an operator is used to determine whether an operator is used as a prefix operator, a
postfix operator, or a binary operator. This behavior is summarized in the following rules:

For the purposes of these rules, the characters (, [, and { before an operator, the characters),], and } after
an operator, and the characters ,, ;, and : are also considered whitespace.

There is one caveat to the rules above. If the ! or ? operator has no whitespace on the left, it is treated as a
postfix operator, regardless of whether it has whitespace on the right. To use the ? operator as syntactic sugar
for the Optional type, it must not have whitespace on the left. To use it in the conditional (?	:) operator, it
must have whitespace around both sides.

In certain constructs, operators with a leading < or > may be split into two or more tokens. The remainder is
treated the same way and may be split again. As a result, there is no need to use whitespace to disambiguate
between the closing > characters in constructs like Dictionary<String,	Array<Int>>. In this
example, the closing > characters are not treated as a single token that may then be misinterpreted as a bit shift
>> operator.

To learn how to define new, custom operators, see Custom Operators and Operator Declaration. To learn how
to overload existing operators, see Operator Functions.

G R A M M A R O F O P E R A T O R S

 operator → operator-character operator opt
 operator-character → / = - + ! * % < > & | ^ ~ .

 binary-operator → operator
 prefix-operator → operator

If an operator has whitespace around both sides or around neither side, it is treated as a binary
operator. As an example, the + operator in a+b and a	+	b is treated as a binary operator.

If an operator has whitespace on the left side only, it is treated as a prefix unary operator. As an
example, the ++ operator in a	++b is treated as a prefix unary operator.

If an operator has whitespace on the right side only, it is treated as a postfix unary operator. As
an example, the ++ operator in a++	b is treated as a postfix unary operator.

If an operator has no whitespace on the left but is followed immediately by a dot (.), it is treated
as a postfix unary operator. As an example, the ++ operator in a++.b is treated as a postfix
unary operator (a++	.	b rather than a	++	.b).

(c) ketabton.com: The Digital Library

 postfix-operator → operator

(c) ketabton.com: The Digital Library

Types

In Swift, there are two kinds of types: named types and compound types. A named type is a type that can be
given a particular name when it is defined. Named types include classes, structures, enumerations, and
protocols. For example, instances of a user-defined class named MyClass have the type MyClass. In
addition to user-defined named types, the Swift standard library defines many commonly used named types,
including those that represent arrays, dictionaries, and optional values.

Data types that are normally considered basic or primitive in other languages—such as types that represent
numbers, characters, and strings—are actually named types, defined and implemented in the Swift standard
library using structures. Because they are named types, you can extend their behavior to suit the needs of your
program, using an extension declaration, discussed in Extensions and Extension Declaration.

A compound type is a type without a name, defined in the Swift language itself. There are two compound types:
function types and tuple types. A compound type may contain named types and other compound types. For
instance, the tuple type (Int,	(Int,	Int)) contains two elements: The first is the named type Int, and
the second is another compound type (Int,	Int).

This chapter discusses the types defined in the Swift language itself and describes the type inference behavior
of Swift.

G R A M M A R O F A T Y P E

 type → array-type function-type type-identifier tuple-type optional-type implicitly-
unwrapped-optional-type protocol-composition-type metatype-type

Type Annotation

A type annotation explicitly specifies the type of a variable or expression. Type annotations begin with a colon
(:) and end with a type, as the following examples show:

1 let	someTuple:	(Double,	Double)	=	(3.14159,	2.71828)
2 func	someFunction(a:	Int)	{	/*	...	*/	}

(c) ketabton.com: The Digital Library

In the first example, the expression someTuple is specified to have the tuple type (Double,	Double). In
the second example, the parameter a to the function someFunction is specified to have the type Int.

Type annotations can contain an optional list of type attributes before the type.

G R A M M A R O F A T Y P E A N N O TA T I O N

 type-annotation → : attributes opt type

Type Identifier

A type identifier refers to either a named type or a type alias of a named or compound type.

Most of the time, a type identifier directly refers to a named type with the same name as the identifier. For
example, Int is a type identifier that directly refers to the named type Int, and the type identifier
Dictionary<String,	Int> directly refers to the named type Dictionary<String,	Int>.

There are two cases in which a type identifier does not refer to a type with the same name. In the first case, a
type identifier refers to a type alias of a named or compound type. For instance, in the example below, the use of
Point in the type annotation refers to the tuple type (Int,	Int).

1 typealias	Point	=	(Int,	Int)
2 let	origin:	Point	=	(0,	0)

In the second case, a type identifier uses dot (.) syntax to refer to named types declared in other modules or
nested within other types. For example, the type identifier in the following code references the named type
MyType that is declared in the ExampleModule module.

1 var	someValue:	ExampleModule.MyType

G R A M M A R O F A T Y P E I D E N T I F I E R

 type-identifier → type-name generic-argument-clause opt type-name generic-argument-
clause opt . type-identifier

 type-name → identifier

(c) ketabton.com: The Digital Library

Tuple Type

A tuple type is a comma-separated list of zero or more types, enclosed in parentheses.

You can use a tuple type as the return type of a function to enable the function to return a single tuple containing
multiple values. You can also name the elements of a tuple type and use those names to refer to the values of
the individual elements. An element name consists of an identifier followed immediately by a colon (:). For an
example that demonstrates both of these features, see Functions with Multiple Return Values.

Void is a typealias for the the empty tuple type, (). If there is only one element inside the parentheses, the type
is simply the type of that element. For example, the type of (Int) is Int, not (Int). As a result, you can
label a tuple element only when the tuple type has two or more elements.

G R A M M A R O F A T U P L E T Y P E

 tuple-type → (tuple-type-body opt)
 tuple-type-body → tuple-type-element-list ... opt
 tuple-type-element-list → tuple-type-element tuple-type-element , tuple-type-element-list
 tuple-type-element → attributes opt inout opt type inout opt element-name type-

annotation
 element-name → identifier

Function Type

A function type represents the type of a function, method, or closure and consists of a parameter and return type
separated by an arrow (->):

parameter	type 	->	 return	type

Because the parameter type and the return type can be a tuple type, function types support functions and
methods that take multiple paramaters and return multiple values.

You can apply the auto_closure attribute to a function type that has a parameter type of () and that returns
the type of an expression (see Type Attributes). An autoclosure function captures an implicit closure over the

(c) ketabton.com: The Digital Library

specified expression, instead of the expression itself. The following example uses the auto_closure
attribute in defining a very simple assert function:

1 func	simpleAssert(condition:	@auto_closure	()	->	Bool,	message:	
String)	{

2 				if	!condition()	{
3 								println(message)
4 				}
5 }
6 let	testNumber	=	5
7 simpleAssert(testNumber	%	2	==	0,	"testNumber	isn't	an	even	number.")
8 //	prints	"testNumber	isn't	an	even	number."

A function type can have a variadic parameter as the last parameter in its parameter type. Syntactically, a
variadic parameter consists of a base type name followed immediately by three dots (...), as in Int.... A
variadic parameter is treated as an array that contains elements of the base type name. For instance, the
variadic parameter Int... is treated as Int[]. For an example that uses a variadic parameter, see Variadic
Parameters.

To specify an in-out parameter, prefix the parameter type with the inout keyword. You can’t mark a variadic
parameter or a return type with the inout keyword. In-out parameters are discussed in In-Out Parameters.

The type of a curried function is equivalent to a nested function type. For example, the type of the curried
function addTwoNumbers()() below is Int	->	Int	->	Int:

1 func	addTwoNumbers(a:	Int)(b:	Int)	->	Int	{
2 				return	a	+	b
3 }
4 addTwoNumbers(4)(5)	//	Returns	9

The function types of a curried function are grouped from right to left. For instance, the function type Int	->
Int	->	Int is understood as Int	->	(Int	->	Int)—that is, a function that takes an Int and returns
another function that takes and return an Int. For example, you can rewrite the curried function
addTwoNumbers()() as the following nested function:

(c) ketabton.com: The Digital Library

1 func	addTwoNumbers(a:	Int)	->	(Int	->	Int)	{
2 				func	addTheSecondNumber(b:	Int)	->	Int	{
3 								return	a	+	b
4 				}
5 				return	addTheSecondNumber
6 }
7 addTwoNumbers(4)(5)	//	Returns	9

G R A M M A R O F A F U N C T I O N T Y P E

 function-type → type -> type

Array Type

The Swift language uses square brackets ([]) immediately after the name of a type as syntactic sugar for the
named type Array<T>, which is defined in the Swift standard library. In other words, the following two
declarations are equivalent:

1 let	someArray:	String[]	=	["Alex",	"Brian",	"Dave"]
2 let	someArray:	Array<String>	=	["Alex",	"Brian",	"Dave"]

In both cases, the constant someArray is declared as an array of strings. The elements of an array can be
accessed using square brackets as well: someArray[0] refers to the element at index 0, "Alex".

As the above example also shows, you can use square brackets to create an array using an array literal. Empty
array literals are written using an empty pair of square brackets and can be used to create an empty array of a
specified type.

1 var	emptyArray:	Double[]	=	[]

You can create multidimensional arrays by chaining multiple sets of square brackets to the name of the base
type of the elements. For example, you can create a three-dimensional array of integers using three sets of
square brackets:

(c) ketabton.com: The Digital Library

1 var	array3D:	Int[][][]	=	[[[1,	2],	[3,	4]],	[[5,	6],	[7,	8]]]

When accessing the elements in a multidimensional array, the left-most subscript index refers to the element at
that index in the outermost array. The next subscript index to the right refers to the element at that index in the
array that’s nested one level in. And so on. This means that in the example above, array3D[0] refers to
[[1,	2],	[3,	4]], array3D[0][1] refers to [3,	4], and array3D[0][1][1] refers to the value
4.

For a detailed discussion of the Swift standard library Array type, see Arrays.

G R A M M A R O F A N A R R A Y T Y P E

 array-type → type [] array-type []

Optional Type

The Swift language defines the postfix ? as syntactic sugar for the named type Optional<T>, which is
defined in the Swift standard library. In other words, the following two declarations are equivalent:

1 var	optionalInteger:	Int?
2 var	optionalInteger:	Optional<Int>

In both cases, the variable optionalInteger is declared to have the type of an optional integer. Note that no
whitespace may appear between the type and the ?.

The type Optional<T> is an enumeration with two cases, None and Some(T), which are used to represent
values that may or may not be present. Any type can be explicitly declared to be (or implicitly converted to) an
optional type. When declaring an optional type, be sure to use parentheses to properly scope the ? operator. As
an example, to declare an optional array of integers, write the type annotation as (Int[])?; writing Int[]?
produces an error.

If you don’t provide an initial value when you declare an optional variable or property, its value automatically
defaults to nil.

(c) ketabton.com: The Digital Library

Optionals conform to the LogicValue protocol and therefore may occur in a Boolean context. In that context,
if an instance of an optional type T? contains any value of type T (that is, it’s value is Optional.Some(T)),
the optional type evaluates to true. Otherwise, it evaluates to false.

If an instance of an optional type contains a value, you can access that value using the postfix operator !, as
shown below:

1 optionalInteger	=	42
2 optionalInteger!	//	42

Using the ! operator to unwrap an optional that has a value of nil results in a runtime error.

You can also use optional chaining and optional binding to conditionally perform an operation on an optional
expression. If the value is nil, no operation is performed and therefore no runtime error is produced.

For more information and to see examples that show how to use optional types, see Optionals.

G R A M M A R O F A N O P T I O N A L T Y P E

 optional-type → type ?

Implicitly Unwrapped Optional Type

The Swift language defines the postfix ! as syntactic sugar for the named type
ImplicitlyUnwrappedOptional<T>, which is defined in the Swift standard library. In other words, the
following two declarations are equivalent:

1 var	implicitlyUnwrappedString:	String!
2 var	implicitlyUnwrappedString:	ImplicitlyUnwrappedOptional<String>

In both cases, the variable implicitlyUnwrappedString is declared to have the type of an implicitly
unwrapped optional string. Note that no whitespace may appear between the type and the !.

(c) ketabton.com: The Digital Library

You can use implicitly unwrapped optionals in all the same places in your code that you can use optionals. For
instance, you can assign values of implicitly unwrapped optionals to variables, constants, and properties of
optionals, and vice versa.

As with optionals, if you don’t provide an initial value when you declare an implicitly unwrapped optional
variable or property, it’s value automatically defaults to nil.

Because the value of an implicitly unwrapped optional is automatically unwrapped when you use it, there’s no
need to use the ! operator to unwrap it. That said, if you try to use an implicitly unwrapped optional that has a
value of nil, you’ll get a runtime error.

Use optional chaining to conditionally perform an operation on an implicitly unwrapped optional expression. If
the value is nil, no operation is performed and therefore no runtime error is produced.

For more information about implicitly unwrapped optional types, see Implicitly Unwrapped Optionals.

G R A M M A R O F A N I M P L I C I T L Y U N W R A P P E D O P T I O N A L T Y P E

 implicitly-unwrapped-optional-type → type !

Protocol Composition Type

A protocol composition type describes a type that conforms to each protocol in a list of specified protocols.
Protocol composition types may be used in type annotations and in generic parameters.

Protocol composition types have the following form:

protocol< Protocol	1 ,	 Protocol	2 >

A protocol composition type allows you to specify a value whose type conforms to the requirements of multiple
protocols without having to explicitly define a new, named protocol that inherits from each protocol you want the
type to conform to. For example, specifying a protocol composition type protocol<ProtocolA,
ProtocolB,	ProtocolC> is effectively the same as defining a new protocol ProtocolD that inherits
from ProtocolA, ProtocolB, and ProtocolC, but without having to introduce a new name.

(c) ketabton.com: The Digital Library

Each item in a protocol composition list must be either the name of protocol or a type alias of a protocol
composition type. If the list is empty, it specifies the empty protocol composition type, which every type
conforms to.

G R A M M A R O F A P R O T O C O L C O M P O S I T I O N T Y P E

 protocol-composition-type → protocol < protocol-identifier-list opt >
 protocol-identifier-list → protocol-identifier protocol-identifier , protocol-identifier-list
 protocol-identifier → type-identifier

Metatype Type

A metatype type refers to the type of any type, including class types, structure types, enumeration types, and
protocol types.

The metatype of a class, structure, or enumeration type is the name of that type followed by .Type. The
metatype of a protocol type—not the concrete type that conforms to the protocol at runtime—is the name of that
protocol followed by .Protocol. For example, the metatype of the class type SomeClass is
SomeClass.Type and the metatype of the protocol SomeProtocol is SomeProtocol.Protocol.

You can use the postfix self expression to access a type as a value. For example, SomeClass.self
returns SomeClass itself, not an instance of SomeClass. And SomeProtocol.self returns
SomeProtocol itself, not an instance of a type that conforms to SomeProtocol at runtime. You can use a
dynamicType expression with an instance of a type to access that instance’s runtime type as a value, as the
following example shows:

1 class	SomeBaseClass	{
2 				class	func	printClassName()	{
3 								println("SomeBaseClass")
4 				}
5 }
6 class	SomeSubClass:	SomeBaseClass	{
7 				override	class	func	printClassName()	{
8 								println("SomeSubClass")
9 				}

(c) ketabton.com: The Digital Library

10 }
11 let	someInstance:	SomeBaseClass	=	SomeSubClass()
12 //	someInstance	is	of	type	SomeBaseClass	at	compile	time,	but
13 //	someInstance	is	of	type	SomeSubClass	at	runtime
14 someInstance.dynamicType.printClassName()
15 //	prints	"SomeSubClass"

G R A M M A R O F A M E T A T Y P E T Y P E

 metatype-type → type . Type type . Protocol

Type Inheritance Clause

A type inheritance clause is used to specify which class a named type inherits from and which protocols a
named type conforms to. A type inheritance clause begins with a colon (:), followed by a comma-separated list
of type identifiers.

Class types may inherit from a single superclass and conform to any number of protocols. When defining a
class, the name of the superclass must appear first in the list of type identifiers, followed by any number of
protocols the class must conform to. If the class does not inherit from another class, the list may begin with a
protocol instead. For an extended discussion and several examples of class inheritance, see Inheritance.

Other named types may only inherit from or conform to a list of protocols. Protocol types may inherit from any
number of other protocols. When a protocol type inherits from other protocols, the set of requirements from
those other protocols are aggregated together, and any type that inherits from the current protocol must conform
to all of those requirements.

A type inheritance clause in an enumeration definition may be either a list of protocols, or in the case of an
enumeration that assigns raw values to its cases, a single, named type that specifies the type of those raw
values. For an example of an enumeration definition that uses a type inheritance clause to specify the type of its
raw values, see Raw Values.

G R A M M A R O F A T Y P E I N H E R I T A N C E C L A U S E

 type-inheritance-clause → : type-inheritance-list
 type-inheritance-list → type-identifier type-identifier , type-inheritance-list

(c) ketabton.com: The Digital Library

Type Inference

Swift uses type inference extensively, allowing you to omit the type or part of the type of many variables and
expressions in your code. For example, instead of writing var	x:	Int	=	0, you can omit the type
completely and simply write var	x	=	0—the compiler correctly infers that x names a value of type Int.
Similarly, you can omit part of a type when the full type can be inferred from context. For instance, if you write
let	dict:	Dictionary	=	["A":	1], the compiler infers that dict has the type
Dictionary<String,	Int>.

In both of the examples above, the type information is passed up from the leaves of the expression tree to its
root. That is, the type of x in var	x:	Int	=	0 is inferred by first checking the type of 0 and then passing this
type information up to the root (the variable x).

In Swift, type information can also flow in the opposite direction—from the root down to the leaves. In the
following example, for instance, the explicit type annotation (:	Float) on the constant eFloat causes the
numeric literal 2.71828 to have type Float instead of type Double.

1 let	e	=	2.71828	//	The	type	of	e	is	inferred	to	be	Double.
2 let	eFloat:	Float	=	2.71828	//	The	type	of	eFloat	is	Float.

Type inference in Swift operates at the level of a single expression or statement. This means that all of the
information needed to infer an omitted type or part of a type in an expression must be accessible from type-
checking the expression or one of its subexpressions.

(c) ketabton.com: The Digital Library

Expressions

In Swift, there are four kinds of expressions: prefix expressions, binary expressions, primary expressions, and
postfix expressions. Evaluating an expression returns a value, causes a side effect, or both.

Prefix and binary expressions let you apply operators to smaller expressions. Primary expressions are
conceptually the simplest kind of expression, and they provide a way to access values. Postfix expressions, like
prefix and binary expressions, let you build up more complex expressions using postfixes such as function calls
and member access. Each kind of expression is described in detail in the sections below.

G R A M M A R O F A N E X P R E S S I O N

 expression → prefix-expression binary-expressions opt
 expression-list → expression expression , expression-list

Prefix Expressions

Prefix expressions combine an optional prefix operator with an expression. Prefix operators take one argument,
the expression that follows them.

The Swift standard library provides the following prefix operators:

For information about the behavior of these operators, see Basic Operators and Advanced Operators.

++ Increment

-- Decrement

! Logical NOT

~ Bitwise NOT

+ Unary plus

- Unary minus

(c) ketabton.com: The Digital Library

In addition to the standard library operators listed above, you use & immediately before the name of a variable
that’s being passed as an in-out argument to a function call expression. For more information and to see an
example, see In-Out Parameters.

G R A M M A R O F A P R E F I X E X P R E S S I O N

 prefix-expression → prefix-operator opt postfix-expression
 prefix-expression → in-out-expression
 in-out-expression → & identifier

Binary Expressions

Binary expressions combine an infix binary operator with the expression that it takes as its left-hand and right-
hand arguments. It has the following form:

left-hand	argument 	 operator 	 right-hand	argument

The Swift standard library provides the following binary operators:

Exponentiative (No associativity, precedence level 160)

<< Bitwise left shift

>> Bitwise right shift

Multiplicative (Left associative, precedence level 150)

* Multiply

/ Divide

% Remainder

&* Multiply, ignoring overflow

&/ Divide, ignoring overflow

&% Remainder, ignoring overflow

(c) ketabton.com: The Digital Library

& Bitwise AND

Additive (Left associative, precedence level 140)

+ Add

- Subtract

&+ Add with overflow

&- Subtract with overflow

| Bitwise OR

^ Bitwise XOR

Range (No associativity, precedence level 135)

.. Half-closed range

... Closed range

Cast (No associativity, precedence level 132)

is Type check

as Type cast

Comparative (No associativity, precedence level 130)

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

=== Identical

(c) ketabton.com: The Digital Library

!== Not identical

~= Pattern match

Conjunctive (Left associative, precedence level 120)

&& Logical AND

Disjunctive (Left associative, precedence level 110)

|| Logical OR

Ternary Conditional (Right associative, precedence level 100)

?: Ternary conditional

Assignment (Right associative, precedence level 90)

= Assign

*= Multiply and assign

/= Divide and assign

%= Remainder and assign

+= Add and assign

-= Subtract and assign

<<= Left bit shift and assign

>>= Right bit shift and assign

&= Bitwise AND and assign

^= Bitwise XOR and assign

|= Bitwise OR and assign

&&= Logical AND and assign

||= Logical OR and assign

(c) ketabton.com: The Digital Library

For information about the behavior of these operators, see Basic Operators and Advanced Operators.

N O T E

At parse time, an expression made up of binary operators is represented as a flat list. This list is
transformed into a tree by applying operator precedence For example, the expression 2	+	3	*	5
is initially understood as a flat list of five items, 2, +, `` 3``, *, and 5. This process transforms it into
the tree (2 + (3 * 5)).

G R A M M A R O F A B I N A R Y E X P R E S S I O N

 binary-expression → binary-operator prefix-expression
 binary-expression → assignment-operator prefix-expression
 binary-expression → conditional-operator prefix-expression
 binary-expression → type-casting-operator
 binary-expressions → binary-expression binary-expressions opt

Assignment Operator

The assigment operator sets a new value for a given expression. It has the following form:

expression 	=	 value

The value of the expression is set to the value obtained by evaluating the value. If the expression is a tuple, the
value must be a tuple with the same number of elements. (Nested tuples are allowed.) Assignment is
performed from each part of the value to the corresponding part of the expression. For example:

1 (a,	_,	(b,	c))	=	("test",	9.45,	(12,	3))
2 //	a	is	"test",	b	is	12,	c	is	3,	and	9.45	is	ignored

The assignment operator does not return any value.

(c) ketabton.com: The Digital Library

G R A M M A R O F A N A S S I G N M E N T O P E R A T O R

 assignment-operator → =

Ternary Conditional Operator

The ternary conditional operator evaluates to one of two given values based on the value of a condition. It has the
following form:

condition 	?	 expression	used	if	true 	:

expression	used	if	false

If the condition evaluates to true, the conditional operator evaluates the first expression and returns its value.
Otherwise, it evaluates the second expression and returns its value. The unused expression is not evaluated.

For an example that uses the ternary conditional operator, see Ternary Conditional Operator.

G R A M M A R O F A C O N D I T I O N A L O P E R A T O R

 conditional-operator → ? expression :

Type-Casting Operators

There are two type-casting operators, the as operator and the is operator. They have the following form:

expression 	as	 type

expression 	as?	 type

expression 	is	 type

The as operator performs a cast of the expression to the specified type. It behaves as follows:

(c) ketabton.com: The Digital Library

1 class	SomeSuperType	{}
2 class	SomeType:	SomeSuperType	{}
3 class	SomeChildType:	SomeType	{}
4 let	s	=	SomeType()
5 	
6 let	x	=	s	as	SomeSuperType		//	known	to	succeed;	type	is	SomeSuperType
7 let	y	=	s	as	Int												//	known	to	fail;	compile-time	error
8 let	z	=	s	as	SomeChildType		//	might	fail	at	runtime;	type	is	

SomeChildType?

Specifying a type with as provides the same information to the compiler as a type annotation, as shown in the
following example:

1 let	y1	=	x	as	SomeType		//	Type	information	from	'as'
2 let	y2:	SomeType	=	x				//	Type	information	from	an	annotation

The is operator checks at runtime to see whether the expression is of the specified type. If so, it returns true;
otherwise, it returns false.

The check must not be known to be true or false at compile time. The following are invalid:

1 "hello"	is	String
2 "hello"	is	Int

If conversion to the specified type is guaranteed to succeed, the value of the expression is
returned as an instance of the specified type. An example is casting from a subclass to a
superclass.

If conversion to the specified type is guaranteed to fail, a compile-time error is raised.

Otherwise, if it’s not known at compile time whether the conversion will succeed, the type of the
cast expresion is an optional of the specified type. At runtime, if the cast succeeds, the value of
expression is wrapped in an optional and returned; otherwise, the value returned is nil. An
example is casting from a superclass to a subclass.

(c) ketabton.com: The Digital Library

For more information about type casting and to see more examples that use the type-casting operators, see
Type Casting.

G R A M M A R O F A T Y P E - C A S T I N G O P E R A T O R

 type-casting-operator → is type as ? opt type

Primary Expressions

Primary expressions are the most basic kind of expression. They can be used as expressions on their own, and
they can be combined with other tokens to make prefix expressions, binary expressions, and postfix
expressions.

G R A M M A R O F A P R I M A R Y E X P R E S S I O N

 primary-expression → identifier generic-argument-clause opt
 primary-expression → literal-expression
 primary-expression → self-expression
 primary-expression → superclass-expression
 primary-expression → closure-expression
 primary-expression → parenthesized-expression
 primary-expression → implicit-member-expression
 primary-expression → wildcard-expression

Literal Expression

A literal expression consists of either an ordinary literal (such as a string or a number), an array or dictionary
literal, or one of the following special literals:

Literal Type Value

The name

(c) ketabton.com: The Digital Library

__FILE__ String of the file
in which it
appears.

__LINE__ Int
The line
number on
which it
appears.

__COLUMN__ Int

The
column
number in
which it
begins.

__FUNCTION__ String

The name
of the
declaration
in which it
appears.

Inside a function, the value of __FUNCTION__ is the name of that function, inside a method it is the name of
that method, inside a property getter or setter it is the name of that property, inside special members like init
or subscript it is the name of that keyword, and at the top level of a file it is the name of the current module.

An array literal is an ordered collection of values. It has the following form:

(c) ketabton.com: The Digital Library

[value	1 ,	 value	2 ,	 ...]

The last expression in the array can be followed by an optional comma. An empty array literal is written as an
empty pair of brackets ([]). The value of an array literal has type T[], where T is the type of the expressions
inside it. If there are expressions of multiple types, T is their closest common supertype.

A dictionary literal is an unordered collection of key-value pairs. It has the following form:

[key	1 :	 value	1 ,	 key	2 :	 value	2 ,	 ...]

The last expression in the dictionary can be followed by an optional comma. An empty dictionary literal is
written as a colon inside a pair of brackets ([:]) to distinguish it from an empty array literal. The value of a
dictionary literal has type Dictionary<KeyType,	ValueType>, where KeyType is the type of its key
expressions and ValueType is the type of its value expressions. If there are expressions of multiple types,
KeyType and ValueType are the closest common supertype for their respective values.

G R A M M A R O F A L I T E R A L E X P R E S S I O N

 literal-expression → literal
 literal-expression → array-literal dictionary-literal
 literal-expression → __FILE__ __LINE__ __COLUMN__ __FUNCTION__

 array-literal → [array-literal-items opt]
 array-literal-items → array-literal-item , opt array-literal-item , array-literal-items
 array-literal-item → expression

 dictionary-literal → [dictionary-literal-items] [:]
 dictionary-literal-items → dictionary-literal-item , opt dictionary-literal-item , dictionary-

literal-items
 dictionary-literal-item → expression : expression

Self Expression

The self expression is an explicit reference to the current type or instance of the type in which it occurs. It has
the following forms:

(c) ketabton.com: The Digital Library

self

self. member	name

self[subscript	index]

self(initializer	arguments)

self.init(initializer	arguments)

In an initializer, subscript, or instance method, self refers to the current instance of the type in which it occurs.
In a static or class method, self refers to the current type in which it occurs.

The self expression is used to specify scope when accessing members, providing disambiguation when
there is another variable of the same name in scope, such as a function parameter. For example:

1 class	SomeClass	{
2 				var	greeting:	String
3 				init(greeting:	String)	{
4 								self.greeting	=	greeting
5 				}
6 }

In a mutating method of value type, you can assign a new instance of that value type to self. For example:

1 struct	Point	{
2 				var	x	=	0.0,	y	=	0.0
3 				mutating	func	moveByX(deltaX:	Double,	y	deltaY:	Double)	{
4 								self	=	Point(x:	x	+	deltaX,	y:	y	+	deltaY)
5 				}
6 }

G R A M M A R O F A S E L F E X P R E S S I O N

 self-expression → self
 self-expression → self . identifier
 self-expression → self [expression]
 self-expression → self . init

(c) ketabton.com: The Digital Library

Superclass Expression

A superclass expression lets a class interact with its superclass. It has one of the following forms:

super. member	name

super[subscript	index]

super.init(initializer	arguments)

The first form is used to access a member of the superclass. The second form is used to access the
superclass’s subscript implementation. The third form is used to access an initializer of the superclass.

Subclasses can use a superclass expression in their implementation of members, subscripting, and initializers
to make use of the implementation in their superclass.

G R A M M A R O F A S U P E R C L A S S E X P R E S S I O N

 superclass-expression → superclass-method-expression superclass-subscript-expression
superclass-initializer-expression

 superclass-method-expression → super . identifier
 superclass-subscript-expression → super [expression]
 superclass-initializer-expression → super . init

Closure Expression

A closure expression creates a closure, also known as a lambda or an anonymous function in other
programming languages. Like function declarations, closures contain statements which they execute, and they
capture values from their enclosing scope. It has the following form:

{	(parameters)	->	 return	type 	in

				 statements

(c) ketabton.com: The Digital Library

}

The parameters have the same form as the parameters in a function declaration, as described in Function
Declaration.

There are several special forms that allow closures to be written more concisely:

The following closure expressions are equivalent:

1 myFunction	{
2 				(x:	Int,	y:	Int)	->	Int	in
3 				return	x	+	y
4 }
5 	
6 myFunction	{
7 				(x,	y)	in
8 				return	x	+	y
9 }

10 	
11 myFunction	{	return	$0	+	$1	}
12 	
13 myFunction	{	$0	+	$1	}

For information about passing a closure as an argument to a function, see Function Call Expression.

A closure can omit the types of its parameters, its return type, or both. If you omit the parameter
names and both types, omit the in keyword before the statements. If the omitted types can’t be
inferred, a compile-time error is raised.

A closure may omit names for its parameters. Its parameters are then implicitly named $
followed by their position: $0, $1, $2, and so on.

A closure that consists of only a single expression is understood to return the value of that
expression. The contents of this expression is also considered when performing type inference
on the surrounding expression.

(c) ketabton.com: The Digital Library

A closure expression can explicitly specify the values that it captures from the surrounding scope using a
capture list. A capture list is written as a comma separated list surrounded by square brackets, before the list of
parameters. If you use a capture list, you must also use the in keyword, even if you omit the parameter names,
parameter types, and return type.

Each entry in the capture list can be marked as weak or unowned to capture a weak or unowned reference to
the value.

1 myFunction	{	print(self.title)	}																				//	strong	capture
2 myFunction	{	[weak	self]	in	print(self!.title)	}				//	weak	capture
3 myFunction	{	[unowned	self]	in	print(self.title)	}		//	unowned	capture

You can also bind arbitrary expression to named values in the capture list. The expression is evaluated when
the closure is formed, and captured with the specified strength. For example:

1 //	Weak	capture	of	"self.parent"	as	"parent"
2 myFunction	{	[weak	parent	=	self.parent]	in	print(parent!.title)	}

For more information and examples of closure expressions, see Closure Expressions.

G R A M M A R O F A C L O S U R E E X P R E S S I O N

 closure-expression → { closure-signature opt statements }

 closure-signature → parameter-clause function-result opt in
 closure-signature → identifier-list function-result opt in
 closure-signature → capture-list parameter-clause function-result opt in
 closure-signature → capture-list identifier-list function-result opt in
 closure-signature → capture-list in

 capture-list → [capture-specifier expression]
 capture-specifier → weak unowned unowned(safe) unowned(unsafe)

Implicit Member Expression

An implicit member expression is an abbreviated way to access a member of a type, such as an enumeration

(c) ketabton.com: The Digital Library

case or a class method, in a context where type inference can determine the implied type. It has the following
form:

. member	name

For example:

1 var	x	=	MyEnumeration.SomeValue
2 x	=	.AnotherValue

G R A M M A R O F A I M P L I C I T M E M B E R E X P R E S S I O N

 implicit-member-expression → . identifier

Parenthesized Expression

A parenthesized expression consists of a comma-separated list of expressions surrounded by parentheses.
Each expression can have an optional identifier before it, separated by a colon (:). It has the following form:

(identifier	1 :	 expression	1 ,	 identifier	2 :	 expression	2 ,

...)

Use parenthesized expressions to create tuples and to pass arguments to a function call. If there is only one
value inside the parenthesized expression, the type of the parenthesized expression is the type of that value. For
example, the type of the parenthesized expression (1) is Int, not (Int).

G R A M M A R O F A P A R E N T H E S I Z E D E X P R E S S I O N

 parenthesized-expression → (expression-element-list opt)
 expression-element-list → expression-element expression-element , expression-element-list
 expression-element → expression identifier : expression

(c) ketabton.com: The Digital Library

Wildcard Expression

A wildcard expression is used to explicitly ignore a value during an assignment. For example, in the following
assignment 10 is assigned to x and 20 is ignored:

1 (x,	_)	=	(10,	20)
2 //	x	is	10,	20	is	ignored

G R A M M A R O F A W I L D C A R D E X P R E S S I O N

 wildcard-expression → _

Postfix Expressions

Postfix expressions are formed by applying a postfix operator or other postfix syntax to an expression.
Syntactically, every primary expression is also a postfix expression.

The Swift standard library provides the following postfix operators:

For information about the behavior of these operators, see Basic Operators and Advanced Operators.

G R A M M A R O F A P O S T F I X E X P R E S S I O N

 postfix-expression → primary-expression
 postfix-expression → postfix-expression postfix-operator
 postfix-expression → function-call-expression
 postfix-expression → initializer-expression
 postfix-expression → explicit-member-expression
 postfix-expression → postfix-self-expression
 postfix-expression → dynamic-type-expression
 postfix-expression → subscript-expression
 postfix-expression → forced-value-expression

++ Increment

-- Decrement

(c) ketabton.com: The Digital Library

 postfix-expression → optional-chaining-expression

Function Call Expression

A function call expression consists of a function name followed by a comma-separated list of the function’s
arguments in parentheses. Function call expressions have the following form:

function	name (argument	value	1 ,	 argument	value	2)

The function name can be any expression whose value is of a function type.

If the function definition includes names for its parameters, the function call must include names before its
argument values separated by a colon (:). This kind of function call expression has the following form:

function	name (argument	name	1 :	 argument	value	1 ,

argument	name	2 :	 argument	value	2)

A function call expression can include a trailing closure in the form of a closure expression immediately after
the closing parenthesis. The trailing closure is understood as an argument to the function, added after the last
parenthesized argument. The following function calls are equivalent:

1 //	someFunction	takes	an	integer	and	a	closure	as	its	arguments
2 someFunction(x,	{$0	==	13})
3 someFunction(x)	{$0	==	13}

If the trailing closure is the function’s only argument, the parentheses can be omitted.

1 //	someFunction	takes	a	closure	as	its	only	argument
2 myData.someMethod()	{$0	==	13}
3 myData.someMethod	{$0	==	13}

(c) ketabton.com: The Digital Library

G R A M M A R O F A F U N C T I O N C A L L E X P R E S S I O N

 function-call-expression → postfix-expression parenthesized-expression
 function-call-expression → postfix-expression parenthesized-expression opt trailing-closure
 trailing-closure → closure-expression

Initializer Expression

An initializer expression provides access to a type’s initializer. It has the following form:

expression .init(initializer	arguments)

You use the initializer expression in a function call expression to initialize a new instance of a type. Unlike
functions, an initializer can’t be used as a value. For example:

1 var	x	=	SomeClass.someClassFunction	//	ok
2 var	y	=	SomeClass.init														//	error

You also use an initializer expression to delegate to the initializer of a superclass.

1 class	SomeSubClass:	SomeSuperClass	{
2 				init()	{
3 								//	subclass	initialization	goes	here
4 								super.init()
5 				}
6 }

G R A M M A R O F A N I N I T I A L I Z E R E X P R E S S I O N

 initializer-expression → postfix-expression . init

Explicit Member Expression

(c) ketabton.com: The Digital Library

A explicit member expression allows access to the members of a named type, a tuple, or a module. It consists
of a period (.) between the item and the identifier of its member.

expression . member	name

The members of a named type are named as part of the type’s declaration or extension. For example:

1 class	SomeClass	{
2 				var	someProperty	=	42
3 }
4 let	c	=	SomeClass()
5 let	y	=	c.someProperty		//	Member	access

The members of a tuple are implicitly named using integers in the order they appear, starting from zero. For
example:

1 var	t	=	(10,	20,	30)
2 t.0	=	t.1
3 //	Now	t	is	(20,	20,	30)

The members of a module access the top-level declarations of that module.

G R A M M A R O F A N E X P L I C I T M E M B E R E X P R E S S I O N

 explicit-member-expression → postfix-expression . decimal-digit
 explicit-member-expression → postfix-expression . identifier generic-argument-clause opt

Postfix Self Expression

A postfix self expression consists of an expression or the name of a type, immediately followed by .self. It
has the following forms:

(c) ketabton.com: The Digital Library

expression .self

type .self

The first form evaluates to the value of the expression. For example, x.self evaluates to x.

The second form evaluates to the value of the type. Use this form to access a type as a value. For example,
because SomeClass.self evaluates to the SomeClass type itself, you can pass it to a function or method
that accepts a type-level argument.

G R A M M A R O F A S E L F E X P R E S S I O N

 postfix-self-expression → postfix-expression . self

Dynamic Type Expression

A dynamicType expression consists of an expression, immediately followed by .dynamicType. It has the
following form:

expression .dynamicType

The expression can’t be the name of a type. The entire dynamicType expression evaluates to the value of the
runtime type of the expression, as the following example shows:

1 class	SomeBaseClass	{
2 				class	func	printClassName()	{
3 								println("SomeBaseClass")
4 				}
5 }
6 class	SomeSubClass:	SomeBaseClass	{
7 				override	class	func	printClassName()	{
8 								println("SomeSubClass")
9 				}

(c) ketabton.com: The Digital Library

10 }
11 let	someInstance:	SomeBaseClass	=	SomeSubClass()
12 //	someInstance	is	of	type	SomeBaseClass	at	compile	time,	but
13 //	someInstance	is	of	type	SomeSubClass	at	runtime
14 someInstance.dynamicType.printClassName()
15 //	prints	"SomeSubClass"

G R A M M A R O F A D Y N A M I C T Y P E E X P R E S S I O N

 dynamic-type-expression → postfix-expression . dynamicType

Subscript Expression

A subscript expression provides subscript access using the getter and setter of the corresponding subscript
declaration. It has the following form:

expression [index	expressions]

To evaluate the value of a subscript expression, the subscript getter for the expression’s type is called with the
index expressions passed as the subscript parameters. To set its value, the subscript setter is called in the
same way.

For information about subscript declarations, see Protocol Subscript Declaration.

G R A M M A R O F A S U B S C R I P T E X P R E S S I O N

 subscript-expression → postfix-expression [expression-list]

Forced-Value Expression

A forced-value expression unwraps an optional value that you are certain is not nil. It has the following form:

(c) ketabton.com: The Digital Library

expression !

If the value of the expression is not nil, the optional value is unwrapped and returned with the corresponding
nonoptional type. Otherwise, a runtime error is raised.

G R A M M A R O F A F O R C E D - V A L U E E X P R E S S I O N

 forced-value-expression → postfix-expression !

Optional-Chaining Expression

An optional-chaining expression provides a simplified syntax for using optional values in postfix expressions. It
has the following form:

expression ?

On its own, the postfix ? operator simply returns the value of its argument as an optional.

Postfix expressions that contain an optional-chaining expression are evaluated in a special way. If the optional-
chaining expression is nil, all of the other operations in the postfix expression are ignored and the entire
postfix expression evaluates to nil. If the optional-chaining expression is not nil, the value of the optional-
chaining expression is unwrapped and used to evaluate the rest of the postfix expression. In either case, the
value of the postfix expression is still of an optional type.

If a postfix expression that contains an optional-chaining expression is nested inside other postfix expressions,
only the outermost expression returns an optional type. In the example below, when c is not nil, its value is
unwrapped and used to evaluate both .property and .performAction(), and the entire expression
c?.property.performAction() has a value of an optional type.

1 var	c:	SomeClass?
2 var	result:	Bool?	=	c?.property.performAction()

(c) ketabton.com: The Digital Library

The following example shows the behavior of the example above without using optional chaining.

1 if	let	unwrappedC	=	c	{
2 				result	=	unwrappedC.property.performAction()
3 }

G R A M M A R O F A N O P T I O N A L - C H A I N I N G E X P R E S S I O N

 optional-chaining-expression → postfix-expression ?

(c) ketabton.com: The Digital Library

Statements

In Swift, there are two kinds of statements: simple statements and control flow statements. Simple statements
are the most common and consist of either an expression or a declaration. Control flow statements are used to
control the flow of execution in a program. There are three types of control flow statements in Swift: loop
statements, branch statements, and control transfer statements.

Loop statements allow a block of code to be executed repeatedly, branch statements allow a certain block of
code to be executed only when certain conditions are met, and control transfer statements provide a way to alter
the order in which code is executed. Each type of control flow statement is described in detail below.

A semicolon (;) can optionally appear after any statement and is used to separate multiple statements if they
appear on the same line.

G R A M M A R O F A S T A T E M E N T

 statement → expression ; opt
 statement → declaration ; opt
 statement → loop-statement ; opt
 statement → branch-statement ; opt
 statement → labeled-statement
 statement → control-transfer-statement ; opt
 statements → statement statements opt

Loop Statements

Loop statements allow a block of code to be executed repeatedly, depending on the conditions specified in the
loop. Swift has four loop statements: a for statement, a for-in statement, a while statement, and a
do-while statement.

Control flow in a loop statement can be changed by a break statement and a continue statement and is
discussed in Break Statement and Continue Statement below.

G R A M M A R O F A L O O P S TA T E M E N T

(c) ketabton.com: The Digital Library

 loop-statement → for-statement
 loop-statement → for-in-statement
 loop-statement → while-statement
 loop-statement → do-while-statement

For Statement

A for statement allows a block of code to be executed repeatedly while incrementing a counter, as long as a
condition remains true.

A for statement has the following form:

for	 initialization ;	 condition ;	 increment 	{

				 statements

}

The semicolons between the initialization, condition, and increment are required. The braces around the
statements in the body of the loop are also required.

A for statement is executed as follows:

1. The initialization is evaluated only once. It is typically used to declare and initialize any variables
that are needed for the remainder of the loop.

2. The condition expression is evaluated.

If true, the program executes the statements, and execution continues to step 3. If false, the
program does not execute the statements or the increment expression, and the program is finished
executing the for statement.

3. The increment expression is evaluated, and execution returns to step 2.

Variables defined within the initialization are valid only within the scope of the for statement itself.

The value of the condition expression must have a type that conforms to the LogicValue protocol.

(c) ketabton.com: The Digital Library

G R A M M A R O F A F O R S T A T E M E N T

 for-statement → for for-init opt ; expression opt ; expression opt code-block
 for-statement → for (for-init opt ; expression opt ; expression opt) code-block

 for-init → variable-declaration expression-list

For-In Statement

A for-in statement allows a block of code to be executed once for each item in a collection (or any type) that
conforms to the Sequence protocol.

A for-in statement has the following form:

for	 item 	in	 collection 	{

				 statements

}

The generate method is called on the collection expression to obtain a value of a generator type—that is, a
type that conforms to the Generator protocol. The program begins executing a loop by calling the next
method on the stream. If the value returned is not None, it is assigned to the item pattern, the program executes
the statements, and then continues execution at the beginning of the loop. Otherwise, the program does not
perform assignment or execute the statements, and it is finished executing the for-in statement.

G R A M M A R O F A F O R - I N S T A T E M E N T

 for-in-statement → for pattern in expression code-block

While Statement

A while statement allows a block of code to be executed repeatedly, as long as a condition remains true.

(c) ketabton.com: The Digital Library

A while statement has the following form:

while	 condition 	{

				 statements

}

A while statement is executed as follows:

1. The condition is evaluated.

If true, execution continues to step 2. If false, the program is finished executing the while
statement.

2. The program executes the statements, and execution returns to step 1.

Because the value of the condition is evaluated before the statements are executed, the statements in a while
statement can be executed zero or more times.

The value of the condition must have a type that conforms to the LogicValue protocol. The condition can also
be an optional binding declaration, as discussed in Optional Binding.

G R A M M A R O F A W H I L E S T A T E M E N T

 while-statement → while while-condition code-block
 while-condition → expression declaration

Do-While Statement

A do-while statement allows a block of code to be executed one or more times, as long as a condition
remains true.

A do-while statement has the following form:

do	{

(c) ketabton.com: The Digital Library

				 statements

}	while	 condition

A do-while statement is executed as follows:

1. The program executes the statements, and execution continues to step 2.

2. The condition is evaluated.

If true, execution returns to step 1. If false, the program is finished executing the do-while
statement.

Because the value of the condition is evaluated after the statements are executed, the statements in a
do-while statement are executed at least once.

The value of the condition must have a type that conforms to the LogicValue protocol. The condition can also
be an optional binding declaration, as discussed in Optional Binding.

G R A M M A R O F A D O - W H I L E S T A T E M E N T

 do-while-statement → do code-block while while-condition

Branch Statements

Branch statements allow the program to execute certain parts of code depending on the value of one or more
conditions. The values of the conditions specified in a branch statement control how the program branches and,
therefore, what block of code is executed. Swift has two branch statements: an if statement and a switch
statement.

Control flow in a switch statement can be changed by a break statement and is discussed in Break
Statement below.

G R A M M A R O F A B R A N C H S T A T E M E N T

 branch-statement → if-statement
 branch-statement → switch-statement

(c) ketabton.com: The Digital Library

If Statement

An if statement is used for executing code based on the evaluation of one or more conditions.

There are two basic forms of an if statement. In each form, the opening and closing braces are required.

The first form allows code to be executed only when a condition is true and has the following form:

if	 condition 	{

				 statements

}

The second form of an if statement provides an additional else clause (introduced by the else keyword) and
is used for executing one part of code when the condition is true and another part code when the same condition
is false. When a single else clause is present, an if statement has the following form:

if	 condition 	{

				 statements	to	execute	if	condition	is	true

}	else	{

				 statements	to	execute	if	condition	is	false

}

The else clause of an if statement can contain another if statement to test more than one condition. An if
statement chained together in this way has the following form:

if	 condition	1 	{

				 statements	to	execute	if	condition	1	is	true

}	else	if	 condition	2 	{

(c) ketabton.com: The Digital Library

				 statements	to	execute	if	condition	2	is	true

}	else	{

				 statements	to	execute	if	both	conditions	are	false

}

The value of any condition in an if statement must have a type that conforms to the LogicValue protocol.
The condition can also be an optional binding declaration, as discussed in Optional Binding.

G R A M M A R O F A N I F S T A T E M E N T

 if-statement → if if-condition code-block else-clause opt
 if-condition → expression declaration
 else-clause → else code-block else if-statement

Switch Statement

A switch statement allows certain blocks of code to be executed depending on the value of a control
expression.

A switch statement has the following form:

switch	 control	expression 	{

case	 pattern	1 :

				 statements

case	 pattern	2 	where	 condition :

				 statements

case	 pattern	3 	where	 condition ,

pattern	4 	where	 condition :

				 statements

(c) ketabton.com: The Digital Library

default:

				 statements

}

The control expression of the switch statement is evaluated and then compared with the patterns specified in
each case. If a match is found, the program executes the statements listed within the scope of that case. The
scope of each case can’t be empty. As a result, you must include at least one statement following the colon (:)
of each case label. Use a single break statement if you don’t intend to execute any code in the body of a
matched case.

The values of expressions your code can branch on is very flexible. For instance, in addition to the values of
scalar types, such as integers and characters, your code can branch on the values of any type, including
floating-point numbers, strings, tuples, instances of custom classes, and optionals. The value of the control
expression can even be matched to the value of a case in an enumeration and checked for inclusion in a
specified range of values. For examples of how to use these various types of values in switch statements,
see Switch in the Control Flow chapter.

A switch case can optionally contain a guard expression after each pattern. A guard expression is introduced
by the keyword where followed by an expression, and is used to provide an additional condition before a
pattern in a case is considered matched to the control expression. If a guard expression is present, the
statements within the relevant case are executed only if the value of the control expression matches one of the
patterns of the case and the guard expression evaluates to true. For instance, a control expression matches
the case in the example below only if it is a tuple that contains two elements of the same value, such as (1,
1).

1 case	let	(x,	y)	where	x	==	y:

As the above example shows, patterns in a case can also bind constants using the keyword let (they can also
bind variables using the keyword var). These constants (or variables) can then be referenced in a
corresponding guard expression and throughout the rest of the code within the scope of the case. That said, if the
case contains multiple patterns that match the control expression, none of those patterns can contain constant or
variable bindings.

A switch statement can also include a default case, introduced by the keyword default. The code within a

(c) ketabton.com: The Digital Library

default case is executed only if no other cases match the control expression. A switch statement can include
only one default case, which must appear at the end of the switch statement.

Although the actual execution order of pattern-matching operations, and in particular the evaluation order of
patterns in cases, is unspecified, pattern matching in a switch statement behaves as if the evaluation is
performed in source order—that is, the order in which they appear in source code. As a result, if multiple cases
contain patterns that evaluate to the same value, and thus can match the value of the control expression, the
program executes only the code within the first matching case in source order.

Switch Statements Must Be Exhaustive

In Swift, every possible value of the control expression’s type must match the value of at least one pattern of a
case. When this simply isn’t feasible (for instance, when the control expression’s type is Int), you can include
a default case to satisfy the requirement.

Execution Does Not Fall Through Cases Implicitly

After the code within a matched case has finished executing, the program exits from the switch statement.
Program execution does not continue or “fall through” to the next case or default case. That said, if you want
execution to continue from one case to the next, explicitly include a fallthrough statement, which simply
consists of the keyword fallthrough, in the case from which you want execution to continue. For more
information about the fallthrough statement, see Fallthrough Statement below.

G R A M M A R O F A S W I T C H S T A T E M E N T

 switch-statement → switch expression { switch-cases opt }
 switch-cases → switch-case switch-cases opt
 switch-case → case-label statements default-label statements
 switch-case → case-label ; default-label ;

 case-label → case case-item-list :
 case-item-list → pattern guard-clause opt pattern guard-clause opt , case-item-list
 default-label → default :

 guard-clause → where guard-expression
 guard-expression → expression

(c) ketabton.com: The Digital Library

Labeled Statement

You can prefix a loop statement or a switch statement with a statement label, which consists of the name of
the label followed immediately by a colon (:). Use statement labels with break and continue statements to
be explicit about how you want to change control flow in a loop statement or a switch statement, as discussed
in Break Statement and Continue Statement below.

The scope of a labeled statement is the entire statement following the statement label. You can nest labeled
statements, but the name of each statement label must be unique.

For more information and to see examples of how to use statement labels, see Labeled Statements in the
Control Flow chapter.

G R A M M A R O F A L A B E L E D S T A T E M E N T

 labeled-statement → statement-label loop-statement statement-label switch-statement
 statement-label → label-name :
 label-name → identifier

Control Transfer Statements

Control transfer statements can change the order in which code in your program is executed by unconditionally
transferring program control from one piece of code to another. Swift has four control transfer statements: a
break statement, a continue statement, a fallthrough statement, and a return statement.

G R A M M A R O F A C O N T R O L T R A N S F E R S T A T E M E N T

 control-transfer-statement → break-statement
 control-transfer-statement → continue-statement
 control-transfer-statement → fallthrough-statement
 control-transfer-statement → return-statement

Break Statement

(c) ketabton.com: The Digital Library

A break statement ends program execution of a loop or a switch statement. A break statement can consist
of only the keyword break, or it can consist of the keyword break followed by the name of a statement label,
as shown below.

break

break	 label	name

When a break statement is followed by the name of a statement label, it ends program execution of the loop or
switch statement named by that label.

When a break statement is not followed by the name of a statement label, it ends program execution of the
switch statement or the innermost enclosing loop statement in which it occurs.

In both cases, program control is then transferred to the first line of code following the enclosing loop or
switch statement, if any.

For examples of how to use a break statement, see Break and Labeled Statements in the Control Flow
chapter.

G R A M M A R O F A B R E A K S T A T E M E N T

 break-statement → break label-name opt

Continue Statement

A continue statement ends program execution of the current iteration of a loop statement but does not stop
execution of the loop statement. A continue statement can consist of only the keyword continue, or it can
consist of the keyword continue followed by the name of a statement label, as shown below.

continue

continue	 label	name

(c) ketabton.com: The Digital Library

When a continue statement is followed by the name of a statement label, it ends program execution of the
current iteration of the loop statement named by that label.

When a continue statement is not followed by the name of a statement label, it ends program execution of
the current iteration of the innermost enclosing loop statement in which it occurs.

In both cases, program control is then transferred to the condition of the enclosing loop statement.

In a for statement, the increment expression is still evaluated after the continue statement is executed,
because the increment expression is evaluated after the execution of the loop’s body.

For examples of how to use a continue statement, see Continue and Labeled Statements in the Control Flow
chapter.

G R A M M A R O F A C O N T I N U E S TA T E M E N T

 continue-statement → continue label-name opt

Fallthrough Statement

A fallthrough statement consists of the fallthrough keyword and occurs only in a case block of a
switch statement. A fallthrough statement causes program execution to continue from one case in a
switch statement to the next case. Program execution continues to the next case even if the patterns of the
case label do not match the value of the switch statement’s control expression.

A fallthrough statement can appear anywhere inside a switch statement, not just as the last statement of
a case block, but it can’t be used in the final case block. It also cannot transfer control into a case block whose
pattern contains value binding patterns.

For an example of how to use a fallthrough statement in a switch statement, see Control Transfer
Statements in the Control Flow chapter.

G R A M M A R O F A F A L L T H R O U G H S TA T E M E N T

 fallthrough-statement → fallthrough

(c) ketabton.com: The Digital Library

Return Statement

A return statement occurs only in the body of a function or method definition and causes program execution
to return to the calling function or method. Program execution continues at the point immediately following the
function or method call.

A return statement can consist of only the keyword return, or it can consist of the keyword return
followed by an expression, as shown below.

return

return	 expression

When a return statement is followed by an expression, the value of the expression is returned to the calling
function or method. If the value of the expression does not match the value of the return type declared in the
function or method declaration, the expression’s value is converted to the return type before it is returned to the
calling function or method.

When a return statement is not followed by an expression, it can be used only to return from a function or
method that does not return a value (that is, when the return type of the function or method is Void or ()).

G R A M M A R O F A R E T U R N S T A T E M E N T

 return-statement → return expression opt

(c) ketabton.com: The Digital Library

Declarations

A declaration introduces a new name or construct into your program. For example, you use declarations to
introduce functions and methods, variables and constants, and to define new, named enumeration, structure,
class, and protocol types. You can also use a declaration to extend the the behavior of an existing named type
and to import symbols into your program that are declared elsewhere.

In Swift, most declarations are also definitions in the sense that they are implemented or initialized at the same
time they are declared. That said, because protocols don’t implement their members, most protocol members
are declarations only. For convenience and because the distinction isn’t that important in Swift, the term
declaration covers both declarations and definitions.

G R A M M A R O F A D E C L A R A T I O N

 declaration → import-declaration
 declaration → constant-declaration
 declaration → variable-declaration
 declaration → typealias-declaration
 declaration → function-declaration
 declaration → enum-declaration
 declaration → struct-declaration
 declaration → class-declaration
 declaration → protocol-declaration
 declaration → initializer-declaration
 declaration → deinitializer-declaration
 declaration → extension-declaration
 declaration → subscript-declaration
 declaration → operator-declaration
 declarations → declaration declarations opt

 declaration-specifiers → declaration-specifier declaration-specifiers opt
 declaration-specifier → class mutating nonmutating override static

unowned unowned(safe) unowned(unsafe) weak

Module Scope

The module scope defines the code that’s visible to other code in Swift source files that are part of the same
module. The top-level code in a Swift source file consists of zero or more statements, declarations, and

(c) ketabton.com: The Digital Library

expressions. Variables, constants, and other named declarations that are declared at the top-level of a source
file are visible to code in every source file that is part of the same module.

G R A M M A R O F A T O P - L E V E L D E C L A R A T I O N

 top-level-declaration → statements opt

Code Blocks

A code block is used by a variety of declarations and control structures to group statements together. It has the
following form:

{

				 statements

}

The statements inside a code block include declarations, expressions, and other kinds of statements and are
executed in order of their appearance in source code.

G R A M M A R O F A C O D E B L O C K

 code-block → { statements opt }

Import Declaration

An import declaration lets you access symbols that are declared outside the current file. The basic form
imports the entire module; it consists of the import keyword followed by a module name:

import	 module

(c) ketabton.com: The Digital Library

Providing more detail limits which symbols are imported—you can specify a specific submodule or a specific
declaration within a module or submodule. When this detailed form is used, only the imported symbol (and not
the module that declares it) is made available in the current scope.

import	 import	kind 	 module . symbol	name

import	 module . submodule

G R A M M A R O F A N I M P O R T D E C L A R A T I O N

 import-declaration → attributes opt import import-kind opt import-path

 import-kind → typealias struct class enum protocol var func
 import-path → import-path-identifier import-path-identifier . import-path
 import-path-identifier → identifier operator

Constant Declaration

A constant declaration introduces a constant named value into your program. Constant declarations are
declared using the keyword let and have the following form:

let	 constant	name :	 type 	=	 expression

A constant declaration defines an immutable binding between the constant name and the value of the initializer
expression; after the value of a constant is set, it cannot be changed. That said, if a constant is initialized with a
class object, the object itself can change, but the binding between the constant name and the object it refers to
can’t.

When a constant is declared at global scope, it must be initialized with a value. When a constant declaration
occurs in the context of a class or structure declaration, it is considered a constant property. Constant
declarations are not computed properties and therefore do not have getters or setters.

If the constant name of a constant declaration is a tuple pattern, the name of each item in the tuple is bound to the
corresponding value in the initializer expression.

(c) ketabton.com: The Digital Library

1 let	(firstNumber,	secondNumber)	=	(10,	42)

In this example, firstNumber is a named constant for the value 10, and secondNumber is a named
constant for the value 42. Both constants can now be used independently:

1 println("The	first	number	is	\(firstNumber).")
2 //	prints	"The	first	number	is	10."
3 println("The	second	number	is	\(secondNumber).")
4 //	prints	"The	second	number	is	42."

The type annotation (: type) is optional in a constant declaration when the type of the constant name can be
inferred, as described in Type Inference.

To declare a static constant property, mark the declaration with the static keyword. Static properties are
discussed in Type Properties.

For more information about constants and for guidance about when to use them, see Constants and Variables
and Stored Properties.

G R A M M A R O F A C O N S T A N T D E C L A R A T I O N

 constant-declaration → attributes opt declaration-specifiers opt let pattern-initializer-list

 pattern-initializer-list → pattern-initializer pattern-initializer , pattern-initializer-list
 pattern-initializer → pattern initializer opt
 initializer → = expression

Variable Declaration

A variable declaration introduces a variable named value into your program and is declared using the keyword
var.

Variable declarations have several forms that declare different kinds of named, mutable values, including stored
and computed variables and properties, stored variable and property observers, and static variable properties.
The appropriate form to use depends on the scope at which the variable is declared and the kind of variable you

(c) ketabton.com: The Digital Library

intend to declare.

N O T E

You can also declare properties in the context of a protocol declaration, as described in Protocol
Property Declaration.

You can override a property in a subclass by prefixing the subclass’s property declaration with the override
keyword, as described in Overriding.

Stored Variables and Stored Variable Properties

The following form declares a stored variable or stored variable property:

var	 variable	name :	 type 	=	 expression

You define this form of a variable declaration at global scope, the local scope of a function, or in the context of a
class or structure declaration. When a variable declaration of this form is declared at global scope or the local
scope of a function, it is referred to as a stored variable. When it is declared in the context of a class or structure
declaration, it is referred to as a stored variable property.

The initializer expression can’t be present in a protocol declaration, but in all other contexts, the initializer
expression is optional. That said, if no initializer expression is present, the variable declaration must include an
explicit type annotation (: type).

As with constant declarations, if the variable name is a tuple pattern, the name of each item in the tuple is bound
to the corresponding value in the initializer expression.

As their names suggest, the value of a stored variable or a stored variable property is stored in memory.

(c) ketabton.com: The Digital Library

Computed Variables and Computed Properties

The following form declares a computed variable or computed property:

var	 variable	name :	 type 	{

get	{

				 statements

}

set(setter	name)	{

				 statements

}

}

You define this form of a variable declaration at global scope, the local scope of a function, or in the context of a
class, structure, enumeration, or extension declaration. When a variable declaration of this form is declared at
global scope or the local scope of a function, it is referred to as a computed variable. When it is declared in the
context of a class, structure, or extension declaration, it is referred to as a computed property.

The getter is used to read the value, and the setter is used to write the value. The setter clause is optional, and
when only a getter is needed, you can omit both clauses and simply return the requested value directly, as
described in Read-Only Computed Properties. But if you provide a setter clause, you must also provide a getter
clause.

The setter name and enclosing parentheses is optional. If you provide a setter name, it is used as the name of
the parameter to the setter. If you do not provide a setter name, the default parameter name to the setter is
newValue, as described in Shorthand Setter Declaration.

Unlike stored named values and stored variable properties, the value of a computed named value or a
computed property is not stored in memory.

For more information and to see examples of computed properties, see Computed Properties.

(c) ketabton.com: The Digital Library

Stored Variable Observers and Property Observers

You can also declare a stored variable or property with willSet and didSet observers. A stored variable or
property declared with observers has the following form:

var	 variable	name :	 type 	=	 expression 	{

willSet(setter	name)	{

				 statements

}

didSet(setter	name 	{

				 statements

}

}

You define this form of a variable declaration at global scope, the local scope of a function, or in the context of a
class or structure declaration. When a variable declaration of this form is declared at global scope or the local
scope of a function, the observers are referred to as stored variable observers. When it is declared in the
context of a class or structure declaration, the observers are referred to as property observers.

You can add property observers to any stored property. You can also add property observers to any inherited
property (whether stored or computed) by overriding the property within a subclass, as described in Overriding
Property Observers.

The initializer expression is optional in the context of a class or structure declaration, but required elsewhere.
The type annotation is required in all variable declarations that include observers, regardless of the context in
which they are declared.

The willSet and didSet observers provide a way to observe (and to respond appropriately) when the value
of a variable or property is being set. The observers are not called when the variable or property is first
initialized. Instead, they are called only when the value is set outside of an initialization context.

(c) ketabton.com: The Digital Library

A willSet observer is called just before the value of the variable or property is set. The new value is passed
to the willSet observer as a constant, and therefore it can’t be changed in the implementation of the
willSet clause. The didSet observer is called immediately after the new value is set. In contrast to the
willSet observer, the old value of the variable or property is passed to the didSet observer in case you still
need access to it. That said, if you assign a value to a variable or property within its own didSet observer
clause, that new value that you assign will replace the one that was just set and passed to the willSet
observer.

The setter name and enclosing parentheses in the willSet and didSet clauses are optional. If you provide
setter names, they are used as the parameter names to the willSet and didSet observers. If you do not
provide setter names, the default parameter name to the willSet observer is newValue and the default
parameter name to the didSet observer is oldValue.

The didSet clause is optional when you provide a willSet clause. Likewise, the willSet clause is
optional when you provide a didSet clause.

For more information and to see an example of how to use property observers, see Property Observers.

Class and Static Variable Properties

To declare a class computed property, mark the declaration with the class keyword. To declare a static
variable property, mark the declaration with the static keyword. Class and static properties are discussed in
Type Properties.

G R A M M A R O F A V A R I A B L E D E C L A R A T I O N

 variable-declaration → variable-declaration-head pattern-initializer-list
 variable-declaration → variable-declaration-head variable-name type-annotation code-block
 variable-declaration → variable-declaration-head variable-name type-annotation getter-setter-

block
 variable-declaration → variable-declaration-head variable-name type-annotation getter-setter-

keyword-block
 variable-declaration → variable-declaration-head variable-name type-

annotation initializer opt willSet-didSet-block

 variable-declaration-head → attributes opt declaration-specifiers opt var
 variable-name → identifier

(c) ketabton.com: The Digital Library

 getter-setter-block → { getter-clause setter-clause opt }
 getter-setter-block → { setter-clause getter-clause }
 getter-clause → attributes opt get code-block
 setter-clause → attributes opt set setter-name opt code-block
 setter-name → (identifier)

 getter-setter-keyword-block → { getter-keyword-clause setter-keyword-clause opt }
 getter-setter-keyword-block → { setter-keyword-clause getter-keyword-clause }
 getter-keyword-clause → attributes opt get
 setter-keyword-clause → attributes opt set

 willSet-didSet-block → { willSet-clause didSet-clause opt }
 willSet-didSet-block → { didSet-clause willSet-clause }
 willSet-clause → attributes opt willSet setter-name opt code-block
 didSet-clause → attributes opt didSet setter-name opt code-block

Type Alias Declaration

A type alias declaration introduces a named alias of an existing type into your program. Type alias declarations
begin with the keyword typealias and have the following form:

typealias	 name 	=	 existing	type

After a type alias is declared, the aliased name can be used instead of the existing type everywhere in your
program. The existing type can be a named type or a compound type. Type aliases do not create new types;
they simply allow a name to refer to an existing type.

See also Protocol Associated Type Declaration.

G R A M M A R O F A T Y P E A L I A S D E C L A R A T I O N

 typealias-declaration → typealias-head typealias-assignment
 typealias-head → typealias typealias-name
 typealias-name → identifier
 typealias-assignment → = type

(c) ketabton.com: The Digital Library

Function Declaration

A :newTerm`function declaration` introduces a function or method into your program. A function declared in the
context of class, structure, enumeration, or protocol is referred to as a method. Function declarations are
declared using the keyword func and have the following form:

func	 function	name (parameters)	->	 return	type 	{

				 statements

}

If the function has a return type of Void, the return type can be omitted as follows:

func	 function	name (parameters)	{

				 statements

}

The type of each parameter must be included—it can’t be inferred. By default, the parameters to a function are
constants. Write var in front of a parameter’s name to make it a variable, scoping any changes made to the
variable just to the function body, or write inout to make those changes also apply to the argument that was
passed in the caller’s scope. For a discussion of in-out parameters, see In-Out Parameters.

Functions can return multiple values using a tuple type as the return type of the function.

A function definition can appear inside another function declaration. This kind of function is known as a nested
function. For a discussion of nested functions, see Nested Functions.

Parameter Names

Function parameters are a comma separated list where each parameter has one of several forms. The order of
arguments in a function call must match the order of parameters in the function’s declaration. The simplest
entry in a parameter list has the following form:

(c) ketabton.com: The Digital Library

parameter	name :	 parameter	type

For function parameters, the parameter name is used within the function body, but is not used when calling the
function. For method parameters, the parameter name is used as within the function body, and is also used as a
label for the argument when calling the method. The name of a method’s first parameter is used only within the
function body, like the parameter of a function. For example:

1 func	f(x:	Int,	y:	String)	->	String	{
2 				return	y	+	String(x)
3 }
4 f(7,	"hello")		//	x	and	y	have	no	name
5 	
6 class	C	{
7 				func	f(x:	Int,	y:	String)	->	String	{
8 								return	y	+	String(x)
9 				}

10 }
11 let	c	=	C()
12 c.f(7,	y:	"hello")		//	x	has	no	name,	y	has	a	name

You can override the default behavior for how parameter names are used with one of the following forms:

external	parameter	name 	 local	parameter	name :	 parameter	type

# parameter	name :	 parameter	type

_	 local	parameter	name :	 parameter	type

A second name before the local parameter name gives the parameter an external name, which can be different
than the local parameter name. The external parameter name must be used when the function is called. The
corresponding argument must have the external name in function or method calls.

A hash symbol (#) before a parameter name indicates that the name should be used as both an external and a
local parameter name. It has the same meaning as writing the local parameter name twice. The corresponding
argument must have this name in function or method calls.

(c) ketabton.com: The Digital Library

An underscore (_) before a local parameter name gives that parameter no name to be used in function calls.
The corresponding argument must have no name in function or method calls.

Special Kinds of Parameters

Parameters can be ignored, take a variable number of values, and provide default values using the following
forms:

_	:	<#parameter	type#.

parameter	name :	 parameter	type ...

parameter	name :	 parameter	type 	=	 default	argument	value

A parameter named with an underscore (_) is explicitly ignored an can’t be accessed within the body of the
function.

A parameter with a base type name followed immediately by three dots (...) is understood as a variadic
parameter. A function can have at most one variadic parameter, which must be its last parameter. A variadic
parameter is treated as an array that contains elements of the base type name. For instance, the variadic
parameter Int... is treated as Int[]. For an example that uses a variadic parameter, see Variadic
Parameters.

A parameter with an equals sign (=) and an expression after its type is understood to have a default value of the
given expression. If the parameter is omitted when calling the function, the default value is used instead. If the
parameter is not omitted, it must have its name in the function call. For example, f() and f(x:	7) are both
valid calls to a function with a single default parameter named x, but f(7) is invalid because it provides a
value without a name.

Special Kinds of Methods

Methods on an enumeration or a structure that modify self must be marked with the mutating keyword at
the start of the function declaration.

(c) ketabton.com: The Digital Library

Methods that override a superclass method must be marked with the override keyword at the start of the
function declaration. It is an error to override a method without the override keyword or to use the
override keyword on a method that doesn’t override a superclass method.

Methods associated with a type rather than an instance of a type must be marked with the static attribute for
enumerations and structures or the class attribute for classes.

Curried Functions and Methods

Curried functions and methods have the following form:

func	 function	name (parameters)(parameters)	->	 return	type 	

{

				 statements

}

A function declared this way is understood as a function whose return type is another function. For example, the
following two declarations are equivalent:

1 func	addTwoNumbers(a:	Int)(b:	Int)	->	Int	{
2 				return	a	+	b
3 }
4 func	addTwoNumbers(a:	Int)	->	(Int	->	Int)	{
5 				func	addTheSecondNumber(b:	Int)	->	Int	{
6 								return	a	+	b
7 				}
8 				return	addTheSecondNumber
9 }

10 	
11 addTwoNumbers(4)(5)	//	Returns	9

(c) ketabton.com: The Digital Library

Multiple levels of currying are allowed.

G R A M M A R O F A F U N C T I O N D E C L A R A T I O N

 function-declaration → function-head function-name generic-parameter-clause opt function-
signature function-body

 function-head → attributes opt declaration-specifiers opt func
 function-name → identifier operator

 function-signature → parameter-clauses function-result opt
 function-result → -> attributes opt type
 function-body → code-block

 parameter-clauses → parameter-clause parameter-clauses opt
 parameter-clause → () (parameter-list ... opt)
 parameter-list → parameter parameter , parameter-list
 parameter → inout opt let opt # opt parameter-name local-parameter-name opt type-

annotation default-argument-clause opt
 parameter → inout opt var # opt parameter-name local-parameter-name opt type-

annotation default-argument-clause opt
 parameter → attributes opt type
 parameter-name → identifier _
 local-parameter-name → identifier _
 default-argument-clause → = expression

Enumeration Declaration

An enumeration declaration introduces a named enumeration type into your program.

Enumeration declarations have two basic forms and are declared using the keyword enum. The body of an
enumeration declared using either form contains zero or more values—called enumeration cases—and any
number of declarations, including computed properties, instance methods, static methods, initializers, type
aliases, and even other enumeration, structure, and class declarations. Enumeration declarations can’t contain
destructor or protocol declarations.

Unlike classes and structures, enumeration types do not have an implicitly provided default initializer; all
initializers must be declared explicitly. Initializers can delegate to other initializers in the enumeration, but the
initialization process is complete only after an initializer assigns one of the enumeration cases to self.

(c) ketabton.com: The Digital Library

Like structures but unlike classes, enumerations are value types; instances of an enumeration are copied when
assigned to variables or constants, or when passed as arguments to a function call. For information about value
types, see Structures and Enumerations Are Value Types.

You can extend the behavior of an enumeration type with an extension declaration, as discussed in Extension
Declaration.

Enumerations with Cases of Any Type

The following form declares an enumeration type that contains enumeration cases of any type:

enum	 enumeration	name 	{

				case	 enumeration	case	1

				case	 enumeration	case	2 (associated	value	types)

}

Enumerations declared in this form are sometimes called discriminated unions in other programming
languages.

In this form, each case block consists of the keyword case followed by one or more enumeration cases,
separated by commas. The name of each case must be unique. Each case can also specify that it stores values
of a given type. These types are specified in the associated value types tuple, immediately following the name of
the case. For more information and to see examples of cases with associated value types, see Associated
Values.

Enumerations with Raw Cases Values

The following form declares an enumeration type that contains enumeration cases of the same basic type:

enum	 enumeration	name :	 raw	value	type 	{

(c) ketabton.com: The Digital Library

				case	 enumeration	case	1 	=	 raw	value	1

				case	 enumeration	case	2 	=	 raw	value	2

}

In this form, each case block consists of the keyword case, followed by one or more enumeration cases,
separated by commas. Unlike the cases in the first form, each case has an underlying value, called a raw
value, of the same basic type. The type of these values is specified in the raw value type and must represent a
literal integer, floating-point number, character, or string.

Each case must have a unique name and be assigned a unique raw value. If the raw value type is specified as
Int and you don’t assign a value to the cases explicitly, they are implicitly assigned the values 0, 1, 2, and so
on. Each unassigned case of type Int is implicitly assigned a raw value that is automatically incremented from
the raw value of the previous case.

1 enum	ExampleEnum:	Int	{
2 				case	A,	B,	C	=	5,	D
3 }

In the above example, the value of ExampleEnum.A is 0 and the value of ExampleEnum.B is 1. And
because the value of ExampleEnum.C is explicitly set to 5, the value of ExampleEnum.D is automatically
incremented from 5 and is therefore 6.

The raw value of an enumeration case can be accessed by calling its toRaw method, as in
ExampleEnum.B.toRaw(). You can also use a raw value to find a corresponding case, if there is one, by
calling the fromRaw method, which returns an optional case. For more information and to see examples of
cases with raw value types, see Raw Values.

Accessing Enumeration Cases

To reference the case of an enumeration type, use dot (.) syntax, as in
EnumerationType.EnumerationCase. When the enumeration type can be inferred from context, you
can omit it (the dot is still required), as described in Enumeration Syntax and Implicit Member Expression.

(c) ketabton.com: The Digital Library

To check the values of enumeration cases, use a switch statement, as shown in Matching Enumeration
Values with a Switch Statement. The enumeration type is pattern-matched against the enumeration case
patterns in the case blocks of the switch statement, as described in Enumeration Case Pattern.

G R A M M A R O F A N E N U M E R A T I O N D E C L A R A T I O N

 enum-declaration → attributes opt union-style-enum attributes opt raw-value-style-enum

 union-style-enum → enum-name generic-parameter-clause opt { union-style-enum-
members opt }

 union-style-enum-members → union-style-enum-member union-style-enum-members opt
 union-style-enum-member → declaration union-style-enum-case-clause
 union-style-enum-case-clause → attributes opt case union-style-enum-case-list
 union-style-enum-case-list → union-style-enum-case union-style-enum-case , union-style-

enum-case-list
 union-style-enum-case → enum-case-name tuple-type opt
 enum-name → identifier
 enum-case-name → identifier

 raw-value-style-enum → enum-name generic-parameter-clause opt : type-identifier { raw-
value-style-enum-members opt }

 raw-value-style-enum-members → raw-value-style-enum-member raw-value-style-enum-
members opt

 raw-value-style-enum-member → declaration raw-value-style-enum-case-clause
 raw-value-style-enum-case-clause → attributes opt case raw-value-style-enum-case-list
 raw-value-style-enum-case-list → raw-value-style-enum-case raw-value-style-enum-

case , raw-value-style-enum-case-list
 raw-value-style-enum-case → enum-case-name raw-value-assignment opt
 raw-value-assignment → = literal

Structure Declaration

A structure declaration introduces a named structure type into your program. Structure declarations are
declared using the keyword struct and have the following form:

struct	 structure	name :	 adopted	protocols 	{

				 declarations

}

(c) ketabton.com: The Digital Library

The body of a structure contains zero or more declarations. These declarations can include both stored and
computed properties, static properties, instance methods, static methods, initializers, type aliases, and even
other structure, class, and enumeration declarations. Structure declarations can’t contain destructor or protocol
declarations. For a discussion and several examples of structures that include various kinds of declarations,
see Classes and Structures.

Structure types can adopt any number of protocols, but can’t inherit from classes, enumerations, or other
structures.

There are three ways create an instance of a previously declared structure:

The process of initializing a structure’s declared properties is described in Initialization.

Properties of a structure instance can be accessed using dot (.) syntax, as described in Accessing Properties.

Structures are value types; instances of a structure are copied when assigned to variables or constants, or
when passed as arguments to a function call. For information about value types, see Structures and
Enumerations Are Value Types.

You can extend the behavior of a structure type with an extension declaration, as discussed in Extension
Declaration.

G R A M M A R O F A S T R U C T U R E D E C L A R A T I O N

 struct-declaration → attributes opt struct struct-name generic-parameter-clause opt type-
inheritance-clause opt struct-body

 struct-name → identifier
 struct-body → { declarations opt }

Call one of the initializers declared within the structure, as described in Initializers.

If no initializers are declared, call the structure’s memberwise initializer, as described in
Memberwise Initializers for Structure Types.

If no initializers are declared, and all properties of the structure declaration were given initial
values, call the structure’s default initializer, as described in Default Initializers.

(c) ketabton.com: The Digital Library

Class Declaration

A class declaration introduces a named class type into your program. Class declarations are declared using the
keyword class and have the following form:

class	 class	name :	 superclass ,	 adopted	protocols 	{

				 declarations

}

The body of a class contains zero or more declarations. These declarations can include both stored and
computed properties, instance methods, class methods, initializers, a single destructor method, type aliases,
and even other class, structure, and enumeration declarations. Class declarations can’t contain protocol
declarations. For a discussion and several examples of classes that include various kinds of declarations, see
Classes and Structures.

A class type can inherit from only one parent class, its superclass, but can adopt any number of protocols. The
superclass appears first in the type-inheritance-clause, followed by any adopted protocols.

As discussed in Initializer Declaration, classes can have designated and convenience initializers. When you
declare either kind of initializer, you can require any subclass to override it by marking the initializer with the
required attribute. The designated initializer of a class must initialize all of the class’s declared properties
and it must do so before calling any of its superclass’s designated initializers.

A class can override properties, methods, and initializers of its superclass. Overridden methods and properties
must be marked with the override keyword.

Although properties and methods declared in the superclass are inherited by the current class, designated
initializers declared in the superclass are not. That said, if the current class overrides all of the superclass’s
designated initializers, it inherits the superclass’s convenience initializers. Swift classes do not inherit from a
universal base class.

There are two ways create an instance of a previously declared class:

Call one of the initializers declared within the class, as described in Initializers.

If no initializers are declared, and all properties of the class declaration were given initial values,

(c) ketabton.com: The Digital Library

Access properties of a class instance with dot (.) syntax, as described in Accessing Properties.

Classes are reference types; instances of a class are referred to, rather than copied, when assigned to
variables or constants, or when passed as arguments to a function call. For information about reference types,
see Structures and Enumerations Are Value Types.

You can extend the behavior of a class type with an extension declaration, as discussed in Extension
Declaration.

G R A M M A R O F A C L A S S D E C L A R A T I O N

 class-declaration → attributes opt class class-name generic-parameter-clause opt type-
inheritance-clause opt class-body

 class-name → identifier
 class-body → { declarations opt }

Protocol Declaration

A protocol declaration introduces a named protocol type into your program. Protocol declarations are declared
using the keyword protocol and have the following form:

protocol	 protocol	name :	 inherited	protocols 	{

				 protocol	member	declarations

}

The body of a protocol contains zero or more protocol member declarations, which describe the conformance
requirements that any type adopting the protocol must fulfill. In particular, a protocol can declare that conforming
types must implement certain properties, methods, initializers, and subscripts. Protocols can also declare
special kinds of type aliases, called associated types, that can specify relationships among the various
declarations of the protocol. The protocol member declarations are discussed in detail below.

Protocol types can inherit from any number of other protocols. When a protocol type inherits from other

call the class’s default initializer, as described in Default Initializers.
(c) ketabton.com: The Digital Library

protocols, the set of requirements from those other protocols are aggregated, and any type that inherits from the
current protocol must conform to all those requirements. For an example of how to use protocol inheritance,
see Protocol Inheritance.

N O T E

You can also aggregate the conformance requirements of multiple protocols using protocol
composition types, as described in Protocol Composition Type and Protocol Composition.

You can add protocol conformance to a previously declared type by adopting the protocol in an extension
declaration of that type. In the extension, you must implement all of the adopted protocol’s requirements. If the
type already implements all of the requirements, you can leave the body of the extension declaration empty.

By default, types that conform to a protocol must implement all properties, methods, and subscripts declared in
the protocol. That said, you can mark these protocol member declarations with the optional attribute to
specify that their implementation by a conforming type is optional. The optional attribute can be applied only
to protocols that are marked with the objc attribute. As a result, only class types can adopt and conform to a
protocol that contains optional member requirements. For more information about how to use the optional
attribute and for guidance about how to access optional protocol members—for example, when you’re not sure
whether a conforming type implements them—see Optional Protocol Requirements.

To restrict the adoption of a protocol to class types only, mark the entire protocol declaration with the
class_protocol attribute. Any protocol that inherits from a protocol marked with the class_protocol
attribute can likewise be adopted only by a class type.

N O T E

If a protocol is already marked with the objc attribute, the class_protocol attribute is
implicitly applied to that protocol; there’s no need to mark the protocol with the class_protocol
attribute explicitly.

(c) ketabton.com: The Digital Library

Protocols are named types, and thus they can appear in all the same places in your code as other named types,
as discussed in Protocols as Types. However, you can’t construct an instance of a protocol, because protocols
do not actually provide the implementations for the requirements they specify.

You can use protocols to declare which methods a delegate of a class or structure should implement, as
described in Delegation.

G R A M M A R O F A P R O T O C O L D E C L A R A T I O N

 protocol-declaration → attributes opt protocol protocol-name type-inheritance-
clause opt protocol-body

 protocol-name → identifier
 protocol-body → { protocol-member-declarations opt }

 protocol-member-declaration → protocol-property-declaration
 protocol-member-declaration → protocol-method-declaration
 protocol-member-declaration → protocol-initializer-declaration
 protocol-member-declaration → protocol-subscript-declaration
 protocol-member-declaration → protocol-associated-type-declaration
 protocol-member-declarations → protocol-member-declaration protocol-member-declarations opt

Protocol Property Declaration

Protocols declare that conforming types must implement a property by including a protocol property declaration
in the body of the protocol declaration. Protocol property declarations have a special form of a variable
declaration:

var	 property	name :	 type 	{	get	set	}

As with other protocol member declarations, these property declarations declare only the getter and setter
requirements for types that conform to the protocol. As a result, you don’t implement the getter or setter directly
in the protocol in which it is declared.

The getter and setter requirements can be satisfied by a conforming type in a variety of ways. If a property
declaration includes both the get and set keywords, a conforming type can implement it with a stored
variable property or a computed property that is both readable and writeable (that is, one that implements both a
getter and a setter). However, that property declaration can’t be implemented as a constant property or a read-

(c) ketabton.com: The Digital Library

only computed property. If a property declaration includes only the get keyword, it can be implemented as any
kind of property. For examples of conforming types that implement the property requirements of a protocol, see
Property Requirements.

See also Variable Declaration.

G R A M M A R O F A P R O T O C O L P R O P E R T Y D E C L A R A T I O N

 protocol-property-declaration → variable-declaration-head variable-name type-
annotation getter-setter-keyword-block

Protocol Method Declaration

Protocols declare that conforming types must implement a method by including a protocol method declaration
in the body of the protocol declaration. Protocol method declarations have the same form as function
declarations, with two exceptions: They don’t include a function body, and you can’t provide any default
parameter values as part of the function declaration. For examples of conforming types that implement the
method requirements of a protocol, see Method Requirements.

To declare a class or static method requirement in a protocol declaration, mark the method declaration with the
class keyword. Classes that implement this method also declare the method with the class keyword.
Structures that implement it must declare the method with the static keyword instead. If you’re
implementing the method in an extension, use the class keyword if you’re extending a class and the static
keyword if you’re extending a structure.

See also Function Declaration.

G R A M M A R O F A P R O T O C O L M E T H O D D E C L A R A T I O N

 protocol-method-declaration → function-head function-name generic-parameter-
clause opt function-signature

Protocol Initializer Declaration

(c) ketabton.com: The Digital Library

Protocols declare that conforming types must implement an initializer by including a protocol initializer
declaration in the body of the protocol declaration. Protocol initializer declarations have the same form as
initializer declarations, except they don’t include the initializer’s body.

See also Initializer Declaration.

G R A M M A R O F A P R O T O C O L I N I T I A L I Z E R D E C L A R A T I O N

 protocol-initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause

Protocol Subscript Declaration

Protocols declare that conforming types must implement a subscript by including a protocol subscript
declaration in the body of the protocol declaration. Protocol property declarations have a special form of a
subscript declaration:

subscript	(parameters)	->	 return	type 	{	get	set	}

Subscript declarations only declare the minimum getter and setter implementation requirements for types that
conform to the protocol. If the subscript declaration includes both the get and set keywords, a conforming
type must implement both a getter and a setter clause. If the subscript declaration includes only the get
keyword, a conforming type must implement at least a getter clause and optionally can implement a setter
clause.

See also Subscript Declaration.

G R A M M A R O F A P R O T O C O L S U B S C R I P T D E C L A R A T I O N

 protocol-subscript-declaration → subscript-head subscript-result getter-setter-keyword-block

Protocol Associated Type Declaration

(c) ketabton.com: The Digital Library

Protocols declare associated types using the keyword typealias. An associated type provides an alias for a
type that is used as part of a protocol’s declaration. Accosiated types are similiar to type paramters in generic
parameter clauses, but they’re associated with Self in the protocol in which they’re declared. In that context,
Self refers to the eventual type that conforms to the protocol. For more information and examples, see
Associated Types.

See also Type Alias Declaration.

G R A M M A R O F A P R O T O C O L A S S O C I A T E D T Y P E D E C L A R A T I O N

 protocol-associated-type-declaration → typealias-head type-inheritance-clause opt typealias-
assignment opt

Initializer Declaration

An initializer declaration introduces an initializer for a class, structure, or enumeration into your program.
Initializer declarations are declared using the keyword init and have two basic forms.

Structure, enumeration, and class types can have any number of initializers, but the rules and associated
behavior for class initializers are different. Unlike structures and enumerations, classes have two kinds of
initializers: designated initializers and convenience initializers, as described in Initialization.

The following form declares initializers for structures, enumerations, and designated initializers of classes:

init(parameters)	{

				 statements

}

A designated initializer of a class initializes all of the class’s properties directly. It can’t call any other initializers
of the same class, and if the class has a superclass, it must call one of the superclass’s designated initializers.
If the class inherits any properties from its superclass, one of the superclass’s designated initializers must be
called before any of these properties can be set or modified in the current class.

Designated initializers can be declared in the context of a class declaration only and therefore can’t be added to

(c) ketabton.com: The Digital Library

a class using an extension declaration.

Initializers in structures and enumerations can call other declared initializers to delegate part or all of the
initialization process.

To declare convenience initializers for a class, prefix the initializer declaration with the context-sensitive
keyword convenience.

convenience	init(parameters)	{

				 statements

}

Convenience initializers can delegate the initialization process to another convenience initializer or to one of the
class’s designated initializers. That said, the initialization processes must end with a call to a designated
initializer that ultimately initializes the class’s properties. Convenience initializers can’t call a superclass’s
initializers.

You can mark designated and convenience initializers with the required attribute to require that every
subclass implement the initializer. Because designated initializers are not inherited by subclasses, they must
be implemented directly. Required convenience initializers can be either implemented explicitly or inherited
when the subclass directly implements all of the superclass’s designated initializers (or overrides the
designated initializers with convenience initializers). Unlike methods, properties, and subscripts, you don’t need
to mark overridden initializers with the override keyword.

To see examples of initializers in various type declarations, see Initialization.

G R A M M A R O F A N I N I T I A L I Z E R D E C L A R A T I O N

 initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause initializer-body

 initializer-head → attributes opt convenience opt init
 initializer-body → code-block

Deinitializer Declaration

(c) ketabton.com: The Digital Library

A deinitializer declaration declares a deinitializer for a class type. Deinitializers take no parameters and have
the following form:

deinit	{

				 statements

}

A deinitializer is called automatically when there are no longer any references to a class object, just before the
class object is deallocated. A deinitializer can be declared only in the body of a class declaration—but not in an
extension of a class—and each class can have at most one.

A subclass inherits its superclass’s deinitializer, which is implicitly called just before the subclass object is
deallocated. The subclass object is not deallocated until all deinitializers in its inheritance chain have finished
executing.

Deinitializers are not called directly.

For an example of how to use a deinitializer in a class declaration, see Deinitialization.

G R A M M A R O F A D E I N I T I A L I Z E R D E C L A R A T I O N

 deinitializer-declaration → attributes opt deinit code-block

Extension Declaration

An extension declaration allows you to extend the behavior of existing class, structure, and enumeration types.
Extension declarations begin with the keyword extension and have the following form:

extension	 type :	 adopted	protocols 	{

				 declarations

}

(c) ketabton.com: The Digital Library

The body of an extension declaration contains zero or more declarations. These declarations can include
computed properties, computed static properties, instance methods, static and class methods, initializers,
subscript declarations, and even class, structure, and enumeration declarations. Extension declarations can’t
contain destructor or protocol declarations, store properties, property observers, or other extension
declarations. For a discussion and several examples of extensions that include various kinds of declarations,
see Extensions.

Extension declarations can add protocol conformance to an existing class, structure, and enumeration type in
the adopted protocols. Extension declarations can’t add class inheritance to an existing class, and therefore the
type-inheritance-clause in an extension declaration contains only a list of protocols.

Properties, methods, and initializers of an existing type can’t be overridden in an extension of that type.

Extension declarations can contain initializer declarations. That said, if the type you’re extending is defined in
another module, an initializer declaration must delegate to an initializer already defined in that module to ensure
members of that type are properly initialized.

G R A M M A R O F A N E X T E N S I O N D E C L A R A T I O N

 extension-declaration → extension type-identifier type-inheritance-clause opt extension-
body

 extension-body → { declarations opt }

Subscript Declaration

A subscript declaration allows you to add subscripting support for objects of a particular type and are typically
used to provide a convenient syntax for accessing the elements in a collection, list, or sequence. Subscript
declarations are declared using the keyword subscript and have the following form:

subscript	(parameters)	->	 return	type 	{

				get	{

								 statements

				}

				set(setter	name)	{

(c) ketabton.com: The Digital Library

								 statements

				}

}

Subscript declarations can appear only in the context of a class, structure, enumeration, extension, or protocol
declaration.

The parameters specify one or more indexes used to access elements of the corresponding type in a subscript
expression (for example, the i in the expression object[i]). Although the indexes used to access the
elements can be of any type, each parameter must include a type annotation to specify the type of each index.
The return type specifies the type of the element being accessed.

As with computed properties, subscript declarations support reading and writing the value of the accessed
elements. The getter is used to read the value, and the setter is used to write the value. The setter clause is
optional, and when only a getter is needed, you can omit both clauses and simply return the requested value
directly. That said, if you provide a setter clause, you must also provide a getter clause.

The setter name and enclosing parentheses are optional. If you provide a setter name, it is used as the name of
the parameter to the setter. If you do not provide a setter name, the default parameter name to the setter is
value. That type of the setter name must be the same as the return type.

You can overload a subscript declaration in the type in which it is declared, as long as the parameters or the
return type differ from the one you’re overloading. You can also override a subscript declaration inherited from a
superclass. When you do so, you must mark the overridden subscript declaration with the override
keyword.

You can also declare subscripts in the context of a protocol declaration, as described in Protocol Subscript
Declaration.

For more information about subscripting and to see examples of subscript declarations, see Subscripts.

G R A M M A R O F A S U B S C R I P T D E C L A R A T I O N

 subscript-declaration → subscript-head subscript-result code-block
 subscript-declaration → subscript-head subscript-result getter-setter-block
 subscript-declaration → subscript-head subscript-result getter-setter-keyword-block

(c) ketabton.com: The Digital Library

 subscript-head → attributes opt subscript parameter-clause
 subscript-result → -> attributes opt type

Operator Declaration

An operator declaration introduces a new infix, prefix, or postfix operator into your program and is declared
using the contextual keyword operator.

You can declare operators of three different fixities: infix, prefix, and postfix. The fixity of an operator specifies
the relative position of an operator to its operands.

There are three basic forms of an operator declaration, one for each fixity. The fixity of the operator is specified
by including the contextual keyword infix, prefix, or postfix between operator and the name of the
operator. In each form, the name of the operator can contain only the operator characters defined in Operators.

The following form declares a new infix operator:

operator	infix	 operator	name 	{

				precedence	 precedence	level

				associativity	 associativity

}

An infix operator is a binary operator that is written between its two operands, such as the familiar addition
operator (+) in the expression 1	+	2.

Infix operators can optionally specify a precedence, associativity, or both.

The precedence of an operator specifies how tightly an operator binds to its operands in the absence of grouping
parentheses. You specify the precedence of an operator by writing the contextual keyword precedence
followed by the precedence level. The precedence level can be any whole number (decimal integer) from 0 to
255; unlike decimal integer literals, it can’t contain any underscore characters. Although the precedence level is
a specific number, it is significant only relative to another operator. That is, when two operators compete with
each other for their operands, such as in the expression 2	+	3	*	5, the operator with the higher precedence

(c) ketabton.com: The Digital Library

level binds more tightly to its operands.

The associativity of an operator specifies how a sequence of operators with the same precedence level are
grouped together in the absence of grouping parentheses. You specify the associativity of an operator by writing
the contextual keyword associativity followed by the associativity, which is one of the contextual
keywords left, right, or none. Operators that are left-associative group left-to-right. For example, the
subtraction operator (-) is left-associative, and therefore the expression 4	-	5	-	6 is grouped as (4	-	5)
-	6 and evaluates to -7. Operators that are right-associative group right-to-left, and operators that are
specified with an associativity of none don’t associate at all. Nonassociative operators of the same precedence
level can’t appear adjacent to each to other. For example, 1	<	2	<	3 is not a valid expression.

Infix operators that are declared without specifying a precedence or associativity are initialized with a
precedence level of 100 and an associativity of none.

The following form declares a new prefix operator:

operator	prefix	 operator	name 	{}

A prefix operator is a unary operator that is written immediately before its operand, such as the prefix increment
operator (++) is in the expression ++i.

Prefix operators declarations don’t specify a precedence level. Prefix operators are nonassociative.

The following form declares a new postfix operator:

operator	postfix	 operator	name 	{}

A postfix operator is a unary operator that is written immediately after its operand, such as the postfix increment
operator (++) is in the expression i++.

As with prefix operators, postfix operator declarations don’t specify a precedence level. Postfix operators are
nonassociative.

After declaring a new operator, you implement it by declaring a function that has the same name as the

(c) ketabton.com: The Digital Library

operator. To see an example of how to create and implement a new operator, see Custom Operators.

G R A M M A R O F A N O P E R A T O R D E C L A R A T I O N

 operator-declaration → prefix-operator-declaration postfix-operator-declaration infix-operator-
declaration

 prefix-operator-declaration → operator prefix operator { }
 postfix-operator-declaration → operator postfix operator { }
 infix-operator-declaration → operator infix operator { infix-operator-attributes opt }

 infix-operator-attributes → precedence-clause opt associativity-clause opt
 precedence-clause → precedence precedence-level
 precedence-level → Digit 0 through 255
 associativity-clause → associativity associativity
 associativity → left right none

(c) ketabton.com: The Digital Library

Attributes

Attributes provide more information about a declaration or type. There are two kinds of attributes in Swift, those
that apply to declarations and those that apply to types. For instance, the required attribute—when applied to
a designated or convenience initializer declaration of a class—indicates that every subclass must implement
that initializer. And the noreturn attribute—when applied to a function or method type—indicates that the
function or method doesn’t return to its caller.

You specify an attribute by writing the @ symbol followed by the attribute’s name and any arguments that the
attribute accepts:

@ attribute	name

@ attribute	name (attribute	arguments)

Some declaration attributes accept arguments that specify more information about the attribute and how it
applies to a particular declaration. These attribute arguments are enclosed in parentheses, and their format is
defined by the attribute they belong to.

Declaration Attributes

You can apply a declaration attribute to declarations only. However, you can also apply the noreturn attribute
to a function or method type.

Apply this attribute to functions that overload a compound assignment operator. Functions that
overload a compound assignment operator must mark their initial input parameter as inout. For
an example of how to use the assignment attribute, see Compound Assignment Operators.

Apply this attribute to a protocol to indicate that the protocol can be adopted by class types only.

assignment

class_protocol

(c) ketabton.com: The Digital Library

If you apply the objc attribute to a protocol, the class_protocol attribute is implicitly applied
to that protocol; there’s no need to mark the protocol with the class_protocol attribute
explicitly.

Apply this attribute to an import declaration to export the imported module, submodule, or
declaration from the current module. If another module imports the current module, that other
module can access the items exported by the current module.

Apply this attribute to a class or to a property, method, or subscript member of a class. It’s applied
to a class to indicate that the class can’t be subclassed. It’s applied to a property, method, or
subscript of a class to indicate that that class member can’t be overridden in any subclass.

Apply this attribute to a stored variable property of a class or structure to indicate that the property’s
initial value is calculated and stored at most once, when the property is first accessed. For an
example of how to use the lazy attribute, see Lazy Stored Properties.

Apply this attribute to a function or method declaration to indicate that the corresponding type of that
function or method, T, is @noreturn	T. You can mark a function or method type with this
attribute to indicate that the function or method doesn’t return to its caller.

You can override a function or method that is not marked with the noreturn attribute with a
function or method that is. That said, you can’t override a function or method that is marked with the
noreturn attribute with a function or method that is not. Similar rules apply when you implement
a protocol method in a conforming type.

Apply this attribute to a stored variable property of a class. This attribute causes the property’s
setter to be synthesized with a copy of the property’s value—returned by the copyWithZone
method—instead of the value of the property itself. The type of the property must conform to the
NSCopying protocol.

The NSCopying attribute behaves in a way similar to the Objective-C copy property attribute.

exported

final

lazy

noreturn

NSCopying

NSManaged

(c) ketabton.com: The Digital Library

Apply this attribute to a stored variable property of a class that inherits from NSManagedObject
to indicate that the storage and implementation of the property are provided dynamically by Core
Data at runtime based on the associated entity description.

Apply this attribute to any declaration that can be represented in Objective-C—for example, non-
nested classes, protocols, properties and methods (including getters and setters) of classes and
protocols, initializers, deinitializers, and subscripts. The objc attribute tells the compiler that a
declaration is available to use in Objective-C code.

If you apply the objc attribute to a class or protocol, it’s implicitly applied to the members of that
class or protocol. The compiler also implicitly adds the objc attribute to a class that inherits from
another class marked with the objc attribute. Protocols marked with the objc attribute can’t
inherit from protocols that aren’t.

The objc attribute optionally accepts a single attribute argument, which consists of an identifier.
Use this attribute when you want to expose a different name to Objective-C for the entity the objc
attribute applies to. You can use this argument to name classes, protocols, methods, getters,
setters, and initializers. The example below exposes the getter for the enabled property of the
ExampleClass to Objective-C code as isEnabled rather than just as the name of the property
itself.

1 @objc
2 class	ExampleClass	{
3 				var	enabled:	Bool	{
4 				@objc(isEnabled)	get	{
5 								//	Return	the	appropriate	value
6 				}
7 				}
8 }

Apply this attribute to a protocol’s property, method, or subscript members to indicate that a
conforming type isn’t required to implement those members.

You can apply the optional attribute only to protocols that are marked with the objc attribute.

NSManaged

objc

optional

(c) ketabton.com: The Digital Library

As a result, only class types can adopt and conform to a protocol that contains optional member
requirements. For more information about how to use the optional attribute and for guidance
about how to access optional protocol members—for example, when you’re not sure whether a
conforming type implements them—see Optional Protocol Requirements.

Apply this attribute to a designated or convenience initializer of a class to indicate that every
subclass must implement that initializer.

Required designated initializers must be implemented explicitly. Required convenience initializers
can be either implemented explicitly or inherited when the subclass directly implements all of the
superclass’s designated initializers (or when the subclass overrides the designated initializers with
convenience initializers).

Declaration Attributes Used by Interface Builder

Interface Builder attributes are declaration attributes used by Interface Builder to synchronize with Xcode. Swift
provides the following Interface Builder attributes: IBAction, IBDesignable, IBInspectable, and
IBOutlet. These attributes are conceptually the same as their Objective-C counterparts.

You apply the IBOutlet and IBInspectable attributes to property declarations of a class. You apply the
IBAction attribute to method declarations of a class and the IBDesignable attribute to class declarations.

Type Attributes

You can apply type attributes to types only. However, you can also apply the noreturn attribute to a function
or method declaration.

This attribute is used to delay the evaluation of an expression by automatically wrapping that
expression in a closure with no arguments. Apply this attribute to a function or method type that
takes no arguments and that returns the type of the expression. For an example of how to use the
auto_closure attribute, see Function Type.

required

auto_closure

(c) ketabton.com: The Digital Library

Apply this attribute to the type of a function or method to indicate that the function or method doesn’t
return to its caller. You can also mark a function or method declaration with this attribute to indicate
that the corresponding type of that function or method, T, is @noreturn	T.

G R A M M A R O F A N A T T R I B U T E

 attribute → @ attribute-name attribute-argument-clause opt
 attribute-name → identifier
 attribute-argument-clause → (balanced-tokens opt)
 attributes → attribute attributes opt

 balanced-tokens → balanced-token balanced-tokens opt
 balanced-token → (balanced-tokens opt)
 balanced-token → [balanced-tokens opt]
 balanced-token → { balanced-tokens opt }
 balanced-token → Any identifier, keyword, literal, or operator
 balanced-token → Any punctuation except (,) , [,] , { , or }

noreturn

(c) ketabton.com: The Digital Library

Patterns

A pattern represents the structure of a single value or a composite value. For example, the structure of a tuple
(1,	2) is a comma-separated list of two elements. Because patterns represent the structure of a value rather
than any one particular value, you can match them with a variety of values. For instance, the pattern (x,	y)
matches the tuple (1,	2) and any other two-element tuple. In addition matching a pattern with a value, you
can extract part or all of a composite value and bind each part to a constant or variable name.

In Swift, patterns occur in variable and constant declarations (on their left-hand side), in for-in statements,
and in switch statements (in their case labels). Although any pattern can occur in the case labels of a
switch statement, in the other contexts, only wildcard patterns, identifier patterns, and patterns containing
those two patterns can occur.

You can specify a type annotation for a wildcard pattern, an identifier pattern, and a tuple pattern to constraint the
pattern to match only values of a certain type.

G R A M M A R O F A P A T T E R N

 pattern → wildcard-pattern type-annotation opt
 pattern → identifier-pattern type-annotation opt
 pattern → value-binding-pattern
 pattern → tuple-pattern type-annotation opt
 pattern → enum-case-pattern
 pattern → type-casting-pattern
 pattern → expression-pattern

Wildcard Pattern

A wildcard pattern matches and ignores any value and consists of an underscore (_). Use a wildcard pattern
when you don’t care about the values being matched against. For example, the following code iterates through
the closed range 1..3, ignoring the current value of the range on each iteration of the loop:

1 for	_	in	1...3	{
2 				//	Do	something	three	times.

(c) ketabton.com: The Digital Library

3 }

G R A M M A R O F A W I L D C A R D P A T T E R N

 wildcard-pattern → _

Identifier Pattern

An identifier pattern matches any value and binds the matched value to a variable or constant name. For
example, in the following constant declaration, someValue is an identifier pattern that matches the value 42 of
type Int:

1 let	someValue	=	42

When the match succeeds, the value 42 is bound (assigned) to the constant name someValue.

When the pattern on the left-hand side of a variable or constant declaration is an identifier pattern, the identifier
pattern is implicitly a subpattern of a value-binding pattern.

G R A M M A R O F A N I D E N T I F I E R P A T T E R N

 identifier-pattern → identifier

Value-Binding Pattern

A value-binding pattern binds matched values to variable or constant names. Value-binding patterns that bind a
matched value to the name of a constant begin with the keyword let; those that bind to the name of variable
begin with the keyword var.

Identifiers patterns within a value-binding pattern bind new named variables or constants to their matching
values. For example, you can decompose the elements of a tuple and bind the value of each element to a
corresponding identifier pattern.

(c) ketabton.com: The Digital Library

1 let	point	=	(3,	2)
2 switch	point	{
3 				//	Bind	x	and	y	to	the	elements	of	point.
4 case	let	(x,	y):
5 				println("The	point	is	at	(\(x),	\(y)).")
6 }
7 //	prints	"The	point	is	at	(3,	2)."

In the example above, let distributes to each identifier pattern in the tuple pattern (x,	y). Because of this
behavior, the switch cases case	let	(x,	y): and case	(let	x,	let	y): match the same
values.

G R A M M A R O F A V A L U E - B I N D I N G P A T T E R N

 value-binding-pattern → var pattern let pattern

Tuple Pattern

A tuple pattern is a comma-separated list of zero or more patterns, enclosed in parentheses. Tuple patterns
match values of corresponding tuple types.

You can constrain a tuple pattern to match certain kinds of tuple types by using type annotations. For example,
the tuple pattern (x,	y):	(Int,	Int) in the constant declaration let	(x,	y):	(Int,	Int)	=
(1,	2) matches only tuple types in which both elements are of type Int. To constrain only some elements of
a tuple pattern, provide type annotations directly to those individual elements. For example, the tuple pattern in
let	(x:	String,	y) matches any two-element tuple type, as long as the first element is of type String.

When a tuple pattern is used as the pattern in a for-in statement or in a variable or constant declaration, it can
contain only wildcard patterns, identifier patterns, or other tuple patterns that contain those. For example, the
following code isn’t valid because the element 0 in the tuple pattern (x,	0) is an expression pattern:

1 let	points	=	[(0,	0),	(1,	0),	(1,	1),	(2,	0),	(2,	1)]
2 //	This	code	isn't	valid.
3 for	(x,	0)	in	points	{

(c) ketabton.com: The Digital Library

4 				/*	...	*/
5 }

The parentheses around a tuple pattern that contains a single element have no effect. The pattern matches
values of that single element’s type. For example, the following are equivalent:

1 let	a	=	2								//	a:	Int	=	2
2 let	(a)	=	2						//	a:	Int	=	2
3 let	(a):	Int	=	2	//	a:	Int	=	2

G R A M M A R O F A T U P L E P A T T E R N

 tuple-pattern → (tuple-pattern-element-list opt)
 tuple-pattern-element-list → tuple-pattern-element tuple-pattern-element , tuple-pattern-

element-list
 tuple-pattern-element → pattern

Enumeration Case Pattern

An enumeration case pattern matches a case of an existing enumeration type. Enumeration case patterns
appear only in switch statement case labels.

If the enumeration case you’re trying to match has any associated values, the corresponding enumeration case
pattern must specify a tuple pattern that contains one element for each associated value. For an example that
uses a switch statement to match enumeration cases containing associated values, see Associated Values.

G R A M M A R O F A N E N U M E R A T I O N C A S E P A T T E R N

 enum-case-pattern → type-identifier opt . enum-case-name tuple-pattern opt

Type-Casting Patterns

There are two type-casting patterns, the is pattern and the as pattern. Both type-casting patterns appear only in
switch statement case labels. The is and as patterns have the following form:

(c) ketabton.com: The Digital Library

is	 type

pattern 	as	 type

The is pattern matches a value if the type of that value at runtime is the same as the type specified in the right-
hand side of the is pattern—or a subclass of that type. The is pattern behaves like the is operator in that they
both perform a type cast but discard the returned type.

The as pattern matches a value if the type of that value at runtime is the same as the type specified in the right-
hand side of the as pattern—or a subclass of that type. If the match succeeds, the type of the matched value is
cast to the pattern specified in the left-hand side of the as pattern.

For an example that uses a switch statement to match values with is and as patterns, see Type Casting for
Any and AnyObject.

G R A M M A R O F A T Y P E C A S T I N G P A T T E R N

 type-casting-pattern → is-pattern as-pattern
 is-pattern → is type
 as-pattern → pattern as type

Expression Pattern

An expression pattern represents the value of an expression. Expression patterns appear only in switch
statement case labels.

The expression represented by the expression pattern is compared with the value of an input expression using
the Swift standard library ~= operator. The matches succeeds if the ~= operator returns true. By default, the
~= operator compares two values of the same type using the == operator. It can also match an integer value
with a range of integers in an Range object, as the following example shows:

1 let	point	=	(1,	2)
2 switch	point	{

(c) ketabton.com: The Digital Library

3 case	(0,	0):
4 				println("(0,	0)	is	at	the	origin.")
5 case	(-2...2,	-2...2):
6 				println("(\(point.0),	\(point.1))	is	near	the	origin.")
7 default:
8 				println("The	point	is	at	(\(point.0),	\(point.1)).")
9 }

10 //	prints	"(1,	2)	is	near	the	origin."

You can overload the ~= operator to provide custom expression matching behavior. For example, you can
rewrite the above example to compare the point expression with a string representations of points.

1 //	Overload	the	~=	operator	to	match	a	string	with	an	integer
2 func	~=(pattern:	String,	value:	Int)	->	Bool	{
3 				return	pattern	==	"\(value)"
4 }
5 switch	point	{
6 case	("0",	"0"):
7 				println("(0,	0)	is	at	the	origin.")
8 case	("-2...2",	"-2...2"):
9 				println("(\(point.0),	\(point.1))	is	near	the	origin.")

10 default:
11 				println("The	point	is	at	(\(point.0),	\(point.1)).")
12 }
13 //	prints	"(1,	2)	is	near	the	origin."

G R A M M A R O F A N E X P R E S S I O N P A T T E R N

 expression-pattern → expression

(c) ketabton.com: The Digital Library

Generic Parameters and Arguments

This chapter describes parameters and arguments for generic types, functions, and initializers. When you
declare a generic type, function, or initializer, you specify the type parameters that the generic type, function, or
initializer can work with. These type parameters act as placeholders that are replaced by actual concrete type
arguments when an instance of a generic type is created or a generic function or initializer is called.

For an overview of generics in Swift, see Generics.

Generic Parameter Clause

A generic parameter clause specifies the type parameters of a generic type or function, along with any
associated constraints and requirements on those parameters. A generic parameter clause is enclosed in angle
brackets (<>) and has one of the following forms:

< generic	parameter	list >

< generic	parameter	list 	where	 requirements >

The generic parameter list is a comma-separated list of generic parameters, each of which has the following
form:

type	parameter :	 constraint

A generic parameter consists of a type parameter followed by an optional constraint. A type parameter is
simply the name of a placeholder type (for instance, T, U, V, KeyType, ValueType, and so on). You have
access to the type parameters (and any of their associated types) in the rest of the type, function, or initializer
declaration, including in the signature of the function or initializer.

The constraint specifies that a type parameter inherits from a specific class or conforms to a protocol or
protocol composition. For instance, in the generic function below, the generic parameter T:	Comparable

(c) ketabton.com: The Digital Library

indicates that any type argument substituted for the type parameter T must conform to the Comparable
protocol.

1 func	simpleMin<T:	Comparable>(x:	T,	y:	T)	->	T	{
2 				if	x	<	y	{
3 								return	y
4 				}
5 				return	x
6 }

Because Int and Double, for example, both conform to the Comparable protocol, this function accepts
arguments of either type. In contrast with generic types, you don’t specify a generic argument clause when you
use a generic function or initializer. The type arguments are instead inferred from the type of the arguments
passed to the function or initializer.

1 simpleMin(17,	42)	//	T	is	inferred	to	be	Int
2 simpleMin(3.14159,	2.71828)	//	T	is	inferred	to	be	Double

Where Clauses

You can specify additional requirements on type parameters and their associated types by including a where
clause after the generic parameter list. A where clause consists of the keyword where, followed by a
comma-separated list of one or more requirements.

The requirements in a where clause specify that a type parameter inherits from a class or conforms to a
protocol or protocol composition. Although the where clause provides syntactic sugar for expressing simple
constraints on type parameters (for instance, T:	Comparable is equivalent to T	where	T:
Comparable and so on), you can use it to provide more complex constraints on type parameters and their
associated types. For instance, you can express the constraints that a generic type T inherits from a class C
and conforms to a protocol P as <T	where	T:	C,	T:	P>.

As mentioned above, you can constrain the associated types of type parameters to conform to protocols. For
example, the generic parameter clause <T:	Generator	where	T.Element:	Equatable> specifies

(c) ketabton.com: The Digital Library

that T conforms to the Generator protocol and the associated type of T, T.Element, conforms to the
Equatable protocol (T has the associated type Element because Generator declares Element and T
conforms to Generator).

You can also specify the requirement that two types be identical, using the == operator. For example, the
generic parameter clause <T:	Generator,	U:	Generator	where	T.Element	==	U.Element>
expresses the constraints that T and U conform to the Generator protocol and that their associated types
must be identical.

Any type argument substituted for a type parameter must meet all the constraints and requirements placed on
the type parameter.

You can overload a generic function or initializer by providing different constraints, requirements, or both on the
type parameters in the generic parameter clause. When you call an overloaded generic function or initializer,
the compiler uses these constraints to resolve which overloaded function or initializer to invoke.

You can subclass a generic class, but the subclass must also be a generic class.

G R A M M A R O F A G E N E R I C P A R A M E T E R C L A U S E

 generic-parameter-clause → < generic-parameter-list requirement-clause opt >
 generic-parameter-list → generic-parameter generic-parameter , generic-parameter-list
 generic-parameter → type-name
 generic-parameter → type-name : type-identifier
 generic-parameter → type-name : protocol-composition-type

 requirement-clause → where requirement-list
 requirement-list → requirement requirement , requirement-list
 requirement → conformance-requirement same-type-requirement

 conformance-requirement → type-identifier : type-identifier
 conformance-requirement → type-identifier : protocol-composition-type
 same-type-requirement → type-identifier == type-identifier

Generic Argument Clause

A generic argument clause specifies the type arguments of a generic type. A generic argument clause is
enclosed in angle brackets (<>) and has the following form:

(c) ketabton.com: The Digital Library

< generic	argument	list >

The generic argument list is a comma-separated list of type arguments. A type argument is the name of an
actual concrete type that replaces a corresponding type parameter in the generic parameter clause of a generic
type. The result is a specialized version of that generic type. As an example, the Swift standard library defines a
generic dictionary type as:

1 struct	Dictionary<KeyType:	Hashable,	ValueType>:	Collection,	
DictionaryLiteralConvertible	{

2 				/*	...	*/
3 }

The specialized version of the generic Dictionary type, Dictionary<String,	Int> is formed by
replacing the generic parameters KeyType:	Hashable and ValueType with the concrete type arguments
String and Int. Each type argument must satisfy all the constraints of the generic parameter it replaces,
including any additional requirements specified in a where clause. In the example above, the KeyType type
parameter is constrained to conform to the Hashable protocol and therefore String must also conform to
the Hashable protocol.

You can also replace a type parameter with a type argument that is itself a specialized version of a generic type
(provided it satisfies the appropriate constraints and requirements). For example, you can replace the type
parameter T in Array<T> with a specialized version of an array, Array<Int>, to form an array whose
elements are themselves arrays of integers.

1 let	arrayOfArrays:	Array<Array<Int>>	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	
9]]

As mentioned in Generic Parameter Clause, you don’t use a generic argument clause to specify the type
arguments of a generic function or initializer.

G R A M M A R O F A G E N E R I C A R G U M E N T C L A U S E

 generic-argument-clause → < generic-argument-list >
 generic-argument-list → generic-argument generic-argument , generic-argument-list
 generic-argument → type

(c) ketabton.com: The Digital Library

(c) ketabton.com: The Digital Library

Summary of the Grammar

Statements

G R A M M A R O F A S T A T E M E N T

 statement → expression ; opt
 statement → declaration ; opt
 statement → loop-statement ; opt
 statement → branch-statement ; opt
 statement → labeled-statement
 statement → control-transfer-statement ; opt
 statements → statement statements opt

G R A M M A R O F A L O O P S TA T E M E N T

 loop-statement → for-statement
 loop-statement → for-in-statement
 loop-statement → while-statement
 loop-statement → do-while-statement

G R A M M A R O F A F O R S TA T E M E N T

 for-statement → for for-init opt ; expression opt ; expression opt code-block
 for-statement → for (for-init opt ; expression opt ; expression opt) code-block

 for-init → variable-declaration expression-list

G R A M M A R O F A F O R - I N S TA T E M E N T

 for-in-statement → for pattern in expression code-block

G R A M M A R O F A W H I L E S TA T E M E N T

 while-statement → while while-condition code-block
 while-condition → expression declaration

G R A M M A R O F A D O - W H I L E S TA T E M E N T

(c) ketabton.com: The Digital Library

 do-while-statement → do code-block while while-condition

G R A M M A R O F A B R A N C H S TA T E M E N T

 branch-statement → if-statement
 branch-statement → switch-statement

G R A M M A R O F A N I F S T A T E M E N T

 if-statement → if if-condition code-block else-clause opt
 if-condition → expression declaration
 else-clause → else code-block else if-statement

G R A M M A R O F A S W I T C H S TA T E M E N T

 switch-statement → switch expression { switch-cases opt }
 switch-cases → switch-case switch-cases opt
 switch-case → case-label statements default-label statements
 switch-case → case-label ; default-label ;

 case-label → case case-item-list :
 case-item-list → pattern guard-clause opt pattern guard-clause opt , case-item-list
 default-label → default :

 guard-clause → where guard-expression
 guard-expression → expression

G R A M M A R O F A L A B E L E D S TA T E M E N T

 labeled-statement → statement-label loop-statement statement-label switch-statement
 statement-label → label-name :
 label-name → identifier

G R A M M A R O F A C O N T R O L T R A N S F E R S TA T E M E N T

 control-transfer-statement → break-statement
 control-transfer-statement → continue-statement
 control-transfer-statement → fallthrough-statement
 control-transfer-statement → return-statement

G R A M M A R O F A B R E A K S T A T E M E N T

 break-statement → break label-name opt

(c) ketabton.com: The Digital Library

G R A M M A R O F A C O N T I N U E S T A T E M E N T

 continue-statement → continue label-name opt

G R A M M A R O F A F A L L T H R O U G H S T A T E M E N T

 fallthrough-statement → fallthrough

G R A M M A R O F A R E T U R N S T A T E M E N T

 return-statement → return expression opt

Generic Parameters and Arguments

G R A M M A R O F A G E N E R I C P A R A M E T E R C L A U S E

 generic-parameter-clause → < generic-parameter-list requirement-clause opt >
 generic-parameter-list → generic-parameter generic-parameter , generic-parameter-list
 generic-parameter → type-name
 generic-parameter → type-name : type-identifier
 generic-parameter → type-name : protocol-composition-type

 requirement-clause → where requirement-list
 requirement-list → requirement requirement , requirement-list
 requirement → conformance-requirement same-type-requirement

 conformance-requirement → type-identifier : type-identifier
 conformance-requirement → type-identifier : protocol-composition-type
 same-type-requirement → type-identifier == type-identifier

G R A M M A R O F A G E N E R I C A R G U M E N T C L A U S E

 generic-argument-clause → < generic-argument-list >
 generic-argument-list → generic-argument generic-argument , generic-argument-list
 generic-argument → type

Declarations

(c) ketabton.com: The Digital Library

G R A M M A R O F A D E C L A R A T I O N

 declaration → import-declaration
 declaration → constant-declaration
 declaration → variable-declaration
 declaration → typealias-declaration
 declaration → function-declaration
 declaration → enum-declaration
 declaration → struct-declaration
 declaration → class-declaration
 declaration → protocol-declaration
 declaration → initializer-declaration
 declaration → deinitializer-declaration
 declaration → extension-declaration
 declaration → subscript-declaration
 declaration → operator-declaration
 declarations → declaration declarations opt

 declaration-specifiers → declaration-specifier declaration-specifiers opt
 declaration-specifier → class mutating nonmutating override static

unowned unowned(safe) unowned(unsafe) weak

G R A M M A R O F A T O P - L E V E L D E C L A R A T I O N

 top-level-declaration → statements opt

G R A M M A R O F A C O D E B L O C K

 code-block → { statements opt }

G R A M M A R O F A N I M P O R T D E C L A R A T I O N

 import-declaration → attributes opt import import-kind opt import-path

 import-kind → typealias struct class enum protocol var func
 import-path → import-path-identifier import-path-identifier . import-path
 import-path-identifier → identifier operator

G R A M M A R O F A C O N S T A N T D E C L A R A T I O N

 constant-declaration → attributes opt declaration-specifiers opt let pattern-initializer-list

 pattern-initializer-list → pattern-initializer pattern-initializer , pattern-initializer-list
 pattern-initializer → pattern initializer opt
 initializer → = expression

(c) ketabton.com: The Digital Library

G R A M M A R O F A V A R I A B L E D E C L A R A T I O N

 variable-declaration → variable-declaration-head pattern-initializer-list
 variable-declaration → variable-declaration-head variable-name type-annotation code-block
 variable-declaration → variable-declaration-head variable-name type-annotation getter-setter-

block
 variable-declaration → variable-declaration-head variable-name type-annotation getter-setter-

keyword-block
 variable-declaration → variable-declaration-head variable-name type-

annotation initializer opt willSet-didSet-block

 variable-declaration-head → attributes opt declaration-specifiers opt var
 variable-name → identifier

 getter-setter-block → { getter-clause setter-clause opt }
 getter-setter-block → { setter-clause getter-clause }
 getter-clause → attributes opt get code-block
 setter-clause → attributes opt set setter-name opt code-block
 setter-name → (identifier)

 getter-setter-keyword-block → { getter-keyword-clause setter-keyword-clause opt }
 getter-setter-keyword-block → { setter-keyword-clause getter-keyword-clause }
 getter-keyword-clause → attributes opt get
 setter-keyword-clause → attributes opt set

 willSet-didSet-block → { willSet-clause didSet-clause opt }
 willSet-didSet-block → { didSet-clause willSet-clause }
 willSet-clause → attributes opt willSet setter-name opt code-block
 didSet-clause → attributes opt didSet setter-name opt code-block

G R A M M A R O F A T Y P E A L I A S D E C L A R A T I O N

 typealias-declaration → typealias-head typealias-assignment
 typealias-head → typealias typealias-name
 typealias-name → identifier
 typealias-assignment → = type

G R A M M A R O F A F U N C T I O N D E C L A R A T I O N

 function-declaration → function-head function-name generic-parameter-clause opt function-
signature function-body

 function-head → attributes opt declaration-specifiers opt func
 function-name → identifier operator

 function-signature → parameter-clauses function-result opt
 function-result → -> attributes opt type

(c) ketabton.com: The Digital Library

 function-body → code-block

 parameter-clauses → parameter-clause parameter-clauses opt
 parameter-clause → () (parameter-list ... opt)
 parameter-list → parameter parameter , parameter-list
 parameter → inout opt let opt # opt parameter-name local-parameter-name opt type-

annotation default-argument-clause opt
 parameter → inout opt var # opt parameter-name local-parameter-name opt type-

annotation default-argument-clause opt
 parameter → attributes opt type
 parameter-name → identifier _
 local-parameter-name → identifier _
 default-argument-clause → = expression

G R A M M A R O F A N E N U M E R A T I O N D E C L A R A T I O N

 enum-declaration → attributes opt union-style-enum attributes opt raw-value-style-enum

 union-style-enum → enum-name generic-parameter-clause opt { union-style-enum-
members opt }

 union-style-enum-members → union-style-enum-member union-style-enum-members opt
 union-style-enum-member → declaration union-style-enum-case-clause
 union-style-enum-case-clause → attributes opt case union-style-enum-case-list
 union-style-enum-case-list → union-style-enum-case union-style-enum-case , union-style-

enum-case-list
 union-style-enum-case → enum-case-name tuple-type opt
 enum-name → identifier
 enum-case-name → identifier

 raw-value-style-enum → enum-name generic-parameter-clause opt : type-identifier { raw-
value-style-enum-members opt }

 raw-value-style-enum-members → raw-value-style-enum-member raw-value-style-enum-
members opt

 raw-value-style-enum-member → declaration raw-value-style-enum-case-clause
 raw-value-style-enum-case-clause → attributes opt case raw-value-style-enum-case-list
 raw-value-style-enum-case-list → raw-value-style-enum-case raw-value-style-enum-

case , raw-value-style-enum-case-list
 raw-value-style-enum-case → enum-case-name raw-value-assignment opt
 raw-value-assignment → = literal

G R A M M A R O F A S T R U C T U R E D E C L A R A T I O N

 struct-declaration → attributes opt struct struct-name generic-parameter-clause opt type-
inheritance-clause opt struct-body

 struct-name → identifier
 struct-body → { declarations opt }

(c) ketabton.com: The Digital Library

G R A M M A R O F A C L A S S D E C L A R A T I O N

 class-declaration → attributes opt class class-name generic-parameter-clause opt type-
inheritance-clause opt class-body

 class-name → identifier
 class-body → { declarations opt }

G R A M M A R O F A P R O T O C O L D E C L A R A T I O N

 protocol-declaration → attributes opt protocol protocol-name type-inheritance-
clause opt protocol-body

 protocol-name → identifier
 protocol-body → { protocol-member-declarations opt }

 protocol-member-declaration → protocol-property-declaration
 protocol-member-declaration → protocol-method-declaration
 protocol-member-declaration → protocol-initializer-declaration
 protocol-member-declaration → protocol-subscript-declaration
 protocol-member-declaration → protocol-associated-type-declaration
 protocol-member-declarations → protocol-member-declaration protocol-member-declarations opt

G R A M M A R O F A P R O T O C O L P R O P E R T Y D E C L A R A T I O N

 protocol-property-declaration → variable-declaration-head variable-name type-
annotation getter-setter-keyword-block

G R A M M A R O F A P R O T O C O L M E T H O D D E C L A R A T I O N

 protocol-method-declaration → function-head function-name generic-parameter-
clause opt function-signature

G R A M M A R O F A P R O T O C O L I N I T I A L I Z E R D E C L A R A T I O N

 protocol-initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause

G R A M M A R O F A P R O T O C O L S U B S C R I P T D E C L A R A T I O N

 protocol-subscript-declaration → subscript-head subscript-result getter-setter-keyword-block

G R A M M A R O F A P R O T O C O L A S S O C I A T E D T Y P E D E C L A R A T I O N

 protocol-associated-type-declaration → typealias-head type-inheritance-clause opt typealias-
assignment opt

(c) ketabton.com: The Digital Library

G R A M M A R O F A N I N I T I A L I Z E R D E C L A R A T I O N

 initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause initializer-body

 initializer-head → attributes opt convenience opt init
 initializer-body → code-block

G R A M M A R O F A D E I N I T I A L I Z E R D E C L A R A T I O N

 deinitializer-declaration → attributes opt deinit code-block

G R A M M A R O F A N E X T E N S I O N D E C L A R A T I O N

 extension-declaration → extension type-identifier type-inheritance-clause opt extension-
body

 extension-body → { declarations opt }

G R A M M A R O F A S U B S C R I P T D E C L A R A T I O N

 subscript-declaration → subscript-head subscript-result code-block
 subscript-declaration → subscript-head subscript-result getter-setter-block
 subscript-declaration → subscript-head subscript-result getter-setter-keyword-block
 subscript-head → attributes opt subscript parameter-clause
 subscript-result → -> attributes opt type

G R A M M A R O F A N O P E R A T O R D E C L A R A T I O N

 operator-declaration → prefix-operator-declaration postfix-operator-declaration infix-operator-
declaration

 prefix-operator-declaration → operator prefix operator { }
 postfix-operator-declaration → operator postfix operator { }
 infix-operator-declaration → operator infix operator { infix-operator-attributes opt }

 infix-operator-attributes → precedence-clause opt associativity-clause opt
 precedence-clause → precedence precedence-level
 precedence-level → Digit 0 through 255
 associativity-clause → associativity associativity
 associativity → left right none

Patterns

(c) ketabton.com: The Digital Library

G R A M M A R O F A P A T T E R N

 pattern → wildcard-pattern type-annotation opt
 pattern → identifier-pattern type-annotation opt
 pattern → value-binding-pattern
 pattern → tuple-pattern type-annotation opt
 pattern → enum-case-pattern
 pattern → type-casting-pattern
 pattern → expression-pattern

G R A M M A R O F A W I L D C A R D P A T T E R N

 wildcard-pattern → _

G R A M M A R O F A N I D E N T I F I E R P A T T E R N

 identifier-pattern → identifier

G R A M M A R O F A V A L U E - B I N D I N G P A T T E R N

 value-binding-pattern → var pattern let pattern

G R A M M A R O F A T U P L E P A T T E R N

 tuple-pattern → (tuple-pattern-element-list opt)
 tuple-pattern-element-list → tuple-pattern-element tuple-pattern-element , tuple-pattern-

element-list
 tuple-pattern-element → pattern

G R A M M A R O F A N E N U M E R A T I O N C A S E P A T T E R N

 enum-case-pattern → type-identifier opt . enum-case-name tuple-pattern opt

G R A M M A R O F A T Y P E C A S T I N G P A T T E R N

 type-casting-pattern → is-pattern as-pattern
 is-pattern → is type
 as-pattern → pattern as type

G R A M M A R O F A N E X P R E S S I O N P A T T E R N

 expression-pattern → expression

(c) ketabton.com: The Digital Library

Attributes

G R A M M A R O F A N A T T R I B U T E

 attribute → @ attribute-name attribute-argument-clause opt
 attribute-name → identifier
 attribute-argument-clause → (balanced-tokens opt)
 attributes → attribute attributes opt

 balanced-tokens → balanced-token balanced-tokens opt
 balanced-token → (balanced-tokens opt)
 balanced-token → [balanced-tokens opt]
 balanced-token → { balanced-tokens opt }
 balanced-token → Any identifier, keyword, literal, or operator
 balanced-token → Any punctuation except (,) , [,] , { , or }

Expressions

G R A M M A R O F A N E X P R E S S I O N

 expression → prefix-expression binary-expressions opt
 expression-list → expression expression , expression-list

G R A M M A R O F A P R E F I X E X P R E S S I O N

 prefix-expression → prefix-operator opt postfix-expression
 prefix-expression → in-out-expression
 in-out-expression → & identifier

G R A M M A R O F A B I N A R Y E X P R E S S I O N

 binary-expression → binary-operator prefix-expression
 binary-expression → assignment-operator prefix-expression
 binary-expression → conditional-operator prefix-expression
 binary-expression → type-casting-operator
 binary-expressions → binary-expression binary-expressions opt

G R A M M A R O F A N A S S I G N M E N T O P E R A T O R

 assignment-operator → =

(c) ketabton.com: The Digital Library

G R A M M A R O F A C O N D I T I O N A L O P E R A T O R

 conditional-operator → ? expression :

G R A M M A R O F A T Y P E - C A S T I N G O P E R A T O R

 type-casting-operator → is type as ? opt type

G R A M M A R O F A P R I M A R Y E X P R E S S I O N

 primary-expression → identifier generic-argument-clause opt
 primary-expression → literal-expression
 primary-expression → self-expression
 primary-expression → superclass-expression
 primary-expression → closure-expression
 primary-expression → parenthesized-expression
 primary-expression → implicit-member-expression
 primary-expression → wildcard-expression

G R A M M A R O F A L I T E R A L E X P R E S S I O N

 literal-expression → literal
 literal-expression → array-literal dictionary-literal
 literal-expression → __FILE__ __LINE__ __COLUMN__ __FUNCTION__

 array-literal → [array-literal-items opt]
 array-literal-items → array-literal-item , opt array-literal-item , array-literal-items
 array-literal-item → expression

 dictionary-literal → [dictionary-literal-items] [:]
 dictionary-literal-items → dictionary-literal-item , opt dictionary-literal-item , dictionary-

literal-items
 dictionary-literal-item → expression : expression

G R A M M A R O F A S E L F E X P R E S S I O N

 self-expression → self
 self-expression → self . identifier
 self-expression → self [expression]
 self-expression → self . init

G R A M M A R O F A S U P E R C L A S S E X P R E S S I O N

 superclass-expression → superclass-method-expression superclass-subscript-expression
superclass-initializer-expression

(c) ketabton.com: The Digital Library

 superclass-method-expression → super . identifier
 superclass-subscript-expression → super [expression]
 superclass-initializer-expression → super . init

G R A M M A R O F A C L O S U R E E X P R E S S I O N

 closure-expression → { closure-signature opt statements }

 closure-signature → parameter-clause function-result opt in
 closure-signature → identifier-list function-result opt in
 closure-signature → capture-list parameter-clause function-result opt in
 closure-signature → capture-list identifier-list function-result opt in
 closure-signature → capture-list in

 capture-list → [capture-specifier expression]
 capture-specifier → weak unowned unowned(safe) unowned(unsafe)

G R A M M A R O F A I M P L I C I T M E M B E R E X P R E S S I O N

 implicit-member-expression → . identifier

G R A M M A R O F A P A R E N T H E S I Z E D E X P R E S S I O N

 parenthesized-expression → (expression-element-list opt)
 expression-element-list → expression-element expression-element , expression-element-list
 expression-element → expression identifier : expression

G R A M M A R O F A W I L D C A R D E X P R E S S I O N

 wildcard-expression → _

G R A M M A R O F A P O S T F I X E X P R E S S I O N

 postfix-expression → primary-expression
 postfix-expression → postfix-expression postfix-operator
 postfix-expression → function-call-expression
 postfix-expression → initializer-expression
 postfix-expression → explicit-member-expression
 postfix-expression → postfix-self-expression
 postfix-expression → dynamic-type-expression
 postfix-expression → subscript-expression
 postfix-expression → forced-value-expression
 postfix-expression → optional-chaining-expression

G R A M M A R O F A F U N C T I O N C A L L E X P R E S S I O N

(c) ketabton.com: The Digital Library

 function-call-expression → postfix-expression parenthesized-expression
 function-call-expression → postfix-expression parenthesized-expression opt trailing-closure
 trailing-closure → closure-expression

G R A M M A R O F A N I N I T I A L I Z E R E X P R E S S I O N

 initializer-expression → postfix-expression . init

G R A M M A R O F A N E X P L I C I T M E M B E R E X P R E S S I O N

 explicit-member-expression → postfix-expression . decimal-digit
 explicit-member-expression → postfix-expression . identifier generic-argument-clause opt

G R A M M A R O F A S E L F E X P R E S S I O N

 postfix-self-expression → postfix-expression . self

G R A M M A R O F A D Y N A M I C T Y P E E X P R E S S I O N

 dynamic-type-expression → postfix-expression . dynamicType

G R A M M A R O F A S U B S C R I P T E X P R E S S I O N

 subscript-expression → postfix-expression [expression-list]

G R A M M A R O F A F O R C E D - V A L U E E X P R E S S I O N

 forced-value-expression → postfix-expression !

G R A M M A R O F A N O P T I O N A L - C H A I N I N G E X P R E S S I O N

 optional-chaining-expression → postfix-expression ?

Lexical Structure

G R A M M A R O F A N I D E N T I F I E R

 identifier → identifier-head identifier-characters opt
 identifier → ` identifier-head identifier-characters opt `
 identifier → implicit-parameter-name

(c) ketabton.com: The Digital Library

 identifier-list → identifier identifier , identifier-list

 identifier-head → Upper- or lowercase letter A through Z
 identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5, or U+00B7–U+00BA
 identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6, or U+00F8–U+00FF
 identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or U+180F–U+1DBF
 identifier-head → U+1E00–U+1FFF
 identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040, U+2054, or U+2060–

U+206F
 identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or U+2776–U+2793
 identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
 identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or U+3040–U+D7FF
 identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F, or U+FE30–U+FE44
 identifier-head → U+FE47–U+FFFD
 identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–U+3FFFD, or U+40000–

U+4FFFD
 identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–U+7FFFD, or U+80000–

U+8FFFD
 identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–U+BFFFD, or U+C0000–

U+CFFFD
 identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD

 identifier-character → Digit 0 through 9
 identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–U+20FF, or U+FE20–

U+FE2F
 identifier-character → identifier-head
 identifier-characters → identifier-character identifier-characters opt

 implicit-parameter-name → $ decimal-digits

G R A M M A R O F A L I T E R A L

 literal → integer-literal floating-point-literal string-literal

G R A M M A R O F A N I N T E G E R L I T E R A L

 integer-literal → binary-literal
 integer-literal → octal-literal
 integer-literal → decimal-literal
 integer-literal → hexadecimal-literal

 binary-literal → 0b binary-digit binary-literal-characters opt
 binary-digit → Digit 0 or 1
 binary-literal-character → binary-digit _
 binary-literal-characters → binary-literal-character binary-literal-characters opt

 octal-literal → 0o octal-digit octal-literal-characters opt
 octal-digit → Digit 0 through 7

(c) ketabton.com: The Digital Library

 octal-literal-character → octal-digit _
 octal-literal-characters → octal-literal-character octal-literal-characters opt

 decimal-literal → decimal-digit decimal-literal-characters opt
 decimal-digit → Digit 0 through 9
 decimal-digits → decimal-digit decimal-digits opt
 decimal-literal-character → decimal-digit _
 decimal-literal-characters → decimal-literal-character decimal-literal-characters opt

 hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-characters opt
 hexadecimal-digit → Digit 0 through 9, a through f, or A through F
 hexadecimal-literal-character → hexadecimal-digit _
 hexadecimal-literal-characters → hexadecimal-literal-character hexadecimal-literal-

characters opt

G R A M M A R O F A F L O A T I N G - P O I N T L I T E R A L

 floating-point-literal → decimal-literal decimal-fraction opt decimal-exponent opt
 floating-point-literal → hexadecimal-literal hexadecimal-fraction opt hexadecimal-exponent

 decimal-fraction → . decimal-literal
 decimal-exponent → floating-point-e sign opt decimal-literal

 hexadecimal-fraction → . hexadecimal-literal opt
 hexadecimal-exponent → floating-point-p sign opt hexadecimal-literal

 floating-point-e → e E
 floating-point-p → p P
 sign → + -

G R A M M A R O F A S T R I N G L I T E R A L

 string-literal → " quoted-text "
 quoted-text → quoted-text-item quoted-text opt
 quoted-text-item → escaped-character
 quoted-text-item → \(expression)
 quoted-text-item → Any Unicode extended grapheme cluster except " , \ , U+000A, or U+000D

 escaped-character → \0 \\ \t \n \r \" \'
 escaped-character → \x hexadecimal-digit hexadecimal-digit
 escaped-character → \u hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit
 escaped-character → \U hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-
digit hexadecimal-digit

(c) ketabton.com: The Digital Library

G R A M M A R O F O P E R A T O R S

 operator → operator-character operator opt
 operator-character → / = - + ! * % < > & | ^ ~ .

 binary-operator → operator
 prefix-operator → operator
 postfix-operator → operator

Types

G R A M M A R O F A T Y P E

 type → array-type function-type type-identifier tuple-type optional-type implicitly-
unwrapped-optional-type protocol-composition-type metatype-type

G R A M M A R O F A T Y P E A N N O TA T I O N

 type-annotation → : attributes opt type

G R A M M A R O F A T Y P E I D E N T I F I E R

 type-identifier → type-name generic-argument-clause opt type-name generic-argument-
clause opt . type-identifier

 type-name → identifier

G R A M M A R O F A T U P L E T Y P E

 tuple-type → (tuple-type-body opt)
 tuple-type-body → tuple-type-element-list ... opt
 tuple-type-element-list → tuple-type-element tuple-type-element , tuple-type-element-list
 tuple-type-element → attributes opt inout opt type inout opt element-name type-

annotation
 element-name → identifier

G R A M M A R O F A F U N C T I O N T Y P E

 function-type → type -> type

G R A M M A R O F A N A R R A Y T Y P E

(c) ketabton.com: The Digital Library

 array-type → type [] array-type []

G R A M M A R O F A N O P T I O N A L T Y P E

 optional-type → type ?

G R A M M A R O F A N I M P L I C I T L Y U N W R A P P E D O P T I O N A L T Y P E

 implicitly-unwrapped-optional-type → type !

G R A M M A R O F A P R O T O C O L C O M P O S I T I O N T Y P E

 protocol-composition-type → protocol < protocol-identifier-list opt >
 protocol-identifier-list → protocol-identifier protocol-identifier , protocol-identifier-list
 protocol-identifier → type-identifier

G R A M M A R O F A M E TA T Y P E T Y P E

 metatype-type → type . Type type . Protocol

G R A M M A R O F A T Y P E I N H E R I TA N C E C L A U S E

 type-inheritance-clause → : type-inheritance-list
 type-inheritance-list → type-identifier type-identifier , type-inheritance-list

(c) ketabton.com: The Digital Library

Copyright and Notices

I M P O R TA N T

This is a preliminary document for an API or technology in development. Apple is supplying this
information to help you plan for the adoption of the technologies and programming interfaces
described herein for use on Apple-branded products. This information is subject to change, and
software implemented according to this document should be tested with final operating system
software and final documentation. Newer versions of this document may be provided with future
seeds of the API or technology.

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation on a single
computer or device for personal use only and to print copies of documentation for personal use provided that the
documentation contains Apple’s copyright notice.

No licenses, express or implied, are granted with respect to any of the technology described in this document.
Apple retains all intellectual property rights associated with the technology described in this document. This
document is intended to assist application developers to develop applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Cocoa Touch, Logic, Numbers, Objective-C, OS X, Shake, and Xcode
are trademarks of Apple Inc., registered in the U.S. and other countries.

(c) ketabton.com: The Digital Library

Retina is a trademark of Apple Inc.

Times is a registered trademark of Heidelberger Druckmaschinen AG, available from Linotype Library GmbH.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

Even though Apple has reviewed this document, APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT
IS PROVIDED “AS IS,” AND YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT, ERROR OR INACCURACY IN THIS
DOCUMENT, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized
to make any modification, extension, or addition to this warranty.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you.

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

