
Ketabton.com

Practical GIS

Gábor Farkas

 BIRMINGHAM - MUMBAI

(c) ketabton.com: The Digital Library

Practical GIS

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1080617

ISBN 978-1-78712-332-8

(c) ketabton.com: The Digital Library

Credits

Author
Gábor Farkas

Copy Editor
Sonia Mathur

Reviewers
Mark Lewin
David Bianco

Project Coordinator
Prajakta Naik

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Angad Singh

Indexer
Mariammal Chettiyar

Content Development Editor
Lawrence Veigas

Graphics
Abhinash Sahu

Technical Editor
Abhishek Sharma

Production Coordinator
Shantanu Zagade

(c) ketabton.com: The Digital Library

About the Author
Gábor Farkas is a PhD student in the University of Pécs's Institute of Geography. He holds
a master's degree in geography, although he moved from traditional geography to pure
geoinformatics in his early studies. He often studies geoinformatical solutions in his free
time, keeps up with the latest trends, and is an open source enthusiast. He loves to work
with GRASS GIS, PostGIS, and QGIS, but his all time favorite is Web GIS, which mostly
covers his main research interest.

(c) ketabton.com: The Digital Library

About the Reviewer
Mark Lewin has been developing, teaching, and writing about software for over 16 years.
His main interest is GIS and web mapping. Working for ESRI, the world's largest GIS
company, he acted as a consultant, trainer, course author, and a frequent speaker at
industry events. He has subsequently expanded his knowledge to include a wide variety of
open source mapping technologies and a handful of relevant JavaScript frameworks
including Node.js, Dojo, and JQuery.

Mark now works for Oracle’s MySQL curriculum team, focusing on creating great learning
experiences for DBAs and developers, but remains crazy about web mapping.

He is the author of books such as Leaflet.js Succinctly, Go Succinctly, and Go Web Development
Succinctly for Syncfusion. He is also the co-author of the forthcoming second edition of
Building Web and Mobile ArcGIS Server Applications with JavaScript, which is to be published
by Packt.

I would like to thank the production team at Packt for keeping me on schedule, and also
my wonderful children who have seen less of me during the process than they would have
done otherwise!

(c) ketabton.com: The Digital Library

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

(c) ketabton.com: The Digital Library

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

(c) ketabton.com: The Digital Library

I'm dedicating this book to every open source contributor, researcher, and teacher using
and promoting open source technologies. It is your mentality, curiosity, and willingness to
put aside proprietary solutions, which makes knowledge and technology more accessible. It
is your work that really makes a difference, by letting everyone eager to learn and willing
to look under the hood develop themselves.

(c) ketabton.com: The Digital Library

Table of Contents
Preface 1

Chapter 1: Setting Up Your Environment 7

Understanding GIS 7
Setting up the tools 8

Installing on Linux 9
Installing on Windows 12
Installing on macOS 13
Getting familiar with the software 14
About the software licenses 18

Collecting some data 19
Getting basic data 20

Licenses 22
Accessing satellite data 22

Active remote sensing 23
Passive remote sensing 24
Licenses 27

Using OpenStreetMap 27
OpenStreetMap license 28

Summary 29

Chapter 2: Accessing GIS Data With QGIS 30

Accessing raster data 30
Raster data model 33
Rasters are boring 35

Accessing vector data 37
Vector data model 39
Vector topology - the right way 41
Opening tabular layers 44

Understanding map scales 46
Summary 48

Chapter 3: Using Vector Data Effectively 49

Using the attribute table 49
SQL in GIS 50

Selecting features in QGIS 50
Preparing our data 52

(c) ketabton.com: The Digital Library

[ii]

Writing basic queries 54
Filtering layers 58
Spatial querying 60
Writing advanced queries 63

Modifying the attribute table 65
Removing columns 66
Joining tables 66
Spatial joins 70
Adding attribute data 72

Understanding data providers 73
Summary 75

Chapter 4: Creating Digital Maps 76

Styling our data 76
Styling raster data 77
Styling vector data 83

Mapping with categories 85
Graduated mapping 86

Understanding projections 87
Plate Carrée - a simple example 88
Going local with NAD83 / Conus Albers 90
Choosing the right projection 92

Preparing a map 96
Rule-based styling 96
Adding labels 100
Creating additional thematics 104

Creating a map 108
Adding cartographic elements 109

Summary 114

Chapter 5: Exporting Your Data 115

Creating a printable map 115
Clipping features 116
Creating a background 117
Removing dangling segments 119
Exporting the map 120
A good way for post-processing - SVG 121

Sharing raw data 122
Vector data exchange formats 123

Shapefile 123
WKT and WKB 124

(c) ketabton.com: The Digital Library

[iii]

Markup languages 125
GeoJSON 127

Raster data exchange formats 128
GeoTIFF 128
Clipping rasters 129
Other raster formats 131

Summary 132

Chapter 6: Feeding a PostGIS Database 133

A brief overview of databases 133
Relational databases 134
NoSQL databases 135
Spatial databases 136

Importing layers into PostGIS 137
Importing vector data 139
Spatial indexing 147
Importing raster data 148

Visualizing PostGIS layers in QGIS 151
Basic PostGIS queries 152

Summary 159

Chapter 7: A PostGIS Overview 160

Customizing the database 160
Securing our database 161
Constraining tables 167
Saving queries 176

Optimizing queries 180
Backing up our data 185

Creating static backups 186
Continuous archiving 189

Summary 193

Chapter 8: Spatial Analysis in QGIS 194

Preparing the workspace 194
Laying down the rules 199

Vector analysis 201
Proximity analysis 201
Understanding the overlay tools 206
Towards some neighborhood analysis 207

Building your models 209
Using digital elevation models 217

Filtering based on aspect 218

(c) ketabton.com: The Digital Library

[iv]

Calculating walking times 221
Summary 228

Chapter 9: Spatial Analysis on Steroids - Using PostGIS 229

Delimiting quiet houses 230
Proximity analysis in PostGIS 231
Precision problems of buffering 236
Querying distances effectively 237
Saving the results 241

Matching the rest of the criteria 241
Counting nearby points 243

Querying rasters 249
Summary 251

Chapter 10: A Typical GIS Problem 252

Outlining the problem 253
Raster analysis 254

Multi-criteria evaluation 255
Creating the constraint mask 257

Using fuzzy techniques in GIS 263
Proximity analysis with rasters 264
Fuzzifying crisp data 267
Aggregating the results 271

Calculating statistics 274
Vectorizing suitable areas 275
Using zonal statistics 279
Accessing vector statistics 281

Creating an atlas 281
Summary 289

Chapter 11: Showcasing Your Data 290

Spatial data on the web 290
Understanding the basics of the web 291
Spatial servers 294

Using QGIS for publishing 296
Using GeoServer 301

General configuration 302
GeoServer architecture 304
Adding spatial data 307
Tiling your maps 314

Summary 319

(c) ketabton.com: The Digital Library

[v]

Chapter 12: Styling Your Data in GeoServer 320

Managing styles 320
Writing SLD styles 323

Styling vector layers 324
Styling waters 325
Styling polygons 326
Creating labels 328

Styling raster layers 330
Using CSS in GeoServer 333

Styling layers with CSS 335
Creating complex styles 336
Styling raster layers 342

Summary 344

Chapter 13: Creating a Web Map 345

Understanding the client side of the Web 345
Creating a web page 347

Writing HTML code 348
Styling the elements 351
Scripting your web page 356

Creating web maps with Leaflet 363
Creating a simple map 364
Compositing layers 367

Working with Leaflet plugins 370
Loading raw vector data 370
Styling vectors in Leaflet 375
Annotating attributes with popups 379
Using other projections 381

Summary 383

Appendix 385

Index 397

(c) ketabton.com: The Digital Library

Preface
In the past, professional spatial analysis in the business sector was equivalent to buying an
ArcGIS license, storing the data in some kind of Esri database, and publishing results with
the ArcGIS Server. These trends seem to be changing in the favor of open source software.
As FOSS (free and open source software) products are gaining more and more power due to
the hard work of the enthusiastic open source GIS community, they pique the curiosity of
the business sector at a growing rate. With the increasing number of FOSS GIS experts and
consulting companies, both training and documentation--the two determining factors that
open source GIS products traditionally lacked--are becoming more available.

What this book covers
, Setting Up Your Environment, guides you through the basic steps of creating an

open source software infrastructure you can carry out your analyses with. It also introduces
you to popular open data sources you can freely use in your workflow.

, Accessing GIS Data with QGIS, teaches you about the basic data models used in
GIS. It discusses the peculiarities of these data models in detail, and also makes you familiar
with the GUI of QGIS by browsing through some data.

, Using Vector Data Effectively, shows you how you can interact with vector data in
the GIS software. It discusses GUI-based queries, SQL-based queries, and basic attribute
data management. You will get accommodated to the vector data model and can use the
attributes associated to the vector features in various ways.

, Creating Digital Maps, discusses the basics of digital map making by going
through an exhaustive yet simple example in QGIS. It introduces you to the concept of
projections and spatial reference systems, and the various steps of creating a digital map.

, Exporting Your Data, guides you through the most widely used vector and raster
data formats in GIS. It discusses the strengths and weaknesses of the various formats, and
also gives you some insight on under what circumstances you should choose a particular
spatial data format.

, Feeding a PostGIS Database, guides you through the process of making a spatial
database with PostGIS. It discusses how to create a new database, and how to fill it with
various kinds of spatial data using QGIS. You will also learn how to manage existing
PostGIS tables from QGIS.

(c) ketabton.com: The Digital Library

Preface

[2]

, A PostGIS Overview, shows what other options you have with your PostGIS
database. It leaves QGIS and talks about important PostgreSQL and PostGIS concepts by
managing the database created in the previous chapter through PostgreSQL's
administration software, pgAdmin.

, Spatial Analysis in QGIS, goes back to QGIS in order to discuss vector data
analysis and spatial modeling. It shows you how different geometry types can be used to
get some meaningful results based on the features' spatial relationship. It goes through the
practical textbook example of delimiting houses based on some customer preferences.

, Spatial Analysis on Steroids - Using PostGIS, reiterates the example of the previous
chapter, but entirely in PostGIS. It shows how a good software choice for the given task can
enhance productivity by minimizing manual labor and automating the entire workflow. It
also introduces you to the world of PostGIS spatial functions by going through the analysis
again.

, A Typical GIS Problem, shows raster analysis, where spatial databases do not
excel. It discusses typical raster operations by going through a decision making process. It
sheds light on typical considerations related to the raster data model during an analysis,
while also introducing some powerful tools and valuable methodology required to make a
good decision based on spatial factors and constraints.

, Showcasing Your Data, goes on to the Web stack, and discusses the basics of the
Web, the client-server architecture, and spatial servers. It goes into details on how to use the
QGIS Server to create quick visualizations, and how to use GeoServer to build a powerful
spatial server with great capabilities.

, Styling Your Data in GeoServer, discusses the basic vector and raster symbology
usable in GeoServer. It goes through the styling process by using traditional SLD
documents. When the concepts are clear, it introduces the powerful and convenient
GeoServer CSS, which is also based on SLD.

, Creating a Web Map, jumps to the client side of the Web and shows you how to
create simple web maps using the server architecture created before, and the lightweight
web mapping library--Leaflet. It guides you through the process of creating a basic web
map, ranging from creating an HTML document to scripting it with JavaScript.

 shows additional information and interesting use cases of the learned material
through images and short descriptions.

(c) ketabton.com: The Digital Library

Preface

[3]

What you need for this book
For this book, you will need to have a computer with mid-class computing capabilities. As
the open source GIS software is not that demanding, you don't have to worry about your
hardware specification when running the software, although some of the raster processing
tools will run pretty long (about 5-10 minutes) on slower machines.

What you need to take care of is that you have administrator privileges on the machine you
are using, or the software is set up correctly by an administrator. If you don't have
administrator privileges, you need to write the privilege at least to the folder used by the
web server to serve content.

Who this book is for
The aim of this book is to carry on this trend and demonstrate how even advanced spatial
analysis is convenient with an open source product, and how this software is a capable
competitor of proprietary solutions. The examples from which you will learn how to
harness the power of the capable GIS software, QGIS; the powerful spatial ORDBMS
(object-relational database management system), PostGIS; and the user-friendly geospatial
server, GeoServer are aimed at IT professionals looking for cheap alternatives to
costly proprietary GIS solutions with or without basic GIS training.

On the other hand, anyone can learn the basics of these great open source products from
this practical guide. If you are a decision maker looking for easily producible results, a CTO
looking for the right software, or a student craving for an easy-to-follow guide, it doesn't
matter. This book presents you the bare minimum of the GIS knowledge required for
effective work with spatial data, and thorough but easy-to-follow examples for utilizing
open source software for this work.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "It uses the wildcard for
selecting everything from the table named , where the content of the column named

 matches ."

(c) ketabton.com: The Digital Library

Preface

[4]

A block of code is set as follows:

Any command-line input or output is written as follows:

 update-alternatives --config java

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "If we open the Properties
window of a vector layer and navigate to the Style tab, we can see the Single symbol
method applied to the layer."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

(c) ketabton.com: The Digital Library

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our rich catalog of books

and videos available at . Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

(c) ketabton.com: The Digital Library

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

(c) ketabton.com: The Digital Library

11
Setting Up Your Environment

The development of open source GIS technologies has reached a state where they can
seamlessly replace proprietary software in the recent years. They are convenient, capable
tools for analyzing geospatial data. They offer solutions from basic analysis to more
advanced, even scientific, workflows. Moreover, there are tons of open geographical data
out there, and some of them can even be used for commercial purposes. In this chapter, we
will acquaint ourselves with the open source software used in this book, install and
configure them with an emphasis on typical pitfalls, and learn about some of the most
popular sources of open data out there.

In this chapter, we will cover the following topics:

Installing the required software
Configuring the software
Free geographical data sources
Software and data licenses

Understanding GIS
Before jumping into the installation process, let's discuss geographic information systems
(GIS) a little bit. GIS is a system for collecting, manipulating, managing, visualizing,
analyzing, and publishing spatial data. Although these functionalities can be bundled in a
single software, by definition, GIS is not a software, it is rather a set of functionalities. It can
help you to make better decisions, and to get more in-depth results from data based on their
spatial relationships.

The most important part of the former definition is spatial data. GIS handles data based on
their locations in a coordinate reference system.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[8]

This means, despite GIS mainly being used for handling and processing geographical data
(data that can be mapped to the surface of Earth), it can be used for anything with
dimensions. For example, a fictional land like Middle-Earth, the Milky Way, the surface of
Mars, the human body, or a single atom. The possibilities are endless; however, for most of
them, there are specialized tools that are more feasible to use.

The functionalities of a GIS outline the required capabilities of a GIS expert. Experts need to
be able to collect data either by surveying, accessing an other's measurements, or digitizing
paper maps, just to mention a few methods. Collecting data is only the first step. Experts
need to know how to manage this data. This functionality assumes knowledge not only in
spatial data formats but also in database management. Some of the data just cannot fit into a
single file. There can be various reasons behind this; for example, the data size or the need
for more sophisticated reading and writing operations. Experts also need to visualize,
manipulate, and analyze this data. This is the part where GIS clients come in, as they have
the capabilities to render, edit, and process datasets. Finally, experts need to be able to
create visualizations from the results in order to show them, verify decisions, or just help
people interpreting spatial patterns. This phase was traditionally done via paper maps and
digital maps, but nowadays, web mapping is also a very popular means of publishing data.

From these capabilities, we will learn how to access data from freely available data sources,
store and manage them in a database, visualize and analyze them with a GIS client, and
publish them on the Web.

Setting up the tools
Most of the software used in this book is platform-dependent; therefore, they have different
ways of getting installed on different operating systems. I assume you have enough
experience with your current OS to install software, and thus, we will focus on the possible
product-related pitfalls in a given OS. We will cover the three most popular operating
systems--Linux, Windows, and macOS. If you don't need the database or the web stack, you
can skip the installation of the related software and jump through the examples using them.

Make sure you read the OS-related instructions before installing the
software if you do not have enough experience with them.

The list of the software stack used in this book can be found in the following thematically
grouped table:

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[9]

Some of these packages are changeable; you can try them out if you have
enough experience or have some time for tinkering. For example, you can
use nginx instead of Apache, or you can use the WAR (Web Archive)
version of GeoServer with your Java servlet instead of the platform
independent binary. You can also use pgAdmin 4 and any subversion of
GRASS 6 or GRASS 7 (or even both of them).

Installing on Linux
Installing the packages on Linux distributions is pretty straightforward. The dependencies
are installed with the packages, when there are any. We only have to watch out for
three things prior to installing the packages. First of all, the package name of the Apache
web server can vary between different distributions. On distros using RPM packages (for
example--Fedora, CentOS, and openSUSE), it is called httpd, while on the ones using DEB
packages (for example--Debian and Ubuntu), it is called apache2. On Arch Linux, it is
simply called apache.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[10]

While Arch Linux is far from the best distribution for using GIS, you can
get most of the packages from AUR (Arch User Repository).

The second consideration is related to distributions which do not update their packages
frequently, like Debian. GeoServer has a hard dependency of a specific JRE (Java Runtime
Environment). We must make sure we have it installed and configured as the default. We
will walk through the Debian JRE installation process as it is the most popular Linux
distribution with late official package updates. Debian Jessie, the latest stable release of the
OS when writing these lines, is packed with OpenJDK 7, while GeoServer 2.11 requires JRE
8:

You can check the JRE version of the latest GeoServer version uses at
.

You can check the JRE version installed on your OS with the terminal
command .

To install OpenJDK 8, we have to enable the Backports repository according to1.
the official Debian guide at .
If the repository is added, we can reload the packages and install the package2.

.
The next step is to make this JRE the default one. We can do this by opening a3.
terminal and typing the following command:

 update-alternatives --config java

The next step is self-explanatory; we have to choose the new default environment4.
by typing its ID and pressing enter.

Make sure to disable the Backports repository by commenting it out in
, or by checking out its checkbox in Synaptic

after installing the required packages. It can boycott further updates in
some cases.

The last consideration before installing the packages is related to the actual version of QGIS.
Most of the distributions offer the latest version in a decent time after release; however,
some of them like Debian do not. For those distros, we can use QGIS's repository following
the official guide at .

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[11]

After all things are set, we can proceed and install the required packages. The order should
not matter. If done, let's take a look at GeoServer, which doesn't offer Linux packages to
install. It offers two methods for Linux: a WAR for already installed Java servlets (such as
Apache Tomcat), and a self-containing platform independent binary. We will use the latter
as it's easier to set up:

Download GeoServer's platform independent binary from 1.
.

If there is absolutely no way to install OpenJDK 8 on your computer, you
can use GeoServer 2.8, which depends on JRE 7. You can download it
from .

Extract the downloaded archive. It can be anywhere as long as we have a write2.
permission to the destination.
Start GeoServer with its startup script. To do this, we navigate into the extracted3.
archive from a terminal and run in its folder with the following
command:

 cd <geoserver's folder>/bin
 ./startup.sh

Optionally, we can detach GeoServer from the shell used by the terminal with the4.
startup command . This way, we
can close the terminal. If we would like to shut down GeoServer manually, we
can do so by running its script.

By default, the shell closes every subprocess it started before terminating
itself. By using , we override this behavior for the GeoServer
process, and by using at the end of the command, we fork the process.
This way, we regain control over the shell. The part prevents

 from logging GeoServer's verbose startup messages.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[12]

Installing on Windows
Installing the required software on Windows only requires a few installers as most of the
packages are bundled into the OSGeo4W installer.

First of all, we have to download the 32-bit installer from 1.
 as this is the only architecture where an OSGeo version of Apache is

bundled.
Opening the installer, we can choose between different setups. For our cause, we2.
should choose Advanced Install. When we reach the Select Packages section, we
must choose the following packages as a minimum:

Desktop-- ,
Web-- ,

The next page tells us we don't have to bother with dependencies as the installer3.
selected them for us automatically.
The last step can be quite troublesome as there isn't a general solution; we have to4.
configure Apache and QGIS Server if they don't want to collaborate (opening

 returns an Internal
Server Error or it simply cannot be reached). For a good start, take a look at the
official tutorial at

.

Don't worry if you end up with no solutions, we will concentrate on GeoServer, which runs
perfectly on Windows. Just make sure Apache is installed and working (i.e.

 returns a blank page or the OSGeo4W default page), as we will need it
later.

If you would like to install the 64-bit version of Apache separately, you
can find suggestions on compiled 64-bit binaries at

.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[13]

The next thing to consider is the PostgreSQL stack. We can download the installer5.
from , where the
EnterpriseDB edition comes with a very handy Stack Builder. After the
installation of PostgreSQL, we can use it to install PostGIS. We can find
PostGIS in the Spatial Extensions menu. The default installer comes with
pgAdmin 4, while we will use pgAdmin 3 in this book. The two look and feel
similar enough; however, if you would like to install the latter, you can download
it from .

The last thing to install is GeoServer, which is such an easy task that we
won't discuss it. You can download the installer from

. Make sure you have Java 8 (
) before starting it!

Installing on macOS
Installing the software on macOS could be the most complicated of all (because of GRASS).
However, thanks to William Kyngesburye, the compiled version of QGIS already contains a
copy of GRASS along with other GIS software used by QGIS. In order to install QGIS, we
have to download the disk image from .

If you need the GIS software on OS X 10.6 or older, take a look at
Kyngesburye's archive at
. Before installing the software, make sure you read his hints and warnings
related to the given image.

PostgreSQL and PostGIS are also available from the same site, you will see the link on the
left sidebar. pgAdmin, on the other hand, is available from another source:

. Finally, the GeoServer macOS image can be
downloaded , while its dependency of Java
8 can be downloaded from .

If you would like to use pgAdmin 3 instead, or pgAdmin 4 is not
supported by your OS, you can download pgAdmin 3 from

.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[14]

The only thing left is configuring the QGIS Server. As the OS X and macOS operating
systems are shipped with an Apache web server, we don't have to install it. However, we
have to make some configurations manually due to the lack of the FastCGI Apache module,
on which QGIS Server relies. This configuration can be made based on the official guide at

.

Getting familiar with the software
Congratulations! You're through the hardest part of this chapter. The following step is to
make some initial configurations on the installed software to make them ready to use when
we need them. First of all, let's open QGIS. At first glance, it has a lot of tools. However,
most of them are very simple and self-explanatory. We can group the parts of the GUI as
shown in the following image:

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[15]

You can learn more about the individual GUI tools from the online QGIS
manual at

. It is somewhat outdated; however, the GUI hasn't
changed much since then (and presumably, it won't change anymore until
QGIS 3.0).

We can describe the distinct parts of the QGIS GUI as follows:

Main toolbar: We can manage our current workflow, pan the map, and make1.
selections and queries from here. Additionally, new tools from plugins will end
up somewhere here.
Add layer: From this handy toolbar, we can add a lot of different spatial data2.
with only a few clicks.
Layer tree: We can manage our layers from here. We can select them, style them3.
individually, and even apply filters on most of them.
Map canvas: This is the main panel of QGIS where the visible layers will be4.
drawn. We can pan and zoom our maps with our mouse from here.
Status bar: These are the simple, yet powerful tools for customizing our view. We5.
can zoom to specified scales, coordinates, and even rotate the map. We can also
quickly change our projection, which we will discuss in more depth later.
Processing toolbar: We can access most of the geoalgorithms bundled in QGIS,6.
and even use other open source GIS clients when they are more fitting for the
task.

The only thing we will do now without having any data to display, is customizing the GUI.
Let's click on Settings and choose the Options menu. In the first tab called General, we can
see some styles to choose from. Don't forget to restart QGIS every time you choose a new
style.

Did you know that like much professional software, QGIS also has a night
mode? You can toggle it from the UI Theme option in the General tab
without restarting the software.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[16]

The next piece of software we look at is PostGIS via pgAdmin. If we open pgAdmin, the
least we will see is an empty Server Groups item on the left panel. If this is the case, we
have to define a new connection with the plug icon and fill out the form
(Object | Create | Server in pgAdmin 4), as follows:

The Name can be anything we would like, it only acts as a named item in the list we can
choose from. The Host, the Port, and the Username, on the other hand, have to be supplied
properly. As we installed PostgreSQL locally, the host is , or simply .
As the default install comes with the default user (we will refer to users as
roles in the future due to the naming conventions of PostgreSQL), we should use that.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[17]

On Windows, you can give a password for at install time and
you can also define the port number. If you changed the default port
number or supplied a password, you have to fill out those fields correctly.
On other platforms, there is no password by default; however, the
database server can only be accessed from the local machine.

Upon connecting to the server, we can see a single database called . This is the
default database of the freshly installed PostgreSQL. As the next step, we create another
database by right-clicking on Databases and selecting New Database. The database can be
named as per our liking (I'm naming it). The owner of the database should be the
default role in our case. The only other parameter we should define is the default
character encoding of the database:

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[18]

Choosing the template0 template is required as the default template's character encoding is
a simple ASCII. You might be familiar with character encoding; however, refreshing our
knowledge a little bit cannot hurt. In ASCII, every character is encoded on 8 bits, therefore,
the number of characters which can be encoded is 28 = 256. Furthermore, in ASCII, only the
first 7 bits (first 128 places) are reserved, the rest of them can be localized. The first 7 bits (in
hexadecimal, 00-7F) can be visualized as in the following table. The italic values
show control characters (

):

Character encoding is inherited by every table created in the database. As
geographic data can have attributes with special local characters, it is
strongly recommended to use a UTF-8 character encoding in spatial
databases created for storing international data.

About the software licenses
Open source GIS software offer a very high degree of freedom. Their license types can
differ; however, they are all permissive licenses. That means we can use, distribute, modify,
and distribute the modified versions of the software.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[19]

We can also use them in commercial settings and even sell the software if we can find
someone willing to buy it (as long as we sell the software with the source code under the
same license). The only restriction is for companies who would like to sell their software
under a proprietary license using open source components. They simply cannot do that
with most of the software, although some of the licenses permit this kind of use, too.

There is one very important thing to watch out for when we use open source software and
data. If somebody contributes often years of work to the community, at least proper
attribution can be expected. Most of the open source licenses obligate this right of the
copyright holder; however, we must distinguish software from data. Most of the licenses of
open source software require the adapted product to reproduce the same license agreement.
That is, we don't have to attribute the used software in a work, but we must include the
original license with the copyright holders' name when we create an application with them.
Data, on the other hand, is required to be attributed when we use it in our work.

There are a few licenses which do not obligate us to give proper attribution. These licenses
state that the creator of the content waives every copyright and gives the product to the
public to use without any restrictions. Two of the most common licenses of this kind are the
Unlicense, which is a software license, and the Creative Commons Public Domain, which is
in the GIS world mostly used as a data license.

Collecting some data
Now that we have our software installed and configured, we can focus on collecting some
open source data. Data collecting (or data capture) is one of the key expertise of a GIS
professional and it often covers a major part of a project budget. Surveying is expensive (for
example, equipment, amortization, staff, and so on); however, buying data can also be quite
costly. On the other hand, there is open and free data out there, which can drastically
reduce the cost of basic analysis. It has some drawbacks, though. For example, the licenses
are much harder to attune with commercial activity, because some of them are more
restrictive.

There are two types of data collection. The first one is primary data collection, where we
measure spatial phenomena directly. We can measure the locations of different objects with
GPS, the elevation with radar or lidar, the land cover with remote sensing. There are truly a
lot of ways of data acquisition with different equipment. The second type is secondary data
collection, where we convert already existing data for our use case. A typical secondary
data collection method is digitizing objects from paper maps. In this section, we will acquire
some open source primary data.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[20]

If you do not feel like downloading anything from the following data
sources, you can work with the sample dataset of this book. The sample
covers Luxembourg, therefore you can download and visualize it in no
time.

The only thing to consider is our study area. We should choose a relatively small
administrative division, like a single county. For example, I'm choosing the county I live in
as I'm quite familiar with it and it's small enough to make further analysis and visualization
tasks fast and simple:

Make sure you create a folder for the files that we will download. You
should extract every dataset in a different folder with a talkative name to
keep a clean working directory and to ease future work.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[21]

Getting basic data
The first data we will download is the administrative boundaries of our country of choice.
Open data for administrative divisions are easy to find for the first two levels, but it
becomes more and more scarce for higher levels. The first level is always the countries'
boundaries, while higher levels depend on the given country. There is a great source for
acquiring the first three levels for every country in a fine resolution: GADM or Global
Administrative Areas. We will talk about administration levels in more details in a later
chapter. Let's download some data from by selecting our
study area, and the file format as Shapefile:

In the zipped archive, we will need the administrative boundaries, which contain our
division of choice. If you aren't sure about the correct dataset, just extract everything and
we will choose the correct one later.

The second vector dataset we download is the GeoNames archive for the country encasing
our study area. GeoNames is a great place for finding data points. Every record in the
database is a single point with a pair of coordinates and a lot of attribute data. Its most
instinctive use case is for geocoding (linking names to locations). However, it can be a real
treasure box for those who can link the rich attribute data to more meaningful objects. The
country-level data dumps can be reached at

through the countries' two-letter ISO codes.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[22]

ISO (International Organization of Standards) is a large-scale
organization maintaining a lot of standards for a wide variety of use cases.
Country names also have ISO abbreviations, which can be reached at

 in the form of a list. The first column
contains the two-letter ISO codes of the countries.

Licenses
GADM's license is very restrictive. We are free to use the downloaded data for personal and
research purposes but we cannot redistribute it or use it in commercial settings. Technically,
it isn't open source data as it does not give the four freedoms of using, modifying,
redistributing the original version, and redistributing the modified version without
restrictions. That's why the example dataset doesn't contain GADM's version of
Luxembourg.

There is another data source, called Natural Earth, which is truly open
source but it offers data only for the first two levels and on a lower
resolution. If you need some boundaries with the least effort, make sure
you check it out at .

GeoNames has two datasets--a commercially licensed premium dataset and an open source
one. The open source data can be used for commercial purposes without restrictions.

Accessing satellite data
Data acquisition with instruments mounted on airborne vehicles is commonly called remote
sensing. Mounting sensors on satellites is a common practice by space agencies (for
example, NASA and ESA), and other resourceful companies. These are also the main source
of open source data as both NASA and ESA grant free access to preprocessed data coming
from these sensors. In this part of the book, we will download remote sensing data (often
called imagery) from USGS's portal: Earth Explorer. It can be found at

. As the first step, we have to register an account in order to download
data.

If you would like to download Sentinel-2 data instead of Landsat imagery,
you can find ESA's Copernicus data portal at

.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[23]

When we have an account, we should proceed to the Earth Explorer application and select
our study area. We can select an area on the map by holding down the Shift button and
drawing a rectangle with the mouse, as shown in the following screenshot:

Active remote sensing
As the next step, we should select some data from the Data Sets tab. There are two distinct
types of remote sensing based on the type of sensor: active and passive. In active remote
sensing, we emit some kind of signal from the instrument and measure its reflectance from
the target surface. We make our measurement from the attributes of the reflected signal.
Three very typical active remote sensing instruments are radar (radio detection and
ranging) using radio waves, lidar (light detection and ranging) using laser, and sonar
(sound navigation and ranging) using sound waves. The first dataset we download is
SRTM (Shuttle Radar Topographic Mission), which is a DEM (digital elevation model)
produced with a radar mounted on a space shuttle.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[24]

For this, we select the Digital Elevation item and then SRTM. Under the SRTM menu,
there are some different datasets from which we need the 1 Arc-Second Global. Finally, we
push the Results button, which navigates us to the results of our query. In the results
window, there are quite a few options for every item, as shown in the following screenshot:

The first two options (Show Footprint and Show Browse Overlay) are very handy tools to
show the selected imagery on the map. The footprint only shows the enveloping rectangle
of the data, therefore, it is fast. Additionally, it colors every footprint differently, so we can
identify them easily. The overlay tool is handy for getting a glance at the data without
downloading it.

Finally, we download the tiles covering our study area. We can download them
individually with the item's fifth option called Download Options. This offers some options
from which we should select the BIL format as it has the best compression rate, thus,
our download will be fast.

If you have access to lidar data in your future work, don't hesitate to use it.
Up to this time, it offers the most accurate results.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[25]

Passive remote sensing
Let's get back to the Data Sets tab and select the next type of data we need to download--
the Landsat data. These are measured with instruments of the other type--passive remote
sensing. In passive remote sensing, we don't emit any signal, just record the electromagnetic
radiance of our environment. This method is similar to the one used by our digital cameras
except those record only the visible spectrum (about 380-450 nanometers) and compose an
RGB picture from the three visible bands instantly. The Landsat satellites use radiometers to
acquire multispectral images (bands). That is, they record images from spectral intervals,
which can penetrate the atmosphere, and store each of them in different files. There is a
great chart created by NASA (

) which illustrates the bands of Landsat 7, Landsat 8,
and Sentinel-2 along with the atmospheric opacity of the electromagnetic spectrum:

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[26]

From the Landsat Archive, we need the Pre-Collection menu. From there, we select L8
OLI/TIRS and proceed to the results. With the footprints of the items, let's select an image
which covers our study area. As Landsat images have a significant amount of overlap, there
should be one image which, at least, mostly encases our study area. There are two
additional information listed in every item--the row number and the path number. As these
kinds of satellites are constantly orbiting Earth, we should be able to use their data for
detecting changes. To assess this kind of use case (their main use case), their orbits are
calculated so that, the satellites return to the same spot periodically (in case of Landsat, 18
days). This is why we can classify every image by their path and row information:

To make sure the images are illuminated the same way every time on a
given path/row, this kind of satellite is set on a Sun-synchronous orbit.
This means, they see the same spot at the same solar time in every pass.
There is a great video created by NASA visualizing Landsat's orbit at

.

Let's note down the path and row information of the selected imagery and go to the
Additional Criteria tab. We feed the path and row information to the WRS Path and WRS
Row fields and go back to the results. Now the results are filtered down, which is quite
convenient as the images are strongly affected by weather and seasonal effects. Let's choose
a nice imagery with minimal cloud coverage and download its Level 1 GeoTIFF Data
Product. From the archive, we will need the TIFF files of bands 1-6.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[27]

The extension is a shorthand for a gzipped tape archive. It is by
far the most common compressed archive type on Unix-like operating
systems and any decent compressing software can handle it.

Licenses
SRTM is in the public domain; therefore, it can be used without restrictions, and giving
attribution is also optional. Landsat data is also open source; however, based on USGS's
statement (

), proper attribution is recommended.

Using OpenStreetMap
The last dataset we put our hands on is the swiss army knife of open source GIS data.
OpenStreetMap provides vector data with a great global coverage coming from
measurements of individual contributors. OpenStreetMap has a topological structure;
therefore, it's great for creating beautiful visualizations and routing services. On the other
hand, its collaborative nature makes accuracy assessments hard. There are some studies
regarding the accuracy of the whole data, or some of its subsets, but we cannot generalize
those results as accuracy can greatly vary even in small areas.

One of the main strengths of OpenStreetMap data is its large collection and variety of data
themes. There are administrative borders, natural reserves, military areas, buildings, roads,
bus stops, even benches in the database. Although its data isn't surveyed with geodesic
precision, its accuracy is good for a lot of cases: from everyday use to small-scale analysis
where accuracy in the order of meters is good enough (usually, a handheld GPS has an
accuracy of under 5 meters). Its collaborative nature can also be evaluated as a strength as
mistakes are corrected rapidly and the content follows real-world changes (especially large
ones) with a quick pace.

Accessing OpenStreetMap data can be tricky. There are some APIs and other means to
query OSM, although either we need to know how to code or we get everything in one big
file. There is one peculiar company which creates thematic data extracts from the actual
content--Geofabrik. We can reach Geofabrik's download portal at

. It allows us to download data in OSM's native PBF format (Protocolbuffer Binary
Format), which is great for filling a PostGIS database with OSM data from the command
line on a Linux system but cannot be opened with a desktop GIS client.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[28]

It also serves XML data, which is more widely supported, but the most useful extracts for us
are the shapefiles.

There are additional providers creating extracts from the OpenStreetMap
database. For example, Mapzen's Metro Extracts service can create full
extracts for a user-defined city sized area. You just have to register, and
use the service at . You
might need additional tools, out of the scope of this book, to effectively
use the downloaded data though.

Due to various reasons, open source shapefiles are only exported by Geofabrik for small
areas. We have to narrow down our search by clicking on links until the shapefile format
(.shp.zip) is available. This means country-level extracts for smaller countries and regional
extracts for larger or denser ones. The term dense refers to the amount of data stored in the
OSM database for a given country. Let's download the shapefile for the smallest region
enveloping our study area:

OpenStreetMap license
OpenStreetMap data is licensed under ODbL, an open source license, and therefore gives
the four basic freedoms. However, it has two important conditions. The first one is
obligatory attribution, while the second one is a share-alike condition. If we use
OpenStreetMap data in our work, we must share the OSM part under an ODbL-compatible
open source license.

(c) ketabton.com: The Digital Library

Setting Up Your Environment

[29]

ODbL differentiates three kind of products: collective database, derived database, and
produced work. If we create a collective database (a database which has an OSM part), the
share-alike policy only applies on the OSM part. If we create a derived database (make
modifications to the OSM database), we must make the whole thing open source. If we
create a map, a game, or any other work based on the OSM database, we can use any license
we would like to. However, if we modify the OSM database during the process, we must
make the modifications open source.

If the license would only have these rules, it could be abused in
infinitesimal ways. Therefore, the full license contains a lot more details
and some clauses to avoid abuses. You can learn more about ODbL at

.

Summary
In this chapter, we installed the required open source GIS software, configured some of
them, and downloaded a lot of open source data. We became familiar with open source
products, licenses, and data sources. Now we can create an open source GIS working
environment from zero and acquire some data to work with. We also gained some
knowledge about data collection methods and their nature.

In the next chapter, we will visualize the downloaded data in QGIS. We will learn to use
some of the most essential functionalities of a desktop GIS client while browsing our data.
We will also learn some of the most basic attributes and specialities of different data types
in GIS.

(c) ketabton.com: The Digital Library

22
Accessing GIS Data With QGIS

Despite the fact that some of the advanced GIS software suggest, we only need to know
which buttons to press in order to get instant results, GIS is much more than that. We need
to understand the basic concepts and the inner workings of a GIS in order to know the kind
of analyses we can perform on our data. We must be able to come up with specific
workflows, models which get us the most meaningful results. We also need to understand
the reference frame of GIS, how our data behaves in such an environment, and how to
interpret those results. In this chapter, we will learn about GIS data models by browsing our
data in QGIS, and getting acquainted with its GUI.

In this chapter, we will cover the following topics:

Graphical User Interface of QGIS
Opening spatial data in QGIS
GIS data models

Accessing raster data
The first data type that we will use is raster data. It might be the most familiar to you, as it
resembles traditional images. First of all, let's open QGIS. In the browser panel, we can
immediately see our downloaded data if we navigate to our working directory. We can
easily distinguish vector data from raster data by their icons.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[31]

Raster layers have a dedicated icon of a 3x3 pixels image, while vector layers have an icon
of a concave polygon:

Don't have a browser panel? You can toggle panels from the View menu's
Panels option. If it is displayed, you can dock it anywhere by dragging it
out from its current place and placing it in another part of the GUI.

We can drag and drop most of the data from the browser panel or, alternatively, use the
Add Raster Layer button from the Add layer toolbar and browse the layer. The browser
panel is more convenient for easily recognizable layers as it only lists the files we can open
and hides auxiliary files with every kind of metadata. Let's drag one of the SRTM rasters to
the canvas (or open one with Add Raster Layer). This is a traditional, single-band raster.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[32]

It is displayed as a greyscale image with the minimum and maximum values displayed in
the Layers Panel:

You can save your project any time with the Save and Save As buttons.
The resulting file only contains general data about your current work (for
example, paths to your opened layers, styles, and so on) from which you
can restore it later. For more information, open a project file in a text or
code editor.

As you can see in the preceding screenshot, there is a regular grid with cells painted
differently, just like an image. However, based on the maximum value of the data, its colors
aren't hard coded into the file, like in an image. Furthermore, it has only a single band, not
three or four bands for RGB(A). Let's examine the raster more carefully by zooming in until
we can see individual cells.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[33]

We can also query them for their values with the Identify Features tool by clicking on a cell
(raster):

As you can see, we get a number for every cell, which can be quite out of the range of 0-255
representing color codes. These numbers seem arbitrary, and indeed, they are arbitrary.
They usually represent some kind of real-world phenomenon, like in our case, the elevation
from the mean sea level in meters.

Raster data model
These are the basic properties of the raster data model. Raster data are regular grids
(matrices) made up from individual cells with some arbitrary values describing something.
The values are only limited by the type of the storage. They can be in the range of bytes, 8-
bit integers, 16-bit integers, floating point numbers, and so on. Rasters are always
rectangular (like an image); however, they can give a feeling of having some other shape
with a special kind of value: NULL or No-Data.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[34]

In most of the sophisticated GIS software, there is a special No-Data type
for NULL values. However, there is no consensus on how to encode those
values. Because of this, it is fairly common to encode NULL values with a
number. The chosen No-Data value is often documented and stored in the
raster data (if the format permits).

One of the most useful properties of raster data is that their coverage is continuous, while
their data can change. They cover their entire extent with coincident cells. If we need a full
and continuous coverage (that is, we need a value for every point describing a
dynamically changing phenomenon), raster is an obvious choice. On the other hand, they
have a fixed layout inherited from their resolution (the size of each cell). There are the
following two implications from this property:

First, the accuracy of a raster is not constant. It covers uniform areas in a given
projection. Therefore, on the globe, the area covered by a single raster inherits the
distortion of the projection.
Secondly, if we increase the resolution, the size of the raster data shows a
quadratic growth as we have to increase the number of cells in each dimension:

Of course, this property works in two ways. Rasters (especially with square cells) are
generally easy and fast to visualize as they can be displayed as regular images. To make the
visualization process even faster, QGIS builds pyramids from the opened rasters.

Using pyramids is a computer graphics technique adopted by GIS. Pyramids are
downsampled (lower resolution) versions of the original raster layer stored in memory, and
are built for various resolutions. By creating these pyramids in advance, QGIS can skip
most of the resampling process on lower resolutions (zoom levels), which is the most time-
consuming task in drawing rasters.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[35]

The last important property of a raster layer is its origin. As raster data behaves as two-
dimensional matrices, it can be spatially referenced with only a pair of coordinates. These
coordinates, unlike in graphics, are the lower left ones of the data. Let's see what QGIS can
tell us about our raster layer. We can see its metadata by right-clicking on it in the Layers
Panel, choosing Properties, and clicking on the Metadata tab:

As you can see in the preceding screenshot, our raster layer has a number of rows and
columns, one band, an Origin, a resolution (Pixel Size), a No-Data value, and a Data Type.

To sum up, the raster data model offers continuous coverage for a given extent with
dynamically changing, discrete values in the form of a matrix. We can easily do matrix
operations on rasters, but we can also convert them to vectors if it is a better fit for the
analysis. The raster data model is mainly used when the type of the data desires it (for
example, mapping continuous data, like elevation or terrain, weather, or temperature) and
when it is the appropriate model for the measuring instrument (for example, aerial or
satellite imaging).

Rasters are boring
To put it simply--absolutely not. Well, maybe in QGIS a little bit, but rasters have potential
far beyond the needs of an average GIS analysis. First of all, rasters do not need to be in
two-dimensional space. There are 3D rasters called voxels, which can be analyzed in their
volume or cut to slices, visualized in a whole, in slices, or as isosurfaces for various values
(Appendix 1.1).

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[36]

Furthermore, cells don't have to be squares. It is common practice to have different
resolutions in different dimensions. Rasters with rectangular cells are supported by QGIS,
and many other open source GIS clients. Rasters don't even need to have four sides. The
distortions (we can call it sampling bias in some cases, mostly in statistics) caused by four-
sided raster cells can be minimized with hexagons, regular shapes with the most sides
capable of a complete coverage:

Hexagonal tiling is often implemented by GIS software. However, they
usually use a vector data structure to store and handle the hexagonal grid.

Okay, but can rasters only store a single thematic? No, rasters can have multiple bands, and
we can even combine them to create RGB visualizations. Finally, as we contradicted almost
every rule of the raster data model, do individual cells need to coincide (have the same
resolution)? Well, technically, yes, but guess what? There are studies about a multi-
resolution image format, which can store rasters with different sizes in the same layer. It's
now only a matter of professional and business interest to create that format.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[37]

Accessing vector data
Now that you've learned the basics of raster data, let's examine vector data. This is the other
fundamental data type which is used in GIS. Let's get some vector data at the top of that

 layer. From the Browser Panel, we open up the administrative boundaries layer (the
one with the shp extension) containing our study area, and the waterways and traffic layers
from the OpenStreetMap data. We can also use the Add Vector Layer button from the side
toolbar:

If you don't see the points after opening the traffic data, you might have
just opened the traffic areas layer. Geofabrik extracts distinguishable areas
from lines and points by appending an to the file name. The

 file contains polygons related to traffic (for
example, parking lots), while the one named
contains points. You can remove obsolete layers by right-clicking them in
the Layers Panel and selecting Remove.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[38]

Now there are three vector layers with three different icons and representation types on our
canvas. These are the three main vector types we can work with:

Points: Points are used to represent single punctual occurrences of phenomena
Lines: Lines are used to show linear features and boundaries
Polygons: Polygons are used to delimit areas

If we zoom around, we can see that unlike the raster layer, these layers do not pixelate.
They remain as sharp as on lower zoom levels no matter how far we zoom in. Furthermore,
if we use the Identify Features tool and click on a feature, it gets selected. We can see with
this that our vector layers consist of arbitrary numbers of points, lines, and irregular shapes:

You can only select features with the Identify Features tool from the
selected layer. If you wish to query another type of feature, first select its
layer from the Layers Panel.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[39]

Vector data model
Vector data, unlike raster data, does not have a fixed layout. It can be represented as sets of
coordinate pairs (or triplets or quads if they have more than two dimensions). The
elementary unit of the vector data model is the feature. A feature represents one logically
coherent real-world object--an entity. What we consider an entity depends on our needs.
For example, if we would like to analyze a forest patch, we gather data from individual
trees (entities) and represent them as single points (features). If we would like to analyze
land cover, the whole forest patch can be the entity represented by a feature with a polygon
geometry. We should take care not to mix different geometry types in a single layer though.
It is permitted in some GIS software; however, as some of the geoprocessing algorithms
only work on specific types, it can ruin our analysis.

There are more geometry types than points, line strings, and polygons.
However, they all rely on these basic types. For example, there are
multipart variations of every type. A single multipolygon feature contains
an arbitrary number of polygon geometries (e.g. Japan as a single feature),
and the like.

Geometry is only part of a vector feature. To a single feature, we can add an arbitrary
number of attributes. There are two typical distinct types of attributes--numeric and
character string. Different GIS software can handle different subtypes, like integers, floating
point numbers, or dates (which can be a main type in some GIS). From these attributes, the
GIS software creates a consistent table for every vector layer, which can be used to analyze,
query, and visualize features. This attribute table has rows representing features and typed
columns representing unique attributes. If at least one feature has a given attribute, it is
listed as a whole column with NULL values (or equivalent) in the other rows. This is one of
the reasons we should strive for consistency no matter if the used GIS software forces it.

Let's open an attribute table by right-clicking on a vector layer in the Layers Panel and
selecting Open Attribute Table. If we open the Conditional formatting panel in the
attribute table, we can also see the type of the columns, as shown in the following
screenshot:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[40]

If the same attribute column contains different types for different features,
the usual behavior of the GIS software is to set the type of the column to
the lowest common denominator. For example, if there are strings and
numbers mixed under the same attribute name, the whole column will be
string, as strings cannot be treated as numbers, but numbers can be treated
as strings.

To sum up, with the vector data model, we can represent entities with shapes consisting of
nodes (start and end points) and vertices (mid points) which are coordinates. We can link as
many attributes to these geometries as we like (or as the data exchange format permits). The
model implies that we can hardly store gradients, as it is optimized to store discrete values
associated with a feature. It has a somewhat constant accuracy as we can project the nodes
and vertices one by one. Furthermore, the model does not suffer from distortions unlike the
raster data model.

As vector geometries do not have a fixed layout, we can edit our features. Let's try it out by
selecting the administrative boundaries layer in the Layers Panel and starting an edit
session with the Toggle Editing tool.

In the following task, we will temporarily ruin our layer. If you are
worried about overwriting it with bad geometries, create a backup copy of
the affected files first.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[41]

We can see every node and vertex of our layer. We can modify these points to reshape our
layer. Let's zoom in a little bit to see the individual vertices. From the now enabled editing
tools, we select the Node Tool. If we click in a polygon with this tool, we can see its vertices
highlighted and a list of numbers in the left panel. These are the coordinates of the selected
geometry. We can move vertices and segments by dragging them to another part of the
canvas. If we move some of the vertices from the neighboring polygon, we can see a gap
appearing. This naive geometry model is called the Spaghetti model. Every feature has their
sets of vertices individually and there isn't any relationship between them. Consider the
following screenshot:

Finally, let's stop the edit session by clicking on the Toggle Editing button again. When it
asks about saving the modifications, we should choose Stop without Saving and QGIS
automatically restores the old geometries.

Vector topology - the right way
More complex geometries have more theoretical possibilities, which leads to added
complexity. Defining a point is unequivocal, that is, it has only one coordinate tuple. Multi-
points and line strings are neither much more complex--they consist of individual and
connected coordinate tuples respectively.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[42]

Polygons, on the other hand, can contain holes, the holes can contain islands (fills), and
theoretically, these structures can be nested infinitesimally. This structure adds a decent
complexity for a GIS software. For example, QGIS only supports polygons to the first level--
with holes.

The real complexity, however, only comes with topology. Different features in a layer can
have relationships with each other. For example, in our administrative boundary layer,
polygons should share borders. They shouldn't have gaps and overlaps. Another great
example is a river network. Streams flow into rivers, rivers flow into water bodies. In a
vector model, they should be connected like in the real world.

The topological geometry model (or vector model) is the sophisticated way to solve these
kinds of relational problems. In this model, points are stored as nodes while other
geometries form a hierarchical structure. Line segments contain references to nodes, line
strings, and polygons consist of references to segments. By using this hierarchical structure,
we can easily handle relationships. This way, if we change the position of a node, every
geometry referring to the node changes. Take a look at the following screenshot:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[43]

Not every GIS software enforces a topological model. For example, in QGIS, we can toggle
topological editing. Let's try it out by checking Enable topological editing in Settings |
Snapping Options. If we edit the boundaries layer again, we can see the neighboring
feature's geometry following our changes.

While QGIS does not enforce a topological model, it offers various tools for checking
topological consistency. One of the tools is the built-in Topology Checker plugin. We can
find the tool under the Add layer buttons.

If you don't see the tool, it might be disabled in your version of QGIS
by default. You can enable it from Plugins | Manage and Install Plugins.
Go to the Installed tab and check the Topology Checker.

If we activate the tool, a new panel appears docked under the Processing Toolbox. By
clicking on Configure, we can add some topology rules to the opened vector layers. Let's
add two simple rules to the administrative boundaries layer--they must not have gaps or
overlaps. Consider the following screenshot:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[44]

The only thing left to do is to click on the Validate All or Validate Extent button. If we have
some errors, we can navigate between them by clicking on the items one by one.

If you have some errors, be sure to review them as the tool can create false
positives. If you would like to repair some of the real topological errors
automatically, you can try out the Geometry Checker built-in plugin. You
have to enable it first, then you can find the tool at Vector | Geometry
Tools | Check Geometries. Note that it won't resolve false positives as
they are not real errors.

Opening tabular layers
The vector layers we opened so far were dedicated vector data exchange formats; therefore,
they had every information coded in them needed for QGIS to open them. There are some
cases when we get some data in a tabular format, like in a spreadsheet. These data usually
contain points as coordinates in columns and attributes in other columns. They do not store
any metadata about the vectors, which we have to gather from readme files, or the team
members producing the data.

QGIS can handle one tabular format--CSV (Comma Separated Values), which is an ASCII
file format, a simple text file containing tabular data. Every row is in a new line, while fields
are separated with an arbitrary field separator character (the default one is the comma). The
layout of such a layer is custom; therefore, we need to supply the required information
about the table to QGIS. If we try to drag our GeoNames layer to the canvas, QGIS yields to
a Layer is not valid error.

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[45]

To open these files, we need to use the Add Delimited Text Layer tool from the sidebar
(comma icon):

If we browse our GeoNames table, we can see that QGIS automatically creates a preview
from the accessed data. We can also see that the preview is far from correct. It's time to
consult the readme file coming with the GeoNames extract. In the first few lines, we can see
the most important information--The data format is tab-delimited text in utf8
encoding. Let's select Custom delimiters and check Tab as a delimiter. Now we only need
to supply the columns containing the coordinates. We can see there are no headers in the
data. However, as the column descriptions are ordered in the readme file, we can conclude
that the fifth column contains the latitude data (Y field), while the sixth column contains the
longitude data (X field). This is the minimum information we can add the layer with:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[46]

If you have many layers, giving them talkative names can aid you in your
work. You can rename a layer by right-clicking on it in the Layers
Panel and selecting Rename. If you have difficulties with rendering the
number of points in the GeoNames extract, you can check out the Render
option on the status bar, load the layer, check out its visibility in the
Layers Panel, then check in Render again. This might make no sense at
this point but it will come in handy later.

Understanding map scales
When zooming around the map, we could notice the Scale changing in the status bar. GIS
software (apart from web mapping solutions) usually use scales instead of zoom levels. The
map scale is an important concept of cartography, and its use was inherited by GIS
software. The scale shows the ratio (or representative fraction) between the map and the
real world. It is a mapping between two physical units:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[47]

For example, a Scale of 1:250,000 means 1 centimeter on the map is 2500 meters (250,000
centimeters) in the real world. However, as the map scale is unitless, it also means 1 inch on
the map is 250,000 inches in the real world, and so on. With the scale of the map, we can
make explicit statements about its coverage and implicit statements about its accuracy.
Large scale maps (for example, with a scale of 1:10,000) cover smaller areas with greater
accuracy than medium scale maps (for example, with a scale of 1:500,000), which cover
smaller areas with greater accuracy than small scale maps (for example, with a scale of
1:1,000,000).

Note that the classification of the scales are the inverse of the ratio
numbers. It makes more sense when you express scales as fractions.
1/10,000 is larger than 1/500,000, which is larger than 1/1,000,000.

We can easily imagine scales on paper maps, although the rule is the same as on the map
canvas. On a 1:250,000 map, one centimeter on our computer screens equals 2500 meters in
the real world. To calculate this value, GIS software use the DPI (dots per inch) value of our
screens to produce accurate ratios.

By using scales instead of fixed zoom levels, GIS software offers a great amount of
flexibility. For example, we can arbitrarily change the Scale value on our status bar and
QGIS automatically jumps to that given scale. The definition of map scale will follow us
along during our work as QGIS (like most of the GIS software) uses scale definitions in
every zoom-related problem. Let's see one of them--the scale dependent display. We can set
the minimum and maximum scales for every layer and QGIS won't render them out of
those bounds. Let's right-click on one of the layers and select Properties. Under the General
tab, we can check Scale dependent visibility. After that, we can provide bounds to that
layer. By providing a minimum value of 1:500,000 to the layer and leaving the maximum
value unbounded (0), we can see the layer disappearing on 1:500,001 and smaller scales:

(c) ketabton.com: The Digital Library

Accessing GIS Data With QGIS

[48]

Don't bother with the scale changing by panning the map at this point. We
will discuss that later, along with projections.

Summary
In this chapter, we acquainted ourselves with the GUI of QGIS and explained about data
models in GIS. With this knowledge, it will be easier to come up with specific workflows
later as we have an idea how the input data work and what we can do with it. We also
learned about one of the mandatory cartographic elements--the map scale.

In the next chapter, we will use our vector data in another way. We will make queries on
our vector layers by using both their attribute data and geometries. Finally, we will learn
how to join the attributes of different layers in order to make richer layers and give
ourselves more options on further visualization and analysis tasks.

(c) ketabton.com: The Digital Library

33
Using Vector Data Effectively

In the previous chapter, we learned how vector data compares to raster data. Although
every feature can only represent one coherent entity, it is a way more powerful and flexible
data model. With vectors, we can store a tremendous amount of attributes linked to an
arbitrary number of features. There are some limitations but only with some data exchange
formats. By using spatial databases, our limitations are completely gone. If you've worked
on a study area with rich data, you might have already observed that QGIS has a hard time
rendering the four vector layers for their entire extent. As we can store (and often use) much
more data than we need for our workflow, we must be able to select our features of interest.

Sometimes, the problem is the complete opposite--we don't have enough data. We have
features which lack just the attributes we need to accomplish our work. However, we can
find other datasets with the required information, possibly in a less useful format. In those
cases, we need to be able to join the attributes of the two layers, giving the correct attributes
to the correct geometry types.

In this chapter, we will cover the following topics:

Querying and filtering vector layers
Modifying the attribute table
Joining attributes

Using the attribute table
The first task in every work is to get used to the acquired data. We should investigate what
kind of data it holds and what can we work with. We should formulate the most
fundamental questions for successful work.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[50]

Is there enough information for my analysis? Is it of the right type and format? Are there
any No-Data values I should handle? If I need additional information, can I calculate them
from the existing attributes? Some of these questions can be answered by looking at the
attribute table, while some of them (especially when working with large vector data) can be
answered by asking QGIS. To ask QGIS about vector layers, we have to use a specific
language called SQL or Structured Query Language.

SQL in GIS
SQL is the query language of relational databases. Traditionally, it was developed to help
make easy and powerful queries on relational tables. As attribute data can be considered
tabular, its power for creating intuitive queries on vector layers is unquestionable. No
matter if some modern GIS software uses an object-oriented structure for working with
vector data internally, the tradition of using SQL, or near-SQL syntax for creating simple
queries has survived. This language is very simple at its core, thus, it is easy to learn and
understand. A simple query on a database looks like the following:

It uses the wildcard for selecting everything from the table named , where the
content of the column named matches . In GIS software, like QGIS, this line
can be translated to the following:

Furthermore, as basic queries only allow selecting from one layer at a time, the query can be
simplified as the software knows exactly which layer we would like to query. Therefore,
this simple query can be formulated in a GIS as follows:

There is one final thing we have to keep in mind. Based on the software we use, these
queries can be turned into real SQL queries used on internal relational tables, or parsed into
something entirely different. As a result, GIS software can have their own SQL flavor with
their corresponding syntactical conventions. In QGIS, the most important convention is
how we differentiate column names from regular strings. Column names are enclosed in
double quotation marks, while strings are enclosed in single ones. If we turn the previous
query into a QGIS SQL syntax and consider as a string, we get the following query:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[51]

Selecting features in QGIS
There are usually two kinds of selection methods in GIS software. There is one which
highlights the selected features, making them visually distinguishable from an other one.
Selected features by this soft selection method may or may not be the only candidates for
further operations based on our choice. However, there is usually a hard selection called
filtering. The difference is that the filtered-out features do not appear either on the canvas or
in the attribute table. QGIS makes sure to exclude the filtered-out features from every
further operation like they weren't there in the first place. There is one important difference
between the style of selection and filtering--we can select features with the mouse; however,
we can only filter with SQL expressions.

First, let's select a single feature with the mouse. To select features in QGIS, we have to
select the vector layer containing the feature in the Layers Panel. Let's select the
administrative boundaries layer then click on the Select Features by area or single click
tool. Now we can select our study area by clicking it on the map canvas, as shown in this
screenshot:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[52]

We can see the feature highlighted on the map and in the attribute table. If we open the
attribute table of the layer, we can see our selected one distinguished as we have only a
limited number of features in the current layer. If there are a lot of features in a layer,
inspecting the selected features in the attribute table becomes harder. To solve this problem,
QGIS offers an option to only show the selected features. To enable it, click on the Show All
Features filter and select Show Selected Features:

Don't forget to try out the other selection tools by clicking on the arrow
next to the current one. You can finish drawing a polygon by right-clicking
on the canvas.

The attribute table and the map canvas are interlinked in QGIS. If you click on the row
number of a feature, it becomes selected and therefore, highlighted on the canvas.

Preparing our data
From the currently opened vector layers, the GeoNames layer has the largest attribute table
with the most kinds of attributes. However, as the extract does not contain headers, it is
quite hard to work with it. Fortunately, CSV files can be edited as regular text files or as
spreadsheets. As the first step, let's open the file with a text editor and prepend a
header line to it. It is tab delimited; therefore, we need to separate the field names with tabs.
The field names can be read out from the readme file in order.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[53]

In the end, we should have a first line looking something like this:

If you use a text or code editor which replaces tabs with spaces, don't
forget to switch off that feature before adding the header line.
Furthermore, copy-pasting the preceding code block will probably not
work.

Now we can remove our GeoNames layer from the layer tree and add it again. In the form,
we have to check the option First record has field names. If we do so, and name the
latitude and longitude fields accordingly, we can see QGIS automatically filling the X and
Y fields:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[54]

You can speed up rendering and spatial querying by checking Use spatial
index. It will consume some memory though, so be careful with unusually
large files. If you have such a big GeoNames layer that you cannot work
with (like the whole U.S. table on a weaker computer), you can choose
another layer for the next part.

Writing basic queries
Let's select the modified GeoNames layer and open the Select features using an expression
tool. We can see QGIS's expression builder, which offers a very convenient GUI with a lot of
functions in the middle panel, and a small and handy description for the selected function
in the left panel. We do not even have to type anything to use some of the basic queries as
QGIS lists every field we can access under the Fields and Values menu. Furthermore, QGIS
can also list all the unique values or just a small sample from a column by selecting it and
pressing the appropriate button in the left panel:

If you are familiar with basic SQL syntax, you can run some queries
accommodating yourself with QGIS's query dialog and continue with
filtering layers.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[55]

The basic SQL expressions that we can use are listed under the Operators menu. There,
every operator is a valid PostgreSQL operator, most of them are commonly found in
various GIS software. Let's start with some numeric comparisons. For that, we have to
choose a numeric column. We can use the attribute table for that.

You can check the attribute types by right-clicking on the layer, selecting
Properties, and navigating to the Fields tab. However, it is easy to
distinguish between numeric and text fields from the attribute table.
Numbers are aligned to the right in the attribute table, while strings are
aligned to the left.

For basic numeric comparisons, let's choose the column. In this first query,
we would like to select every place where the population exceeds people. To get the
result, we have to supply the following query:

We can now see the resulting features as on the following screenshot:

If we would like to invert the query, we have an easy task, which is as follows:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[56]

We could do this as population is a graduated value. It changes from place to place. But
what happens when we work with categories represented as numbers? In this next query,
we select every place belonging to the same administrative area. Let's choose an existing
number in the admin1 column, and select them:

The corresponding features are now selected on the map canvas:

The canvas in the preceding screenshot looks beautiful! But how can we invert this query? If
you know about programming, then you must be thinking about linking two queries
logically together. It would be a correct solution; however, we can use a specific operator
for these kinds of tasks, which is as follows:

The operator selects everything which is not equal to the supplied value. The next
attribute type that we should be able to handle is string. With strings, we usually use two
kinds of operations--equality checking and pattern matching. According to the GeoNames
readme, the column contains type categories in the character format. Let's
choose every point representing the first administrative division (), as follows:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[57]

Of course, the inverse of this query is exactly the same like in the previous query (
operator).

We can also use relational operators on strings. If we do so, QGIS treats
strings as tuples of character codes and compares them one by one. For
example, if we supply the query , QGIS selects
everything starting with , hence, A (character code 6510) = A (character
code 6510), but D (character code 6810) < R (character code 8210), therefore,
it doesn't have to search further.

As the next task, we would like to select every feature which represents some kind of
administrative division. We don't know how many divisions are there in our layer and we
wouldn't like to find out manually. What we know from

 is that every feature representing a non-historic administrative boundary is
coded with followed by a number. In our case, pattern matching comes to the rescue.
We can formulate the query as follows:

In pattern matching, we use the operator instead of checking for equality, telling the
query processor that we supplied a pattern as a value. In the pattern, we used the wildcard

, which represents exactly one character. Inverting this query is also irregular as we can
negate with the operator, as follows:

Now let's expand this query to historical divisions. As we can see among the GeoNames
codes, we could use two underscores. However, there is an even shorter solution--the
wildcard. It represents any number of characters. That is, it returns true for zero, one, two,
or two billion characters if they fit into the pattern:

A better example would be to search among the alternate names column. There are a lot of
names for every feature in a lot of languages. In the following query, I'm searching for a city
named Pécs, which is called Pecs in English:

The preceding query returns the feature representing this city along with 11 other features,
as there are more places containing its name (for example, neighboring settlements).

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[58]

As I know it is called Fünfkirchen in German, I can narrow down the search with the
logical operator like this:

The two substrings can be anywhere in the alternate names column, but only those features
get selected whose record contains both of the names. With this query, only one result
remains--Pécs. We can use two logical operators to interlink different queries. With the
operator, we look for the intersection of the two queries, while with the operator, we
look for their union. If we would like to list counties with a population higher than ,
we can run the following query:

On the other hand, if we would like to list every county along with every place with a
population higher than , we have to run the following query:

The last thing we should learn is how to handle null values. Nulls are special values, which
are only present in a table if there is a missing value. It is not the same as 0, or an empty
string. We can check for null values with the operator. If we would like to select every
feature with a missing value, we can run the following query:

Inverting this query is similar to pattern matching; we can negate with the operator
as follows:

Filtering layers
The filtering dialogue can be accessed by right-clicking on a layer in the Layers Panel and
selecting Filter. As we can see in the dialogue, filtering expressions are much more
restrictive in QGIS as they only allow us to write basic SQL queries with the fields of the
layer. Let's inspect our study area in the administrative boundaries layer with the Identify
Features tool, select a unique value like its name, and create a query selecting it. For me, the
query looks like the following:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[59]

Applying the filter removes every feature from the canvas other than our study area:

Now the only feature showing up on the canvas is our study area. If we look at the layer's
attribute table, we can only see that feature. Now every operation is executed only on that
feature. What we cannot accomplish with filtering is increasing the performance of
subsequent queries and analyses. Rendering performance might be increased, but, for
example, opening the attribute table requires QGIS to iterate through every feature and fill
the table only with the filtered ones.

Let's practice filtering a little more by creating a filter for the GeoNames layer, selecting
only points which represent first-level administrative boundaries. To do this, we have to
supply the following query:

If you have a very large GeoNames table, don't apply the filter at this
point. It will be enough if you apply it after we extract a subset you can
work with.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[60]

Spatial querying
We can not only select features by their attributes, but also by their spatial relationships.
These queries are called spatial queries, or selecting features by their location. With this
type of querying, we can select features intersecting or touching other features in other
layers. The most convenient mode of spatial querying allows us to consider two layers at a
time, and select features from one layer with respect to the locations of features in the other
one. First of all, let's remove the filter from our GeoNames layer. Next, to access the spatial
query tool in QGIS, we have to browse our Processing Toolbox. From QGIS
geoalgorithms, we have to access Vector selection tools and open the Select by location
tool:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[61]

If you have a painfully large GeoNames table, select the Extract by
attributes tool instead. The two tools have almost the same dialog, you
only have to select a path to your output file, which will contain the
selected features only.

As we can see, QGIS offers us a lot of spatial predicates (relationship types) to choose from.
Some of them are disabled as they do not make any sense in the current context (between
two point layers). If we select other layers, we can see the disabled predicates changing.
Let's discuss shortly what some of these predicates mean. In the following examples, we
have a layer A from which we want to select features, and a layer B containing features we
would like to compare our layer A to:

Intersects: Selects every feature from A which intersects any feature in B.
Contains: Selects every feature from A which contains (fully encapsulate) any
feature in B.
Disjoint: Selects every feature from A which does not intersect any feature in B
(inverse of intersects).
Equals: Selects every feature from A which can be also found in layer B (can be
used to check for duplicates, that is, if A and B are the same).
Touches: Selects every feature from A whose boundary intersects the
boundary of any feature in B, but not its interior. The interior and boundary of a
point are the same, while in a line string, the boundary consists of the two
nodes (end points) and the interior is everything between them.
Within: Selects every feature from A which is contained (fully encapsulated) by
any feature in B.

These examples are not complete explanations of the spatial predicates,
but more of an attempt to give you a feel of how they work. Furthermore,
there are two more predicates (overlap and cross) that we do not discuss
here as they would require more theory. If you are interested, you can
look at the nice Wikipedia article DE-9IM (Dimensionally Extended 9
Intersection Model) at .

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[62]

Let's select every feature from the GeoNames layer in our study area. As we have our study
area filtered, we can safely pass the administrative layer as the Additional layer parameter.
The only thing left to consider is the spatial predicate. Which one should we choose? You
must be thinking about intersects or within. In our case, there is a fat chance that both of
them yield to the same result. However, the correct one is intersects, as within does not
consider points on the boundary of the polygon. After running the algorithm, we should see
every point selected in our study area. Consider the following screenshot:

Lovely! The only problem, which I forgot to mention, is that we are only interested in
features with a population value. The naive way to resolve this issue is to remove the
selection, apply a filter on the GeoNames layer, and run the Select by location algorithm
again. We can do better than that. If we open the query builder dialog, we can see some
additional options next to Select by clicking on the arrow icon. We can add to the current
selection, remove from it, and even select within the selection. For me, that is the most
intuitive solution for this case. We just have to come up with a basic query and click on
Select within selection:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[63]

You can also invert the query () and use the Remove
from selection option, if it fits you better.

Writing advanced queries
We discussed earlier that basic SQL expressions in GIS allow us to select features in only
one layer. However, QGIS offers us numerous advanced options for querying even between
layers. Unlike filtering, the query dialog allows us to use this extended functionality. These
operations are functions which require some arguments as input and return values as
output. As we can deal with many kinds of return values, let's discuss how queries work in
QGIS.

First, we build an expression. QGIS runs the expression on every feature in the queried
layer. If the expression returns true for the given feature, it becomes selected or processed.
We can test this behavior by opening the query dialog and simply typing . Every
feature gets selected in the layer as when this static value is evaluated, it yields to true for
every feature. Following this analogy, if we type , none of the features get selected.
What happens when we get a non-Boolean type as a return value? Well, it depends. If we
get 0 or an empty string for a feature, it gets excluded, while if it is evaluated to another
number, or a string, it gets selected. If we get an object as a result, that too counts as false.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[64]

If we use the advanced functionality of the query builder, we get access to numerous
variables besides functions. Some of these variables, starting with , represent something
from the current feature. For example, represents the geometry of the processed
feature, while represents the area of the geometry. Others, starting with , store
global values. Under the Variables menu, we can find a lot of these variables. Although
they do not show the character in the middle panel, they will if we double click on them.

Let's create a query which does the same as our last one. We have to select every feature in
our study area from the GeoNames layer which has a population value higher than 0.
Under the Geometry menu in the middle panel, we can access a lot of spatial functions. The
one we need in our case is intersects. We can see in the help panel that it requires two
geometries and it returns true if the two geometries intersect. Accessing the geometries of
the point features is easy as we have a variable for that. So far, our query looks like this:

Watch out for parentheses. When you double-click on a function, QGIS
imports it with only the opening one. We have to manually add the
closing parenthesis.

Here comes the tricky part. We have to access a single constant geometry from another
layer. If we browse through the available functions, we can almost instantly bump into the
geometry function, which returns a geometry of a feature:

As geometry can only process features, the last step is to extract the correct feature from the
administrative boundaries layer. Under the Record menu, we can see the most convenient
function for this task--get_feature. The function requires three arguments--the name or ID
of a layer, the attribute column, and an attribute value. It's just a basic query in a functional
form. After passing the required arguments, our query looks similar to the following:

Although is a column name, we have to pass it as a regular string
in a function. In query builder functions, we can only pass strings,
numbers, and objects in the form of variables.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[65]

Now we have a constant geometry, the geometries of the point features one by one, and a
function checking for their intersections. The only thing left to supply is the population part.
We can easily join that criterion with a logical operator as follows:

For a visual example of the query, consider the following screenshot:

Using the query builder instead of Select by location does not have a
performance impact. The main benefits of using the query builder
are its extended functionality and increased flexibility.

Modifying the attribute table
We can not only use the attribute tables of layers, but we can also extend, decrease, or
modify them. These are very useful functions for maintaining a layer. For example, as data
often comes in a general format with a lot of obsolete attributes, which is practically useless
for our analysis, we can get rid of it in a matter of clicks. The size of the attribute table
always has an impact on performance; therefore, it is beneficial to not store superfluous
data.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[66]

Removing columns
In the first example, let's delete some values from our administrative boundaries layer. If we
inspect its attribute table, we can see some unnecessary columns. In my table, and

 have constant values, which have absolutely no meaning to me. The
and columns are filled with null values, while is scarcely filled,
therefore, I cannot use them. Let's pick every unnecessary column and remember their
names. In the attribute table's toolbar, we can see some tools related to data management.
We can add and remove columns; however, those options are disabled. We can enable them
by starting an edit session by clicking on the first, Toggle editing mode button. With the
editing options enabled, we can proceed by activating the Delete field tool, selecting the
columns we would like to remove, and approving the operation with the OK button:

When the operation stops, we can see our unnecessary columns removed. If we save our
edits, QGIS overwrites our layer and they are gone for good. Of course, we can change our
mind or realize we accidentally removed some important data. In this case, we can restore
the original conditions by not saving our edits.

Joining tables
While superfluous columns are often present in general data, it is not rare if we don't have
the required attributes we would like to work with. If we are lucky, we can generate them
based on other existing attributes, although we should not worry if this is not the case. If we
can prepare a table which can be joined to the existing one on a matching column, we can
easily join them together.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[67]

For this example, I prepared a small table containing descriptions of our GeoNames layer's
 and columns based on the official GeoNames code page

mentioned before. It is called and you an access it from the
supplementary material's folder or download it directly from

. The formatting of this table
resembles the original GeoNames table as it is tab separated; however, it does not have any
geometries. It only contains two columns--a code and a description. Let's open the table
with the Add Delimited Text Layer tool. The first line is the header and the separator is the
tab character. As we have no geometries, we should also state that by checking the No
geometry option:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[68]

When the table is opened, we can see its entry in the Layers Panel. It has a special icon as it
only consist of attributes. Now we can join the two layers. To start a join, we have to open
the Properties of the target layer, in our case, GeoNames. There is a tab named Joins, which
offers tools for managing different joins. These kinds of attribute joins do not result in
overwriting the target layer, they are handled in memory; therefore, we can dynamically
change them (add new ones, modify, and remove existing ones).

A successful join in QGIS needs some conditions to be met. We need a common column in
both the tables as keys. These key columns hold the join conditions. The join
procedure pairs these key columns together and joins the other columns of the joined layer
accordingly. Therefore, to avoid ambiguities, we should have a target key column without
null values and a joined key column with unique values. The key column of the joined table
is never included in a join as it would introduce unnecessary redundancy. We can define a
join the following way:

Access the Add vector join dialog with the green plus icon.1.
Fill the Join layer parameter, which is the layer or table we would like to join. In2.
our case, it is the recent table.
Fill the Join field parameter, which is the key column of the joined layer. In our3.
case, it is the column.
Fill the Target field parameter, which is the key column of the target layer. In our4.
case, it is the column.

We can also select the columns that we would like to join from the target table. As we have
only two columns and one of them is the key column, we don't have to limit them. There is
one final option for the prefix. As we can have an arbitrary number of joins and different
tables can have the same column names, QGIS offers us the ability to prefix the target table's
column names with the table's name. We can safely remove the prefix as we won't have
further joins. To confirm the join, we have to click on OK not only in the dialog but also in
the Properties window as simply closing it is the same as clicking on Cancel:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[69]

If we open the attribute table of our GeoNames layer, we can see the new description
column appended. Furthermore, if we open the query builder, select the
field, and query all the unique values, and do the same for the field, we can
see the number of unique values that match. Now let's edit the join in the
Properties window. We can do that by selecting the join entry and clicking on the pencil
icon. For the Target field, let's select the column. By inspecting the attribute
table again, we can see that the values have changed and represent the description of the
feature codes.

Attribute-based joins in QGIS work like left outer joins in SQL. QGIS takes every row from
the target layer and matches a row from the joined table if it can. If there is no matching
value, it fills the row with a null value. Every excess field is dropped from the joined table.
For example, our description table contains descriptions for both feature classes and feature
codes. Based on the key columns, one set of them is joined while the other is dropped.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[70]

Spatial joins
Like queries, we can also perform joins based on the location of the target and reference
features. For this task, we need geometries in both the layers. This is a very handy operation
when there are no common columns for joining and making one would require excessive
work. To avoid ambiguity, we must have a spatial relationship able to do a one-on-one
mapping between features. If not, QGIS will either pick the first matching feature or
attempt to calculate statistics from the multiple target candidates.

Let's have an example, say, we would like to fill our administrative boundaries layer with
population data. Our GeoNames layer has this kind of data, but they do not have a
common column. If we join the whole GeoNames layer to the polygons, we would get
unpredictable results. Therefore, we need to filter our GeoNames layer in such a way that
only one point remains for every polygon. We can build a filter like this; we only have to
select the feature codes representing our administrative divisions. In my case, the first-level
administrative division contains my study area; therefore, my filter looks like this:

By applying the filter, we should get one point per administrative division:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[71]

As we have a join on our GeoNames layer, QGIS asks if we would like to
build a virtual layer to access the joined columns in the filter. As we don't
need the description for filtering, we can say no. We will still have access
to the joined column in the filtered layer.

The only thing left to do now is to run the spatial join algorithm. We can find it in
the Processing Toolbox. Under QGIS geoalgorithms, we have to expand the Vector
general tools menu, where we can find the Join attributes by location tool. Its dialog is
similar to the Select by location tool, thus, we have to provide two layers and a spatial
predict. The Target vector layer is our administrative boundary layer, the Join vector layer
is our GeoNames layer, while the spatial predict is intersects. Additionally, we have to
provide a join method, which should be the default, and pick the first located feature.
Finally, we have to provide a path to the output file as QGIS builds a new layer with the
joined tables:

Place the new layer somewhere in your working folder, as we will need it
in the next chapter.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[72]

After the algorithm finishes, we can see our new layer added to the map. The only
limitation of the spatial join in QGIS is the lack of options for selecting relevant columns. It
joins every column from the joined layer to our target layer. We can remove every
unnecessary column from the new layer's attribute table.

Adding attribute data
There are other ways to add or modify attribute data than joining tables together. If we start
an edit session, we can directly modify attribute values in the layer's attribute table. It
comes in handy when we have to modify the attributes a little bit manually. If manual work
is not feasible, we have a convenient tool for creating and filling new columns
automatically--the field calculator. We can access this tool from the attribute table of a layer,
and from the main toolbar of QGIS by clicking on the abacus icon called Open Field
Calculator. In the field calculator, we have a dialog similar to the query builder. We have
access to every function that QGIS offers and some other options related to field creation.
Let's open the field calculator for our new administrative boundaries layer.

In the dialog, we can choose between creating a new field and updating an existing one. In
this example, we create a new column and fill it with the population density data. As our
layer now contains population data, we can easily normalize it with the area of the
polygons. We would like to create a new column; therefore, we can leave the Create a new
field option checked. After we provide a name for our new column (in my case it will be

), we have to assign a type to it. As population density is a numeric value, we
can choose between two types--integer and floating point number (decimal number). Even
though a data value of 1.5 people sounds rather silly, we strive for accuracy and choose the
decimal type. We should also set up the format of our floating point numbers. Setting the
precision to 2 is enough.

The precision is deducted from the length of the field. If you assign a
precision of 5 to the default of 10 field length, you will get a maximum
length of 5 to the integral part and a fixed length of 5 to the fractional part.

Now we only have to provide the expression of the field. If we leave that part empty, the
column still gets added but with just null values. As we can calculate the population density
(people per square kilometer) from the total population and the area, which is provided in
square meters, we can build the following expression:

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[73]

Or, if we would like to get our results in people per square mile, we can provide the
following one:

Don't bother with that area value in the Output preview. The field
calculator is convinced the area is in the same unit as the projection
(degrees). However, those values are transformed to meters during
calculations. The results still inherit the projection's distortion, but we will
deal with that problem in the next chapter. You can override the default
measurement unit under Project | Project Properties | General |
Measurements.

Understanding data providers
While working on this chapter's examples, you might have noticed that we cannot even
start an edit session on our GeoNames layer. Why do different vector data types act
differently? The answer is simple and it can be found in the implementation details. Every
GIS software has to decide at one point how to handle vector data.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[74]

They can build some kind of internal structure, read to and write from this structure, and
handle every kind of vector data consistently during the workflow. This is one popular
option. GRASS GIS does exactly this, additionally materializing this internal structure to
make other processes more consistent and efficient.

QGIS, on the other hand, strives for extensibility and modularity before consistency. It
utilizes one of the greatest features of object-oriented programming, polymorphism, to
achieve this goal. It has a template class called on which
different data providers can implement their format-specific functionality. QGIS only
communicates with this class, which can tell it the exact capabilities of the given
implementation. For example, Shapefiles, among a lot of other vector formats, are handled
by , which can communicate with GDAL/OGR (Geospatial Data
Abstraction Library), a library capable of reading and writing an excessive number of raster
and vector formats. This way, this provider grants the capability of editing the given layer
in place; therefore, we can start an edit session in QGIS. On the other hand,

 doesn't offer the capabilities for editing the layer in any
way; therefore, we cannot start an edit session until we change our layer's format to
something more capable:

Of course, the preceding diagram only shows a few of the numerous providers that QGIS
offers on the source code level. What can we do when we must edit a layer provided by an
incapable vector provider? The answer is very simple--in spite of the capabilities of the
given provider, once a vector layer is opened, QGIS can export it to any other supported
format. Additionally, if we don't have to edit geometries, just add a few columns; QGIS has
a concept for this which is called virtual fields. When we were in the field calculator, we
saw an option of creating a virtual field. This is a pure QGIS concept with which we can
add additional attributes on top of the existing ones in memory. Of course, we have to save
the project if we would like to preserve them, or export the layer if we would like to
materialize them.

(c) ketabton.com: The Digital Library

Using Vector Data Effectively

[75]

Summary
In this chapter, we built on our knowledge of the vector data model and learned how to use
vector data effectively with queries, filters, joins, and attribute manipulation. Great work!
Now we can firmly use our vector layers to work only with the relevant part and derive
more valuable information from the existing data.

In the next chapter, we will use our skills to style our data and create beautiful
visualizations with it. We will also learn where, why, and how we should create a custom
digital map instead of overlaying our data on already existing base maps. Additionally,
we will learn how projections work and how they can aid us in our projects.

(c) ketabton.com: The Digital Library

44
Creating Digital Maps

In the previous chapters, we learned about data models, and how we can use them for our
needs. In this chapter, we will learn about a new GIS concept--the representation model.
The representation model applies different styles and styling rules to our raw data, and
creates the styled result we see on our map canvas, and later, on our digital or printed
maps. By styling our maps we can decide which properties of the data are important to the
readers. For example, in a thematic map showing population, we don't need the road
network, while we shouldn't make a road map unnecessarily complex with population
data. We can also enhance readability by adding cartographic elements to our map, like a
scale bar, a navigation grid, a legend, or a north arrow.

In this chapter, we will cover the following topics:

Styling raster and vector data
Using different projections
Using the print composer for creating spatial visualizations in QGIS
Creating real maps

Styling our data
Let's start with a gentle introduction to the representation model in GIS. For these examples,
we will need our modified administrative boundaries layer, our GeoNames layer, our river
network, and one of our elevation maps.

From now on, you can use the extract of your GeoNames layer, if your
original one is too large.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[77]

Not only do the data models of rasters and vectors differ, but also their representation
models. As rendering in every decent GIS software is hardware-accelerated, raster data are
converted to textures, while vector data are tessellated in the rendering pipeline. Hence,
raster values have to be mapped to 8-bit or 24-bit textures (images), while the capabilities of
vector visualization depend on the implementation. The minimum capabilities are
drawing icons as textures, regular shapes, connected lines, and polygons with user-defined
fill and stroke colors.

Styling raster data
First, let's see our elevation model, opened in the second chapter. As we discussed before,
this is the simplest rendering option that QGIS has to offer--a single-band grey
representation. It simply clamps the raster values to a byte (0-255), and renders the result as
an 8-bit texture. If we open the layer's properties and navigate to the Style tab, we can see
the few options needed for such a visualization. QGIS needs a band, which is unambiguous
as we have only one band, and the Contrast enhancement set to Stretch to MinMax.

Let's add some colors to this elevation model, and see how we can render it as a 24-bit
image. For this, we have to change Rendering type to Singleband pseudocolor. This mode
has a lot of options compared to the 8-bit mode, as it is more complex. QGIS needs to know
how many colors it has to use, how to interpolate between colors, and what are the limits to
the color intervals. QGIS offers a variety of predefined color ramps to choose from. As we
are styling an elevation model, the BrBG color ramp is the best fit for our data. After
choosing a color ramp, we can click on Classify, and QGIS automatically builds intervals
for our data. As we can see, the classification results in painting the lowest points with
brown, and the highest with green. We can easily invert this palette by checking in the
Invert box. If we click on OK, we can see our colored elevation model:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[78]

With the classification mode set to Continuous, we get equal intervals. The whole data
range is partitioned into five equal parts, and the colors are assigned accordingly. This
means, the distribution of the data are not uniform in the intervals. As my model contains
values mostly between 84 and 150, I got a lot of green areas, and gradually, less brown
areas.

You can see the distribution of your values under Properties | Histogram,
accessed from right-clicking on a raster layer in the Layers Panel.

Let's change that in such a way that every interval contains the same amount of values. We
can do this by changing the classification mode to Quantile. If we apply the changes, we
can see the coloring of our model changing in a more uniform way. As QGIS does not give
an aesthetic color palette for terrain visualization by default, we can import other palettes
installed, but not enabled.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[79]

We can do this in the following way:

Click on New color ramp in the color chooser.1.
In the list, the cpt-city option contains numerous color ramps useful for2.
geographic visualization. Select this option.
From the dialog's left panel, choose the Topography category, and import the3.
elevation color ramp.
Give a name to the new palette.4.
Classify the data with this palette and the Quantile mode, and get a much more5.
appealing result, as shown in following screenshot:

There are also other cpt-city color ramps you can download from
. To import

one of the styles, download the file, modify its extension to , and
import it from Settings | Style Manager | Import. You can access the
import button by clicking on the blue vector icon in the bottom-right
corner of the window. A very fine elevation palette can be found at

.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[80]

Let's move on to multi-band visualizations. A multi-band rendering mode needs to access
three bands in the same raster. It does not matter if we have more or less bands, it just needs
one band in each of the RGB channels. A very good candidate for multi-band visualization
is our Landsat data. Each of the bands are 16-bit rasters (digital numbers quantized from
actual reflectance data); however, they are contained in different files.

The easiest way to create a single raster from the bands is by creating a virtual raster. A
virtual raster is a file that contains only references to the source rasters, therefore, it is small,
but only a few software can handle it. Perform the following steps:

Click on Raster | Miscellaneous | Build Virtual Raster (Catalog).1.
Select every band from the downloaded Landsat imagery as input files.2.
Specify a file name at a location you can easily access later. Add the 3.
extension to the end of the file name, manually.
Check Separate, as otherwise, GDAL (as it is used by QGIS for this task) would4.
try to merge the input rasters, and create a single-band output. This way, it keeps
the input rasters in different bands.

After running the tool, our Landsat layer appears on the map canvas. We can barely see any
colors in it though, as the first six bands of the Landsat 8's Operation Land Imager (its
multispectral instrument) have the following spectral properties:

Band number Name and use cases Wavelength (μm)

1 Coastal blue (shallow waters, aerosol) 0.433-0.453

2 Blue (visible blue) 0.450-0.515

3 Green (visible green) 0.525-0.600

4 Red (visible red) 0.630-0.680

5 Near infrared (vegetation, plant health) 0.845-0.885

6 Shortwave infrared (humidity, soil type, rock type) 1.560-1.660

Therefore, in order to get a colored image, we have to create a 4-3-2 combination. To achieve
this, we have to open the Properties of our Landsat layer, navigate to Style, and choose
Band 4 for Red band, Band 3 for Green band, and Band 2 for Blue band.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[81]

Now we have a colored image, although the image is quite pale and bright:

The bad news is that we have to calculate the original reflectance or radiance values,
possibly with some atmospheric corrections, in order to get satellite imagery with the vivid
colors that we are used to. However, we can get drastically better results even with some
naive color enhancement techniques. To understand some of these techniques, let's learn
why we got such a dull result. The type of the image is 16-bit unsigned integer. Therefore, it
has a minimum value of 0, and a maximum value of 216 - 1 = 65,535. The visible bands (most
likely due to the high reflectance of clouds) have maximum values near the absolute
maximum, although the majority of their values range between 0 and 11,000.

You can observe these data in the Histogram and the Metadata tabs of the
Properties window. In the Metadata tab, look for the textbox at the
bottom.

When clamping values to a single byte, QGIS accepts user-defined values for minimum and
maximum. If we provide values other than the minimum and maximum of our data, it
truncates every value outside of this range to 0 and 255, and stretches only the in-between
values. As a result, if we increase the maximum value, the values in between become less
dominant, as they are stretched on a wider range.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[82]

Hence, QGIS is smart--it saw that stretching to the whole data range of our Landsat imagery
is hardly beneficial, as it would produce a very dark image. Therefore, it used a technique
called cumulative cut, and cut the outer 2% of our data in order to remove distortions
caused by outliers. However, this method also discarded some important values in the
upper range. This is why we got a dull image:

There is another popular stretching method called σ-stretching (sigma-stretching). It
calculates the useful range from the mean (m) and the standard deviation (σ) of our data.
The standard deviation is the density of our data in a quantified form. The more scattered
our values are, the higher the standard deviation becomes, and vice versa. We can access
this method by clicking on the Load min/max values menu in the Style tab. We have to
check the Mean +/- standard deviation option, and simply click on Load, as 2σ is usually a
good measure for excluding outliers, while keeping the important values.

Don't bother with the negative numbers appearing in the Min field. QGIS
knows the type of our data is unsigned integer, therefore, replaces every
negative number with 0 automatically.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[83]

If we apply our changes, we can finally see colors, although the image is still quite biased
towards the upper range of the clamped values. To compensate, we can alter some values in
the Color rendering menu of the Style tab. It might need a few tries to set the best values
for your scene. I got a nice image with Brightness set to -90, Saturation set to 20, and
Contrast set to 10:

The resulting image is much more vivid, although it might be biased in one of the bands.
My result, for example, has an unnatural reddish glow, which can be compensated by
increasing the maximum value of the Red band.

Don't forget to try out other band combinations. These are called false
color images, which can show properties of the land cover otherwise
invisible to our eyes. For example, the 5-4-3 combination emphasizes
vegetation, while the 5-6-4 combination emphasizes waters.

Styling vector data
Unlike raster data, which can be styled by their individual raster values, vector data can be
styled statically, or by their attributes. Basic styling includes a simple style for a layer. For
polygons, it is a simple fill with an outline, a simple line for lines, while for points, it is a
scale independent circle with an outline.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[84]

If we open the Properties window of a vector layer, and navigate to the Style tab, we can
see the Single symbol method applied to the layer.

These are cascading styles, starting in a parent class, which is predefined for the geometry
type and is unchangeable. These styles are truly cascading, therefore, if we change a global
attribute, like the color on any member, the whole structure conforms. A parent class (bold
font) can hold multiple children. By clicking on the first (and, by default, only) child, we can
customize the attributes of the style. If we choose a different styling method, and it is a
complex one, it will create its own parents and children, which can be parameterized
individually. By doing this, or by adding more children to the main style, we can create
more and more complex styles. For example, if we choose arrows wherever possible, we can
make an unaesthetic, yet interesting, visualization. Consider the following screenshot:

There are a lot of ways to create complex styling for a layer in QGIS. You
can learn some of the numerous possibilities by trying them out. Make
sure to try them out on layers with different geometry types.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[85]

These simple styles are often used to show the existence of a feature, or several features. The
other common styling method is thematic mapping. With thematic styles, we can represent
attributes visually. There are two distinct types of thematic styles--categorized, and
graduated symbols.

Mapping with categories
Categorized symbology is useful for visualizing distinct categories on nominal and ordinal
scales. This method isn't type specific, thus we can use it with strings, numbers, and any
other type of attributes. For example, we can show different countries, or hotels with
different ratings with different colors. To try this out, let's open the Style tab of our
administrative layer's Properties window as usual. Perform the following steps:

Choose Categorized styling.1.
Choose the column, as it contains the names of our administrative2.
boundaries.
Click on Classify to automatically assign random colors to distinct values.3.
Remove the last, no data entry with the minus button, as we do not have null4.
values:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[86]

We cannot only see our boundaries colored with distinct colors, but also a legend associated
with it in the Layers Panel. This is useful, as we can put these legends on our digital maps.

QGIS's random color generator is not a naive one. It generates appealing
pastel colors to create nice representation models. However, if it is not
good enough for you, you can pick great color palettes for thematic
mapping from the ColorBrewer application. You can reach it at

.

Graduated mapping
The other common method, graduated styling, is useful to show comparable attributes,
effectively on interval and ratio scales. This method is type-specific, as we can only compare
numbers directly. By using this method, QGIS creates intervals (bins), groups the attributes,
links a color to every interval, and draws the features accordingly. We can apply graduated
symbology to every geometry type, although the most common use cases are using a color
ramp for shading polygons (choropleth map), and applying different icon sizes on points
(proportional symbol map). First, let's apply a filter on our GeoNames layer (or its extract)
to only show some of the settlements. With the following query we can filter only the seats
of the administrative divisions:

There is another very common type of vector symbology, called dot
density. It is created by scattering points in the polygons according to a
numeric column and a ratio value (for example, 1 point = 1,000 people).
This is currently unavailable as a symbology type in QGIS, but it can be
achieved with the Random points inside polygons (variable) tool found
in QGIS geoalgorithms | Vector creation tools.

Now we can apply a graduated symbology by doing the following steps:

Open the Style tab of our administrative boundaries layer.1.
Select the Graduated symbology.2.
Select a numeric column. Population density is a nice column to work with.3.
Select a color ramp (I used YlOrBr).4.
Select one of the familiar modes from styling rasters. Quantile works really5.
well with population density.
Click on Classify, and apply the style.6.
Open the Style tab of our layer.7.
Select the Graduated symbology and the column.8.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[87]

For the symbology method, select Size.9.
Select a mode, and click on Classify. With population, Equal Interval is a good10.
choice for creating initial intervals and modifying them to some more appealing
ranges:

The custom ranges should always depend on the properties of the mapped data. For
mapping settlements in Hungary excluding the capital city, I usually use intervals as per the
preceding screenshot.

Understanding projections
As we know, spatial data can come in different projections. However, we can work with
only one projection at a time. In QGIS, we can see our project's projection on the right side
of our status bar. It is denoted with EPSG:4326 for us, as this is the identifier of our
projection. You might have noticed that since we added the Landsat layer, the projection
changed to EPSG:4326 (OTF). This change occurred as the Landsat imagery is in another
projection than our project, and QGIS automatically transformed the layer with an on-the-
fly (OTF) transformation.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[88]

So, if we can transform anything to a well-recognized global projection, why should we
care? We can use the Mercator projection that popular web maps (like Google Maps and
OpenStreetMap) use, and overlay our data on them. Well, take a look back at the first
chapter where I visualized my study area, and compare the shape of Hungary with the
other images. On that map, you can see most of the countries with their real sizes, and
Hungary with minimal distortions. That's true--projections lie. We simply cannot map a
spherical surface to a plane without distortions. In order to understand the nature of these
distortions, let's see how projections work in a nutshell.

You can see how some of the projections distort by browsing the
earth application at , choosing another
projection than Ortographic in the settings, and panning the map.

First of all, let's get a bit technical. In GIS software, we do not use projections--we use
Coordinate Reference Systems (CRSs) instead. A CRS has an ideal mathematical model of
the Earth, a datum, and a projection, which maps the coordinates on the model to a flat
surface.

Plate Carrée - a simple example
Let's see how the projection we used since the beginning of the book works. It is the
EPSG:4326, or Plate Carrée (flat square), which is a coordinate system with an
equirectangular projection using the WGS84 (World Geodesic System 1984) ellipsoid.

We need a mathematical model to begin with, as the real shape of Earth is uneven, and
therefore, very hard to represent mathematically. The most simple shape we can model
Earth with is a sphere. As there is a great difference between the real size of Earth and the
optimal sphere that it can be represented with, we can use a little more complex shape to
increase overall accuracy--an ellipsoid. As Earth is a little flattened on the poles, an ellipsoid
(technically an oblate spheroid) offers the best fit from simple shapes. It is used by most of
the projections. An ellipsoid has two very important parameters--a size and flattening,
which minimizes the difference from the shape of Earth for a use case. The WGS84 ellipsoid
strives for the best overall accuracy.

There is an even more complex and more accurate, but irregular,
mathematical model to represent Earth, which is called the geoid.
However, it requires extensive calculations to work with, therefore, it isn't
used by projections. It is still used to obtain accurate height values from
GPS measurements.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[89]

The second thing we need is a datum. The datum is the referenced ellipsoid. By referencing
an ellipsoid, we bind its center to somewhere in or on Earth. In the Plate Carrée, we have a
WGS84 datum, which binds the center of the WGS84 ellipsoid to Earth's center of mass.
This is a somewhat special case, which is very easy to understand, as Earth's center of mass
does not change much, only our measurements get more accurate.

The last thing we need is a projection. A projection is a method to transform coordinates on
our model to a flat surface. Therefore, we need a shape which can be flattened out
seamlessly, and a function to map coordinates. Plate Carrée is a perspective projection.
Perspective projections work like an object put into the path of light. It casts a shadow on
the surface behind it, and that shadow is the projected image of the object (in our case, the
reference ellipsoid). Let's imagine our ellipsoid as a totally transparent crystal spheroid with
borders of the countries painted on it as narrow black lines. We can imagine that the
properties of the shadow it casts depend on two factors--the place where we put our light
source (perspective point), and the shape of the surface behind it (projection surface).

Based on the perspective point, we have a lot of options, although these are three distinct,
specific cases which are used often in cartography:

Orthographic: The perspective point is in infinity, therefore, the light rays are
parallel
Gnomonic: The perspective point is in the middle of the ellipsoid; it is mainly
used for polar maps
Stereographic: The perspective point is at the far end of the ellipsoid

Based on the projection surface, we also distinguish between these three distinct cases:

Cylindrical: We wrap our ellipsoid in a cylinder, and project the whole ellipsoid
by rotating the light source. We flatten out our cylinder by cutting it, and get a
rectangular map.
Planar: We project our ellipsoid on a plane, and get a circle-shaped map as a
result.
Conic: We place a cone on the opposite side of our ellipsoid as our perspective
point. We flatten out our cone by cutting it, and get a map with a shape of a half
circle.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[90]

We are just scratching the topic of projections to give you an idea how
they work. There are a lot more types based on how we place our surface
on our model, and every type has its distinct properties and use cases. For
a more in-depth, but also easy to follow guide, you can read the book
Understanding Map Projections written by Melita Kennedy and Steve Kopp.
For a less technical, informative guide, make sure you read the projection
guide of Axis Maps at

.

The Plate Carrée is one of the simplest perspective projections possible - it is an
orthographic cylindrical projection. It is normal (the top and bottom sides of the cylinder
are parallel to the Equator), thus it has a starting longitude (λ0) of 0°, and a starting latitude
(φ0) of 0°. Hence, it is a simple linear mapping of geographic coordinates to the projected
coordinates (x = λ, y = φ):

Technically, EPSG:4326 is the WGS84 ellipsoid (or datum) alone as a
geodetic CRS. However, as every ellipsoid is mapped with a linear
projection when used alone, the fact that EPSG:4326 uses a Plate Carrée
projection stands still.

Going local with NAD83 / Conus Albers
Let's see a local CRS for mapping the entire United States. NAD83 / Conus Albers
(EPSG:5072) uses an ellipsoid called GRS80 (Geodetic Reference System 1980). It has
almost the same properties as WGS84, and they had the same properties back in the time.
However, WGS84 underwent some changes (realizations) to give a better fit for GPS
systems, and therefore, its flattening became slightly different.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[91]

More importantly, NAD83 / Conus Albers uses a local datum--NAD83 (North American
Datum 1983). That means, it is not referenced to Earth's center of mass, but to the North
American plate. It is still referenced to the same planet, so the question arises--what's the
difference? The answer is simple--plate tectonics. The coordinates on global datums are
changing constantly due to plate movements. This is a very slow change (a few centimeters
every year), however, it still can be an issue for high accuracy surveys and analyses. To
avoid the urge for correcting old data, local datums are referenced to local places, and are
moving with the plate underneath. This also means that global and local datums are slowly
drifting apart. Consider the following diagram:

The geoid is the most accurate mathematical model we have for the Earth's shape. Its center
is located in the center of Earth's mass. The WGS84 oblate spheroid is a much more general
model, whose center is placed at the geoid's center. The difference between the two models
is called geoid undulation, which is automatically height-corrected by GPS systems. As the
NAD83 datum is referenced to the North American plate, its center slowly drifts apart from
the center of the WGS84 ellipsoid.

The word datums is grammatically incorrect. Datum is the singular form
of data, however, as in GIS we refer to completely different concepts with
the words datum and data, I'm using the grammatically incorrect datums
to avoid ambiguity.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[92]

The NAD83 / Conus Albers (EPSG:5072) uses an Albers projection. It is conic, therefore, the
geographic coordinates are projected onto a cone, which, by flattening out, produces a half-
circle-shaped map for its whole validity extent. However, there is a catch; it's not
perspective. Therefore, the perspective point is meaningless in this concept. Non-
perspective projections can only be defined mathematically, we cannot reproduce them
with a light source.

If you would like to see one of the geoid models in your browser, make
sure you check out the great 3D visualization at

.

Choosing the right projection
Now that we know how projections work, let's discuss how should we choose the right
projection for our work. We learned before that projections distort reality, as we cannot
convert an ellipsoid to a flat surface. Projections have some properties, which are shape,
area, direction, distance, scale, and bearing. From these properties, a single projection can
only fully preserve a few, at the expense of other properties. Based on the preserved
properties, we distinguish between the following types:

Conformal: Preserves bearings, and shapes locally (still distorts shapes, but it
creates the best global approximations). Conformal maps (like Mercator) were life
savers back in time, when sailors only had a compass and a map. As it preserves
bearing, we can connect two points with a straight line, align our compass, and
walk between them based on the bearing. It distorts areas beyond recognition,
though.
Equal-area: Preserves areas, but distorts shapes. It is used for visualizing and
analyzing data, where showing areas proportionally is important (such as using
indices normalized by area). The Albers is an equal-area projection.
Azimuthal: Preserves directions. Straight lines represent the shortest routes on
the ellipsoid between two arbitrary points, also called great circles.
Equidistant: Preserves distances from the distortion-free part or parts of the map.
From its center, or another distortion-free point, we can measure a straight line,
which corresponds to the real distance. This property is not preserved for other
pairs of points.
Compromise: Does not preserve any property, but strives for minimizing errors.
Compromise projections are great for global mapping if the map doesn't have to
preserve a property.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[93]

Each projection has at least one point it does not distort--its center.
However, some projections have more points, in some cases, one or two
lines without distortions. The Plate Carrée does not distort along the
Equator, while the Albers Conic has two arbitrary distortion-free, standard
parallels. NAD83 / Conus Albers has these standard parallels at φN 29.5°
and φN 45.5°.

We did not talk about an important property of projections--scale. Only a few projections
preserve scale, most of them distort it. However, the printed and digital maps always show
a constant scale, usually with a scale bar. Also, we witnessed during our work that the scale
always changes when we pan the map (Plate Carrée does not preserve scale). To overcome
this issue, the scale value in these cases is an approximation based on the center of the map
(or less often, some kind of average from different parts of it). It simply displays the exact
scale in the center, and assumes that we know if our projection preserves or distorts scale to
the edges.

Projections have another important property which we usually do not
discuss in depth--the unit. Each projection is crafted in a way that
distances can be measured with real-world units. Some of them
use degrees, while others use SI units (most commonly, meters), feet, or
miles.

Some of the CRSs do not need these kinds of considerations, as they are fitted on a small
area. This means that distortions are mostly negligible in their validity extents. If we have a
small enough area to map (just like our study area), we can choose such a CRS. For
countries too big for an all-purpose CRS, there are multiple ones. There are CRSs to
visualize the entire country with different properties, while there are also CRSs for smaller
regions giving a better fit.

We do not need to know about all the existent CRSs to choose one. There are databases of
CRSs which we can browse. The most widely used database is the EPSG (European Petrol
Survey Group), which maintains an up-to-date catalogue of all of the popular CRSs.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[94]

These CRSs identified by their EPSG codes (such as EPSG:4326 for Plate Carrée) are
supported by all kinds of GIS software, such as QGIS. Let's select a CRS from an online
version of this catalogue at . We can type our country's name in the search
field, and the site will list all of the projections for our country. We can filter our results to
see only projected CRSs (exclude datums) by clicking on Projected on the right-hand side:

What we have to remember is the EPSG code of our preferred CRS. For example, I will
work with EPSG:23700 (HD72 / EOV) from now on. In QGIS, we can change our project's
projection in the following way:

Click on the project's current projection (EPSG:4326).1.
In the projection dialog, enable OTF (on-the-fly transformation) by checking in2.
the appropriate check box.
In the Filter field, type the EPSG code from the online catalogue.3.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[95]

Select and apply the right CRS from the results:4.

Let's see the consequences of using a more appropriate projection. If you have multiple
projections for the country you are working with, choose a projection for the whole country
for now. For this task, we need our administrative boundaries layer. First of all, to access
the transformed metrics of our layer, we need to define an ellipsoid for measurements:

Open Project | Project Properties | General, and select the WGS84 ellipsoid in1.
Measurements | Ellipsoid.
Open the attribute table of the administrative boundaries layer, and choose the2.
Field Calculator tool.
Name the updated population density column. I'll use the name .3.
Choose the Decimal number as a type, and add two decimal places with the4.
Precision field.
Calculate the column with the formula used in the last chapter (5.

 for SI units).

If we compare the new population density column with the older one, we can see some
differences. The farther our country lies from the equator, the bigger the differences are.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[96]

If you enable OTF, and select an ellipsoid in the Measurements |
Ellipsoid menu, it doesn't matter what projection you are using. QGIS
always returns correct values for both, area and length. Just remember--it
still matters how you present your results.

Preparing a map
In this example, we will create our first real map, a road map of our study area. We will
start by a hybrid map like the one we can see in Google Maps by changing to satellite
imagery. For this task, we will need the roads layer from the OSM dataset
(), the rivers layer (), the water
bodies (), and the land-use
layer (). We will also need the GeoNames and the
administrative boundaries layer. First of all, to speed up our work, let's extract only the
relevant features. We should do the following steps to every vector layer except the
administrative boundaries. If some of your layers are not that large, you can skip these steps
for those layers:

Add the layer from the Browser Panel, or with the Add Vector Layer tool.1.
Open the layer's Properties window, go to the General tab, and click on the2.
Create spatial index button.
Apply a filter on the administrative boundaries layer to only show the study area3.
(we only have to do it once).
Open QGIS geoalgorithms | Vector selection tools | Extract by location from4.
the Processing Toolbox.
Fill out the required fields, as we did in , Using Vector Data Effectively,5.
and select the Intersects spatial predicate.
Choose Save to file by clicking on the button next to the Extracted (location)6.
field, choose a destination folder, the SHP files format, and give a name to the
result.

Be patient. QGIS geoalgorithms are much slower than their PostGIS
counterparts. Despite the spatial index we created, extracting the roads
layer will take a while (without spatial indexing, it would take up to half
an hour for 500,000 features). Go grab a coffee (or just take your time) in
the meantime.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[97]

Rule-based styling
Road data from OpenStreetMap comes with a classification, which is very useful for
creating road maps. This classification is stored in the column in our layer. If we
create a categorized symbology based on that column, we can see that there are a lot of
classes. From those classes, only a few are appropriate to show at this scale:

Furthermore, some of the classes belong to a single type. For example, the and
 classes distinguish between two subtypes of motorways. QGIS offers a

great tool for these cases, called rule-based styling. Let's open the Style tab of our layer's
Properties window, and choose Rule-based. We can remove the classification by selecting
them all with the Shift key, and clicking on the minus button. For this scale, we will only
show motorways, highways, and other important roads. We can add a rule with the plus
button, which opens a dialog for creating a rule definition. By clicking on the ... button next
to the Filter field, we can build our first definition as follows:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[98]

Similar to Google Maps, we create a complex line style for motorways, a thick yellow line
with a thin black outline. We can do this by stacking two line styles. A 1 millimeter-wide
black line goes to the bottom, while a 0.8 millimeter-wide yellow line goes on the top. This
will create a 0.8 millimeter-wide yellow line with a 0.1 millimeter-wide black outline on
both sides. First, we create the black line, then add a new line with the plus button. Finally,
we style the new line:

The other roads should be styled following the same analogy, just with narrower lines. For
selecting the highways, we can use the following query:

I visualized highways with a 0.6 millimeter-wide yellow line on a 0.8 millimeter-wide black
line. Other important roads can be selected with a similar query:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[99]

For these roads, I created a single style, a 0.5 millimeter-wide grey line. By visualizing our
roads on the top of the Landsat imagery, we can see our road map slowly getting in shape:

The only thing we lack is handling line connections properly. As we can see, our roads
consist of several features. When those features connect, the ends of the lines are visible,
and therefore, the whole image has a broken feeling. We can manipulate how those lines are
rendered, though. As complex styles are rendered in different passes (layers), we can define
their order. If we would like to create nice connections, we should render the black outlines
first. As secondary roads are the least important, we should render them next. In the next
pass, we should render highways, therefore, secondary roads connect into them directly,
and only in the last pass we should render motorways. To define this order, we have to
open the Symbol levels menu in our layer's Style tab. There, we just have to define the
order with numbers. The higher the number, the later the style gets drawn.

If we create the ordering defined in this section, we get a more aesthetic result, as seen in
the following screenshot:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[100]

Adding labels
Now that we have some roads, we should also add some labels to them. Maps at this scale
usually do not contain street names, but road numbers. For higher-degree roads,
OpenStreetMaps delivers these road numbers in the ref column. First, let's create a simple
labeling by opening the Labels tab in our layer's Properties. We can enable labeling by
selecting the Show labels for this layer option, and choosing the ref column. If we apply
this, we can see our road numbers on the canvas, however, it is far from an appealing map.

In the labeling window, we have a lot of options to customize our labels. Let's start with the
Text tab. As the default text size is quite large, we can set our font size to 8 points. Also,
change the color of the text to white, as it goes quite well with a colored background. The
next tab we should see is the Background. Road labels are usually drawn in some kind of
shield shape, like the tab's icon in QGIS. We can do that with a custom SVG icon, however,
for the sake of simplicity, let's stick with a simple colored rectangle for now. We can enable
backgrounds by checking in the Draw background box. Now we can customize the
background with our preferred color or border style.

The next tab is an essential one for every labeling task--the Placement. In there, we can
define if we would like to align our labels horizontally, parallel to the given feature, or
curved along a line. If we choose Horizontal, we can only define a repeating interval.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[101]

That is only important when our features are large enough. If we click on Apply, we can see
our labels are much better, however, they are too dense for a nice map.

In labeling, almost every parameter has a data-defined override. If you
would like to provide such a parameter using a column or an expression,
you can click on the icon, which looks like a small menu next to the given
parameter's field. In there, you can either choose a field, or build an
expression by clicking on Edit.

This phenomenon occurred as our roads consist of a lot of individual features, representing
some segments. QGIS automatically labels these individual features; it does not matter if
some of them form logically coherent units. There are two solutions to overcome this issue.
The first one involves some fiddling, and does not guarantee correct results, while the
second one is more exact, but we have to run a geoalgorithm to achieve it. Let's try out the
fiddling one first. We have to open the Labels tab of our layer's Properties window,
navigate to Rendering, and check in Merge connected lines to avoid duplicate labels. Now
QGIS tries to merge connected features with the same attribute values in memory to avoid
duplicate labels. If the labeling is still too dense, we can suppress labeling of features
smaller than a specified value by filling in the corresponding field:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[102]

Although this method can help in creating correct labeling without the need of further
geoprocessing, it did not work well in our case. The labels are still placed irregularly, some
of them do not even appear.

In QGIS 3, we will have a manual labeling tool, which can be used to
manually remove, or just simply move away the ill-placed, or superfluous
labels. Manual label placement in QGIS 2 is still possible, although it needs
a little bit of fiddling. For more information, please read the answers at

.

The correct way to handle these cases is merging the lines in a way there will be only one
feature for every unique value from the ref column. There is a tool for exactly this--dissolve.
It needs an attribute to unify features with, and strives to merge connected features with the
same attributes. If there are features which cannot be merged, it creates a multipart feature
with the disconnected parts. We can dissolve our road layer in the following way:

Apply a filter on the roads layer, so the dissolve tool does not have to iterate1.
through all of the features. A filter for our current visualization can be expressed
with the query

.
Select the tool QGIS geoalgorithms | Vector geometry tools | Dissolve from the2.
Processing Toolbox.
Specify the roads layer as Input layer, uncheck the Dissolve all box, and select3.
the ref column as the Unique ID field. Also select a destination folder, and save
the result to a Shapefile.

After running the algorithm, we get a dissolved layer, which only has one feature for every
road number. As the attributes which were the same for the new features are retained, we
can style our new layer like our previous one.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[103]

To make things even more simple, we can apply the same styling to our new roads layer in
these two easy steps:

Right-click on the old roads layer's entry in the Layers Panel, choose Styles, and1.
click on Copy Style.
Right-click on the new roads layer's entry, choose Styles, and click on Paste2.
Style:

A really professional road map repeats labels (if feasible) after junctions.
To create a road layer where features are split in intersections, you can use
the QGIS geoalgorithms | Vector overlay tools | Split lines with lines
tool from the Processing Toolbox. You have to provide the same
dissolved road layer for both of the input layers.

The only thing left is adding some town labels. We will use our GeoNames layer to
visualize more important settlements as follows:

Filter the GeoNames layer to only show more popular settlements. The seats of1.
administrative divisions can be filtered with the query

. Note that if you created an extract in a Shapefile, the column name is
truncated to .
In the Style tab, select the No symbols option.2.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[104]

In the Labels tab, choose Show labels, and select the column for labeling.3.
In the Text menu, select white for text color.4.
In the Buffer menu, check Draw text buffer, specify an appropriate buffer size,5.
and select black for its color.

Now we can also see some of the settlements labeled on our map. If some of the labels got
suppressed, we can modify the weights of the GeoNames and the roads layers in Labels |
Rendering | Obstacles.

Creating additional thematics
The core of a thematic map is surprisingly always its thematics. We can classify our maps
based on the most important, most emphasized thematic (for example, we will end up with
a road map), but it does not exclude adding more thematics for various cases. We can fill
our map if it is too empty, or help the readers by adding more context. In this example, we
replace our Landsat imagery by some thematics from the OpenStreetMap dataset. We will
visualize land use types, rivers, and water bodies on our map. As we went through styling
vector layers quite thoroughly before, we will only discuss the main guidelines to achieve
nice results.

First of all, let's disable our Landsat layer, and enable the layers mentioned before. The first
layer we will style is land use, as it will give the most context to the map. If we apply a
categorized styling on that layer based on the column, we can see similar results in
the roads layer. There are many classes, most of them containing details, which are
superfluous for this scale. To get rid of the unnecessary parts, and focus only on the
important land use types, let's apply a rule-based styling:

Forest: Only the forest category with a dark green color
Agriculture and grassland: The farm, grass, meadow, vineyard, and allotments
categories can go here with a light green color

(c) ketabton.com: The Digital Library

Creating Digital Maps

[105]

Residential: The residential category, visualized with a light orange color
Industrial: The industrial and quarry categories, with a light grey color

As the default black outline would draw too much attention and distract readers, let's apply
a 0 mm, No Pen outline style to every category. We can access the outline preferences by
clicking on the Simple Fill child style element.

If you have additional categories taking up large map space, you can
create additional rules, or just fit them into the most appropriate one from
the aforementioned.

Now we will do a very cool thing. The water bodies layer not only stores lakes and other
still water, but also larger rivers in a polygon format. We will not only show these lakes and
rivers along with the linear river features, but also label them, making the labels run in the
polygons of larger rivers. For this, let's place the river layer on top of the water bodies, and
give them the same light blue color.

Next, navigate to the Labels tab of our rivers layer, and select Rule-based labeling. We
apply only one rule, which only labels rivers, as we wouldn't like to load the map with
labels of smaller waterways. We can build such an expression similarly to the other OSM
layers as follows:

In the Placement menu, we define the labels to run on a Curved path along the linear
features. The only allowed position should be On line, therefore, we uncheck Above line
after checking it in. Finally, in the Text menu, we specify the text color to be a darker shade
of blue in order to make it go nicely with the rivers' color. I also specified another font,
which enabled a Bold typeset.

As the linear features of the rivers run exactly in the middle of the outlines (in the
streamline), our labels are run exactly in the middle of the polygons, along the streamlines,
which looks really nice and professional:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[106]

It can give a nice touch to the map if we delimit our study area. We can do
so by applying an Outline: Simple line style instead of the Simple
Fill one. I left that one with a black color, but increased the line width, and
applied a dashed Pen Style to it. You can get the same result by leaving
the Simple Fill style, and specifying No Brush for Fill style.

It's time to add one final piece to our map--topography. For this task, we will need our
elevation layers. If we open them all at once, we can see that they have a little overlap,
making some linear artifacts. To get rid of these disturbing lines, and to get a more
manageable elevation layer at once, we first create a virtual raster from the elevation
datasets. Similar to the Landsat imagery, we open Raster | Miscellaneous | Build Virtual
Raster from the menu bar. We browse and select every SRTM raster, then select a
destination file. We do not have to check anything else, as we would like to create a
seamless mosaic from the input rasters, not store them in different bands. We just select a
destination folder, and name our new layer. Don't forget to append the vrt extension
manually to the file name.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[107]

The next step is to pull the new layer strictly above the layer. We are going
to style it in a new way to show elevation with shading. Let's open its Style menu, and
select the Hillshade option. It will create a shaded relief based on the provided altitude and
azimuth values. Those values determine the Sun's location relative to the surface. The
default values are generally good for a simple visualization. Finally, let's alter the Blending
mode parameter. This parameter defines how our layer are blended with the layers
underneath. If we choose Overlay, it blends the shading to the colored parts of our

 layer, and leaves the white parts. We can also reduce the layer's transparency in
the Transparency tab to make the colors less vibrant, and more like the original values:

The order of the layers is important. Blending only applies to the layer it is
defined on, and only takes the layers which are underneath into account.
That is why we should make the layer our bottom layer in this
case, put the strictly on its top, and put everything else on top of
them. This way, the topography won't blend into the other thematics.
Don't hesitate to try out the other blending modes and find out what they
can do!

(c) ketabton.com: The Digital Library

Creating Digital Maps

[108]

Creating a map
Splendid work! We managed to make the most important part of a real map--the content, or
data frame. However, there are some more cartographic elements to add if we would like to
call our composition a map instead of a spatial visualization. Some of the usual cartographic
elements are the following:

Data frame: It contains the main content of the map.
Title: A short, concise title summarizing the main thematics of the map.
Scale and scale bar: The scale of the map visualized with a scale bar and with a
ratio number.
Legend: A graphic description for the thematics of the map. It is not mandatory
when the map is not thematic. For example, a shaded relief (especially a hand-
drawn greyscale one) does not need a legend.
Attribution: A list of sources used by the map followed by the name of the
author, the copyright terms, if applied, and, at least, the year of creation.
North arrow: An arrow pointing to the North if the map is not oriented that way.
Frame: A small frame bounding the map, usually used with a grid and showing
its reference numbers. It can show any additional information though.
Grid: Either a local grid partitioning the map to logical units for easier
navigation, or referencing, or a grid showing x and y axes in predefined intervals.
Additional data frames: An overview map showing the mapped area in a larger
context, or an inset map showing a small, but important, part of the map in
greater details.

Let's add some of these elements by using the Print Composer of QGIS. To open a new
composer, we can use the New Print Composer button on the main toolbar. We can open as
many composers as we want in QGIS. If we give them talkative names, it will be quite easy
to navigate between them with the Composer Manager tool next to the New Print
Composer button. Although the composer is opened in a separate window, we don't have
to worry about losing the composition on closing QGIS. Composers are saved with the
project.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[109]

Adding cartographic elements
In the composer window, we can access the layout properties of our map instantly. In the
right panel, we can choose the paper size, and its orientation. On the left toolbar, we have
access to the most important cartographic elements, which are added on demand as
separate, configurable items. The first four tools are for item management. We can use the
Select/Move item tool to move and resize items, and the Move item content tool to pan the
map inside the data frame item. Under those tools, we can access the items which can be
added.

First, let's add the dataframe to the map. To do this, click on the Add new map tool, and
draw a rectangle on the canvas. Let's resize the map to match the paper's dimensions.
Once an item is added, we can snap its borders to the borders of our canvas. Now we have
access to the item's properties in the right panel. Under Item properties, we can see the
parameters of our map content. The first thing to change is its scale. It has a different scale
from the browser's canvas, as it is now calculated to match our paper's size. Let's modify it
to a nice, round number. When we change the scale, QGIS automatically updates the map
on our canvas. However, it does not render the map at panning or zooming unless we
change the Cache property to Render. Changing it degrades performance, but updates the
map at every change. When you've found the right scale to use, align the map on the canvas
with the Move item content tool:

(c) ketabton.com: The Digital Library

Creating Digital Maps

[110]

You can find the Grids option under the map item's properties. Add a grid
with the plus sign, set the intervals in the x and y axes, and see the
results. You can draw coordinates at the axes by checking the Draw
coordinates checkbox below. Finally, change the grid's CRS to WGS84
(EPSG:4326), and set the intervals to somewhere between 0.2 and 0.5.

The next thing we add to the composition is a legend. We can create a legend by selecting
the Add new legend tool, and drawing a rectangle on the canvas. As we can see, the legend
is automatically created from the Layers Panel by default. As we have some layers which
do not fit into the legend (for example, the layer or the GeoNames layer), we can
choose to manually customize the legend item. For this, we need to uncheck the Auto
update box in the legend item's properties. Now we can delete superfluous entries by
selecting them and clicking on the minus button. We can also rename the existing labels and
groups, and change their order.

Let's get rid of the extra layers, and rename the rest of them to have more descriptive
names. Also, there are two thematics (roads and land use) grouped, and two layers
(waterways, administrative boundaries) ungrouped. To make the legend more consistent,
let's create a custom group with the Add group button, name it as , and drag those
entries into it. Finally, we should make the group fonts more consistent. The group
has a different font, as it is a group, while the others are considered subgroups by QGIS.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[111]

To change this, you can right-click on the subgroups, and change their categorizations to
group:

Next, we add some text content. Specifically, we add a title and proper attributions to the
map. We can add custom text boxes with the Add new label button. Editing the label is not
as interactive as in a vector editing software, but we can customize the label in its properties
window in the right panel. The name of the layer should be concise, but descriptive. I used
the name . The attributions should go in a
separate text box with a smaller font size. We should add the following four statements to
the attributions:

OpenStreetMap data © OpenStreetMap contributors.1.
SRTM 1 Arc-second data downloaded from USGS's Earth Explorer.2.
Administrative boundaries © GADM (or Natural Earth if you used their data3.
instead).
© Your Name, year of composition.4.

Now let's add the final piece to our map--the scale and the scale bar. We can add them both
with the Add new scalebar tool. It comes with a fixed size, which needs some tinkering to
modify. The easiest way to reduce its size is to modify the number of units it shows under
Segments | Fixed width. We can also choose between some templates in its Style menu.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[112]

The second scale bar should only contain the scale in a numeric form. To achieve this, we
can choose the Numeric style:

The scale can also be added with a text box, however, adding it with a
scale bar item is more convenient, since if we change the scale of our map,
we don't have to update it manually.

As a bonus task, let's add one final element to take up the empty space between the legend
and the scale--an inset map. By adding additional data frames, we can focus on smaller
areas in greater detail. Let's choose an area we would like to emphasize, and create a new
data frame with the Add new map tool. If we resize it to fit the width of the legend and the
scale bar, we end up with a large map and a small map showing exactly the same area.
However, by using the Move item content tool, we can zoom and pan our new map to fit
our needs.

If we have two or more maps, they will most likely have different scales.
QGIS does not know which map we would like to use for the scale bar
items, therefore, it allows us to specify it under the scale item's Map
property.

(c) ketabton.com: The Digital Library

Creating Digital Maps

[113]

QGIS offers a very handy tool for showing the extent of a data frame on another data frame.
To access this property, let's select the large map's item, and navigate to Overviews. If we
add an overview with the plus sign, and specify the reference to our second map in the
Map frame property, we can see the extent of our inset map showing up on our main map.
We can customize the look of this extent in the Frame style property:

Wondering how I got the projected lines in the map from the first chapter?
Well, manually of course. You can use the Add Nodes item tool to add
additional lines and polygons directly on the canvas.

The only thing we did not add to our map is the north arrow, as our map is oriented
towards North. Unfortunately, adding a north arrow is far from trivial in QGIS 2. The first
step is to add an image with the Add image tool. Under the image item's properties, we can
find the Search directories menu, which contains some of the default SVG images shipped
with QGIS. Among them there are some north arrows. The only problem remaining if we
have to add a north arrow is that our map is rotated. An image item, on the other hand, is
not. To solve this problem, we can check the Sync with map checkbox in the Image rotation
menu. If our map is not rotated by hand, but by the CRS used, we can use the True north
option in North alignment (Appendix 1.2).

(c) ketabton.com: The Digital Library

Creating Digital Maps

[114]

Summary
Congratulations! You have just created a nice map. Of course, it has some more or less
obvious flaws, but I would have been very pleased if I could manage to create such a map
back in my school days. Some of the flaws are more obvious, like polygons sticking out
from the administrative boundary. Well of course, we can consider it artistic, but a proper
map either clips its content to an irregular shape, or continues to show its thematic beyond
it. We will fix that in the next chapter. Less obvious flaws are the occasional dangling lines
disconnected from the visualized river and road networks, or the ill-placed labels, which
would be quite hard to correct from QGIS. However, don't worry about these for now; just
enjoy the feeling that you have just created a great map.

If you followed the entire chapter in one sitting, take a rest. That was a lot of knowledge
compressed into a single chapter. Let it sink in. In the next chapter, we will dive into the
flaws of our map, and try to correct some of them with QGIS if possible. We will learn
about some of the possible export formats of digital maps, and their usefulness. Then we
will learn about other spatial data exchange formats by exporting our layers, or just parts of
them.

(c) ketabton.com: The Digital Library

55
Exporting Your Data

In the last chapter we learned how to utilize the representation model of GIS to create
spatial visualizations and digital maps. Our final map is very nice, although it has some
flaws remaining. In this chapter, we will fix some of the issues (for example, dangling lines,
features sticking out of the study area) and learn how to export our map to two kinds of
graphics--SVG (Scalable Vector Graphics) and image formats (for example, PNG). Then,
we will go on to learn about different spatial data exchange formats. We will discuss their
main properties and limitations to be able to choose the best for our project.

In this chapter we will cover the following topics:

Clipping vector and raster data
Exporting as graphics
Spatial data exchange formats

Creating a printable map
As we saw in the previous chapter, even the simple task of making a map can involve some
geoprocessing. Now we will dive further into using basic geoalgorithms to fix some of the
more obvious flaws of our map before exporting it. The most basic geoalgorithms in GIS are
buffer, clip, intersection, difference, union, and merge. Some experts also consider dissolve a
basic geoalgorithm, although it involves merge and multipart conversion with some
criteria. Now we will use clipping to get features only in our study area. Clipping is similar
to extraction used in the previous chapter, although it not only selects features within a
mask but also clips the features to its boundary. It's like placing a cookie-cutter shaped as
our study area in our case and only keeping the parts underneath.

(c) ketabton.com: The Digital Library

Exporting Your Data

[116]

As we use more and more geoalgorithms, the instructions will be less
informative and more concise. For the first few, we will discuss accessing
and parameterizing the whole algorithm.

Clipping features
In order to clip our layers we need two things--an input layer, and a clip layer. The clip layer
contains the cookie-cutter, while the input layer is clipped to the clip layer's shape. As we
have a filter on our administrative boundaries layer, we have the perfect clip layer at hand.
Any vector layer can act as an input layer, however we should only consider layers sticking
out from our study area. For every input layer, we have to iterate the following steps one by
one:

Select QGIS geoalgorithms | Vector overlay tools | Clip from the Processing1.
Toolbox.
Select the current input layer as Input layer.2.
Select the filtered administrative boundaries layer as Clip layer.3.
Type as the output name.4.
After running the algorithm, copy the styling of the original layer to the new one5.
with the two simple steps from the previous chapter.

After running the algorithm, we get the clipped version of our input as a memory layer.
This is the first format we discuss. It is a very important, very handy format for storing
intermediate results. Memory layers differ from temporary layers, hence the latter are saved
to a temporary folder as shapefiles and deleted once we restart our computer. Memory
layers can be edited in place; we can do any modifications we see fit before saving the final
results to the disk. There is only one thing we cannot do with memory layers--save them
with our project. Once we close QGIS, the memory layers are gone for good, only their
Layers Panel entries remain:

(c) ketabton.com: The Digital Library

Exporting Your Data

[117]

You don't have to give a name to the layer after the memory: notation. In
the current version, memory layers inherit the algorithm's name, thus it is
strongly recommended to rename the layer immediately by right clicking
on it in the Layers Panel and selecting Rename. Furthermore, you can
save memory layers in your project file with the
plugin. It saves memory layers in a binary format to an file along
with your project file.

Creating a background
The next flaw we correct is much less obvious and could be argued to be an error. The
background of our data frame is exactly the same as the rest of the paper. This can
introduce some ambiguity, which we can resolve by changing the background in our study
area to another color and creating an additional Other category for land use in our legend.
The easiest way to do this would be adding a fill to the administrative boundary and
pulling it down to the bottom of the layer list, therefore the rendering pipeline.

(c) ketabton.com: The Digital Library

Exporting Your Data

[118]

The problem with this approach is our layer gets blended into these new areas,
creating a lot of noise. Fortunately, with some clever processing, we can create the negative
of our land use layer using the following steps:

Select QGIS geoalgorithms | Vector overlay tools | Difference from the1.
Processing Toolbox.
Supply the filtered administrative boundary as Input layer, and the land use2.
layer as Difference layer. Save the result to a memory layer.
Pull the result just above the layer, and style it using a very light color with3.
no outline.
In the new layer's Style tab, select the Fill parent category. Next to Color, select4.
the interactive color chooser with the down arrow next to the field. Click on Copy
color.
Open the land use layer's Style tab, add a new category with the plus button.5.
Set the Label to Other, the Filter to FALSE, and paste the copied color using the6.
interactive color chooser of its Fill parent style category. Finally, remove the
outline from the style:

(c) ketabton.com: The Digital Library

Exporting Your Data

[119]

The Difference tool returns the difference between the geometries of the first layer and the
second layer. It basically erases the second layer from the first layer and returns the results.
Some of QGIS's geoalgorithms are error-prone and even can cause a crash. For example, the
Difference tool crashed for me. If this happens, we can always choose GRASS GIS's
equivalent algorithm. GRASS GIS is a professional, very stable, and quite fast software,
although it has a quite steep learning curve and assumes its users are proficient GIS users
with some programming knowledge.

Don't worry about installing or configuring GRASS. We already installed
it in Setting Up Your Environment, amongst other GIS
packages, and QGIS can automatically access some of GRASS's
functionality from then on.

We will discuss the peculiarities of GRASS GIS in a later chapter. For now, the required tool
for achieving the same result is v.overlay, which can be accessed from GRASS (GIS 7)
commands | Vector in the Processing Toolbox. This tool is a great example of GRASS GIS's
philosophy. It requires two input layers (A and B), and we must be able to distinguish
between them. The A layer is the input layer, while the B layer is the reference, or mask
layer. Therefore, we need to specify our administrative boundaries layer for A and our land
use layer for B. This tool groups some of the mostly identical basic geoalgorithms. The
specified operator decides which algorithm it should run. The AND means clip, the
OR means union, the NOT means difference, while the XOR means symmetrical difference
(Appendix 1.3). After we define not as the operator, we only have to choose an output type,
which cannot be a memory layer for any GRASS algorithm. We can either save the result to
a temporary file or specify an output. As the two approaches are almost the same (disk
usage occurs in both cases), specifying the output is recommended as we can restore it later
from the saved project.

Removing dangling segments
One of the perks of using memory layers is we can edit the features before saving them to
disk. We can delete disconnected lines or add missing ones. This is a task which can be
hardly automated. With sophisticated algorithms we could treat the road layer as a network
and find disconnected parts automatically. However, it is a quite cumbersome approach in
QGIS, while manual editing is feasible for such a low amount of features. Furthermore, in
the rivers layer, it is far from trivial which parts belong to the main network as we would
need the whole waterways layer for network analysis. If we select every feature shorter
than an arbitrary threshold and delete them with the Delete Selected tool, we can easily
remove connected but short segments.

(c) ketabton.com: The Digital Library

Exporting Your Data

[120]

If you would like to delete parts from the roads layer, use the Edit |
Delete Part tool from the main menu. We dissolved the roads layer,
therefore we have multipart geometries. If you select a part and remove it,
QGIS will remove every road with the same road number.

We can also add some new features. For example, the Geofabrik extract does not contain
water transports. If we have a ferry connecting important roads, we can add that feature
manually and modify the road layer's style to show the new class:

Exporting the map
Now that we have included the modifications our map needs, we can export our map from
the print composer. As we have a composer in our project, we can access it with the
Composer Manager tool from the main toolbar. If the maps do not show anything, we can
select their respective items and click on Update preview. The only thing we have to
modify is the legend. The bad news is we need QGIS to recreate the whole legend with the
legend item's Update all button and modify the result. Fortunately, this is quite an easy
task:

(c) ketabton.com: The Digital Library

Exporting Your Data

[121]

If the result looks good enough in its current form, we can export it directly to an image or
PDF format. We can access the tools Export as image and Export as PDF from the main
toolbar of the print composer.

A good way for post-processing - SVG
After creating the best visualization possible in QGIS, we might still need some changes to
be made. This process is called post-processing and can be done in various ways. We can
edit the map in an image editor, or we can export the map in SVG format and edit it with a
vector editor. With Scalable Vector Graphics, we can drop georeferencing but still keep our
vectors using screen coordinates. Let's do that by exporting the map with the Export as
SVG tool. On selecting the destination of our SVG file, a dialog pops up offering some
options. We should check the Render map labels as outlines checkbox. This way, we can
move labels easily.

If you open the result in a vector editor (such as Adobe Illustrator or Inkscape), you will
realize that the blending options are gone. The SVG format does not support storing
blending modes and every software uses its own mechanics for this. As QGIS exports
different layers to different SVG layers, we can access the layer (we have to fiddle a
little bit to find it) and apply a blending mode available in the software.

(c) ketabton.com: The Digital Library

Exporting Your Data

[122]

SVG export can create some artifacts (unwanted or erroneous rendering), but they can be
handled by masking out the unwanted parts:

The two main purposes for which I use the SVG format is manual label
management (moving and removing labels) and converting lines with
sharp joins to curves (if it is feasible with the given thematic).

Sharing raw data
Being able to create digital maps from data is a useful skill, although in most of the time, we
are using spatial data exchange formats to save our raw data. We are using these formats to
save our edits, export a subset of our database to use it locally, or share our data with
others. There are a vast amount of different spatial formats, and all of them has their
peculiarities, their most appropriate use cases. We should be able to choose the most
appropriate format for our case.

(c) ketabton.com: The Digital Library

Exporting Your Data

[123]

Vector data exchange formats
There are a wide variety of vector formats with quite distinct purposes. Some of the vector
formats are created to fully support the specialities of the host software while others are
more general ones. A unique property of vector GIS formats is that there isn't an all-
purpose, all-in-one format. There are two main types of formats--binary and ASCII (text-
based). Binary formats are more concise; however, they require parsing algorithms with
binary magic directly developed to support them.

ASCII formats, on the other hand, are human-readable and some of them (like JSON and
XML) are natively supported by several high-level programming languages (especially,
fourth-generation languages). Others can be interpreted by easily implementable string
manipulation techniques.

We can export layers from QGIS by right-clicking on their items in the Layers Panel and
selecting Save As. In the dialog, we can not only specify the new file's destination, name,
and format, but we can also save only selected features (if there are any) by checking
the Save only selected features checkbox. If we would like to exclude one or more of the
attribute columns, we can expand the menu Select fields to export and their export
options and specify the columns that we would like to export. Finally, we can also specify a
very important property of the vector layer--its CRS. If we select a CRS different from our
layer's, QGIS automatically transforms our features to the selected destination CRS.

Shapefile
Shapefile is one of the oldest vector formats around. It is a general binary format supporting
simple features (points, lines, polygons, and their multipart counterparts) and their
attributes. It is widely supported by GIS software. The format was initially created for
ArcView 2 and later open sourced by Esri. If we need a format which is most likely
supported by the destination software, Shapefile is a safe choice. Shapefiles can only store
one layer and every layer stored as a Shapefile usually consists of four different files. The

 file (which we browse if we manually open a Shapefile in QGIS) stores the geometry
data in a binary format, the file stores the projection of the layer, the file stores
indexing information for faster lookups, while the file stores the attribute table of the
layer in a relational style.

There is a similar, not much less popular semi-proprietary format--the
MapInfo TAB created for the GIS software MapInfo Professional. If you
come across such a layer, you can open it with QGIS by browsing in the
tab file.

(c) ketabton.com: The Digital Library

Exporting Your Data

[124]

Since Shapefile is a 25-year-old format, it has more limitations than advantages. It cannot
store topology, and neither the geometry file nor the attribute file can exceed 2 GB of
physical size. These are the kinds of limitation we could live with, as the format is fast and
widely supported. However, the biggest limitations come from the database format it uses
in the file-- . There are numerous limitations of the old format, including a
maximum field name (column) length of 10 characters, only three supported attribute types
(integer, floating point, and text), and supporting only 255 fields per layer.

You can take a look at a file with a spreadsheet editor supporting old
 formats, like LibreOffice Calc.

As the Shapefile format has numerous limitations, discussion about a competent alternative
is a trending topic among GIS users and developers. Currently, there are some competitors
taking the historical place of shapefiles, although there isn't a single all-purpose widely
supported format yet. They are all capable of storing multiple layers in a single structure
and do not have practical size limitations (140 TB for GeoPackage), neither in geometries, or
in attributes. The portable SQLite database can store multiple vector layers in a single file,
which can be accessed by SQLite and its spatial extension--SpatiaLite. It does not support
topology, raster storage is not straightforward, and it is more of a general-purpose self-
contained DBMS than a spatial format. The File Geodatabase by Esri is well-tailored to the
ArcGIS data structure and can hold vectors, rasters, other type of layers (like topology
layer) and even scripts in a single structure. However, it is not an open standard and has a
limited, read-only compatibility with GDAL and, therefore, with QGIS. There is also a new
standard with vector and raster support built on top of the SQLite format--the GeoPackage.
It might become the general open source format of the future, although it still misses
topology support and as it is a 2016 standard, it is not widely supported by GIS software.
GDAL can read and write it, so you can try it out in QGIS.

WKT and WKB
WKT is short for Well-Known Text, while WKB is the abbreviation of Well-Known Binary.
They are the ASCII and binary representations of the same format, mainly used by spatial
extensions of (O)RDBMS software (such as PostGIS). They support 2D geometries and
introduce some special types besides the simple ones (for example, curve, TIN, surface, and
others). We can come across WKT representations of geometries mainly in official PostGIS
and QGIS examples, as both like to use it. A WKT representation of a point looks like the
following:

(c) ketabton.com: The Digital Library

Exporting Your Data

[125]

The format is rarely used with files (it cannot even represent attributes), however, it is a
very common format to communicate geometries to SQL-based software. There
are extended versions of these formats called EWKT and EWKB, which were created by the
team behind PostGIS, and are mainly used in it. It extends WKT and WKB by standardizing
geometries in higher dimensions (up to four).

Vector geometries in GIS usually can take up four dimensions. They are
called X, Y, Z, and M. The first three are unambiguous, while the fourth is
usually called the measure coordinate. For example, in a 3D river
streamline, the first three coordinates represent the vertices in 3D space,
while the M coordinate can be used to store river kilometers (or river
miles), the distance from the mouth along the river.

Markup languages
There are three notable spatial markup languages which use the XML (Extensible Markup
Language) specification--GML (Geographic Markup Language), KML (Keyhole Markup
Language), and OSM XML. All of them are XML-based formats, therefore, they are very
verbose but also well-structured. Let's export our filtered GeoNames layer to GML and
KML as discussed in the beginning of the chapter.

In the KML format, attributes are not exported automatically. You have to
use the Select All button in the Select fields to export and their export
options menu to include them.

If we open the exported files with a text or code editor, we can see that they are structured
according to the XML specification. There are tags enclosing geometries, properties, and
other information. The main difference between the two files is the type handling. In the
KML file, the type of every column is defined near the end of the file, while we cannot see
any type definitions in the GML file. As the KML specification was popularized by Google
to offer a data exchange format for Google Maps and Google Earth, those files are self-
containing.

(c) ketabton.com: The Digital Library

Exporting Your Data

[126]

That is, all information is stored in a single file, which can be parsed by the desktop
application Google Earth and the web application Google Maps in the same way:

GML, on the other hand, was created to support web applications. Therefore, the intended
(and most common) usage is via a server application (like MapServer or GeoServer)
providing an XSD schema additionally linked in the GML response. The XSD schema
contains metadata, like the bounding box of the layer, its projection, and the types of the
columns. As we are now working in a sole desktop environment, we don't have such a
server creating a schema for the exported layer. To overcome this issue, GDAL creates a
file containing this information.

The last one is a very unique format in multiple aspects. First of all, QGIS cannot write into
OSM XML as it is used to export and hold a smaller amount of data from the
OpenStreetMap database. We can get data in such a format directly from OpenStreetMap
by zooming in on a sufficiently small area and using its Export tool. On the other hand,
QGIS can read OSM XML, although the workflow is far from trivial. If we have an file,
we can use the Vector | OpenStreetMap | Import Topology from XML tool to build an
SQLite container from the OSM data. Next, we have to use the Vector | OpenStreetMap |
Export Topology to SpatiaLite tool to build accessible layers from the OSM data in the
SQLite container. We can only access the layers after the second step if we exported the data
correctly.

(c) ketabton.com: The Digital Library

Exporting Your Data

[127]

We have to walk through this cumbersome workflow every time we process an OSM XML
file due to its other peculiarity--OSM XML is the only markup language that stores
topology. It reflects and inherits the OSM data model; it is fully topological. In the OSM
database, every point is a node, lines and polygons (ways) consist of nodes, while other
objects (relations) consist of ways and nodes (for example, multipart geometries). As a
result, every vertex is only stored once, while every other occurrence refers to it. As OSM
XML inherits this topological vector model, we have to build the topology in the first step in
an SQLite container, while we also have to build layers with geometries accessible by QGIS
in the second step:

GeoJSON
The last format that we'll now discuss is the GIS data exchange standard built upon the
famous JavaScript exchange format--JSON (JavaScript Object Notation). GeoJSON is a
very permissive format inheriting the object-oriented nature of JavaScript. Type and shape
consistency is not required in the format; we can have as many attribute types in a column
and as many geometry types in a layer as we want. By definition, the permitted types are
integer, floating-point number, text, boolean, null, array, and object. The permitted
geometry types are point, line, polygon, and their multipart versions. Let's export our
filtered GeoNames layer to GeoJSON.

(c) ketabton.com: The Digital Library

Exporting Your Data

[128]

As we can see, the result is much more concise than the markup languages but we can still
interpret the features as GeoJSON is also an ASCII format. It is mainly used by web
applications to visualize static vector data. It is favored for its small size and, therefore, the
smaller traffic it generates on being read by the client application.

There is a topological variant called . not only stores
the vector data topologically but also quantizes the coordinate values
(stores them as integers), creating smaller files. Currently, GDAL is able to
read files with the GeoJSON parser but it cannot write to this
format.

Raster data exchange formats
Similar to vector data exchange formats, there are a lot of raster formats out there. There are
formats storing rasters in binary form and in ASCII form. We can even save rasters like
vectors in QGIS with the Save As tool accessed from the raster layer's context menu in the
Layers Panel. If we see the save dialog with the srtm layer, it is slightly different from the
vector version reflecting the specialities of the raster data model. We can set a CRS and ask
QGIS to transform the raster to another CRS (it is called raster warping). We can also set the
extent and the resolutions in both dimensions manually. There are some other options too;
however, they are GeoTIFF-specific. What is very unusual, though, is that we can hardly
access any format other than GeoTIFF from this menu.

GeoTIFF
Unlike vector data exchange formats, we have a general, all-purpose, widely supported
raster format--GeoTIFF. Due to the existence and popularity of the highly capable TIFF
specification for storing lossless image data, it was extended to store spatial data along their
metadata (for example, projection and georeferencing). There are only two drawbacks of
this format--its size and the web. As it only supports a few compressing methods, its lossy
JPEG compression cannot race, for example, with the JPEG2000 standard if data loss is
acceptable. Furthermore, web browsers cannot handle TIFF files; therefore, rasters have to
be converted to regular images before using them in a web client application.

GeoTIFF offers a lot of options to work with. It can create internal pyramids for various
resolutions for faster visualization. It can also utilize internal tiling to speed up processing
when the raster is very large. It can even compress data with various algorithms.

(c) ketabton.com: The Digital Library

Exporting Your Data

[129]

There are some lossless options like LZW or deflate (ZIP), and there is the lossy JPEG
compression for a significantly smaller file size.

When you save a raster image with QGIS's Save As dialog, you can
specify the compression in the Create Options menu's Profile field.
Choosing High compression value results in a GeoTIFF image
compressed by the deflate algorithm.

Clipping rasters
Until now, we only used vector processing, so let's see how raster processing is different in
QGIS. Let's clip the SRTM raster to our study area. We can do it by following these easy
steps:

Select Raster | Extraction | Clipper from the menu bar.1.
Specify our layer as the input layer.2.
Specify the output directory and the file name, and select as the format.3.
Check the Mask layer checkbox for the Clipping mode.4.
Select our filtered administrative boundary layer as the Mask layer.5.
Run the algorithm.6.

Did the algorithm finish successfully? If it did, you can see the clipped layer on the map
canvas. If not, don't worry, it didn't work for me either. Before fixing the issue, let's see how
QGIS uses the raster processing tools. Unlike vector processing tools, QGIS has only a few
of its own raster tools. It uses external tools to achieve raster processing, usually, via
command line or Python. The tool we opened is a clever wrapper around GDAL's warp
tool, whose main purpose is warping rasters between CRSs. But it can also clip the input
raster in the process. We can even see the command that QGIS uses at the bottom of the
window:

gdalwarp -q -cutline "/home/debian/practical_gis/processed
/admin_boundaries/HUN_adm1_population.shp|layerid=0|subset="NAME_1" =
'Baranya'" -tr 0.000277777777778 0.000277777777778 -of GTiff
/home/debian/practical_gis/processed/srtm/srtm.vrt /home/debian
/practical_gis/processed/srtm/srtm_clipped.tif

This architecture implies a very important specificity of raster processing in QGIS. We must
have a physical copy of the data we use. In raster processing, memory layers are obsolete--
we cannot even select them as mask layers in the Clipper tool.

(c) ketabton.com: The Digital Library

Exporting Your Data

[130]

Raster (and image) processing was always a somewhat special niche in
GIS. Specialized software used to have more capabilities than general GIS
software both in the commercial and open source worlds. Until recent
times, even Esri couldn't monopolize image processing like it did with
GIS. ERDAS Imagine, ENVI, and eCognition, even today, can give more
complete solutions for raster-based workflows. This is the same as in the
open source segment; there are specialized tools for these tasks. QGIS, on
the other hand, does not have to reinvent the wheel. It can utilize some of
the greatest open source tools for processing raster data (Orfeo Toolbox,
GDAL, GRASS GIS, and SAGA) if installed and configured properly.

The problem with our approach was the filter on our administrative boundary layer. QGIS
couldn't manage to include the filter properly in the command-line call it created. To solve
the issue, the easiest way is to export our administrative boundary layer. As we applied a
filter, only one polygon gets exported. After the export, we can specify the new layer as
mask and run the algorithm again:

(c) ketabton.com: The Digital Library

Exporting Your Data

[131]

The other, slightly more advanced solution is to consult the documentation of GDAL's warp
tool at and modify the call manually with the
pencil-shaped Edit button. In the documentation, you will see that a filter on the cutting
shape can be applied with the parameter and a basic, regular SQL expression.
Therefore, the same call should look like the following:

gdalwarp -q -cutline "/home/debian/practical_gis/processed
/admin_boundaries/HUN_adm1_population.shp" -cwhere "NAME_1 =
'Baranya'" -tr 0.000277777777778 0.000277777777778 -of GTiff
/home/debian/practical_gis/processed/srtm/srtm.vrt /home/debian
/practical_gis/processed/srtm/srtm_clipped.tif

If you right-click on the clipped layer and select Properties |
Transparency, you can uncheck the No data value box. Then you can see
that the resulting raster inherits the size of the source raster and fills the
excess cells with zeroes. To crop the raster to the cutting shape, you can
check the Crop the extent of the target dataset to the extent of the cutline
box in the Clipper tool.

Other raster formats
We could see when we chose our destination folder that there are a lot more raster formats
which QGIS can export to via GDAL and other tools. Most of the time, GeoTIFF is sufficient
as it can use various compression methods, handle big rasters with the internal BigTIFF
format, and use various data types. There are some cases, on the other hand, when GeoTIFF
is not an appropriate data exchange format. For example, when I tried to export raster data
from IDRISI 7 in GeoTIFF, QGIS could not handle the output. There might have been a
problem with IDRISI's GeoTIFF implementation or a bug in QGIS's (GDAL's) GeoTIFF
parser--it didn't really matter. GeoTIFF wasn't the appropriate data exchange format for
that case and I had to find another one.

From the vast number of raster formats, some of the more widely supported ones are
ERDAS's img format and Esri's various binary and ASCII data grid formats. These
formats can include some auxiliary files besides the main data file for metadata. For
example, the SRTM data we downloaded are in bil files, which is a binary raster format
mainly used to store satellite imagery. It is categorized under the ESRI .hdr Labelled group
in QGIS, as it comes with an ASCII header file containing some general information about
the raster (for example, it uses the BIL format).

(c) ketabton.com: The Digital Library

Exporting Your Data

[132]

Summary
In this chapter, we learned about the most popular spatial data exchange formats for both
vector and raster data. We learned not only their specialities but also how QGIS can create
them. We also know now how to export our digital maps both as a regular image and in
SVG for post-processing. Finally, we learned how to shrink our data or enhance our map by
reducing the layers to only cover the relevant parts.

In the next chapter, we will look into the definition and types of databases and how spatial
databases compare to them. We will discuss the possibilities of building our spatial data
structure and build our very own database with PostGIS and QGIS. Additionally, we will
see how QGIS communicates with PostGIS and how we can build basic PostGIS queries.

(c) ketabton.com: The Digital Library

66
Feeding a PostGIS Database

In the previous chapter, we learned about data exchange formats, which can be used to
store our layers on our hard drive persistently in some files. Data exchange formats have
the clear advantage of portability; however, we end up with files representing layers
scattered through various folders. This isn't a problem when we have only a few layers or a
well-designed folder structure, but it is not feasible for larger amounts of data. There is a
solution for storing larger amounts of structured data in one easily accessible place--build a
database. In this chapter, we will learn about databases in general, spatial databases, and
how we can create a PostGIS database from QGIS easily.

We will cover the following topics in this chapter:

Spatial and non-spatial databases
Creating PostGIS tables from QGIS
Spatial indexing
Visualizing PostGIS tables in QGIS

A brief overview of databases
Let's start with a very brief introduction of databases. You might have more than enough
knowledge about databases; if that is the case, you can safely skip to spatial databases. First
of all, what is a database? A database is a collection of structured or semi-structured data,
which can be, at least, updated and queried by the Database Management System
(DBMS) or the library using it. Besides its very trivial benefit of storing a lot of data in the
same place, the wrapper system usually offers methods for not only retrieving but also
aggregating, filtering, or joining data. Furthermore, most of the DBMS and libraries are very
well-optimized for their use cases, and therefore, offer faster solutions than working with
traditional files and system calls.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[134]

Relational databases
The first and oldest database types are relational databases. They hold data in a well-
structured form in tables. Tables consist of rows and columns. A column represents a single
attribute of the data, which is stored as a specific data type. Rows represent a single data
record, such as a customer’s contact details, or a vector feature. Relational databases are
very often transactional databases (I could only name MySQL versions released before 2010
which are not transactional). The philosophy behind transactional databases can be
expressed with the anagram ACID (Atomicity, Consistency, Isolation, Durability). These
are the four very important properties that relational databases offer. These properties can
be explained as follows:

Atomicity: There are only full transactions, no partial ones. If one part of the
transaction fails, the whole transaction fails.
Consistency: A transaction can only occur if it satisfies every constraint of the
database. A field update for a unique, not-null, integer column must satisfy those
three constraints in order to succeed.
Isolation: Concurrent transactions are executed as if they were sequential
transactions.
Durability: Transactions are only successful if they are written to the disk. If
something prevents a part of the transaction from saving it permanently, the
whole transaction fails and the database is rolled back to the prior state.

As relational databases are basically a collections of tables (concerning only the stored data),
this model highly resembles the vector data model. That is, vector data can be stored in
relational databases quite painlessly, while storing and using raster data efficiently is more
complicated. Although following the ACID principles makes relational databases very
reliable for using both on personal computers and servers, their architecture makes them
hardly scalable (for example, they are not the best choice for big data or very complex
analysis). Furthermore, creating a good relational database requires some designing and
considerations.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[135]

Relational databases are especially vulnerable to redundancy. Redundancy is not always a
bad thing, for example, servers rely heavily on it to store data safely and to restore it
entirely in case of a disk failure. However, redundancy can be harmful in a database. If we
store the same columns in multiple tables, we can speed up queries, although we use up a
lot more physical space and also make the database more vulnerable to corruption (for
example, if we modify only one or a few occurrences of a redundant value). However,
eliminating redundancy is not the best idea for every scenario. We can end up with a lot of
tables storing only little chunks of information that we have to manage. It is a sensitive and,
in most cases, subjective task to find the best normalization level (normal form) for the
given relational database.

NoSQL databases
The vague termed NoSQL (not only SQL) database groups object-oriented databases.
There is a very wide palette of different architectures (like document stores, column stores,
graph databases, and so on). However, they have at least one common point--they store
data as structured but not necessarily consistent objects. They are often not ACID-
compliant, although they also offer reliability and stability in their own ways. As they store
objects (not tables), stored data don't have to be consistent while redundancy is not a great
issue.

NoSQL databases are generally used for different purposes than relational databases;
therefore, a direct comparison is impractical. In general, object-oriented databases offer
better scalability so they are almost exclusively chosen for big data over relational
databases. They often use query languages other than SQL but it is also common to use
APIs and function calls for querying and processing data. Finally, a lot of NoSQL DBMSs
are vertically extendable, which means we can cluster them effortlessly and extend the
servers they can use by putting more machines into the rack, giving them more resources.

Based on the previous statements, NoSQL databases are superior to relational databases in
almost every aspect. So why should we even consider using relational databases? Well,
NoSQL databases have several drawbacks--they are very difficult to set up, configure, and
fill with data. Furthermore, it is harder to enforce data integrity, and the lack of
transactional support in some NoSQL DBMSs make concurrent editing harder. With smaller
datasets (that is, a few GBs), NoSQL databases give only a negligible performance boost.
Thus, if relational databases can give a good fit for our data, setting up a NoSQL database is
just not worth the time and effort.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[136]

Spatial databases
What makes a database spatial? The answer shouldn't be searched for in the database but in
the host DBMS. Spatial database management systems have some kind of spatial vision.
They recognize spatial data and can offer some kind of dedicated functionality involving
them. They have some exclusive validation methods for spatial data. Spatial functionality
can be implemented at so many levels. Some of the spatial modules in DBMSs can only
recognize points, lines, and polygons, while others offer full-scale GIS functionality even for
raster data.

From the relational family, the two de facto standards in the open source segment are
PostGIS and SpatiaLite. SpatiaLite is built upon SQLite, which is container-based, offering
portable, single-file databases. It does not offer a full DBMS with some kind of interface; it is
API-based. That is, it offers a lightweight library written in multiple languages to
communicate with SQLite containers. It is a lightweight but robust way to have relational
databases in any software. In the end, it is left to the software to use this library or not.

The other relational DBMS is PostGIS built on top of the PostgreSQL DBMS. PostgreSQL is
an ORDBMS (Object Relational Database Management System), which means it can
output objects instead of the traditional tabular format. This property makes it very
convenient to create extensions for it. One of the many extensions that PostgreSQL has is
PostGIS, which is not only a spatial index and some vector geometry types built on top of a
DBMS, but a full-scale headless GIS. PostGIS is the most complete spatial database system
up to date and as it is directly on top of the underlying database, its performance is a great
argument in its favor.

If we have additional criteria, like strongly inconsistent data or big data, NoSQL spatial
databases can come to the rescue. A lot of NoSQL DBMSs have spatial capabilities, although
in most cases, they are only minimal vector-type support and spatial indexing. These
specify the main spatial functionalities of NoSQL databases--using spatial data types and
offering spatial queries. Some examples of spatially-enabled NoSQL DBMSs are the
following:

Document stores: MongoDB and CouchDB (GeoCouch). Fast, but not faster than
PostGIS. We can use them for smaller inconsistent data or when we already use
those DBMSs.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[137]

Graph databases: Neo4j and OrientDB (partially graph). Fast, scalable, but with
limited functionality. OrientDB has the closest syntax to PostGIS as it also
implements the ISO/IEC 13249-3 standard.
Column stores: Geomesa and GeoWave. Highly scalable DBMSs for storing and
analyzing spatiotemporal big data. Geomesa is generally faster, especially in case
of complex analysis, while GeoWave takes up less disk space.
Array database: Rasdaman. A flexible and scalable DBMS built for using array-
based (raster) big data. It supports dimensions beyond the spatiotemporal data
frame.

NoSQL DBMSs are just getting their heads around spatial capabilities. As
the demand for analyzing spatial and spatiotemporal big data increases,
there will be more and more complete NoSQL GIS solutions. Keep your
eyes open for these systems.

Importing layers into PostGIS
PostGIS has a very big benefit over other DBMSs--QGIS can communicate with it very well.
The same applies for SQLite containers and the GeoPackage format, but PostGIS offers the
best capabilities as it can be deployed as a server and accessed from multiple clients even
concurrently. For accessing a PostGIS database from QGIS, first we need to connect to it.
Remember the database we created in , Setting Up Your Environment? We will use
the data provided there to define and save a connection in QGIS:

Click on the Add PostGIS Layers button in the layers toolbar.1.
Define a new connection by clicking on New.2.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[138]

Fill out the required parameters we used to set up our database:3.

By clicking on Test Connection, we can ask QGIS if the provided parameters are4.
correct and sufficient. If it says so, we can save the connection by applying with
the OK button.

If you are using Windows, don't forget to provide the password you
defined during installation.

Now that we have defined a connection, we can use QGIS's database manager. We can
access it from Database | DB Manager | DB Manager in the menu bar. There we can click
on PostGIS and select the name of the connection we defined. We can see that we have a
simple PostgreSQL database as we did not enable the PostGIS spatial extension yet.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[139]

We have some permissions, though, which is nice as we can enable PostGIS directly from
QGIS. To do this, we have to click on the SQL window button and type the following
expression in the dialog:

After executing and refreshing the connection (right-click on the connection's name and
click on Re-connect), we can see some views and table created by the PostGIS extension. If
we open the table in QGIS and browse its content, we can take a glance
at the CRSs PostGIS support (Appendix 1.4). Now our database is spatially enabled and we
can start importing layers into it.

You can add a custom projections to PostGIS by inserting it into
 with a regular statement. You must provide a

 definition of the projection, though, as both QGIS and PostGIS use
the library to handle projections. The srtext field might be left
blank (empty string), although some software might require it instead of
the definition.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[140]

Importing vector data
First of all, let's load the two layers saved on the disk--the GeoNames and the
administrative boundaries layers. We can import layers with the Import layer/file button
accessed from QGIS's database manager. QGIS automatically converts the specified layer to
a PostGIS table by providing the required properties. We can import virtually any vector
layer with the following steps:

Choose the input layer in the Input field. We can also specify layers not loaded in1.
QGIS with the browse button (...) next to the field.
Choose a Schema to load the layer into. In our case, the public schema is the only2.
one available.
Provide a table (PostGIS layer) name in the Table field.3.
Define the source and target projections. It can be omitted if you would like to4.
keep the current projection. Let's save the layers in the local projection
you're using by using as Source SRID and your local projection's EPSG
code as the Target SRID (without EPSG).
Check the Create spatial index box. Consider the following screenshot:5.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[141]

You can also import layers into PostGIS with the ogr2ogr command-line
tool. If you use Windows, you can access this tool from the OSGeo4W
Shell. In our case, the command should look like the following (variables
prefixed with the word):

.
Password should only be included in password-protected databases or
Windows environments.

If we reconnect to the database, we can see the two imported tables. We can
inspect them by clicking on them and navigating to the Table and Preview tabs. If
we inspect the values stored in the tables, we can conclude that every value is
loaded successfully. We have null values, integers, floating point values, and
strings. The only problem is that we cannot define which columns we would like
to import. If we delete the columns within QGIS, we would lose them also on the
disk. Luckily, we can run the SQL queries within QGIS's database manager and
drop the excessive columns manually:

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[142]

There are only two mandatory columns-- and . The column
stores unique identifiers in the integer format. It can be removed, although
keeping it is highly recommended for easier data management. The
column stores geometries in PostGIS's native format; if we remove it, we
end up with no geometries at all. Both of their names can be altered from
QGIS's import dialog.

By opening the SQL window, we can build an SQL expression for dropping6.
columns. It does not matter what layer we selected as we must provide the table
to remove columns from. The syntax for dropping columns looks like the
following:

Therefore, to drop the , and columns of the layer, we can
run the following expression:

As we now use PostgreSQL's SQL syntax, we don't have to enclose the
column names within double quotation marks.

We had an easy task importing two basic layers into PostGIS--one with point
geometries and one with polygon geometries. What happens when we have layers
with mixed geometry types? Of course, mixing points, lines, and polygons are
strongly discouraged, but mixing single and multipart geometries of the same
type is a common thing. The only problem is that PostGIS doesn't allow us to do
so.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[143]

Let's try to import our in-memory waterways layer:7.

No matter how we try to import, if we have mixed geometry types, we end up
with an error. Our layer has line string and multipart line string geometries
mixed, while PostGIS only accepts one of them. The solution is simple though. We
either have to explode multipart geometries or convert single geometries to
multipart ones based on an attribute. Although we would get a little more optimal
result if we stick with the lowest common denominator (in this case, multipart
geometries), QGIS does a poor job in doing it. To convert our features to multipart
geometries, we would need a column with duplicated values, therefore, we would
lose data. As this is not an ideal solution, we have to convert our layer to single-
part geometries, duplicating some of the data.

There is a tool called Convert geometry type in QGIS geoalgorithms |
Vector geometry tools. It is theoretically able to convert single-part
linestring geometries to multiparts, although if it finds a feature which
only consists of one line, it leaves that feature as a single part.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[144]

We can use QGIS geoalgorithms | Vector geometry tools | Multipart to8.
singleparts from the Processing toolbox to achieve this. The output should be a
memory layer (memory:):

Now we can upload the resulting layer to PostGIS with the previous steps. If we put these
steps and considerations together, we end up with this workflow to import every layer we
need into PostGIS:

Clip the vector layer to the study area if it is not clipped already. Of course, you1.
can import the whole layer but doing so will have a performance hit.
Try to import the layer to PostGIS. If you have mixed geometries, the import will2.
fail.
Convert the multipart geometries to single part with the Multipart to singleparts3.
tool. You can achieve the same with other tools; don't be afraid to experiment.
Import the new layer to PostGIS. Don't forget to check the Replace destination4.
table (if exist) checkbox as if you have a failed attempt to create a table, an empty
table will remain there. The problem is it may have the wrong geometry type.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[145]

There is still one way to convert single-part geometries in a mixed layer to
multiparts while importing into PostGIS. The tool GDAL/OGR |
Miscellaneous | Import Vector into PostGIS database (available
connections) allows you to define explicit type casts by filling in the
Output geometry type field and keeping Promote to Multipart checked.
You still need to have the layer saved on the disk as it uses the command-
line tool ogr2ogr to achieve the import. Don't forget to select your local
projection both in the Assign an output CRS and Reproject to this CRS
on output fields if you do so.

We will need the following layers added to the PostGIS database:

The whole administrative boundaries layer
The clipped GeoNames, water ways, water bodies, and land use layers
The OSM (OpenStreetMap) layers we did not bother with or process before: the
road layer (), the railways layer
(), the buildings layer
(), the POIs layer
(), and the transport layer
()

Now that we have a bunch of layers we did not clip or alter too much to import, we need an
effective way to process them. First of all, we need to decide if we would like to add them to
the canvas before processing. If we do so, we can spare the overhead time of reading in the
layers and furthermore, build spatial indexes on them to speed up the clipping process. We
can also leave them on disk and spare some clicks. Either way, let's apply the usual filter on
our administrative boundaries layer and open the Clip tool from QGIS geoalgorithms |
Vector overlay tools.

There are some layers among the listed ones which are very dense. If QGIS
has a hard time rendering some of them (like roads, buildings, and so on),
you can uncheck the Render box in the status bar. You can also build
spatial indexes one by one with Properties | General | Create spatial
index to speed up processing.

In the clipping tool, we can access batch processing by clicking on the Run as batch
process button. There we can create as many rows as we need for processing each layer
with minimal hassle. Now we face another dilemma. We can save every result as a memory
layer, although we cannot name them. Therefore, we need to distinguish between the
results manually.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[146]

Fortunately, it isn't that hard in our case as we have one polygon layer, two line layers with
very different densities, and two point layers:

To distinguish between the two point layers, we can toggle the visibility of the original
layers and the clipped layers and compare them visually. After guessing the names of the
layers correctly, we can proceed and load them into PostGIS following the previous steps:

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[147]

Always check the inserted layers in PostGIS with the database manager's
Preview tab. QGIS can mix up memory layers, especially if they were
saved on disk with the plugin. If the inserted layer
is another one, you have to reload the original one from the Browser
Panel, clip it, and then insert it again. You can drop (remove) a PostGIS
table with QGIS's database manager by right-clicking on its entry and
selecting Delete.

Spatial indexing
We used spatial indexing several times but we have still not discussed what is it. If you
know about programming, you already have an idea about indexing. If not, it is like
creating shortcuts to referred items. For example, we can index a column by creating an
associative array (object if you like) and storing distinct values as keys and features having
them as values. This way, we reduce the time complexity of a single selection from O(n) to
O(1).

Time complexity is describing the running time of a simple algorithm in a
function of input size. The big-O notation (O) is the asymptotic upper
bound by definition, although we drop the constants in the final formula
as they become less and less significant while we approach infinity. In the
end, we have distinct big-O notations, like O(1) for constant time, O(n) for
linear time, O(log n) for logarithmic time, O(n2) for quadratic time, and so
on.

Spatial indexing is based on the same principle--we index geometries to reduce the time
complexity of spatial algorithms. However, indexing geometries, even represented in a
binary format, is unfeasible in almost every possible way. Hence, we usually use bounding
boxes to index geometries. These structures are collectively called Bounding Volume
Hierarchies (BVH), among which the R-tree is the most popular one. Both QGIS and
PostGIS use R-Trees to index geometries. The R-tree stores the axis-oriented minimum
bounding rectangles of geometries. That is, every rectangle is the smallest standing
rectangle encompassing the whole geometry.

As the name suggests, these bounding rectangles are put into hierarchy. Bigger bounding
rectangles of these rectangles get calculated based on the implementation.
Simple implementations do less partitioning, balancing, and optimizations in the hierarchy,
resulting in a performance hit when there are a lot of changes in the tree.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[148]

However, it does not matter how carefully the R-tree is constructed; searching it remains
the same: we start by querying the biggest rectangles, iterating through smaller rectangles
in them, finally arriving to the bounding rectangles of our features of interest, effectively
ending up with only relevant features in sublinear time (in average case). RBush, Vladimir
Agafonkin's R-Tree implementation has a great demo showing how these structures work
(for 50,000 features), as shown in the following image:

If we look at the PostGIS tables from QGIS, we can see some info about the spatial index
QGIS created automatically; however, there is no detailed information. However, if we
inspect one of our spatial tables in pgAdmin, we can see the exact SQL query creating the
spatial index, which is as follows:

So, a named index () was created for our layer () based on the
column containing geometries (). There is only one thing that is unclear--what is gist?
Generalized Search Tree (GiST) is an indexing scheme which uses B-tree and, more
importantly, gives a nice template to build other indexing mechanisms on. The creators of
PostGIS used its extensibility to build their own R-tree implementation.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[149]

Importing raster data
While PostgreSQL's, and therefore PostGIS's, structure is optimized to use vector data, we
can also store raster data in a PostGIS database. The gains in this case are not as great as
with vector data as QGIS will suffer a performance hit when it has to parse raster data from
a PostGIS database instead of a file. On the other hand, PostGIS can query raster tables at
various locations and, therefore, we can build expressions executing spatial analysis with
mixed data. Furthermore, we might need to store rasters with vectors in a distributed
system. One of the main pitfalls of adding raster data to a PostGIS database is that we
cannot do it from QGIS. We have to use the command-line tool .

Our first task is to locate the tool. If you are using Linux or macOS, you just have to open up
a terminal to have instant access to the tool if PostGIS is installed properly. Windows users
will have a harder time, though. If you are using Windows, you have to find the installation
folder of . You have to open a command line there or navigate there
with commands. If we have access to the tool, we can run it without parameters and see
the help page:

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[150]

The next step is to prepare our raster layer. As cannot warp rasters between
projections, we have to create a transformed version if we are using a local projection. We
can do this by saving the layer in QGIS (with Save As from its context menu) with our
local projection defined in the CRS field. Additionally, we can choose a High compression
profile to decrease the file's size in the Create Options menu .

Now that we have located and accessible and also our layer exported
in the projection which we would like to use in PostGIS, we can build our command for
import as follows:

Let's see how the flags and parameters which we provided work:

: PostGIS can tile raster data to speed up queries. With this parameter, we can
define the size of the individual tiles. By providing the parameter, we
ask to calculate the optimal tile sizes for our raster. If we would
like to override it with our values, we have to provide it as (for
example,).

: Creates a spatial index for the bounding boxes of the tiles. It can speed up
queries even more.

: Drops the destination table if it exists before feeding our data.
: Enforces adding constraints. Without it, the metadata of the raster (like

projection) won't get added and we cannot visualize the raster in QGIS.
: This is

the path to our raster image.
: This is the destination schema and table name for the stored

raster. We have to provide it in the form of .

The last part of the command redirects the output of to a file named
. We can use that output to create our table in PostGIS. There are

additional parameters we can use. If our raster does not contain projection data, for
example, we can add . That is, if we would like to import a WGS84 raster, it will be

.

SRS (Spatial Reference System) is a synonym of CRS. PostGIS uses the
term SRS and therefore we can refer to projections used by PostGIS with
their SRIDs (Spatial Reference ID). You can look at the available IDs at
the table's column.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[151]

The last step is to execute the resulting SQL file in PostGIS. For this, we can open up
pgAdmin 3 and click on the Execute arbitrary SQL queries button (Tools | Query Tool in
pgAdmin 4). There we can open our SQL file with the Open files button. Once pgAdmin
reads the content, we can run our query with the Execute button. That's it. If we refresh our
database manager's connection in QGIS, we can see our raster layer added to our PostGIS
tables:

Visualizing PostGIS layers in QGIS
Great work! You just created a spatial database filled with every kind of data. Now let's
visualize them in QGIS. First, get rid of the opened layers, and read the layers from PostGIS
by dragging and dropping them from the database manager to the canvas. Visualizing
PostGIS layers in QGIS is as easy as that.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[152]

We don't even have to worry about changes in the database. By changing the scale of the
map or clicking on the Refresh button in the main toolbar, QGIS will automatically
incorporate every change occurred since the last refresh:

Be careful with visualizing PostGIS raster layers, especially with large tile
numbers. QGIS (GDAL) will eventually make too many calls and
PostgreSQL will refuse serving additional data with the error message of
too many clients opened.

Basic PostGIS queries
Now that we have access to our layers in PostGIS, let's try some queries. Visualizing a
whole layer from a database can involve a lot of traffic as databases are often on remote
servers distributing all kinds of data. To have only the required data which we would like
to work with, we can query those tables and visualize only the results in QGIS.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[153]

As a warm up, remove the administrative boundaries layer and build an expression
querying it from the database.

Open an SQL window in the database manager.1.
In , Using Vector Data Effectively, we discussed a traditional SQL query2.
for selecting everything from a table. Let's use the most basic select query on our
administrative boundary layer-- .
Check the Load as new layer checkbox. We can specify the geometry column3.
there, as it is not necessarily called geom.
Name the layer in the Layer name (prefix) field. Since we have access to every4.
table in the database in the SQL builder, QGIS does not bother to find out which
layers are involved in the query.
Click on Load now! to get the queried rows as a layer in QGIS:5.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[154]

If we click on Execute, QGIS will only query the PostGIS database and fill
the SQL window's table with the matching rows. It is great for creating
quick previews without adding them as new layers in QGIS.

One of the best things in query layers is that we can modify the query on the go. If we close
the SQL window, we can reopen it with our query by right-clicking on the queried layer's
item in the Layers Panel and selecting Update Sql Layer. Let's update our query and select
only our study area from the table. My query will look like the following:

In QGIS's database manager, closing the query with a semicolon () is not
necessary. However, as most RDBMSs require it (for example, MySQL or
PostgreSQL with pl/pgSQL), getting used to closing queries anyways is
good practice.

Additionally, vector data can hold a lot of attributes from which, often, only a few are
relevant for our work. We can exclude some of the attribute columns by specifying only the
relevant ones in the clause. There is one mandatory column that we have to include--
the geometry column. Let's modify our query on the administrative boundaries layer to
only have the geometry column and the corrected population density column of our study
area. We don't even have to include the queried column as the rows get filtered on
PostgreSQL's side.

If we open the attribute table of the updated layer, we can only see two columns, and
. We don't have to bother with the column though, as it is QGIS's

internal ID added to the attribute table of the layer.

From now on, we will recreate some of the queries we did in QGIS before. For this, we have
to upload our file to our database. Let's open it in QGIS as we did
before (Add Delimited Text Layer) and import it in PostGIS like we imported our vector
layers. QGIS's database manager is a convenient tool for not only loading vector layers in a
PostGIS database but also for loading regular tables. We can leave every option of the
import tool on their default values.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[155]

In PostGIS, we can calculate additional columns from existing ones on the fly. We can
define these additional columns with their expressions as we did with regular columns and
even give them a name with the alias keyword . Let's retrieve the whole administrative
boundaries layer and, additionally, query a recalculated population density column based
on the population data stored in the layer:

Great job! You just used your first PostGIS function, , which returns the area of the
given geometry. As we are in our local projection, we don't have to fear great distortions
caused by a wrongly chosen projection. If we look at the attribute table, we can see some
minor differences between the new and the old columns. That
difference is due to the calculation of on the surface of the WGS84 ellipsoid.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[156]

We can also do spatial queries in PostGIS. As we have features clipped to our study area,
let's do something else. Select every POI inside the land use shapes. It shouldn't matter
which land use shape contains the POIs, just select them all. We can do such a query with
the following expression:

As we used two tables for a single query, we have to exactly define which table should be
included in the results. Additionally, we can ease our work by giving a shorthand for our
tables in the part. We can do such a thing by adding the shorthand after the table
name separated by a whitespace. Let's spice up the query a little bit. Select only those POIs
which are in forest areas. If we think it through, we can achieve this by filtering the
geometries of the land use layer. We can include a subquery doing just that. Modify the
query as follows and click on Execute (do not load the results as the updated layer):

Writing the shorthand separated with a whitespace is a special case of
aliasing, allowed only where the intent is clear for the interpreter. If you
like consistency over simplicity, you can write

.

How long did it take for you? For me, it took about 80 seconds. Can you imagine QGIS
loading for 80 seconds when you pan the map or zoom around? Me neither. Using
subqueries in PostGIS is generally a bad way to solve problems achievable with simple
queries. When we applied a filter on the land use layer and the results were correct, the
filter was recalculated for every row PostGIS iterated through. PostgreSQL had no way
to optimize this query and as a result it took very long. The correct way of doing this is by
using a logical operator as follows:

That's more like it. But why did it work? Because PostGIS does not make spatial queries, it
creates spatial joins and applies filtering. If we alter the query to include fields from the
land use table, we can see what's happening. We get every property of the intersecting land
use features joined to the POIs (even their geometries). This is a classic example of an inner
join:

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[157]

So, there we are. Joins and spatial joins. As we saw, we can do spatial joins fairly easily-- we
just have to express the spatial predict with the appropriate PostGIS function in the
clause. Of course, we can also use traditional join types both in regular and spatial joins.
Let's create a regular join by joining the description table to our GeoNames layer. We
discussed in a previous chapter that a join in QGIS is like a left outer join in an RDBMS.
Therefore, we can use in our query to create similar results.

You can use a single in the clause. That query returns correct
results containing every column from the two tables both with QGIS's
Execute button and pgAdmin's SQL builder. The only problem is that
QGIS cannot load the layer if it is queried that way as some of the columns
have the same name.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[158]

Let's try a spatial join as the next task. Remember when we joined our filtered GeoNames
layer to our administrative boundaries layer just to have population data in our polygon
layer? We can reproduce those results with the following expression:

There are two significant differences in this case. First, we only have an extract of our
GeoNames layer containing points in our study area. Secondly, we already have a

 column in our administrative boundaries layer. To fix the collision and make
the layer readable by QGIS, we can give the column of our GeoNames table an
alias. As you can see, the inner join returned only the intersecting rows; therefore, we only
got our study area back, the rest of the administrative boundaries layer got filtered out. We
can get the whole layer, filled with data only where it is possible with the outer join, as
stated before:

Now we have every feature with a column filled with values where
there is no matching GeoNames feature. Of course, we have some other join types we can
use. If our target table is in the clause and the joined table is in the clause, we
can make the following joins in PostgreSQL:

: Creates rows for every possible combination between the two
tables. It is rarely usable for spatial queries. It does not need a join condition.

: Returns rows from the target table where the join condition is true.
The joined table's columns are only joined there.

: Returns every row from the target table. Where the join
condition is met, the values of the joined table are included. Where not, the fields
are filled with values.

: Returns every row from the joined table. Where the join
condition is met, the values of the target table are included. Where not, the fields
are filled with values.

: Returns every row from both the tables. There will be only
completely filled rows where the join condition is true. Other rows are partially
filled with values. It cannot be used with spatial conditions.

(c) ketabton.com: The Digital Library

Feeding a PostGIS Database

[159]

You can use , , and without specifying as they can
only qualify an outer join; therefore, PostgreSQL automatically assumes it
is an outer join. If you use simply , it is assumed you would like to
create an .

Summary
In this chapter, we learned a lot about spatial databases. We learned how to create a PostGIS
database easily and directly from QGIS. We also learned how to query those PostGIS tables
and create visualizations in QGIS from them. We used basic queries, spatial queries, regular
joins, and spatial joins to achieve our goals.

In the next chapter, we will dive deeper into PostgreSQL's and PostGIS's structure. We will
learn about features easily accessible from pgAdmin. These features can make our work
easier and our database more manageable.

(c) ketabton.com: The Digital Library

77
A PostGIS Overview

In the previous chapter, we got introduced to the various types of spatial databases. We
created and filled a PostGIS database with vector and raster layers. After that, we learned
about the PostgreSQL SQL syntax, and executed some basic queries to get results which
were previously only possible with geoalgorithms in QGIS. With our current knowledge,
we would be able to integrate PostGIS into our workflow, and create some spatial analysis
and visualization tasks using QGIS only as a thin client. That means, PostGIS does the hard
lifting, while we only visualize the results in QGIS. However, we are yet to explain how to
create good spatial databases with the intent of creating a distributed working environment.
In this chapter, we will learn about some of PostgreSQL's and PostGIS's features, which can
aid us in creating a stable and well-organized spatial database.

We will cover the following topics in this chapter :

PostgreSQL features
PostGIS structure
Optimizing queries
Backing up data

Customizing the database
Most of the activities in this chapter will take place in the pgAdmin environment. We will
learn how to utilize the convenient functionality it offers to create a nice, well-structured
database without thinking of long commands. Of course, GUI operations cannot be
automated, and using the CLI is generally faster (if we know exactly how to use it);
therefore, we will also see those commands, as pgAdmin actually builds them from the
options we include, and lets us see the result.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[161]

First of all, let's see what pgAdmin has to show us if we open our database:

Don't worry if you use pgAdmin 4--it has more items to show. However,
the ones we will use are present in both versions.

As shown in the preceding screenshot, we can see the hierarchical structure of PostgreSQL
having extensions, schemas which contain tables and functions, and roles.

Securing our database
So far, we used the schema with the role to create and fill our database.
These are the default values, which are great for creating a local database, but far from ideal
if we would like to create a remote GIS server. Let's discuss how roles and schemas work in
PostgreSQL.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[162]

Roles are basically users that can log in, and do some stuff based on their permissions.
Different roles can have different access levels to different databases. There are two kinds of
roles--login roles and no-login roles (group roles). Group roles act as groups in operating
systems; therefore, they can group multiple login roles, and manage their permissions in
one place. Login roles are the typical users with passwords. The catch is, roles and group
roles are independent from users and groups used by the operating system. System users
cannot log in the database with their usernames, if a role was not created for them.
Following this analogy, new users do not get roles created for them automatically
by PostgreSQL.

Roles can have individual permissions, but they can also be managed by a group role.
Similar to traditional users, roles can also have superuser (admin) capabilities. These
superusers can modify roles and databases; therefore, they are quite dangerous to use as
regular roles in a remote server. Additionally, they bypass every permission check, which
makes them even more dangerous if exposed. The role is a superuser role, which
cannot be modified or dropped. It is completely fine to use in a local environment, as, by
default, PostgreSQL does not accept connection requests from remote places, but only from
the machine it is installed on.

It is still better to use a regular role in a local environment, as with a
superuser role, you can accidentally overwrite sensitive values, drop
tables, or, in the worst case, drop the entire database. You can also create a
non-superuser role with privileges to modify databases and roles, and use
the role only if absolutely necessary.

Let's create two new login roles. One will be a regular GIS role with every kind of access to
the GIS tables, while the other one will be a public role, which can only query the tables. It
cannot modify them in any way; therefore, it will be safe to use by GeoServer, for example.
We can create new roles by right-clicking on Login Roles, and selecting New Login Role.
We must provide a name, and we should also add a password. As we do not want to create
a superuser (having the role is enough for that purpose), that's all we have to
define. If we take a look at the last tab (SQL) after defining the required parameters, we can
see the command that pgAdmin will use to create the role, which is as follows:

That is, it creates a role with , declares it as a login role with , and, as it
already calculated the hash of the password, it stores it directly with

. It also includes a validity extent of infinity, which is superfluous.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[163]

If we wish to add a login role manually, we can simplify the command to the following:

In this case, the password is provided in plain text, and the hash is calculated by
PostgreSQL. We can try this method out by creating the other role from the command line
by opening an SQL window (Execute arbitrary SQL queries in pgAdmin 3 and Tools |
Query Tool in pgAdmin 4). If the tool is disabled, first select a database by clicking on it. If
we run the following query, we should be able to see the new role created:

Although MD5 is not considered a secure encryption method, by using a
salt, PostgreSQL does a fair job in most of the cases. If you want access to
better encryption algorithms, like bcrypt, you can use the
extension; however, you also have to set up your own authentication
system. You can learn more about pgcrypto at

.

Now that we have some roles, we can give them privileges to administer or just query
tables. However, doing so is very cumbersome, as these kinds of privileges do not apply on
tables created later on. To solve this issue, PostgreSQL uses schemas to group tables and a
lot of other things. In PostgreSQL, schemas are similar to folders in a file system. A database
groups different schemas, while a single schema groups different tables. Schemas are like
group roles for user management. The only difference is that using a schema is mandatory.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[164]

There are three different schemas-- , , and . The
first two are system schemas used by the RDBMS internally, and showed as Catalogs in
pgAdmin.

We should not alter those schemas in any way. The last is the default one in which we
stored our data and PostGIS functionality. Having multiple schemas is a convenient way of
organizing a big database, where only a single part contains spatial data. If we select the

 schema, we can see the SQL command that creates it:

Apart from the comment section, every command is important when creating a schema. We
have to create it with , assign an owner with , and give
privileges to roles with the expressions. By using , PostgreSQL
automatically gives every privilege to and . The only problem is that we
don't have a public role. By giving every permission to , PostgreSQL implicitly says
that every role ever created in this database should have every privilege to this schema.
Sounds dangerous? It is very convenient though if used carefully.

You can revoke granted permissions with the expression. If you
would like to use the public schema in a safe way, you can use

 to revoke implicit privileges.

As a rule of thumb, we shouldn't keep any tables in the schema which shouldn't be
accessed and edited by every role. Let's put our spatial database in a dedicated schema with
the following steps:

Create a new schema by right-clicking on Schemas and selecting New Schema.1.
Give a name to the new schema, and assign an owner. The owner should be the2.
role we created for managing the spatial database (for me it is gis).
Click on OK to create the schema.3.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[165]

Open a new SQL window, and grant some schema privileges to the roles we4.
created.

Grant every privilege to the administrator role by running the
expression .
Grant only select privileges to the public role by running the
expression .

In the SQL window, also grant some table privileges to the roles.5.
Grant every privilege to the administrator role with

.
Grant only select privileges to the public role with

.
Move every table to the new schema. Right-click on the tables in the 6.
schema, and select Properties. There we can alter these properties. Watch out not
to move the table created by PostGIS. We can optionally set
the owner of the tables to our GIS role:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[166]

Schema and table privileges differ; therefore, if you would like to fine-tune
the privilege system, you cannot avoid using table permissions. On
schemas, you can grant , , and . For the rest of the
privileges, you can read the PostgreSQL documentation at

. Make sure you select
the appropriate documentation version.

We are all set. Let's try out our new schema by doing a spatial query that we've already
done before:

The preceding query returns an error. As we moved our tables out of the schema,
we have to explicitly define the schema of the tables with the syntax . If we
update our query appropriately, PostGIS returns the intersecting features:

I'm completely sure you've already found out why PostGIS still works. As we left it in the
 schema, its functionality remained exposed. Can we move it out to our new

schema, and use its functions by prefixing them with the schema name? Not easily. PostGIS
quite heavily relies on sitting in the (or a similarly exposed) schema. However, as
we witnessed, we can move out our spatial tables wherever we see them fit.

As we stated before, using the schema is quite convenient. One of
the reasons for this is that its content can be accessed directly without
specifying the schema name. PostgreSQL achieves this by using a search
path in which the schema is defined. You can query the search
path variable with the expression, and modify it
with the command. Adding
additional schemas will make their content also available without
prefixing. Be careful with this approach, though. Schemas contain local
objects by design; thus, different schemas can share the same object (like
table, function, and so on) names.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[167]

As the final task, let's open QGIS, and edit our PostGIS connection to use our new gis role.
We have to use the database manager to get our layers again, as the project file for the
previous chapter still thinks they are placed in the schema, and, therefore, it cannot
access them:

Constraining tables
From the database and its schemas, we arrive at tables. As we know, databases can hold
multiple schemas, while a single schema can hold multiple tables. Tables have typed
columns and items as rows. What we did not discuss before is that tables can have a lot
more properties. We can consider these constraints, rules, triggers, and indexes metadata,
and we can set them with expressions, or from pgAdmin. If we inspect one of our tables, we
can see the definition it was created with, which is as follows:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[168]

If you've used an RDBMS before, this verbose expression resembles the
usual ones; however, some of the lines are different. On the other hand, if we try to use a
more regular expression, we end up with a similar table:

The first difference is that, in RDBMSs, keys are realized as constraints in the database. It is
not just for keys, though. Almost every qualifier (except) is realized as a
constraint. The most important qualifiers for tuning a database are , ,

, and . By adding the definition to a column, we
explicitly tell PostgreSQL not to accept updates or new rows with an empty value for that
field. Setting it for most of the columns is a good practice, as it can help to make the table
more consistent. For example, it will prevent everyone from adding new features or
updating existing ones without supplying the required attributes.

There are two kind of keys--primary key and foreign key. They are used to
logically link tables together for various purposes. For example, we can
fight redundancy by creating multiple tables, and linking them together
with keys. They are also useful for creating a cascading structure and
defining rules for what should happen to the referenced row when the
other one changes. This is what really makes relational databases
relational.

If we alter the table created before with some updated definitions, we end
up with two named constraints:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[169]

So far, we can see that PostgreSQL queries work in the concise way we might be used to.
However, if we inspect the table in pgAdmin, it crafts more verbose, more explicit
expressions to achieve the same results. We can also alter our tables in pgAdmin. We have
to open the Properties of a table to reach the relevant options under the Columns and
Constraints tabs. Under Columns, we can select any column, click on Change, and check
the Not NULL checkbox in the Definition tab. For setting the unique constraint, we have to
add a new, Unique item in the Constraints tab. In the dialog, we only have to provide the
column name in the Column tab, and click on Add:

While adding a definition would theoretically prevent PostGIS
from storing duplicate geometries, it is neither feasible, nor often possible
to apply it to the geometry column, due to the size of the contained
geometries.

The last constraint we should explore is . We can create rules that the columns have
to comply with before an update or insert occurs by using regular SQL expressions. For
example, we can create a for the column, and use the
expression to enforce a positive population value. Another reason to use a constraint
is to validate the geometries themselves, as PostGIS only checks that they are using the right
geometry type. For this task, we have to create a , as we would add a
definition:

In one of the spatial tables' Properties window, select the Constraints tab.1.
Add a new Check.2.
In the Definition tab, supply the following expression-- :3.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[170]

If we look at the SQL tab, we can see that defining a is very similar to defining other
constraints with an expression:

Let's see a real world example. PostGIS has the capability to handle curves. Besides the
regular points, lines, polygons, and their multipart counterparts, PostGIS handles the
following geometry types:

Triangle: A simple triangle
Circular String: A basic curve type, which describes a circular arc with two end
points and minimum of one additional point on the circle's perimeter
Compound Curve: A geometry mixing line strings and circular strings
Multi Curve: The multipart geometry mixing line strings, circular strings, and
compound curves
Curve Polygon: A polygon-like geometry, although the polygon can be made of
line strings, circular strings, and compound curves
Multi Surface: A multipart geometry mixing regular polygons and curve
polygons
Polyhedral Surface: A surface made of polygons--useful for storing 3D models.
TIN (Triangulated Irregular Network): A surface made of triangles--useful for
representing Digital Elevation Models (DEM) with vector data

(c) ketabton.com: The Digital Library

A PostGIS Overview

[171]

Sometimes, we would like to store curves to have a representation which can be visualized
instantly without post-processing. Unfortunately, there is no function in PostGIS which
smoothes lines with a nice smoothing algorithm. To fill this gap, I created a small and
primitive script, which converts corners to curves based on some rough approximations.
First of all, let's get this script () from the supplementary material's

 folder, or download directly from
. We can open the file in pgAdmin's SQL window, and run the

content as a regular SQL expression. When we are done, we should have access to the
 function.

You can use this function for any purpose; however, it is neither
mathematically, nor computationally, optimal. Do not trust the results,
always review them before using.

In this example, we will build a table storing the curvy representation of our rivers table.
First of all, we need to create a table which will contain our curves. We could save the
results of a query directly into a table; however, we will also apply some logic, which is as
follows:

Only the IDs and the geometries get stored.
PostGIS must only accept compound curves as geometries, as our custom
function can only return compound curves when fed with line strings.
The IDs reference the IDs of the original table. If we delete a row from the
original waterways table, PostgreSQL must also delete its curvy representation.
If we update the original table, PostgreSQL must automatically update the curve
table accordingly.

We can apply some of this logic when we create the table with the correct table definition in
an SQL window as follows:

With this preceding definition, we defined two columns: one for the IDs, and one for the
geometries. The IDs are foreign keys, as they reference another column in another table. By
adding the definition, we ask PostgreSQL to delete referencing rows
from this table when rows get deleted from the parent table.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[172]

The geometry is defined as compound curves in our local projection (the number should
reference your local SRID). This table definition alone fulfilled some of our requests. There
is a great feature in PostgreSQL which we can apply to the rest of them--rules.

Before creating the rules, we should synchronize our new table with the waterways table.
We can insert values into an existing table with the expression. What is more
exciting is that we can shape a statement to insert the results instantly into a
destination table as follows:

Rules are custom features of PostgreSQL, which allow us to define some logic when we
select, update, delete, or insert rows in a table. In a rule, we can define if we would like to
apply our custom logic besides the original query, or instead of it. In order to define a rule,
we can select our table in pgAdmin, right-click on , and select New Rule:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[173]

The rule maker of pgAdmin is a little bit scattered, as rules are quite complex. There are
these three distinct tabs we need to fill in order to have a rule:

The first thing we can define is the rule's name in the Properties tab (for
example,).
In the Definition tab, we can define the event we would like to hook our rule
onto. Rules are like event listeners in object-oriented languages. They are invoked
when an event we hooked them onto occurs. We should select INSERT for our
first rule. We can also supply a condition, which has to happen in order to run the
rule. We can leave that field empty.
The Statements tab holds the body of our rule. Every logic we would like to
execute when our event triggers goes there. As we need PostgreSQL to
automatically generate curves from new geometries, we can insert some of the
new row's values into the curve table directly:

As we are now inserting literal values directly into a table, we have to provide the
keyword. Other RDBMSs might also require us to provide the columns we would like to
insert our values into; however, PostgreSQL is smart enough to find out that we only have
two columns in the new table with matching types. There is one additional thing we need to
keep in mind when writing rules and triggers--row variables. We can access the
processed rows with the keywords and . Of course, we should only use the
appropriate one from the two. That is, if we write a rule for an , we should use .
If we write a rule for an , we can use both of them, while for events, we
should only use .

You can only create rules if you own the table. Keep in mind that if you
are still connected in pgAdmin with the role, your new tables'
owner becomes . Therefore, you cannot create rules for those
tables with other roles. You can still change the ownership of the tables to
do that. Also note that, as superusers are excluded from permission
checks, can create rules to every table in the database.

The second rule should occur when we update the table. In this case, we should
only update the curve table when a geometry changes; therefore, we need a condition
besides the rule body:

Name the rule in the Properties tab.1.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[174]

Select the UPDATE event in the Definition tab, and add the following expression2.
as a Condition-- .
Write the rule's body in the Statements tab as follows:3.

As you can see, we can directly compare the new and old values of the updated row, but
PostgreSQL has no idea how it should update the curve table. Therefore, we have to supply
a clause defining where we would like to update our geometry if it differs from the
old one. Of course, we can also use , as the two should be the same.

We don't have to create a rule for deleting rows, as the cascading constraint on the foreign
key will make sure that the rows deleted from the waterways table get deleted from the
curve table. Let's see, instead, what we created in QGIS. First of all, we can see in the
database manager that QGIS recognizes the compound curves we have as line geometries,
as it also supports circular strings. If we open the layer, and zoom in to a corner, we can see
our curves:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[175]

To check if everything works as expected, we have to edit our waterways table a little bit, in
the following way:

Select the layer in the Layers Panel.1.
Start an edit session with the pencil-shaped Toggle Editing button in the main2.
toolbar.
Select the Node Tool from the freshly enabled tools in the main toolbar.3.
Click on one of the lines, and move one of its vertices a little bit with the red4.
anchor.
Save the edit by clicking on the Save Layer Edits button.5.
Refresh the layers by panning, zooming, or clicking on the Refresh button in the6.
main toolbar.

If everything is configured properly, we should be able to see our curve layer following the
edits we made in the waterways layer. The only problem left is that we can update the
curve table manually, getting the tables out of synchronization. We can easily avoid this,
however, by smart permission control. What do we know about rules? Only table owners
can define them on tables; therefore, PostgreSQL will run them on behalf of the owner.
Thus, we can fine-tune the privilege system in the following way:

Set the curve table's owner to a superuser role, like .1.
Set the waterways table's owner to a superuser role, like .2.
Give select privilege to the GIS role on the curve table with the expression 3.

.
Give every privilege to the GIS role on the waterways table with the4.
expression .

Now we can modify the waterways table with the GIS role, but only the
superuser can modify the curve table. That is, we can only access the curves layer with the
GIS role, but the rules we defined change the curve table accordingly and automatically
when we modify the waterways table.

Note that using rules increases stability and consistency, but also degrades
performance. Most of the rules can be rephrased as triggers, which are
often faster, but they need to be declared as functions in a programming
language usable by PostgreSQL. The most SQL-like language (besides
SQL) for this is PostgreSQL's PL/SQL extension, pl/pgSQL. You can see an
example if you inspect the function's source.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[176]

Saving queries
As we've already witnessed, using PostGIS has a great advantage of offering flexible results
over traditional desktop GIS applications. That is, we can play with queries without filling
the memory or disk with useless intermediate data showing wrong results. But how can we
save the correct results once we've found out the right query to produce it? There are
various ways of saving results in PostgreSQL. The most basic way is to save them right into
a new table. All we have to do is to prefix our query with the

 expression.

Let's try it out by creating another curve table with the following expression:

If we refresh the tables, or import the table in QGIS, the geometries are the
same as in our fine-tuned table. With these kinds of queries,
PostgreSQL creates a regular table, finds out the column types from the queried columns,
and fills this new table with the query results. The only differences from the PostgreSQL
perspective in the two tables are the constraints and rules we added, which can be also
defined on an existing table.

On the other hand, there is an important PostGIS difference between the two methods.
PostgreSQL cannot find out the type of the geometries we have, therefore, it types the
geometry column simply as . That means, we lose the subtype information, and
end up with a column which does not care for geometrical consistency. On top of that, it
doesn't even care for the projection we use. Luckily, there's a method for telling PostgreSQL
the subtype we would like to use--explicit typing. If we cast the results of to a
compound curve geometry in our local projection, PostgreSQL can safely use our preferred
subtype:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[177]

Don't forget to use your local projection, or the projection your waterways
table is in, instead of my EPSG:23700. Furthermore, make sure you drop
the table by right-clicking on it, and selecting Delete/Drop
before running the query again.

This method is very useful for storing quickly accessible versions of our results, but the
tables we create this way remain static. Our heroic attempt at synchronizing the results with
the data source was, of course, a very nice way to get rid of this obstacle. However, this is
not always a practical method due to the hassle it involves. To create dynamic results,
which change with the data source, we can build views. In PostgreSQL, views are special
empty tables, which have a rule hooked on to their SELECT event. That rule simply
executes the query we saved our view with. As a result, we can save our query in a view,
which means that it gets executed every time we access the view. If we look at our public
schema, we can see the views that PostGIS created. They dynamically query the database,
and create catalogues of our data in it with lengthy and complex expressions. Let's create
our own view the same way we created a table, as follows:

In QGIS, we can see that the new view is recognized as a view with its definition. However,
if we load the layer, we also stumble on to the performance cut it introduced. As views are
basically saved queries, which are executed every time the canvas is refreshed (for example,
on panning and zooming), and the function is slow, storing this table as a
view has a great performance impact:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[178]

On the other hand, those PostGIS catalogues are only queried once in a while, and it is
completely affordable to sacrifice some speed to have dynamic tables without the extra
hassle. On those PostGIS views, we can identify some rules for inserting, updating, and
deleting rows. They are needed, as views are generally modifiable. If we try to update,
insert into, or delete from a view, PostgreSQL tries to find out which tables are affected, and
applies the required operations on them. To override this behavior, we can define three
simple rules on views using the following scheme:

You can see a default _RETURN rule in every view. This is the SELECT
rule created by PostgreSQL by default, returning the results of the
underlying query.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[179]

We can see an example of such rules on the following screenshot:

The should be , , or , while the should be the view
we would like to apply the rules on. Of course, we can do it with pgAdmin's GUI like we
did before. In there, we only have to give the rule a name, select the event type, and check
the Do instead checkbox. If we leave everything else blank, the simple rule given earlier
gets created. By applying these rules on the three events, we can easily make our views
read-only. If anyone would like to modify our tables via a protected view, those operation
requests will simply bounce off the database.

What if we would like to create views with better performance? We shouldn't be so
demanding, right? Well, PostgreSQL thinks otherwise, and happily offers us materialized
views. These views store snapshots of the queries stored in them. We can create such a view
by running the following query:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[180]

As a result, we get a view which has data in it, and is read-only by default. We cannot insert
into it, update it, or remove rows from it. The only drawback is that it stores the snapshot of
the query created at the time of execution. If we would like to incorporate changes in our
materialized view, we have to refresh it manually as follows:

You can right-click on a materialized view in pgAdmin, and select Refresh
data to refresh it with the GUI.

Optimizing queries
We already used some techniques to speed up queries, although we have a lot more
possibilities in tuning queries for faster results. To get the most out of our database, let's see
how queries work. First of all, in RDBMS jargon, tables, views, and other similar data
structures are called relations. Relation data is stored in files consisting of static-sized blocks
(pages). In PostgreSQL, each page takes 8 KB of disk space by default. These pages contain
rows (also called tuples). A page can hold multiple tuples, but a tuple cannot span multiple
pages. These tuples can be stored quite randomly through different pages; therefore,
PostgreSQL has to scan through every page if we do not optimize the given relation. One of
the optimization methods is using indexes on columns just like the geometry columns,
other data types can be also indexed using the appropriate data structure.

Don't worry about storing values larger than 8 KB. Complex geometries
can easily exceed that size. PostgreSQL stores large values in external files
using a technique, which is called by the awesome acronym TOAST (The
Oversized-Attribute Storing Technique).

There is another optimization method which can speed up sequential scans. We can sort our
records based on an index we already have on the table. That is, if we have queries that
need to select rows sequentially (for example, filtering based on a value), we can optimize
these by using a column index to pre-sort the table data on disk. This causes matching rows
to be stored in adjacent pages, thereby reducing the amount of reading from the disk. We
can sort our waterways table with the following expression:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[181]

In this preceding query, the value is the spatial index's name,
which was automatically created by QGIS when we created the table. Of course, we can sort
our tables using any index we create.

Sorting a table only works while we do not modify the rows' order.
PostgreSQL will not care about keeping the right order if we remove,
insert, or update rows. On the other hand, once we use to sort a
table, the following ordering operations won't need the index to be
specified. For example, we can order our waterways table with the
expression .

For the next set of tuning tips, we should understand how an SQL expression is turned into
a query. In PostgreSQL, there are the following four main steps from an SQL query to the
returned data:

Parsing: First, PostgreSQL parses the SQL expression we provided, and converts1.
it to a series of C structures.
Optimizing: PostgreSQL analyzes our query, and rewrites it to a more efficient2.
form if it can. It strives to obtain the least complex structure doing the same thing.
Planning: PostgreSQL creates a plan from the previous structure. The plan is a3.
sequence of steps required for achieving our query with estimated costs and
execution times.
Execution: Finally, PostgreSQL executes the plan, and returns the results.4.

For us, the most important part is planning. PostgreSQL has a lot of predefined ways to
plan a query. As it strives for the best performance, it estimates the required time for a step,
and chooses a sequence of steps with the least cost. But how can it estimate the cost of a
step? It builds internal statistics on every column of every table, and uses them in
sophisticated algorithms to estimate costs. We can see those statistics by looking at the
PostgreSQL catalog's () pg_stats view:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[182]

As the planner uses these precalculated statistics, it is very important to keep them up to
date. While we don't modify a table, the statistics won't change. However on frequently
changed tables, it is recommended not to wait on the automatic recalculations, and update
the statistics manually. This update usually involves a clean-up, which we can do on our

 table by running the following expression:

PostgreSQL does not remove the deleted rows from the disk immediately. Therefore, if we
would like to free some space when we have some deleted rows, we can do it by
vacuuming the table with the statement. It also accepts the expression,
which recalculates statistics on the table. Of course, we can use without to
only free up space, or without to only recalculate statistics. It is just a
good practice to run a complete maintenance by using them both.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[183]

Now that we know how important it is to have correct statistics, and how we can calculate
them, we can move on to real query tuning. Analyzing the plan that PostgreSQL creates
involves the most technical knowledge and experience. We should be able to identify the
slow parts in the plan, and replace them with more optimal steps by altering the query. One
of the most powerful tools of PostgreSQL writes the query plan to standard output. From
the plan structured in a human readable form, we can start our analysis. We can invoke this
tool by prefixing the query with . This statement also accepts the
expression, although it does not create any kind of statistics. It simply runs the query and
puts out the real cost, which we can compare to the estimated cost. Remember that
inefficient query from the last chapter? Let's turn it into a query plan like this:

We can see the query plan generated as in the following screenshot:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[184]

According to the query plan, in my case, we had to chew ourselves through about 5,700,000
rows. One of the problems is that this query cannot use indices, therefore, it has to read a lot
of things into memory. The bigger problem is that it had to process more than 17 million
rows, much more than estimated in the query plan. As PostGIS does spatial joins in such
queries, and we provided a subquery as one of the arguments, PostGIS did a cross join
creating every possible combination from the two tables. When I checked the row numbers
in the tables, the POI table had 5,337 rows, while the land use table had 3,217 rows. If we
multiply the two numbers, we get a value of 17,169,129. If we subtract the 17,168,137 rows
removed by the join filter according to the executed query plan, we get the 992 relevant
features. The result is correct, but we took the long way. Let's see what happens if we pull
out our subquery into a virtual table, and use it in our main query:

By using , we pulled out the geometries of forests into a CTE (Common Table
Expression) table called . With this method, PostgreSQL was able to use the spatial
index on the POI table, and executed the final join and filtering on a significantly
smaller number of rows in significantly less time. Finally, let's see what happens when we
check the plan for the final, simple query we crafted in the previous chapter:

The query simply filters down the features accordingly, and returns the results in a similar
time. What is the lesson? We shouldn't overthink when we can express our needs with
simple queries. PostgreSQL is smart enough to optimize our query and create the fastest
plan.

There are some scenarios where we just cannot help PostgreSQL to create fast results. The
operations we require have such a complexity that neither we, nor PostgreSQL, can
optimize it. In such cases, we can modify the memory available to PostgreSQL, and speed
up data processing by allowing it to store data in memory instead of writing on the disk
and reading out again when needed. To modify the available memory, we have to modify
the variable. Let's see the available memory with the following query:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[185]

The 4 MB RAM space seems a little low. However, if we see it from a real database
perspective, it is completely reasonable. Databases are built for storing and distributing data
over a network. In a usual database, there are numerous people connecting to the database,
querying it, and some of them are also modifying it. The variable specifies how
much RAM a single connection can take up. If we operate a small server with 20 GB of
RAM, let's say we have 18 GB available for connections. That means, with the default 4 MB
value, we can have less than 5,000 connections. For a medium-sized company operating a
dynamic website from that database, allowing 5,000 people to browse its site concurrently
might be even worse than optimal.

On the other hand, having a private network with a spatial database is a completely
different scenario. Spatial queries are usually more complex than regular database
operations, and complex analysis in PostGIS can take up a lot more memory. Let's say we
have 20 people working in our private network using the same database on the same small
server. In this case, we can let them have a little less than 1 GB of memory for their work. If
we use the same server for other purposes, like other data processing tasks, or as an NFS
(Network File System), we can still give our employees 128 MB of memory for their
PostGIS related work. That is 32 times more than they would have by default, and only
takes roughly 2 GB of RAM from our server.

In modern versions of PostgreSQL, we don't have to fiddle with configuration files located
somewhere on our disk to change the system variables. We just have to connect to our
database with a superuser role, use a convenient query to alter the configuration file, and
another one for reloading it and applying the changes. To change the available memory to
128 MB, we can write the following query:

Finally, to apply the changes, we can reload the configuration file with this query:

Backing up our data
It's great fun to work with spatial databases. However, when we use a database extensively,
we can lose a lot of valuable data in case of a failure. To minimize the damage involved in a
server failure, we can, and we should, create backups of our database. In PostgreSQL, there
are multiple great and powerful ways to create backups.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[186]

Creating static backups
The traditional way of backing up a PostgreSQL database is to create static backups. This
method uses the command-line tools and to create and restore the
whole database, or parts of it. Of course, we do not have to use those CLI tools for backing
up and restoring, as pgAdmin offers us a way to use of them via its GUI. The main
advantage of using static backups is that we can save only parts of the database, like only
our spatial data, or just one table. Its main disadvantage, of course, is its static nature. We
have to refresh the backups manually if we would like to archive a more recent version of
our database.

Let's see what happens if we back up one of our tables. We can do it by right-clicking on the
table in pgAdmin and selecting Backup. In the dialog, we have numerous options. The
most important is the file format. We can choose between four formats:

Plain: The selected objects will be saved as a series of regular SQL expressions.
The saved file can be restored by opening the file in an SQL window, and
running the query. Choosing this format allows us to read and modify the result
if we would like to port our tables to another RDBMS.
Custom, Tar, and Directory: These are PostgreSQL-specific formats, which
compress the data nicely, and can be used with PostgreSQL's restore tool. The
custom format creates a PostgreSQL backup file, the tar format creates an archive,
and the directory format creates a directory structure with compressed objects
representing PostgreSQL objects.

You can read more about these formats in PostgreSQL's manual
at .

To try out the plain format, we should back up our table, as it does not
have geometries; therefore, will create a nicely readable output.

Right-click on the table, and choose Backup.1.
Browse the output folder, and choose a name with the extension (for2.
example,).
Choose Plain in the Format field.3.
In the Dump Options #2 tab (Dump options in pgAdmin 4), check the Use4.
Column Inserts box.
Click on the Backup button. When it is done, click on the Done button to close5.
the dialog.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[187]

If we open the resulting file in a text or code editor, we can see a very well-structured set of
SQL expressions creating the table, the constraints, the sequence, and inserting the data:

What PostgreSQL did not save is the schema that it should restore the table in. On the other
hand, if we drop our table, and run the contents of this file in an SQL
window, the table gets recreated in the spatial schema. If we inspect the start of the file, the
script sets some PostgreSQL-specific variables. From the numerous variables, the following
overwrites the search path for the transaction:

(c) ketabton.com: The Digital Library

A PostGIS Overview

[188]

Since, in the search path, the schema is set as first, PostgreSQL will automatically
put everything in there.

There are a lot of PostgreSQL-specific expressions in an SQL dump. If you
would like to port the tables to another RDBMS, you have to identify,
then modify or remove those parts.

We can also create compressed archives. Let's create a backup containing our entire spatial
schema as follows:

Right-click on the schema in pgAdmin, and select Backup.1.
Browse the output folder, and choose a name with the backup extension (for2.
example,).
Choose Custom in the Format field.3.
Click on the Backup button. When it is done, click on the Done button to close4.
the dialog.

One of the disadvantages of using for creating backups is that it saves everything
from the dumped objects. If we dump the entire database, it saves every PostGIS object (like
functions) along our data. This is another good reason for using a different schema for the
actual spatial data, as this way we can back up the relevant data only.

To restore the data dump, we have to specify the place where we would like to extract our
archive. If we exported a table, we have to right-click on the schema we would like to insert
it into, while, if we dumped a schema, we have to right-click on the database. There we
have to select Restore. A great perk of using a compressed archive for a backup is that we
can browse through the exported objects, and specify the ones we would like to restore:

Right-click on the database, and click on Restore.1.
Browse the backup archive created previously.2.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[189]

Click on Display objects, and browse the dumped objects in the Objects tab:3.

In pgAdmin 4, there is currently no way to inspect an archive and only
restore a part of it.

Continuous archiving
In some setups, it is simply inconvenient to save static backups of a database on regular
intervals. With continuous archiving, we can archive the changes made to our database, and
roll back to a previous stable state on failure or corruption. With this archiving method,
PostgreSQL automatically saves logs in a binary format to a destination location, and can
restore the whole database from those logs if necessary. The main disadvantage of this
method is that the whole cluster is saved, and there is no way to specify which parts we
would like to archive.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[190]

First of all, what is a cluster? In PostgreSQL terms, a cluster contains every data stored in a
PostgreSQL installation. A cluster can contain multiple databases containing multiple
schemas with multiple tables. Using continuous archiving is crucial in production servers
where corruption or data loss is a real threat, and the ability to roll back to a previous state
is required.

First of all, let's find out where our PostgreSQL cluster is located on the disk. The default
path is different on different operating systems, and, besides that, we can specify a custom
location for our cluster. For example, as I use an SSD for the OS, and PostgreSQL would
store its database on the SSD by default, I specified the folder in a partition of my
HDD mounted at for the database. We can see the path to our cluster by
running the following query:

If we open the path we got from the previous query in a file manager, we will see the files
and folders our PostgreSQL cluster consists of. From the folders located there, the
contains the WALs (Write Ahead Logs) of our database transactions. WALs are part of
PostgreSQL's ACID implementation, as it can restore the last stable state from these logs if
something bad happens. They can be also used for continuous archiving by saving them
before PostgreSQL recycles them:

If you cannot access the cluster with a regular user, it is completely fine.
The cluster files should be read and written by the user, while
other users shouldn't have any permissions (0700 mode). If this is not the
case, PostgreSQL won't start correctly.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[191]

To use continuous archiving, we need a base version of our cluster. This base version is the
first checkpoint. From this checkpoint, logs are preserved, and we can restore previous
states by restoring the first checkpoint, specifying a date, and letting PostgreSQL replay the
logged transactions until the specified date. To enable WAL archiving, we have to set some
system variables using a superuser role as follows:

Set the variable to with the expression 1.
.

Set the variable to with the expression 2.
.

Create a place for your archives. Remember the absolute path to that place. I will3.
use the path.
Set the variable to the system call that PostgreSQL should4.
archive WALs with. On Linux and macOS systems, it can be

, while, on Windows, it
should be something like

. In the call, denotes the WAL file's
name, while denotes its absolute path with its name.
Restart the server.5.

Telling PostgreSQL what to do in the archiving process might seem
tedious, but it gives an amazing amount of flexibility. We can encrypt or
compress the WALs, send them through SSH, or do virtually any valid
operations on them.

Next, we have to set up the first checkpoint, and create a physical copy of this base version.
We can put this backup wherever we like, although it should be placed somewhere along
the WAL files.

Start creating the first checkpoint with the query 1.
. By specifying , we ask

PostgreSQL to create the checkpoint as soon as possible. Without it, creating the
checkpoint takes up about 2.5 minutes with the default settings. Wait for the
query to finish.

(c) ketabton.com: The Digital Library

A PostGIS Overview

[192]

Copy out everything from the cluster to the backup folder. You can use any tool2.
for this, although you must make sure that file permissions remain the same. On
Linux and macOS, is a great tool for this. With my paths, the command looks
like the following:

 tar -czvf /home/debian/postgres_archive/basebackup.tar.gz
 /database/postgres.

Stop the backup mode with the query .3.

There is a CLI tool called , which can automatically create
the first checkpoint and its backup. However, it needs PostgreSQL to be
configured in a way that replication connections are accepted. For further
reference, you can read the official manual at

. You can also read a
thorough guide on configuring a hot standby server at

.

Let's say the worst has happened, and our database is corrupted. In that case, our first task
is to find out the last time our database was stable. We can guess, but in this case, guessing
is a bad practice. We should look through our logs to see when our database went off.
We don’t want to have to rollback more transactions than necessary, as this can have a
significant impact on a production server. When we have a date, we can start recovering
with PostgreSQL's PITR (Point-in-Time Recovery) technique:

Shut down the PostgreSQL server.1.
Make a backup copy from the corrupted cluster's folder, as it might2.
contain WAL files which haven't been archived yet. It is a good practice to make a
copy of the corrupted cluster for later analysis if you have the required free disk
space.
Delete the cluster, and replace it with the base backup's content.3.
The base backup's folder's content is now obsolete, as those changes4.
were already incorporated in the backup database. Replace its content with the
corrupted cluster's logs. Watch out for keeping the correct permissions!

(c) ketabton.com: The Digital Library

A PostGIS Overview

[193]

Create a file named in the cluster. The file's content must5.
contain the inverse of the archiving command saved to the
variable. It should also contain the date until the recovery should proceed to be
saved to the variable:

You can read more about the valid date formats PostgreSQL accepts at
.

Start the server. When PostgreSQL is done with the recovery, it will rename6.
 to .

Summary
In this chapter, we discussed PostgreSQL's structure, its objects, and how PostGIS sits on
the RDBMS. We also learned some of the architectural specialities of PostGIS. We came
closer to fully understanding RDBMSs, what we should look out for when we use them,
and how we can effectively create queries in them. Although we used pgAdmin, we also
learned some useful expressions, which can be used directly in PostgreSQL's CLI. It will
come in handy when you have to configure a PostgreSQL or PostGIS instance on a remote
server only accessible through SSH.

In the next chapter, we will dive into geospatial analysis, and see how we can produce
meaningful results from our raw data. We will set up a scenario where we are real estate
agents serving a customer with very specific needs. To find out the best spots matching the
given criteria, we will use various geoalgorithms via geoprocessing tools in QGIS.

(c) ketabton.com: The Digital Library

88
Spatial Analysis in QGIS

In the previous chapter, we learned how spatial RDBMSs work on the example of PostGIS.
We went through the typical data types, tables, views, functions, and other objects, while
also discussing how we can construct a great spatial database, which can effectively
enhance our work. Now that we can ease our job by using spatial databases, we will move
on and learn about spatial analysis. To have a full-blown example on which we can work,
let's assume we are very enthusiastic real estate agents. We are happy to go that extra mile
to please our customers who have very specific conditions on their dream houses. The price
and size of the house does not matter in this case, although its situation must meet certain
criteria.

In this chapter, we will cover the following topics:

Vector analysis
Building models in QGIS
Digital elevation models (DEM)
Using GRASS from QGIS

Preparing the workspace
First of all, we should choose a small area to work with. A populated town or city is an
obvious choice for this task. The first obstacle is that there aren't any freely available
settlement polygon data in the formats we are used to. To tackle this, we can download the
required data directly from OpenStreetMap. OSM offers a read-only web database for
accessing its data, which is available through the Overpass API. From Overpass, we can
request data through regular web requests, and the server sends the matching features as a
response (Appendix 1.5). In QGIS, we can install a plugin written directly for this--

.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[195]

Therefore, our first task is to install the plugin as follows:

Open the plugin manager via Plugins | Manage and Install Plugins.1.
Type in the search field.2.
Click on Install plugin.3.

In , we can build Overpass requests in an interactive way. In Overpass, we can
query features in a predefined area (for example, the extent of a layer), or use a name which
can be geocoded to an area by OSM (for example, the name of an administrative boundary).
If we open up the plugin, we can see that Overpass accepts key-value pairs according to
OSM's tag specification. If we would like to request administrative boundaries, we have to
use the tag as Key, and provide the appropriate level as a Value. We only
need to find out the level for our country. Luckily, OSM maintains a detailed wiki about the
tags it uses from where we can reach the related part at

:

Now we can import our preferred city with the following steps:

Open up the plugin.1.
Provide as Key.2.
Find out the level that contains settlement data for your country from the3.
aforementioned link, and provide that level as Value.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[196]

Check the radio box next to In, and provide the settlement's name.4.
Expand the Advanced menu.5.
Keep only the Relation and the Multipolygons boxes checked. This way, we will6.
only request polygons from OSM.
Click on Run query:7.

If running the query yields an error, restart QGIS, click on Reset in
, and fill out the form again. If you get the correct result, saving

it in your working folder is recommended. If your town's name is not
unique (for example, Los Angeles), you might have to filter the results.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[197]

As we have a smaller region for our analysis, let's generate some data. We should create
points representing houses for sale with street addresses, sizes, and prices. There are
various ways to achieve this. As we already did some geoprocessing, please take a little
break to think about a sequence of logical steps that you would take to create these random
data.

In my opinion, the easiest way is to generate the points right on the streets. We can do that
as follows:

Load the layer.1.
Apply a filter on the layer which discards streets without the attribute. Use2.
the filter expression .
Clip the layer to the town boundary. Use QGIS geoalgorithms | Vector3.
overlay tools | Clip for this task. Save the clipped layer as a memory layer by
specifying memory: as output.
Generate random points on the clipped road layer with QGIS geoalgorithms |4.
Vector creation tools | Random points along line. Create at least 1,000 points, so
we will always have some results. Save the points as a memory layer:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[198]

The next step is to fill our random points with data. First of all, we need to join the
attributes of the roads layer to have the street names stored with our imaginary houses. The
only problem is that QGIS's spatial join uses the problematic Select by location tool's
algorithm. To see what I'm talking about, let's select points with it (QGIS geoalgorithms |
Vector selection tools) using the intersects spatial predicate and our clipped lines layer as
the intersection layer. For me, it did not select any points. One of the problems might be a
precision mismatch between lines and points interpolated on them (Appendix 1.6); however,
if we define a small Precision value, still only a portion of our points get selected. For me, a
precision of 170 meters resulted in a full selection, where QGIS has no means to guarantee
the correct street attributes get joined to the points.

What we already know about spatial queries in QGIS--checking point-polygon and line-
polygon topological relationships--work well. Checking point-line relationships, on the
other hand, does not. Therefore, the easiest workaround is to transform our points to
polygons, join the street attributes to them, then join the polygon attributes back to the
points. For this task, we can use the basic geoprocessing tool--buffer. It creates buffer zones
around input features; therefore, if we supply a point layer to the tool, it creates regular
polygons around them. The more segments a buffered point has, the more those polygons
will resemble circles. There are two kind of buffer tools in QGIS--fixed buffer and variable
buffer. The variable buffer tool creates buffer zones based on a numeric attribute field,
while the fixed buffer tool creates buffer zones with a constant distance. Let's create those
joins using the following steps:

Select the Fixed distance buffer tool from QGIS geoalgorithms | Vector1.
geometry tools.
Supply the random points as the input layer, and a small value as Distance. A2.
value of 0.1 meters should be fine. Save the result as a memory layer.
Use the Join attributes by location tool from QGIS geoalgorithms | Vector3.
general tools for the first join. The target layer should be the buffered points
layer, while the join layer should be the clipped roads layer. The spatial predicate
is intersects. Save the result as a memory layer.
In this step, we can either use the same tool to join the attributes back to the4.

 layer, or do ourselves a favor and use a simple join. As both the
tools preserved the existing attributes, we have the original IDs of our random
points on the joined buffered points layer. That is, we can specify a regular join in
the original layer's Joins tab in its Properties menu. When we
add a new join, we should specify the joined buffered points layer as the

, and the field as the join and target fields. Finally, we should restrict the
joined columns to the column, as we do not need any other data from the

 layer.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[199]

Open the Field calculator for the layer. Create a new integer5.
field named , and use QGIS's function to fill it with random
integers between two limits. If you would like to create sizes between 50 and 500,
for example, you have to provide the expression .
Create another integer field named , and fill it with random numbers in a6.
range of your liking. As I'm using my currency (HUF), I provided the expression

. Watch out for the Output field length value, as
the upper bound should fit in the provided value.
Exit the edit session, and save the edits made to the points layer. Save the layer in7.
your working folder, and remove all other intermediate data (including the
clipped roads):

Laying down the rules
Two customers walk into our agency. They state their preferences, share some contact
information, and leave. When we summarize their preferences, we are amused--the vague
terms are totally identical. Both the customers stated the following criteria:

It shouldn't be too noisy
There should be at least a restaurant and a bar nearby

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[200]

There should be some markets nearby
There should be a park nearby, preferably with a playground

Additionally, both of them had a single, more specific request.

Customer 1: I would like to place some solar panels on the rooftop, and use them
efficiently.
Customer 2: I don't have a car, and prefer to walk rather than use public
transport. However, I like to travel, therefore, the train station and the bus station
should be at a walking distance.

Our first task in such a case is to interpret the criteria, and translate them into the language
of GIS. We have to create some exact steps from these preferences. Of course, having such
vague criteria always leaves space to some subjectivity; therefore, the following
interpretation accords to my experience:

It shouldn't be too noisy: The results should be more than 500 meters away from
industrial areas, and more than 200 meters away from busy roads (like
motorways and highways) in terms of linear distance.
There should be some amenities, shops, and a park with a playground nearby:
The results should be less than 500 meters away from at least one park with a
playground, bar, restaurant, and from two markets in terms of linear distance.
Efficient solar panels: The aspect of the results' area should face South in the
northern hemisphere, and face North in the southern hemisphere.
Stations at walking distance: The cost of walking to those stations from the
results must not exceed 15 minutes. If this criterion cannot be met (that is, the
train and bus stations are too far away), or there are no results (that is, the
intersection of the valid costs is too small to contain any results), we will use the
union of the valid costs.

Implementing airport noise into the model is also possible, although our
current data is not sufficient for this. To estimate airport noise pollution,
we would need at least the paths of taking off and landing airplanes, and
buffer them.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[201]

Vector analysis
We can get a partial result by only considering our vector layers, and running some vector
analysis tools on them. There are different methods for different type of analysis; however,
we can group the most frequently used methods into the following four groups:

Overlay analysis: Analyzing features according to their spatial relationships to
other features. Common use cases are spatial queries and spatial joins.
Proximity analysis: Analyzing the relationship of features based on
some distances. The heart of this type in a traditional desktop GIS software is the
buffer tool, while the rest of the work is basically overlay analysis.
Neighborhood analysis: Analyzing (more often, statistically) neighbouring
features of some input features. When we need to find the closest features to
some input features, it is called a k-NN (k nearest neighbor) query.
Network analysis: Analyzing a topological network, or some features on it. The
most typical use case is to find the shortest path between two points on a road
network.

Different GIS softwares are good at different analysis types. Although QGIS is a universal
GIS, it offers a good coverage only in the most basic analysis types--overlay analysis and
proximity analysis. PostGIS is exceptionally good in neighborhood analysis. As GRASS GIS
forces the topological model on vector layers, it has the best capabilities in network analysis.

If you would like to learn about network analysis, you can look up
examples using pgRouting with PostGIS, or using network tools in GRASS
GIS.

Proximity analysis
To fulfill most of our criteria, simple proximity analysis is enough. However, there are two
types of criteria. Some of them state that our results have to exceed a distance, while the rest
of them require the results to equal a certain distance.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[202]

For the sake of simplicity, let's separate those requirements, and solve them one by one. The
easiest way to do a proximity analysis with fixed distances is to buffer the features we want
to compare our houses with, and use a spatial query to get matching results. We can delimit
houses far enough from noise-polluted areas by the following (from now on, saving
intermediate results as memory layers won't be emphasized):

Open the and layers.1.
Apply a filter on the layer to show only relevant roads. The correct2.
expression is

.
Apply a filter on the layer to show only industrial areas. Such an3.
expression can be . If
you have other types, which can be a source of noise pollution, don't hesitate to
include them.
Clip the layers to the town boundaries if they are too large (optional step).4.
Buffer the roads with the Fixed distance buffer, tool and a buffer distance of 2005.
meters. If you have a projection in feet, the correct value is 656. If your CRS is
using miles as the unit, it is 0.12.
Buffer the layer with a value of 500 in meters, or the equivalent value in6.
other units.
Get the union of the two buffered layers with QGIS geoalgorithms | Vector7.
overlay tools | Union. The order does not matter. We need a union of the two
layers, as neither of the buffer areas are suitable for us.
Save the features outside of the result with the Extract by location tool. We8.
should select from the house layer, use the noisy places layer as the intersection
layer, and select disjoint as the spatial predicate.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[203]

Remove the intermediate layers, and save the filtered houses if you plan to follow9.
this chapter in multiple sessions:

The second part is to delimit the areas that the potential homes should reside in. The first
criterion is parks with playgrounds. Let's prepare our data as follows:

Apply a new filter on the layer. The filter should be 1.
.

Open the layer, and apply a filter which only shows playgrounds. The2.
correct expression is .

Now we could select or extract parks which have a playground in them. Before
doing this, let's think it through again. Is this the correct method? What if there
are some parks with playgrounds just outside of them?

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[204]

In order to apply a more permissive extraction, use the Select by location tool,3.
and select features from the layer with respect to the layer. Select
intersects as a spatial predicate, and include a Precision value somewhere
between 100 and 200 meters.

Selecting or extracting features with a precision value is very convenient,
although it cannot replace buffering in QGIS when precise results are
required (Appendix 1.7).

Buffer the layer with the selected parks by 500 meters. Check the4.
Dissolve result box. Remember that QGIS's geoalgorithms respect filters? Well,
most of them also respect selections. Therefore, the result only contains buffered
versions of the selected parks only.
Remove the selection with the Deselect Features from All Layers button in the5.
main toolbar.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[205]

Wondering if you should dissolve the buffered features automatically?
Well, if you need to keep the attributes associated to individual features for
a later analysis, you shouldn't. If not, it depends. Dissolving features causes
some overhead, although you get a much cleaner result. If you are going to
make some overlay analysis on the buffered layers (like intersecting them),
those operations will run faster on dissolved buffer zones.

Apply a new filter on the layer considering only bars. I'll let you construct6.
the correct expression this time. Think it through well; pubs, for example, can be
considered bars in this case. Can cafes be considered bars as well? I'm going to
leave this to you.
Buffer the filtered layer with 500 meters, and dissolve the buffered features7.
automatically.
Apply a new filter on the POI layer which shows only restaurants. Such a filter8.
expression is .
Buffer the filtered layer with 500 meters, and dissolve the buffered features9.
automatically.
Now that we have three buffered constraint layers, we only need areas which10.
fulfill all the criteria. Therefore, we need the intersection of the three buffered
layers. We can calculate the intersection of two layers with QGIS geoalgorithms
| Vector overlay tools | Intersection. Let's create the intersection layer of the
buffered bars and the buffered parks layers.
As the Intersection tool only accepts two layers, we have to intersect the third11.
layer (buffered restaurants) with the result of the previous step. Let's do that to
get the final constraint layer:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[206]

As you can see in the preceding screenshot, the final intersection layer only12.
contains areas which are present in every buffer layer. Now extract every house
from the quiet houses layer, which intersects the constraint layer. Use the Extract
by location tool.
Remove every intermediate layer. Save the constrained quiet houses layer on the13.
disk if you are planning to follow the rest of the chapter in another session.

Understanding the overlay tools
You must be wondering about a lot of things now. First of all, what's the difference between
clipping and intersecting two layers? Not much, to be honest. Clipping is a special type of
intersecting, where the second layer must be a polygon layer, and the attributes of the
second layer don't get included in the input layer. Intersecting, on the other hand, can be
used on any vector type. Furthermore, the attributes of the second layer are automatically
joined to the input layer. To sum it up, clipping is a special type of intersection, where the
algorithm knows that we only want to restrict a layer's geometries to some bounds, and
nothing more.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[207]

As we stated before, if we use buffers for proximity analysis, half of it will be overlay
analysis (checking if the input features reside in the proximity). One of the main use case of
overlay analysis in proximity analysis is to create the right bounds for the upcoming
selection or extraction. This work is basically set operations in two or more dimensions.
Let's say we have a polygon A in a layer and a polygon B in another one.

Intersection (A ∩ B): We search for every point in our data frame which can be
found in both A and B
Union (A ∪ B): We search for every point which can be found in either A or B
Difference (A - B): We search for every point which can be found in A, but
cannot be found in B
Symmetrical difference (A B or (A - B) ∪ (B - A)): We search for every point
which can be found in one of the inputs, but cannot be found in the other

Understanding why we used intersections in the second task is easy. We needed the
intersections of the buffer zones, as each zone contained a specific criteria from which every
one should be fulfilled by the results. However, why did we use union in the first task? The
answer lies in negating, as it turns the logic upside down. Think of it like this--we need
every house in the intersection of areas outside the two buffer layers. According to De
Morgan's law (the intersection of two sets' complement is the complement of their
union), we need every house in the area outside of the union of the two buffer layers.

Towards some neighborhood analysis
The last criterion that both customers need is that the number of markets in the vicinity of
the house should be at least two. This is another type of proximity analysis, as we do not
need a binary answer (it is in the proximity of the other feature, or it isn't), we need to count
the number of features. Count is one of the most basic statistical indicators in GIS. In my
opinion, this step is somewhere between proximity analysis and neighborhood analysis
(where we do not even care about proximity, just the distance).

We have several ways to achieve this step. We can buffer the markets without dissolving
them, and execute a spatial query with statistics. On the other hand, that is not a clear way
to get only the number of markets, as the result would contain some other statistics we do
not care about. To get only counts, we can do this in reverse:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[208]

Apply a new filter on the layer to only show markets. There are a lot of shop1.
types in OSM, therefore, the expression can vary from place to place. Such an
expression is

. You can read more
about shop tags at .
Buffer the extracted houses--on which we've already applied most of the2.
constraints in the previous steps--with 500 meters. Do not dissolve the result.
Count the number of markets in the individual buffer zones with QGIS3.
geoalgorithms | Vector analysis tools | Count points in polygon. The count
field name can be anything; I will name it .
Join the new polygon layer containing the number of markets back to the house4.
layer with a regular join (Properties | Joins). Both the join and target fields
should be , while the joined columns should be restricted to the column.
Select and save houses which have at least two markets in their vicinity. Use the5.
expression , and either select them using Select features using an
expression, then saving them with Save As, or use the tool Extract by attribute.
Remove intermediary layers (including quiet houses and constrained houses6.
from the previous steps):

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[209]

Building your models
Congratulations on your first analysis! It was quite an adventure, right? What we've done is
more than mere spatial analysis. We conceptualized a model, and made an analysis
according to that. Our model stated that the vicinity of the requested amenities and features
can be translated to 500 meters. Quiet places are places which are more than 200 meters
away from busy roads, and more than 500 meters away from industrial places. Are these
numbers exact? Of course not. They are approximations of real-world phenomena, and
therefore, models.

What happens if one of the customers says that our analysis is faulty? Some of the results
are too close to noisy places, others are too far from markets. We can try some other
distances to make our model satisfy the customer better, although we would need to run
the entire analysis every time. Luckily, in modern desktop GIS software like QGIS, there is a
graphical modeler to create, save, and modify a step-by-step analysis by connecting
algorithms to each other. It is like a block-based programming language for analysts. We
can link existing algorithms (even models) together to create a graphical process model, that
QGIS then interprets and executes.

We can access QGIS's graphical modeler from the menu bar via Processing | Graphical
Modeler. First of all, we need to name our model, and categorize it in a group. I used the
name and the group . If we save a new model, we have to specify a
file name, which can be anything as long as we don't change the default directory QGIS
offers, and use a unique file name. If we close the model, we can see it under the category
we specified. We can edit our existing models by right-clicking on them, and selecting Edit
model:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[210]

The graphical modeler has a lot of capabilities from which we will only use the most
necessary ones to create our model. The left panel shows the inputs and algorithms we can
use. We can simply drag and drop the needed blocks to the right panel, which is the canvas
of our model. As the first step, let's create the quiet homes part. For this, we need three
input vector layers--a point layer for the , a line layer for the , and a polygon
layer for . When we drop a Vector layer input to the canvas, we can specify the
name and the type of the input layer:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[211]

Now, if we save our model, and run it with the Run model button or by opening it from the
processing toolbox, we can see our three constrained input vector layers just like in any
other QGIS algorithm. Now we need to drag and drop some algorithms from the
Algorithms tab of the left panel, which will use our input layers:

Drag in the first algorithm--QGIS geoalgorithms | Vector selection tools |1.
Select by expression. Select the layer as an input layer, and provide the
expression .
Give it the description .
Drag in a Fixed distance buffer algorithm. Select the output of the previous tool2.
as an input, and define a buffer zone of 200 meters. You can also dissolve the
result. Give it a description, something like :

If you need to change a parameter or an algorithm, you can click on the
pencil icon in the lower-right corner of its box. If QGIS does not respond,
you can right-click on the box, and select Edit. To remove an item, you can
right-click on it, and select Remove. You can only remove items from the
end of the processing chain.

As we can see, we have access to some extra features besides the regular parameters that
QGIS offers in the graphical modeler. These include the following:

Description: We can describe an algorithm, as the graphical modeler can hold
multiple instances of the same tool. This way, we can distinguish between them
when we build the rest of our model. Always add a unique description.
Parameters: These are the regular parameters that QGIS requires.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[212]

Output: Some of the algorithms can produce an output. If we give it a name,
QGIS treats it as a result, and offers us to save it somewhere. If not, QGIS knows
that it is just an intermediary step producing temporal data.
Parent algorithms: We can affect the order of execution by setting additional
parent algorithms of a geoalgorithm.

Although the Select by expression algorithm operates only in place,
you can export the selected features with the QGIS geoalgorithms |
Vector general tools | Save selected features tool.

Let's finish modeling the first step of our analysis with the following steps:

Add another Select by expression tool. The input should be the layer1.
this time, while the expression is

.
Add another Fixed distance buffer tool. The input should be the selected land2.
use layer, and the buffer distance should be 500 meters. You can dissolve the
result.
Add a Union tool. The two inputs should be the two buffered layers. Specify an3.
output name, as we can test our model that way.
Save the model, and run it:4.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[213]

Now we can see something, which highly resembles the geoalgorithms we are used to in
QGIS. It requires three inputs, and gives one output. Let's remove the filters from the
required layers, specify them as input parameters, and run the query.

Do not specify memory: as output. Models cannot produce memory layers
in QGIS. If you do not want to save the result, leave the output field blank,
and let QGIS create a temporary layer.

By running the model, we can notice a few things. First of all, the result is similar to the
unified buffer zones we created step by step. However, we can do the whole workflow by
simply pressing a single button. However, the model is seemingly quite slow. More
precisely, dissolving the buffers slows down the whole process. We can do these few things
about that:

We can disable dissolving, which will make buffering faster, but union slower.
We can build a geometry index on the inputs of the buffers with QGIS
geoalgorithms | Vector general tool | Create spatial index.
We can save the selected features or use the Extract tools instead of the Select
tools. QGIS models and PostGIS selections are not the greatest duo, especially
when a spatial query follows, because they decrease performance.

Note that we do not have an Extract by expression tool (Appendix 1.8) in
QGIS. If an arbitrary SQL expression is needed, the only workaround in
the graphical modeler is to use Select by expression, and export the result
with Save selected features.

For now, let's just finish the current part of the analysis:

Edit the model.1.
Remove the output produced by the Union tool. You just have to remove the text2.
from the Union<OutputVector> field.
Add an Extract by location algorithm. We should select from the layer,3.
specify the unified buffers as the intersection layer, and intersects as the spatial
predicate.
Specify an output to the Extract by location algorithm.4.
Rename the model to something like , and the group to 5.

.
Save the model.6.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[214]

Now we have the produced by our model. The next part is to constrain
those houses with the preferences of our customers. To keep our final model clean, we are
going to separate different tasks. Let's create another model with a name like

, and with the previous model's group name:

Add three input vector layers--one for the , one for the , and1.
one for the layers.
Select the parks from the layer, and the playgrounds from the 2.
layer. Save the selected features. As both the selections only take a single key and
value, you can use a single Extract by attribute tool instead (

 from the layer and from the
layer).
Select parks in the vicinity of playgrounds, and buffer the results.3.
Select bars from the layer, and buffer the results.4.
Select restaurants from the layer, and buffer the results.5.
Intersect the buffered layers. First take two of them as the input of an6.
Intersection, and then take the result with the third buffered layer as inputs of
another Intersection.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[215]

Extract houses located in the final result. Name the output of this final step:7.

Our final model should contain every input, our other models, and the rest of the analysis:

Create a new model with a name something like 1.
 in the same group.

Create four inputs for the house, road, land use, and layers.2.
Add the model, and specify the inputs.3.
Add the model specifying the output of the previous4.
model as the layer input, and the rest of the input layers as the other
inputs.
Buffer the result of the previous model.5.
Select the markets from the layer, and save the selection.6.
Use Count points in polygon to count the number of markets in the houses'7.
buffer zones.
Join the output of the model with the result of the8.
previous tool by using QGIS geoalgorithms | Vector general tools | Join
attribute table. Both the table fields should be .
Extract the valid features by using the expression . We can use the9.
Extract by attribute tool for this:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[216]

Let's test our model by running it and examining the results. If something really weird did
not occur, we've got bad results. Not just slightly I must have done something wrong in
my step-by-step workflow bad results, but really bad ones. Why did something like this
happen? In a nutshell, QGIS does not have a concept about correct order. It interprets our
model, and orders the algorithms based on inputs. Every algorithm has so many
dependencies as inputs, which must be executed before them. Other algorithms are
executed in an arbitrary order, which is good, as QGIS 3 will be able to run processing
algorithms in parallel.

I'm sure you already found out the solution for this ordering problem--we must make sure
that order does not matter. This can be achieved by chaining algorithms in a way that our
steps do not rely on the state of the data. If we think it through, in our model, data has state
only in a few cases; that is, when we use selections. We have the following two ways to
resolve this problem:

We can discard selections, and work with extraction algorithms where we can.
Where we cannot, we can build an model (Appendix
1.8), and use that instead.
We can force correct ordering by defining additional parent algorithms for some
of our steps.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[217]

Let's stick with the second option now. If we think about the possible orders of execution in
our models, we can conclude that the model is safe. No matter in which
order QGIS executes it, we will always get the same results. On the other hand, there are
several incorrect paths in the model, and an additional one in our
final model. In the model, we select three times from the same
layer. If the second selection (bars) occurs after the playgrounds are selected, but before
they are saved, we get incorrect results. Let's correct it by defining the

 step as a prerequisite to the step:

Edit the model.1.
Edit the step with the pencil icon, or by right-clicking on it and selecting2.
Edit.
Click on the chooser (...) button besides the Parent algorithms field.3.
Select the algorithm. We do not have the unique names we4.
gave to our steps in this dialog, although when we select an algorithm, QGIS
connects the two steps together with a grey line. Check the result, and if the
wrong algorithm got connected, try again.

Using the same procedure, we should make the step a prerequisite to the
 step, as that is the second place where an error can occur. When done, let's

inspect our final model. There we select the markets, and save them to another layer.
However, what happens if our second model runs after the selection, but before the
extraction? The correct selection is gone, and a wrong selection gets saved. To deal with this
possibility, we have to make our step a prerequisite to our

 step. If we run our model again, the results should be the same as the ones gained
from our step-by-step approach.

Don't worry if the two results are not entirely the same. You can easily get
slightly different results from a manual workflow just by mistyping some
required parameters or fiddling with the optional ones. An appropriately
validated model is always more reliable than a long manual workflow.

Using digital elevation models
The third preference of both the customers are quite special ones, which cannot be
incorporated into our model with mere vector analysis tools. One of the requirements is that
solar panels can be used on the house efficiently. Of course, there are numerous factors to
consider, like the exposure of the roof.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[218]

However, the simplest feature such a house should have is the aspect of the land it is built
on. If we are in the northern hemisphere, the terrain with northern aspect is mostly in
shadow. In the southern hemisphere, the land with southern aspect is more shadowy. In
reality, there are a lot more factors contributing to the solar energy potential (like latitude,
climate, cast shadow, and so on), but for the sake of simplicity, let's just assume for now that
the only factor is the aspect of the surface.

For solving surface-related problems, GIS has its most characteristic data type--DEM
(Digital Elevation Model). DEMs are representations of a planet's surface (most often
Earth). They can be in raster or vector (mesh) format, and can be visualized in 2D, or as a
rubber sheet in 3D, which is not 2D, but neither is it true 3D (they are often called 2.5D
because of this property). What makes DEMs a very valuable and useful data type is their
wide variety of use cases. A lot of terrain-related information can be derived solely from the
surface data. The two most basic derivatives are slope and aspect, where slope shows the
steepness of the surface, while aspect shows its exposure.

DEMs in a regular grid format (raster) are usually the results of processing raw elevation
data in vector format. These raw elevation data can be acquired in multiple ways, such as
point clouds from RADAR or LiDAR measurements, digitized elevation contours, or
individual GPS measurements. If the resulting vector data is dense enough, a regular grid
can be constructed on them, and the individual data points in a cell can be averaged. If not,
then spatial interpolation is the usual way of creating DEMs. There are a lot of spatial
interpolation techniques, although there is a common concept in them--they take a number
of points as input, and create a regular grid by interpolating additional points between
existing ones as output (Appendix 1.9). Of course, these irregular elevation points can also
form a Triangulated Irregular Network (TIN) if their Delaunay triangulation is calculated.

There is a lot of additional knowledge about digital elevation models,
which is out of the scope of this book. If you wish to learn more about
DEMs, you can start with Wikipedia's article at

, then continue with more serious
writings like Terrain analysis--principles and applications by John P. Wilson
and John C. Gallant.

Filtering based on aspect
Let's satisfy the first customer by showing the houses with correct aspect values. First of all,
we need the SRTM DEM we downloaded and clipped to our study area, then transformed
to our projection. If we load it, we can use GDAL's raster processing algorithms to do some
terrain analysis.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[219]

As QGIS does not have many tools dedicated to raster analysis, it uses external modules.
This implies one very important specificity of raster analysis in QGIS--we cannot use
memory layers. We have to save every intermediate result to disk. This is the case in
calculating the aspect of our DEM, which you can do as follows:

Open Raster | Terrain Analysis | Aspect from the menu bar.1.
Select the clipped SRTM DEM as Elevation layer.2.
Specify an output, preferably in your working folder where you saved the3.
clipped SRTM layer.
Click on OK:4.

If you do not have Terrain Analysis in the Raster menu, you might have
to enable the containing plugin first. You can do this from the Plugins |
Manage and Install Plugins dialog by enabling the Raster Terrain
Analysis plugin.

Now we have an aspect layer, which resembles the hillshading we used in a previous
chapter. The only, and very significant difference is, that we did not calculate shadows cast
to the surface by a light source from a specific direction, but the surface's absolute exposure.
Before going on with the analysis, let's interpret the result. Values of the aspect map range
from near 0 to near 360. This corresponds to exposure values expressed in degrees.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[220]

More importantly, we must be able to map aspect values to directions. This sounds trivial;
however, start directions can change from GIS to GIS. In QGIS, 0° and 360° correspond to
North. Therefore, as we go clockwise (imagine a compass), 90° is East, 180° is South, and
270° is West. If we zoom in, and toggle the visibility of the underlying DEM, we can also see
some areas without any values. There is a special value in aspect maps--flat. Flat surfaces
can be denoted with a special value, such as -1, or like in our case, can be defined as NULL.
We have to consider these flat values when we filter our points:

There is only one thing left--we have to sample the aspect map in the locations of our
houses. Unfortunately, QGIS does not have a tool to achieve this task, but we can use
GRASS GIS, which is really strong in raster analysis. Using GRASS has only one
inconvenience--it won't create a column for the aspect values automatically:

Use Field Calculator on the filtered house layer, and add an empty field named1.
 with a Decimal number (real) type. The precision value should be , and

the expression can be a simple . Save the edits.
Open the GRASS GIS 7 commands | Vector | v.what.rast.points tool.2.
Select the houses as the vector points map.3.
Select the aspect layer as the raster map, which should be sampled.4.
Select the column as the column to be updated.5.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[221]

Supply an expression which selects every feature, such as . Note that in6.
GRASS, we do not enclose column names in quotation marks.
Specify an output in the Sampled field.7.

If GRASS complains about a projection mismatch, it means that you used
the SRTM which was clipped, but not transformed. You can either
transform the aspect map with Save As, or open the transformed SRTM,
and calculate the aspect again.

Now we have the houses with the sampled aspect values. Therefore, we can select the final
set of houses with an expression, such as the following:

Or, if we would like to be more restrictive, we can use this:

You might have a bad character encoding in GRASS GIS's output file. If
this is the case, you can join the column to the original filtered
houses layer based on their columns. Considering this case, it is
recommended to use vector layers only with unique numeric columns
with GRASS GIS. Furthermore, it is also recommended not to use any non-
ASCII characters or whitespaces in path names when using GRASS.

Calculating walking times
The final preference was that the house should be within a 15 minutes walking distance to
the train and bus stations. We could calculate the time taken to reach a point from another
one on a road network using network analysis. However, that method would not respect an
important factor in walking--elevation. This is a kind of nontrivial analysis done on a DEM.
Although neither QGIS, nor PostGIS offer a solution for this type of analysis, GRASS GIS
has just the tool for us. This tool creates a cost surface, which represents walking time in
seconds from one or more input points. For this, GRASS needs a DEM and an additional
friction map. With the friction map, we can fine-tune the analysis, giving weights to some of
the areas. For example, we can give a very high value to buildings, making GRASS think
that it's almost impossible to walk through them. The friction map must be in the raster
format, therefore, our first task is to create it from our vectors.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[222]

For the sake of simplicity, let's only consider buildings, forests, and parks.

Apply a filter on the layer to only show forests and parks. The correct1.
expression is .
Clip the layer to the town's boundary. You can use memory layers if2.
not stated otherwise.
Load the layer, and clip it to the town's boundary. Save the clipped3.
layer as a temporal layer, or to the disk.
Calculate the difference of the layer and the layer (in this4.
order). It is convenient to not have overlapping or duplicated features in the final
result. By calculating the difference of the two layers, we basically erase the

 from the layer. Save this layer as a temporal layer, or to the
disk.
Merge the buildings and the difference layer with QGIS geoalgorithms | Vector5.
general tools | Merge vector layers. You might want to build spatial indices on
the input layers before (Properties | General | Create spatial index). Save the
merged layer to the disk.

Why did we use Merge vector layers instead of Union? Try calculating the
union of the two input layers. How many features do the input layers have?
How many features does the union layer have? It should have as many
features as the input layers. This is one of the many pitfalls of floating point
arithmetic. The default behavior of the Union tool is cutting the
overlapping parts of the inputs, and creating new features for them. In
floating point arithmetic there is usually some rounding involved, and as a
result, it is very hard to distinguish between overlapping and adjacent
segments.

Give friction costs to the features using the Field Calculator. The field name6.
should be , while the field type should be Whole number (integer). Friction
costs represent the penalty in seconds for crossing a single meter on the surface.
For layer, this penalty should be an arbitrary high number, such as

. For parks, the penalty can be , while for forests, the penalty can be . We
can assign these costs conditionally using the following expression:

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[223]

Save the edits and clean up (remove intermediary data):7.

Now we have a vector friction layer, although GRASS needs a raster layer containing
penalties. To transform our vector to raster, we can use GDAL's Rasterize module from
Raster | Conversion. This module can create rasters from input vectors, although we
should keep the differences of the two data models in mind:

Rasters usually hold a single attribute, while vectors hold many. We have to
choose a single attribute to work with.
Rasters have a fixed resolution, while the concept of resolution does not apply
to vector data, at least in this literal sense. We will lose data, and we have to
choose how much we would like to lose. By choosing a very low spatial
resolution, we can make our calculations very slow, while, if we choose too high
value, we can get a faulty result (Appendix 1.10).

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[224]

As rasters consist of coincident cells, there is no guarantee the vector layer's
bounds will match the resulting raster layer's bounds. Furthermore, if we use
raster (matrix) algebra, there is no guarantee that the rasterized layer will fully
overlap with other inputs. GRASS and GDAL handle these cases really well,
although this is not universally true for every GIS.

Now that we have a concept about vector to raster transformation, let's create our friction
map as follows:

Open the Raster | Conversion | Rasterize tool from the menu bar.1.
Choose the friction vector layer as an input, and the column as Attribute2.
field.
Browse an output. Ignore the warning about creating a new raster. GDAL will3.
handle that just right.
Choose the Raster resolution in map units per pixel radio box.4.
Provide 2 (or the equivalent if you use a unit other than meters) in both the5.
Horizontal and Vertical fields.

Rasters produced by GDAL can be huge. In order to reduce the file size,
you can click on the pencil icon before running the tool, and insert

 right after the
command.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[225]

The result is most likely a sole black raster. If you would like to see the different6.
values, use a single band styling mode (Properties | Style), then specify the , ,

, and values as intervals:

As the new raster map has most likely a custom projection with the same7.
parameters as our local projection, assign the local projection to it instead.
Otherwise, GRASS will complain about the projection mismatch. We can select
our local projection in Properties | General | Coordinate reference system:

Besides the friction map, GRASS also needs an elevation map. However, we have some
work to do on our SRTM DEM. First, as we have two raster layers with two resolutions, and
it is no trivial matter for GRASS which one to choose, we have to resample our DEM to 2
meters. We should also clip the elevation raster to our town's boundary in order to reduce
the required amount of calculations.

Open the SRTM DEM transformed to our local projection.1.
Select the Raster | Extraction | Clipper tool.2.
Select the DEM as the input layer, and browse an output layer.3.
Check the No data value box, thus, rasters outside of the town's boundary get4.
NULL values.
Choose the Mask layer radio button.5.
Specify the town's boundary as a mask layer.6.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[226]

Check the Crop the extent of the target dataset to the extent of the cutline box,7.
and run the tool.
Open the Raster | Align Rasters tool.8.
With the plus icon, add the clipped DEM to the raster list, and specify an output.9.
Check the Cell Size box, and provide the same cell size that the friction layer10.
uses.
Run the tool.11.

The final parameter we should provide is a vector layer with a number of points
representing starting points. We need two cost layers, one for the bus stations, and one for
the railway stations. These data can be accessed from the OSM layer we
inserted into PostGIS. Let's load that layer, and clip it to the town's boundary. We can store
the result in a memory layer. Now we are only a few steps away from the cost surfaces:

Filter the clipped layer to only show railway stations first with the1.
expression .
Examine the railway stations. Are there any local stations which are irrelevant for2.
our analysis? If there are, delete those points. Start an edit session with Toggle
Editing, select the Select Features by area or single click tool, select an irrelevant
station, then click on the Delete Selected button. After every local station is
removed, save the edits and exit the edit session.
Are there any stations inside buildings? If there are, move them out, as they will3.
produce incorrect results. Start an edit session, select the Move feature(s) tool,
and move the problematic points outside of the buildings. Finally, save the edits,
and exit the edit session.
Create the cost surface with the GRASS GIS 7 commands | Raster |4.
r.walk.points tool. The input elevation map should be the SRTM layer clipped to
the town's boundary, the input raster layer containing friction costs is our
rasterized friction layer, and the start points is the filtered, edited transport layer.
All other parameters can be left with their default values.

The algorithm produces two maps, one for the costs and one for
directions. The direction map is irrelevant for us; we don't have to load it
into QGIS after the algorithm finishes. Furthermore, if you expand the
Advanced parameters menu, you can check the Use the 'Knight's move'
box for more accurate results. With this option, the algorithm also
considers cells reachable by a knight's move (like on a chess table) from
each cell besides the direct neighbors. For quicker results, also increase the
maximum memory usable by the algorithm.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[227]

If we style the result, we can see how much time it takes to reach our houses from the
railway stations. Now we have to repeat the previous steps with bus stations. To filter bus
stations, we can use the expression :

Almost there. We are only one step away from the final result--we need to sample both the
cost maps at the houses' locations. Let's do this by following the steps we took earlier in this
chapter:

Create two new fields for the houses layer with the names and1.
 using the Field Calculator. The precision and the type do not really matter in

this case, as the costs are in seconds. They must have a numeric type though. The
expression can be a single 0. Don't forget to save the edits, and exit the edit
session once you have finished.
Use the GRASS GIS 7 commands | Vector | v.what.rast.points tool for sampling2.
the first raster layer. Use a general expression, like , and save the result as
a temporary layer.
Set the CRS of the output layer to the currently used projection in Properties |3.
General | Coordinate reference system. GRASS applied its own definition of the
same projection to the output, and will complain if it thinks that the projections of
the input layers do not match.

(c) ketabton.com: The Digital Library

Spatial Analysis in QGIS

[228]

Use the same tool again to sample the second raster. The input layer this time4.
must be the output of the previous step. Save this result to the working folder.
Select preferred locations from the output with an expression. As the values are5.
in seconds, we can build the expression

 to select the relevant houses. If there are no matches, try to use a
logical between the two queries:

Summary
Congratulations! You just carried out your first vector analysis. It was a great adventure,
wasn't it? In this chapter, you learned how to utilize vector layers to derive some valuable
results from them. We learned about some of the more popular and useful vector analysis
tools, and ventured into the more advanced realm of GIS. We also learned how you can
make your workflow more flexible by building models from your steps.

In the next chapter, we will talk about spatial analysis in PostGIS. We will see how we can
build queries executing spatial operations on our tables, creating the same results as in this
chapter by nesting queries in QGIS's database manager.

(c) ketabton.com: The Digital Library

99
Spatial Analysis on Steroids -

Using PostGIS
In the last chapter, we did some vector analysis to get meaningful results from our data. We
went through the steps of different types of vector analysis technique, and also built models
to make our work more convenient. However, the execution of the algorithms still took
some time, and you might wonder if there is a more effective way for achieving the same
results.

In this chapter, we will explore the PostGIS way of vector analysis, which is faster and more
flexible, as spatial operations executed with SQL queries can be saved and reproduced
easily. With this approach, we can additionally stay in the realm of our spatial database,
which means we do not have to worry about memory layers, temporary data, or saved
layers scattered through our working folder. To make this approach comparable to the
previous chapter, we will go through the same task, with the twist of doing everything in
PostGIS, and using QGIS only as a thin client that is, using QGIS only for visualizing data.

In this chapter, we will cover the following topics:

Vector analysis in PostGIS
Raster queries in PostGIS
PostGIS-specific techniques

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[230]

Delimiting quiet houses
First of all, we should upload our random houses in our spatial database. In order to do
this, let's open QGIS's database manager through Database | DB Manager | DB Manager.
Connect to the PostGIS database with the role we have--write privileges--and import the
houses layer with Import layer/file. Of course, we have to open our raw houses layer, as it
is not opened in QGIS. The options should be the same as before, which are as follows:

Use the spatial schema.
The table name should be .
Check the Create spatial index box at least, but checking the Create single-part
geometries instead of multi-part box as well will do no harm either.
We do not have to define SRID information, as the data is already present in our
local projection.

When we are done, let's visualize the uploaded layer in QGIS, and remove the one
saved to the disk. If everything is fine, we should keep the DB manager window open, as
we will execute our SQL queries there:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[231]

Proximity analysis in PostGIS
The first task in , Spatial Analysis in QGIS was to select every house which is at
least 200 meters away from busy roads and 500 meters away from industrial areas. To
complete this task, we created buffer zones around the problematic features and areas,
calculated their union, and selected every disjoint house. Following the same approach, we
can use two functions of PostGIS-- and . We do not have to
discuss again, as we have already used it several times. on
the other hand, is a different function. It does not act as a filtering function, but it creates
and returns new geometries based on the input geometries and buffer distances. To buffer
the busy roads of our roads layer, we can create the following expression:

If we execute the expression with the Execute button, we can see the resulting geometries,
while, if we load the result as a layer by checking the Load as a new layer box, filling out
the required fields, and selecting Load now!, we can see the buffered roads in QGIS:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[232]

It is as easy as that. PostGIS iterates through the filtered roads, and buffers them on a row-
by-row basis. It does not dissolve the results, or do anything else, but just returns the raw
buffered geometries, and additionally, the attributes if we ask for them. As we will only use
the geometries of the roads, we do not need any other attributes.

As PostGIS executes spatial functions on a row-by-row basis, we can
create variable-sized buffer zones by specifying a numeric attribute field
instead of the constant number as the second argument of .

The only thing left to do is to check if our houses intersect with the buffer zones. As we only
need a subset of the roads, which is effectively a subquery, we should precalculate the
buffer zones in a CTE (Common Table Expression) table by using the keyword as
follows:

WITH main_roads AS (

)
SELECT h.* FROM spatial.houses h, main_roads mr

 WHERE NOT ST_Intersects(h.geom, mr.geom)

Make sure to only execute the query; do not load as a layer. What did you get as a result?
For me, this query returned more than 1 million rows. That's definitely a cross join between
the individual buffer zones and the houses. Let's see if the results are correct, though. We
can select only unique rows by using the operator after the keyword:

DISTINCT

The preceding query returns rows. That's the number of features we have in our
houses layer.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[233]

By creating a cross join, PostgreSQL returned every occurrence, where a house is disjoint
with a buffer zone. That is, it returned every house multiple times. The magic we can use to
solve this problem is to calculate the union of the buffer zones with :

SELECT ST_Union(ST_Buffer(geom, 200)) AS geom

SELECT h.* FROM spatial.houses h, main_roads mr

You must be wondering if this even makes any sense. If PostGIS goes row by row, why
would it matter if we use union on every individual buffered geometry? The answer is
that is an aggregate function. Aggregate functions in PostGIS
behave differently when they are called with one argument in a clause. They act on
every returned row, and return a single geometry if there are no additional groupings
defined. Now that the table has a single row, PostgreSQL behaves nicely, and
returns only the disjoint features in less than a second.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[234]

The only thing left to do is to query houses which do not reside in the 500 meters buffer
zone of industrial areas. For this, we need an additional CTE table with the union of the
buffered industrial areas. In PostgreSQL, we can create multiple virtual tables in a single

 clause by separating them with commas as follows:

,
industrial_areas AS (

 SELECT ST_Union(ST_Buffer(geom, 500)) AS geom
 FROM spatial.landuse l
 WHERE l.fclass = 'industrial' OR l.fclass = 'quarry')

,
 industrial_areas ia

AND NOT
 ST_Intersects(h.geom, ia.geom)

Quite a complex query, isn't it? On the other hand, it still returns the correct houses in less
than a second, which is a serious performance boost. Let's load the results as a layer in
QGIS, named something like :

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[235]

What is really great about PostGIS is that we do not have to rely on traditional ways of
analysis. We can cook up new methods if they can be done on a row-by-row basis, and
return correct results. For example, we do not have to buffer the constraint features, just
measure their distances to the houses with . This way, we can use a more
lightweight aggregate function-- . It does not calculate the union of the input
geometries, but just merges them into a single one. If we supply polygons, the resulting
geometry will be a multipart polygon containing the input polygons as members.

Using with does not work out well every
time. It is more reliable to use with .

Let's create a query using and :

SELECT ST_Collect(geom) AS geom

SELECT ST_Collect(geom) AS geom

WHERE ST_Distance(h.geom, mr.geom) > 200 AND ST_Distance(
 h.geom, ia.geom) > 500

This method has a similar performance to the last one; however, it returned fewer features
for me. If you experienced the same, load the results of this query in QGIS, and examine the
difference.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[236]

Precision problems of buffering
If you also have some differences between the buffering and the distance measurement
methods, follow me during the investigation. If not, just read along. First, let's see the
problematic geometries in context. I only have one; therefore, it is more trivial to find out
the source of the problem:

The main roads are far enough from the feature; therefore, the nearest industrial area
should be the cause. If we create a 500-meters buffer zone around the layer, we should see
that the feature lies outside of the buffer zone. However, thought otherwise.
What we can also see is that the buffer zones are not circular; they have sides
approximating the real buffer zones. The problem is that buffers are regular polygons,
therefore, they consist of vertices connected by straight segments. That is, we cannot create
true circular buffers. There is no problem when we buffer straight lines, the result becomes
exact. The precision problem only arises when we buffer corners, and the buffer zones
should be circular. We can, however, create better approximations by using more vertices
for creating these circular arcs. In QGIS, we can use the Segments option in the buffer tools
to specify the level of detail, and increase the precision of the result (Appendix 1.11).

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[237]

PostGIS also allows us to specify the number of segments used for approximating a quarter
circle. We can provide a third parameter to the function, which represents the
number of segments. Let's modify the query to use segments for the approximation as
follows:

SELECT ST_Union(ST_Buffer(geom, 200, 25)) AS geom

SELECT ST_Union(ST_Buffer(geom, 500, 25)) AS geom

WHERE NOT ST_Intersects(h.geom, mr.geom) AND NOT
 ST_Intersects(h.geom, ia.geom)

Now the results match the ones from using exact minimum distance measurements,
although the query slowed down a bit, making the other query the obvious choice.

Querying distances effectively
While using intersection checks with buffer zones only yields Boolean results (inside or
outside), calculating the minimum distance from the reference geometry holds other
advantages. For example, our customer can ask which of the houses are the farthest from
those noisy areas. By querying the distances, we can easily answer that question. We can
even order our results by the combined distances using at the end of our query.
Let's remove the buffer-based query's layer, and modify the distance-based one's expression
by right-clicking on it, and selecting Update Sql Layer:

SELECT ST_Collect(geom) AS geom

SELECT ST_Collect(geom) AS geom

SELECT h.*, ST_Distance(h.geom, mr.geom) AS dist_road,
 ST_Distance(h.geom, ia.geom) AS dist_ind
 FROM spatial.houses h, main_roads mr, industrial_areas ia
 WHERE dist_road > 200 AND dist_ind > 500
 ORDER BY dist_road + dist_ind DESC;

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[238]

In theory, we are now asking PostgreSQL to evaluate the two distance checks, and return
them to us in the and columns. Then we simply use those columns to
select only the correct houses, and order the results in descending order.

If you would like to order the results in ascending order, you do not have
to specify anything after the statement, as that is the default
behavior in PostgreSQL. Ordering based on the sum of the two distance
columns in ascending order would look like

.

What happens if we run this query? It returns an error with the message
. We tried to use a field which had not yet been calculated when

PostgreSQL tried to call it. We simply cannot use computed fields in other queries on the
same level. Let's modify our query a little bit, as follows:

WHERE ST_Distance(h.geom, mr.geom) > 200 AND ST_Distance(h.geom,
 ia.geom) > 500

ORDER BY ST_Distance(h.geom, mr.geom) + ST_Distance(h.geom,
 ia.geom) DESC;

The new query works, although the distances are calculated three times, slowing down the
execution, which is bad. On the other hand, we have the distance values, and our features
are ordered based on their combined distances from noisy areas:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[239]

We should still do something about this query, as it is quite inconvenient to declare the
same calculations multiple times. If we wish to change some of the distance columns, we
would have to change them in three places. This is the case when a subquery proves useful.
We can calculate the table with the distance columns as a new table called
(houses with distances). Then we can simply refer to the columns of that table in the other
two occurrences:

SELECT * FROM
 (SELECT h.*, ST_Distance(h.geom, mr.geom) AS dist_road,
 ST_Distance(h.geom, ia.geom) AS dist_ind
 FROM spatial.houses h, main_roads mr, industrial_areas ia) AS hwd
 WHERE hwd.dist_road > 200 AND hwd.dist_ind > 500

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[240]

 ORDER BY hwd.dist_road + hwd.dist_ind DESC;

Using subqueries and precalculating CTE tables in the clause are
interchangeable. You can also include the table along the
and tables for better readability.

The calculation time is the same, as PostgreSQL has to query the distances for every house
before it can query the relevant rows. Additionally, using subqueries makes the code harder
to read and interpret. Luckily, PostgreSQL offers us an even better method for creating
columns, which can be cross-referenced--lateral subqueries. By using the keyword
before a subquery, we only need to include the formulae for the dynamically calculated
columns, and we can use them outside of the subquery.

The keyword can be used before subqueries and joins in
PostgreSQL. It is basically a special cross join with computed columns.
The magic part is that this method leaves plenty of space for PostgreSQL
to optimize our queries. You can read more about lateral joins at

, and by following the links provided
there.

Lateral subqueries can be added to the tables we select from, and, therefore, in the
clause. We only need to provide the computed columns and their formulae in the subquery
as follows:

SELECT h.*, hwd.dist_road, hwd.dist_ind
FROM spatial.houses h, main_roads mr, industrial_areas ia,

 LATERAL (SELECT ST_Distance(h.geom, mr.geom) AS dist_road,
 ST_Distance(h.geom, ia.geom) AS dist_ind) AS hwd

With this query, we not only made the code more readable, but also increased its
performance by almost 30%. As PostgreSQL could optimize our new lateral query better,
we get similar performance as with the precise buffering technique, acquired the distances
from the noisy areas, and ordered our features according to them. With this final
optimization, there is no more doubt that distance calculations should be preferred over
buffering in PostGIS for proximity analysis.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[241]

Saving the results
Finally, let's save the last query as a view without ordering the results. This way, we can
ease our future work by having shorter, and thus, more manageable chunks of code. We can
easily create a view from QGIS's DB Manager by prefixing the query with

 and the view's name. However, before creating a view, let's talk about naming
conventions. If we work with a PostGIS database extensively, we will definitely end up
with different kinds of tables like the following:

Original tables holding raw spatial data for our analyses, which shouldn't be
modified or dropped accidentally
Tables holding final or partial results of our analyses
Views and materialized views holding queries, and speeding up our work

To distinguish between the different types of data, we should apply a naming convention.
A good example would be prefixing different kinds of data with some abbreviations. This
practice can help pgAdmin or other graphical interfaces to visually group and organize
different kinds of data. We can name our views as or , our
temporal or final results as or , and so on. It shouldn't
really matter (although PostgreSQL will drop camel cases by default) as long as we keep to
our rules, and name our tables consistently. Now as I'm naming my view

, the query saving the view looks like the following:

You can also create a view from QGIS by opening a new SQL window,
typing or copying the query, and clicking on the Create a view button.
However, views created this way are automatically put into the public
schema (or the default one), no matter whether you use a qualified name
(that is, include the name of the destination schema).

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[242]

Matching the rest of the criteria
We have two additional tasks to complete in order to match the common preferences of our
customers. If you do not remember the exact preferences, here they are again:

They should be less than 500 meters away from a park with a playground
They should be less than 500 meters away from a restaurant
They should be less than 500 meters away from a bar or a pub
There should be at least two markets within their 500 meters vicinity

The first three criteria can be easily matched building on the queries of the previous section.
We only have to create three CTE tables or subqueries; one for the parks with playgrounds
in their 200 meters vicinity, one for the restaurants, and one for the bars and pubs. After
that, we only have to match our houses by using distance checks. Such a query can be
formulated as follows:

The final expression works as the ones formulated before. We filter the raw tables by
attributes and distances, and use some distance checks in the final query. The only
difference is that as we do not need the exact distances, we used instead of

. is a simple filtering function for selecting features based on a
proximity. It has almost no performance penalty over , but offers a more
concise way to formulate our query. It needs three arguments: two geometries, and a
distance in the units of the input layers' SRID.

As subqueries are evaluated independently, you can use the same aliases
in different subqueries without confusing PostgreSQL. You just have to
make sure that you do not confuse yourself.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[243]

If we load the result as a layer, we can see our constrained quiet houses, which match the
results created in QGIS at a first glance:

For the sake of simplicity and clarity, let's create another view from the result of this query.
We just have to prefix our query with and the view's name:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[244]

Counting nearby points
Although PostGIS is one of the state-of-the-art GIS softwares for effective spatial queries,
aggregating effectively can sometimes be tricky. For this reason, we will go step by step
through appealing to the final criterion. First of all, we need to select the markets from our
POI table. This should be easy, as we just have to chain some queries on a single column
together with the logical operator. Or we can use a more convenient operator created for
similar tasks called . By using , we can supply a collection of values to check a single
column against:

Let's put this table in a clause, and go on with counting points.

WITH markets AS (

)

We used some aggregating functions before, but only for the sole purpose of returning a
single aggregated value for an entire table. Aggregating a single column is trivial enough
for PostgreSQL not to ask for any other parameters. However, if we would like to select
multiple columns while aggregating, we have to specify our intention of creating groups
explicitly by using a expression with a selected column name. We can create a
simple grouping by querying the IDs of our houses layer along with the number of
geometries in our markets layer. Counting can be done by utilizing , one of the most
basic aggregating function in PostgreSQL, as follows:

SELECT h.id, count(m.geom) AS count FROM spatial.houses h,
 markets m
 GROUP BY h.id

Now we got 1,000 results, just as many houses we have. Every row has the total count of
geometries in our markets layer, as we did not supply a condition for the selection.
Basically, we got the cross join of the two tables, but grouped by the IDs of our
table. As we aggregated the number of geometries in each group, and got every possible
combination, we ended up with the same number of points for every group.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[245]

By separating multiple tables in the clause with commas, technically,
PostgreSQL applies an inner join. On the other hand, as an inner join is a
subset of the cross join matching the join conditions, we ended up with the
cross join by not specifying any conditions.

Let's supply a join condition to narrow down our results:

WHERE ST_DWithin(h.geom, m.geom, 500)

By providing the condition we should be able to see a subset of our data:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[246]

Now we get a real inner join; PostgreSQL only returned the rows matching the join
conditions. That is, we got a table where every row with a geometry closer than 500 meters
to a house got joined to it. From that table, PostgreSQL could easily aggregate the number
of markets in the 500 meters vicinity of our houses. Note that we got back only a part of our
tables, as features without markets (empty groups) got discarded. Let's take a note about
that number, as we will need it later.

Before going further, let's rephrase this expression to include the keywords. If
we implicitly define a join, that is, separate layers in the clause with commas, we can
specify our join conditions in the clause. However, if we define a join explicitly, the
conditions go in the clause:

FROM spatial.houses h INNER JOIN markets m
 ON ST_DWithin(h.geom, m.geom, 500)

Now we can easily change the join between our tables to an outer-left join in order to have
the rest of the rows with 0 markets in their 500 meters radii:

FROM spatial.houses h LEFT JOIN markets m

As the query's result shows, we have 1,000 rows, just like our houses table. Some of the
rows have values. However, are these results the same as the previous ones? We can do a
quick validation by filtering out groups with count values. If we get the same number of
rows we noted previously, then we are probably on the right track.

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[247]

To select from groups, we cannot use a clause; we have to use a special clause
designed for filtering groups-- :

GROUP BY h.id HAVING count(m.geom) > 0

For me, PostgreSQL returned the same number of rows; however, using and
filtering with a clause slowed down the query. Before creating a CTE table along
with markets from the result, we should rewrite our count table's query to its previous,
faster form:

marketcount AS (SELECT h.id, count(m.geom) AS count
 FROM spatial.houses h, markets m
 WHERE ST_DWithin(h.geom, m.geom, 500)
 GROUP BY h.id)

Now the only thing left to do is to select the houses from our last view which have at least
two markets in their vicinity:

SELECT h.* FROM spatial.vw_quietconstrainedhouses h,
 marketcount m
 WHERE h.id = m.id AND m.count >= 2

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[248]

By supplying the full query, we can see our semifinal results on our map:

Look at that performance boost! For me, the whole analysis took about 1.3 seconds. On top
of that, we can alter any parameter just by changing the view definitions. Additionally, we
got the distances from the noisy places on which we can order our features. By ordering the
result in a decreasing order, we can label our features according to that parameter, and
show them to our customers on a map.

QGIS respects the order of the features coming from a PostGIS database by
assigning a special attribute column to them.

Finally, let's save our semifinal results as a third view:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[249]

Querying rasters
As PostGIS has limited raster capabilities compared to the sophisticated algorithms that
GRASS GIS has, we have no way to calculate walking distances in our spatial database.
However, in PostGIS, we can query raster tables and carry out basic terrain analysis, like
calculating aspect. Querying raster layers with points is a surprisingly fast operation in
PostGIS, as it can use the bounding boxes of raster tiles for geometry indexing, transform
our points to pixel coordinates in the correct tile, and get the corresponding value from the
stored binary raster by calculating an offset in bytes. We can use the function to
query raster data as follows:

The only limitation of is that it only accepts single-part points. Therefore, if we
stored our houses as multipoint geometries, we need to extract the first geometry from
them manually. If you got an error for the preceding query, that is a probable case. We can
extract single-part geometries from a multipart geometry with the function,
which needs a multipart geometry and a position as arguments. If we saved our houses
table as multipoints, each geometry holds the single-part representation of our houses in its
first position:

Although raster queries are fast in PostGIS, raster calculations are quite slow, as PostGIS
has to execute the required operations on the requested tiles. There are a lot of possibilities
from which we will use the function to calculate the aspect in the locations of
our houses. It is quite easy to add this function to our query, as it only needs a raster as an
input. Furthermore, we should modify our query to only return houses with a southern
aspect:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[250]

You can find other raster-related functions in PostGIS's raster reference
at .

Great work! We just fulfilled every criteria of one of our customers entirely in PostGIS.
Although raster calculations are faster in QGIS and GRASS, and uploading rasters into
PostGIS is cumbersome, it is worth considering uploading processed rasters to PostGIS for
the convenience and performance of plain raster queries:

(c) ketabton.com: The Digital Library

Spatial Analysis on Steroids - Using PostGIS

[251]

Summary
In this chapter, we learned how to improve the speed of our vector analysis by orders of
magnitude. We simply used one of the state-of-the-art tools for quick vector analysis--
PostGIS. We also learned more about vector analysis, some of their pitfalls, and how to get
more out of our spatial database. We carried out a spatial analysis, which would have been
cumbersome in other desktop GIS software, to gain valuable extra information from our
data. Of course, PostGIS and PostgreSQL have capabilities far beyond the scope of this
chapter; therefore, if you are planning to work with spatial relational databases, it is
definitely worth digging in deeper, and reading additional sources focused on PostGIS.

In the next chapter, we will focus on raster analysis, and learn about the most essential
raster tools. We will create a decision problem where we have to choose the best site based
on some criteria. Finally, we will not only solve that problem, but additionally, use some
statistical methods to evaluate the result and create a clear basis for a well-founded
decision.

(c) ketabton.com: The Digital Library

110
A Typical GIS Problem

In the last chapter, we discussed vector analysis, and how we can perform it effectively.
After explaining the basics in QGIS, we harnessed the power of PostGIS and carried out our
analysis with unpaired speed. We also queried rasters, and executed a basic terrain analysis
operation getting aspect values in the locations of our randomly generated houses as a
result.

In this chapter, we will move on and discuss raster analysis in detail. We will learn how to
use the most essential raster tools, and what kind of typical operations we can do with
rasters. To spice up this chapter, first we create a scenario where we are decision makers.
We search for the ideal site of our business, and we've already evaluated the criteria for the
optimal site. The twist is that we are not looking for equally ideal sites, but searching for the
best site for our purpose. Therefore, raw results showing possibilities are not enough in this
case; we need an assessment evaluating those possibilities on which we can make our
decision.

In this chapter, we will cover the following topics:

Raster analysis
Multi-criteria evaluation
Fuzzy logic
Basic statistics
Creating an atlas

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[253]

Outlining the problem
First of all, we need a scenario involving a problem for us to solve. In this chapter, we are
decision makers looking for the best site for our business. We are supplying stores in
multiple settlements scattered in our study area. More precisely, in every seat of the
administrative division, we have stores to supply. We are looking for a site appropriate for
holding our logistics center (that is, warehouse). As we will build the center, we do not need
existing infrastructure on the site, although it should be economically feasible to build on it,
and large enough to hold our 1 km2 building with some loading area to load and unload
supplies. For the sake of simplicity, the shape of the building is not important, we are
flexible enough to conform to the chosen site. Last, but not least, we don't need a single site.
We need a list of the most suitable sites from which we can choose the best one for our
business. Summarizing and expanding the preferences, we can get a nice list of criteria as
follows:

The sites must be in our study area
They should be as close as possible to every settlement we need to reach
They should be as close to main roads as possible
They should be empty, mostly flat, sites
They should be large enough for the warehouse and the loading area

An additional, very important factor for our analysis would be the type of
the bedrock in the given site contributing to its stability. However, we
neither have the required data for analyzing that feature, nor the scope for
the theoretical background. For further reading, National Geographic's
article at

 is a good starting point.

By translating these criteria to the language of our GIS model, we can create a more specific
list, which is as follows:

The validity extent of the analysis is our study area. We should only use data
clipped to its bounds or clip the final result.
The sites should be close to the mean point of the seats of administrative
divisions in the study area. The closer, the better.
They should be close to motorways and highways. Maximum 5 kilometers, but
the closer, the better.
They shouldn't overlap with forest areas, residential areas, industrial areas, and
the like.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[254]

The slope of the areas should be equal to or less than 10 degrees.
The final areas should have at least an area of 1.5 km2.

Additionally, to fully satisfy the preference of economical feasibility, we should add the
following criterion:

They shouldn't reside in the 200 meters vicinity of rivers and lakes, but the
farther, the better.

Why do we exclude areas in the close vicinity of rivers and lakes? To
reduce the risk of damage caused by floods, of course. However, proper
flood and floodplain analysis belongs to the domain of hydrology and
hydrological modeling. Although QGIS and GDAL do not have tools for
this discipline, you can take a look at GRASS's tools at

.

Raster analysis
Unlike our previous analysis, now that we do not have input points or areas to choose from,
we have to delimit those areas based on different criteria. That alone raises the idea of using
rasters. Additionally, this time we not only have Boolean criteria (inside or outside), but
also have some continuous preferences (closer, or farther, the better). This factor calls for
raster analysis. In raster analysis, we can consider almost the same classification as in vector
analysis:

Overlay analysis: Masking a raster layer with a binary mask layer. Where the
binary mask layer has a zero value, we drop the value of the other raster layer, or
set it to zero.
Proximity analysis: Analyzing the distance between features or cells, and
creating a raster map from the results. The raster map can contain real-
world distances (Appendix 1.12) or raster distances (number of cells) from features
or non-null cells in the input vector or raster map.
Neighborhood analysis: Analyzing the neighborhood of the input raster. It
usually involves convolution, which calculates some kind of statistics from the
neighboring rasters of every cell, and writes the result in the appropriate cell of
the output raster. The search radius can be circular or rectangular, and take an
arbitrary size.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[255]

As you can see, the definitions have changed, as we cannot talk about geometries and
attributes separately in case of raster data. Rasters offer full coverage of a rectangular area,
therefore, if we use two perfectly aligned raster layers with coincident cells, the result will
have the same cell number and cell size, and only the values matter. If not, a sophisticated
GIS will resample one of the raster layers by simply aligning it with the other one, or
interpolating its values during the process.

Multi-criteria evaluation
As we need to analyze the suitability of an area based on some preferences, we are basically
doing an MCDA (Multi-criteria decision analysis). MCDA, in GIS, is generally done with
raster data, and the final map shows the suitability of every cell in the study area. We can
use MCDA for different purposes, like analyzing the suitability of the land for a specific
species, or choosing the right site for a building with quantitative needs. During the
process, we have to create raster maps for every criteria, then calculate the final suitability
based on them. For this task, we differentiate between these two kinds of data:

Constraint: Binary raster maps having cells with the value of zero (not suitable
for the task), and having cells with the value of one (suitable for the task). These
binary raster layers can be considered as masks, and define the areas we can
classify in our final assessment.
Factor: Raster maps showing the possibility that a cell will be suitable for a given
criteria, also called fuzzy maps. Their values are floating point numbers between
0 and 1 (0 represents 0%--absolutely sure it is not suitable, while 1 represents
100% --absolutely sure the cell is suitable).

Raw continuous data, such as distance from features, become fuzzy maps
by using a normalization method. Don't worry about that at this point; we
will discuss it later in this chapter (Fuzzifying crisp data).

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[256]

In the end, we will have to create a single map by combining the different constraints and
factors, showing the overall suitability of the cells calculated from the different factors, and
masked by the union of the different constraints. There are several approaches and steps to
execute an MCDA analysis, although in GIS, the most popular approach is to use the multi-
criteria evaluation (MCE) method. By using this method alone, the result will have some
uncertainty due to the involved subjectivity, although it will suit us in our task. First, let's
break down our criteria to constraints and factors as follows:

Constraints: Study area, maximum 5 kilometers from main roads, specific land
use types, slope less than 10 degrees, minimum 200 meters away from waterways
and water bodies
Factors: Close to main roads, close to the mean point of the appropriate
settlements, far from waterways and water bodies

Using this naive grouping, we have to process some of our data twice, as we have some
overlaps between our constraints and our factors. However, we do not need to use those
data as both constraints and factors. We can normalize our factors in a way that the
constrained areas automatically get excluded from the result. Furthermore, as our DEM is
already clipped to the borders of our study area, we do not have to create a raster layer
from our study area. That is, we can regroup our tasks in the following way:

Constraints: Specific land use types, slope less than 10 degrees
Factors: Close to main roads (maximum 5 kilometers), close to the mean point of
the appropriate settlements, far from waterways and water bodies (minimum 200
meters)

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[257]

Creating the constraint mask
In order to create constraints, we need to convert our input features to raster maps. Before
converting them, however, we need to open the correct layers, and apply filters on them to
show only the suitable features:

Open the layer and the SRTM DEM.1.
Apply a filter on the layer to only show features which are restricted. It2.
is simpler to create a filter which excludes land use types suitable for us, as we
have fewer of them. Let's assume grass and farm types are suitable, as we can
buy those lands. The only problem is that QGIS uses GDAL for converting
between data types, which does not respect filtering done in QGIS. To overcome
this problem, apply a filter on the layer with the expression

, then save the filtered layer with Save As:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[258]

A more optimal way would be to select features from the layer
suitable for us. On the other hand, we would need a vector layer
completely covering our study area for that. As our layer has
partial coverage, we select features not suitable, and invert the result later.

The next step is to create the required raster layers. This step involves calculating slope
values from the DEM, and converting the vector layers to rasters:

Calculate the slope values using Raster | Terrain Analysis | Slope from the1.
menu bar. The input layer is the DEM, while the output should be in our working
folder. The other options should be left with their default values.

The Slope tool outputs the slope values in degrees. However, other more
sophisticated tools can create outputs with percentage values. If expressed
as a percentage, a 100% slope equals to 45 degrees.

Right-click on the DEM, and select Properties. Navigate to the Metadata tab, and2.
note down the resolution of the layer under the Pixel Size entry. We could use
more detailed maps for our vector features, however, as the resolution of our
coarsest layer defines the overall accuracy of our analysis, we can save some
computing time this way.
Convert the filtered land use layer to raster with the Raster | Conversion |3.
Rasterize tool. The input layer should be the filtered layer, the output
should be in our working folder, while the resolution should be defined with the
Raster resolution in map units per pixel option with the values noted down
before. The attribute value does not matter, however, we should use absolute
values for the resolutions. The order of the values noted down matches the order
we have to provide them (horizontal, vertical).

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[259]

Define our project's CRS on the resulting raster layer to avoid confusion in the4.
future (Properties | General | Coordinate reference system):

Now we have a problem. Our land use raster's extent is limited to the extent of the land use
vector layer. That is, the raster does not cover our study area. If we leave it like this, we
instantly fail one of our criteria, as we do not analyze the whole study area. We can
overcome this issue by creating a base raster. The Rasterize tool has an option to overwrite
an existing raster, and burn the rasterized features in it:

Create a constant raster with QGIS geoalgorithms | Raster tools | Create1.
constant raster layer. The reference layer should be the slope layer, as it covers
the whole study area. The constant value should be . We can overwrite our land
use raster with the output of this file.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[260]

Use the Rasterize tool again. The input should be the land use vector layer, while2.
the output should be the constant raster we overwrote our land use raster layer
with. We should keep the existing size and resolution this time (default option).

Now we have a continuous and a discrete raster layer, which should create a mask together
somehow. Using vector data, we can easily overlay two layers, as both consist of the same
types--geometries. We can compare geometries safely, and get geometries as a result.
However, in case of raster data, the geometries are regular grids, and overlaying them
makes little sense for any analysis. In this case, we overlay cell values which represent some
kind of attribute. Considering this, how can we compare two completely different values?
What can be the result of overlaying slope degrees and land use IDs? What is the
intersection of 15° and 2831? The answer is simple--we can only get meaningful overlays
from comparable layers. That is why we need to convert our slopes and land use to
constraints--0% suitability and 100% suitability values.

When we assign new values to raster layers based on some rules, it is called reclassification.
We can reclassify raster layers in QGIS by using the raster calculator. Let's open it from
Raster | Raster Calculator. The raster calculator in QGIS is somewhat similar to the field
calculator, although it has limited capabilities, which include the following:

Variables: Raster bands from raster layers. Only a single band can be processed
at a time, although we have access to different bands of multiband rasters by
referencing their band numbers (for example, , ,

, and so on).
Constants: Constant numbers we can use in our formulas.
Operators: Simple arithmetic operators, power, and the logical operators and

.
Functions: Trigonometric and a few other mathematical functions.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[261]

Comparison operators: Simple equality, inequality, and relational operators
returning Booleans as numeric values. That is, if a comparison is , the result
is , while if it is , the result is :

Always watch out for the current extent! You can load the extent of any
processed raster layer by selecting it and clicking on Current layer
extent. Make sure that you use the extent of the processed raster layer and
not any other extent. Otherwise, QGIS may crop the layer, creating an
incorrect result.

With these variables, constants, and operators, we need to create a function or expression
which iterates through every cell of a single, or multiple raster layers. The resulting raster
will contain the results of the function applied to the individual cells. As our constraint
maps should only contain binary values, we can get our first results easily by using simple
comparisons as follows:

Reclassify the land use raster using the raster calculator. The rule is, every raster1.
with an ID greater than zero should have the value of 0 (not suitable), while cells
with zero values should get a value of 1 (suitable). We can use an expression
like . The output should be a file saved in our
working folder.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[262]

Reclassify the slope raster using the raster calculator. We need every cell2.
containing a slope value less than 10° to get a value of 1. Other cells should get a
value of 0. The correct expression for this is . Similar to
the previous constraint, the output should be a in our working folder:

Don't worry about the maximum value of in the Layers Panel.
Remember, QGIS uses a cumulative cut when displaying raster layers,
thus, cuts the top and bottom 2% of the values.

Now we have two binary constraint layers, which can be directly compared, as their values
are on the same scale. Using binary layers A and B, we can define the two simplest set
operations as follows:

Intersection (A × B): The product of the two layers results in ones where both of
the layers have ones, and zeros everywhere else.
Union (A + B - A × B): By adding the two layers, we get ones where any of the
layers has a one. Where both of them have ones (in their intersections), we get
twos. To compensate for this, we subtract one from the intersecting cells.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[263]

What we basically need is the union of constraints (zeros). Logically thinking, we can get
those by calculating the intersection of suitable cells (ones). Let's do that by opening the
raster calculator, and creating a new GeoTIFF raster with the intersection of the two
constraint layers as follows:

Now we can see our binary layer containing our aggregated constraint areas:

Using fuzzy techniques in GIS
Now that we have our final constraint layer, which can be used as a simple mask, we can
proceed and create our factors. First, we can remove every intermediary layer we worked
with, as our factors use different vector layers as input:

Open the , , , and vector layers.1.
Filter the layer to only show the seats of the administrative regions.2.
The correct expression is or

 depending on which version we use.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[264]

Filter the layer to only show motorways and highways. Such a filter can be3.
applied with the expression

.
Get the mean point of the seats of the filtered settlements by using the QGIS4.
geoalgorithms | Vector analysis tools | Mean coordinate(s) tool. The input
should be the filtered layer, while the rest of the options can be left
with their default values.
Save every result (that is, filtered , , , and5.

) to the working folder with Save As:

Proximity analysis with rasters
The easiest way to carry out a proximity analysis using rasters is GDAL's Proximity tool in
QGIS. The tool requires a raster layer where features are described by cell values greater
than zero. It takes the input raster, and creates the proximity grid--a raster with the same
extent and resolution filled with distances from cells with values greater than zero.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[265]

The behavior of the Proximity tool implies the following two things:

We need to rasterize our input features
We need to supply our rasterized features in a raster map covering our study
area

As we've already found out, we can supply an existing raster layer to the Rasterize tool:

Select one of the factor inputs (like , , and so on).1.
Create a constant raster (a raster, where every cell has a same value) with the tool2.
QGIS geolagorithms | Raster tools | Create constant raster layer. Supply the
value of 0, and the constraints layer as a reference. Save it using the name of the
selected factor.
Use the Rasterize tool with the selected factor's vector layer and the constant3.
raster map created in the previous step.

If you cannot see the rasterized features in the resulting layer, you can use
the actual minimum and maximum values in Properties | Style | Load
min/max values. If you still cannot see anything, make sure to select the
Actual (slower) option in the Accuracy menu, and load the values again.

Use the Raster | Analysis | Proximity tool to calculate the distances between4.
zero and non-zero cells. The default distance units of GEO is sufficient, as it will
assign values based on great-circle distances in meters. Save the result as a new
file in a temporary folder.
Clip the result to the study area using Raster | Extraction | Clipper. Use the5.
already extracted study area as a mask layer. Specify to cut the extent to the
outline of the mask layer. Specify as No data value, as represents valuable
information for the analysis.
Remove the temporary layer.6.
Repeat the steps with every input factor.7.

As GDAL warns you after finishing with a distance matrix, using non-
square rasters reduces the accuracy of the analysis. The approximation
that GDAL's Proximity tool creates is now enough for us. If you need
more accurate results in the future, you can use GRASS's r.grow.distance
tool from GRASS GIS 7 commands | Raster.

The distance matrices visualized in QGIS should have a peculiar texture slightly resembling
a beehive:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[266]

Wondering if it would be easier to clip the layer we use as a basis for the
rasterization? It would be if GDAL's Proximity tool didn't handle NoData
values as features introducing implausible edge effects to our analysis
(Appendix 1.13).

Now that we have the distance matrices we will use for our factors, we can get rid of the
intermediary data (that is, vectors and rasterized features). The next problem is that we
have a single criterion in two different layers. We need distances from waters, although we
have distances from rivers and lakes separately. As both of them form the same preference,
and their units are the same (that is, they are on the same scale), we can use set operations
to make a single map out of them. The two essential set operations for non-binary raster
layers A and B using the same scale look like the following:

Intersection (min(A, B)): The minimum of the two values define their
intersection. For example, if we have a value of 10% for earthquake risk and a
value of 30% for flood risk, the intersection, that is the risk of floods and
earthquakes is 10% (not at the same time, though--that is an entirely different
concept).
Union (max(A, B)): The maximum of the two values define their union. If we
have the same values as in the previous example, the risk of floods or
earthquakes is 30%.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[267]

For creating the final water distance map, we need the intersection of the and
 layers. Unfortunately, we do not have minimum and maximum operators in

QGIS's raster calculator. On the other hand, with a little logic, we can get the same result.
All we have to do is composite two expressions in a way that they form an if-else clause:

This preceding expression can be read as follows:

If cell values from are equal or smaller than cell values from
, return one, otherwise return zero. Multiply that return value

with the layer's cell value.
If cell values from is larger than cell values from

, return one, otherwise return zero. Multiply that return value
with the layer's cell value.
Add the two values together:

As we have the final distance layer for waters, the and layers are
now obsolete, and we can safely remove them.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[268]

Fuzzifying crisp data
What we have now are three layers containing raw distance data. As these data are part of
different criteria, we cannot directly compare them; we need to make them comparable first.
We can do this by normalizing our data, which is also called fuzzification. Fuzzy values (μ)
are unitless measures between 0 and 1, showing some kind of preference. In our case, they
show suitability of the cells for a single criterion. As we discussed earlier, 0 means 0% (not
suitable), while 1 means 100% (completely suitable).

The problem is that we need to model how values between the two edge cases compare to
the normalized fuzzy values. For this, we can use a fuzzy membership function, which
describes the relationship between raw data (crisp values) and fuzzy values. There are
many membership functions with different parameters. The most simple one is the linear
function, where we simply transform our data to a new range. This transformation only
needs two parameters--a minimum and a maximum value. Using these values, we can
 transform our data to the range between 0 and 1. Of course, a linear function does not
always fit a given phenomenon. In those cases, we can choose from other functions, among
which the most popular in GIS are the sigmoid and the J-shaped functions:

There are various other formulae for fuzzifying crisp data (Appendix 1.14),
however, most of them use more parameters, therefore, need more
considerations. You can read more about these simple transformations at
GRASS GIS's r.fuzzy addon's manual page at

.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[269]

To solve this problem, we have to interpret the membership functions, and choose the
appropriate one for our crisp data. The various membership functions are explained as
follows:

Linear: The simplest function, which assumes a direct, linear relationship
between crisp and fuzzy values. It is good for the layer with the minimum
value of and the maximum value of . We have to handle distances over
5000 meters manually, and invert the function, as cells closer to the roads are
more suitable.
Sigmoid: This function starts slowly, then increases steeply, and then ends
slowly. It is good for the mean coordinates map, as the benefit of being near to
the settlements' center of mass diminishes quickly on the scale of the whole study
area. We have to use the minimum value of , and the maximum value of the
layer. Additionally, we have to invert the function for this layer, too.
J-shaped: A quadratic function which starts slowly, and then increases rapidly. It
can be used with the waters layer, as it is safer to assume a quadratic relationship
on a risk factor, when we do not have information about the actual trends. We
can use the minimum value of and the maximum value of the layer.

You can easily invert a fuzzy membership function by subtracting the
values from one, as fuzzy values are between and . If you use this
method on a fuzzy layer, you can get its complement layer.

First, let's use the J-shaped membership function on the layer, as follows:

We have a minimum value of 200 meters at hand, however, we need to find out1.
the maximum value. To do this, go to Properties | Metadata. The

 entry holds the maximum value of the layer. Round it up
to the nearest integer, and note down that number.
Open a raster calculator, and create an expression from the J-shaped function, the2.
minimum, and the maximum values. Handle values less than the minimum value
in a conditional manner. Save the result as a file. The final expression
should be similar to the following:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[270]

Next, we should apply the linear membership function to the layer as follows:

Open a raster calculator, and create an expression from the inverted linear1.
function, the minimum value of , and the maximum value of . Handle
values more than 5000 meters in a conditional manner. Save the result as a

 file. The final expression should be similar to the following:

By running the expression, we should be able to see two of our factor layers:

Finally, we use the sigmoid function for the mean coordinates layer like this:

We know the minimum value is , however, we need to find out the maximum2.
value. Check it in Properties | Metadata, round it up to the nearest integer, and
note down the value.
Open a raster calculator, and create an expression from the minimum and3.
maximum values, and from the inverted sigmoid function. We do not have access
to π, although we can hard code it as . Save the result as a file:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[271]

Aggregating the results
Now that we have all of our factors set up, we only need to create a single factor map out of
them. We could simply overlay them, and calculate their intersection for a restrictive, or
their union for a permissive suitability. However, we can also consider them as components
of a composite map, and calculate their average as follows:

Open a raster calculator, and calculate the factors' average by adding them1.
together, and dividing the result by the number of components. Save the result as
a file:

The result should be a beautiful, continuous raster map showing our factors:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[272]

What is the problem with this approach? Some of our factors also contain
constraints as zero values. By involving them in the calculation, the other two
factors with higher suitability values can compensate those constrained cells. To
get correct results, we have to manually handle the zero values in the roads and
waters factor layers.

Open a raster calculator, and overwrite the aggregated factors with an expression2.
handling zero values in the roads and waters factor layers. Make sure to save it as
a file.

By calculating the average of the factors, we assume their weights are
equal in the analysis. This is not always true. Of course, you can think up
weights, introducing another level of subjectivity into the analysis, but you
can also try to calculate weights by defining the relative importance of
the factors, comparing two of them at a time. This method is called AHP
(Analytic Hierarchy Process). There is a nice example on Wikipedia about
this method at

. There is also a great online AHP
calculator at .

Now we have a less beautiful, but correct result. The only thing left to do is to simply
overlay the constraints map with the aggregated factors, which is done using the following
expression:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[273]

When the raster calculator is finished, we should be able to see our final suitability map:

The final step is to defuzzify the final map to get crisp data that we can evaluate. This step is
very simple in GIS, as the MCE is usually done in such a way that we can get percentage
values if we multiply the fuzzy values by 100. As this is a very trivial operation, we do not
even have to calculate the percentage map, only label the actual intervals:

Value Label Suitability

- 0-25% Poor

- 25-50% Weak

- 50-75% Moderate

- 75-100% Excellent

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[274]

Calculating statistics
In GIS, statistics can be computed from both raster and vector data. However, even
calculating raster statistics often involves some kind of vector data. For example, we would
like to include some statistical indices in our assessment regarding the suitable areas. More
precisely, we would like to include at least the minimum, maximum, and average slope, the
minimum, maximum, and average suitability, the average distance from the mass point of
the settlements, and the minimum distance from waters. For this task, we cannot use our
rasters alone; we need to calculate indices from them only where they overlap with our
suitable areas. For this, we need our suitable areas as polygons, and then we can leave the
rest of the work to QGIS.

In order to get our suitable areas as polygons, we need to delimit them on our suitability
layer. The most trivial first choice is to select every cell with an excellent rating. However,
how many cells do we have with more than 75% suitability? If we have only a few,
vectorizing them would make no sense, as every resulting polygon would fail the minimum
area criterion. Furthermore, if we have some sites meeting the 1.5 km2 criterion, but the
main roads go right through them, that is also a failure, as we cannot have a single site
divided by a high traffic road.

In order to get the minimum suitability value that our analysis is viable with, we can limit
the suitability layer to a range. Let's open Properties | Style, and choose Singleband gray
for Render type. Now we can manually input the range we would like to check (as
Min and as Max first), and set Contrast enhancement to Clip to MinMax. This way,
QGIS simply does not render cells outside of the provided range. By using this
representation model, we only have to load the roads layer, and measure some of the
visualized patches. We can measure an area with the Measure Area tool from the main
toolbar. We have to select it manually by clicking on the arrow next to Measure Line, and
choosing it.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[275]

The tool works like the regular polygon drawing tool--a left-click adds a new vertex, while a
right-click closes the polygon:

If you have very small patches, choose a lower Min value and repeat the
process. Choose a minimum value where you have several suitable areas.
For me, the value of worked well, although it may change with the
study area.

Vectorizing suitable areas
Now that we have an appropriate suitability value, we can vectorize our suitability map.
We've already seen how vector-raster conversion works, but we did not encounter raster-
vector conversion. As every raster layer consists of cells with fixed width and height values,
the simplest approach is to convert every cell to a polygon. GDAL uses this approach, but in
a more sophisticated way. It automatically dissolves neighboring cells with the same value.
In order to harness this capability, we should provide a binary layer with zeros representing
non-suitable cells, and ones representing suitable cells:

Open a raster calculator, and create a binary layer with a conditional expression1.
using the minimum suitability value determined previously. Such an expression
is . Save the result as a file.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[276]

Open Raster | Conversion | Polygonize from the menu bar.2.
Provide the binary suitability layer as an input, and specify an output for the3.
polygon layer:

Now we have a nicely dissolved polygon layer with DN (digital number) values
representing suitability in a binary format. We can apply a filter on the layer to
only show suitable areas:

As the polygons do not respect the main roads, we need to cut them where the
roads intersect them. This seems to be a trivial problem, although there are no
simple ways to achieve this in QGIS. On the other hand, we can come up with a
workaround, and convert our filtered polygons to lines, merge them with the
roads, and create polygons from the merged layer.

Convert the filtered suitable areas layer to lines with QGIS geoalgorithms |4.
Vector geometry tools | Polygons to lines. The output should be saved on the
disk, as the merge tool does not like memory layers.
Merge the polygon boundaries with the roads layer by using QGIS5.
geoalgorithms | Vector general tools | Merge vector layers. The output can be a
memory layer this time.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[277]

Create polygons from the merged layer with QGIS geoalgorithms | Vector6.
geometry tools | Polygonize. Leave every parameter with their default values,
and save the result as a memory layer.

Be sure to use the Polygonize tool. There is another tool called Lines to
polygons, however, it converts linestring features to polygons directly,
creating wrong results.

Now we have our polygon layer split by the roads, however, we've also got some7.
excess polygons we don't need. To get rid of them, clip the result to the original
suitable areas layer with QGIS geoalgorithms | Vector overlay tools | Clip. Save
the result as a memory layer.
Closely inspect the clipped polygons. If they are correctly split at the roads, and8.
do not contain excess areas, we can overwrite our original suitable areas layer
with this:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[278]

Don't worry if you get an error message saying QGIS couldn't save every
feature because of a type mismatch. The clipped areas are stored in a
polygon layer, therefore, the output layer's type will automatically be
polygon. If QGIS detects that there are also some other types of geometries
present in the saved layer, it still saves every matching feature. It just
won't load the result automatically.

The last thing to do with our vector layer before calculating statistics is to get its attribute
table in shape. If you looked at the attribute table of the polygonized lines, you would see
that the algorithm automatically created two columns for the areas and the perimeters of
the geometries. While we do not care about the perimeters in the analysis, creating an area
column is very convenient, as we need to filter our polygons based on their areas. The only
problem is that by clipping the layer, we unintentionally corrupted the area column. The
other attribute we should add to our polygons is a unique ID to make them referable later:

Select the saved suitable areas polygon in the Layers Panel, and open a field1.
calculator.
Check in the Update existing field box, and select the column from the2.
drop-down menu.
Supply the area variable of the geometries as an expression-- and3.
recalculate the column.
Open the field calculator again, and add an integer field named . The4.
expression should return a unique integer for every feature, which is impossible
to do in the field calculator. Luckily, we can access a variable storing the row
number of every feature in the attribute table, which we can provide as an
expression-- .
Save the edits, and exit the edit session.5.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[279]

Apply a filter to only show the considerable areas using the expression 6.
:

Using zonal statistics
Although calculating statistics from a whole raster layer has its own advantages, now we
need raster statistics from only the portions overlapping with our suitable areas. We can do
this kind of calculation automatically by using zonal statistics. Zonal statistics require a
raster layer and a polygon layer as inputs, then creates and fills up attribute columns with
all kinds of statistical indices (like count, sum, average, standard deviation, and so on) in
the output polygon layer. In order to calculate all the required statistics, we need all the
input raster layers first:

Open every raster layer needed for the statistics--the water distance, the mean1.
coordinate distance, the slope, and the suitability layers.
Open the Raster | Zonal statistics | Zonal statistics tool. 2.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[280]

Choose an appropriate raster layer as Raster layer, the suitable areas layer as the3.
Polygon layer containing the zones, and supply a short prefix describing the
raster layer (for example, for mean coordinates). Save the result as a memory
layer. Check the appropriate indices, and uncheck the rest of them. Remember,
water distance--minimum; mean coordinates--average (mean); slope--minimum,
average, maximum; suitability--minimum, average, maximum.
Repeat the process for every input raster layer:4.

That's all. With a few clicks, we can get a lot of statistical indices from different raster layers
and some polygons. On the other hand, those numbers are not comprehensive at all. For
example, we do not know about the distribution of suitability values from some indices. As
a matter of fact, having a histogram of the suitability values could enhance decision making,
as we would see how common less suitable values, and the more suitable values in a site
are. For that, we would need the histogram of the raster layer under our potentially suitable
areas. Unfortunately, creating zonal histograms is not available in QGIS. Furthermore, the
easiest approach involves a lot of manual labor. Let's create one or two histograms just to
get the hang of it:

Open the attribute table of the suitable areas, and select the first row by clicking1.
on the row number on the left.
Save the selected feature using Save As, and specifying Save only selected2.
features.
Use the Clipper tool to clip the suitability raster layer to the saved feature.3.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[281]

Copy the style of the suitability layer, and paste it on the clipped suitability layer4.
(this way, we get a colored line in the histogram).
Open Properties | Histogram on the clipped raster, and save the histogram as a5.
PNG file with the Save plot button. Use the ID of the selected feature in the file
name (for example,).

You can speed up this manual process somewhat by using the QGIS
geoalgorithms | Vector general tools | Split vector layer tool with the
column of the suitable areas. It saves features with the same IDs on
different layers in the output folder. Then you can use GDAL/OGR |
[GDAL] Extraction | Clip raster by mask layer as a batch process (right-
click on it, and select Execute as batch process) to create every extraction
at once. You still have to save the histograms manually, though.

There are still several problems with this approach, although this is the closest we can get to
a histogram in QGIS without scripting in Python or R. The problems include the following:

The values are not binned. We have every different value as a single interval,
making the histogram noisy.
The frequency is expressed in cell counts. It would be much more clear if the
frequency would be expressed in percentage values.

Accessing vector statistics
Getting vector statistics in QGIS is very straightforward. The method is similar to raster
statistics, although as we can store as many attributes as we want in a vector layer, we can
only calculate statistics from a single numeric column at a time. We can access the Show
statistical summary tool from the main toolbar (purple Σ button), choose a layer, then
choose a numeric column. To save the statistics to a file, we can use QGIS geoalgorithms |
Vector table tools | Basic statistics for numeric fields. We can also calculate grouped
statistics with QGIS geoalgorithms | Vector table tools | Statistics by categories.

Creating an atlas
The atlas generator is the most powerful feature of QGIS's print composer. It can create a lot
of maps automatically based on a template we provide. The underlying concept is very
basic--we have to provide a polygon layer with a column which has unique values.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[282]

The print composer takes that layer, and creates a separate map page for every different
value (therefore, feature) it can find in the provided column. Furthermore, it grants access
to the current feature it uses for the given page. The real power comes from the QGIS
expression builder, which enables us to set cartographic preferences automatically. With
this, we can build a template for our atlas and use it to showcase each suitable area in its
own map.

First of all, if we would like to create a front page with every suitable area on a single map,
we have to create a feature enveloping the polygons from our suitable areas polygon layer.
We can create such a polygon with QGIS geoalgorithms | Vector geometry tools | Convex
hull. It takes a vector layer as an argument, and creates a single polygon containing the
geometries of the input features:

Create the convex hull of the suitable areas using the aforementioned tool. Save1.
the output to the working folder, as the merge tool does not like memory layers.
Open the attribute table of the convex hull layer. Remove every attribute column2.
other than . They would just make the merged layer messier, as the merge tool
keeps every attribute column from every input layer. Don't forget to save the
edits, and exit the edit session once you've finished.
Merge the suitable areas layer and the convex hull layer with Merge vector3.
layers. Save the output in the working folder with a name like .

Now we have every page of our atlas in the form of features in our coverage layer. We can
proceed and make it by opening New Print Composer, and using the Add new map tool to
draw the main data frame. We should leave some space for the required information on one
of the sides. In order to begin working with an atlas, we have to set some parameters first:

Go to the Atlas generation tab on the right panel.1.
Provide the coverage layer as , and the column as 2.

. Check the Sort by box, and select the field there too.
Select the map item, navigate to the Item properties tab, and check the3.
Controlled by atlas box. This is an extension to the extent parameters, which
automatically sets the data frame's extent to the extent of the current feature.
Select the Margin around feature option.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[283]

Click on Preview Atlas on the main toolbar. You should be able to see the first4.
page instantly, and navigate between the different pages with the blue arrows:

As the next step, we should style our layers in a way that they create an aesthetic
composition in our atlas. For example, we should make the convex hull invisible, and
remove the fills from the suitable sites:

Open the Properties | Style menu of the suitable sites layer, and select Rule-1.
based styling.
Modify the existing rule. Name it , and create an expression to show2.
the current atlas feature if it is not the convex hull. Such an expression is

, hence, the convex hull has an ID of . Style
it with only an outline (Outline: Simple line), and apply a wide, colored line
style.

You can reach every atlas-related variable in the Variables entry of the
expression builder.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[284]

Add a new rule. Name it , and create an expression to show every3.
feature besides the current atlas feature and the convex hull. The correct
expression is . Style them with a
narrow black outline.
The dominance of zero values in the suitability layer distorts the look of the map.4.
Classify zeros as null values by opening Properties | Transparency, and defining

 in the Additional no data value field:

You can add a nice touch to your map by using something like
OpenStreetMap as a base layer (Appendix 1.15). All you have to do is
install OpenLayers Plugin (Plugins | Manage and Install Plugins), and
select OpenLayers plugin | OpenStreetMap | OpenStreetMap from the
new Web menu. Note that this procedure sets the projection to EPSG:3857
automatically.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[285]

The second item we should add to our atlas is an overview map. This way, we can make
sure we know where we are in the study area every time:

Add a new map frame with Add new map in one of the free corners of the1.
canvas.
Style the layers in QGIS as you see fit. For the sake of simplicity, I added only the2.
study area's polygon and the water layers.
After styling, go back to the composer, select the overview map, and check3.
the Lock layers box.
Position the map with Move item content in a way that the whole study area is in4.
the frame. You can use the View extent in map canvas button as initial guidance.
In the Overviews section add a new item. Select the other map as Map frame.5.
Restore the initial layers in QGIS:6.

The next item we add is one of the most important parts of our atlas. It is the attributes of
the atlas features. A simple way to achieve this would be to add an attribute table item with
Add attribute table, although it cannot be customized enough to fit in our atlas. For these
cases, QGIS's print composer offers a highly customizable item--the HTML frame. With that
item, we can visualize any valid HTML document. Furthermore, we can use the expression
builder to write expressions, which will be evaluated by QGIS and rendered in the HTML
frame:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[286]

Add a new HTML frame with the Add HTML frame tool on the left toolbar.1.
In its Item properties dialog, select the Source radio button, and Evaluate QGIS2.
expressions in HTML source box.

Now we just have to write our HTML containing the attributes of the features. A great thing
in HTML is that plain text is a completely valid element. Therefore, we only need to know
how to use one HTML element in order to fill our HTML frame, which is as follows:

: Inserts a line break in the HTML source.

The rest of the task is simple string concatenation (operator). We evaluate the attributes
of the features (ID, area, and statistics), then concatenate them with the rest of the text and
the elements. Furthermore, as the HTML frame is an atlas-friendly item, the attributes
of the current feature are automatically loaded, therefore, we can refer to the correct
attribute with the name of the column. Finally, as the statistical indices are quite long, we
should round them off with the function. We can also divide the by
to get the values in :

Before clicking on the Refresh HTML button, copy the content of the
HTML source. If QGIS drops the expression, paste back the copied source,
and click on Refresh HTML again.

We should expand our expression a little bit. Although it shows the attributes of the atlas
features nicely, we get a bunch of irrelevant numbers on the first page. Instead of
visualizing them, we should print the title of the project, and the attributions on the first
page. We can easily do this by extending our expression with the conditional
operator. We just have to specify the ID of the convex hull in the clause, and put the
attributes of the atlas features in the clause:

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[287]

Now we can see our attributes when we focus on a feature, while the overview page shows
only attribution:

You can use any valid HTML syntax in the source. The only drawback of
this item is that you cannot alter the style of the content directly from
QGIS. You have to write CSS code for this in the User stylesheet field after
activating it.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[288]

The final item we should add to our atlas is an image showing histograms. With data-
defined override, we can get the correct histogram of every atlas feature if they are saved in
the same folder, and contain the IDs of the features in their names:

Add a new image item with the Add image tool.1.
Choose the Data defined override button next to the field, and2.
select the Edit option.
Create an expression which returns the correct histogram file for every atlas3.
feature. My expression
is

. Note that the current atlas
feature is not evaluated in a data-defined override (that is, we cannot access its
attributes directly).

When we see our composition, we will be able to see some histograms, if we have them
saved as images:

You can include your company's logo on the first page easily by saving it
along with the histogram images with a name reflecting the convex hull's
ID.

(c) ketabton.com: The Digital Library

A Typical GIS Problem

[289]

The only thing left to do is to export our atlas. By selecting the Export Atlas as Images
button on the main toolbar, we can see that the atlas can be exported in image, SVG, and
PDF formats. The most convenient way of exporting is to save the entire atlas in a single
PDF, where every atlas page is rendered on a separate page:

Select the Atlas generation tab in the right panel.1.
Check the Single file export when possible box.2.
Save the atlas as a PDF with Export Atlas as Images | Export Atlas as PDF.3.

Summary
Congratulations! You just carried out your first raster analysis with MCE. It is valuable to
have the ability to use raster data effectively, and to create suitability analysis on demand.
The best thing is that we were able to do the analysis with free and open source data. In this
chapter, we learned how to effectively use and analyze raster data. We created a suitability
map for an imaginary cause of building a warehouse based on a set of criteria. We were able
to delimit suitable areas, and calculate statistics on them to further help making a good
decision. Finally, we automated the map making process by creating an atlas with every
important piece of information on every suitable site.

In the next chapter, we will leave the realm of desktop GIS, and dwell on web mapping.
We will learn the basics of the server side of web mapping systems. First, we will serve our
data with QGIS for instant and easy publication, then start to learn GeoServer, which is a far
more capable software for publishing spatial data on the web. We will learn the most basic
standards we can use with web mapping, and how we can utilize them for different results.

(c) ketabton.com: The Digital Library

111
Showcasing Your Data

In the previous chapter, we learned about advanced raster analysis. We learned how to use
the most essential raster-based tools by doing a complete suitability analysis based on open
data. In order to make a better decision, we calculated some statistical indices on our
suitable areas. Finally, to complete the assignment, we created an atlas from the results.

In this chapter, we will learn the basics of web mapping, more precisely, how client-server
interaction works in the realm of spatial information technologies. We will focus on the
server side, and on one of the most important aspects of web mapping--spatial data
exchange. We will learn about spatial data formats and services readable by browsers,
therefore, widely used for web mapping. Finally, we will learn how to use QGIS Server and
GeoServer for publishing data on the web.

In this chapter, we will cover the following topics:

Open Web Services
Spatial data formats in web mapping
Publishing spatial data with QGIS Server
Publishing spatial data with GeoServer

Spatial data on the web
In order to understand how spatial data on the web works, we first need to get a picture
about the architecture of the web. The web resides on the Internet, where we have to deal
with two kinds of software--servers and clients:

Server: An application that listens to a port with a background process (daemon),
and accepts requests from that port. It processes valid requests and serves data
according to them.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[291]

Client: An application responsible for sending valid requests to server side
application(s) (for example, web browser-web server, SSH client-SSH server,
QGIS-PostgreSQL). It also needs to be able to interpret the response sent back
from the server.

If you are familiar with the client-server architecture, you can skip the
following subsection.

Understanding the basics of the web
The Internet is designed to be an infinitely expandable network of computers. Therefore,
servers and clients are only the end points of this network--there are additional nodes doing
other tasks. For example, there are DNS servers, which map IP addresses to domain names;
routers and switches forward the traffic. The web is one of the largest portions of the
Internet, sharing specific, standardized content between end points. For creating a web
application, the midpoints are out of concern. We only need to know how to configure web
servers (backend), and how to write content for web clients (frontend).

There are a lot of other use cases of the Internet. Just think of video
streaming, direct file sharing (FTP), remote administration (SSH), or
playing video games online.

In order to have a working architecture, the web is powered by standards instead of
software. These are open standards, which define the intended behavior of every step in
serving and receiving data on the web, mostly maintained by a large number of experts and
companies forming the World Wide Web Consortium (W3C). This way, anyone can
develop a web server or a web client, which is guaranteed to work with any website if these
standards are followed. If not, for example, a web browser that places two line breaks on
every element, it is called a bug. No matter if the developers reason that this is an
intended feature, as two-line breaks look much better than a single one, the standard is
wrong. What do we gain from this strong standardization? We do not have to worry about
compatibility issues. The standards make sure we can use Apache, nginx, Node.JS, or any
other web server application as a web server, and the hosted files will work on any web
browser following them. We only need to make sure that the web server we choose is
capable enough for our needs, and the configuration is correct.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[292]

These standards are very specific, therefore, very long and complex. That is why we won't
discuss them in detail but grab some of the more important parts from our perspective. In a
web architecture, we have a web server, and a client capable of communicating with it
(most often a web browser):

Web server: A server application capable of communicating over the hypertext
transfer protocol (HTTP or HTTPS). By default, web servers using HTTP listen
on port , while the ones using HTTPS listen on port . The main
responsibility of web servers is to accept HTTP requests, resolve paths, and serve
content accordingly. Different web servers have different capabilities, although
encrypting data (HTTPS) and compressing responses are often
implemented. Web servers can access a portion of the server machine's file
system from where they can serve these two kinds of resources:

Static files: HTML, CSS, JS files, images, and other static resources
for the served web page.
CGI: Server-side scripts that the web server can call with
parameters defined in the request as arguments. It resembles a
command-line call with the difference that CGI programs must
conform to web standards. CGI scripts can be written in any
language the server's OS can run as a command-line program
(most often, PHP, Python, Ruby, or C).

Web browser: A client application capable of communicating over the hypertext
transfer protocol (HTTP or HTTPS). It can send requests to web servers, and
interpret responses. It can handle various types of data like the following
received from a web server:

Plain text: The most basic response type. The browser renders it as
plain text.
Structured text: Markup languages (like HTML and XML), CSS
stylesheets, JS programs. The browser parses them, then creates a
Document Object Model (DOM), preserving the structure and
hierarchy of the source documents. It styles the DOM elements
according to the rules in the stylesheets, and interprets the content
of the JS files, allowing the JS programs to run on the client.
Media elements: RGB or RGBA (red, green, blue, alpha) images
in common formats (like PNG, JPEG, BMP, and GIF), video files
(WEBM, OGG, and MP4), subtitles, audio files (OGG and MP3).
The client incorporates these elements into its DOM structure,
rendering them in a usable way.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[293]

We can see the generalized scheme of the client-server architecture in the following figure:

The next step is the communication between web servers and web clients. There are various
standardized requests that a client can send to a web server, which serves content
accordingly. The response is also standardized, therefore, the client can interpret it:

Request: The web client sends a request to a destination identified with a URL.
The URL contains the destination server machine's IP address or domain name
followed by the relative path to the requested resource from the web server's root
folder (that is, the folder which holds the portion of the file system the web server
has access to). If no port is specified, the client automatically sends HTTP
requests to port , and HTTPS requests to port . The request additionally
holds some headers, the type of the request, and optionally, some other content.
There are these two important types from our perspective:

: In a request, everything is encoded into the URL. If a
script is specified as the destination, the parameters are encoded in
the URL as key-value pairs separated with a . The start of the
parameters are marked with , while the parameter separator is .
A request with a CGI script can look like the following:

. There is no per standard character limit on requests, but
as they are basically URLs, using it for sending a very long
representation of a complex geometry for example is impractical.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[294]

: requests are exclusively used with CGI scripts. In the
URL, only the destination is specified; the parameters are contained
in the body of the request. requests leave no trace, therefore,
they are good for sending sensitive data to the server (for example,
authentication). They are also commonly used to send insensitive
form data in bulk, or to upload files to the server.

 requests can actually target static resources due to bad design. In
those cases, however, it is up to the web server how it handles the request.
Apache, for example, treats them as GET requests, returning the content of
the static resource.

Response: If a web server is listening on the specified server's specified port, it
receives the request data. If a static resource is requested by a request, it
simply serves it as is. If a CGI script is the destination resource, it parses the
parameters specified in the URL or in the request's body, and supplies them
to the CGI script. It waits for the response of the script, then sends that response
back to the web client.

A single-server machine can host an arbitrary number of server
applications listening on different ports. They can receive requests from
appropriate clients simultaneously, and respond to them (Appendix 1.16).

Spatial servers
The only question that remains is; how can spatial data be inserted into this architecture?
Well, they can be stored as static resources in vector formats like or . The
browser can read the content of these structured text files, and client-side web mapping
software can use them. Publishing raster layers is a little more tricky. As web browsers do
not have a concept about raster data, they need those layers as regular images. Therefore,
we have to create a representation model on the server side, and send the resulting images
to the client. The usual way of storing pre-rendered raster layers is to tile them, and serve
the tiles. Then, if the client-side web mapping software knows the tiling scheme, it can
create an interactive map by requesting visible tiles, and sewing them together. For this, we
need to create tiles for various zoom levels (fixed scales) for the entire extent of our raster
layer. In order to improve compatibility, there are various open source tiling standards.
Two of the more popular standards are OpenStreetMap's slippy map, and OSGeo's TMS
(tile map service).

(c) ketabton.com: The Digital Library

Showcasing Your Data

[295]

The other way to serve maps is, of course, via a CGI application. QGIS Server, for example,
is a completely valid CGI application we can use with any web server. By
sending parameters in a URL, we can get an image containing the requested layers
rendered by QGIS Server on the fly. To make this concept a little bit more complex, there is
also GeoServer, which is written in Java. Java is an exceptional language for writing web
applications, as web servers cannot invoke those software directly as CGI scripts. In order
to use a Java web application, we need a Java servlet, which is a specialized web server for
running it. The platform-independent binary version of GeoServer is bundled with Jetty, a
lightweight Java servlet listening on port :

Using spatial servers instead of static files has a lot of advantages. For example, spatial
servers can read out layers from spatial databases, therefore, we can always provide up-to-
date data. We can also send only extracts of large datasets querying them by various means,
or reproject them on the fly. As spatial servers need to be invoked by using some
parameters, their interfaces are also standardized. Most of those standards are also
maintained by experts and organizations forming the Open Geospatial Consortium
(OGC). They define interfaces, that is, the communication between web clients and spatial
servers. From the various OGC standards, there are some targeting the web. They are called
Open Web Services (OWS), and define general spatial data transmission over the web.
These standards are as follows:

Web Map Service (WMS): Layers rendered on the server side, and returned to
the client as regular images.
Web Map Tile Service (WMTS): Layers rendered, tiled, and cached on the server
side. Tiles are returned to the client.
Web Feature Service (WFS): Vector layers sent to the client as structured text. By
default, WFS uses the GML vector format.
Web Coverage Service (WCS): Raster layers sent to the client as raw raster data.
It is used by desktop GIS clients capable of reading raw raster data (for example,
QGIS), therefore, we won't discuss it further.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[296]

While OWS standards allow communicating through and requests, both QGIS
Server and GeoServer are mainly used with requests, therefore, parameterized URLs.
There are some common parameters for every service, which are listed as follows:

Service: The abbreviation of the requested service. It can be WMS, WMTS, WFS,
or WCS.
Version: The version of the requested service, as spatial servers can provide data
using different versions for backward compatibility. For WMS, it is usually
1.3.0; 1.1.0, 2.0, and 2.0.2 are widely used for WFS, while for WMTS, it is 1.0.
Request: The type of the operation that the spatial server should perform. A
common value is , which requests the metadata of the
provided layers used with the requested service. For WMS, it is usually ,
for WFS it is , while for WMTS, it is usually .

If we put this together, we can craft an URL, which can query a spatial server's WMS
capabilities the following way:

If you choose a service, there are other service-related parameters you
have to provide to get spatial data or maps as output. As both of the
servers we will use have convenient methods for creating previews, we
won't discuss service-related parameters further. You can read more about
them by downloading the whitepapers of the standards from OGC's
website at .

Using QGIS for publishing
QGIS offers a very easy and convenient way to publish QGIS projects with its own spatial
server. It is the CGI application QGIS Server, which we have already configured in

, Setting Up Your Environment.

If you are using Windows, and could not configure QGIS Server properly,
don't worry, just skip to the GeoServer part (Using GeoServer).

(c) ketabton.com: The Digital Library

Showcasing Your Data

[297]

Similar to the popular UMN MapServer, QGIS Server is a simple CGI application which
does not track the published data. While MapServer needs a configuration file where paths
to the data sources are defined along with other configuration parameters, QGIS Server
needs a QGIS project file, which contains the paths along with other information, like
styling. We can provide the project file's absolute path in a parameter.

While web servers can only access a portion of the file system, CGI scripts
can access anything they have permission to read or write. Always
consider this when using CGI scripts.

Let's craft a URL which queries the WMS capabilities of QGIS Server using one of our QGIS
projects. As we are on the same machine as the server, we can use the placeholder

 instead of a domain name or an IP address:

The response should look similar to the following:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[298]

If you are using Windows, you might need to use the
path to reach
QGIS Server.

A long XML response shows if we have a working QGIS Server, which can access our
projects. By installing QGIS Server, it automatically integrates itself in QGIS, and makes our
projects publishable with WMS. To see what those published maps look like, we can use
QGIS as a client. In order to load a WMS layer, we need to connect to a spatial server
publishing WMS layers first, using the following steps:

Click on the Add WMS/WMTS Layer button on the left toolbar.1.
Click on New to define a new connection.2.
Name the connection (it can be anything), and provide the URL to the QGIS3.
Server application with the map parameter pointing at a QGIS project file (for
example,

). I will use the carefully styled map from
, Creating Digital Maps.

Click on OK to save the connection, and close the dialog.4.
Click on connect to see every layer published as a WMS map.5.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[299]

Select the topmost layer named after the project file to load every layer from the6.
project. Add the whole map with the Add button:

If you experience character encoding problems with labels, you have to set
character encoding explicitly. To do that, open the project you are using
with QGIS Server, open Properties | General on the source layer of the
problematic labels, and set the Data source encoding from System to the
correct value.

We can see the styled layers, although there are two very conspicuous problems--there are
some layers published which we had disabled in our project, and it uses the projection

, making the map look distorted. The overall composition is not very aesthetic,
which we can resolve by opening the project in QGIS:

Open Project | Project Properties from the menu bar.1.
Navigate to the OWS server tab.2.

As QGIS Server serves projects, we can configure the behavior of the QGIS Server in the
project properties.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[300]

There are several general sections in the dialog which are useful for basic configuration, like
the following:

Server capabilities: Basic metadata about the provider. If enabled and filled out,
that data is supplied with the capabilities of XML by the server application.
CRS restrictions: QGIS Server can create WMS images in up to three CRSs by
default. Two of them are the popular and CRSs. If the
published project uses a third CRS, it can be also used by default. To customize
the CRSs, WMS layers can be queried, we can enable CRS restrictions, and
manage the allowed projections manually.
Exclude layers: By default, every layer in the project is published as a WMS
image. In order to exclude some of the layers, we can add them in the Exclude
layers section.
WFS capabilities: Spatial data is not published by QGIS Server in raw vector
format by default. We can enable WFS layer-wise, by checking the Published box
on the appropriate vector layers. We can also enable WFS-T (WFS-Transaction)
on some layers (that is, Update, Insert, and Delete). The only requirement is that
the layer has to be in a format QGIS can write in place.
WCS capabilities: Similar to WFS, we have to enable publishing raw raster data
with WCS layer-wise.

Do not hesitate to try out WFS and WCS on some layers. Once enabled,
you can request WFS and WCS layers with the Add WFS Layer and Add
WCS Layer buttons similar to adding new WMS layers.

For now, let's only exclude the disabled layers from the WMS service.

Add the disabled layers in the Excluded layers list with the green plus icon.1.
Apply the changes, and save the project.2.
Open a new project, or an existing one used for this chapter.3.
Add every layer from the previously saved project as a single WMS layer as we4.
did previously. Before adding the layer, click on the Change button next to the
default CRS's name (WGS 84), and select the local projection we use from the list.

If QGIS Server still provides the excluded layers, remove the layer, and
add a new WMS layer. This time though, do not select the parent layer
named after the project file, but select every child manually. You can do
that by holding down the shift key while clicking on each layer you would
like to include.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[301]

Now we have a stack of styled layers ready to use in a web application:

The image we see is the same as we will see on our webpage if we use the layers with web-
mapping software. This is the greatest benefit of using QGIS Server--as it uses the same
libraries as QGIS, the served images will be the same as we can see in the project's styled
layers in QGIS.

Using GeoServer
Publishing data with QGIS Server is indeed very easy, although being a simple CGI
application, it has limited capabilities. Unlike QGIS Server or UMN MapServer, GeoServer
is a full-blown web application. That is, it has an internal data structure used for storing a
lot of things including styles, authentication data (profiles), and references to raw spatial
data. GeoServer is a Java web application, therefore, it needs a Java servlet to work
(included in the default binaries). Therefore, if we start GeoServer with the technique
described in , Setting Up Your Environment, we have to wait until the Java virtual
machine starts up and the application initializes itself. Once GeoServer is running, we can
access it from a browser by connecting to the port of our local server, and access the

 application as follows:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[302]

As GeoServer uses authentication, first we have to log in with the default admin credentials.
The default admin username is , while the default password for this user is

:

General configuration
As GeoServer is a full application with users and authentication, the first and most
important thing to change is the master and admin passwords. The master password
belongs to the superuser root, which is a fixed administrator user. Unlike the user admin, it
cannot be removed, therefore, GeoServer remains manageable no matter if the admin
account is accidentally removed:

Go to Security | Passwords from the navigation panel on the left-hand side.1.
Click on Change password next to the password provider.2.
Provide as the original password, and supply a new password for the3.
root account.
Click on the Change Password button to apply the changes.4.
Go to Security | Users, Groups, Roles.5.
Select the Users/Groups tab, and click on the user.6.
Change the password by typing in a new password and confirming it in the7.
corresponding fields.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[303]

Click on the Save button at the bottom of the page to apply the changes:8.

As we can see, there are three categories we can use in user management. There are regular
users with user names, passwords, and individual permissions. There are groups, which
can ease user management. A single user can be assigned to multiple groups. There is also a
special category--roles. Roles are similar to groups, as a single user can use multiple roles.
Using roles is significant in several aspects of permission management (for example,
restricting access to services). In GeoServer roles are like responsibilities (e.g. admin, editor,
user). Groups are grouping users and roles together so that common security combinations
can be easily applied.

By default, GeoServer provides spatial data to any client-side request
without authentication. As there is only one method in OWS capable of
modifying the data sources (WFS-T), which is disabled by default, this can
be considered safe. You can learn more about locking down services from
the official guide at

.

The second thing we should configure is the metadata of the services. As GeoServer uses an
internal data structure to store and provide spatial data added to it, metadata is configured
for the entire application, not for individual projects. There are two kinds of metadata in
GeoServer--global and service related. We can access global metadata that contains
information describing the server's owner or maintainer by opening About & Status |
Contact Information. Service-related metadata can be set by accessing the service settings
under the Services section. Besides setting metadata, we can modify the behavior of the
given service.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[304]

It is a good practice to disable services you do not intend to use, especially
if you expose your GeoServer instance on the web. Raw data
transmissions (that is, WFS and WCS) can generate a lot of traffic, and
anybody can use them if they are available. You can disable services in the
service configuration. For example, to disable WCS, you can open Services
| WCS, and uncheck the Enable WCS box.

GeoServer architecture
When it comes to data sources, GeoServer offers a hierarchical structure that consists of
workspaces, stores, and layers. GeoServer's architecture is simple enough to understand
quickly, still, there are some tricky parts that need to be discussed:

Workspace: A group that contains different elements, like stores, layers, styles, or
workspace-specific configurations. This is similar to a QGIS project file.
Store: A connection between spatial data stored on the disk and GeoServer. A
single store can contain multiple layers if the storage type is capable to do so (for
example, PostGIS).
Layer: A published layer from an existing connection (store). Unlike QGIS Server,
GeoServer does not publish every layer from the defined source; we have to
explicitly select and publish our layers of interest:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[305]

If we go through Data | Workspaces, Data | Stores, and Data | Layers, we can see that
every default store is put into a workspace, and layers from that store inherit the name of
the workspace. Putting stores into a workspace is mandatory. Using a workspace is only
optional for styles. This is because if we put a style into a workspace, it can only be used for
layers in the same workspace, otherwise, it can be used globally. Workspaces behave
similar to schemas in PostgreSQL. Layers can have the same name in different workspaces,
and if we access layers globally, we should refer to them with their fully qualified names in
the form of .

GeoServer offers several ways to access its services. The most general way is to use its
global endpoint in the following format:

By using this endpoint, we can supply every OWS parameter required for a valid request.
For example, to get the WMS capabilities of GeoServer, we can use the following URL:

GeoServer has quite advanced rewrite rules, therefore, we can specify the service name
after, or instead of . Thus, to get the same result, we can write the request the following
ways:

Alternatively, if we would like to only access the content of a single workspace, we can use
a virtual endpoint by including the name of the workspace in the URL as follows:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[306]

The tricky part comes while defining custom service behavior to workspaces. As we could
see from the capabilities of GeoServer's WMS service, it can provide WMS images in every
known CRS. In order to demonstrate this custom behavior, let's restrict the CRSs of the topp
workspace to and :

Go to Data | Workspaces, and select the topp workspace.1.
Check the WMS box under Services to enable workspace-specific WMS2.
configuration for this workspace. Click on the Save button to apply the changes.
Go to Services | WMS, and select the topp workspace in the Workspace menu.3.
Find the Limited SRS list field, and supply the EPSG codes of the two projections4.
(). Save the edits by clicking on Submit at the bottom of the page.

Let's connect to the global endpoint of GeoServer, and query its WMS capabilities
(

). Next, query its capabilities using the topp virtual endpoint
(

). As you can see, the virtual endpoint has now limited CRS
capabilities, while the global endpoint can still provide layers from the topp workspace in
any projection GeoServer knows. This is the tricky part of managing workspaces. As the
global endpoint has to provide every published layer with every service enabled in the
global configuration, it cannot use workspace-specific configuration. On the other hand,
when using a virtual endpoint, GeoServer will try to use configuration for the
corresponding workspace. If it cannot find any, it simply falls back to the global service
configuration.

If you would like to have workspace-specific configuration only, you have
to enable the desired services in every workspace, configure them, then
disable the services in the global configuration.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[307]

Adding spatial data
Before adding some data to GeoServer, let's create a new workspace for it. This way, the
data will be safely separated, and we will be able to access the content by using a virtual
endpoint:

Open Data | Workspaces.1.
Select Add new workspace.2.
Specify a name for the workspace in the Name field.3.
Give a namespace for the workspace in the Namespace URI field. The namespace4.
must be a URI (that is, a URL or a URN). It does not have to point to an existing
resource, only its uniqueness is what matters (compared to the URIs of the other
workspaces). For example, a URL can be

, while a URN can be
:

There is a great article about URIs at
.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[308]

Now we can start defining stores for our data sources. GeoServer does not create internal
copies of the input data. It only uses references to the input files or databases, and reads the
underlying spatial data on demand:

Go to Data | Stores and select Add new Store.1.

Although GeoServer has somewhat limited knowledge about spatial formats, it
still offers stores for the three formats we used previously in this book--

, , and .

One of the advantages of GeoServer is its modular architecture. As it is
written in Java, which is an interpreted language, you can extend
GeoServer's capabilities with custom Java code. There are some official
extensions downloadable from .
In the Extensions section, you can download various vector and coverage
format extensions. You can install an extension by extracting the Java
archives to GeoServer's folder.

Select PostGIS.2.
Set the Workspace to the one we created previously.3.
Give a name to the data source. The name won't be used by the services, although4.
it must be a unique one.
Provide the name of the database in the database field. If you followed the book's5.
naming conventions, it is spatial.
Provide the name of the schema containing spatial tables in the schema field.6.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[309]

Provide the username, and optionally, the password. Although it should be safe7.
to use a PostgreSQL role with write privilege, it is a good practice to use double
protection if we do not intend to write PostGIS tables from GeoServer. Therefore,
we should use the public role we created with the corresponding password. If
you are on a Unix system, the password field can be left blank:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[310]

As you can see, if we use a store which can provide multiple layers, we can access every
layer by their names. On the other hand, if the store is a single file which can contain only
one layer, we can only access that single layer from the specific store. Before publishing a
layer, let's add three more single file stores.

Open Add new Store from Data | Stores again.8.
Select the Shapefile option.9.
Select the workspace we created for our data.10.
Give a name to the store.11.
Browse out the shapefile containing suitable areas from our MCE analysis in the12.
Shapefile location field by clicking on Browse.
Select the appropriate character encoding. Probably, it is .13.
Save the store with the Save button, and return to the Add new Store page.14.
Select the format, and choose the correct workspace.15.
Give this raster store a name, and browse out the suitability layer from the results16.
of the MCE analysis.
Save the store with the Save button.17.
Add the clipped SRTM layer in the local projection we used with QGIS the same18.
way as the suitability layer.

As you can observe, GeoServer offers a data directory it can instantly
access in its file browser. It is the folder located in GeoServer's
directory. If you create a folder there, and copy the data sources there,
you can ease browsing. Furthermore, if you are planning to run a
production server, you most likely would like to remove example
workspaces and datasets. After removing them from GeoServer, you can
free up some space by removing them physically from the and

 folders inside the folder.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[311]

As we now have our data sources configured, we can start publishing relevant layers. Let's
start with some of our vector layers:

Open Data | Layers.1.
Select Add a new layer.2.
Select one of our newly defined stores (for example, suitable areas).3.
Find a layer to publish, and click on its Publish option.4.
Supply a name for the layer if the default one is not appropriate.5.
Look at the Coordinate Reference Systems section. GeoServer will try its best to6.
find out the CRS of the layer in the Native SRS field. If it can successfully find the
corresponding SRID, it automatically fills out the Declared SRS field (that is, the
default CRS of the published layer). If it cannot, we should know the EPSG code
of the layer's CRS. In this case, we have to provide it in the Declared SRS field,
and leave the Force declared option selected. This way, GeoServer will not care
about the original CRS of the layer; it will apply the one we provided on it.
Calculate the bounds of the layer automatically by clicking on the Compute from7.
data option in the Bounding Boxes section.
Calculate the bounds of the layer by clicking on the Compute from native8.
bounds option.
Publish the layer by clicking on the Save button.9.
Repeat the steps for the other required vector layers. We will need the10.
administrative boundaries, the GeoNames layer, the land use, the roads, the
waterways, and the water bodies.

Now we have a published layer, which we can preview easily from GeoServer. The only
thing we have to do is to go to Data | Layer Preview, and select the OpenLayers option in
the row of the newly published layer. The result shows what the layer will look like when
accessed through GeoServer's WMS service. Although GeoServer uses OpenLayers for
creating its previews, the map's content will look the same in any other web-mapping
application.

OpenLayers is a web mapping library for creating interactive maps on the
client side. We will talk about web mapping in , Creating a Web
Map.

The suitable areas layer in the preview window should look like the following:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[312]

You can also use QGIS to preview layers by connecting to one of the
endpoints of GeoServer.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[313]

It's time to publish some raster layers. Publishing raster layers is a little different, but only
requires one extra consideration:

Open Data | Layers, add a new layer, and select the suitability layer from its1.
store.
The bounding box is automatically calculated this time, however, the default2.
option for reprojecting is Reproject native to declared. It is completely useless
when the native and declared SRSs are the same, while it is harmful if GeoServer
cannot identify the CRS of the raster data correctly. Set it to Force declared.
Repeat the steps for the SRTM raster.3.

Don't worry about the preview of the raster layers. We will fix that in the
next chapter by applying custom styles to them.

Now we can require individual layers, but how can we create compositions? Well, of
course, we can define multiple layer names in a single request, although this
approach can be quite inconvenient, especially, when we would like to stack a lot of layers.
On the other hand, GeoServer has the capability of grouping layers to form a server-side
composition. The only limitation of this approach is that it can only be used for WMS
requests with layers in a single workspace:

Open Data | Layer Groups.1.
Select the Add new layer group option.2.
Name the layer group, give a descriptive title, and select the workspace we are3.
working with.
Supply the code of our local projection in the Coordinate Reference System4.
field (for example,).
One by one, add every layer from the road map composition we made in QGIS5.
earlier using Add Layer.
Click on Generate Bounds to compute the bounding box of the composition6.
automatically.
Define the correct layer order by using the green arrows in the layer list. The list7.
defines the drawing order, therefore, the first item is drawn at the bottom, while
the last layer will be at the top.
Save the composition with the Save button.8.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[314]

If we preview the newly created layer group, we can see the raw composition, that is, every
component with their default styling stacked on each other. Now it is only a matter of
styling to get a similar map like in our QGIS project:

Tiling your maps
One of the greatest perks of GeoServer is its internal tiling and tile-caching capability. It
uses GeoWebCache, which is integrated into GeoServer, and enabled by default. Of course,
this behavior can be also considered a downside, as cached tiles always use up some disk
space. GeoServer's default tiling behavior is dynamic. It creates tiles on demand, and stores
them until expiration for reuse. Tiling can greatly increase the speed of serving images, with
the expense of additional disk usage. Although there are multiple tiling services served by
GeoServer, every one of them can be served with the same tiles (gridset). Only the layout
differs, which is calculated by GeoServer before serving the right tiles.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[315]

If we go to Data | Layers, and inspect a layer by clicking on its name, we can see the default
tiling and tile caching options in the Tile Caching tab. As we can see, tile caching is enabled
for two formats (and) by default. Furthermore, tiles can be generated for two
gridsets, one using the CRS, and one using the CRS. Finally,
tiles can be generated for every style associated with the given layer, which is only the
default style by default.

 is the historical code for the Web Mercator (). As
Google Maps created and used it first, and EPSG refused to accept it as a
valid CRS for a long time, Christopher Schmidt coined the code name of
900913 (GOOGLE if the numbers are rotated by 180 degrees individually),
and it got popular wrongly as EPSG:900913.

If we go into Tile Caching | Gridsets, we can open the properties of the two enabled
gridsets, and check their properties. Gridsets tile up the whole extent of a CRS, and create a
layout for every zoom level. They start with only a few tiles for the smallest zoom level, and
increase quadratically with every defined new zoom level. If we calculate the theoretic
maximum of stored tiles for the gridset, we get the
value . For the other gridset, we get a much higher value
of . These are the number of tiles which can be stored by
GeoServer, theoretically, for both of the image formats. According to GeoSolution's
presentation at

 (they are contributors to the GeoServer project),
GeoWebCache's tile storing mechanism is very efficient, as about tiles can fit into a
single megabyte. Still, to store a layer in both of the default gridsets in a single format, we
would need about 24 exabytes of space. I do not think we would need any more proof that
managing tile caching is a very good practice, otherwise, GeoWebCache can fill up every bit
of free disk space it can use quite quickly.

You can alter the default caching behavior for new layers by navigating to
Tile Caching | Caching Defaults, and altering the corresponding options.
By unchecking the Automatically configure a GeoWebCache layer for
each new layer or layer group option, GeoServer won't make a cached
layer for new layers automatically. Similarly, you can alter the default
formats for default data types, and the default gridsets used by
GeoWebCache.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[316]

The first thing we can configure is the disk quota. Despite the large space requirement of
tiles, we shouldn't give up on serving tiled variants of WMS images, as they are beneficial if
used wisely. We can restrict the space GeoWebCache can take up, and let it create tiles for
whatever layers we would like to give a boost. If it reaches its quota, it will free up some
space by removing or overwriting unused tiles:

Go to Tile Caching | Disk Quota.1.
Check in the Enable disk quota box.2.
Specify an appropriate size for GeoWebCache in the Maximum tile cache size3.
field.
Select a recycling behavior from the two available options (that is, Least4.
frequently used and Least recently used).
Apply the disk quota by clicking on Submit.5.

Now we can deal with the tiled variants of our layers. Despite having a quota, we should
not leave GeoWebCache filled with tiles we do not need. We can manage tile layers by
going to Data | Layers, opening a layer, and navigating to the Tile Caching tab like we did
previously:

If we would like to disable tile generating for the entire layer, we can uncheck the
Create a cached layer for this layer option.
If we would like to disable only caching tiles for a layer, we can uncheck the
Enable tile caching for this layer option.
We can disable the format for every layer safely. The usual image
format we use on the web is , as it can store transparency. By using , we
get smaller image sizes, but we also get a white background where there aren't
any features.
We can also remove unused gridsets from layers with the red minus button. For
the gridsets that we would like to use, we can define the minimum and
maximum zoom levels we would like to publish or cache.

You can go to Tile Caching | Tile Layers, and remove layers from there.
You achieve the same effect as turning off the Create a cached layer for
this layer option, and you can also bulk-remove tiled versions of layers.

(c) ketabton.com: The Digital Library

Showcasing Your Data

[317]

As our GeoServer is not public, do not bother with the tile setup for now. Let's create a tiled
variant for our new layer group in our local projection instead:

Go to Tile Caching | Gridsets.1.
Select the Create a new gridset option.2.
Name the gridset to represent the local projection we use. Avoid using special3.
characters, whitespaces, or slashes.
Supply the code of the local projection in the Coordinate Reference System4.
field.
Click on Compute from maximum extent of CRS to make GeoServer calculate5.
the bounding box of the gridset automatically.
Click on Add zoom level as many times as the zoom levels we would like to6.
provide. Create at least 10 zoom levels. The optimal number of zoom levels
highly depends on the size of the CRS's extent. You can take a hint from the

 column of the zoom levels. A scale of is building level.
Save the new gridset with the Save button.7.
Navigate to Data | Layer Groups, and select our layer group from the list. This is8.
the same as selecting the layer group from the layers list, but more convenient.
Go to the Tile Caching tab, and add our new gridset by selecting it in the Add9.
grid subset field, and clicking on the green plus button.
Save the edits made to the layer group.10.

Now we can preview the tiled version of our layer group in our CRS by navigating to Tile
Caching | Tile Layers, finding the row of our group layer, and selecting the appropriate
gridset and format combination from its column:

(c) ketabton.com: The Digital Library

Showcasing Your Data

[318]

Do not worry about those sharp tone changes in the DEM layer.
GeoServer, by default, stretches the local minimum and maximum values
of a subset of the DEM to the grayscale color space at a time, not the global
min/max values. We will fix that by applying a palette with predefined
intervals in the next chapter.

We can instantly see the greatest benefit of using tiled layers when we browse the preview.
The first time when we pan or zoom around, GeoServer takes some time to render the tiles.
Then, if we navigate to already visited areas, it loads the content instantly. If we navigate to
Tile Caching | Disk Quota, we can also see our disk slowly filling up by browsing the
preview. You may ask now: where are the tiles? They are stored in GeoServer's

 folder. Tiling provided by GeoWebCache does not only mean that a
separate module does tile providing and caching; it also means that we can only request
tiled resources from a third endpoint-- :

(c) ketabton.com: The Digital Library

Showcasing Your Data

[319]

As GeoServer provides various tiling services from which only WMTS is an OGC standard
(therefore, has similar parameters to WMS, WFS, and WCS providers), tile requests are
slightly different. We have to specify the service in the path of the URL, and can use service-
related parameters after that. For example, to query the WMTS capabilities of our
GeoServer, we can use the following URL:

Summary
In this chapter, we gained some basic but essential understanding about the architecture of
the web. We learned how to easily provide spatial data with QGIS Server. We also learned
some of the basic principles of GeoServer, and how we can create a starting configuration,
which we can later expand by gaining additional experience with the system. We discussed
standardized OGC services called OWS, and how they work in practice. We managed to not
only add some of our own spatial data to GeoServer and visualize the results, but also see
how we can tile them, speeding up the server's response.

In the next chapter, we will learn about styling spatial data in GeoServer. Styling is not only
one of the corner points of publishing spatial data, but also a weak point of GeoServer, as it
offers way more possibilities than documentation. Creating styles can look cumbersome,
fiddling, and way too scary to get into. We will see how we can better understand SLD
styling, and what other, more efficient tools we can get our hands on.

(c) ketabton.com: The Digital Library

112
Styling Your Data in GeoServer

In the previous chapter, we covered the basics of sharing content over the web. We
discussed how the web works, and how we can send spatial data over it. Then, we set up
QGIS Server to see how spatial data are rendered as regular images and visualized in a
client. Then we went on and configured GeoServer to have a reliable spatial server in our
service, even capable of tiling up rendered images, and not only providing, but also caching
those tiles.

In this chapter, we will learn about styling vector and raster data in GeoServer. We will
cover the basic symbolizers we can use, and the syntax of the style language used by
GeoServer--SLD (Styled Layer Descriptor). After you understand how SLD works, we'll go
on and study the more convenient GeoServer CSS, which is a concise, CSS (Cascading
Style Sheet)-based language available in GeoServer through an extension.

In this chapter, we will cover the following topics:

Vector and raster symbology in GeoServer
Writing simple SLD styles
Creating styles easily with CSS

Managing styles
In GeoServer, we can manage style items the way we managed layers. Unlike layers, we can
make styles global by not assigning them to a single workspace. This makes them usable
with layers in different workspaces. On the other hand, as styles can be very specific (that is,
they can use rules based on attribute data), we can also make them local by assigning them
to a workspace. The styling scheme of GeoServer is very similar to QGIS and any other GIS
software. We can use point, line, polygon, and raster symbolizers to describe visual
properties.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[321]

These symbolizers can be explained as follows:

Point: A symbol bound to a pair of coordinates. The symbol can be an image, or
any other regular shape (for example, a square, triangle, or circle). If the symbol is
a shape, it can have a stroke and a fill.
Line: A linear symbol described with a stroke width and a stroke color.
Polygon: A symbol applied to an area described by coordinate pairs in the CRS of
the map. It has a stroke with a stroke width and a stroke color. Additionally, it
has a fill, which can be described by a simple color, a color gradient, or a texture.
Text: A rendered label that shows an attribute of the underlying feature. It can be
described with common font properties usable with WYSIWYG word processors
(like LibreOffice Writer).
Raster: A rule or a set of rules which assigns colors to raster values.

Of course, styles only affect image outputs (like WMS or WMTS). There are numerous styles
shipped with GeoServer. When we publish a layer, we have to assign a default style for it. If
we skip this step, GeoServer automatically assigns an internal style for the given layer
based on its type. Layers can have multiple styles. In a query, we can provide a style
parameter, which requests a style name other than the default style of the requested layer. If
the requested style exists, and it is assigned to the requested layer in GeoServer, it provides
images styled according to the request.

We can see GeoServer's default styles by navigating to Data | Styles. As you can see, the
default styles are global, therefore, we can use them with our layers if they fit. Let's open
the style named simple_streams by clicking on it. The window we opened is the style
editor, where we have access to these four style management tabs:

Data: We can specify the attributes of the given style here. We can rename the
style, or restrict it to a specific workspace. If we create a new style, we can also
choose a format and generate some random template.
Publishing: We can access all of our layers here and assign the style as default, or
just associate it with them. Associated styles can be queried by using a style
parameter as discussed before.
Layer Preview: We can preview the style on any layer in this tab. By default, a
layer using the given style is shown in the preview. We can change that by
clicking on the previewed layer's name. This is a very convenient editing tool, as
we can follow our changes visually.
Layer Attributes: We can inspect the attribute data of the previewed layer here,
which is useful if we use some attribute-based rules in our style.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[322]

The long and intimidating text in the style editor field is the style definition of the style we
opened. As you can see, the style editor is accessible in every tab, making editing very
convenient. There are also some of these following useful tools in the form of buttons,
which we can use with our modified styles:

Validate: To validates the style that we create anytime--GeoServer parses the
draft, and points out any error it can find
Apply: To save the modified style in place
Submit: To save a newly created style first time, making it available to any layer
Cancel: To go back and discard any change

Let's play around a little with this style to get a hang of the process:

Navigate to the Layer Preview tab1.
Click on the previewed layer's name (sf:streams), and select our waterways layer2.

Do not worry about the WGS 84 CRS of the previewed layer. In the
preview map, GeoServer always renders the previewed layer using
EPSG:4326 even if it is disabled in the list of CRSs usable by the WMS
service.

In the style editor, change the stroke width to pixel by modifying3.
the line. Optionally, change the color of the
stroke to the color we used in QGIS (for me) by modifying the

 line.
Validate the change by clicking on the Validate button.4.
Save the modification by clicking on the Apply button. If the preview does not5.
change immediately, pan or zoom the map a little bit.
Change to the Publishing tab.6.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[323]

Specify this style as the default style on the waterways layer by searching it, and7.
checking the Default box in its row:

Writing SLD styles
GeoServer's renderer uses, and is basically built around, the SLD (Styled Layer Descriptor)
specification. SLD is an XML (Extensible Markup Language) extension specified by OGC.
It allows rich representation of the underlying spatial data regardless of their type. As SLD
is XML based, it is a structured text using tags, attributes, and values. In order to
understand SLD better, let's go through the description of the style we opened before.

The original SLD specification is very universal and extensive, therefore it
is complex. Moreover, GeoServer has a great implementation capable of
harnessing most of its features. Therefore, in order to keep the learning
curve calm, we will only use a small subset of SLD. We have to make two
assumptions in order to do this--we only use catalog styles (that is, static
styles managed from GeoServer), and every vector layer contains only one
type of geometry.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[324]

The first line in grey describes that the content as a valid XML document of version 1.0 with
a UTF-8 character encoding. In the other lines, we can see the body of the SLD. As in every
valid XML document, most of the elements have an opening () and a closing
() tag. Between the two tags, the content of the element is described, whether it
is a simple value, or a group of other elements. The body tag of an SLD document
is , which we can see in the second, and the last line. Opening
tags can also have some attributes if applicable (for example,

). The attributes of the element are static,
and out of concern, as they will be automatically generated if we generate a template for
our new style. There are some additional elements we should understand to create a basic
style. They are as follows:

: The name of the parent element. It is mandatory for the
 element, but not relevant (that is, it can be

anything). It can be also used to describe some other elements optionally.
: A mandatory child of the element,

which contains the style definition.
: At least one of this element should be present in a

 element. It groups different rules of styling applied in a single
rendering pass. Multiple elements of this kind can achieve complex styles.

: A single set of rules grouping filters and corresponding symbology.
: A filter element in a element describing a subset of the

vector layer which should be styled in the rule.
, , ,

, : Elements residing in a
element describing a single symbol of the underlying spatial data in the rule.

, , , , , : Children of the
symbolizer elements describing the appropriate properties of the parent symbol.
For example, a can have

 and children, but cannot have a child, as it describes a
point symbol.

: An element describing a single parameter of a symbol's
aspect. For example, a element can contain a

 element describing the stroke's color, and a
 element describing its width.

: An element containing a value. It is usually used as a child of
an element to provide a value.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[325]

Styling vector layers
Let's start by styling some vector layers that we have. First of all, as we have a river style,
we should style our water bodies accordingly. Water bodies should have an outline with
the same color as our rivers, and a fill with a lighter shade of blue. As we already have a
river color, we can simply copy it out and apply to our new style. To find a lighter shade of
blue, we can use an online color picker widget. There is a great widget created by Google,
accessible by simply searching for in Google Search:

Styling waters
Let's style our waters by editing an existing style as follows:

Note down the color of the rivers in its SLD document ().1.
Go to Data | Styles.2.
Initialize a new style by clicking on Add a new style.3.
Give it a short, but descriptive, name, like .4.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[326]

Generate a polygon template by selecting Polygon in Generate a default style,5.
and clicking on Generate.
Click on Submit to save the template.6.
Select the new style from the existing styles. Now we have access to the Layer7.
Preview tab. Navigate to it, and select our water bodies layer as the preview
layer.
Edit the stroke, and fill colors of the template. Optionally, edit the stroke width.8.
Click on Apply, and check the result. Modify the fill color until you get a decent
result.
Go to the Publishing tab, and set this style as a default for our water bodies layer:9.

Optionally, you can style the water bodies like we did it in QGIS. To do
that, remove the element with its content, and set the fill color
to the same shade of blue as the rivers.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[327]

Styling polygons
The last part was very simple. Next, let's style our administrative boundaries. From that
layer, we only need our study area visualized with a dashed outline:

Create a new style, and name it appropriately.1.
Choose our workspace as Workspace; as this style will use an attribute from a2.
layer, it won't be applicable to other layers.
Generate a default polygon style.3.
Save the template with the Submit button, open it again, and preview it on the4.
administrative boundaries layer.
Remove the element and its content from the SLD document, as we don't5.
need a fill. Don't forget to remove the closing tag ().
Add a third element to the element of the style. It6.
should define a dash, which can be achieved by using the

 attribute. The dash array is a set of numbers separated by
whitespaces. The first number describes the first dash's width in pixels, the
second number is the first space's width, and so on:

Filter the layer to only show our study area. This is a simple comparison, which7.
needs an element, an element in it,
a column name in an element, and a value in an

 element. We can put the code together by correct nesting, and
get something similar to the following:

Save the style, and declare it as the default style for the administrative boundaries8.
layer.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[328]

We used some parameters that we have not not discussed before. You
must be wondering how should you know the exact parameters to use in
this case. The answer is very simple: you shouldn't. You can read out the
parameters GeoServer can accept for different SLD elements from its SLD
reference available at

.

Creating labels
Finally, let's create a style for our GeoNames layer showing only labels for the seats of the
administrative divisions:

Create a new style, and name it appropriately. Restrict it to our workspace.1.
Generate a template for point geometries.2.
Save the template, open it again, and preview it on the GeoNames layer.3.
Optionally, edit the metadata to describe our use case.4.
Apply a filter in the element filtering seats of administrative divisions.5.
The filter we used in QGIS is or

 depending on the format we used when we saved the GeoNames
extract. Remember: Shapefiles have a limit on the maximum length of a column
name, therefore if we exported our GeoNames layer to a Shapefile previously,

 got truncated to . This is the expression we have to
translate to an SLD filter. We can use a expression in SLD by using the

 element, although it is a little bit tricky. We have to provide
three attributes to the element: for the wildcard character substituting
any number of characters, for the wildcard substituting a single
character, and for the character escaping a wildcard character. In the end,
the filter should look similar to the following:

Instead of using a point symbolizer, use a text symbolizer to display labels only.6.
To achieve this, first remove the element with its content.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[329]

Add a element in the element. The text should have7.
a font type (for me, it is DejaVu Sans), a white color, and a black halo around it.
For the font size, the default value of 10 pixels is a little bit small, therefore, we
should use a somewhat bigger size. Furthermore, it should show labels from the

 property of the layer, which we can describe in a element. In the
end, we should get a symbolizer like the following:

Validate the style. If it does not have any errors, save it, and declare it as the8.
default style for the GeoNames layer.

Let's see how our layer group changed due to these SLD styles. First of all, we need to
change its styling. As a layer group can have different styling than the components
individually, we have to explicitly set the styles applied to the members of the group:

Go to Data | Layer Groups, and select our composition.1.
 Check the Default Style box for the items we created a style for.2.
Save the changes by clicking on the Save button.3.
Go to Data | Layer Preview, and preview our layer group by clicking on4.
OpenLayers next to it:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[330]

Styling raster layers
When working with rasters, we have much less options in GeoServer, just like in QGIS. For
singleband rasters, like our DEM, we can create a color ramp on which GeoServer
interpolates the values of the raster data. We can define breakpoints on the color ramp with
colors and raster values. In order to do this, first we need the minimum and maximum
values of our SRTM DEM:

Open QGIS, load the SRTM DEM which is used in GeoServer, and note down its1.
minimum and maximum values. We can use Properties | Style with the accurate
min/max values, or we can read out the values from the Metadata tab.
Create a new style in GeoServer, and name it appropriately.2.
Generate a default raster style, and save the template. Open it again, and preview3.
it on the DEM layer.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[331]

The preview shows nothing. This is a bug in the SLD generator, as it generates a4.
 element, which is not applicable on raster layers. Remove

that element, and save the template.
In order to create a grayscale DEM, we need to interpolate the raster values5.
between the black and the white colors. We can do so by creating a
element in the element, which contains our breakpoints.
The breakpoints are defined with elements. As these elements
do not have a closing tag (they use self-closing tags), we have to apply a slightly
different syntax. It needs at least two attributes: a color and a raster value. The
fully defined color map entry is, therefore,

. The final element should look like the following:

Now we have a perfectly fine grayscale DEM. How can we use it aesthetically
though? In QGIS, we applied an on-the-fly hillshading, and blended it in our land
use layer. Unfortunately, GeoServer is not capable of using a hillshading effect,
although we can try blending it in our land use layer. Blending is not part of the
SLD specification, but available in GeoServer through a vendor option. Vendor
options are parameters, which are not parts of the standard, but implemented in a
spatial server to grant additional capabilities. Vendor options are defined with

 elements, and are GeoServer-specific, therefore, not portable
between different OWS servers.

The blending vendor option looks like 6.
, where can be

any valid blending mode GeoServer knows. For our use case, the
operation would give correct results. Add the following line outside of the

 element, but inside the element:

You can take a look at the available blending modes with some explanation
at

.

Save the style, if it is valid, and apply it to the SRTM layer as a default style.7.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[332]

If we look at our group layer, we can see that blending modes in GeoServer work
differently than in QGIS. The overlay mode keeps every cell from the DEM where
there is a white background. Unfortunately, in GeoServer, we have to choose
between alpha blending and color blending. With alpha blending, we can show
our DEM only where we have land use polygons, but we lose their styling. With
color blending, we cannot exclude the DEM where there aren't any land use
polygons. To make the composition a little bit more appealing, we can constrain
the DEM layer with its blending mode to a maximum scale. As a result, we will
only see it on higher zoom levels, where its behavior won't distract us.

Go back to the style editor. We can define a maximum scale with the8.
 element, which should go into the element.

The value of the maximum scale should depend on the size of the study area. By
browsing the preview map, its Scale should give a hint on the correct value:

Save the edits, and preview our layer group. We shouldn't see the DEM in the9.
initial view, while it should appear blended into the land use polygons when we
zoom in enough:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[333]

To get a composition similar to the one we created in QGIS, you have to
generate a relief raster from the SRTM, clip it to the land use layer, and
load the result into GeoServer (Appendix 1.17). Furthermore, on-the-fly
hillshading is part of the SLD specification, and accessible with the

 element. Once it is implemented into GeoTools, the
processing library that GeoServer uses, it will be available in GeoServer.

Using CSS in GeoServer
We have seen that SLD has very powerful styling capabilities, although due to XML's
verbose nature, SLD documents can easily become unmanageable with the style's
complexity. XML is great for computers; they can easily parse and serialize documents in
this format. However, they are inconvenient for humans. There is another styling language
created for defining styles in a more concise manner--CSS (Cascading Style Sheet). CSS fits
human logic better; we just need to understand its cascading behavior. Cascading, in this
sense, can be understood with this rule--every matching definition gets applied, but on
collision, the most specific definition wins. Let's look at an example. With the following
snippet, we can style our GeoNames layer:

The least specific rule is the wildcard, which selects every feature. According to that style,
every feature should have a symbolizer size of 6 pixels. According to the second rule, only
seats of administrative divisions should be visualized--with circles. The third rule is the
most specific: it defines that seats with a population greater than 100,000 people should
have an increased symbol size. What do we get in the end? Only seats are shown with a
circle symbolizer. They are rendered with a 6 pixels size. Seats with a population greater
than 100,000 people are rendered with an 8 pixels circle size. As the third selector is more
specific than the first one, simply overrides .

CSS was created for styling web content in an intuitive manner. It is
strongly standardized, therefore, it has not only a standard syntax, but
also a standard set of values. There are some CSS variations out there,
though. For example, for cartographic purposes, there is Mapbox's

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[334]

CartoCSS, Mapnik's Cascadenik, and GeoServer's CSS extension. They
share the same syntax, although their set of values are completely vendor
specific. They are unrelated to basic CSS, and in some cases, even to each
other.

The syntax of CSS is very intuitive once we get a grasp of it. Stylesheets written in CSS
consist of rule blocks. Each block defines a single set of rules the renderer should apply on
logically coherent items (features or raster cells in our case). Every block has two parts--a
selector and a declaration block. A declaration block (in braces) has individual
declarations as key-value pairs separated by a colon, and terminated by a semicolon. The
most basic selector is , which selects everything. It is like creating a element in
SLD without any filters. In square brackets, we can define filter expressions. We can put
multiple selectors together to form a more specific selector. If we separate multiple selectors
with whitespaces, we form a logical , while if we separate them with commas, we form
a logical operation between them.

As in QGIS, you can use the keywords and in selector expressions.
GeoServer's CSS processor still treats the selector as more specific than a
single value query. For example,

 has the same specificity as
.

As GeoServer's renderer is built around the SLD specification, its CSS also has SLD
capabilities--just with another, more convenient syntax. That is, we can use SLD
rules without nesting elements into each other, keeping only the important parts of styling.
Of course, as the language is different, there are also changes in the syntax.

Fortunately, as CSS styling is an official extension, it has documentation
accessible from GeoServer's official site at

. From there, you can read out
the attributes, and other coding styles required to use GeoServer's CSS.

In order to have CSS capabilities in GeoServer, we first have to download and install the
extension. As it is an official extension, we can download it from GeoServer's download
page at :

Download the CSS Styling extension at the bottom of the page.1.
After downloading and opening the archive, extract its content into the2.
GeoServer's library folder. It can be found in the GeoServer's folder under

.
Restart GeoServer to load the extension.3.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[335]

Styling layers with CSS
First, let's style the land use polygons. It would be very cumbersome to set up all the filters
in SLD, however, in CSS, we have an easy job creating different categories.

Create a new style. Name it accordingly, and limit it to our workspace.1.
Select the CSS option in the Format field.2.
Generate a polygon template, save the style, reopen it, and preview it on our3.

 layer.
The template contains a fill style, a stroke style, and a comment line with a4.

 directive. As we have no means to name legend labels in CSS, when
GeoServer converts the stylesheet to SLD, it extracts label titles from specially
formatted comment lines containing only a directive and a title name.
Rewrite the block to show only forests with only a fill as follows:

Finish the style by defining the rest of the declaration blocks with the appropriate5.
selectors. When we would like to apply a single style to multiple classes, we can
use multiple selectors separated by commas:

If the stylesheet is valid, save it, and make it the default style of the 6.
layer:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[336]

As the style definitions are mutually exclusive (there are no common
rules), GeoServer has an easy job converting the title directives to legend
labels. However, if we use some overlapping rules, and they have titles,
GeoServer will concatenate the different titles into a single label.
Currently, there is no workaround to solve that issue.

Creating complex styles
Next, let's create some complex styling to visualize our main roads similar to the
visualization we created in QGIS:

Create a new style. Name it accordingly, and limit it to our workspace.1.
Select the CSS option in the Format field.2.
Generate a line template, save the style, reopen it, and preview it on our3.

 layer.
Rewrite the rule as follows to show secondary roads, as they had a simple4.
symbolizer:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[337]

It's time to create the complex line styles. In SLD, we would have to create5.
multiple elements to have multiple lines drawn on each
other. In CSS, however, we can define multiple styles in a single definition
separated by commas. Similarly, we can define their other attributes the same
way. The order of the values is the only thing what matters:

Note that in QGIS, we defined line widths in millimeters. In GeoServer,
we usually define widths in pixels. Therefore, you might need to fiddle
with the width values a little bit to get aesthetic results.

Our complex line styles should look like the following:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[338]

We've got some better results, although our map still suffers from the symbol6.
levels problem like in QGIS. In GeoServer, for altering the order of rendering
lines with different styles, we can use the property. When we have
multiple styles assigned to a single-line type, we have to use multiple z-indices
separated by commas. Before applying the symbol levels, find out the correct
order. The black borders should come first, while the rest of the roads should be
drawn according their priorities. Important roads second, highways third, and
motorways, fourth:

You can see the available CSS properties in the official reference at

.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[339]

Now we should be able to see clean lines rendered by GeoServer:

The only problem left is the occasional gaps between our line segments. As7.
GeoServer applies a butt line ending by default (Appendix 1.18), some of our
segments get cut off in their meeting points. To solve this issue, we can round off
all of our lines with a global definition as follows:

It is a good practice to use clean, processed, visualization-ready vector data
in GeoServer. Although GeoServer has some quite advanced capabilities to
handle raw vector layers, it is far from a full-fledged GIS software.

Finally, let's add some labels showing road references to important roads. If we8.
add labels globally, we would end up with a map showing labels for every road
no matter whether they are visualized or not. Therefore, we need a selector which
selects only our features of interest. The labels should have a white color, and a
bluish rectangular background. We can set a background with the
property, which accepts a point symbolizer as a value. As we have a square
symbol at hand, we can use that. When we put the code together, we should get
something like the following:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[340]

Although we have labels on our map, it still bleeds from several wounds. First of9.
all, we need to offset our labels so that they are placed in the middle of our lines.
We can achieve this by modifying the anchor point. The anchor point defines the
reference point of our labels. It is placed in the middle of our lines, and the label
is drawn from that point. By default, the anchor point is the lower-left point of
our labels, which is represented with two 0s. As the upper-right coordinates are
represented with two 1s, the middle point of our labels are two 0.5s:

We should also remove duplicated labels. The default behavior of GeoServer is to10.
render a label on every separate segment. As we have many segments, we get a
lot of labels. Although there is no SLD option for merging logically coherent lines,
GeoServer can do that with a vendor option. In CSS, we can also use vendor
options prefixed with . The correct option for this is ,
which renders a single label for lines with the same label attribute, on the longest
segment:

Now we have fewer labels; however, regardless of their width, they are rendered11.
on the same-sized square. We can override this behavior by using two vendor
options-- and . The former defines
how GeoServer should resize shields when the label sticks out, while the latter
defines the margin size around the labels in pixels:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[341]

The only thing left to do is to customize the shields. Markers can be customized12.
by using pseudo selectors to apply further properties to every symbol. In this
case, we can safely customize every shield marker by using a sole
pseudo selector in a separate definition block, as we have only one type of shield.

Putting the whole code together, we get a label description similar to the
following:

If you have multiple types of shields to style individually, you can nest the
definition block of the shield pseudo element into the definition block of
the labels using it. You can read more about nested rules at

.

If we apply the final style as the default on the roads layer, and override the road layer's
style of our layer group in Data | Layer Groups, we can see our final composition in Data |
Layer Preview:

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[342]

GeoServer cares less about label collisions than QGIS. To reduce
overlapping labels, you can increase the minimum required space in pixels
between adjacent ones with the vendor option.

Styling raster layers
As a final task, let's style our suitability raster layer. We should use the same color ramp
that QGIS calculated for us. That is, we have five breakpoints: , , , , and .
The color ramp is red to green, with the colors , , , ,
and at the breakpoints:

Create a new CSS style restricted to our workspace with an automatically1.
generated raster template. Save the style, reopen it, and preview it on our
suitability layer.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[343]

Single-band rasters can be styled in CSS just like in SLD--with a color map. The2.
syntax of the color map is a bit unusual, though. The property is

, while the value is a set of functions separated by
whitespaces. As a one liner would be hardly manageable for this rule, and CSS
allows some flexibility in its syntax, we can put our color map entries in separate
lines. A single function accepts three arguments: a color, a
value, and an optional opacity value. Extend the definition block with a color
map as follows:

The result is correct, although we get a lot of red pixels due to the amount of3.
unsuitable areas. To get rid of zero values, we can provide a opacity value in
the first color map entry, making red areas fully transparent:

The red parts are gone, however, GeoServer not only interpolates colors between
breakpoints, but also opacity values. That is, the opacity between and is
constantly changing, introducing a dull reddish color in that interval. To make
things worse, layers beneath the suitability layer will be visible in those areas,
distorting the colors even more. The logical solution would be to increase the
value of the lowest color map entry by an arbitrarily low value (like).
The problem is, GeoServer not only interpolates on a color ramp, but also
extrapolates. That is, if we do not set zero values to fully transparent, we always
get them styled according to the color of the lowest color map entry. The only
thing we can do is to introduce another entry, which jumps the opacity of the
layer back to normal on values slightly bigger than .

Insert an additional color map entry with a red color (), a very low value4.
(like), and an opacity value of :

Save the style, and assign it to our suitability layer as default:5.

(c) ketabton.com: The Digital Library

Styling Your Data in GeoServer

[344]

You can also interpolate colors with vector layers to create thematic maps,
such as a choropleth. To learn more about these transformation functions,
you can read the official documentation at

.

Summary
In this chapter, we learned the basics of styling data in GeoServer. We discussed the
symbolizers we can use, how XML and the XML-based SLD styling language work, and
finally, how we can create styles easily with CSS. You were introduced to the syntax of the
aforementioned styling languages, and now can create styles for our vector and raster maps
from simple visualization purposes to more advanced cartographic use cases.

In the next chapter, we will learn about the client side. We will explain how client-side web
mapping software works, and how we can utilize them to request spatial data from the
server's file system or a spatial server. We will also see how we can use spatial data with
JavaScript, and how we can script a web mapping software to create interactive maps with
already-styled images and raw vector data.

(c) ketabton.com: The Digital Library

113
Creating a Web Map

In the previous chapter, we learned how to style spatial data in GeoServer. We started with
a simple symbology for raw vector and raster data and proceeded to more advanced and
also more aesthetic cartographic representations. We ended with a group layer resembling
the composition we created with QGIS's print composer. We also looked at some other
independent vector and raster layers, styled and ready for use.

Now we will use our styled data and create some client-side interactive maps to
showcase our results. We will use JavaScript to create a web map that can not only use our
already styled vector and raster data as image layers using WMS, but can also use raw
vector data with WFS. We will cover how to make our maps more interactive by styling
vector data on the client side and enabling our users to query them without sending
additional requests to the server.

In this chapter, we will cover the following topics:

The basic JavaScript syntax
Using the Leaflet API
Displaying styled maps as images
Using raw vector data

Understanding the client side of the Web
In , Showcasing Your Data, we discussed how data is transferred over the Web
and how servers work. In order to have a better understanding of the Web, let's discuss
how web clients interpret server responses in more detail. As we already know, servers
either store web content in a static format, or they generate it on the fly with CGI scripts or
other web applications.

(c) ketabton.com: The Digital Library

Creating a Web Map

[346]

We also know that these contents are usually plain text, structured text, or media files. The
most common content a web client has to interpret is in structured text format, containing
elements we would like to show, styles we would like to apply to our elements, and scripts
we would like to run on the client side:

HTML: Hypertext Markup Language is the standardized form of transferring
visual elements from web servers to web clients. They are XML-based documents
that describe each visual element between tags. Although HTML is XML-based, a
valid HTML document is not necessarily a valid XML document. For example,
the HTML standard does not make self-closing single tags mandatory. If we write

 in a HTML document, it is a valid HTML; however, we have to write
to get a valid HTML and XML document.
CSS: Cascading Style Sheets is the standardized way to describe the custom
styling of HTML elements. Every web client has a default set of styling
options that are applied to HTML elements with no custom styles. If the web
client gets custom rules in the form of CSS declaration blocks, it overrides the
default styling with them.
JavaScript: We can also use custom scripts written in JavaScript in order to send
executable code to the client. The client interprets and runs the code contained in
the JavaScript file, enhancing the user experience by making the web page more
dynamic. It is very useful to automate smaller tasks without wasting the server's
resources. For example, interactive web maps are created with web mapping
libraries. Web mapping libraries are essentially collections of JavaScript functions
creating interactive maps based on some parameters we provide.

What happens to these documents in the web client? First of all, the client sends a request to
the destination URL. If we did not provide a resource name and just a path, the request will
default to the document in the provided path. Then, if a web server listens on
the other side, the communication gets established, and the transaction we discussed earlier
occurs. The client receives a response, which is some kind of resource (most often an HTML
document). If the HTML document contains links to other resources (for example,
stylesheets, scripts, and media elements), the client requests these items individually and
interprets their content. If a stylesheet is requested, the client applies the styles found in
there, while if a script is requested, it parses and executes it.

Modern web browsers are smart. They try to get the most out of the
received data. For example, they can open raw PDF or media files and
automatically generate a DOM model when there is a raw file in a
recognized format on the other side of the connection.

(c) ketabton.com: The Digital Library

Creating a Web Map

[347]

Let's assume the resource is an HTML document. The client parses the elements written in
HTML and creates an object model from it, called a DOM (Document Object Model). The
DOM is the object-oriented representation of the HTML document using a tree structure.
Every element is an object, with the various attributes the element can hold. We can interact
with the DOM, query, modify, insert, and remove individual elements in it. Of course, we
need a way to interact with the DOM. As web clients expose their DOM trees through their
JavaScript interfaces, we can manipulate DOM elements through JavaScript. For example
we can query input values and act accordingly. To make this interaction more convenient,
the JavaScript DOM API comes with a built-in event model, that is, we can register event
listeners on DOM elements, and the registered functions get executed automatically every
time the event occurs.

Creating a web page
To understand the client side better, let's make a simple web page containing some basic
information about our map. First of all, we need to get our web server's root directory. As
web servers can only see a portion of the filesystem, they can only serve our documents if
they are placed in the portion they can use. Apache comes with a default web page, which
can help us locate this root folder without searching for configuration files. If we open

 in a browser, we can see the greeting document we are searching for.
The document's name in the filesystem is with a varying extension (for
example, , , and).

Note that on Windows you have to start Apache manually every time you
start your system, if you're using the OSGeo4W version of it.

The location of the web server's root folder can vary between different operating systems,
versions, and distributions.

On most Linux distributions, the web server's root folder is located somewhere in
. On Red-Hat-based distributions (for example, Fedora, CentOS), it is in

.
On macOS systems, it is either located
in or .
On Windows, it is located in , assuming Apache
was installed with the OSGeo4W installer and the default path.

(c) ketabton.com: The Digital Library

Creating a Web Map

[348]

If none of these paths work, you can search for the Apache configuration
containing Apache's root folder on your filesystem, which is called
either , , or depending on
your OS and Apache version. The line you should be looking for looks
like , where instead of , you will see
your Apache root folder's absolute path. If nothing helps, a Google search
with your OS's name and version can also help.

After we locate the root folder of our Apache web server, we are only a few steps away
from creating our first web page:

Make sure you have write permission to Apache's root folder.1.
Create a new file called .2.
Open the file with a text or a code editor. A good code editor with syntax3.
highlighting can gradually help correct typing errors. More advanced editors (for
example, Atom, Visual Studio Code) can even spot some syntax errors.

Writing HTML code
HTML has a syntax similar to XML and SLD. The basic principles are the same; we use
opening and closing tags, tag attributes, and content. The content can be plain text or other
HTML elements. There are only a few elements that we will use to create our web map:

<html>: The root element of every HTML document grouping the whole content.
<head>: The group of important elements that are not visualized but alter the
default behavior of the web page in some way.
<body>: The group of visual elements rendered by the web client.
<title>: The title of the page. It goes inside the element.
<meta>: The various kinds of metadata of the web page. Very useful to explicitly
set the character encoding of the web page.
<link>: A reference to an external resource, usually a stylesheet.
<script>: Inline JavaScript code or a reference to an external resource containing
valid JavaScript code.

(c) ketabton.com: The Digital Library

Creating a Web Map

[349]

<h1>: A first-level header emphasized with a large font size.
<p>: A paragraph of plain text.
<div>: A division without much purpose on its own. When it contains other
elements, it groups them together. This way, visually coherent parts of the
website (e.g. navigation bar, main content, sidebars) can be grouped and styled
easily with CSS. It is used by web mapping libraries to group map content.
<input>: The various user inputs based on the attributes of the tag. It can be a
radio button, a checkbox, a regular button, a text input, or a numeric input, just to
mention a few.

You can look at the complete HTML tag reference at
. When you need some help

with frontend development, MDN (Mozilla Developer Network) is one
of the most trustworthy sites to gather information.

There are some basic rules and guidelines to create a good HTML document. Every element
should go in the root element. The root element usually has a single attribute (for
example,), containing the language abbreviation of the page. Furthermore, it
should only contain the and elements. The element should contain
everything that is not for direct visualization. Elements such as , ,
and should all go into the section. Additionally, JavaScript libraries needed
for the web page's custom code should also go into the section. The section
should contain the rest of the elements, that is, everything that should be rendered. It can
also contain the web page's custom scripts, especially if they are changing the other
elements; therefore, they require the DOM tree to be set up by the client when they run. A
minimal functional example of the aforementioned elements looks like the following:

It is more elegant to register the custom code to the element's
ready event and include it in the section.

(c) ketabton.com: The Digital Library

Creating a Web Map

[350]

Apart from the custom attributes specific elements can hold, we should be able to apply
some general attributes, mostly on visual elements. With the attribute, we can assign a
unique identifier to individual elements. Using IDs, we can style these elements
individually and also get their object references through JavaScript. This is the way in
which we can register listener functions to elements, modify them, or query their attributes
in our custom code. With the attribute, we can group elements. Using classes is
mostly used to style visually coherent elements with a single CSS rule.

Now that we know about the basic principles, let's create our HTML document. The web
page should have a title and a UTF-8 character encoding in its section. In the

 section, we should have a header with a greeting text and two elements. The
first one will contain the map, while the second one will contain a short description. As we
would like to be able to select between multiple maps, we should have at least four buttons
under the elements. The four maps we will create are the road map, the constrained
houses from our PostGIS analysis, the suitability map, and the road map in our local
projection.

After putting the required elements together, we should get a simple HTML document
similar to the following:

(c) ketabton.com: The Digital Library

Creating a Web Map

[351]

You can read about the appropriate attributes of an HTML element at the
corresponding MDN site. For example, the tag's description can
be reached at

.

If we save our edits made to our HTML document and open it in our browser
(), we will able to see our raw HTML elements rendered
with their default styles:

Styling the elements
Although the syntax is the same, regular CSS differs from GeoServer's CSS. We already
know that CSS rules consist of selectors and declaration blocks, which contain declarations
in the form of key-value pairs. There are three kinds of basic selectors we should be able to
use in CSS. We can style every tag in an HTML document by supplying the tag's name in a
selector. For example, a selector selects every element in the document. We can
constrict the selection to a specific class using and to a specific ID using

. Selection based on multiple criteria (the logical operator) can be achieved by
writing the corresponding selectors together. By writing , we select every
element that has a class. We can also define a union (the logical operator) by
separating different selectors with commas. Writing selects every element that
is either a element or has a class. Finally, by separating different selectors with
only whitespaces, we can look for parent-children relations. By writing , we select
every element with a class, which is directly nested into a element. There are
also special pseudo selectors that check for specific events. For example, if we use a
pseudo selector with a selector and write , the declarations are only applied
when we are hovering over a element with our cursor.

(c) ketabton.com: The Digital Library

Creating a Web Map

[352]

The declarations are also standardized in regular CSS. You can see a list of
the available declarations at

. Don't worry about invalid declarations. They
don't raise an error; they simply get discarded by the web client. This
makes plenty of room for vendor-specific options in different web clients.

Let's learn some basic styling tricks by styling our document:

Add some multiline placeholder text to our element ().1.
Create a new file in our web server's root folder called .2.
Link this CSS file to our HTML document so that we can see our changes3.
instantly. Use a element in the section to create this reference.
The element must have two attributes: a attribute pointing to the CSS file
and a attribute containing the value. The section
should look like the following:

Although it is out of the scope of this book, learning to use the client's
developer tools is an invaluable asset in frontend development. You can
reach the developer tools in most of the modern browsers by pressing F12,
CTRL + SHIFT + I, or CTRL + SHIFT + J.

Open with a text or code editor.4.
Create a declaration block for our elements. For now, declare only a5.

 value. We can supply physical sizes with absolute and relative values in
CSS. An absolute value is usually supplied in pixels (for example,), while a
relative value is often supplied as a percentage value (for example,). Relative
values are calculated by the web client on rendering. They are always relative to
the parent element's size:

(c) ketabton.com: The Digital Library

Creating a Web Map

[353]

Create two declaration blocks--one for the map element and one for the6.
description element. Use the IDs of the elements in the selectors. Give the map
element a width of and the description element a width of :

Now we have our two elements sized properly, but they aren't placed on7.
the same line. The problem is that they are block elements. Block elements can be
sized arbitrarily, but they are always placed under each other. To override this
behavior, we have to float our map element to the left and declare both of the
elements as inline blocks. Inline blocks can be sized arbitrarily, but they can also
be floated next to each other until the sum of their sizes does not exceed the
viewport's size:

When designing web pages, it is a good practice to check the result once in
a while on Firefox. Firefox is mostly sticking with the standards, so if a
design is working on Firefox, it will probably work on other browsers as
well. Other browsers (especially Chrome) try to outsmart the developer
sometimes, making style combinations work, which shouldn't happen
according to the standards.

(c) ketabton.com: The Digital Library

Creating a Web Map

[354]

Add a thin border around the map element to have a nice placeholder, even if we8.
do not have a loaded map. Adding a border is one of the few things for which
CSS offers a convenience property. It is called , and we can provide the
three most important properties of a border as values: its width, its color, and its
line style. The order is not important; however, the values must be separated with
whitespaces. The rule should look like the following:

Now if we refresh our site, we can notice that the design is broken and the9.
elements are placed under each other again. The problem is that the borders,
padding, and margins are not included in the overall size of an element by
default. That is, we have exceeded the width of the viewport by two pixels. We
can fix that by overriding this behavior for the map element. We can do that with
an extra rule-- , although it only applies to borders.
Padding and margins are still not included in the specified size. We can also
round down the corners of the border nicely by supplying a
property with an arbitrary value:

The only thing left to do is increase the space between the map and the other10.
elements (text and buttons). As defining a margin or a padding on either of the

 elements would result in a broken design again, we can define a padding
on the element in order to achieve the desired effect. By adding additional
rules to the elements, we can safely create a padding:

(c) ketabton.com: The Digital Library

Creating a Web Map

[355]

The unit is another frequently used relative length. It is relative to the
size of the styled element's currently used font. Using relative sizes is one
of the basic principles of responsive web design.

Our basic map gallery should look similar to the following:

Finally, let's style our buttons. We can go wild here without worrying about breaking the
page design:

Create a declaration with a selector, selecting the class used for our buttons.1.
Create a declaration block with some properties of your taste. A very simplistic2.
solution can be the following one:

(c) ketabton.com: The Digital Library

Creating a Web Map

[356]

If we inspect the result, we can see our new button design, although no visual3.
changes occur when we click on them. As we overrode the default button styling,
we also have to supply some rules for the click event. Define a style for the click
event using the pseudo selector:

We can use as many CSS rules as we would like on our buttons, although using the simple
rules provided here still brings a significant change in the design of our buttons:

Scripting your web page
The third component of a web page is the custom code we script our page with. We can
make our page more dynamic and interactive by executing different tasks on different
events, for example, on a press of a button. Web clients use the JavaScript language for
these kinds of client-side tasks. They expose their DOM trees, making them accessible and
modifiable by us. JavaScript started as a high-level basic scripting language for very simple
automation tasks. Nowadays, it can be considered a full-fledged high-level object-oriented
programming language. DOM manipulation is just one of the many things it can do,
including the interpretation and manipulation of binary input. It can be used in imperative
style, object-oriented style, and--to some extent--functional style. For the sake of simplicity,
we will stick with a minimal subset of its capabilities and write simple yet effective
procedural code.

Let's discuss the syntax of JavaScript briefly. In the code we will use, we will encounter
some basic types that behave differently, such as literals:

Integer: Whole numbers without decimal places. They can be represented with
numeric characters (for example,).

(c) ketabton.com: The Digital Library

Creating a Web Map

[357]

Floating point: These are decimal numbers. They can be represented with
numeric characters, with the point character as the decimal point (for example,

).
String: Character strings consisting of a sequence of characters. They must be
enclosed in quotation marks. They can be single or double quotation
marks; however, both the opening and closing mark must be of the same type
(for example, or). They can contain only numeric
characters but are still considered character strings.
Boolean: A binary value. It can be either or .
Array: A set of other literals separated by commas, enclosed in brackets (for
example,). Arrays can contain mixed types, although in most cases, it
is not a good practice.
Object: A set of key-value pairs separated by commas, enclosed in braces. The
keys and the values are separated by colons (for example,). Keys
must be representable by strings, while values can be of any type. Keys do not
have to be enclosed in quotation marks if their conversion to strings is simple,
although the grammar of the values must adhere to the grammar of the
represented types.

You can read more about JavaScript grammar at
.

A non-literal type we should also be able to use is the function. Functions group individual
statements (commands) and execute them sequentially. We can call a function by its name
and some parameters. The number of parameters a function can accept always depends on
the given function (functions accept zero or more parameters). The correct syntax calls the
function's name and places the different parameters after it in parentheses, separated by
commas (for example,). There must be no whitespaces between the
function's name and the opening parenthesis:

Functions are often called methods, especially if they are in objects, as
objects can store functions as values. The two terms have some differences,
although most of the time, they are used interchangeably.

(c) ketabton.com: The Digital Library

Creating a Web Map

[358]

We should also know how to use variables. Variables can be declared in multiple ways,
although using the keyword fits our needs. A variable declaration needs the
keyword, a variable name, and, optionally, an assignment with an initial value:

Single-line comments can be used with the sequence. Everything
after will be considered a comment and won't be evaluated. Multiline
comments can be opened with the sequence and closed with the
sequence.

Accessing variables can be done by simply providing the name of the variable. Different
types act differently, though. Arrays and objects can contain multiple elements, which can
be accessed directly. Individual array elements can be accessed by their index numbers with
the subscript operator (brackets) starting with the index number , while object elements
can be accessed by separating the object's name and the key's name with the dot operator
(point):

Finally, most of the statements must be terminated. There are some exceptions, such as
control flow statements (for example, loops and conditionals); however, in the case of
declarations, assignments, and function calls, it is mandatory. The symbol we should
terminate our statements with is the semicolon. Although statements can be terminated
with line breaks instead of semicolons, and the code will run in most cases, it is a very bad
practice, as it makes the code vulnerable. For example, if we want to compress our script
without using semicolons, the whole code will break.

(c) ketabton.com: The Digital Library

Creating a Web Map

[359]

For now, let's create a script that shows the description of a map when we click on the
button representing it. First of all, we just declare a variable containing a single
description and show it on our web page:

Create a new file in the web server's root folder, named .1.
Edit the file and include the JavaScript file in a script tag. As our code2.
will require the DOM to be set up, we should include it in a element
at the end of our section. A script element referencing an external
resource needs an attribute with a relative path and a attribute with the

 value:

Edit the file with a text or code editor.3.
Declare a variable with a string describing our road map:4.

The only thing left to do is update our web page with this string. We can access5.
the root of the DOM tree with the variable. It is an object that contains
various methods to access individual DOM elements. A very popular method is

, which simply requires the unique ID of the queried element
and returns it. Query the element containing the description and save it to a
variable:

Now we have our element's DOM representation saved into6.
the variable. It has a lot of methods and attributes with different
purposes, such as registering event listeners or changing the element. We need its

 attribute, which contains the visualized text. By changing that
attribute to the content of our variable, the visualized text changes as
well:

(c) ketabton.com: The Digital Library

Creating a Web Map

[360]

By refreshing the page, we will be able to see the description of our road map next to the
map container:

In order to register these lines to the click event of our first button, we have to make a
procedure from them. Procedures in JavaScript are functions, which we already know how
to call. We only have to learn how to make one. Creating a function involves the
keyword, some parameters our function will use in parentheses, and a code block in braces.
The code block contains the statements our function will execute on call:

Create a working function from the three lines we created. The function is called1.
, and it does not require any parameters for now. We still have to

include an empty parameter list in parentheses:

If we refresh our page, the placeholder text is still there, and we can see that it did2.
not get updated to our description automatically. Let's open the developer tools,
navigate to its Console tab, and test our function by calling it ().
The text is now updated.

(c) ketabton.com: The Digital Library

Creating a Web Map

[361]

If you can still see the updated text instead of the placeholder when
refreshing the web page, your browser might be using a cached version of
the page. Try to refresh the page with the developer tools opened (F12,
CTRL + SHIFT + I, or CTRL + SHIFT + J).

Register this new function on our first button's click event. The event model in3.
JavaScript is quite capable, but it offers convenient methods for simple tasks.
Registering only one function to a popular event (for example, clicking) is such a
task. We have to get the reference to the button's DOM element and assign the
function to its attribute. The client will automatically call the function
every time we click on the button:

In JavaScript, we can freely chain statements. They will be evaluated in
order, and the result of a prior call will be used in the next call. Therefore,
the previous lines can be written in a one-liner
of
without saving anything in variables.

Great work! Now we have the placeholder text, and we can change it to our description
with a click of a button. The only problem is that we have to repeat this process for every
button we have. On the other hand, we can shape our function into a more general form
that can find out the assignable text based on the ID of the clicked button. Then, we can
register the same function to every button we have. The basis for our new logic is to create
an object that stores the descriptions of the maps with keys representing the IDs of the
corresponding buttons. In the event listener, we will read the correct description based on
the clicked button's ID:

Create an object that stores the descriptions and save it to a variable. The keys1.
must exactly match the IDs of the buttons. The object must be declared before the
function:

(c) ketabton.com: The Digital Library

Creating a Web Map

[362]

Generalize the function to read out the correct description based on2.
the clicked button's ID. For this, we need a reference to the clicked button.
Luckily, the event model in web clients takes off this weight. When the client calls
the listener function, it tries to pass an event parameter to it. If it can, we can
access the corresponding DOM element from the event parameter's
attribute. The only problem left is that we don't know how to access an object's
attribute with a variable. We can also access object members with another
accessor. Using bracket notation, we can query an attribute with its key as a
string literal or with a variable:

Register our new, general function on every button we have:3.

Edit the file and remove the placeholder text from the element, as4.
we do not need it anymore.

You can further generalize your code by iterating through every button
you have. This way, you don't have to manually update your JavaScript
code after you've changed some of the buttons. The code will adapt to the
changes automatically. You can query every button with the

 statement,
which returns an array of DOM elements.

(c) ketabton.com: The Digital Library

Creating a Web Map

[363]

Creating web maps with Leaflet
Now we have everything in place except our maps. To create interactive maps, we can use
external web mapping libraries written in JavaScript. One such library is Leaflet, which is
perfectly capable of creating simple interactive maps. Leaflet has a simple and intuitive API,
which is very easy to use. All we need is the library's code base and stylesheet loaded in our
HTML document. Let's include Leaflet in our web page:

Download the stable version of Leaflet from 1.
.

Extract the files in the downloaded archive in the web server's root folder.2.
Optionally, create a new folder for the files to have a well-organized structure.
Edit the file with a code or text editor.3.
Include Leaflet's code base () with a element using its4.
relative path from the root folder in the HTML document's section:

Include Leaflet's stylesheet () with a element in the HTML5.
document's section:

You can also use the CDN (Content Delivery Network) used by Leaflet to
include these resources. You can check out the correct references at

. Note that using a CDN
generates less traffic on your site, but takes some control out of your
hands.

Leaflet's methods can be accessed with the variable by default. Test the6.
references by refreshing the web page, opening the developer tools, and writing
in its Console. If there isn't such an object, check the permissions of the extracted
files. They must be readable by every user:

(c) ketabton.com: The Digital Library

Creating a Web Map

[364]

Now that we have a reference to Leaflet's various methods, we can start creating web maps
using its API. The API consists of methods exposed to the users of the library. Every good
API has a thorough documentation on how to use the different methods, and Leaflet is not
an exception. We can reach its API documentation at

.

If you need web mapping or Web GIS capabilities beyond Leaflet, and are
proficient in JavaScript or willing to learn much more about it,
OpenLayers is your library. You can get introduced to OpenLayers at

.

Creating a simple map
The first map we create should be the road map we created in GeoServer. We have to set up
a blank map and load a WMS layer in it. Once it's working, we can bind the map to the
appropriate button:

Create a new map with the function and save it to a variable. It needs the1.
ID of the container element as a string, while it can additionally accept other
parameters bundled in an object. For now, let's provide a and a
parameter. The center is an array of two WGS 84 coordinates (latitude and
longitude), while the zoom is a positive integer. Supply center coordinates that fit
our map. We can get them either from QGIS or from Google Maps by centering
the map on our study area and noting down the coordinates from the URL:

(c) ketabton.com: The Digital Library

Creating a Web Map

[365]

The map canvas is there, although it has some visual glitches. The problem is that
Leaflet also uses elements to create its containers, while we defined some
styles on every element. That is why creating styling rules that are too
general can lead to broken design:

Edit the file and define a class name on every element2.
().
Edit the file and rename the selector to the new class ().3.
Now that our map canvas is fixed, we can load our first layer. We can create a4.
new WMS layer with the function. It requires a mandatory
URL parameter pointing at our WMS server and some optional WMS parameters
(for example, , ,) bundled in an object. Let's just stick with the

 and parameters. Create the WMS layer and save it to a variable.
The parameter needs our layer group's name in GeoServer, along with
the workspace's name it is in:

(c) ketabton.com: The Digital Library

Creating a Web Map

[366]

Add the new layer to the map with the map's method. It requires a5.
layer object as an only parameter. Use the variable containing the WMS layer:

Inspect the result. Alter the map's and parameters, if required.6.

Leaflet supports chaining functions together. We can avoid saving our layer
in a variable by calling its method right after creating it. The method
needs a map object as a parameter:

Our map is working, although we still need to bind it to our first button. We do
not have to give up the general function we created, though. As object values can
be anything, we can create a second object containing our buttons' IDs as keys and
the functions creating our maps as values.

Create a new, empty object after the object, containing our descriptions:7.

Define the object's first property. Name it after the ID of the first button. It8.
should contain a function with the Leaflet code we created earlier. The function
does not require any parameters:

Add a third line to the function, executing the appropriate function9.
from our object:

(c) ketabton.com: The Digital Library

Creating a Web Map

[367]

If we save our changes and refresh our page, we can see our road map by pressing
the corresponding button:

Compositing layers
For the next next task, let's create a map with our suitable zones. In this task, let's have an
OpenStreetMap base map, the suitability layer from GeoServer as an overlay map, and the
suitable zones as another overlay map:

Extend the object with a function. The key must be the ID of our second1.
button. The function should have the same map initializing code that we used
with our road map:

(c) ketabton.com: The Digital Library

Creating a Web Map

[368]

Add an OpenStreetMap base map to the composition. We can do that by calling2.
the function with the URL of the OSM tiles. As these tiles are not
just separated by their layout and zoom level but also by cluster, we have to use
wildcards according to the function's documentation:

The wildcards supplied in braces are automatically replaced to numbers by
Leaflet. The wildcard gets replaced by the zoom level's folder in the
OSM server, the wildcard by the row's folder, and the wildcard by
the tile's name, which represents the column's number.

Add our suitability map as a next layer according to the scheme we used with3.
our layer group previously. In order to get transparent values, provide an
additional key-value pair in the list of optional
parameters:

You can set any layer as transparent by providing an additional opacity
value in the optional parameter list. By adding , you can set
the opacity of the given layer to 70%. means completely transparent,
while means completely opaque.

Add our suitable areas layer as the final overlay map using the same options we4.
used in the previous layer, but alter the layer's name:

(c) ketabton.com: The Digital Library

Creating a Web Map

[369]

Now we should be able to see our second map in action:

Now our second map loads, although we cannot change maps without reloading
the page. The problem is that Leaflet recognizes if the provided container already
has a loaded map and won't load another one until it is properly destroyed. We
can destroy an existing Leaflet map; however, we need to understand another
concept first--variable scope. In JavaScript, similarly to other programming
languages, a variable cannot be accessed outside its valid scope. A valid scope in
JavaScript is a function. We saved our map objects to variables in separate
functions; therefore, they cannot see each other. Moreover, if we would like to
access these map variables outside their functions, we would get an error.
However, in these functions, we can access variables declared outside of them,
just like we accessed our and objects. The solution is that we
have to move our declaration outside of the functions; by doing this, we can
access the existing map instance (if any) before creating another one.

Declare the variable in the first line of our code:5.

Remove the keywords prior to the variables in every function using6.
Leaflet. This way, we only assign map objects to the already declared variable
and won't declare it again.

(c) ketabton.com: The Digital Library

Creating a Web Map

[370]

Write a statement in the beginning of the function, destroying7.
the existing map. We can destroy a Leaflet map by calling its method. As
we declared an empty variable, it does not contain a map on the first click.
Therefore, we should wrap our statement in an statement. As empty variables
default to the special value of , we can provide a check against it in
our conditional statement:

Working with Leaflet plugins
One of the greatest strengths of Leaflet is its clean code base and great extensibility. The
base Leaflet library is very small and lightweight; therefore, it has limited capabilities.
However, a lot of developers have created a variety of interesting and useful plugins that
can integrate into Leaflet, extending it to match our needs. The only weakness of this
decentralized workflow is the lack of rigor and cohesion in plugins. Their quality (for
example, documentation) can vary; therefore, we might need to fiddle quite a bit with some
of them before getting meaningful results. We can check out a recommended list of plugins
at . Of course, there is no guarantee a listed plugin
will be easy to use, although it is a good indicator of its quality.

Loading raw vector data
When it comes to web mapping and vector data, one of the most popular formats is
GeoJSON. GeoJSON extends JSON, which is basically JavaScript's number one storage
format. JSON is created to be concise while still able to represent almost every type in
JavaScript. Therefore, we can save the states of web applications, for example, in order to
resume them later. GeoJSON is also a concise format that can represent the basic geometry
types and can be parsed by JavaScript easily. The only problem is that we have to load our
GeoJSON files in our script. Although Leaflet knows how to handle GeoJSON objects, to
load external content on the fly, we need to understand yet another concept--AJAX. On the
other hand, there is a Leaflet plugin that can automatically load the content of a GeoJSON
file with only URL.

(c) ketabton.com: The Digital Library

Creating a Web Map

[371]

Let's create our third map using this plugin:

Open QGIS and load the constrained houses layer. Export it with Save As.1.
Choose the GeoJSON format and a CRS of WGS 84 (EPSG:4326). Name
it and export it directly into the web server's root folder.
Using Leaflet's plugin list, look for the Leaflet Ajax plugin. The link will lead to2.
the GitHub page where the code is maintained. Click on the releases tab, which
will navigate you to the release page of the plugin directly at

.
Download the latest release by clicking on the zip link under it. The archive3.
comes with the source files and the debug version, which we do not need. Extract
only the file next to the Leaflet library.
Edit the file and include this new script in the section after the4.
Leaflet element. As this is an extension, it needs Leaflet to be
set up when it loads:

Create a new method for the third button in the object. The method should5.
create a new map centered on the settlement we analyzed in Spatial
Analysis in QGIS:

Add an OpenStreetMap base layer to the map, just like we did previously:6.

Add a new GeoJSON layer using AJAX with the function. It7.
needs a relative path string as a parameter pointing to the GeoJSON file:

(c) ketabton.com: The Digital Library

Creating a Web Map

[372]

If we click on the third button after refreshing the page, we can see our houses on
the map:

As we can see, Leaflet loads vector points as marker images by default. When we load some
lines or polygons, it simply renders it as QGIS or GeoServer did. Let's load some polygons,
but with WFS this time. Using WFS requests is another unsupported feature in Leaflet,
which we can still use with another extension:

Look for the plugin called Leaflet-WFST in the plugin list of Leaflet's page. The1.
link will open the plugin's GitHub repository, where the plugin can be
downloaded in the releases page. Download the latest release by clicking on the
Source code (zip) button.
Similarly to the previous plugin, we only need the minified version of the library2.
and can discard the source files. Extract next to
the Leaflet library in the web server's folder.
Include this plugin in the file's section after Leaflet:3.

(c) ketabton.com: The Digital Library

Creating a Web Map

[373]

In , remove the tile layer containing our suitable areas from the4.
 method of the object.

Create a WFS layer instead. A simple WFS layer can be created with the 5.
function. Unlike the previous functions, it only requires an object as a single
parameter, and the object should contain the URL pointing at the OWS server
with a key. There are three more required parameters: with the
queried workspace's name in GeoServer, with the layer's name, and

 with the layer's geometry column. The default geometry column
in GeoServer is :

If we display our suitability map, we can see the OSM base layer and the suitability layer,
but no polygons. What happened? You might have already opened the developer tools for
potential error messages and seen a message similar to the following:

We stumbled upon two very characteristic concepts of web development--same-origin
policy and CORS (cross-origin resource sharing). The same-origin policy is a security
measure that prevents browsers from mixing content from different servers. The path of the
first document a web client loads determines the origin. From then on, the same-origin
policy prevents the browser from loading anything that is not on exactly the same domain
and exactly the same port. There are, of course, exceptions handled by CORS. These
exceptions are typically scripts linked in elements, stylesheets linked in
elements, images and other media, embedded content in elements, and web
fonts.

(c) ketabton.com: The Digital Library

Creating a Web Map

[374]

One of the things that the same-origin policy is always applied to is AJAX calls. WFS
features, just like our GeoJSON file, are requested using AJAX, therefore the same-origin
policy applies. The problem is that our GeoServer listens on and responds to port ,
while our origin is at port . In the end, our web page cannot request resources other than
images from GeoServer. The solution is simple; CORS can be enabled for any kind of
resource on the server side using special headers in server responses. Enabling CORS in our
GeoServer is slightly more complicated, though:

Edit the file in GeoServer's folder.1.
Look for the , , and elements.2.
There is a comment above them that states Uncomment following filter to
enable CORS.
Uncomment the elements by removing the and XML comment symbols3.
around them.

If you are using the web archive version from the Apache Tomcat Java
servlet, there is only one thing left to do. You have to alter the value of the

 element in the element
to if there is another
value there.

GeoServer's Jetty version does not have the required code to apply CORS headers4.
on responses bundled by default. We have to download and install it manually.
Get the Jetty version used by GeoServer by looking in the folder of
GeoServer (not).
The majority of the Java files starting with contain Jetty's version number5.
(for example,).
The Java file containing the required code for CORS headers is called 6.

. Download the file with the appropriate version from
. For example,

for version , you have to click on the corresponding version
link and download the file named
by clicking on the file's link.
Copy the downloaded file to in GeoServer's7.
folder and restart GeoServer.

(c) ketabton.com: The Digital Library

Creating a Web Map

[375]

After GeoServer runs, display the suitability map again to see our polygons:8.

Styling vectors in Leaflet
As we can see, Leaflet represents vector points with marker images, while it draws lines
and polygons just like QGIS does. The next thing we should learn is how we can customize
the styles of the vector features we display in our web maps. Both the and

 functions accept additional styling parameters we provide. Styling is
done by passing a object to the vector layer's function containing supported styling
parameters. The complete list of parameters can be seen on the base vector class's API
documentation page: . Using the
properties in the provided list, let's change our polygons to better match the suitability
maps we created in QGIS:

Edit the file.1.
Extend the parameters of the function with a object. It should2.
contain a property with the stroke's color, a property with the
stroke's width in pixels, and a property with a zero value:

(c) ketabton.com: The Digital Library

Creating a Web Map

[376]

By opening our sustainability map again, we should be able to see our new
polygons:

Customizing a single symbol for every vector feature in a layer is very easy in Leaflet.
However, sometimes we would like to add thematics to our maps, such as attribute-based
symbology. The parameter of vector layers can aid us in this, as it also accepts a
function. The function needs to be able to evaluate the style for every feature and return it
in the end. Let's create a style for our houses map that visualizes our houses according to
their prices:

Based on the price range we used in QGIS, define some intervals. For me, the1.
ranges are ; , and .
Supply a function to the call in the optional object2.
parameter. The property name is , as usual. Style functions accept one
parameter in Leaflet, the currently processed feature:

(c) ketabton.com: The Digital Library

Creating a Web Map

[377]

In the function, we should have only one variable: the fill color. Let's use3.
three colors for our intervals--green, yellow, and red. Initialize a variable
with the green color in the function:

We can override this color using conditional statements and checking the price4.
attribute of the features against reference values. The easiest way is by checking
whether the price is higher than the second interval's lower limit and then
checking whether it's higher than the third interval's lower limit. The attributes of
a feature can be accessed from its attribute, where they are stored in
a simple object:

The next step is to create a object and saving it in a variable. This is the5.
 object that is returned by our function, and should contain every rule we

would like to apply:

Finally, we should return the object to Leaflet. We can define the return6.
value of a function with the keyword:

(c) ketabton.com: The Digital Library

Creating a Web Map

[378]

If we reload our houses layer, it still contains the usual blue markers. The problem
is that vector points are visualized as marker images, and marker images cannot
be styled as vector features. We have to override this default behavior of Leaflet
and visualize our vector points as circles. There are two functions we can use for
this. The property can be supplied on point layers to specify how
Leaflet should draw the vector point. It has to be a function with two parameters:

 and . The parameter passes the WGS 84
coordinates of the processed point directly; therefore, we can easily create another
symbol from them. The function must return the vector object that can be directly
used by Leaflet to draw our point. We can create a stylable circle with the

 function, which only requires two WGS 84 coordinates.

Provide a new property to besides . Its name must be7.
, while its value must be a function with two parameters. The

parameter names are not fixed, but their order is:

In the function, simply return the result of an function called8.
directly with the parameter:

The initialization call of our GeoJSON layer now should look like the following:

(c) ketabton.com: The Digital Library

Creating a Web Map

[379]

We can inspect our new thematic house map by refreshing the page and loading
the map:

Annotating attributes with popups
A truly great feature of Leaflet is its convenient popup management. We don't have to
create any kind of popup mechanism (HTML elements, close button, or custom code on
different events); Leaflet can create full-fledged popups automatically just by providing an
HTML string. An HTML string is a simple string that can contain HTML tags. The HTML
tags are interpreted rather than printed directly, and the resulting DOM structure is
rendered instead. Let's create some popup content for our houses layer:

Add an additional property to the optional list of properties of the1.
 layer. The property name must be . It requires

two properties: one for every processed feature and one for the processed
feature's layer object, which has the method. The function can be
void; therefore, it does not need a return value:

(c) ketabton.com: The Digital Library

Creating a Web Map

[380]

In the function, first, create an HTML string and save it into a variable. Different2.
strings can be concatenated with the operator. When a number is added to a
string, the number is automatically converted into its string representation. Use
three attributes of the features--the containing the street name, the
containing the size of the house, and the containing the price of the house.
Additionally, use the tag to insert line breaks:

Bind a popup to the feature using the layer object's method. It3.
requires only an HTML string as a parameter:

Our house map now annotates some of the attributes of our houses:

One of the potential problems with using third-party plugins to extend
Leaflet is the varying implementation quality. For example,

 extends the base vector layer in a way that its original
methods, such as , can be used. On the other hand,
does not make this possible. Popups can still be registered to WFS features
in Leaflet, although it needs a better understanding of the library.

(c) ketabton.com: The Digital Library

Creating a Web Map

[381]

Using other projections
Leaflet can use some projections out of the box, of which two have cartographic
significance--EPSG:3857 and EPSG:4326. The default projection is the Web Mercator, while
the WGS 84 projection has to be specified in the map's property. The
property's value must be a valid Leaflet object. This object contains methods to
transform coordinates around and has predefined zoom levels fitting the given projection,
among other things. Let's try out the WGS 84 projection on our road map first:

Extend the object with a function corresponding to the ID of our fourth
button. The function should be almost the same as the other road map function.
The only difference is that the map should contain an additional parameter
with the projection object:

To use other projections, we can use yet another plugin. This plugin can utilize PROJ.4's
JavaScript port-- . It can create regular projection objects that Leaflet can use from
projection definitions. Let's create a projection object representing our local projection:

Look for the plugin named in Leaflet's plugin list. The link1.
points to its GitHub page, where we can download the latest release from the
project's page.
We need two additional libraries, as uses and depends on2.

. Extract and from the
downloaded archive next to the Leaflet library.
Edit and include the two libraries in the section, as usual:3.

(c) ketabton.com: The Digital Library

Creating a Web Map

[382]

Look up the PROJ.4 definition of our local projection. We can use 4.
 for this. Search for the EPSG code of our local projection, and on the projection's

page, select PROJ.4 from the Export menu. Copy the definition string to the
clipboard by clicking on Copy TEXT.
Go back to , and in the function of the fourth map, create a new projection5.
with the constructor function available now. Constructor functions
are special functions used to instantiate classes. For now, it is enough to know
that they have to be called with the keyword. The constructor function needs
three parameters--a projection name containing the EPSG code of the local
projection (for example,), the PROJ.4 definition string of the
projection, and an object containing optional parameters. The only optional
parameter we need to provide is an array of resolutions that Leaflet will use for
the various zoom levels in a descending order. There are no rules for the values
of this array, but as a rule of thumb, using the powers of 2 (for example, 2, 4, 8,
16) is a good choice. We can start from and increase it later if it is not
sufficient:

Supply the variable containing the new object in the function's6.
 parameter. We don't have to modify the center coordinates, as Leaflet needs

them in WGS 84. It transforms them automatically if it needs to do so. We might
have to adjust the starting zoom level, though, as we are using a custom set of
resolutions:

(c) ketabton.com: The Digital Library

Creating a Web Map

[383]

Our fourth map is now working, and showing our road map in our local
projection:

Automatic coordinate transformation on the client side does not restrict to
transforming the center coordinates of our maps. It is a very handy
property of web mapping libraries to save valuable server resources.

Summary
Congratulations! You just created several different web maps using different techniques. In
this chapter, we learned how the client side of the web works and how we can utilize a web
mapping library for our mapping needs. We can now use Leaflet to easily share our maps
on the Web. We can load image layers, vector layers, style vector data, popups, and even
custom projections. We also discussed some of the basic concepts of the frontend, such as
the interaction of HTML, CSS, and JavaScript elements, or CORS.

(c) ketabton.com: The Digital Library

Creating a Web Map

[384]

This is the end of our journey. We learned a lot of things about GIS from the theory behind
data models by creating a spatial database to publish the results on the Web. We did our
best to understand how spatial data works and how it can be analyzed through various
means. We got some meaningful results from our example data, which is completely open
source (in most cases), just like the software we used. Take a good rest, but don't forget--this
is only the beginning of a long journey if you wish to master the art of GIS. I hope you will
not only apply this knowledge to practical problems, but will also find joy in doing so.

(c) ketabton.com: The Digital Library

Appendix
Appendix 1.1: Isosurfaces (800 mm and 1200 mm precipitation) visualized on the Digital
Elevation Model of Slovakia provided by the sample slovakia3d dataset for GRASS GIS:

(c) ketabton.com: The Digital Library

Appendix

[386]

Appendix 1.2: The same map we created in , Accessing GIS Data With QGIS, only
with a CRS using an Albers Conic projection (EPSG:102008). The map is not North-aligned;
therefore, a north arrow was used with the North alignment parameter set to True north:

(c) ketabton.com: The Digital Library

Appendix

[387]

Appendix 1.3: Some of the basic geoalgorithms visualized. a: the two input layers (A and B
per GRASS's v.overlay), b: clip (and), c: union (or), d: difference (nor), e: symmetrical
difference (xor):

(c) ketabton.com: The Digital Library

Appendix

[388]

Appendix 1.4: Some of the Coordinate Reference System's PostGIS support. The selected one
is the EPSG:4326 CRS used by the book in the early chapters:

Appendix 1.5: Settlement data of my study area downloaded from the OpenStreetMap
database via the QuickOSM plugin using the Overpass API:

(c) ketabton.com: The Digital Library

Appendix

[389]

Appendix 1.6: Linear interpolation of point vi on the line segment between points v0 and v1

based on a factor f. If v1 - v0 divided by 1/f leaves a remainder, the interpolated coordinate
needs more precision (left). If not, the interpolated coordinate will have the same precision
(right). In GIS, however, it is a common practice to store coordinates with a fixed precision
in a single vector layer:

Appendix 1.7: Difference between precise proximity analysis with buffering (green points),
and selecting features with precision values (yellow points) in QGIS. Every green point is
selected, but there are some points excluded from the precise results:

(c) ketabton.com: The Digital Library

Appendix

[390]

Appendix 1.8: Do you need an Extract by expression tool in QGIS? Build one yourself! You
can easily create such a model by requiring a Vector layer input of any type, a String input
for the expression, and linking the Select by expression and the Save selected features
tools together:

Appendix 1.9: Interpolated surface from contour lines visualized in 3D with the contour lines
displayed on the interpolated surface:

(c) ketabton.com: The Digital Library

Appendix

[391]

Appendix 1.10: The same vector layer transformed to raster with a resolution of 5 meters
(left) and 2 meters (right). By using 5 meters, two of the possible houses overlap with
buildings; thus, get cut off roads in the walking time analysis:

Appendix 1.11: Buffer zones with a different number of segments are used for more precise
approximations. The yellow point lies outside of the buffer zones created with 5 and 10
segments; however, it is only a matter of precision as it is located inside the zones as proven
by the buffers created with 15 and 50 segments:

(c) ketabton.com: The Digital Library

Appendix

[392]

Appendix 1.12: Three popular distance types in GIS. In the Manhattan distance (left), we can
go only in one dimension at a time; in the euclidean distance (center), we can move in two
dimensions at a time; while in the case of the great-circle distance (right), we can move in
three dimensions at a time, but only on the surface of a sphere. Note that the Manhattan
distance between the same pair of points does not change, no matter how many breaks
(turns) we use:

Appendix 1.13: Using clipped layers with NoData values in GDAL's Proximity tool
introducing edge effects (left). NoData values are reclassified to zeroes, which wouldn't be a
problem; however, distances are calculated from the edges, like they were features. It does
not matter if we clip the distance matrix again (right), the edge effects are already
introduced to the analysis:

(c) ketabton.com: The Digital Library

Appendix

[393]

Appendix 1.14: Other popular fuzzy membership functions. Some of them are similar to the
ones described in , A Typical GIS Problem, although with slightly different shapes
and different formulas. The formulas were created with the assumption that the whole data
range is fuzzified. If not, cell values below or above the threshold should be handled. In the
formulas, variables denoted with are break points or turning points, while variables
denoted with are defining the shape of the functions.

The natural number is not included in QGIS's raster calculator, although, similarly to π, it
can be hard coded as 2.7182:

(c) ketabton.com: The Digital Library

Appendix

[394]

Appendix 1.15: Using an OpenStreetMap base layer under the suitability map. The suitability
map has a transparency of 30%:

Appendix 1.16: A server machine hosting two web servers (one for running Java web
applications), a PostgreSQL database, and an SSH server. Clients can query those servers
with the appropriate client-side applications:

(c) ketabton.com: The Digital Library

Appendix

[395]

Appendix 1.17: Hillshaded land uses polygons in GeoServer. You can achieve the same by
using Raster | Analysis | DEM in QGIS with the default Hillshade mode to create a static
relief raster. Then, you can clip the relief to the area of the polygons using Raster |
Extraction | Clipper with the option of cropping the result to the cutline. Finally, you have
to load the resulting raster into GeoServer, and blend it into the land use layer using an
overlay composition:

(c) ketabton.com: The Digital Library

Appendix

[396]

Appendix 1.18: Common line cap and line join styles used in vector graphic software:

(c) ketabton.com: The Digital Library

Index

3
32-bit installer
 URL, for downloading

A
ACID (Atomicity, Consistency, Isolation, Durability)
 atomicity
 consistency
 durability
 isolation
active remote sensing
Apache
 URL
architecture, GeoServer
 layer
 store
 workspace
atlas
 creating , , , ,
attribute table
 attribute data, adding
 columns, removing
 joining ,
 modifying
 spatial joins, performing ,
 SQL, in GIS
 using
Axis Maps
 projection guide, URL

B
Backports repository
 reference
bedrock, National Geographic Channel
 reference
blending modes

 reference
Bounding Volume Hierarchies (BVH)

C
cartographic elements
 adding, to map
categories
 mapping with
CDN (Content Delivery Network)
 reference
client side, Web
 CSS
 HTML
 JavaScript
ColorBrewer
 URL
continuous archiving
control characters
 URL
Coordinate Reference Systems (CRSs)
Copernicus data portal
 URL
CORS (cross-origin resource sharing)
CSS (Cascading Style Sheet)
 complex styles, creating
 layers, styling
 raster layers, styling
 using, in GeoServer
CSS properties
 reference
CSS styling
 reference
CSV (Comma Separated Values)
CTE (Common Table Expression)

(c) ketabton.com: The Digital Library

[398]

D
data backups
 continuous archiving
 creating
 static backups, creating
data collection
 about
 basic data, obtaining
 satellite data, accessing
data providers
data, styling
 about
 raster data, styling
 vector data, styling
databases
 customizing
 NoSQL (not only SQL) databases
 overview
 queries, saving
 relational databases
 securing
 spatial databases
 tables, constraining
date formats
 reference
DE-9IM (Dimensionally Extended 9 Intersection

Model)
 reference
declaration block
declarations
 reference
digital elevation models (DEM)
 about ,
 filtering
 reference
 using
 walking times, calculating
DN (digital number)
Document Object Model (DOM) ,

E
earth application
 reference link
Earth Explorer

 URL
EPSG (European Petrol Survey Group)
 about
 URL
EWKB
EWKT

F
feature selection
 advanced queries, writing
 data, preparing
 in QGIS
 layer, filtering
 queries, writing , ,
 spatial querying ,
file format
 Custom
 Directory
 Plain
 Tar
filtering
fuzzy maps
fuzzy techniques, GIS
 about ,
 crisp data, fuzzifying , ,
 proximity analysis, with rasters , ,
 results, aggregating , ,

G
GDAL's warp tool
 URL
GDAL/OGR (Geospatial Data Abstraction Library)

Generalized Search Tree (GiST)
Geofabrik
 URL
geographic information systems (GIS)
 about
 fuzzy techniques, using in ,
 SQL
geoid models
 URL
GeoJSON
geometries
geometry, types

(c) ketabton.com: The Digital Library

[399]

 Circular String
 Compound Curve
 Curve Polygon
 Multi Curve
 Multi Surface
 Polyhedral Surface
 TIN (Triangulated Irregular Network)
 Triangle
GeoNames
 about
 URL
GeoServer
 architecture
 CSS (Cascading Style Sheet), using
 CSS styling, reference
 general configuration
 macOS image, URL
 maps, tiling
 spatial data, adding
 URL ,
 URL, for checking JRE version
 using
GeoSolution
 presentation, URL
GeoTIFF
Global Administrative Areas (GADM)
 licenses
 URL
GML (Geographic Markup Language)
graduated mapping
GRASS's tools
 reference
GRS80 (Geodetic Reference System 1980)

H
hard selection
hot standby server
 reference
HTML elements
 reference
HTML tag
 reference
hypertext transfer protocol (HTTP)

I
ISO (International Organization of Standards)
 about
 URL

J
Java 8
 URL
java-servlets
 URL
JavaScript grammar
 reference
JavaScript, syntax
 array
 boolean
 floating point
 integer
 object
 string
JSON (JavaScript Object Notation)

K
k-NN (k nearest neighbor)
KML (Keyhole Markup Language)
Kyngesburye
 archive, URL

L
Landsat data
 reference ,
lateral joins
 reference
layers
 importing
 querying
 raster data, importing
 spatial indexing
 vector data, importing
 visualizing, in QGIS
Leaflet Ajax plugin
 URL
Leaflet plugins
 attributes, annotating with popups
 projections, using

(c) ketabton.com: The Digital Library

[400]

 raw vector data, loading
 URL
 URL, for parameters lists
 vectors, styling
 working with
Leaflet
 layers, compositing
 map, creating
 URL ,
 web maps, creating
lidar (light detection and ranging)
Linux
 tools, installing ,

M
macOS
 tools, installing
map scales
map
 additional thematics, creating
 cartographic elements, adding
 creating
 labels, adding
 preparing
 rule-based styling
markup languages
MCDA (Multi-criteria decision analysis)
MDN (Mozilla Developer Network)
Metro Extracts
 URL
models
 building

N
NAD83 (North American Datum 1983)
NAD83 / Conus Albers
Natural Earth data source
 about
 URL
neighborhood analysis ,
nested rules
 reference
NFS (Network File System)
NoSQL (not only SQL) databases

O
ODbL
 about
 reference
Open Geospatial Consortium (OGC)
Open Web Services (OWS)
OpenStreetMap
 license
 using
ORDBMS (Object Relational Database

Management System)
OSM (OpenStreetMap) layers
overlay analysis
overlay tools

P
passive remote sensing
perspective point
 gnomonic
 orthographic
 stereographic
pg_basebackup CLI tool
 URL
pg_dump manual
 URL
pgAdmin 3
 URL
pgcrypto
 URL
PITR (Point-in-Time Recovery)
post-processing
PostGIS
 GUI
 layers, importing
PostgreSQL
 about
 database, creating
 URL
 URL, for documentation
printable map
 background, creating
 creating
 dangling segments, removing
 exporting

(c) ketabton.com: The Digital Library

[401]

 post-processing, in SVG format
projections, properties
 azimuthal
 compromise
 conformal
 equal-area
 equidistant
projections
 about
 NAD83 / Conus Albers
 Plate Carree
 selecting
Protocolbuffer Binary Format (PBF)
proximity analysis
 about ,
 in PostGIS

Q
QGIS 2
 manual label placement, URL
QGIS
 disk image, URL
 feature selection
 GUI
 layers, visualizing
 reference ,
 repository, URL
 server configuration
 used, for publishing
queries
 optimizing
QuickOSM plugin
 installing

R
radar (radio detection and ranging)
raster analysis
 about
 constraint mask, creating , , , ,

 multi-criteria evaluation ,
 neighborhood analysis
 overlay analysis
 proximity analysis
raster calculator, in QGIS

 comparison operators
 constants
 functions
 operators
 variables
raster data exchange formats
 about
 GeoTIFF
 other raster formats
 rasters, clipping
raster data
 accessing ,
 features
 raster data model ,
 styling
raster layers
 styling
raster maps
 constraints
 factor
raster-related functions
 reference
real estate agent example
 rules, stating
 workspace, preparing
relational databases
rule-based styling

S
satellite data
 accessing
 active remote sensing
 licenses
 OpenStreetMap, using
 passive remote sensing
selector
shapefile
sigma-stretching
SLD (Styled Layer Descriptor)
SLD styles
 raster layers, styling
 reference
 vector layers, styling
 writing
soft selection

(c) ketabton.com: The Digital Library

[402]

software licenses
sonar (sound navigation and ranging)
spatial analysis
 customer criteria, matching
 distances, querying
 nearby points, counting
 precision problems of buffering, solving
 quiet houses, delimiting
 rasters, querying
 results, saving
 with proximity analysis
spatial data
 on web
 spatial servers
spatial databases
spatial indexing
spatial querying ,
spatially-enabled NoSQL DBMSs
 array database
 column stores
 document stores
 graph databases
SQL query
 execution
 optimizing
 parsing
 planning
SQL
 in GIS
SRIDs (Spatial Reference ID)
SRS (Spatial Reference System)
SRTM (Shuttle Radar Topographic Mission)
SRTM DEM
standing rectangle
static backups
 creating
statistics
 calculating ,
 suitable areas, vectorizing , ,
 vector statistics, accessing
 zonal statistics, using ,
styles
 managing
SVG (Scalable Vector Graphics)
symbolizers

 line
 point
 polygon
 raster
 text

T
tabular layers
 opening
tags
 reference
time complexity
TMS (tile map service)
TOAST (The Oversized-Attribute Storing

Technique)
tools
 installing, on Linux ,
 installing, on macOS
 installing, on Windows
 setting up
 software licenses
transformation functions
 reference
Triangulated Irregular Network (TIN)
typical GIS problem
 outlining

U
URIs
 reference

V
vector analysis
 about
 neighborhood analysis ,
 network analysis
 overlay analysis
 overlay tools
 proximity analysis
vector data exchange formats
 about
 GeoJSON
 markup languages
 shapefile
 Well-Known Binary (WKB)

(c) ketabton.com: The Digital Library

 Well-Known Text (WKT)
vector data
 accessing ,
 categories, mapping with
 graduated mapping
 styling
 tabular layers, opening
 topology ,
 vector data model , ,
vector layers
 labels, creating
 polygons, styling
 styling
 waters, styling
vector statistics
 accessing
vector types
 lines
 points
 polygons
voxels

W
Web Coverage Service (WCS)
Web Feature Service (WFS)
Web Map Service (WMS)
Web Map Tile Service (WMTS)

web maps
 creating, with Leaflet
web page
 creating
 elements, styling
 HTML code, writing
 scripting
web
 client side ,
 spatial data ,
Well-Known Binary (WKB)
Well-Known Text (WKT)
WFS-T (WFS-Transaction)
WGS84 (World Geodesic System 1984)
Windows
 tools, installing
workspace
 preparing
World Wide Web Consortium (W3C)

X
XML (Extensible Markup Language) ,

Z
zonal statistics
 using ,

(c) ketabton.com: The Digital Library

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

