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PREFACE

It has become clear that some abstract Computer Theory should be included
in the education of undergraduate Computer Science majors.

Leaving aside the obvious worth of knowledge for its own sake, the ter-
minology, notations, and techniques of Computer Theory are necessary in the
teaching of courses on computer design, Artificial Inteiligence, the analysis of
algorithms, and so forth. Of all the programming skills undergraduate students
learn, two of the most important are the abilities to recognize and manipulate
context-free grammars and to understand the power of the recursive interaction
of parts of a procedure. Very little can be accomplished if each advanced
course has to begin at the level of defining rules of production and derivations.
Every interesting career a student of Computer Science might pursue will make
significant use of some aspects of the subject matter of this book.

Yet we find today, that the subjects of Automata Theory, Formal Languages,
and Turing machines are almost exclusively relegated to the very advanced
student. Only textbooks demanding intense mathematical sophistication discuss
these topics. Urdergraduate Computer Science majors are unlikely to develop
the familiarity with set theory, logic, and the facility with abstract manipulation
early enough in their college careers to digest the material in the existing
excellent but difficult texts.

Bringing the level of sophistication to the exact point where it meets the
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expected preparation of the intended student population is the responsibility of
every carefully prepared textbook. Of all the branches of Mathematics, Com-
puter Science is one of the newest and most independent. Rigorous mathe-
matical proof of the most profound theorems in this subject can be constructed
without the aid of Calculus, Number Theory, Algebra, or Topology. Some
degree of understanding of the notion of proof is, of course, required, but the
techniques employed are so idiosyncratic to this subject that it is preferable
to introduce them to the student from first principles. Characteristic methods,
such as making accurate conclusions from diagrams, analyzing graphs, or
searching trees, are not tools with which a typical mathematics major is fa-
miliar. Hardly any students come prepared for the convoluted surprise of the
Halting Problem. These then are the goals of this textbook: (1) to introduce
a student of Computer Science to the need for and the working of mathematical
proof; (2) to develop facility with the concepts, notations, and techniques of
the theories of Automata, Formal Languages, and Turing machines; and (3)
to provide historical perspective on the creation of the computer with a pro-
found understanding of some of its capabilities and limitations.

Basically, this book is written for students with no presumed background
of any kind. Every mathematical concept used is introduced from scratch.
Extensive examples and illustrations spell out everything in detail to avoid any
possibility of confusion. The bright student is encouraged to read at whatever
pace or depth seems appropriate.

For their excellent care with this project I thank the staff at John Wiley
& Sons: Richard J. Bonacci, acquisitions editor, and Lorraine F. Mellon, Eu-
gene Patti, Elaine Rauschal, and Ruth Greif of the editorial and production
staffs. Of the technical people who reviewed the manuscript I thank Martin
Kaliski, Adrian Tang, Martin Davis, and especially H. P. Edmundson, whose
comments were invaluable and Martin J. Smith whose splendid special support
was dispositive. Rarely has an author had an assistant as enthusiastic, dedi-
cated, knowledgeable and meticulous as I was so fortunate to find in Mara
Chibnik. Every aspect of this project from the classnotes to the page proofs
benefited immeasurably from her scrutiny. Very little that is within these cov-
ers—except for the few mistakes inserted by mischievous Martians—does not
bare the mark of her relentless precision and impeccable taste. Every large
project is the result of the toil of the craftsmen and the sacrifice and fore-
bearance of those they were forced to neglect. Rubies are beneath their worth.

Daniel I. A. Cohen
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CHAPTER 1

BACKGROUND

The twentieth century has been filled with the most incredible shocks and
surprises: the theory of relativity, Communist revolutions, psychoanalysis, nu-
clear war, television, moon walks, genetic engineering, and so on. As as-
tounding as any of these is the advent of the computer and its development
from a mere calculating device into what seems like a “thinking machine.”

The birth of the computer was not wholly independent of the other events
of this century. The history of the computer is a fascinating story; however,
it is not the subject of this course. We are concerned with the Theory of
Computers, which means that we form several abstract mathematical models
that will describe with varying degrees of accuracy parts of computers and
types of computers and similar machines. Our models will not be used to
discuss the practical engineering details of the hardware of computers, but the
more abstract questions of the frontiers of capability of these mechanical de-
vices.

There are separate courses that deal with circuits and switching theory (com-
puter logic) and with instruction sets and register arrangements (computer ar-
chitecture) and with data structures and algorithms and operating systems and
compiler design and artificial intelligence and so forth. All of these courses
have a theoretical component, but they differ from our study in two basic
ways. First, they deal only with computers that already exist; our models, on

3
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the other hand, will encompass all computers that do exist, will exist, and
that can ever be dreamed of. Second, they are interested in how best to do
things; we shall not be interested in optimality at all, but rather we shall be
concerned with the question of possibility—what can and what cannot be done.
We shall look at this from the perspective of what language structures the
machines we describe can and cannot accept as input, and what possible mean-
ing their output may have. This description of our intent is extremely general
and perhaps a little misleading, but the mathematically precise definition of
our study can be understood only by those who already know the concepts
introduced in this course. This is often a characteristic of scholarship—after
years of study one can just begin to define the subject. We are now embarking
on a typical example of such a journey. In our last chapter (Chapter 31) we
shall finally be able to define a computer.

The history of Computer Theory is also interesting. It was formed by for-
tunate coincidences, involving several seemingly unrelated branches of intel-
lectual endeavor. A small series of contemporaneous discoveries, by very dis-
similar people, separately motivated, flowed together to become our subject.
Until we have established more of a foundation, we can only describe in
general terms the different schools of thought that have melded into this field.

The most obvious component of Computer Theory is the theory of math-
ematical logic. As the twentieth century started, mathematics was facing a
dilemma. Georg Cantor (1845--1918) had recently invented the Theory of Sets
(unions, intersections, inclusion, cardinality, etc.). But at the same time he
had discovered some very uncomfortable paradoxes—he created things that
looked like contradictions in what seemed to be rigorously proven mathematical
theorems. Some of his unusual findings could be tolerated (such as that infinity
comes in different sizes), but some could not (such as that some set is bigger
than the universal set). This left a cloud over mathematics that needed to be
resolved.

B David Hilbert (1862—1943) wanted all of mathematics put on the same sound
footing as Euclidean Geometry, which is characterized by precise definitions,
explicit axioms, and rigorous proofs. The format of a Euclidean proof is pre-
cisely specified. Every line is either an axiom, a previously proven theorem,
or follows from the lines above it by one of a few simple rules of inference.
The mathematics that developed in the centuries since Euclid did not follow
this standard of precision. Hilbert believed that if mathematics were put back
on the Euclidean standard the Cantor paradoxes would go away. He was ac-
tually concerned with two ambitious projects: first, to demonstrate that the new
system was free of paradoxes; second, to find methods that would guarantee
to enable humans to construct proofs of all the true statements in mathematics.

Hilbert wanted something formulaic—a precise routine for producing results,
like the directions in a cookbook. First draw all these lines, then write all
these equations, then solve for all these points, and so on and so on and the
proof is done—some approach that is certain and sure-fire without any reliance
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on unpredictable and undependable brilliant mathematical insight. We simply
follow the rules and the answer must come.

This type of complete, guaranteed, easy-to-follow set of instructions is called
an algorithm. He hoped that algorithms or procedures could be developed to
solve whole classes of mathematical problems. The collection of techniques
called linear algebra provides just such an algorithm for solving all systems
of linear equations. Hilbert wanted to develop algorithms for solving other
mathematical problems, perhaps even an algorithm that could solve all math-
ematical problems of any kind in some finite number of steps. Before starting
to look for such an algorithm, an exact notion of what is and what is not a
mathematical statement had to be developed. After that, there was the problem
of defining exactly what can and what cannot be a step in an algorithm. The
words we have used: “procedure,” “formula,” “cookbook method,” “complete
instructions,” are not part of mathematics and are no more meaningful than
the word “algorithm” itself.

Mathematical logicians, while trying to follow the suggestions of Hilbert
and straighten out the predicament left by Cantor, found that they were able
to prove mathematically that some of the desired algorithms cannot exist—not
only at this time, but they can never exist in the future, either. Their main
result was even more fantastic than that. -

Kurt Gédel (1906-1978) not only showed that there was no algorithm that
could guarantee to provide proofs for all the true statements in mathematics,
but he proved that not all the true statements even have a proof to be found.
Godel’s Incompleteness Theorem implies that in a specific mathematical sys-
tem either there are some true statements without any possible proof or else
there are some false statements that can be “proven.” This earth-shaking result
made the mess in the philosophy of mathematics even worse, but very exciting.

If not every true statement has a proof, can we at least fulfill Hilbert’s
program by finding a proof-generating algorithm to provide proofs whenever
they do exist? Logicians began to ask the question: Of what fundamental parts
are all algorithms composed? The first general definition of an algorithm was
proposed by Alonzo Church. Using his definition he and Stephen Cole Kleene
and, independently, Emil Post were able to prove that there were problems
that no algorithm could solve. While also solving this problem independently,
‘Alan Mathison Turing (1912-1954) developed the concept of a theoretical
“universal-algorithm machine.” Studying what was possible and what was not
possible for such a machine to do, he discovered that some tasks that we
might have expected this abstract omnipotent machine to be able to perform
are impossible, even for it. Turing’s model for a universal-algorithm machine
is directly connected to the invention of the computer. In fact, for completely
different reasons (wartime code-breaking) Turing himself had an important part
in the construction of the first computer, which he based on his work in abstract
logic.

On a wildly different front, two researchers in neurophysiology, Warren
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Sturgis McCulloch and Walter Pitts (1923-1969), constructed a mathematical
model for the way in which sensory receptor organs in animals behave. The
model they constructed for a “neural net” was a theoretical machine of the
same nature as the one Turing invented, but with certain limitations. Math-
ematical models of real and abstract machines took on more and more im-
portance. Along with mathematical models for biological processes, models
were introduced to study psychological, economic, and social situations.

Again, entirely independent of these considerations, the invention of the
vacuum tube and the subsequent developments in electronics enabled engineers
to build fully automatic electronic calculators. These developments fulfilled the
age-old dream of Blaise Pascal (1623-1662), Gottfried Wilhelm von Leibniz
(1646-1716), and Charles Babbage (1792-1871), all of whom built mechanical
calculating devices as powerful as their respective technologies would allow.
In the 1940s, gifted engineers began building the first generation of computers:
the computer Colossus at Bletchley, England (Turing’s decoder), the ABC
machine built by John Atanosoff in Iowa, the Harvard Mark I built by Howard
Aiken, and ENIAC built by John Presper Eckert, Jr. and John William Mauchly
(1907-1980) at the University of Pennsylvania.

Shortly after the invention of the vacuum tube, the incredible mathematician
John von Neumann (1903-1957) developed the idea of a stored-program com-
puter. The idea of storing the program inside the computer and allowing the
computer to operate on (and modify) the program as well as the data was a
tremendous advance. It may have been conceived decades earlier by Babbage
and his co-worker Ada Augusta, Countess of Lovelace (1815-1853), but their
technology was not adequate to explore this possibility. The ramifications of
this idea, as pursued by von Neumann and Turing were quite profound.

The early calculators could perform only one predetermined set of tasks at
a time. To make changes in their procedures, the calculators had to be phys-
ically rebuilt either by rewiring, resetting, or reconnecting various parts. Von
Neumann permanently wired certain operations into the machine and then de-
signed a central control section that, after reading input data, could select which
operation to perform based on a program or algorithm encoded in the input
and stored in the computer along with the raw data to be processed. In this
way, the inputs determined which operations were to be performed on them-
selves. Interestingly, current technology has progressed to the point where the
ability to manufacture dedicated chips cheaply and easily has made the prospect
of rebuilding a computer for each program feasible again. However, by the
last chapters of this book we will appreciate the significance of the difference
between these two approaches.

Von Neumann’s goal was to convert the electronic calculator into a real-
life model of one of the logicians’ ideal universal-algorithm machines, such
as those Turing had described. Thus we have an unusual situation where the
advanced theoretical work on the potential of the machine preceded the dem-
onstration that the machine could really exist. The people who first discussed
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these machines only dreamed they might ever be built. Many were very sur-
prised to find them actually working in their own lifetimes.

Along with the concept of programming a computer came the question: What
is the “best” language in which to write programs? Many languages were
invented, owing their distinction to the differences in the specific machines
they were to be used on and to the differences in the types of problems for
which they were designed. However, as more languages emerged, it became
clear that they had many elements in common. They seemed to share the same
possibilities and limitations. This observation was at first only intuitive, al-
though Turing had already worked on much the same problem but from a
different angle.

At the time that a general theory of computer languages was being de-
veloped, another surprise occurred. Modern linguists, some influenced by the
prevalent trends in mathematical logic and some by the emerging theories of
developmental psychology, had been investigating a very similar subject: What
is language in general? How could primitive humans have developed language?
How do people understand it? How do they learn it as children? What ideas
can be expressed, and in what ways? How do people construct sentences from
the ideas in their minds?

Noam Chomsky created the subject of mathematical models for the de-
scription of languages to answer these questions. His theory grew to the point
where it began to shed light on the study of computer languages. The languages
humans invented to communicate with one another and the languages necessary
for humans to communicate with machines shared many basic properties. Al-
though we do not know exactly how humans understand language, we do know
how machines digest what they are told. Thus, the formulations of mathe-
matical logic became useful to linguistics, a previously nonmathematical sub-
ject. Metaphorically, we could say that the computer then took on linguistic
abilities. It became a word processor, a translator, and an interpreter of simple
grammar, as well as a compiler of computer languages. The software invented
to interpret programming languages was applied to human languages as well.
One point that will be made clear in our studies is why computer languages
are easy for a computer to understand whereas human languages are very
difficult.

Because of the many influences on its development the subject of this book
goes by various names. It includes three major fundamental areas: the Theory
of Automata, the Theory of Formal Languages, and the Theory of Turing
Machines. This book is divided into three parts corresponding to these topics.

Our subject is sometimes called Computation Theory rather than Computer
Theory, since the items that are central to it are the types of tasks (algorithms
or programs) that can be performed, not the mechanical nature of the physical
computer itself. However, the name “computation” is also misleading, since
it popularly connotes arithmetical operations that are only a fraction of what
computers can do. The term “computation” is inaccurate when describing word
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processing, sorting and searching and awkward in discussions of program ver-
ification. Just as the term “Number Theory” is not limited to a description of
calligraphic displays of number systems but focuses on the question of which
equations can be solved in integers, and the term “Graph Theory” does not
include bar graphs, pie charts, and histograms, so too “Computer Theory” need
not be limited to a description of physical machines but can focus on the
question of which tasks are possible for which machines.

We shall study different types of theoretical machines that are mathematical
models for actual physical processes. By considering the possible inputs on
which these machines can work, we can analyze their various strengths and
weaknesses. We then arrive at what we may believe to be the most powerful
machine possible. When we do, we shall be surprised to find tasks that even
it cannot perform. This will be-our ultimate result, that no matter what machine
we build, there will always be questions that are simple to state that it cannot
answer. Along the way, we shall begin to understand the concept of com-
putability, which is the foundation of further research in this field. This is
our goal. Computer Theory extends further to such topics as complexity and
verification, but these are beyond our intended scope. Even for the topics we
do cover—Automata, Languages, Turing Machines—much more is known than
we present here. As intriguing and engaging as the field has proven so far,
with any luck the most fascinating theorems are yet to be discovered.
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CHAPTER 2

LANGUAGES

In English we distinguish the three different entities: letters, words, and sen-
tences. There is a certain parallelism between the fact that groups of letters
make up words and the fact that groups of words make up sentences. Not all
collections of letters form a valid word, and not all collections of words form
a valid sentence. The analogy can be continued. Certain groups of sentences
make up coherent paragraphs, certain groups of paragraphs make up coherent
stories, and so on.

This situation also exists with computer languages. Certain character strings
are recognizable words (GOTO, END . . .). Certain strings of words are rec-
ognizable commands. Certain sets of commands become a program (with or
without data).

To construct a general theory that unifies all these examples, it is necessary
for us to adopt a definition of a “most universal language structure,” that is,
a structure in which the decision of whether a given string of units constitutes
a valid larger unit is not a matter of guesswork but is based on explicitly
stated rules.

It is very hard to state all the rules for the language “spoken English,”
since many seemingly incoherent strings of words are actually understandable
utterances. This is due to slang, idiom, dialect, and our ability to interpret
poetic metaphor and to correct unintentional grammatical errors in the sentences

9
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we hear. However, as a first step to defining a general theory of abstract
languages, it is right for us to insist on precise rules, especially since computers
are not quite as forgiving about imperfect input commands as listeners are
about informal speech.

When we call our study the Theory of Formal Languages, the word “for-
mal” refers to the fact that all the rules for the language are explicitly stated
in terms of what strings of symbols can occur. No liberties are tolerated, and
no reference to any “deeper understanding” is required. Language will be con-
sidered solely as symbols on paper and not as expressions of ideas in the
minds of humans. In this basic model, language is not communication among
intellects, but a game of symbols with formal rules. The term “formal” used
here emphasizes that it is the form of the string of symbols we are interested
in, not the meaning.

We begin with only one finite set of fundamental units out of which we
build structures. We shall call this the alphabet. A certain specified set of
strings of characters from the alphabet will be called the language. Those
strings that are permissible in the language we call words. The symbols in
the alphabet do not have to be Latin letters, and the sole universal requirement
for a possible string is that it have only finitely many symbols in it. The
question of what it means to “specify” a set of strings is one we discuss
presently.

We shall wish to allow a string to have no letters. This we call the empty
string or null string, and we shall denote it by the symbol A. No matter
what language we are considering, the null string is always A. Two words
are considered the same if all their letters are the same and in the same order
so there is only one possible word of no letters. For clarity, we do not allow
the symbol A to be part of the alphabet for any language.

The most familiar example of a language for us is English. The alphabet
is the usual set of letters plus the apostrophe and hyphen. Let us denote the
whole alphabet by the Greek letter capital sigma.

S={a b cde ... z’ -}

Sometimes we shall list a set of elements separated by spaces and sometimes
by commas. If we wished to be supermeticulous, we would also include in
3, the uppercase letters and the seldom used diacritical marks.

We can now specify which strings of these letters are valid words in our
language by listing them all, as is done in a dictionary. It is a long list, but
a finite list, and it makes a perfectly good definition of the language. If we
call this language ENGLISH-WORDS we may write

ENGLISH-WORDS = {all the words (main entries) in a standard dictionary}

In the line above, we have intentionally mixed mathematical notation (the
equal sign, the braces denoting sets) and a prose phrase. This results in per-
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fectly understandable communication; we take this liberty throughout. All of
our investigations will be agglomerates of informal discussion and precise sym-
bolism.

Of course, the language ENGLISH-WORDS, as we have specified it, does
not have any grammar. If we wish to make a formal definition of the language
of the sentences in English, we must begin by saying that this time our basic
alphabet is the entries in the dictionary. Let us call this alphabet I", the capital
gamma.

I' = { the entries in a standard dictionary, plus a blank space, plus the
usual punctuation marks }

In order to specify which strings of elements from I' produce valid words
in the language ENGLISH-SENTENCES, we must rely on the grammatical
rules of English. This is because we could never produce a complete list of
all possible words in this language; that would have to be a list of all valid
English sentences. Theoretically, there are infinitely many different words in
the language ENGLISH-SENTENCES. For example:

I ate one apple.
I ate two apples.
I ate three apples.

The trick of defining the language ENGLISH-SENTENCES by listing all
the rules of English grammar allows us to give a finite description of an infinite
language.

If we go by the rules of grammar only, many strings of alphabet letters
seem to be valid words, for example, “I ate three Tuesdays.” In a formal
language we must allow this string. It is grammatically correct; only its mean-
ing reveals that it is ridiculous. Meaning is something we do not refer to in
formal languages. As we make clear in Part II of this book, we are primarily
interested in syntax alone, not semantics or diction. We shall be like the bad
teacher who is interested only in the correct spelling, not the ideas in a home-
work composition.

In general, the abstract languages we treat will be defined in one of two
ways. Either they will be presented as an alphabet and the exhaustive list of
all valid words, or else they will be presented as an alphabet and a set of
rules defining the acceptable words.

Earlier we mentioned that we could define a language by presenting the
alphabet and then specifying which strings are words. The word “specify” is
trickier than we may at first suppose. Consider this example of the language
called MY-PET. The alphabet for this language is

{a ¢c d g o t}
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There is only one word in this language, and for our own perverse reasons
we wish to specify it by this sentence:
If the Earth and the Moon ever collide, then

MY-PET = {cat}
but, if the Earth and the Moon never collide, then
MY-PET = {dog}

One or the other of these two events will occur, but at this point in the history
of the universe it is impossible to be certain whether the word dog is or is
not in the language MY-PET.

This sentence is not an adequate specification of the language MY-PET
because it is not useful. To be an acceptable specification of a language, a
set of rules must enable us to decide, in a finite amount of time, whether a
given string of alphabet letters is or is not a word in the language.

The set of rules can be of two kinds. They can either tell us how to test
a string of alphabet letters that we might be presented with, to see if it is a
valid word; or they can tell us how to construct all the words in the language
by some clear procedures. We investigate this distinction further in the next
chapter.

Let us consider some simple examples of languages. If we start with an
alphabet having only one letter, the letter x,

5 ={x}

we can define a language by saying that any nonempty string of alphabet
characters is a word.

Ly ={x xx xxx xxxx...}

or to write this in an alternate form:

Li={x" forn=1 2 3 ...}

Because of the way we have defined it, this language does not include the
null string. We could have defined it so as to include A, but we didn’t.

In this language, as in any other, we can define the operation of concatena-
tion, in which two strings are written down side by side to form a new longer
string. In this example, when we concatenate the word xxx with the word xx,
we obtain the word xxxxx. The words in this language are clearly analogous
to the positive integers, and the operation of concatenation is analogous to
addition:
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X" concatenated with x™ is the word x**"

It will often be convenient for us to designate the words in a given language
by new symbols, that is, other than the ones in the alphabet. For example,
we could say that the word xxx is called a and that the word xx is b. Then
to denote the word formed by concatenating @ and b we write the letters side
by side:

ab = xxxxx

It is not always true that when two words are concatenated they produce
another word in the language. For example if the language is

L, = {x xxx xoxx xooxxx. ..}
= { x°%} _
={x*" forn=01 2 3 ...}

then a = xxx and b = xxxxx are both words in L,, but their concatenation
ab = xxxxxxxx is not in L,. Notice that the alphabet for L, is the same as
the alphabet for L;. Notice also the liberty we took with the middle definition.
In these simple examples, when we concatenate a with b we get the same
word as when we concatenate b with a. We can depict this by writing:

ab = ba
But this relationship does not hold for all languages. In English when we
concatenate “house” and “boat” we get “houseboat,” which is indeed a word
but distinct from ‘“boathouse,” which is a different thing—not because they

have different meanings but because they are different words. “Merry-go-round”
and “carousel” mean the same thing, but they are different words.

EXAMPLE

Consider another language. Let us begin with the alphabet:

2={0 1 2 3 45 6 7 8 9}
and define the set of words:

L; = { any finite string of alphabet letters that does not start with the letter
zero }
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This language L, then looks like the set of all positive integers written in base
10.

Ly={12 3 45 6 7 8 9 10 11 12...}
We say “looks like” instead of “is” because L3 is only a formal collection of
strings of symbols. The integers have other mathematical properties. If we

wanted to define the language L; so that it includes the string (word) 0, we
could say:

Ly = {any finite string of alphabet letters that, if it starts with a 0, has no
more letters after the first} [ |

The box, I, which ends the line above is an end marker. When we present
an example of a point in the text, we shall introduce it with the heading:
EXAMPLE
and finish it with an end marker . This will allow us to keep the general
discussion separate from the specific examples. We shall use the same end

marker to denote the end of a definition or a proof.

DEFINITION

PROOF

The old-fashioned end marker denoting that a proof is finished is Q.E.D. This
box serves the same purpose.

DEFINITION
We define the function “length of a string” to be the number of letters in the
string. We write this function using the word “length.” For example, if a = xxxx

in the language L, above, then

length(a) = 4
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If ¢ = 428 in the language L;, then
length(c) = 3
Or we could write directly that in L,
length(xxxx) = 4
and in L,
length(428) = 3
In any language that includes the empty string A we have:
length(A) = 0
For any word w in any language, if length(w) = O then w = A. |
We can now present yet another definition of Lj.

Ly = {any finite string of alphabet letters that, if it has length more than
one, does not start with a zero}

This is not necessarily a better definition of Ls, but it does illustrate that there
are often different ways of specifying the same language.

There is some inherent ambiguity in the phrase “any finite string,” since
it is not clear whether we intend to include the null string (A, the string of
no letters). To avoid this ambiguity, we shall always be more careful. The
language L; above does not include A, since we intended that that language
should look like the integers, and there is no such thing as an integer with
no digits. On the other hand, we may wish to define a language like L; but
that does contain A.

Ly ={A x xx xxx xox...}
={x" forn=0 1 2 3...}

Here we have said that x° = A, not xX° = 1 as in algebra. In this way x" is
always the string of n x’s. This may seem like belaboring a trivial point, but
the significance of being careful about this distinction will emerge over and
over again.

In L; it is very important not to confuse 0, which is a string of length 1,
with A. Remember, even when A is a word in the language, it is not a letter
in the alphabet.
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DEFINITION
Let us introduce the function reverse. If a is a word in some language L,

then reverse(a) is the same string of letters spelled backward, called the reverse
of a, even if this backward string is not a word in L. [ ]

EXAMPLE

reverse(xxx) = xxx
reverse(xxxxx) = XXxxx
reverse(145) = 541

But let us also note that in L,
reverse(/40) = 041

which is not a word in Ls. | B

DEFINITION

Let us define a new language called PALINDROME over the alphabet
% ={a b}

PALINDROME = { A, and all strings x such that reverse(x) = x } [ |
If we begin listing the elements in PALINDROME we find

PALINDROME = { A, a, b, aa, bb, aaa, aba,
bab, bbb, aaaa, abba . ..}

The language PALINDROME has interesting properties that we shall ex-
amine later.

Sometimes when we concatenate two words in PALINDROME we obtain
another word in PALINDROME such as when abba is concatenated with ab-
baabba. More often, the concatenation is not itself a word in PALINDROME,
as when aa is cencatenated with aba. Discovering when this does happen is
left as a problem at the end of this chapter.
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DEFINITION

Given an alphabet 2, we wish to define a language in which any string of
letters from 3 is a word, even the null string. This language we shall call
the closure of the alphabet. It is denoted by writing a star (an asterisk) after
the name of the alphabet as a superscript

3%
This notation is sometimes known as the Kleene star after the logician who
was one of the founders of this subject. |
EXAMPLE

If 3 = {x}, then

EXAMPLE
If 3 ={0,1}, then

={A 0 1 00 01 10 11 000 00I...}

EXAMPLE
If 3 = {a,b,c}, then
S*={A a b ¢ aa ab ac ba bb bc ca cb cc aaa...} W

We can think of the Kleene star as an operation that makes an infinite
language of strings of letters out of an alphabet. When we say “infinite lan-
guage” we mean infinitely many words each of finite length.

Notice that when we wrote out the first several words in the language we
put them in size order (words of shortest length first) and then listed all the
words of the same length alphabetically. We shall usually follow this method
of sequencing a language.

We shall now generalize the use of the star operator to sets of words, not
just sets of alphabet letters.
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DEFINITION
If S is a set of words, then by S* we mean the set of all finite strings formed

by concatenating words from S, where any word may be used as often as we
like, and where the null string is also included. [ |

EXAMPLE
If S = {aab}, then
§* = { A plus any word composed of factors of aa and b }

= { A plus all strings of a’s and b’s in which the a’s occur in even clumps }

={A b aa bb aab baa bbb aaaa aabb baab bbaa bbbb
aaaab aabaa aabbb baaaa baabb bbaab bbbaa bbbbb . . .}

The string aabaaab is not in S$* since it has a clump of a’s of length 3. The

phrase “clump of a’s” has not been precisely defined, but we know what it
means anyway. n

EXAMPLE

Let S = {a, ab}. Then
§* = {A plus any word composed of factors of a and ab}

= {A plus all strings of a’s and b’s except those that start with b and
those that contain a double b}

={A a aa ab aaa aab aaaa aaab aaba abaa abab
aaaaa aaaab aaaba aabaa aabab abaaa abaab ababa. . .}

By the phrase “double b” we mean the substring bb. For each word in S$*
every b must have an a immediately to its left. The substring bb is impossible,
as is starting with a b. Any string without the substring bb that begins with
an a can be factored into terms of (ab) and (a). [ |
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To prove that a certain word is in the closure language S*, we must show
how it can be written as a concatenate of words from the base set S.
In the last example, to show that abaab is in S* we can factor it as follows:

(ab)(a)(ab)

These three factors are all in the set S; therefore their concatenation is in S*.
This is the only way to factor this string into factors of (a) and (ab). When
this happens, we say that the factoring is unique.

Sometimes the factoring is not unique. For example, consider S = {xx, xxx}.
Then:

S§* = { A and all strings of more than one x }
={x"forn=0, 2, 3, 4, 5. ..}
={A xx xoxr xXox Xoox XOoxx. ..}

Notice that the word x is not in the language S*. The string xxxxxxx is in
this closure for any of these three reasons. It is:

(xx) (xx) (xxx) or (xx) (exx) (xx) or (xx) (xx) (xx)

Also, x° is either x2x’x* or else x*x°.

It is important to note here that the parentheses, ( ), are not letters in the
alphabet but are used for the sole purpose of demarcating the ends of factors.
So we can write xxxxx = (xx)(xxx). In cases where parentheses are letters of
the alphabet,

2={x()}
length(xxxxx) = 5
but length( (xx)(xxx) ) = 9

Let us suppose that we wanted to prove mathematically that this set S*
contains all x* for n # 1. Suppose that somebody did not believe this and
needed convincing. We could proceed as follows.

First, we consider the possibility that there were some powers of x that we
could not produce by concatenating factors of (xx) and (rxx).

Obviously, since we can produce x*, x°, x°, the examples of strings that
we cannot produce must be large. Let us ask the question, “What is the
smallest power of x (larger than 1) that we cannot form out of factors of xx
and xxx?7” Let us suppose that we start making a list of how to construct the
various powers of x. On this list we write down how to form x?, x°, x*, x°,
and so on. Let us say that we work our way successfully up to x*’*, but then
we cannot figure out how to form x*’*. We become stuck, so a friend comes
over to us and says, “Let me see your list. How did you form the word x*72?
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Why don’t you just concatenate another factor of xx in front of this and then
you will have the word x*’* that you wanted.” Our friend is right, and this
story shows that while writing this list out we can never really become stuck.
This discussion can easily be generalized into a mathematical proof of the fact
that §* contains all powers of x greater than 1.

We have just established a mathematical fact by a method of proof that we
have rarely seen in other courses. It is a proof based on showing that something
exists (the factoring) because we can describe how to create it (by adding xx
to a previous case). What we have described can be formalized into an al-
gorithm for producing all the powers of x from the factors xx and xxx. The
method is to begin with xx and xxx and, when we want to produce x", we
take the sequence of concatenations that we have already found will produce
x"2 and we concatenate xx on to that.

The method of proving that something exists by showing how to create it
is called proof by constructive algorithm. This is the most important tool
in our whole study. Most of the theorems in this book will be proven by the
method of constructive algorithm. It is in general a very satisfying and useful
method of proof, that is, providing that anybody is interested in the objects
we are constructing. We may have a difficult time selling powers of x broken
into factors of xx and xxx.

Let us observe that if the alphabet has no letters, then its closure is the
language with the null string as its only word Symbolically, we write:

If 3 =@ (the empty set),
then 2* = {A}

This is not the same as

If § = {A},
then $* = {A}

An alphabet may look like a set of one-letter words.

If for some reason we wish to modify the concept of closure to refer to
only the concatenation of some (not zero) strings from a set S, we use the
notation * instead of *. For example,

If % ={x}, then 3* = {x xx xxx...}

which is the language L, that we discussed before.

If § = {xx, xxx} then St is the same as S* except for the word A, which
is not in §*. This is not to say that S* cannot in general contain the word
A. It can, but only on condition that S contains the word A. In this case,
A is in §*, since it is the concatenation of some (actually one) word from
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S (A itself). Anyone who does not think that the null string is confusing has
missed something. It is already a problem, and it gets worse later.
If S is the set of three words

S = { W Wy w3 }
then,

ST ={W1 Wy W3 wWiw; WiW; WiW3 WoW WhoW; WW;
WiWp Wiwy WiWws wiww, wWiww, . .. }

no matter what the words w,, w,, and w; are.

If w, = aa, wy = bbb, w3 = A, then
S* ={aa bbb A aaaa aabbb. ..}

The words in the set S are listed above in the order corresponding to their
w-sequencing, not in the usual size-alphabetical order.

What happens if we apply the closure operator twice? We start with a set
of words S and look at its closure $*. Now suppose we start with the set S*
and try to form its closure, which we denote as

(S*)* or S**

If § is not the trivial empty set, then S* is infinite, so we are taking the
closure of an infinite set. This should present no problem since every string
in the closure of a set is a combination of only finitely many words from the
set. Even if the set S has infinitely many words, we use only finitely many
at a time. This is the same as with ordinary arithmetic expressions, which can
be made up of only finitely many numbers at a time even though there are
infinitely many numbers to choose from.

From now on we shall let the closure operator apply to infinite sets as well
as to finite sets.

THEOREM 1

For any set § of strings we have §* = §**,

CONVINCING REMARKS

First let us illustrate what this theorem means. Say for example that S = {a,b}.
Then S* is clearly all strings of the two letters a and b of any finite length
whatsoever. Now what would it mean to take strings from S* and concatenate
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them? Let us say we concatenated (aaba) and (baaa) and (aaba). The end
result (aababaaaaaba) is no more than a concatenation of the letters a and
b, just as with all elements of S*.

aababaaaaaba
= (aaba)(baaa)(aaba)
= [(@)(@)(b)(a)] [(b)(a)(a)@)] [(a)a)(b)(a)]
= (a)(a)(b)(a)(b)a)(a)(a)(a)(a)(b)(a)

Let us consider one more illustration. If S = {aa, bbb}, then S* is the set
of all strings where the a’s occur in even clumps and the b’s in groups of
3, 6,9... Some words in S* are

aabbbaaaa bbb bbbaa

If we concatenate these three elements of S*, we get one big word in S**,
which is again in S*.

aabbbaaaabbbbbbaa
= [(aa)(bbb)(aa)(aa)] [(bbb)] [(bbb)(aa)]

This theorem expresses a trivial but subtle point. It is analogous to saying
that if people are made up of molecules and molecules are made up of atoms,
then people are made up of atoms.

PROOF

Every word in $** is made up of factors from S*. Every factor from S$* is
made up of factors from S. Therefore, every word in S** is made up of
factors from §S. Therefore, every word in S** is also a word in §*. We can
write this as

using the symbol “C” from Set Theory, which means “is contained in or equal
to.”

Now in general it is true that for any set A we know that A C A*, since

in A* we can chose as a word any one factor from A. So if we consider A
to be our set S*, we have

S* C §**
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Together, these two inclusions prove that

S* = SE*

PROBLEMS

1.

Consider the language $*, where S = {a, b}.
How many words does this language have of length 2? of length 3? of
length n?

Consider the language S*, where S = {aa, b}.
How many words does this language have of length 4?7 of length 5? of
length 6? What can be said in general?

Consider the language S*, where S = {ab, ba}. Write out all the words
in S* that have seven or fewer letters. Can any word in this language
contain the substrings aaa or bbb?

Consider the language S*, where S = {a ab ba}. Is the string (abbba)
a word in this language? Write out all the words in this language with
seven or fewer letters. What is another way in which to describe the
words in this language? Be careful, this is not simply the language of
all words without bbb.

Consider the language S*, where S = {aa aba baa}. Show that the words
aabaa, baaabaaa, and baaaaababaaaa are all in this language. Can any
word in this language be interpreted as a string of elements from S in
two different ways? Can any word in this language have an odd total
number of a’s?

Consider the language S* where S = {xx xxx}. In how many ways can
x'° be written as the product of words in S? This means: How many
different factorizations are there of x'° into xx and xxx?

(1) Prove that if x is in PALINDROME then so is x* for any .

(ii) Prove that if y* is in PALINDROME then so is y.

(iii) Prove that if z” is in PALINDROME for some n (greater than 0)
then z itseif is also.

(iv) Prove that PALINDROME has as many words of lerigth 4 as it does
of length 3.

(v) Prove that PALINDROME has as many words of length 2n as it
has of length 2n—1.
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10.

11.

12.

13.

14.

15.
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Show that if the concatenation of two words (neither A) in PALIN-
DROME is also a word in PALINDROME then both words-are powers
of some other word; that is, if x and y and xy are all in PALINDROME
then there is a word z such that x = z” and y = z” for some integers
n and m (maybe n or m = 1).

Let S = {ab, bb} and let T = {ab, bb, bbbb}. Show that $* = T*. What
principle does this illustrate?

Let S = {ab, bb} and let T = {ab, bb, bbb}.

(1) Show that S* # T*, but that §* C T*,

(ii) Prove in general that if S C T then §* C T*.
Find examples of § and T for which:

(i) SC T but § # T and yet §* = T*.

(iv) S* = T* but ST T and T C S. The symbol “C” means “is not
contained in or equal to.”

How does the situation in Problem 10 change if we replace the operator
* with the operator * as defined in this chapter? Note the language S*
means the same as S* but does not allow the “concatenation of no words”
of S.

Prove that for all sets S,

(i) (§7)* = (§¥)*

(i) EH*" =S8

(iii) Is (§*)* = (§*)* for all sets S?

Suppose that for some language L we can always concatenate two words
in L and get another word in L if and only if the words are not the
same. That is, for any words w; and w, in L where w, # w,, the word
wiw, is in L but the word wyw, is not in L. Prove that this cannot
happen.

By definition
(§**)* = Giowok

is this set bigger than S*? Is it bigger than S§?

Give an example of two sets of strings, § and 7T, such that the closure
of § added to (union with) the closure of T is different from the closure
of the set § union 7. (In this book we will use the + sign for union
of sets instead of the usual U.) What we want here are two sets, S and
T, such that

S* + T* # (S + T)*

What can we say in general about sets S and 7 that satisfy
S + D* = 8% + T*?
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Give an example of a set § such that the language S* has more six
letter words than seven letter words. Give an example of an S* that has
more six letter words than eight letter words. Does there exist an S$*
such that it has more six letter words than twelve letter words?

Let § = {a, bb, bab, abaab}. Is abbabaabab in $*? Is abaabbabbaabb?
Does any word in S* have an odd total number of b’s?

(i) Consider the language S* where S = {aa, ab, ba, bb}. Give another
description of this language.

(ii) Give an example of a set S such that $* contains all possible strings
of a’s and b’s that have length divisible by three.

One student suggested the following algorithm to test a string of a’s and
b’s to see if it is a word in S* where S = {aa, ba, aba, abaab}. Step
1, cross off the longest set of characters from the front of the string
that is a word in §. Step 2, repeat step 1 until it is no longer possible.
If what remains is the string A, the original string was a word in S*.
If what remains is not A (this means some letters are left but we cannot
find a word in S at the beginning), the original string was not a word
in $*. Find a string that disproves this algorithm.

The reason * is called the “closure operator” is because the set S* is

closed under concatenation. This means that if we take any two words

in $* and concatenate them, we get another word in S*. If S = {ab,

bbb}, then § is not closed under concatenation since abab is not in S,

but S* is closed under concatenation.

(i) Let T be any set that contains all of S, and suppose T is closed
under concatenation. Show that 7 contains S*. )

(ii) Explain why we may say “S* is the smallest set that is closed under
concatenation that contains S.”

(iii)) What is the smallest set, closed under concatenation, that contains
both the sets of words P and Q7
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CHAPTER 3

RECURSIVE
DEFINITIONS

One of the mathematical tools that we shall find extremely useful in our study,
but which is largely unfamiliar in other branches of mathematics, is a method
of defining sets called recursive definition. A recursive definition is charac-
teristically a three-step process. First, we specify some basic objects in the
set. Second, we give rules for constructing more objects in the set from the
ones we already know. Third, we declare that no objects except those con-
structed in this way are allowed in the set.

Let us take an example. Suppose that we are trying to define the set of
positive even integers for someone who knows about arithmetic but has never
heard of the even numbers. One standard way of defining this set is:

EVEN is the set of all positive whole numbers divisible by 2.
26
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Another way we might try is this:
EVEN is the set of all 2n where n =1 2 3 4
The third method we present is sneaky, by recursive definition:

The set EVEN is defined by these three rules:

Rule 1 2 is in EVEN.
Rule 2 If x is in EVEN then so is x + 2.

Rule 3 The only elements in the set EVEN are those that can be produced from
the two rules above.

There is a reason that the third definition is less popular than the others: It
is much harder to use in most practical applications.

For example, suppose that we wanted to prove that 14 is in the set EVEN.
To show this using the first definition we divide 14 by 2 and find that there
is no remainder. Therefore, it is in EVEN. To prove that 14 is in EVEN by
the second definition we have to somehow come up with the number 7 and
then, since 14 = (2)(7), we know that it is in EVEN. To prove that 14 is
even using the recursive definition is a lengthier process. We could proceed
as below:

By Rule 1, we know that 2 is in EVEN.
Then by Rule 2 we know that 2 + 2 = 4 is also in EVEN.

Again by Rule 2 we know that since 4 has just been shown to be in EVEN,
4 + 2 = 6 is also in EVEN.

The fact that 6 is in EVEN means that when we apply Rule 2 we deduce
that 6 + 2 = 8 is in EVEN, too.

Now applying Rule 2 to 8 we derive that 8 + 2 = 10 is another member of
EVEN.

Once more applying Rule 2, this time to 10, we infer that 10 + 2 = 12 is
in EVEN.

And, at last, by applying Rule 2 once more, to the number 12, we conclude
that 12 + 2 = 14 is, indeed, in EVEN.

Pretty horrible. This, however, is not the only recursive definition of the set
EVEN. We might use:
The set EVEN is defined by these three rules.

Rule1 2 is in even.
Rule 2 If x and y are both in EVEN then so is

x+y
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Rule 3 No number is in EVEN unless it can be produced by Rules 1
and 2.

It should be understood that we mean we can apply Rule 2 also to the case
where x and y stand for the same number.
We can now prove that 14 is in EVEN in fewer steps:

By Rule 1 2 is in EVEN
ByRule2 x =2,y =2 — 4isin EVEN

ByRule2 x =2,y =4 — 6isin EVEN
ByRule2 x =4,y =4 — 8isin EVEN
ByRule2 x =6,y =8 — 14isin EVEN

This is a better recursive definition of the set EVEN, because it produces
shorter proofs that elements are in EVEN. The set EVEN, as we have seen,
has some very fine definitions that are not recursive. In later chapters we shail
be interested in certain sets that have no better definition than the recursive
one.

Before leaving this example, let us note that although the second recursive
definition is still harder to use (in proving that given numbers are even) than
the two nonrecursive definitions, it does have some advantages. For instance,
suppose we want to prove that the sum of two numbers in EVEN is also a
number in EVEN. This is a trivial conclusion from the second recursive def-
inition, but to prove this from the first definition is decidedly harder. Whether
or not we want a recursive definition depends on two things: one, how easy
the other possible definitions are to understand; and two, what types of theo-
rems we may wish to prove about the set.

Let us consider the way polynomials are usually defined:

A polynomial is a finite sum of terms each of which is of the form a real number
times a power of x (that may be x° = 1).

Now let us consider a recursive definition that is designed for people who
know algebraic notation but do not know what a polynomial is.
The set POLYNOMIAL is defined by these four rules:

Rule 1  Any number is in POLYNOMIAL.
Rule 2 The variable x is in POLYNOMIAL.
Rule 3 If p and g are in POLYNOMIAL, then so are p + q and (p) and pq.

Rule 4 POLYNOMIAL contains only those things which can be created by the
three rules above.
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The symbol pg, which looks like a concatenation of alphabet letters, in
algebraic notation refers to multiplication.

These rules are very crude in that they make us write subtraction as p + (—1)g
and they do not show us how to simplify this to p — ¢g. We could include
rules for making the notation prettier, but the rules above do allow us to
produce all polynomials in some form or another, and the rules themselves
are simple.

Some sequence of applications of these rules can show that 3x> + 7x — 9
is in POLYNOMIAL.

By Rule 1 3 is in POLYNOMIAL

By Rule 2 x is in POLYNOMIAL

By Rule 3 (3)(x) is in POLYNOMIAL, call.it 3x

By Rule 3  (3x)(x) is in POLYNOMIAL, call it 3x*

By Rule 1 7 is in POLYNOMIAL

By Rule 3 (7)(x) is in POLYNOMIAL

By Rule 3 3x? + 7x is in POLYNOMIAL

By Rule 1 - —9 is in POLYNOMIAL

ByRule 3 3x> + 7x + (—=9) = 3x> + 7x — 9 is in POLYNOMIAL.

In fact, there are several other sequences that could also produce this result.

There are some advantages to this definition as well as the evident dis-
advantages. On the plus side, it is immediately obvious that the sum and
product of polynomials are both themselves polynomials. This is a little more
complicated to see if we had to provide a proof based on the classical def-
inition.

Suppose for a moment that we were studying calculus and we had just
proven that the derivative of the sum of two functions is the sum of the
derivatives and that the derivative of the product fg is f'g + fg'. As soon as
we prove that the derivative of a number is O and that the derivative of x is
I we have automatically shown that we can differentiate all polynomials. This
becomes a theorem that can be proven directly from the recursive definition.
It is true that we do not then know that the derivative of x* is nx™!, but we
do know that it can be calculated for every n.

In this way we can have proven that we can differentiate all polynomials
without giving the best algorithm to do it. Since the topic of this book is
Computer Theory, we are very interested in proving that certain tasks are
possible for a computer to do even. if we do not know the best algorithms
by which to do them. What is even more astounding is that we shall be able
to prove that certain tasks are theoretically impossible for any computer (re-
member: this includes all the models we have today and all the models that
may be built in the future). It is for these reasons that recursive definitions
are important to us.
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Before proceeding to more serious matters, let us note that recursive def-
initions are not completely alien to us in the real world. What is the best
definition of the set of people who are descended from Henry VIII? Is it not:

Rule 1 The children of Henry VIII are all elements of DESCENDANTS.
Rule 2 If x is an element of DESCENDANTS, then so are x’s children.

Also in mathematics we often see the following definition of factorial:

Rulel 0! =1
Rule2 (n+ I)! = (n+ D&Y

The reason that these definitions are called “recursive” is that one of the
rules used to define the set mentions the set itself. We define EVEN in terms
of previously known elements of EVEN, POLYNOMIAL in terms of previously
known elements of POLYNOMIAL. We define (n + 1)! in terms of the value
of n!l. In computer languages, when we allow a procedure to call itself we

refer to the program as recursive. These definitions have the same self-refer-
ential sense.

EXAMPLE
Observe how natural the following definitions are:

Rule 1 xisinL,
Rule 2 If Q is any word in L;, then xQ is also in L,.

Li=xt={x xx xx ..}
or

Rulel AisinlL,
Rule 2 If Q is any word in L4, then xQ is also in L,

Ly=x*={A x xx xxx...}
or

Rulel xisinl,
Rule 2 If Q is any word in L,, then xxQ is also in L,.

L, = {x% ={x xxx xoox...}
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or

Rulel 7 2 3 4 5 6 7 8 9areinl;

Rule 2 If Q is any word in Ls, then QO0, Q1, Q2, 03, 04, 95, 06, 07, 08,
Q9 are also words in Ls.

Ly={12 3 4 ...}
[ |

Suppose we ask ourselves what constitutes a valid arithmetic expression that
can be typed on one line, in a form digestible by computers. The alphabet
for this language is

S={0 12 3 45 6 7 8 9+ -*/()}

Obviously, the following strings are not good:
3+ 5 + 6) 2(/8+9) B+@d-)8 2) — 4

The first contains unbalanced parentheses; the second contains the forbidden
substring ( /; the third contains the forbidden substring —); the fourth has a
close parenthesis before the corresponding open parenthesis. Are there more
rules? The subsequences // and */ are also forbidden. Are there still more?
The most natural way of defining a valid arithmetic expression, AE, is by
using a recursive definition rather than a long list of forbidden substrings. The
definition can be written as:

Rule 1 Any number (positive, negative, or zero) is in AE.
Rule 2 If x is in AE, then so are (x) and — (x).
Rule 3 If x and y are in AE, then so are

(i) x + y (if the first symbol in y is not —)

(ii) x — y (if the first symbol in y is not —)

(iii)) x *

Gv) x/y

(v) x**y (our notation for exponentiation)

We have called this the “most natural” definition because, even though we
may never have articulated this point, it truly is the method we use for rec-
ognizing arithmetic expressions in real life. If we are presented with

Q+4)+(T*+O-3)/4/4sQ2+8 — 1

and asked to determine if it is a valid arithmetic expression, we do not really
scan over the string looking for forbidden substrings or count the parentheses.
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We imagine it in our mind broken down into its components. (2 + 4) that’s
OK, (9 — 3) that’s OK, 7 * (9 — 3)/ 4 that’s OK, and so on. We may never
have seen a definition of “arithmetic expressions” before, but this is what we
have always intuitively meant by the phrase.

This definition gives us the possibility of writing 2 + 3 + 4, which is not
ambiguous. But it also gives us 8/4/2, which is. It could mean 8/(4/2) = 4
or (8/4)/2 = 1. Also, 3 + 4 + 5 is ambiguous. So we usually adopt con-
ventions of operator hierarchy and left to right execution. By applying Rule
2 we could always put in enough parentheses to avoid any confusion if we
so desired. We return to this point in Part II, but for now this definition
adequately defines the language of all valid strings of symbols for arithmetic
expressions. Remember, the ambiguity in the string 8/4/2 is a problem of
meaning. There is no doubt that the string is a word in AE, only doubt about
what it means.

This definition determines the set AE in a manner useful for proving many
theorems about arithmetic expressions.

THEOREM 2

An arithmetic expression cannot contain the character $.

PROOF

This character is not part of any number, so it cannot be introduced into an
AE by Rule 1. If the character string x does not contain the character $, then
neither do the strings (x) and —(x), so it cannot be introduced into an AE
by Rule 2. If neither x nor y contains the character $, then neither do any
of the expressions defined by Rule 3. Therefore, the character $ can never
get into an AE. n

THEOREM 3

No AE can begin or end with the symbol /.

PROOF

No number begins or ends with this symbol, so it cannot occur by Rule 1.
Any AE formed by Rule 2 must begin and end with parentheses or begin
with a minus sign, so the / cannot be introduced by Rule 2. If x does not
begin with a / and y does not end with a /, then any AE formed by any
clause in Rule 3 will not begin or end with a /. Therefore, these rules will
never produce an expression beginning or ending with a /. |
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These proofs are like the story of the three chefs making a stew. One can
add only meat to the pot. One can add only carrots to the pot. One can add
only potatoes to the pot. Even without knowing exactly in what order the chefs
visit the pot or how often, we still can conclude that the pot cannot end up
with an alarm clock in it. If no rule contributes a $, then one never gets in,
even though if x had a $ then x + y would also.

The symbol “/” has many names. In computer science it is usually called
a “slash,” other names are “oblique stroke,” “solidus,” and “virgule.” It also
has another theorem.

THEOREM 4

No AE can contain the substring //.

PROOF

For variation, we shall prove this result by contradiction, even though a direct
argument similar to those above could easily be given.

Let us suppose that there were some AE’s that contained the substring //.
Let the shortest of these be a string called w. This means that w is a valid
AE that contains the substring //, but there is no shorter word in AE that
contains this substring. There may be more strings of the same length as w
that contain //, but it does not matter which of these we begin with and choose
to call w.

Now we know that w, like all words in AE, is formed by some sequence
of applications of the Rules 1, 2, and 3. Our first question is: Which was
the last rule used in the production of w? This is easy to answer. We shall
show that it must have been Rule 3(iv). If it were Rule 3(iii), for instance,
then the // must either be found in the x part or the y part. But x and y are
presumed to be in AE so this would mean that there is some shorter word
in AE than w that contains the substring //, which contradicts the assumption
that w is the shortest. Similarly we can eliminate all the other possibilities.
Therefore, the last rule used to produce w must have been 3(iv).

Now, since the // cannot have been contributed to w from the x part alone
or from the y part alone (or else x or y are shorter words in AE with a double
slash), it must have been included by finding an x part that ended in / or a
y part that began with a /. But since both x and y are AE’s, our previous
theorem says that neither case can happen. Therefore, even Rule 3(iv) cannot
introduce the substring //.

Therefore, there is no possibility left for the last rule from which w can
be constructed. Therefore, w cannot be in the set AE. Therefore, there is no
shortest AE that contains the substring //. Therefore, nothing in the set AE
can have the substring //. n
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This method of argument should sound familiar. It is similar to the proof
that {xx, xxx}* contains all x*, for n # 1.

The long-winded but careful proof of the last theorem is given to illustrate
that recursive definitions can be conveniently employed in rigorous mathe-
matical proofs. Admittedly, this was a trival example of the application of
this method. Most people would be just as convinced by the following “proof.”

How could an arithmetic expression contain the substring //? What would it mean?
Huh? What are you, crazy or something?

We should bear in mind that we are only on the threshold of investigating
a very complex and profound subject and that in this early chapter we wish
to introduce a feel for the techniques and viewpoints that will be relied on
heavily later, under far less obvious circumstances. We will use our learner’s
permit to spend a few hours driving around an empty parking lot before ven-
turing onto the highway.

Another common use for recursive definitions is to determine what expres-
sions are valid in Symbolic Logic. We shall be interested in one particular
branch of Symbolic Logic called the Sentential Calculus or the Propositional
Calculus. The version we shall define here uses only negation— and impli-
cation — along with the phrase variables, although conjunction and disjunction
could easily be added to the system. The valid expressions in this language
are traditionally called WFF’s for well-formed formulas.

As with AE, parentheses are letters in the alphabet

S={——()a b ¢ d ...}

There are other symbols sometimes used for negation, such as —, —, and
~. The rules for forming WFF’s are:

Rule 1  Any single Latin letter is a WFF,

a b c d .

Rule 2 If p is a WFF, then so are
(p) and — p.

Rule 3 If p and ¢ are WFF's, then so is
p—4q

Some sequences of applications of these rules enable us to show that;
p=>p—>p—q
is a WFF. Without too much difficulty we can also show that

p— —p p— p p) — p(

are all not WFF's.
As a final note in this section, we should be wary that we have sometimes
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3

‘x

is in POLYNOMIAL” or “x is in EVEN" and sometimes to define a property,
such as in the phrase “x is a WFF” or “x is even.” This should not present
any problem.

PROBLEMS

1. Write another recursive definition for the language L, of Chapter 2.

2. Using the second recursive definition of the set EVEN, how many dif-
ferent ways can we prove that 14 is in EVEN?

3. Using the second recursive definition of EVEN, what is the smallest
number of steps required to prove that 100 is EVEN? Describe a good
method for showing that 2n is in EVEN.

4. Show that the following is another recursive definition of the set EVEN.

Rule 1 2 and 4 are in EVEN.
Rule 2 If x is in EVEN, then so is x + 4.

5.

6.

8.

Show that there are infinitely many different recursive definitions for the
set EVEN.

Using any recursive definition of the set EVEN, show that all the num-
bers in it end in the digits 0, 2, 4, 6, or 8.

The set POLYNOMIAL defined in this chapter contains only the poly-
nomials in the one variable x. Write a recursive definition for the set
of all polynomials in the two variables x and y.

Define the set of valid algebraic expressions ALEX as follows:

Rule 1  All polynomials are in ALEX.
Rule 2 If fix) and g(x) are in ALEX then so are

i) (x)
(i) —¢x)
(i) f(x) + glx)
(iv) flx) — gx)
(v) flx)gx)
(vi) flxo)/ glx)
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(vii)  foE
(vii))  Ag())

(a) Show that (x + 2)** is in ALEX.

(b) Show that elementary calculus contains enough rules to prove the
theorem that all algebraic expressions can be differentiated.

(¢) Is Rule (viii) really necessary?

9. Using the fact that 3x> + 7x — 9 = (((((3x) + 7)x)—9), show how to
produce this polynomial from the rules for POLYNOMIAL using mul-
tiplication only twice. What is the smallest number of steps needed for
producing x® + x*? What is the smallest number of steps needed for
producing 7x” + 5x° + 3x* + x?

10. Show that if n is less than 29, then x" can be shown to be in
POLYNOMIAL in fewer than eight steps.

11. In this chapter we mentioned several substrings of length 2 that cannot
occur in arithmetic expressions, such as (/, +), / and */. What is the
complete list of substrings of length 2 that cannot occur?

12.  Are there any substrings of length 3 that cannot occur that do not contain
forbidden substrings of length 2? (This means that /// is already known
to be illegal because it contains the forbidden substring //.) What is the
longest forbidden substring that does not contain a shorter forbidden
substring?

13.  The rules given above for the set AE, allow for the peculiar expressions

()  and —(=(=(=9)

It is not really harmful to allow these in AE, but is there some modified
definition of AE that eliminates this problem?

14.  Write out the full recursive definition for the propositional calculus that
contains the symbols \/ and /\ as well as — and —. What are all the
forbidden substrings of length 2 in this language?

15. (i) When asked to give a recursive definition for the language
PALINDROME over the alphabet = = {a, b}, a student wrote:
Rule 1 a and b are in PALINDROME
Rule 2 If x is in PALINDROME, then so are axa and bxb

Unfortunately all of the words in the language defined above have
an odd length and so it is not all of PALINDROME. Fix this prob-
lem.

(ii) Give a recursive definition for the language EVENPALINDROME of
all palindromes of even length.
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16.

17.

18.

19.

20.
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(i) Give a recursive definition for the set ODD = {1,3,5,7 ... }.

(ii) Give a recursive definition for the set of strings of digits 0, 1, 2,
3, .. .9 that cannot start with the digit 0.

(i) Give a recursive definition for the language S* where S = {aa,b}.

(ii) Give a recursive definition for the language T* where

T = {Wl, wa W3, W4}’

where these w’s are some particular words.
Give two recursive definitions for the set

POWERS-OF-TWO = {1248 16 ...}

Use one of them to prove that the product of two powers of two is also
a power of two.

Give recursive definitions for the following languages over the alphabet
{a,b}:

(i) The language EVENSTRING of all words of even length.

(ii)) The language ODDSTRING of all words of odd length.

(iii) The language AA of all words containing the substring aa.

(iv) The language NOTAA of all words not containing the substring aa.

(i) Consider the following recursive definition of 3-PERMUTATION
(a) 123 is a 3-PERMUTATION
(b) if xyz is a 3-PERMUTATION then so are
zZyx and yzx

Show that there are six different 3-PERMUTATION's.
(ii) Consider the following recursive definition of 4-PERMUTATION
(a) 1234 is a 4-PERMUTATION

(b) if xyzw is a 4-PERMUTATION then so are
wzyx and yzwx

How many 4-PERMUTATION’s are there (by this definition)?
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CHAPTER 4

REGULAR
EXPRESSIONS

We wish now to be very careful about the phrases we use to define languages.
We defined L; in Chapter 2 by the symbols:

Ly={x forn=1 2 3 ...}

and we presumed that we all understood exactly which values n could take.
We might even have defined the language L, by the symbols

Ly={x forn=1 3 5 7 ...}
and again we could presume that we all agree on what words are in this
language.
We might define a language by the symbols:
Ls={x forn=1 4 9 16 ...}

but now the symbols are becoming more of an IQ test than a clear definition.

38
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What words are in the language
Li={" forn=3 4 8 22 ...}7?

Perhaps these are the ages of the sisters of Louis XIV when he assumed the
throne of France. More precision and less guesswork is required, especially
where computers are concerned. In this chapter we shall develop some new
language-defining symbolism that will be much more precise than the ellipsis
(which is what the three dots . . . are called).

The language-defining symbols we are about to create are called regular
expressions. We will define the term regular expression itself recursively. The
languages that are associated with these regular expressions are called regular
languages and are also said to be defined by finite representation.

These terms will make more sense when they are associated with concepts.

Let us reconsider the language L, of Chapter 2.

Ly ={A x xx xxx xxxx ...}

In that chapter we presented one method for indicating this set as the closure
of a smaller set.

Let $ = {x}. Then L, = S*
As shorthand for this we could have written:
Ly = {x}*

We now introduce the use of the Kleene star applied not to a set but directly
to the letter x and written as a superscript as if it were an exponent.

x*

The simple expression x* will be used to indicate some sequence of x’s
(maybe none at all).

x¥*=A or x or ¥* or xX* or x*..

=x" forsomen=0 1 2 3 4 ..

We can think of the star as an unknown power or undetermined power. That
is x* stands for a string of x’s, but we do not specify how many. It stands
for any string of x’s in the language L,.

The star operator applied to a letter is analogous to the star operator applied
to a set. It represents an arbituary concatenation of copies of that letter (maybe
none at all). This notation can be used to help us define languages by writing

L, = language (x*)
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Since x* is any string of x’s, L, is then the set of all possible strings of x’s
of any length (including A).

We should not confuse x*, which is a language-defining symbol, with L,,
which is the name we have given to a certain language. This is why we use
the word “language” in the equation. We shall soon give a name to the world
in which this symbol x* lives but not quite yet. Suppose that we wished to
describe the language L over the alphabet = = {a,b} where

L={a ab abb abbb abbbb ...}

We could summarize this language by the English phrase “all words of the
form one a followed by some number of b’s (maybe no b’s at all.)”
Using our star notation, we may write:

L = language (a b*)
or without the space,
L = language (ab*)

The meaning is clear: This is a language in which the words are the con-
catenation of an initial a with some or no b’s (that is b*). Whether we put
a space inside ab* or not is only for the clarity of reading; it does not change
the set of strings this represents. No string can contain a blank unless a blank
is a character in the alphabet 2. If we want blanks to be in the alphabet, we
normally introduce some special symbol to stand for them, as blanks themselves
are invisible to the naked eye. The reason for putting a blank between a and
b* in the product above is to emphasize the point that the star operator is
applied to the b only. We have now used a boldface letter without a star as
well as with a star.
We can apply the Kleene star to the string ab if we want, as follows:

@ab)* = A or ab or abab or ababab . ..

Parentheses are not letters in the alphabet of this language, so they can be
used to indicate factoring without accidently changing the words. Since the
star represents some kind of exponentiation, we use it as powers are used in
algebra, where by universal understanding the expression xy* means x(y?), not
(xy).

If we want to define the language L, this way, we may write

L, = language (xx*)
This means that we start each word of L, by writing down an x and then we

follow it with some string of x’s (which may be no more x’s at all). Or we
may use the * notation from Chapter 2 and write
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L, = language (x*)
meaning all words of the form x to some positive power (that is, not x° = A).
The * notation is a convenience but is not essential since we can say the
same thing with *’s alone.
EXAMPLE
The language L, can be defined by any of the expressions below:
xx* X7 oxx*x*  xFxx* o xTx* x*xt xExFX*Xx*

Remember x* can always be A. [ ]

EXAMPLE
The language defined by the expression
ab*a

is the set of all strings of a’s and b’s that have at least two letters, that begin
and end with a’s, and that have nothing but b’s inside (if anything at all).

language (ab*a) = {aa aba abba abbba abbbba ...}
It would be a subtle mistake to say only that this language is the set of all
words that begin and end with an a and have only b’s in between, because

this description may also apply to the word “a,” depending on how it is
interpreted. Our symbolism eliminates this ambiguity. B

EXAMPLE
The language of the expression
a*b*

contains all the strings of a’s and b’s in which all the @’s (if any) come before
all the b’s (if any).

language (a*b*) = {A a b aa ab bb aaa aab abb bbb aaaa . . .}
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Notice that ba and aba are not in this language. Notice also that there need
not be the same number of a’s and b’s. |

Here we should again be very careful to observe that

a*b* #+ (ab)*
since the language defined by the expression on the right contains the word
abab, which the language defined by the expression on the left does not. This
cautions us against thinking of the * as a normal algebraic exponent.

The language defined by the expression a*b*a* contains the word baa since
it starts with zero a’s followed by one b followed by two a’s.

EXAMPLE
The following expressions both define the language L, = {x°%}
X(xx)* or (xx)*x
but the expression
x¥xx*

does not since it includes the word (xx) x (x). [ |

We now introduce another use for the plus sign. By the expression x + y
where x and y are strings of characters from an alphabet, we mean “either
x or y”. This means that x + y offers a choice, much the same way that x*
does. Care should be taken so as not to confuse this with * as an exponent.

" . EXAMPLE
Consider the language T defined over the alphabet £ = {a, b, ¢}

T=1{a ¢ ab c¢b abb cbb abbb cbbb abbbb cbbbb ...}

All the words in T begin with an a or a ¢ and then are followed by some
number of b’s. Symbolically, we may write this as

T = language ({(a + c¢)b*)

language (either a or ¢ then some b’s)

I
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We should, of course, have said “some or no b’s”. We often drop the zero-
option because it is tiresome. We let the word “some” always mean “some
or no,” and when we mean “some positive number of” we say that.

We say that the expression (a + c¢)b* defines a language in the following
sense. Every * and * ask us to make a choice. For each * or * used as a
superscript we must select some number of factors for which it stands. For
each other + we must decide whether to choose the right-side expression or
the left-side expression. For every set of choices we have generated a particular
string. The set of all strings produceable by this method is the language of
the expression. In the example

(a + ¢)b*
we must choose either the a or the ¢ for the first letter and then we choose
how many b’s the b* stands for. Each set of choices is a word. If from

(a + ¢) we choose ¢ and we choose b* to mean bbb, we have the word
cbbb. [ ]

EXAMPLE

Now let us consider a finite language L that contains all the strings of a’s
and b’s of length exactly three.

L = {aaa aab aba abb baa bab bba bbb}
The first letter of each word in L is either an a or a b. The second letter of
each word in L is either an a or a b. The third letter of each word in L is
either an @ or a b. So we may write
L = language ((a + b)(@a + b)}a + b))
or for short,
L = language ((a + b)?) n
If we want to define the set of all seven letter strings of a’s and b’s, we
could write (a + b)’. In general, if we want to refer to the set of all possible
strings of a’s and b’s of any length whatsoever we could write,

(a + b)*

This is the set of all possible strings of letters from the alphabet = = {a, b}
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including the null string. This is a very important regular expression and we
use it often.

Again this expression represents a language. If we decide that * stands for
5, then

(a + b)*
gives
(a + b)®> = (a+b)a+b)a+b)a+b)a+b)

We now have to make five more choices: either a or b for the first letter,
either a or b for the second letter, . . . .

This is a very powerful notation. We can describe all words that begin with
the letter a simply as:

a(a + b)*

that is, first an g, then anything (as many choices as we want of either letter
a or b).

All words that begin with an a and end with a b can be defined by the
expression

a(a + b)*b = a (arbitrary string) b

EXAMPLE
Let us consider the language defined by the expression
(a + b)*aa + b)*

At the beginning we have (a + b)*, which stands for anything, that is any
string of a’s and b’s, then comes an a, then another anything. All told, the
language is the set of all words over the alphabet £ = {a, b} that have an
a in them somewhere. The only words left out are those that have only b’s
and the word A.
For example, the word abbaab can be considered to be of this form in three
ways:
(A) a (bbaab) or (abb) a (ab) or (abba) a (b)
|
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EXAMPLE

The language of all words that have at least two a’s can be described by the
expression

(a + b)*aa + b)*a(a + b)*

= (some beginning)(the first important a)(some middle)(the second
important a)(some end)

where the arbitrary parts can have as many a’s (or b’s) as they want. [l

In the last three examples we have used the notation (a + b)* as a factor
to mean “any possible substring,” just as we have seen it stand for the language
of all words. In this sense, the expression (a + b)* is a wild card.

EXAMPLE
Another expression that denotes all the words with at least two a’s is:
b*ab*a(a + b)*

We scan through some jungle of b’s (or no b’s) until we find the first a, then
more b’s (or no b’s), then the second a, then we finish up with anything. In
this set are abbbabb and aaaaa.

We can write:

(a + b)*a(a + b)*a(a + b)* = b*ab*a(a + b)*
where by the equal sign we do not mean that these expressions are equal
algebraically in the same way as

x+x=2«
but that they are equal because they describe the same item, as with
16th President = Abraham Lincoln
We could write

language ((a + b)*a(a + b)*a(a + b)*)
= language (b*ab*a (a + b)*)
all words with at least two a’s.



(c) ketabton.com: The Digital Library

46 AUTOMATA THEORY

To be careful about this point, we say that two regular expressions are equiv-
alent if they describe the same language.
The expressions below also describe the language of words with at least two
a’s.

(a + b)*ab *ab* -

T o1
next to last a
last a
and
b*a(a + b)*ab*
i) 7
first a last a B
EXAMPLE

If we wanted all the words with exactly two a’s, we could use the expression
b*ab*ab*

which describes such words as aab, baba, and bbbabbbab. To make the word
aab, we let the first and second b* become A and the last becomes b. W

EXAMPLE

The language of all words that have at least one a and at least one b is
somewhat trickier. If we write

(a + b)*a(a + b)* b(a + b)*
= (arbitrary) a(arbitrary) b(arbitrary)

we are then requiring that an a precede a b in the word. Such words as ba
and bbaaaa are not included in this set. Since, however, we know that either
the a comes before the b or the b comes before the a, we couid define this
set by the expression:

(a+b)*a(a+b)*b(a+b)* + (a+b)*b(a+b)*a(a+b)*

Here we are still using the plus sign in the general sense of disjunction (or).
We are taking the union of two sets, but it is more correct to think of this
+ as offering alternatives in forming words.
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There is a simpler expression that defines the same language. If we are confident that
the only words that are omitted by the first term

(a + b)xa(a + b)*b(a + b)*

are the words of the form some b’s followed by some a’s, then it would be
sufficient to add these specific exceptions into the set. These exceptions are
ali defined by the regular expression:

bb*aa*

The language of all words over the alphabet £ = {a, b} that contain both
an a and a b is therefore also defined by the expression:

(a+b)*a(a+b)*b(a+b)* + bb*aa*

Notice that it is necessary to write bb*aa* because b*a* will admit words
we do not want, such as aaa. [ |

These language-defining expressions cannot be treated like algebraic symbols.
We have shown that

(a+b)*a(a+b)*b(a+b)* +(a+b)*b(a+b)*a(a+b)*=(a+b)*a(a+b)*b(a+b)* +bb*aa*

The first terms on both sides of this equation are the same, but if we cancel
them we get

(a+b)*b(a+b)*a(a+b)* = bb*aa*
which is false, since the left side includes the word aba, which the expression
on the right side does not.

The only words that do not contain both an a and a b in them somewhere
are the words of all a’s, all b’s, or A. When these are added into the language,
we get everything. Therefore, the regular expression:

(a+b)*a(a+b)*b(a+b)* + bb*aa* + a* + b*
defines all possible strings of a’s and b’s. The word A is included in both a* and b*.
We can then write:

(@ + b)* = (a+b)*a(a+b)*b@a+b)* + bb*aa* + a* + b*

which is not a very obvious equivalence at all.
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EXAMPLE

All temptation to treat these language-defining expressions as if they were
algebraic polynomials should be dispelled by these equivalences:

(a+b)* = (a+b)* + (a+b)*
(a+b)* (a+b)* (a+b)*

(a+b)* = ata+b)* + b(a+b)* + A
(a+b)* = (a+b)* ab(a+b)* + b*a*

The last of these equivalences requires some explanation. It means that all
the words that do not contain the substring ab (which are accounted for in
the first term) are all a’s, all b’s, A, or some b’s followed by some a’s. All
four missing types are covered by b*a*. [ |

Usually when we employ the star operator, we are defining an infinite lan-
guage. We can represent a finite language by using the plus (union sign) alone.
If the language L over the alphabet = = {a, b} contains only the finite list
of words given below,

L = {abba baaa bbbb}
then we can represent L by the symbolic expression
L = language (abba + baaa + bbbb)

Every word in L is some choice of options of this expression.

If L is a finite language that includes the null word A, then the expression
that defines L must also employ the symbol A.

For example, if

L={A a aa bbb}

then the symbolic expression for L must be

L = language (A + a + aa + bbb)

The symbol A is a very useful addition to our system of language-defining
symbolic expressions.

EXAMPLE

Let V be the language of all strings of a’s and b’s in which the strings are
either all b’s or else there is an a followed by some b’s. Let V also contain
the word A.
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V = {A a b ab bb abb bbb abbb bbbb . . . .}
We can define V by the expression
b* + ab*

where the word A is included in the term b*. Alternatively, we could define
V by the expression: »

(A + a)b*
This would mean that in front of the string of some b’s we have the option
of either adding an a or nothing. Since we could always write b* = Ab*,
we have what appears to be some sort of distributive law at work.
Ab* + ab* = (A + a)b*
We have factored out the b* just as in algebra. It is because of this analogy

to algebra that we have denoted our disjunction by the plus sign instead of
the union sign U or the symbolic logic sign \/.
|

We have a hybrid system: the * is somewhat like an exponent and the +
is somewhat like addition. But the analogies to algebra should be approached
very suspiciously, since addition in algebra never means choice and algebraic
multiplication has properties different from concatenation (even though we
sometimes conventionally refer to it as product):

ab = ba in algebra
ab + ba in formal languages

Let us reconsider the language
T = {a c ab cb abb cbb . ..}
T can be defined as above by
(@ + c)b*
but it can also be defined by
ab* + cb*

This is another example of the distributive law.
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It is now time for us to provide a rigorous definition for the expressions
we have been playing with.

We have all the parts we need in order to define regular expressions re-
cursively. The symbols that appear in regular expressions are: the letters of
the alphabet =, the symbol for the null string A, parentheses, the star operator,
and the plus sign.

DEFINITION
The set of regular expressions is defined by the following rules:

Rule 1 Every letter of 3 can be made into a regular expression by writing it in
boldface; A is a regular expression.

Rule 2 If r; and r; are regular expressions, then so are
r) rnr; o+ ¥
Rule 3 Nothing else is a regular expression. [}

We could have included the plus sign as a superscript r;* as part of the
definition, but since we know that r;* = rir;*, this would add nothing val-
uable.

This is a language of language definers. It is analogous to a book that lists
all the books in print. Every word in this book is a book-definer. The same
confusion occurs in everyday speech. The string “French” is both a word (an
adjective) and a language-defining name (a noun). However difficult Computer
Theory may seem, English is much harder.

Because of Rule 1 we may have trouble in distinguishing when we write
an a whether we mean g the letter in =, a the word in =*, {a} the one word
language, or a the regular expression for that language. Context and typography
will guide us.

As with the recursive definition of arithmetic expressions, we have included
the use of parentheses as an option, not a requirement. Let us emphasize again
the implicit parentheses in r*. If r; = aa + b then the expression r;* tech-
nically refers to the expression

r* = aa + b*

which is the formal concatenation of the symbols for r, with the symbol *,
but what we generally mean when we write r;* is actually (r,)*

(r)* = (aa + b)*

which is different. Both are regular expressions and both can be generated
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from the rules. Care should always be taken to produce the expression we
actually want, but this much care is too much to ask of mortals, and when
we write ri* in the rest of the book we really mean (r;)*.

Another example of excessive care is the worry about the language that
contains no words at all. The set of words in this language is the null set,
not the null word. The null word is a word, so the language that contains
no words cannot contain it. The language of no words cannot technically be
defined by a regular expression since Rule 1 starts by putting something into
the language. We finesse this point by saying that the language of no words
is defined by the regular expression of no symbols.

To make the identification between the regular expressions and their as-
sociated languages more explicit, we need to define the operation of multi-
plication of sets of words.

DEFINITION

If S and T are sets of strings of letters (whether they are finite or infinite
sets), we define the product set of strings of letters to be

ST = {all combinations of a string from § concatenated with a string from T }

]

EXAMPLE
If

S ={a aa aaa} T = {bb bbb}
then

ST = {abb abbb aabb aabbb aaabb aaabbb}

Note that these words are not in proper order. [
EXAMPLE
If

S ={a bb bab} T ={a ab}
then

ST = {aa aab bba bbab baba babab} [ |
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EXAMPLE
If

P ={a bb bab} Q ={A  bbbb}
then

PQ = {a bb bab abbbb bbbbbb babbbbb}

|

EXAMPLE
If

M={A x xx N={Ay yw yy ww...}
then
MN= {A y y v ...

X Xy Xyy Xyyy Xyyyy...

XX XXy XXYY XXYYy XXyyyy . . .} [ ]

Using regular expressions, these four examples can be written as:

(a+aa+ aaa)(bb +bbb) = abb+ abbb + aabb + aabbb + aaabb + aaabbb
(a+bb+bab)(a+ab) = aa+aab+ bba+ bbab + baba + babab
(a+bb + bab)(A + bbbb) = a+bb+ bab + ab*+ b®+ bab’
(A+x+xx)(y*) = y*+xy* +xxy*

EXAMPLE

If FRENCH and GERMAN are their usual languages, then the product
FRENCHGERMAN is the language of all strings that start with a FRENCH word and
finish with a GERMAN word. Some words in this language are ennuiverboten and
souffiéGesundheit.

It might not be clear why we can not just leave the rules for associating
a language with a regular expression on the informal level, with the expression
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“make choices for + and *.” The reason is that the informal phrase “make
choices” is much harder to explain precisely than the formal mathematical

presentation below.

We are now ready to give the rules for associating a language with every
regular expression. As we might suspect, the method for doing this is given
recursively.

DEFINITION

The following rules define the language associated with any regular expres-
sion.

Rule 1 The language associated with the regular expression that is just a
single letter is that one-letter word alone and the language associated
with A is just {A}, a one-word language.

Rule 2 If r; is a regular expression associated with the language L, and r,
is a regular expression associated with the language L, then,

(i) The regular expression (r;) (r;) is associated with the language L, times
L,.

language (r; rz) = LiL;

(ii) The regular expression r; + r, is associated with the language formed
by the union of the sets L, and L,.

language (r; + 1) = Ly + L,

(iii) The language associated with the regular expression (ry)* is Li*, the
Kleene closure of the set L; as a set of words.

language (ry*) = L* [ |

Once again this collection of rules proves recursively that there is some
language associated with every regular expression. As we build up a regular
expression from the rules, we simultaneously are building up the corresponding
language.

The rules seem to show us how we can interpret the regular expression as
a language, but they do not really tell us how to understand the language.
By this we mean that if we apply the rules above to the regular expression

(a + b)*a(a + b)*b(a + b)* + bb*aa*

we can develop a description of some language, but can we understand that
this is the language of all strings that have an a and a b in them? This is
a question of meaning.
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This correspondence between reguiar expressions and languages leaves open
two other questions. We have already seen examples where completely different
regular expressions end up describing the same language. Is there some way
of telling when this happens? By “way” we mean, of course, an algorithm.
We present an algorithmic procedure in Chapter 12 to determine whether or
not two regular expressions define the same language.

Another fundamental question is this: We have seen that every regular
expression is associated with some language; is it also true that every language
can be described by a regular expression? In our next theorem we show that
every finite language can be defined by a regular expression. The situation for
languages with infinitely many words is different. We prove in Chapter 11
that there are some languages that cannot be defined by any regular expression.

As to the first and perhaps most important question, the question of un-
derstanding regular expressions, we haven’t a clue. Before we can construct
an algorithm for obtaining understanding we must have some good definition
of what it means to understand. We may be centuries away from being able
to do that, if it can be done at all.

THEOREM 5

If L is a finite language (a language with only finitely many words), then L
can be defined by a regular expression.

PROOF

To make one regular expression that defines the language L, turn all the words
in L into boldface type and stick pluses between them. Voila. .

For example, the regular expression that defines the language

L = {baa abbba bababa}

baa + abbba + bababa
If

L ={aa ab ba bb}
the algorithm described above gives the regular expression
aa + ab + ba + bb

Another regular expression that defines this language is
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(a + b}a + b)

so the regular expression need not be unique.
The reason this trick only works for finite languages is that an infinite

language would become a regular expression that is infinitely long, which is
forbidden. |

EXAMPLE
Let
={A x xx xxx xxxx xxxxx}
The regular expression we get from the theorem is
A+ x + XX + XXX + XXXX + XXXXX
A more elegant regular expression for this language is
A + xP

Of course the 5 is, strictly speaking, not a legal symbol for a regular expression
although we all understand it means

A + XA + A + XA + XA + Xx)
|

Let us examine some regular expressions and see if we are lucky enough
to understand something about the languages they represent.

EXAMPLE
Consider the expression:
(a + b)*(aa + bb)a + b)*

This is the set of strings of a’s and b’s that at some point contain a double
letter. We can think of it as

(arbitrary)(double letter)(arbitrary)

Let us now ask, “What strings do not contain a double letter?” Some ex-
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amples are: A a b ab ba aba bab abab baba . ... The expression (ab)*
covers all of these except those that begin with b or end in a. Adding these
choices gives us the regular expression

(A + b) (ab)* (A + a)

EXAMPLE
Consider the regular expression below:

E=(+bFa@+b* @+ A (a + b)*aa + b)*
= (arbitrary) a (arbitrary) [a or nothing] (arbitrary) a (arbitrary).

One obvious fact is that all the words in the language of £ must have at least
two a’s in them. Let us break up the middle plus sign into its two cases:
either the middle factor contributes an a or else it contributes a A. Therefore,

E = (a+b)*a(a+b)*a(a+b)*a(a+ b)*
+ (a+b)*a(a+b)* A (a+b)*a(a+Db)*

This is a more detailed use of the distributive law. The first term above clearly

represents all words that have at least three a’s in them. Before we analyze
the second term let us make the observation that

(a + b)* A (a + b)*

which occurs in the middle of the second term is only another way of saying
“any string whatsoever” and could be replaced with the more direct expression

(a + b)*
This would reduce the second term of the expression to
(a + bY*a(a + b)*a(a + b)*

which we have already seen is a regular expression representing all words that
have at least two a’s in them.

Therefore, the language associated with E is the union of all strings that
have three or more a’s with all strings that have two or more a’s. But since
all strings with three or more a’s are themselves already strings with two or
more a’s, this whole language is just the second set alone.
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The language associated with E is no different from the language associated
with
(a + b)*a(a + b)*aa + b)*
which we have examined before with three of its avatars. [

It is possible by repeated application of the rules for forming regular expres-
sions to produce an expression in which the star operator is applied to a
subexpression that already has a star in it.

Some examples are:

(@ + b*)* (aa + ab*)* ((a + bbba*) + ba*b)*
In the first of these expressions, the internal * adds nothing to the language
(a + b¥* = (a + b)*

since all possible strings of a’s and b’s are described by both expressions.
Also, in accordance with Theorem 1,

(a%)* = a*
However,
(aa + ab*)* #+ (aa + ab)*
since the language for the expression on the left includes the word abbabb,

which the language on the right does not. (The language defined by the regular
expression on the right cannot contain any word with a double b.)

EXAMPLE
Consider the regular expression:
(a*b*)*

The language defined by this expression is all strings that can be made up of
factors of the form a*b*, but since both the single letter a and the single
letter b are words of the form a*b*, this language contains all strings of a’s
and b’s. It cannot contain more than everything, so

@*b*)* = (a + b)* n
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EXAMPLE

One very interesting example, which we consider now in great detail and carry
with us through the book is

E = [aa + bb + (ab+ba)(aa+ bb)*(ab+ ba)]*

This regular expression represents the collection of all words that are made
up of “syllables” of three types:

type;, = aa
type, = bb
types = (ab + ba)(aa + bb)*(ab + ba)

E

[type; + type, + types]*

Suppose that we are scanning along a word in the language of E from left
to right reading the letters two at a time. First we come to a double a (type,),
then to a double b (type,), then to another double a (type, again). Then perhaps
we come upon a pair of letters that are not the same. Say, for instance, that
the next two letters are ba. This must begin a substring of type;. It starts
with an undoubled pair (either ab or ba), then it has a section of doubled
letters (many repetitions of either aa or bb), and then it finally ends with
another undoubled pair (either ab or ba again). One property of this section
of the word is that it has an even number of a’s and an even number of b’s.
If the section started with a ba, it could end with an ab still giving two a’s
and two b’s on the ends with only doubled letters in between. If it started
with a ba and ended with an ab, again, it would give an even number of
a’s and an even number of b’s. After this section of type; we could proceed
with more sections of type, or type; until we encountered another undoubled
pair, starting another type; section. We know that another undoubled pair will
be coming up to balance off the initial one. The total effect is that every word
of the language of E contains an even number of a’s and an even number
of b’s.

If this were all we wanted to conclude, we could have done so more quickly.
All words in the language of E are made up of these three types of substrings
and, since each of these three has an even number of a’s and an even number
of b’s, the whole word must, too. However, a stronger statement is also true.
All words with an even number of a’s and an even number of b’s belong to
the language of E. The proof of this parallels our argument above.

Consider a word w with even a’s and even b’s. If the first two letters are
the same, we have a type, or type, syllable. Scan over the doubled letter pairs
until we come to an unmatched pair such as ab or ba. Continue scanning by
skipping over the double a’s and double b’s that get in the way until we find
the balancing unmatched pair (ab or ba) to even off the count of a’s and
b’s. If the word ends before we find such a pair, the a’s and b’s are not
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even. Once we have found the balancing unmatched pair, we have completed
a syllable of type;. By “balancing” we do not mean it has to be the same
unmatched pair: ab can be balanced by either ab or ba. Consider them book-
ends or open and close parentheses; whenever we see one we must later find
another. Therefore, E represents the language of all strings with even a’s and
even b’s.

Let us consider this as a computer algorithm. We are about to feed in a
long string of @’s and b’s, and we want to determine if this string has the
property that the number of a’s is even and the number of b’s is even. One
method is to keep two binary flags, the a-flag and the b-flag. Every time an
a is read, the a-flag is reversed (0 to 1, or 1 to 0); every time a b is read,
the b-flag is reversed. We start both flags at O and check to be sure they are
both O at the end. This method will work.

But there is another method that also works that uses only one flag—the
method that corresponds to the discussion above. Let us have only one flag
called the type;-flag. We read the letters in two at a time. If they are the
same, then we do not touch the types-flag, since we have a factor of type,
or type,. If, however, the two letters read do not match, we throw the types-
flag. If the flag starts at O, then whenever it is 1 we are in the middle of
a types-factor; whenever it is 0 we are not. If it is O at the end, then the
input string contains an even number of a’s and an even number of b’s.

For example, if the input is

(aa)(ab)(bb)(ba)(ab)(bb)(bb)(bb)(ab)(ab)(bb)(ba)(aa)
the flag is reversed six times and ends at O.

We will refer to this language again later, so we give it the name EVEN-
EVEN.

EVEN-EVEN = {A aa bb aabb abab abba
baab baba bbaa aaaabb aaabab . ..}

Notice that there do not have to be the same number of a’s and b’s, just
an even quantity of each.

EXAMPLE
Consider the language defined by the regular expression:
b*(abb*)*(A + a)

This is the language of all words without a double a. The typical word here
starts with some &’s. Then come repeated factors of the form abb* (an a
followed by at least one b). Then we finish up with a final a or we leave
the last b’s as they are. This is another starred expression with a star
inside. n
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PROBLEMS

1. Let ry, r;, and r; be three regular expressions. Show that the language
associated with (r; + rpr; is the same as the language associated with
r,r; + rri;. Show that ri(r, + r;) is equivalent to ryr, + rjr;. This
will be the same as “proving a distributive law” for regular expressions.
Construct a regular expression defining each of the following languages
over the alphabet 2 = {a, b}.

2. All words in which a appears tripled, if at all. This means that every
clump of a’s contains 3 or 6 or 9 or 12. .. a’s.

3. All words that contain at least one of the strings s; s, s3 or s4

4. All words that contain exactly three b’s in total.

5. All words that contain exactly two b’s or exactly three b’s, not more.

6. (i) All strings that end in a double letter.
(i)  All strings that have exactly one double letter in them.

7. All strings in which the letter b is never tripled. This means that no
word contains the substring bbb.

8. All words in which a is tripled or b is tripled, but not both. This means
each word contains the substring aaa or the substring bbb but not both.

9. ) All strings that do not have the substring ab.
(ii))  All strings that do not have both the substrings bba and abb.

10.  All strings in which the fotal number of a’s is divisible by three, such
as aabaabbaba.

1. () All strings in which any b’s that occur are found in clumps of

an odd number at a time, such as abaabbbab.

(i)  All strings that have an even number of a’s and an odd number
of b’s.

(iii)  All strings that have an odd number of a’s and an odd number
of b’s.
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Let us reconsider the regular expression
(a + b)*a(a + b)*b(a + b)*
(i)  Show that this is equivalent to
(a + b)y*ab(a + b)*

in the sense that they define the same language.
(ii)) Show that

(a + b)*ab(a +b)* + b*a* = (a + h)*
(iii) Show that
(a + b)* ab[(a + b)*ab(a + b)* + b*a*] + b*a* = (a + b)*
(iv) Is (iii) the last variation of this theme or are there more beasts

left in this cave?

We have defined the product of two sets of strings in general. If we
apply this to the case where both factors are the same set, S = T, we
obtain squares, S2. Similarly we can define $°, S*%,. ... Show that

G) S*=A+S+S"+82+8+8+ ...
) S* =S+ S+ +88+85+ ...

Show that the following pairs of regular expressions define the same

language over the alphabet £ = {a, b}.

4.

15.

16.

(i) (ab)*a and a(ba)*
(i) @* + b)* and (a + b)*
(iii) (@* + b*)* and (a + b)*

1 A* and A
(ii) (a*b)*a* and a*(ba*)*
(iii) (a*bbb)*a* and a*(bbba*)*

(i) ((a + bb)*aa)* and A + (a + bb)*aa
(i) (@aa)*(A + a) and a*
(iii) a(aa)*(A + a)b + b and a*b
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(i) a(ba + a)*b and aa*b(aa*b)*
(ii)) A + a(a + b)* + (a + b)* aa(a + b)* and ((b*a)*ab*)*

Describe (in English phrases) the languages associated with the following

regular expressions.

18.

19.

20.

() (a + b)* a(A + bbbb)

(i) (a(a + bb)*)*

(iii) (a(aa)*b(bb)*)*

(iv) (b(bb)*)*(a(aa)*b(bb)*)*

(v) (b(bb)*)*(a(aa)*b(bb)*)*(a(aa)*)*
(vi) ((a + ba)*

(D.N. Arden) Let R, §, and T be three languages and assume that A
is not in S. Prove the following statements.
(i) From the premise that R = SR + T, we can conclude that R = S*T.

(i) From the premise that R = S*T, we can conclude that R = SR + T.

Explain why we can take any pair of equivalent regular expressions and
replace the letter a in both with any regular expression R and the letter
b with any regular expression S and the resulting regular expressions
will have the same language. For example, 15.(ii)

(a*b)*a* = a*(ba*)*

becomes the identity

Il

which is true for all regular expressions R and S. In particular
R = a + bb, S = ba* results in the complicated identity

((a + bb)*(ba*))*(a + bb)* = (a + bb)* ((ba*)(a + bb)*)*

What is the deeper meaning of this transformation?
What identity would result from using

R = (ba*)* S= (A+Db)
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Several games that children play fit the following description. Pieces are set
up on a playing board. Dice are thrown (or a wheel is spun), and a number
is generated at random. Depending on the number, the pieces on the board
must be rearranged in a fashion completely specified by the rules. The child
has no options about changing the board. Everything is determined by the
dice. Usually it is then some other child’s turn to throw the dice and make
his or her move, but this hardly matters, since no skill or choice is involved.
We could eliminate the opponent and have the one child move first the white
pieces and then the black. Whether or not the white pieces win the game is
dependent entirely on what sequence of numbers is generated by the dice, not
on who moves them.

Let us look at all possible positions of the pieces on the board and call
them states. The game changes from one state to another in a fashion de-
termined by the input of a certain number. For each possible number there
is one and only one resulting state. We should allow for the possibility that
after a number is entered the game is still in the same state as it was before.
(For example, if a player who is in “jail” needs to roll doubles in order to
get out, any other roll leaves the board in the same state.) After a certain
number of rolls, the board arrives at a state that means a victory for one of
the players and the game is over. We call this a final state. There might be

63
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many possible final states. In Computer Theory these are also called halting
states or terminal states or accepting states.

Beginning with the initial state (which we presume to be unique) some input
sequences of numbers lead to victory for the first child and some do not.

Let us put this game back on the shelf and take another example. A child
has a simple computer (input device, processing unit, memory, output device)
and wishes to calculate the sum of 3 plus 4. The child writes a program,
which is a sequence of instructions that are fed into the machine one at a
time. Each instruction is executed as soon as it is read, and then the next
instruction is read. If all goes well, the machine outputs the number 7 and
terminates execution. We can consider this process to be similar to the board-
game. Here the board is the computer and the different arrangements of pieces
on the board correspond to the different arrangements of 0’s and 1’s in the
cells of memory. Two machines are in the same state if their output pages
look the same and their memories look the same cell by cell.

The computer is also deterministic, by which we mean that, on reading
one particular input instruction, the machine converts itself from one given
state to some particular other state (or remains in the same state if given a
NO-OP) where the resultant state is completely determined by the prior state
and the input instruction. Nothing else. No choice is involved. No knowledge
is required of the state the machine was in six instructions ago. Some sequences
of input instructions may lead to success (printing the 7) and some may not.
Success is entirely determined by the sequence of inputs. Either the program
will work or it won’t.

As in the case of the board-game, in this model we have one initial state
and the possibility of several successful final states. Printing the 7 is what is
-important; what is left in memory does not matter.

One small difference between these two situations is that in the child’s game
the number of pieces of input is determined by whether either player has yet
reached a final state whereas with the computer the number of pieces of input
is a matter of choice made before run time. Still, the input string is the sole
determinant as to whether the game child or the computer child wins his or
her victory.

In the first example, we can consider the set of all dice rolls to be the
letters of an alphabet. We can then define a certain language as the set of
strings of those letters that lead to success; that is, lead to a final state. Sim-
ilarly, in the second example we can consider the set of all computer instruc-
tions as the letters of an alphabet. We can then define a language to be the
set of all words over this alphabet that lead to success. This is the language
with words that are all programs that print a 7.

The most general model, of which both of these examples are instances,
is called a finite automaton—"finite” because the number of possible states
and number of letters in the alphabet are both finite, and “automaton” because
the change of states is totally governed by the input. It is automatic (involuntary
and mechanical) not willful, just as the motion of the hands of a clock is
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automatic while the motion of the hands of a human is presumably the result
of desire and thought. We present the precise definition below. “Automaton”
comes to us from the Greek, so its correct plural is “automata.”

DEFINITION
A finite automaton is a collection of three things:

1. A finite set of states, one of which is designated as the initial state, called
the start state, and some (maybe none) of which are designated as final
states.

2. An alphabet 2 of possible input letters, from which are formed strings,
that are to be read one letter at a time.

3. A finite set of transitions that tell for each state and for each letter of
the input alphabet which state to go to next. [ |

The definition above is incomplete in the sense that it describes what a
finite automation is but not how it works. It works by being presented with
an input string of letters that it reads letter by letter starting at the leftmost
letter. Beginning at the start state the letters determine a sequence of states.
The sequence ends when the last input letter has been read.

Instead of writing out the whole phrase “finite automaton” it is customary
to refer to one by its initials, FA. Computer theory is rife with acronyms, so
we have many in this book. The term FA is read by naming its letters, so
we say “an FA” even though it stands for “a finite automaton” and we say
“two FA’s” even though it stands for “two finite automata”.

Some people prefer to call the object we have just defined a finite acceptor
because its sole job is to accept certain input strings and run on them. It
does not do anything like print output or play music. Even so, we shall stick
to the terminology “finite automaton.” When we build some in Chapter 9 that
do do something, we give them special names, such as “finite automaton with
output.”

Let us begin by considering in detail one particular example.

Suppose that the input alphabet has only the two letters a and b. Throughout
this chapter we use only this alphabet (except for a couple of problems at the
end). Let us also assume that there are only three states, x, y, and z. Let the
following be the rules of transition:

1. From state x and input a go to state y.
2. From state x and input b go to state z.
3. From state y and input a go to state x.
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4. From state y and input b go to state z.
5. From state z and any input stay at state z.

Let us also designate state x as the starting state and state z as the only final
state.

We now have a perfectly defined finite automaton, since it fulfills all three
requirements demanded above: states, alphabet, transitions.

Let us examine what happens to various input strings when presented to
this FA. Let us start with the string aaa. We begin, as always, in state x.
The first letter of the string is an a4, and it tells us to go to state y (by Rule
1). The next input (instruction) is also an a, and this tells us by Rule 3 to
go back to state x. The third input is another a, and by Rule 1 again we go
to state y. There are no more input letters in the input string, so our trip has
ended. We did not finish up in the final state (state z), so we have an un-
successful termination of our run.

The string aaa is not in the language of all strings that leave this FA in
state z. The set of all strings that do leave us in a final state is called the
language defined by the finite automaton. The input string aaa is not in
the language defined by this FA. Using other terminology, we may say that
the string aaa is not accepted by this finite automaton because it does not
lead to a final state. We use this expression often. We may also say “aaa is
rejected by this FA.” The set of all strings accepted is the language associated
with the FA. We say, this FA accepts the language L, or L is the language
accepted by this FA. When we wish to be anthropomorphic, we say that L
is the language of the FA. If language L, is contained in language L, and
a certain FA accepts L, (all the words in L, are accepted and all the inputs
accepted are words in L;), then this FA also must accept all the words in
language L, (since they are also words in L,). However, we do not say “L,
is accepted by this FA” since that would mean that all the words the FA
accepts are in L,. This is solely a matter of standard usage.

At the moment, the only job an FA does is define the language it accepts
which is a fine reason for calling it an acceptor, or better still a language
recognizer. This last term is good because the FA merely recognizes whether
the input string is in its language much the same way we might recognize
when we hear someone speak Russian without necessarily understanding what
it means.

Let us examine a different input string for this same FA. Let the input be
abba. As always, we start in state x. Rule 1 tells us that the first input letter,
a, takes us to state y. Once we are in state y we read the second input letter,
which is a b. Rule 4 now tells us to move to state z. The third input letter
is a b, and since we are in state z, Rule 5 tells us to stay there. The fourth
input letter is an a, and again Rule 5 says stay put. Therefore, after we have
followed the instruction of each input letter we end up in state z. State z is
designated a final state, so we have won this game. The input string abba
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has taken us successfully to the final state. The string abba is therefore a
word in the language associated with this FA. The word abba is accepted by
this FA.

It is not hard for us to predict which strings will be accepted by this FA.
If an input string is made up of only the letter a repeated some number of
times, then the action of the FA will be to jump back and forth between state
x and state y. No such word can ever be accepted. To get into state z, it is
necessary for the string to have the letter b in it. As soon as a b is encountered
in the input string, the FA jumps immediately to state z no matter what state
it was in before. Once in state z, it is impossible to leave. When the input
string runs out, the FA will still be in state z, leading to acceptance of the
string.

The FA above will accept all strings that have the letter » in them and no
other strings. Therefore, the language associated with (or accepted by) this FA
is the one defined by the regular expression

(a + by*b(a + b)*

The list of transition rules can grow very long. It is much simpler to sum-
marize them in a table format. Each row of the table is the name of one of
the states in the FA, and each column of the table is a letter of the input
alphabet. The entries inside the table are the new states that the FA moves
into—the transition states. The transition table for the FA we have described
is:

| a b

start x y z
y X z

final z z z

We have also indicated along the left side which states are start and final
states. This table has all the information necessary to define an FA.

Even though it is no more than a table of symbols, we consider an FA to
be a machine, that is, we understand that this FA has dynamic capabilities.
It moves. It processes input. Something goes from state to state as the input
is read in and executed. We may imagine that the state we are in at any given
time is lit up and the others are dark. An FA running on an input string then
looks like a pinball machine.

From the table format it is hard to see the moving parts. There is a pictorial
representation of an FA that gives us more of a feel for the motion. We begin
by representing each state by a small circle drawn on a sheet of paper. From
each state we draw arrows showing to which other states the different letters
of the input alphabet will lead us. We label these arrows with the corre-
sponding alphabet letters.
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If a certain letter makes a state go back to itself, we indicate this by an
arrow that returns to the same circle—this arrow is called a loop. We can
indicate the start state by labeling it with the word “start” or by a minus sign,
and the final states by labeling them with the word “final” or plus signs. The
machine we have already defined by the transition list and the transition table
can be depicted by the transition diagram:

Sometimes a start state is indicated by an arrow and a final state by drawing
a box or another circle around its circle. The minus and plus signs, when
employed, are drawn inside or outside the state circles. This machine can also
be depicted as:

or

Every input string can be interpreted as traversing a path beginning at the
start state and moving among the states (perhaps visiting the same state many
times) and finally settling in some particular rest state. If it is a final state,
then the path has ended in success. The letters of the input string dictate the
directions of travel. They are the map and the fuel needed for motion. When
we are out of letters we must stop.

Let us look at this machine again and at the paths generated by the input
strings aaaabba and bbaabbbb.
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bbaabbbb

b b

When we depict an FA as circles and arrows, we say that we have drawn
a directed graph. Graph Theory is an exciting subject in its own right, but
for our purposes there is no real need to understand directed graphs in any
deeper sense than as a collection of circles and arrows. We borrow from Graph
Theory the name directed edge or simply edge for the arrow between states.
An edge comes from one state and leads to another (or the same, if it is a
loop). Every state has as many outgoing edges as there are letters in the
alphabet. It is possible for a state to have no incoming edges.

There are machines for which it is not necessary to give the states specific
names. For example, the FA we have been dealing with so far can be rep-
resented simply as:
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Notice that some states are neither — nor +.

Even though we do not have names for the states, we can still determine
whether a particular input string is accepted by this machine. We start at the
minus sign and proceed along the indicated edges until we are out of input
letters. If we are then at a plus sign, we accept the word; if not, we reject
it as not being part of the language of the machine.

Let us consider some more simple examples of FA’s.

EXAMPLE

a b

In the picture above we have drawn one edge from the state on the right back
into itself and given this loop the two labels a and b, separated by a comma
meaning that this is the path traveled if either letter is read. (We save ourselves
from drawing a second loop edge.) At first glance it looks as if this machine
accepts everything. The first letter of the input takes us to the right-hand state
and, once there, we are trapped forever. When the input string runs out, there
we are in the correct final state. This description, however, omits the possibility
that the input is the null string A. If the input string is the null string, we
are left back at the left-hand state, and we never get to the final state. There
is a small problem about understanding how it is possible for A ever to be
an input string to an FA, since a string, by definition, is executed (run) by
reading its letters one at a time. By convention we shall say that A starts in
the start state and then ends right there on all FA’s.

The language accepted by this machine is the set of all strings except A.
This has the regular expression definitions

(a+ bya+b*=(a+b" [ |
EXAMPLE

One of the many FA’s that accepts all words is:
a, b

oy

Here the sign *+ means that the same state is both a start and a final state.
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Since there is only one state and no matter what happens we must stay there,
the language for this machine is:

(a + b)* |

Similarly, there are FA’s that accept no language. These are of two types:
FA’s that have no final states, such as

a b

b

and FA’s in which the circles that represent the final states cannot be reached
from the start state. This may be either because the picture is in two separate

components as with
a, b
C : a b C §

(in this case we say that the. graph is disconnected) or for a reason such as
that shown below.

O—=—C——0

We consider these examples again in Chapter 12.

EXAMPLE

Suppose we want to build a finite automaton that accepts all the words in the
language

a(a + b)*
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that is, all the strings that begin with the letter a. We start at state x and,
if the first letter read is a b, we go to a dead-end state y. (A “dead-end state”
is an informal way of describing a state that no string can leave once it has
entered.) If the first letter is an a we go to the dead-end state z, where z is
a final state. The machine looks like this:

The same language may be accepted by a four-state machine, as below:

a b

Only the word a ends in the first + state. All other words starting with an
a reach and finish in the second + state where they are accepted.
This idea can be carried further to a five-state FA as below:

a b




(c) ketabton.com: The Digital Library

FINITE AUTOMATA 73

The examples above are FA’s that have more than one final state. From
them we can see that there is not a unique machine for a given language.
We may then ask the question, “Is there always at least one FA that accepts
each possible language? More precisely, if L is some language, is there nec-
essarily a machine of this type that accepts exactly the inputs in L, while
rejecting all others?” We shall see shortly that this question is related to the
question, “Can all languages be represented by regular expressions?” We prove,
in Chapter 7, that every language that can be accepted by an FA can be
defined by a regular expression and, conversely, every language that can be
defined by a regular expression can be accepted by some FA. However, we
shall see that there are languages that are neither definable by a regular expres-
sion nor accepted by an FA. Remember, for a language to be the language
accepted by an FA means not only that all the words in the language run to
final states but also that no strings not in the language do.

Let us consider some more examples of FA’s.

EXAMPLE

Consider the FA pictured below:

Before we begin to examine what language this machine accepts, let us
trace the paths associated with some specific input strings. Let us input the
string ababa. We begin at the start state 1. The first letter is an g, so it takes
us to state 2. From there the next letter, b, takes us to state 3. The next
letter, a, then takes us back to state 2. The fourth letter is a b and that takes
us to state 3 again. The last letter is an a that returns us to state 2 where
we end. State 2 is not a final state (no +), so this word is not accepted.

Let us trace the word babbb. As always, we start in state 1. The first letter
b takes us to state 3. An a then takes us to state 2. The third letter b takes
us back to state 3. Now another b takes us to state 4. Once in state 4, we
cannot get out no matter what the rest of the string is. Once in state 4 we
must stay in state 4, and since that is the final state the string is accepted.

There are two ways to get to state 4 in this FA. One is from state 2, and
the other is from state 3. The only way to get to state 2 is by reading the
input letter a (either while in state 1 or in state 3). So when we are in state
2 we know we have just read an a. If we read another a immediately, we
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go straight to state 4. Similarly with state 3. To get to state 3 we need to
read a b. Once in state 3, if we read another b immediately, we go to state
4; otherwise, we go to state 2.

Whenever we encounter the substring aa in an input string the first @ must
take us to state 4 or state 2. Either way, the next a takes us to state 4. The
situation with bb is analogous.

In summary, the words accepted by this machine are exactly those strings
that have a double letter in them. This language, as we have seen, can also
be defined by the regular expression

(a + b)y*(aa + bb)(a + b)* ||

EXAMPLE

Let us consider the FA pictured below:

This machine will accept all words with b as the third letter and reject all
other words. The first couple of states are only waiting states eating up the
first two letters of input. Then comes the decision state. A word that has fewer
than three letters cannot qualify, and its path ends in one of the three left-
hand states, none of which is designated +.

Some regular expressions that define this set are

(aab + abb + bab + bbb)(a + b)*
and

(a + b)(a + b)(b)a + b)*
= (a + b)*b (a + b)*
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Notice that this last formula is not strictly speaking a regular expression,

since it uses the symbol “2,” which is not included in the kit. |
EXAMPLE .

Let us consider a very specialized FA, one that accepts only the word baa.

Starting at the start state, anything but the sequence baa will drop down into
the collecting bucket at the bottom, never to be seen again. Even the word
baabb will fail. It will reach the final state marked with a + but then the

next letter will suicide over the edge.
The language accepted by this FA is

L = {baa} |

EXAMPLE

The FA below accepts exactly the two strings baa and ab.
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EXAMPLE

Let us take a trickier example. Consider the FA shown below:

What is the language accepted by this machine? We start at state 1, and
if we are reading a word starting with an ¢ we go straight to the final state
3. We can stay at state 3 as long as we continue to read only a’s. Therefore,
all words of the form

aa*

are accepted by this machine. What if we began with some a’s that take us
to state 3 but then we read a b? This then transports us to state 2. To get
back to the final state, we must proceed to state 4 and then to state 3. These
trips require two more b’s to be read as input. Notice that in states 2, 3, and
4 all a’s that are read are ignored. Only b’s cause a change of state.

Recapitulating what we know: If an input string begins with an a and then
has some b’s, it must have three b’s to return us to state 3, or six b’s to
make the trip (state 2, state 4, state 3) twice, or 9 b’s or 12 b’s ... .In
other words, an input string starting with an @ and having a total number of
b’s divisible by 3 will be accepted. If it starts with an a and has a total
number of b’s not divisible by 3, then the input is rejected because its path
through the machine ends at state 2 or state 4.

What happens to an input string that begins with a 5? It finds itself in state
2 and needs two more b’s to get to state 3 (these b’s can be separated by
any number of a’s). Once in state 3, it needs no more b’s, or three more
b’s, or six more b’s, and so on.

All and all, an input string, whether beginning with an a or a b must have
a total number of b’s divisible by 3 to be accepted. It is also clear that any
string meeting this requirement will reach the final state.

The language accepted by this machine can be defined by the regular expres-
sion

a*(a*ba*ba*ba*)*(a +a*ba*ba*ba*)

The only purpose for the last factor is to guarantee that A is not a possibility
since it is not accepted by the machine. If we did not mind A being included
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in the language, we could have used this simpler FA.

a a

The regular expression
(a + ba*ba*b)*

also defines the original (non-A) language. |

EXAMPLE

The following FA accepts only the word A

Notice that the left state is both a start and a final state. All words other
than A go to the right state and stay there. [ |

EXAMPLE
Consider the following FA:

b a a

b

No matter which state we are in, when we read an a we go to the right-
hand state and when are read a b we go to the left-hand state. Any input
string that ends in the + state must end in the letter a, and any string ending
in @ must end in +. Therefore, the language accepted by this machine is

(a + b)*a n
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EXAMPLE

The language in the example above does not include A. If we add A we get
the language of all words that do not end in b. This is accepted by the FA
below.

EXAMPLE

Consider the following FA:

The only letter that causes motion between the states is a, b’s leave the

machine in the same state. We start at —. If we read a first a, we go to
+. A second a takes us back. A third a takes us to + again. We end at
+ after the first, third, fifth, seventh, . . . a. The language accepted by this
machine is all words with an odd number of a’s.
b*a(b*ab*ab*)* [ |
EXAMPLE
Consider the following FA:
b a, b
a
b

This machine will accept the language of all words with a double a in
them somewhere. We stay in the start state until we read our first a. This
moves us to the middle state. If the very next letter is another a, we move
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to the + state where we must stay and be accepted. If the next letter is a
b, however, we go back to — to wait for the next a. An a followed by a
b will take us from — to middle to —, while an a followed by an a will

take us from — to middle to +. :
The language accepted by this machine can also be defined by the regular

expression

(a + b)*aa(a + b)* | |

EXAMPLE

The following FA accepts all words that have different first and last letters.
If the word begins with an a, to be accepted it must end with a b and vice
versa.

If we start with an a, we take the high road and jump back and forth
between the two top states ending on the right (at +) only if the last letter
read is a b. If the first letter read is a b, we get to the + on the bottom

only when we read a as the last letter.
This can be better understood by examining the path through the FA of

the input string aabbaabb, as shown below:
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EXAMPLE

As the last example of an FA in this chapter, let us consider the picture below:

To process a string of letters, we start at state 1, which is in the upper left
of the picture. Every time we encounter a letter a in the input string we take
an a train. There are four edges labeled a. All the edges marked a go either
from one of the upper two states (state 1 and state 2) to one of the lower
two states (state 3 and state 4) or else from one of the lower two states to
one of the upper two states. If we are north and we read an a, we go south.
If we are south and we read an a, we go north. The letter a reverses our
up/down status.

What happens to a word that gets accepted and ends up back in state 1?7
Without knowing anything else about the string, we can say that it must have
had an even number of a’s in it. Every a that took us south was balanced
by some a that took us back north. We crossed the Mason-Dixon line an even
number of times, one for each a. So every word in the language of this FA
has an even number of a’s in it. Also, we can say that every input string
with an even number of @’s will finish its path in the north (state 1 or state
2).

There is more that we can say about the words that are accepted by this
machine. There are four edges labeled b. Every edge labeled b either takes
us from one of the two states on the left of the picture (state 1 and state 3)
to one of the two states on the right (state 2 and state 4) or else it takes us
from one of the two states on the right to one of the two states on the left.
Every b we encounter in the input is an east/west reverser. If the word starts
out in state 1, which is on the left, and ends up back in state 1 (on the left),
it must have crossed the Mississippi an even number of times. Therefore, all
the words in the language accepted by this FA have an even number of b’s
as well as an even number of a’s. We can also say that every input string
with an even number of b’s will leave us in the west (state 1 or state 3).

These are the only two conditions on the language. All words with an even
number of a’s and an even number of »’s must return to state 1. All words
that return to state 1 are in EVEN-EVEN. All words that end in state 2 have
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crossed the Mason-Dixon line an even number of times but have crossed the
Mississippi an odd number of times; therefore they have an even number of
a’s and an odd number of b’s. All the words that end in state 3 have an
even number of b’s but an odd number of a’s. All words that end in state
4 have an odd number of a’s and an odd number of b’s. So again we see
that all the EVEN-EVEN words must end in state 1 and be accepted.

One regular expression for the language EVEN-EVEN was discussed in
detail in the previous chapter.

Notice how much ‘easier it is to understand the FA than the regular expres-
sion. Both methods of defining languages have advantages, depending on the
desired application. But we are still a little way from considering
applications. [ |

PROBLEMS

1. Write out the transition table for the FA’s on pages 68, 70 (both), 73,
74 and 80 that were defined by pictures. If the states in the pictures
were not labeled, assign them names so that we can build the table.

2. Build an FA that accepts only the language of all words with b as the
second letter. Show both the picture and the transition table for this
machine and find a regular expression for the language.

3. Build an FA that accepts only the words baa, ab, and abb and no other
strings longer or shorter.

4. (i) Build a new FA that accepts only the word A.

(i) Build an FA with three states that accept all words.

5. Build an FA that accepts >on1y those words that have an even number
of letters total.

6. Build an FA that accepts only those words that do not end with ba.

7. Build an FA that accepts only those words that begin or end with a
double letter.

8. (i) Build an FA that accepts only those words that have more than four

letters.
(ii) Build an FA that accepts only those words that have fewer than fou
letters. .
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10.

11.

12.

13.

14.

15.

16.

AUTOMATA THEORY

Problems 2 through 12 of Chapter 4 include 14 languages that could be
represented by regular expressions. For each of these find an FA that
accepts exactly it.

So far we have been dealing with Fa’s over the alphabet. {a, b}.

Let us consider for the moment the alphabet % = {a, b, c}.

@) If we had an FA over this alphabet with five states, how many entries
would there be in the transition table?

(ii)  In the picture of this five-state machine, how many edges would need
to be drawn in total (counting an edge with two labels double and an
edge with three labels triple)?

(iii) Build an FA that accepts all the words in this alphabet that have an
a in them somewhere that is followed later in the word by some &
that is followed later in the word by some ¢ (the three being not
necessarily in a row but in that order, as in abaac).

(iv) Write a regular expression for the language accepted by this machine.

Recall from Chapter 4 the language of all words over the alphabet {q,
b} that have both the letter @ and the letter b in them, but not necessarily
in that order. Build an FA that accepts this language.

Build an FA that accepts the language of all words with only a’s or
only b’s in them. Give a regular expression for this language.

Draw pictures for all the FA’s over the alphabet {a, b} that have exactly
two states. Be careful to put the +’s in in all possible ways. (Hint:
There are 48 different machines.)

(i) Write out the transition tables for all the FA’s in Problem 13.

(i)  Write out regular expressions to represent all the languages defined
by the machines in Problem 13.

Let us call two FA’s different if their pictures are not the same but
equivalent if they accept the language. How many different languages
are represented by the 48 machines of Problem 13.

Show that there are exactly
3%8) = 5832

different finite automata with three states x, y, z over the alphabet {a,b}
where x is always the start state.
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17. Find two FA’s that satisfy these conditions: Between them they accept
all words in (a + b)*, but there is no word accepted by both machines.

18. Describe the languages accepted by the following FA’s.

®

(ii)

(iv)  Write regular expressions for the languages accepted by these three
machines.
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19. The following is an FA over the alphabet 3, = {a, b, c}. Prove that it
accepts all strings that have an odd number of occurrences of the sub-
string abc.

20.

ab ababababababab
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(i)
(iii)

(iv)

)
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Show that any input string with more than three letters is not accepted
by this FA.

Show that the only words accepted are a, aab, and bab.

Show that by changing the + signs alone we can make this FA accept
the language {bb, aba, bba}

Show that any language in which the words have fewer than four
letters can be accepted by a machine that looks like this one with the
+ signs in different places.

Prove that if L is a finite language, then there is some FA that accepts
L.
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CHAPTER 6

TRANSITION
GRAPHS

We saw in the last chapter that we could build an FA that accepts only the
word baa. The example we gave required five states primarily because an FA
can read only one letter from the input string at a time. Suppose we designed
a more powerful machine that could read either one or two letters of the input
string at a time and could change its state based on this information. We might
design a machine like the one below:

Since when we say “build a machine” all we have to do is scribble on
paper—we do not have to solder, weld and screw—we could easily change
the rules of what constitutes a machine and allow such pictures as the one
above. The objects we deal with in this book are mathematical models, which

86
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we shall discover are abstractions and simplifications of how certain actual
machines do work. This new rule for making models will also turn out to be
practical. It will make it easier for us to design machines that accept certain
different languages. The machine above can read from the input string either
one letter or two letters at a time, depending on which state it is in. Notice
that in this machine an edge may have several labels separated by commas
just as in FA’s, indicating that the edge can be traveled on if the input letters
are any of the indicated combinations.

If we are interested in a machine that accepts only the word baa, why stop
at assuming that the machine can read just two letters at a time? A machine
that accepts this word and that can read up to three letters at a time from
the input string could be built with even fewer states.

oreven

all else

If we hypothesize that a machine can read one or two letters at a time,
then one can be built using only two states that can recognize all words that
contain a doubled letter.

aa, bb

If we are going to bend the rules to allow for a machine like the last one,
we must realize that we have changed something more fundamental than just
the way the edges are labeled or the number of letters read at a time. This
last machine makes us exercise some choice in its running. We must decide
how many letters to read from the input string each time we go back for
more. This decision is quite important.

Let us say, for example, that the input string is baa. It is easy to see how
this string can be accepted by this machine. We first read in the letter b,
which leaves us back at the start state by taking the loop on the left. Then
we decide to read in both letters aa at once, which allows us to take the
highway to the final state where we end. However, if after reading in the
single character b we then decided to read in the single character a, we would
loop back and be stuck at the start state again. When the third letter is read
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in, we would still be at the starting post. We could not then accept this string.
There are two different paths that the input baa can take through the machine.
This is totally different from the situation we had before, especially since one
path leads to acceptance and one to rejection.

Another bad thing that might have happened is that we could have started
processing the string baa by reading the first two letters at once. Since ba is
not a double, we could not move to the final state. In fact, when we read
in ba, no edge tells us where to go, since ba is not the label of any edge
leaving the start state. The processing of this string breaks down at this point.

When there is no edge leaving a state corresponding to the group of input
letters that have been read while in that state, we say that the input crashes.
It also means that the input string is not accepted, but for a different reason
than simply ending its path peacefully in a state that is not a final state.

The result of these considerations is that if we are going to change the
definition of our abstract machine to allow for more than one letter to be read
in at a time, we must also change the definition of acceptance. We have to
say that a string is accepted by a machine if there is some way it could be
processed so as to arrive at a final state. There may also be ways in which
this string does not get to a final state, but we ignore all failures.

We are about to create machines in which any edge in the picture can be
labeled by any string of alphabet letters, but first we must consider the con-
sequences. We could now encounter the following additional problem:

(D

On this machine we can accept the word baab in two different ways. First,
we could take ba from the start state to state 1 and then ab would take us
to the final state. Or else we could read in the three letters baa and go to
state 2 from which the final letter, b, would take us to the final state.
Previously, when we were dealing only with FA’s, we had a unique path
through the machine for every input string. Now some strings have no paths
at all while some have several. What is this machine going to do with the
input string aaa? There is no way to process this string (reading any grouping
of letters at a time) that will allow us to get to the final state. Therefore, this
string cannot be accepted by this machine. We use the word “rejected” to
describe what must happen to this string. This rejection is different from the
situation for the string baa, which, though it doesn’t reach the final state, can
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at least be fully processed to arrive at some state. However, we are not yet
interested in the different reasons for failure and we use the word “rejection”
for both cases.

We now have observed many of the difficulties inherent in expanding our
definition of “machine” to allow word-labeled edges (or, equivalently, to read-
ing more than one letter of input at a time). We shall leave the definition of
finite automation alone and call these new machines transition graphs because
they are more easily understood as graphs than as tables.

DEFINITION
A transition graph, abbreviated TG, is a collection of three things:

1. A finite set of states at least one of which is designated as the start state
(—) and some (maybe none) of which are designated as final states (+).

2. An alphabet 3, of possible input letters from which input strings are formed.

3. A finite set of transitions that show how to go from one state to another
based on reading specified substrings of input letters (possibly even the
null string A ). [

When we give a pictorial representation of a transition graph, clause 3 in
the definition means that every edge is labeled by some string of letters not
necessarily to only one letter. We are also not requiring that there be any
specific number of edges emanating from every state. Some states may have
no edge coming out of them at all, and some may have thousands (for example,
edges labeled a, aa, aaa, aaaa, . . .).

Transition graphs were invented by John Myhill in 1957 to simplify the
proof- of Theorem 6 which we shall meet in the next chapter.

A successful path through a transition graph is a series of edges forming
a path beginning at some start state (there may be several) and ending at a
final state. If we concatenate in order the strings of letters that label each edge
in the path, we produce a word that is accepted by this machine.

For example, consider the following TG:

4+

The path from state 1 to state 2 to state 3 back to state 1 then to state 4
corresponds to the string (abb)(A)(aa)(b). This is one way of factoring the
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word abbaab, which, we now see, is accepted by this machine. Some other
words accepted are abba, abbaaabba, and b.

When an edge is labeled with the string A, it means that we can take the
ride it offers free (without consuming any letters from the input string). Re-
member that we do not have to follow that edge, but we can if we want to.

If we are presented with a particular string of @’s and b’s to run on a given
TG, we must decide how to break the word into substrings that might cor-
respond to the labels of edges in a path. If we consider the input string abbab
for the machine above, we see that from state 1, where we must start, we
can proceed along the outgoing edge labeled abb or the one labeled b. This
word then moves along the edge from state 1 to state 2. The input letters
abb are read and consumed. What is left of the input string is ab, and we
are now in state 2. From state 2 we must move to state 3 along the A-edge.
At state 3 we cannot read aa, so we must read only a and go to state 4.
Here we have a b left in the input string but no edge to follow, so we must
crash and reject the input string abbab.

Because we have allowed some edges to be traversed for free, we have
also allowed for the possibility of more than one start state. The reason we
say that these two points are related is that we could always introduce more
start states if we wanted to, simply by connecting them to the original start
state by edges labeled A. This point is illustrated by the following example.
There is no difference between the TG

and the TG
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in the sense that all the strings accepted by the first are accepted by the second

and vice versa. There are differences between the two machines such as the

number of total states they have, but as language acceptors they are equivalent.
It is extremely important for us to understand that every FA is also a TG.

This means that any picture that represents an FA can be interpreted as a

picture of a TG. Of course, not every TG satisfies the definition of an FA.
Let us consider some more examples of TG’s.

©

The picture above represents a TG that accepts nothing, not even the null
string A. To be able to accept anything, it must have a final state.

©

accepts only the string A. Any other string cannot have a successful path to
the final state through labels of edges since there are no edges (and hence no
labels).

Any TG in which some start state is alse a final state will always accept
the string A; this is also true of FA’s. There are some other TG’s that accept

the word A, for example:

The machine

(D
baa

This machine accepts only the words A, baa, and abba. Anything read while
in the + state will cause a crash, since the + state has no outgoing edges.

EXAMPLE

Consider the following TG:
a, b

SSINNG

We can read all the input letters one at a time and stay in the left-side
state. When we read a b in the — state there are two possible edges we can
follow. If the very last letter is a b, we can use it to go to the + state. It
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must be the very last letter, since once in the right-side state if we try to
read another letter we crash.

Notice that it is also possible to start with a word that does end with a
b but to follow an unsuccessful path that does not lead to acceptance. We
could either make the mistake of following the non-loop b-edge too soon (on
a non-final ) in which case we crash on the next letter; or else we might
make the mistake of looping back to — when we read the last b, in which
case we reject without crashing. But still, all words that end in b can be
accepted by some path, and that is all that is required.

The language accepted by this TG is all words ending in . One regular
expression for this language is (a + b)*b and an FA that accepts the same
language is:

EXAMPLE

The following TG:

accepts the language of all words that begin and end with different letters.

EXAMPLE

The following TG:
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aa b

b b O b @

aa

accepts the language of all words in which the a’s occur only in even clumps
and that end in three or more b’s. n

EXAMPLE

Consider the following TG:

aa, bb ab, ba aa, bb

ab, ba

In this TG every edge is labeled with a pair of letters. This means that for
the string to be accepted it must have an even number of letters that are read
in and processed in groups of two’s. Let us call the left state the balanced
state and the right state the unbalanced state. If the first pair of letters that
we read from the input string is a double (aa or bb), then the machine stays
in the balanced state. In the balanced state the machine has read an even
number of a’s and an even number of b’s. However, when a pair of unmatched
letters is read (either ab or ba), the machine flips over to the unbalanced state
which signifies that it has read an odd number of a’s and an odd number of
b’s. We do not return to the balanced state until another “corresponding” un-
matched pair is read (not necessarily the same unmatched pair, any unequal
pair). The discovery of two unequal pairs makes the total number of a’s and
the total number of b’s read from the input string even again. This TG is an
example of a machine that accepts exactly the old and very familiar language
EVEN-EVEN of all words with an even number of a’s and an even number
of b’s.

Of the three examples of definitions or descriptions of this language we
have had (the regular expression, the FA, and the TG); this last is the most
understandable. ]

There is a practical problem with TG’s. There are occasionally so many
possible ways of grouping the letters of the input string that we must examine
many possibilities before we know whether a given string is accepted or re-
jected.
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EXAMPLE

Consider this TG:

bbb

Is the word abbbabbbabba accepted by this machine? (Yes, in two ways.)
]

When we allow A-edges we may have an infinite number of ways of group-
ing the letters of an input string. For example, the input string ab may be
factored as:

(@) (b)

(@) (A) (b)

(@) (A) (A) (b)

(@) (A (A) (A) (b)

Instead of presenting a definite algorithm right now for determining whether
a particular string is accepted by a particular TG, we shall wait until Chapter
12 when the task will be easier. There are, of course, difficult algorithms for
performing this task that are within our abilities at this moment. One such is
outlined in Problem 20 below.
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PROBLEMS

1.

For the four FA’s pictured in Problems 5-18, 5-19 and 5-20 determine
whether a TG could be built that can accept the same language but
requires fewer states.

The notion of transition table can be extended to TG’s. The rows of the table
would be the states of the machine and the columns of the table would be all
those strings of alphabet characters that are ever used as the label for any edge
in the TG. However, the mere fact that a certain string is the label for an edge
coming from state 1 does not mean that it is also the label of an edge coming
out of state 2. Therefore, in the transition table some entries are likely to be blank
(that is, no new state is reached from the prior state given this input sequence).
The TG

discussed in this section has the following transition table:

b ab ba baa

+

+ o |—
+

Calculate the transition table for the TG’s defined by pictures on pages
86, 87, 89 (bottom), 90, 91 (third), 93 (second), and 94.

One advantage of defining a TG by such a table is that in complicated
cases it may be easier to read the table than a cluttered picture having
many edges with long string labels. (Remember that in cases where not
all the states have names it is necessary to give them names to build
the table.)

Draw a four-state TG that accepts all the input strings from {a, b}* that
are not in EVEN-EVEN. Is there a two-state TG that accepts this lan-
guage?
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4. Here are six TG’s. For each of the next 10 words decide which of these
machines accepts the given word.

TG,

TG,
b b
TG;
ab, ba aa. bb ab, ba
aa, bb
i A (vi) aba
(i) a (vii) abba
(i) b (viii) bab
M (iv) aa (ix) baab

(v) ab (x) abbb
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Find regular expressions defining the language accepted by each of the
six TG’s above.

Show that any language that can be accepted by a TG can be accepted
by a TG with an even number of states.

How many different TG’s are there over the alphabet {a, b} that have
two states?

Show that for every finite language L there is a TG that accei)ts exactly
the words in L and no others. Contrast this with Theorem S.

Prove that for every TG there is another TG that accepts the same lan-
guage but has only one + state.

Build a TG that accepts the language L, of all words that begin and
end with the same doubled letter, either of the form aa ... aa or
bb . . . bb. Note: aaa and bbb are not words in this language.

Build a TG that accepts the language of all strings that end in a word
from L, of Problem 10 above.

If OURSPONSOR is a language that is accepted by a TG called Henry,
prove that there is a TG that accepts the language of all strings of a’s
and b’s that end in a word from OURSPONSOR.

Given a TG for some arbitrary language L, what language would it accept
if every + state were to be connected back to every — state by A-
edges? For example, by this method:

Hint: Why is the answer not always L*?

Let the language L be accepted by the finite automaton F and let L not
contain the word A. Show how to build a new finite automaton that
accepts exactly all the words in L and the word A.
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15.

16.

17.

18.

20.

AUTOMATA THEORY

Let the language L be accepted by the transition graph T and let L not
contain the word A. Show how to build a new TG that accepts exactly
all the words in L and the word A.

Let the language L be accepted by the transition graph T and let L not

contain the word ba. We want to build a new TG that accepts exactly

L and the word ba.

(i)  One suggestion is to draw an edge from — to + and label it ba.
Show that this does not always work.

(ii)  Another suggestion is to draw a new + state and draw an edge from
a — state to it labeled ba. Show that this does not always work.

(iii)) What does work?

Let L be any language. Let us define the transpose of L to be the
language of exactly those words that are the words in L spelled backward.
For example, if

L ={a abb bbaab bbbaa}
then

transpose (L) = {a bba baabb aabbb}

(i) Prove that if there is a FA that accepts L, then there is a TG that
accepts the transpose of L.

(i)  Prove that if there is a TG that accepts L, then there is a TG that
accepts the transpose of L.
Note: 1t is true, but much harder to prove that if an FA accepts L then
some FA accepts the transpose of L. However, after Chapter 7 this
will be trivial to prove.

Transition graph T accepts language L. Show that if L has a word of
odd length, then T has an edge with a label with an odd number of
letters.

A student walks into a classroom and sees on the blackboard a diagram
of a TG with two states that accepts only the word A. The student
reverses the direction of exactly one.edge leaving all other edges and
all labels and all +’s and —’s the same. But now the new TG accepts
the language a*. What was the original machine?

Let us now consider an algorithm for determining whether a specific TG

that has no A-edges accepts a given word.

Step 1 Number each edge in the TG in any order with the integers
1, 2, 3...x where x is the number of edges in the TG.
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Step 2 Observe that if the word has y letters and is accepted at all
by this machine, it can be accepted by tracing a path of not
more than y edges.

Step 3 List all strings of y or fewer integers each of which = «x.
This is a finite list.

Step 4 Check each string on the list in Step 3 by concatenating the
labels of the edges involved to see if they make a path from
a — to a + corresponding to the given word.

Step 5 If there is a string in Step 4 that works, the word is accepted.
If none work, the word is not in the language of the machine.

(i) Prove this algorithm does the job.

(i1) Why is it necessary to assume that the TG has no A-edges?
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CHAPTER 7

KLEENE’S
THEOREM

In the last three chapters we introduced three separate ways of defining a
language: by regular expression, by finite automaton, and by transition graph.
(Remember that the language defined by a machine is the set of all words it
accepts.) In this chapter we will present a theorem proved by Kleene in 1956,
which (in our version) says that if a language can be. defined by any one of
these three ways, then it can also be defined by the other two. One way of
stating this is to say that all three of these methods of defining languages are
equivalent.

THEOREM 6
Any language that can be defined by

1. regular expression
or 2. finite automaton
or 3. transition graph

can be defined by all three methods.

This theorem is the most important and fundamental result in the Theory
of Finite Automata. We are going to take extreme care with its proof. In the

100
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process we shall introduce four algorithms that have the practical value of
enabling us actually to construct the corresponding machines and expressions.
More than that, the importance of this chapter lies in its value as an illustration
of thorough theoretical thinking in this field.

The logic of this proof is a bit involved. If we were trying to prove the
mathematical theorem that the set of all ZAPS (whatever they are) is the same
as the set of all ZEPS, we could break the proof into two parts. In Part 1,
we would show that all ZAPS are also ZEPS. In Part 2 we would show that
all ZEPS are also ZAPS. Together, this would demonstrate the equivalence
of the two sets.

Here we have a more ambitious theorem. We wish to show that the set
of ZAPS, the set of ZEPS, and the set of ZIPS are all the same. To do this,
we need three parts. In Part 1 we shall show that all ZAPS are ZEPS. In
Part 2 we shall show that all ZEPS are ZIPS. Finally, in Part 3 we shall
show that all ZIPS are ZAPS. Taken together, these three parts will establish
the equivalence of the three sets.

(ZAPS C ZEPS C ZIPS C ZAPS) = (ZAPS = ZEPS = ZIPS)
PROOF
The three sections of our proof will be:

Part 1 Every language that can be defined by a finite automaton can also be
defined by a transition graph.

Part 2 Every language that can be defined by a transition graph can also be
defined by a regular expression.

Part 3 Every language that can be defined by a regular expression can also be
defined by a finite automaton.

When we have proven these three parts, we have finished our theorem.
The Proof of Part 1

This is the easiest part. Every finite automaton is itself a transition graph.
Therefore, any language that has been defined by a finite automaton has already
been defined by a transition graph. Done.

The Proof of Part 2

The proof of this part will be by constructive algorithm. This means that we
present a procedure that starts out with a transition graph and ends up with
a regular expression that defines the same language. To be acceptable as a
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method of proof, any algorithm must satisfy two criteria. It must work for
every conceivable TG, and it must guarantee to finish its job in a finite time
(a finite number of steps). For the purposes of theorem-proving alone, it does
not have to be a good algorithm (quick, least storage used, etc.). It just has
to work in every case.

Let us start by considering an abstract transition graph 7. 7 may have many
start states. We first want to simplify 7 so that it has only one start state.
We do this by introducing a new state that we label with a minus sign and
that we connect to all the previous start states by edges labeled with the string
A. Then we drop the minus signs from the previous start states. Now all
words must begin at the new unique start state. From there, they can proceed
free of charge to any of the old start states. If the word w used to be accepted
by starting at previous start state 3 and proceeding through the machine to a
final state, it can now be accepted by starting at the new unique start state
and progressing to the old start state 3 along the edge labeled A. This trip
does not use up any of the input letters. The word then picks up its old path
and becomes accepted. This process is illustrated below on a TG that has three
start states: 1, 3, and 5.

becomes

The ellipses in the pictures above indicate other, but irrelevant, sections of
the TG.

Another simplification we can make in T is that it can be modified to have
a unique final state without changing the language it accepts. (If 7 had no
final states to begin with, then it accepts no strings at all and has no language
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and we need produce no regular expression.) If T has several final states, let
us introduce a new unique final state labeled with a plus sign. We draw new
edges from all the old final states to the new one, drop the old plus signs,
and label each new edge with the null string A. We have a free ride from
each old final state to the new unique final state. This process is depicted

below.
b
eee aa
b
aba
becomes

We shall require that the unique final state be a different state from the
unique start state.

It should be clear that the addition of these two new states does not affect
the language that T accepts. Any word accepted by the old T is also accepted
by the new T, and any word rejected by the old T is aiso rejected by the
new T.

We are now going to build the regular expression that defines the same
language as T piece by piece. To do so we extend our notion of transition
graph. We previously allowed the edges to be labeled only with strings of
alphabet letters. For the purposes of this algorithm, we allow the edges to be
labeled with regular expressions. This will mean that we can travel along an
edge if we read from the input string any substring that is a word in the
language defined by the regular expression labeling that edge. For example,
if an edge is labeled (a + baa) as below,
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we can cross from state 3 to state 7 by reading from the input string either
‘the letter a alone or else the sequence baa. The ellipses on each side of the
picture in this example indicate that there is more transition graph on each
side of the edge, but we are focusing close up on this edge alone.

Labeling an edge with the regular expression (ab)* means that we can cross
the edge by reading any of the input sequences

A, ab, abab, ababab . . .

Let us suppose that T has some state (called state x) inside it (not the —

or + state) that has more than one loop circling back to itself,

n

3 r
where ry, 1y, and r; are all regular expressions or simple strings. In this case,
we can replace the three loops by one loop labeled with a regular expression.

ntrntr

e

The meaning here is that from state x we can read any string from the input
that fits the regular expression r; + r, + r; and return to the same state.
Similarly, suppose two states are connected by more than one edge going

in the same direction:
"
e @ e
)

where the labels r, and r, are each regular expressions or simple strings. We
can replace this with a single edge that is labeled with a regular expression.

< ) rn+r, [ :
L XX} LN ]

We can now define the bypass operation. In some cases, if we have three
states in a row connected by edges labeled with regular expressions (or simple
strings), we can eliminate the middleman and go directly from one outer state
to the other by a new edge labeled with a regular expression that is the
concatenation of the two previous labels.
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For example, if we have:

we can replace this with:

nrs
LEX ] L X R

We say “replace,” because we no longer need to keep the old edges from
state 1 to state 2 and state 2 to state 3 unless they are used in paths other
than the ones from state 1 to state 3. The elimination of edges is our goal.

We can do this trick only as long as state 2 does not have a loop going
back to itself. If state 2 does have a loop, we must use this model:

becomes

rrr
L XX} LA X ]

We have had to introduce the * because once we are at state 2 we can
loop the loop edge as many times as we want, or no times at all, before
proceeding to state 3. Any string that fits the description rir;*r; corresponds
to a path from state 1 to state 3 in either picture. The Kleene star and the
option of looping indefinitely correspond perfectly.

If state 1 is connected to state 2 and state 2 is connected to more than
one other state (say to states 3, 4, and 5), then when we eliminate the edge
from state 1 to state 2 we have to add edges that show how to go from state
I to states 3, 4, and 5. We do this as in the pictures below.

r r
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becomes

We see that in this way we can eliminate the edge from state 1 to state
2, bypassing state 2 altogether.

In fact, every state that leads into state 2 can be made to bypass state 2.
If state 9 leads into state 2, we can eliminate the edge from state 9 to state
2 by adding edges from state 9 to states 3, 4, and 5 directly. We can repeat
this process until nothing leads into state 2. When this happens, we can elim-
inate state 2 entirely, since it then cannot be in a path that accepts a word.
We drop it, and the edges leading from it, from the picture for T.

What have we done to transition graph 7?7 Without changing the set of
words that it accepts, we have eliminated one of its states.

We can repeat this process again and again until we have eliminated all
the states from T except for the unique start state and the unique final state.
(We shall illustrate this presently.)

What we come down to is a picture that looks like this:

L O

T35

with each edge labeled by a regular expression. We can then combine this

once more to produce:
:: rtr,+ eee +ry :

The resultant regular expression, is then the regular expression that defines
the same language T did originally.
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For example, if we have:

we can bypass state 2 by including a path from state 1 to state 4 labeled
aba*ba, a path from state 1 to state 5 labeled aba*b, a path from state 3
to state 4 labeled bbba*ba, and a path from state 3 to state 5 labeled bbba*b.
We can then erase the edges from state 1 to state 2 and from state 3 to state
2. Without these edges, state 2 becomes unreachable. The edges from state
2 to states 4 and 5 are then useless because they cannot be part of any path
from — to +. Dropping this state and these edges will not affect whether
any word is accepted by this TG.
The machine that results from this operation is:

bbba*ba

Before we claim to have finished describing this algorithm, there are some
special cases that we must examine more carefully. In this picture

we might want to eliminate the edge from state 1 to state 2. Since state 2
goes nowhere except into state 1, we might think that we can rewrite this
part of T as:
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rrery r

but this is wrong. In the original picture, we could go from state 3 to state
1, while in the modified picture that is impossible. Therefore, we must in-
troduce an edge from state 3 to state 1 and label it as below.

nr*r r

Whenever we remove an edge or a state we must be sure that we have
not destroyed any paths through T that may previously have existed. Destroying
paths could change the language of words accepted, which we do not want
to do. Since there are only finitely many paths in the whole TG (not counting
looping and repeating circuits), we can check this possibility in a finite number
of steps.

This example is symptomatic of the only problem that arises with this al-
gorithm, so we now have a well-described method of producing regular expres-
sions equivalent to given transition graphs. All words accepted by T are paths
through the picture of T. If we change the picture but preserve all paths and
their labels, we must keep the language unchanged.

This algorithm terminates in a finite number of steps, since T has only
finitely many states to begin with, and one state is eliminated with each it-
eration. The other important observation is that the method works on all tran-
sition graphs. Therefore, this algorithm provides a satisfactory proof that there
is a regular expression for each transition graph.

Before proceeding to the proof of Part 3, let us illustrate the algorithm
above on a particular example.

The TG we shall consider is the one below, which accepts all words that
begin and end with double letters (having at least four different letters). This
is by no means the only TG that accepts this language.

aa
aa, bb

bb
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As it stands, this machine has only one start state, but it has two final states,
so we must introduce a new unique final state following the method prescribed

by the algorithm.

The next modification we perform is to note that the edge from the start
state to state 1 is a double edge—we can travel over it by an aa or a bb.
We replace this by the regular expression aa + bb. We also note that there
is a double loop at state 1. We can loop back to state 1 on a single a or
on a single b. The algorithm says we are supposed to replace this double loop
by a single loop labeled with the regular expression a + b. The picture of
the machine has now become:

Let us choose for our next modification the path from state 1 to state 2
to state +. The algorithm does not actually tell us which section of the TG
we must attack next. The order is left up to our own discretion. The algorithm
tells us that it really does not matter. As long as we continue to eliminate
edges and states, we shall be simplifying the machine down to a single regular
expression representation.

The path we are considering now is:

@ as @ A @
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The algorithm says we can replace this with one edge from state 1 to state
+ that bears the label that is the concatenation of the regular expressions on
the two parts of the path. In this case, aa is concatenated with A, which is
only aa again. Once we have eliminated the edge from state 1 we can eliminate
state 2 entirely. The machine now looks like this.

It seems reasonable now for us to do the same thing with the path that
goes from state 1 to state 3 to state +. But the algorithm does not require
us to be reasonable, and since this is an illustrative example and we have
already seen something like this path, we shall choose a different section of
T to modify.

Let us try to bypass state 1. Only one edge comes into state 1 and that
is from state —. There is a loop at state 1 with the label (a + b). State 1
has edges coming out of it that lead to state 3 and state +.

The algorithm explains that we can eliminate state 1 and replace these edges
with an edge from state — to state 3 labeled (aa + bb)(a + b)*(bb) and an
edge from state — to state + labeled (aa + bb)(a + b)*(aa). The starred
expression in the middle represents the fact that while we are at state 1 we
can loop around as long as we want—ten times, two times or even no times.
It is no accident that the definition of the closure operator * exactly corresponds
to-the situation of looping, since Kleene invented it for this very purpose.

After eliminating state 1, the machine looks like this:

(aa + bb)(a + b)*aa

(aa + bb)(a + b)*bb

It is obvious that we must now eliminate state 3, since that is the only
bypassable state left. When we concatenate the regular expression from state
— to state 3 with the regular expression from state 3 to state +, we are left
with the machine:
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(aa + bb)(a + b)*aa

(aa + bb)(a + b)*bb

Now by the last rule of the algorithm, this machine defines the same lan-
guage as the regular expression

(aa + bb)(a + b)*(aa) + (aa + bb)(a + b)*(bb)

If we had to make up a regular expression for the language of all strings
that begin and end with double letters, we would probably write:

(aa + bb)(a + b)*(aa + bb)

which is equivalent to the regular expression that the algorithm produced be-
cause the algebraic distributive law applies to regular expressions.

Without going through lengthy descriptions, let us watch the algorithm work
on one more example. Let us start with the TG that accepts strings with an
even number of @’s and an even number of b’s, the language EVEN-EVEN.
(We keep harping on these strings not because they are so terribly important,
but because it is the hardest example we thoroughly understand, and rather
than introduce new hard examples we keep it as an old conquest.)

aa, bb ab. ba aa, bb

ab, ba

becomes first
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When we eliminate state 2, the path from 1 to 2 to 1 becomes a loop at
state 1:

aa+ bb

O——Cg——0

(ab + ba)(aa + bb)*(ab + ba)

which becomes:

(aa +bb) + (ab + ba)(aa + bb)*(ab + ba)

OO
which becomes:

Q {(aa + bb) + (ab + ba)(aa + bb)*(ab + ba)]* @

which reduces to the regular expression:

[(aa + bb) + (ab + ba)(aa + bb)*(ab + ba)l*

which is exactly the regular expression we used to define this language before.
Anyone who was wondering how we could have thought up that complicated
regular expression we presented in Chapter 4 can see now that it came from
the obvious TG for this language by way of our algorithm.

We still have one part of Kleene's theorem yet to prove. We must show
that for each regular expression we can build a finite automaton that accepts
the same language.

The Proof of Part 3 -

The proof of this part will be by recursive definition and constructive algorithm
at the same time. This is the hardest part of our whole theorem, so we shall
go very slowly.

We know that every regular expression can be built up from the letters of
the alphabet and A by repeated application of certain rules: addition, conca-
tenation, and closure. We shall see that as we are building up a regular expres-
sion, we could at the same time be building up an FA that accepts the same
language. :

We present our algorithm recursively.
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Rule 1 There is an FA that accepts any particular letter of the alphabet. There
is an FA that accepts only the word A.

For example: If x is in 2, then the FA

allx

all 3 except x /_\ x
_/

all %

accepts only the word x.
One FA that accepts only A is

( ) a,b ( ; a,b

Rule 2 If there is an FA called FA, that accepts the language defined by the
regular expression r; and there is an FA called FA, that accepts the
language defined by the regular expressions r;, then there is an FA called
FAj; that accepts the language defined by the regular expression (r; + ry).

We are going to prove this by showing how to construct the new machine
in the most reasonable way.

Before we state the general principles, let us demonstrate them in a specific
example. Suppose we have the machine FA;, which accepts the language of

all words over the alphabet
2 = {a, b}

that have a double a somewhere in them,

| a b
- X X2 X1
X2 X3 X1

b + x3 X3 X3
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and the familiar machine FA,, which accepts all words that have both an even
number of total a’s and an even number of total b’s (this is the language
EVEN-EVEN).

b

o@iBo T

b

a b

= n y3 2
Y2 Ya Vi
y3 Y1 Ya

We shall show how to design a machine that accepts both sets. That is, we
will build a machine that accepts all words that either have an aa or are in
EVEN-EVEN and rejects all strings with neither characteristic.

The language the new machine accepts will be the union of these two
languages. We shall call the states in this new machine z;, z,, z3, and so on,
for as many as we need. We shall define this machine by its transition table.

Our guiding principle is this: The new machine will simultaneously keep
track of where the input would be if it were running on FA; and where the
input would be if it were running on FA;.

First of all, we need a start state. This state must combine x;, the start
state for FA;, and y,, the start state for FA,. We call it z,. If the string were
running on FA,, it would start in x;, on FA, in y,.

What new states can occur if the input letter a is read in? If the string
were being run on the first machine, it would put the machine into state x,.
If the string were running on the second machine, it would put the machine
into state y;. Therefore, on our new machine an a puts us into state z,, which
means either x, or ys;, in the same way that z; means either x, or y,. Since
¥, is a final state, for FA,, z, is also a final state in the sense that any word
whose path ends there on the z-machine would be accepted by FA,.

Z; = x; 01y

Z; = X201 Yy;

On the machine FA; we are following both the path the input would make
on FA; and the path on FA; at the same time. By keeping track of both paths,
we know when the input string ends whether or not it has reached a final
state on either machine.
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If we are in state z; and we read the letter b, we then go to state z;, which

represents either x; or y,. The x, comes from being in x; on FA, and reading
a b, whereas the y, comes from being in y; on FA, and reading a b.

Z3 = Xx; Or ¥,

The beginning of our transition table for FA; is:

L a b
* 7 I 43 23

Suppose that somehow we have gotten into state z; and then we read an a.
If we were in FA,, we would now go to state x3, which is a final state. If
we were in FA;, we would now go back to y,, which is also a final state.
We will call this condition z;, meaning either x; or y,. Since this string could
now be accepted on one of these two machines, z, is a final state for FA;.
As it turns out, in this example the word is accepted by both machines at
once, but this is not necessary. Acceptance by either machine FA, or FA, is
enough for acceptance by FA;.

If we are in state z; and we happen to read a b, then in FA, we are

back to x, whereas in FA, we are in y,. Call this new condition z; =
state x, or y,.

+ 2z = X301y

Zs = X3 Or Y4

At this point our transition table looks like this:

L a b

* zy | 2z 23
¥4} Z4 Zs

What happens if we start from state z; and read an a? If we were in FA,,
we are now in x,, if in FA,;, we are now in y,. This is a new state; call it

state zg.
2 = X2 OI Y4

What if we are in z; and we read a b? In FA; we stay in x;, whereas in
FA, we return to y,;. This means that if we are in z; and we read a b we

return to state z;.
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Our transition table now looks like this:

a b

+ 2y 22 Z3
2z 24 Zs

Z3 Zg Z)

What if we are in z; and we read an a? FA, remains in x3, whereas FA,
goes to yi. This is a new state; call it z;. If we are in z; and we read a b,
the FA, part stays at x; whereas the FA, part goes to y,. This is also a new
state; call it zg.

+ z7; = X301 y;3
+Zg

Il

X3 Or y»

Both of these are final states because a string ending here on the z-machine
will be accepted by FA;, since x3 is a final state for FA;.

If we are in zs and we read an a, we go to x; or y,, which we shall call
Zg.
If we are in zs and we read a b, we go to x; or y;, which we shall call zy.
Z9 = X2 0r y,
Zijp = X1 Or y3
If we are in zs and we read an a, we go to x; or y,, which is our old zs.
If we are in z and we read a b, we go to x, or y;, which is z,, again.
If we are in z; and we read an @ we go to x; or y;, which is z, again.
If we are in z; and we read a b, we go to x; or y,, which is a new state,
2.

+ Z11 = X3 OF Yy

If we are in zg and we read an a, we go to x; or y; = z;;. If in zg we read
ab, we gotox;ory = z4

If we are in z; and we read an a, we g0 to x; or y, = zy,. If in zy we read
ab, we gotox ory = z.
If we are in z,0 and we read an a, we go to x, or y;, which is our last new

state, zj,.

+ Zj2 = X3 Or y,
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If we are in z)o and we read a b, we go to (x; Or y;) = zs.
If we are in z;; and we read an a, we go to (x3 or y;) = zg.
If we are in z;; and we read a b, we go to (x3 or y;) = z;.
If we are in z); and we read an a, we go to (x3 or y;) = z7.
If we are in z;; and we read a b, we go to (x, or y,) = z3.

Our machine is now complete. The full transition table is:

a b

* z; ) Z3
V43 24 Zs
Z3 Ze 4]
+ z4 Z7 Zg
Zs 29 210
Z6 28 Z10

+ z7 24 zn
+ zg Z1 Z4
Z9 Zy1 Z)
Z10 Z12 Z5
+ zn 78 Z7
+ zZp2 z7 z3

If a string traces through this machine and ends up at a final state, it means
that it would also end at a final state either on machine FA; or on machine
FA,. Also, any string accepted by either FA, or FA, will be accepted by this

FA;.

The general description of the algorithm we employed above is as follows.
Starting with two machines, FA; with states x;, x,, x3, . . . and FA, with states
Yi» Y2, Y3, . . ., build a new machine FA; with states zy, z;, z3, . . . where

each z is of the form “Xsomething OF Ysomething - If either the x part or the y part
is a final state, then the corresponding z is a final state. To go from one z
to another by reading a letter from the input string, we see what happens to
the x part and to the y part and go to the new z accordingly. We could write
this as a formula:

Znew after letter p = [x,.. after letter p] or [y, after letter p]

Since there are only finitely many x’s and y’s, there can be only finitely
many possible z’s. Not all of them will necessarily be used in FA;. In this
way, we can build a machine that can accept the sum of two regular expres-
sions if there are already machines to accept each of the component regular
expressions separately.
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Let us go through this very quickly once more on the two machines:

FA, FA,

o S

FA, accepts all words with a double a in them, and FA, accepts all words
ending in b.

The machine that accepts the union of the two languages for these two
machines begins:

- Z; =X Oor y;

In z, if we read an a, we go to (x; or y;) = z,.

In z,, if we read a b, we go to (x; or y;) = z3, which is a final state since
¥, is.

The partial picture of this machine is now:

e - °

In z, if we read an a, we go to (x; or y;) = z4, which is a final state because
X3 is. In 2z, if we read a b, we go to (x; or y;) = z;.
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In zy if we read an a, we go to (x; or y;) = z,.
In z; if we read a b, we go to (x; or y;) = z.
In z, if we read an a, we go to (x3 or y;) = z,.
In z, if we read a b, we go to (x;3 or y,) = z5, which is a final state.
In z5 if we read an a, we go to (x; or y,) = z,.

In zs if we read a b, we go to x3 or y, = zs.

The whole machine looks like this:

b a

This machine accepts all words that have a double a or that end in b.
The seemingly logical possibility

Z6 = (X Or )

does not arise. This is because to be in x, on FA; means the last letter read
is an a. But to be in y, on FA, means the last letter read is a b. These cannot
both be true at the same time, so no input string ever has the possibility of
being in state ze.

This algorithm establishes the existence of the machine FA; that accepts the
union of the languages for FA; and FA,.

EXAMPLE (Inside of the proof of Theorem 6)

Let FA, be the machine below that accepts all words that end in a:

a

b
(} —— ()

b
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and let FA, be the machine below that accepts all words with an odd number
of letters (odd length):

Using the algorithm produces the machine below that accepts all words that
either have an odd number of letters or that end in a:

Xpory, Xy 0ry,

X1 0y, Xy Or Y,

The only state that is not a + state is the — state. To get back to the start
state, a word must have an even number of letters and end in b. [ |

EXAMPLE (Inside of the proof of Theorem 6)

Let FA, be:

which accepts all words ending in a, and let FA, be:

a

b
SElC
a

which accepts all words ending in b.
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Using the algorithm, we produce:

which accepts all words ending in a or b, that is, all words except A. Notice
that the state x, or y, cannot be reached since x, means “we have just read
an a” and y, means “we have just read a b.” [ |

We still have two rules to go.

Rule 3  If there is an FA, that accepts the language defined by the regular expres-
sion r; and an FA, that accepts the language defined by the regular
expression r; then there is an FA; that accepts the language defined by
the concatenation rir,, the product language.

Again, we shall verify this rule by constructive algorithm.

Let L, be the language of all words with b as the second letter. One machine
that accepts L, is FA, below:

OO

Let L, be the language of all words that have an odd number of a’s. One
machine for L, is FA, on the next page.
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a

Now consider the input string ababbaa. This is a word in the product
language L,L,, since it is the concatenation of a word in L, (ab) with a word
in L, (abbaa). If we begin to run this string on FA,, we would reach the +
state after the second letter. If we could now somehow automatically jump
over into FA,, we could begin running what is left of the input, abbaa, starting
in the — state. This remaining input is a word in L,, so it will finish its
path in the + state of FA,. Basically, this is what we want to build—an FA;
that processes the first part of the input string as if it were FA; then when
it reaches the FA, + state, it turns into the — state on FA,. From there it
continues processing the string until it reaches the + state on FA,, and we
can then accept the input.

Tentatively, let us say FA; looks something like this:

a, b b

OO (2=
a

Unfortunately, this idea, though simple, does not work. We can see this
by considering a different input string from the same product language. The
word ababbab is also in L,L,, since abab is in L, (it has b as its second
letter) and bab is in L, (it has an odd number of a’s).

If we run the input string ababba first on FA,, we get to the + state after
two letters, but we must not say that we are finished yet with the L; part of
the input. If we stopped running on FA, after ab, we would reach + in FA,,
but the remaining input string abbab could not reach + on FA, since it has
an even number of a’s.

Remember that FA, accepts all words with paths that end at a final state.
They could pass through that final state many times before ending there. This
is the case with the input abab. It reaches + after two letters. However, we
must continue to run the string on FA, for two more letters. We loop back
to + twice. Then we can jump to FA, and run the remaining string bab on
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FA,. The input bab will start on FA, in the — state and finish in the +
state.

Our problem is this: “How do we know when to jump from FA,; to FA,?”
With the input ababbaa we should jump when we first reach the + in FA;.
With the input ababbab (which differs only in the last letter), we have to stay
in FA, until we have looped back to the + state some number of times before
jumping to FA,. How can a finite automaton, which must make a mandatory
transition on each input letter without looking ahead to see what the rest of
the string will be, know when to jump from FA; to FA,?

This is a subtle point, and it involves some new ideas.

We have to build a machine that has the characteristic of starting out like
FA, and following along it until it enters a final state at which time an option
is reached. Either we continue along FA; waiting to reach another + or else
we switch over to the start state of FA, and begin circulating there. This is
tricky, since the r; part of the input string can generate an arbitrarily long
word if it has a star in it, and we cannot be quite sure of when to jump out
of FA, and into FA,.

As before, we first illustrate how to build such an FA, for a specific ex-
ample. The two machines we shall use are

FA, = the machine that accepts only strings with a double g in them
and
FA, = the machine that accepts all words that end in the letter b.

FA, FA,

b a ab a b b

o o——& O
b a

We shall start with the state z;, which is exactly like x,. It is a start state,
and it means that the input string is being run on FA,. From z; if we read
a b, we must return to the same state x;, which is z; again. From z, if we
read an a, we must go to state x, because we are interested in seeing that
the first section of the input string is a word accepted by FA;. Therefore, z,
is the same as x,. From the state z, if we read a b, we must go back to z;.
Therefore, we have the relationships

I =X

Z = X3

The picture of FA; starts out just like the picture of FA,.
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b

a

Now if we are in z, and we read an a, we must go to a new state z;, which
in some ways corresponds to the state x; in FA,. However, x; has a dual
identity. Either it means that we have reached a final state for the first half
of the input as a word in the language for FA, and it is where we cross over
and run the rest of the input string on FA,, or else it is merely another state
that the string must pass through to get eventually to its last state in FA,.
Many strings, some of which are accepted and some of which are rejected,
pass through several + states on their way through any given machine.

If we are now in z; in its capacity as the final state of FA, for the first
part of this input string, we must begin running the rest of the input string
as if it were input of FA, beginning at state y,. Therefore, the full meaning
of being in z; is: '

X3, and we are still running on FA,
Z3 = or
v, and we have begun to run on FA,

Notice the similarity between this disjunctive (either/or) definition of z; and
the disjunctive definitions for the z states produced by the algorithm given for
the addition of two FA’s.

If we are in state z; and we read an a, we have now three possible inter-
pretations for the state into which this puts us:

,
we are back in x; continuing to run the string on FA,

or

we have just finished on FA, and we are now in y,
. < beginning to run on FA,

or
we have looped from y, back to y, while already running on
FA,
\
= X30ry

(since being in y, is the same whether we are
there for the first time or not)
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Therefore, if we are in z; and we read an a, we loop back to z,.
If we are in state z; and we read a b, we go to state z,, which has the
following meaning:

r N .
we are still in x; continuing to run on FA,
or
+ z4 =4 we have just finished running on FA, and are now in y, on FA,

or

| we are now in y, on FA, having reached there via y,
= X30ry; ory

If an input string ends its path in this state z,, that means that it could
have been broken into two sections, the first going from x; to x; and the
second from y, to y;; therefore, it must be accepted, so z, is a final state.

So far our machine looks like this:

b a

25 e { r4 ; b @ sse

AN

If we are in z, and we read an a, our choices are:

remaining in x; and continuing to run on FA,
or
having just finished FA; and beginning at y,
or
having moved from y, back to y; in FA,
= X3 0ry;

However, this is exactly the definition of z; again. So, in summary, if we
are in z, and read an a, we go back to z.
If we are in z4 and read a b, our choices are:

remaining in x; and continuing to run on FA,
or
having just finished FA; and beginning at y,
or
having looped back from y, to y, running on FA,

= X30ry ory,

= Z4
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Accordingly, if we are in z, and read a b, we loop back to z,.
The whole machine then looks like this:

Thus we have produced a machine that accepts exactly those strings that
have a front section with a double a followed by a back section that ends in
b. This we can see because without a double a we never get to z; and we
end in z4 only if the whole word ends in b.

In general, we can describe the algorithm for forming the machine FA; as
follows. First we make a z state for every nonfinal x state in FA;. For each
final state in FA; we establish a z state that expresses the options that we are
continuing on FA, or are beginning on FA,. From there we establish z states
for all situations of the form

are 1N Xeomething CONtinuing on FA,
or
have just started y, about to continue on FA,
or
are in Yeomeming continuing on FA,

There are clearly only finitely many possibilities for such z states, so FA;
is a finite machine. The transition from one z state to another for each letter
of the alphabet is determined uniquely by the transition rules in FA; and FA;.
So FA; is a well-defined finite automaton that clearly does what we want,
that is, it accepts only strings that first reach a final state on FA; and then
reach a final state on FA,.

EXAMPLE (Inside the proof of Theorem 6)

Let FA, be:



(c) ketabton.com: The Digital Library

KLEENE’S THEOREM 127
which accepts the language L, of all words that do nor contain the substring
aa.

Let FA, be:
a, b
a b

which accepts the language L, of all words with an odd number of letters.
Using the algorithm above, we produce the following machine to accept
the product language L,L,.

xp0ry, Xp Or yp Or y)

b

All states except the — state are final states. The — state is left the instant
an input letter is read, and it can never be reentered. Therefore, the language
this machine accepts is all words but A. This actually is the product language
L,L,, since if a word w has an odd number of letters, we can factor it as
(A)w), where A is in L, and w is in L,. If w has an even (not 0) number
of letters, we can factor it as

w = (first letter)(the rest)

where (first letter) must be in L; and (the rest) is in L. Only the word A
cannot be factored into a part in L, and a part in L,. |

We are now ready for our last rule.

Rule 4 If r is a regular expression and FA, is a finite automaton that accepts
exactly the language defined by r, then there is an FA called FA, that
will accept exactly the language defined by r*.
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The language defined by r* must always contain the null word. To accept
the null string A we must indicate that the start state is also a final state.
This could be an important change in the machine FA, since strings that return
to x; might not have been accepted before. They may not be in the language
of the expression r. The building of our new machine must be done carefully.

We shall, as in the other cases, first illustrate the algorithm for manufac-
turing this machine on a simple example. We cannot use most of the examples
we have seen recently because their closure is not different from themselves
(except for the possibility of the word A). This is just a curious accident of
these examples and not usual for regular expressions. The concatenation of
several strings of words ending in b is itself a word ending in b. The con-
catenation of several strings containing aa is itself a string containing aa. The
concatenation of EVEN-EVEN strings is itself an EVEN-EVEN string.

Let us consider the regular expression

r = a* + aa*b
The language defined by r is all strings of only a’s and the strings of some
(not zero) a’s ending in a single b. The closure of this language is defined
by (a* + aa*b)*, which includes all words in which each b has an a on its
left. Here r* is clearly not equal to r, since such words as aba and ababaaa

are in r* but not in the language of r.
The machine we use to accept r is FA, pictured below.

.Y

N

a
x, + b
a, b :

Notice that x, is a reject state. Any string that enters it stays there and is
eventually rejected. A word that goes to x, and stops there is a word of all
a’s and it is accepted. To get to x; and stop there, we need exactly one b
after the a’s. It is true that x; is also a final state, but the only word that
ends there is A.

The machine we shall build, FA,, to accept the language defined by r*
begins as follows.

I+

2 = X
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If we are in z; and read a b, we go to the reject state x,, which we call z,.
2 = Xa

If we are in z, and read an a, we go to z;, which means a little more than
X, alone.

(x2 and we continue processing the middle of a longer factor
of type r that itself may be only one of many substrings of
type r that the input word is composed of

+2z3 = { or

we have just accepted a section of the input string as being
in the proper form for r and now we are back in x; starting
\ again on the next section of the input string

What we are trying to say here is that while we are scanning the input
string we may have arrived at a break between one factor of type r and another
factor of type r, in which case the first ends correctly at a + and the second
should begin at the —. However, a factor of type r does not have to stop
at the first + that it comes to. It may terminate at the fourth +, and the
new type r factor may then pick up at the —. '

As we saw with the product of two machines when we hit a + on the
first machine we can continue on that machine or jump to the — on the
second. Here when we hit a +, we can also jump back to the — (on the
same machine) or we can ignore the + status of the state and continue pro-
cessing or (a new option) we can end.

This situation is like a bus with passengers. At each stop (final state) there
is the possibility that some people get off while others stay on the bus waiting
for their correct stops. Those that get off may jump back to start and get on
another bus immediately. We are trying to trace where all these people could
be at any given time. Where they are must be some collection of bus stops
(states), and they are either finished, still inside the bus riding, or back at
start.

If we ever get to z, the total input is to be rejected, so we stay at z,.
We know this mechanically (which means here that we know it without any
intelligent insight, which is important since we should never need anything
that the algorithm does not automatically provide) because x, loops back
to x4 by @ and by b and therefore z, must do the same.

If we are in z; and we read a b, we go different places depending on
which clause in the definition of z; was meant in a particular case. If z; meant
X, We now go to xi, but if z; meant that we are back in x;, then we now
go to x4. Therefore, we have a new state. However, even when we are in
x3 we could be there in two ways. We could be continuing to run a string
on FA, and proceed as normal or else we could have just accepted a part of
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the string and we are starting to process the next section from scratch at x;.
Therefore, z; has a triple meaning:

+ zs=Xx3 Or Xx3 Or X4

Since x; is an accept state, z, can also accept a string that ends its path there.

Where do we go if we are in z; and we read an a? If we were in x, we
stay there, whereas if we were back in x;, we would go to x,. Therefore, we
return to z;. Remember again that every + state is also automatically a possible
restart state jumping back to x,.

If we are in z; and we read a b, whether we are in x;, x;, or x4, we
definitely go to x,, which is z,.

If we are in z4 and we read an a, we go (if we were in xy) to x; or (if
we were in x3) to x, or (if we were in x;) to x4. Therefore, we are in a new
state

+ zs = X3 O X, Or X4

which must be a final state since x, is.

From zs an a gets us to (x; or x; or x4), which is z5, whereas a b gets
us to (x; or x3 or xs), which is z; again.

This finishes the description of the whole machine. It is pictured below.

This is not actually a bad machine for the language defined by
(a* + aa*b)*

The general rule for this algorithm is that each z state corresponds to some
collection of x states. We must remember each time we reach a final state it
is possible that we have to start over again at x;. There are only finitely many
possible collections of x states, so the machine produced by this algorithm
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has only finitely many states. The transitions from one collection of x states
to another based on reading certain input letters is determined completely by
the transition rules for FA,. Therefore, this algorithm will always produce an

FA, and the FA it produces satisfies our requirements.
Let us do another example. Consider the regular expression:

r = aa*bb*
This defines the language of all words where all the a’s (of which there

is at least one) come before all the b’s (of which there is at least one).
One FA that accepts this language is:

Now let us consider the language defined by r*.
r* = (aa*bb*)*

This is a collection of ‘a’s then b’s then a’s then b’s and so on. Most
words fit this pattern. In fact, the only strings not in this language are those
that start with a b and those that end with an a. All other strings are words
defined by r*. This r* is almost equivalent to

a(a + b)*b

For example, aababbb is in r* since (aab) is in r and (abbb) is in r.
(Every string in r* can be uniquely factored into its substrings of type r, but
this is a side issue.) The string abba is definitely not in r* since it ends in
a.

Now let us build an FA for r*.
We begin with the start state:

= 1 = X
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Reading an a takes us to
= X
Reading a b in state z; takes us to

Z3 = X3
LR}

Like its counterpart x3, z; is a point of no return (abandon all hope, ye
that enter).

From z, if we read an a, we return to z,, just as with x,. From z, if we
read a b, we proceed to a new state called z,.

However, z, is not just x,. Why? Because when we are processing the
string ababb and we get to z4, we may have just accepted the first factor (ab)
as being of the form r and be about to process the second factor starting
again in the state x;. On the other hand, if we are processing the string abbab
and we have only read the first two letters, even though we are in z; we have
not completed reading the whole first factor of type r. Therefore,

+ zZ4 = X OF X4
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Because it is possible to end here and accept a string, this must be a final
state, but we must have the option of continuing to read another factor (sub-
string) of type r or to finish reading a factor we are in the middle of. If we
are in z, and we read an a, we go to x; (if we were in x4) or x, (if we were
in x;). Therefore, we could say that we are going to a new state:

Zs = X3 Or X3

However, the option of being in x; is totally worthless. If we ever go there,
we cannot accept the string. Remember x; is Davy Jones’s locker. No string
that gets there ever leaves or is ever accepted. So if we are interested in the
paths by which strings can be accepted, we need only consider that when in
z4 if we read an a it is because we were in the x; part of z,, not the x, part.
This a, then, takes us back to z,. (This is a touch of extra insight not actually
provided by the algorithm. The algorithm requires us blindly to form a new
state, ze. We shall build both machines, the smart one and the algorithm one.)

If we are in z, and we read a b, we go to x, (if we were in x;) or x; (if
we were in x;). Again, we need not consider the option of going to x; (the
suicide option), since a path going there could accept no words. So instead
of inventing a new state:

Ze — X3 O Xx3 Or x4

which the algorithm above tells us to construct, we can simply assume that
from z, a b always takes us to x;. This is, of course, really the combination
(x4 or x;) because we could now continue the processing of the next letter as
if it were in the state x; having just accepted a factor of type r. This is the
case with the word abbab.

These options, x; or x4, are already the definition of state z,, so we have
finished our machine.
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If we had mechanically followed the algorithm in the proof, we would have
constructed

b

For some applications it may be important to construct the entire machine
mechanically as above because accepting an input string in z; may somehow
be different from accepting it in ze (the cost could be different, or the storage
space, etc.). For our simple purposes, there is no difference between these
two machines.

In both of these diagrams it is clear that in order to be accepted the only
conditions a string must satisfy are that it begin with an a and end with a
b. Therefore, because we understand the language r* and we understand these
two machines, we know that they truly represent the language r* as desired.

Before we feel completely satisfied with ourselves we should realize that
neither of the machines we have built accepts the word A, which must be in
the closure of any language. What went wrong was at the very beginning
when we said that z; was the equivalent of x;. This is true only when x; is
also a final state, since otherwise z;, which must be a final state, cannot be
its true twin. z; can act like x; in all other respects as a starting state for the
acceptance of a word on FA;, but since z; must be a final state, we cannot
simply posit its equivalence to x;. What we need are two states that are like
xi. One of them will be x;, and a final state, while the other will be x; and
a nonfinal state. The reason we may need a state like x; that is not a final
state is that in the running of an input string on FA; we may be required to
reenter the state x; several times. If x; is not a final state in FA;, but we
convert it into z;, which is a final state, then when an input string ends in
x; on FA, and is not accepted on FA;, we do not want mistakenly to say
that it ends in z,, which then causes it to be accepted on FA,. In the machine
we have at present, this is no problem since the state x; on FA; can never
be reentered (no edges go into x;). Therefore, we can say that the z, we have
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is sufficient to represent x; in all its uses. An accurate machine for the language
defined by (aa*bb*)* is this:

To illustrate the possible need for two different states representing x;, we
have to start with a machine that does not accept A but that does allow the
state x; to be reentered in the path for some input words. One such FA is
the one below, which accepts the language of all words with an odd number

of b’s.
ol e
b

Let us practice our algorithm on this machine.

The first state we want is z;, which must be like x; except that it is also
a final state. If we are in z; and we read an a, we come back to x;, but this
time in its capacity as a nonfinal state. We have to give a different name to
this state; let us call it z,.

z; = x; and a final state

z, = x; and a nonfinal state

If we are in z; and we read a b, we must go to a state like x,. Now since
x; is a final state, we must also include the possibility that once we enter x,



(c) ketabton.com: The Digital Library

136 PUSHDOWN AUTOMATA THEORY

we immediately proceed as if we were back in x;. Therefore, the state z; that
we go to is simply x; or x, and a final state because of x,.
At this point the machine looks like this:

If we are in z; and we read an a, we stay in z,. If we are in z; and we
read a b, we go to z;. If we are in z; and we read an a, it will take us
back to z3, since if we were in x; we would stay in x; and if we were in
X, we would stay in x,. If we are in z; and we read a b, then we also return
to z3, since if we were in x,, then we would go to x,, and if we were in
x, we would go to x;. The whole machine is this:

The only words not accepted by this machine are words of solid a’s. All
other words are clearly the concatenation of substrings with one b each and
are therefore in the closure of the language of FA,.

This is another example of how the null string may have no letters yet still
be a royal pain in the neck. One regular expression defining the language of
all words with an odd number of b’s is

r = a*b(a*ba*b)*a*
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therefore the regular expression
r¥ = [a*b(a*ba*b)*a*]*

defines the language of all words that are not of the form aa*. Another regular
expression for this language is

A + (a + b)*b(a + b)*
Therefore,
A + (a + b)*b(a + b)* = [a*b(a*ba*b)*a*]*

It is hard to imagine an algebraic proof of this equation. The problem of
determining when two regular expressions define the same language will be
discussed in Chapter 12.

We have now developed algorithms that, when taken together, finish the
proof of part three of Kleene’s theorem. (We have been in the middle of this
project for so long it is possible to lose our perspective.)

Because of Rule 1, Rule 2, Rule 3, and Rule 4, we know that all regular
expressions have corresponding finite automata that give the same language.
This is because while we are building the regular expression from the recursive
definition we can simultaneously be building the corresponding FA from the
four algorithms shown above. This is a powerful example of the strength of
recursive definitions.

As an example, suppose we want to find an FA to accept the language for
the regular expression (ab)*a(ab + a*)*. Since this is a regular expression,
it can be built up by repeated applications of the rules: any letter, sum, product,
star.

The lengthy process of expression and machine-building can proceed as
follows: a is a letter in the alphabet, so there is an FA that accepts it called
FA,. Now b is a letter in the alphabet, so there is a machine that accepts it,
FA,. Then ab is the language of the product of the two machines FA, and
FA,, so there is a machine to accept it, FA;. Then (ab)* is the language of
the closure of the machine FA;, so there is a machine to accept it, call it
FA4.

Now a* is the language of the closure of the machine FA;, so there is an
FA to accept it called FAs. Now ab + a* is the language of the sum of FA;
and FAs, so there is a machine to accept it, FAs. Now (ab + a*)* is the
language of the closure of FAg, therefore, there is a machine to accept it,
FA,;. Now a(ab + a*)* is the product of FA; and FA,, so there is a machine
to accept it, FAg. Now (ab)*a(ab + a*)* is the product of machines FA, and
FAg, call it FAq. Done.
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All regular expressions can be handled the same way. We have shown that
every language accepted by an FA can be accepted by a TG, every language
accepted by a TG can be defined by a regular expression, and every language
defined by a regular expression can be accepted by an FA. This concludes
the proof of all of Kleene’s theorem. |

The proof has been constructive, which means that we have not only shown
that there is a correspondence between regular expressions, FA’s and TG’s,
but we have also shown exactly how to find examples of the things that
correspond. Given any one we can build the other two using the techniques
outlined in the proof above.

Because TG’s seem more understandable, we often work with them instead
of struggling with the rigors of FA’s (especially having to specify what happens
in every state to every letter).

The biggest surprise of this theorem may be that TG’s are not any more
powerful than FA’s in the sense that there are no extra languages that TG’s
can accept that FA’s could not handle already. This is too bad because we
shall soon show that there are some languages that FA’s cannot accept, and
we shall need a more powerful type of machine than a TG to deal with them.

Even though with a TG we had the right to exercise some degree of judg-
ment—we made some decisions about sectioning the reading of the input string—
we could do no better than a purely automatic robot like an FA. The human
input factor was worth essentially nothing.

PROBLEMS

%.  For the following transition graphs use the algorithm of this chapter to find
* an equivalent regular expression. Then simplify the expression if possible.

1. ab
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2.
3.

a. b

b
ab
ba

4 ab baa ab

abb
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6.

7. Consider the following finite automata:

FA, FA,

a. h
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Find regular expressions r;, r,, r; for these, respectively, and simplify the
expressions if possible. Describe these languages in English.

Using the algorithms in this chapter and the three FA’s from Problem 7
find FA’s for the following:

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
15.

20.

r+r

r+nr

r; +r;

rr;

rr;

ror;

ror

rr

(r)*

(r2)*

(ry)*

Based on the regular expressions in Problems 8 through 18, answer these
questions: Is the machine for rir, the same as the machine for r,r,?
Why? Is the machine for r; + r, the same as the machine for r; + r,?

Why? Is the machine for r\r; the same as the machine for (r,)*? Why?
Would the machine for r,r, be the same as the machine for (r;)*? Why?

If some automaton, FA;, has n; states and some other automaton, FA,,
has n, states, what is the maximum number of states possible in the
machines the algorithms in this chapter produce for the automata cor-
responding to

(i) FA, + FA,

(ii)) FAFA,

(ii1) (FA)*
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CHAPTER 8

NONDETERMINISM

In our discussion of transition graphs in Chapter 6, there was one point that
we glossed over that is actually a subtlety of great depth. We said that we
would label every edge of the graph with any string of alphabet letters (perhaps
even the null string A). We even allowed two edges coming out of the same
state to have exactly the same label:

abb

abb e

If we tried to forbid people from writing this directly, they could sneak it
into TG’s in other ways:

142
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Even if we restrict labels to strings of only one letter or A, we may in-
directly permit these two equivalent situations:

)
“ o e e« oo equals ¢ ¢«

We have already seen that in a TG a particular string of input letters may
trace through the machine on different paths, depending on our choice of
grouping. For instance, abb can go from state 3 to 4 or 5 in the middle
example above depending on whether we read the letters two and one or all
three at once. The ultimate path through the machine is not determined by
the input alone. Therefore, we say this machine is nondeterministic. Human
choice becomes a factor in selecting the path; the machine does not make all
its own determinations. Remember that a string is accepted by the machine
if at least one sequence of choices leads to a path that ends at a final state.

In 1959, Michael Oser Rabin and Dana Scott introduced the notion of non-
determinism for language-recognizing finite automata.

DEFINITION
A nondeterministic finite automaton (NFA) is a collection of three things:

1. A finite set of states with one start state (—) and some final states (+).
2. An alphabet 3 of possible input letters.

3. A finite set of transitions that describe how to proceed from each state
to other states along edges labeled with letters of the alphabet (but not
A), where we allow the possibility of more than one edge with the same
label from any state and some states for which certain input letters have
no edge. |

Some authors argue that an NFA is not a special case of a TG since they
insist in their definition that a TG is not allowed more than one edge from
one state with the same label. (We did not insist on this in our definition.)
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Let us observe that we can replace all same-labeled edges using this trick:

is equivalent to

or this trick:

is equivalent to
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Therefore, we can convert any NFA into a TG with no repeated labels from
any single state.

Let us also observe that every deterministic finite automaton can be con-
sidered as an example of an NFA where we did not make use of the extra
possible features. Nowhere in the definition of NFA did we insist that an NFA
have nondeterministic branching. Any FA will satisfy the definition of an NFA.
So we have:

1. Every FA is an NFA.
2. Every NFA has an equivalent TG.
3. By Kleene’s theorem, every TG has an equivalent FA.

Therefore:

languages of FA’s C languages of NFA’s C languages of TG’s =
languages of FA’s

THEOREM 7
FA = NFA

by which we mean that any language definable by a nondeterministic finite
automaton is also definable by a deterministic (ordinary) finite automaton and
vice versa. We say then that they are of equal power. [

Let us not mistake the equation FA = NFA as meaning that every NFA
is itself an FA. This is not true. Only that for every NFA there is some FA
that is equivalent to it as a language acceptor.

NFA’s may sometimes be easier or more intuitive to use than FA’s to define
a given language. One example of this is a machine to combine two FA’s,
one that accepts the language of the regular expression r; and the other for
the language of the regular expression r,. If the start states in these two
machines have no edges coming into them, we can produce an NFA; that
accepts exactly the language of r; + r, by amalgamating the two start states.
This is illustrated below.

Let FA, be
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And let FA, be

Then NFA3 = FA] + FAZ is

Nondeterminism does not increase the power of an FA, but we shall see
that it does increase the power of the more powerful machines introduced later.

EXAMPLE

It is sometimes easier to understand what a language is from the picture of
an NFA that accepts it than from the picture of an FA. Let us take, for
example, the language of all words that contain either a triple a (the substring
aaa) or a triple b (the substring bbb) or both. The NFA below does an obvious
job of accepting this language.

N\« R

b \_/ (j

O——0O——Y
\_/




(c) ketabton.com: The Digital Library

NONDETERMINISM 147

If a word contains aaa somewhere inside of it, it can be accepted by a path
along the high road. If it contains bbb, it can be accepted along the low road.
If a word has both, it can use either route. Clearly, anything that gets to +
has one of these substrings.

Let us now build an FA that accepts this language. It must have a start
state. From the start state, it must have a path of three edges to accept the
word aaa. It needs three edges because otherwise a shorter string of a’s could
be accepted. Therefore, we begin our machine with

O——0——0—0

For similar reasons, we can deduce that there must be a path for bbb that
has no loop and uses entirely different states. If it shared any of the same
states, we could begin with a’s and pick up with »’s. So we must have at

least two more states since we could share the last state of the three-edge
path with one of the a states already drawn.

If we are along the a path and read a b before the third a, we jump to the
beginning of the b path and vice versa. The whole FA then looks like this:

We can understand this FA because we have seen it built, but the NFA is
still much easier to interpret. [ |
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Nondeterminism can have important practical applications, in particular in
the subject of artificial intelligence (AI). We shall demonstrate this on one
simple example.

Suppose the problem we want to solve is the maze below:

The rules are that we start at — and can proceed from square to adjacent
square. We can walk only in empty squares, the dark squares are walls. When
we get to the + we stop. This is not a very hard maze to figure out, but
we are only taking an illustrative example.

Let us number the open squares as follows:

QO |~ O~

Let us build the following nondeterministic finite automaton in which every
state represents a square in the maze and one state can be reached from the
other in the NFA only if the same move is possible in the maze.

The permission for each step is the letter a. The question, “Does this maze
have a solution in six steps?” is the same as the question, “Is the word aaaaaa
accepted by this NFA?”

If the language for the NFA of some other maze was {aaa, aaaaa}, that

would mean that there was a solution path of three steps and one of five
steps. '
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An algorithm that found all the words accepted by an NFA would auto-
matically tell us all the lengths of the solution paths to all mazes. We already
have such an algorithm. If we consider this NFA as a TG and apply the TG
into regular expression conversion algorithm of Chapter 7, we discover, after
simplification, that the language accepted by this machine is defined by
aaaaaa(aa)*, which means that there are solutions of six steps, eight steps,
ten steps, and so on.

COMPARISON TABLE FOR AUTOMATA (Version 1)

FA

TG

NFA

Start states

One

One or more

One

Final states

Some or none

Some or none

Some or none

Edge labels

Letters from 3

Words from 3*

Letters from 3,

Number of
edges from

One for each

Arbitrary

Arbitrary

letter in
each state te 2

Deterministic
(Every input
string has
one path)

Yes Not necessarily Not necessarily

Every path
represents Yes Yes Yes
one word

PROBLEMS

1. In the example for NFA; above, why was it necessary to stipulate that
no edges come into the two different start states? What can be done to
add two machines when this condition fails?

2. Suppose NFA, is a machine for the regular expression r, and NFA, for
the regular expression r,. Further suppose that NFA, has only one +
state and that this state has no edges leading out of it (even back to
itself). Show how to make a simple NFA for the language rr,.
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Can anything be done, similar to Problem 2, for (r;)*?

4. (1) How many NFA’s are there with exactly two states where there
can be 0, 1, or 2 final states and where the states may even be
disconnected?

(ii) How many are there if the states cannot be disconnected?

(iii) How many different connected NFA’s are there with two states
that accept at least one word? (Be careful: We are counting ma-
chines not languages.)

Let us now introduce a machine called “a nondeterministic finite automaton
with null string labels,” abbreviated NFA-A. This machine follows the same
rules as an NFA except that we are allowed to have edges labeled with the
null string A, as in the example below:

What words are accepted by the machine pictured above?

6. Prove that NFA-A’s have the same power as FA’s, that is, show that
any language accepted by a machine of one type can also be accepted
by a machine of the other.

7. Show that NFA-A’s can be added, concatenated, and starred quite easily
(without the extra conditions required for NFA’s).

Convert the following NFA-A’s into FA’s.
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What is the language for each of the NFA’s pictured below? Write reg-
ular expressions for each.

a b

12.

13.

14.

15. Build FA’s for the languages in Problems 10 through 14.

For each of the following FA’s, find NFA’s that have fewer states
and accept the same language.
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16. ~

17.

18.

19.  For the language accepted by the machine below, find a different FA
with four states. Find an NFA that accepts the same language and has
only seven edges (where edges with two labels are counted twice).
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A one-person game can be converted into an NFA as follows. Let every
possible board situation be a state. If any move (there may be several
types of moves but we are not interested in distinguishing among them)
can change some state x into some state y, then draw an edge from x
to y and label it m. Label the initial position — and the winning positions
+. “This game can be won in five moves” is the same as saying “m?
is accepted by this NFA.” Once we have the NFA we use the algorithm
of Chapter 7 to convert it into a regular expression. The language it
represents tells us how many moves are in each winning sequence.

Let us do this with the following example. The game of Flips is played
with three coins. Initially they are all heads. A move consists of flipping
two coins simultaneously from whatever they were to the opposite side.
For example, flipping the end coins changes THH into HHT. We win
when all three coins are tails. There are eight possible states: HHH,
HHT,. . . . TTT. The only — is HHH; the only + is TTT. Draw this
NFA, labeling any edge that can flip between states with the letter m.

Convert this NFA into a regular expression. Is m* or m’ in the lan-
guage of this machine? The shortest word in this language is the shortest
solution of this puzzle. What is it?
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CHAPTER 9

FINITE
AUTOMATA
WITH
OUTPUT

In our discussion of finite automata in Chapter 5, our motivation was in part
to design a mathematical model for a computer. We said that the input string
represents the program and input data. Reading the letters from the string is
analogous to executing instructions in that it changes the state of the machine,
that is, it changes the contents of memory, changes the control section of the
computer, and so on. Part of this “and so on,” that was not made explicit
before is the question of output. We mentioned that we could consider the
output as part of the total state of the machine. This could mean two different
things: one, that to enter a specific computer state means change memory a
certain way and print a specific character, or two, that a state includes both
the present condition of memory plus the total output thus far. In other words,
the state could reflect what we are now printing or what we have printed in
total. One natural question to ask is, “If we have these two different models,
do these machines have equal power or are there some tasks that one can do
that the other cannot?”

154



(c) ketabton.com: The Digital Library

FINITE AUTOMATA WITH OUTPUT 155

If we assume that all the printing of output is to be done at the end of
the program run, at which time we have an instruction that dumps a buffer,
then we have a maximum on the number of characters that the program can
print, namely the size of the buffer. However, theoretically we should be able
to have outputs of any finite length. For example, we might simply want to
print out a copy of the input string, which could be arbitrarily long.

These are questions that have to be faced if we are to claim that our
mathematical models of FA’s and TG’s represent actual physical machines.
So far we have used finite automata only as acceptors or recognizers of lan-
guages; in this chapter we shall investigate two different models for FA’s with
output capabilities. These were created by G. H. Mealy (1955) and, inde-
pendently, by E. F. Moore (1956). The original purpose of the inventors was
to design a mathematical model for sequential circuits, which are only one
component of a whole computer. It is an important component, and as we
shall see, acts as a machine all by itself. We shall present these two models,
prove that they are equivalent, and give some examples of how they arise in
sequential circuits.

DEFINITION
A Moore machine is a collection of five things:

1. A finite set of states qo, g1, g2 - . . where g is designated as the start
state.

2.  An alphabet of letters for forming the input string
=={a b c ...}

3. An alphabet of possible output characters
'r={x, vy 2z ...}

4. A transition table that shows for each state and each input letter what
state is reached next.

5. An output table that shows what character from I" is printed by each state
that is entered. [ |

Notice that we did not assume that the input alphabet X is the same as
the output alphabet I'. When dealing with twentieth-century machines, both
input and output are usually encoded strings of 0’s and 1’s. However, we may
interpret the input bit strings as instructions in a programming language. We
may also wish to group the strings of output bits into codes for typewriter
characters. We discuss whether it is necessary to have more than two letters
in an alphabet in Chapter 29.

To keep the output alphabet separate from the input alphabet, we give it
a different name, I' instead of 2, and for its letters we use symbols from the
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other end of the Latin alphabet: {x, y, z . .. } or numbers {0, 1 ...} instead
of {a, b, ¢ ...}. Moreover, we refer to the input symbols (as we always

have) as letters, while we call the output symbols characters.

As we shall see from our circuitry examples, the knowledge of which state
is the start state is not always important in applications. If the machine is run
several times, it may continue from where it left off rather than restart. Because
of this, we can define the Moore machine in two ways: Either the first symbol
printed is the character always specified in the start state or else it is the
character specified in the next state, which is the first state chosen. We shall
adopt the policy that a Moore machine always begins by printing the character
dictated by the mandatory start state. This difference is not significant (see
Problem 13 below). If the input string has 7 letters, then the output string
will have 8 characters because it includes eight states in its path.

Because the word “outputted” is so ugly, we shall say “printed” instead,
even though we realize that the output device does not technically have to be
a printer.

A Moore machine does not define a language of accepted words, since every
input string creates an output string and there is no such thing as a final state.
The processing is terminated when the last input letter is read and the last
output character is printed. Nevertheless, there are subtle ways to turn Moore
machines into language definers (see Problem 12 below).

Moore machines have pictorial representations very similar to their cousins
the FA’s. We start with little circles depicting the states and directed edges
between them labeled with input letters. The difference is that instead of having
only the name of the state inside the little circle, we also specify the output
character printed by that state. The two symbols inside the circle are separated
by a slash “/”. On the left side is the name of the state and on the right is
the output from that state.

EXAMPLE
Let us consider an example defined first by a table:
Input alphabet: = = {a, b}

Output alphabet: I' = {0, 1}
Names of states: go, qi, g2, ¢3, (go = start state)

Transition Table Output Table
New State (The
Character
Printed in the

Old State After Input a After Input b Old State)
— 9o q q3 1

9 q3 q1 0

92 9o q3 0

q3 q3 9 1
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The pictorial representation of this Moore machine is

In Moore machines, so much information is written inside the state circles
that there is no room for the minus sign indicating the start state. We usually
indicate the start state by an outside arrow as shown above. As mentioned
before there is no need for any plus signs either, since any input string will
generate an output string and can end in any state having done an acceptable
job.

Let us trace the operation of this machine on the input string abab. We
always start this machine off in start gy, which automatically prints out the
character 1. We then read the first letter of the input string, which is an a
and which sends us to state g,. This state tells us to print a 0. The next input
letter is a b, and the loop shows that we return to state g,. Being in ¢, again,
we print another 0. Then we read an a, go to ¢;, and print a 1. Next we
read a b, go to ¢, and print a 0. This is the end of the run. The output
sequence has been 10010. [ |

EXAMPLE

Suppose we were interested in knowing exactly how many times the substring
aab occurs in a long input string. The following Moore machine will “count”
this for us: :

Every state of this machine prints out the character 0 except for state g,
which prints a 1. To get to state g;, we must have come from state g, and
have just read a b. To get to state g,, we must have just read at least two
a’s in a row, having started in any state. After finding the substring aab and
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tallying a 1 for it, we begin to look for the next aab. If we read a b, we
start the search in go; if we read an a, we start in g,. The number of substrings
aab in the input string will be exactly the number of 1’s in the output string.

Iilput String a |a fa |b |a |b ]b |a |a |b |b

State g | 91 | @21 2 | @3] @1 1 9 | 90 | 91 | 42 | 93 | 90
Output | 0 0 0 0 1 0 0 0 0 0 1 0

To count up how many 1’s are in the output string we could use bit collection
methods from assembly-language programming, depending on the application
we have in mind.

The example above is part of a whole class of useful Moore machines.
Given a language L and an FA that accepts it, if we add the printing instruction
0 to any nonfinal state and 1 to each final state, the 1’s in any output sequence
mark the end position of all substrings of the input string starting from the
first letter that are words in L. The machine above with ¢o = — , g3 = +
accepts all words that end in aab.

Our next subject is another variation of the FA called the Mealy machine.
A Mealy machine is like a Moore machine except that now we do our printing
while we are traveling along the edges, not in the states themselves. If we
are in state g4 and we are proceeding to ¢;, we do not simply print what g,
tells us. What we print depends on the edge we take. If there are two different
edges from g, to g;, one an a-edge and one a b-edge, it is possible that they
will have different printing instructions for us. We take no printing instructions
from the state itself.

DEFINITION

A Mealy machine is a collection of four things:

1. A finite set of states go, qi, g2 . . . Where g is designated as the start
state.
An alphabet of letters £ = {ag, b, . . . } for forming input strings.

3. An alphabet of output characters I' = {x, y, z. .. }.

4. A pictorial representation with states represented by small circles and di-
rected edges indicating transitions between states. Each edge is labeled
with a compound symbol of the form ifo where i is an input letter and
o is an output character. Every state must have exactly one outgoing edge
for each possible input letter The edge we travel is determined by the

input letter i; while traveling on the edge we must print the output char-
acter o. |
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We have for the sake of variation defined a Mealy machine by its pictorial

representation. Another reason is that the table definition is not as simple as
that for a Moore machine (see the problem section below).

EXAMPLE

The following picture represents a Mealy machine:

a/l

Notice that when we arrive in state g3 we may have just printed a 1 or
a 0. If we came from state g, by the b-road, we printed a 0. If we got there
from ¢, by the a-road, we printed a 1. If we got there from g,, it depends
on whether we took the a-road and printed a O or the b-road and printed a
1. If we were in g¢; before and looped back on the input a, we then printed
a 1. Every time we enter g, we have just printed a 0, but it is not always
possible to tell this information from the destination state alone.

Let us trace the running of this machine on the input sequence aaabb. We
start in state go. In distinction to the Moore machine, here we do not have
to print the same character each time we start up, even before getting a look
at the input. The first input letter is an a, which takes us to g, and prints
a 0. The second letter is an a, which takes to g; and prints a 1. The third
letter is an g, which loops us back to ¢; and prints a 1. The fourth letter is
a b, which takes us back to go and prints a 1. The fifth letter is a b, which
takes us to ¢; and prints a 0. The output string for this input is 01110. W

Notice that in a Mealy machine the output string has the same number of
characters as the input string has letters. As with the Moore machine, the
Mealy machine does not define a language, so it has no final states. However,
we will see shortly that there is a sense in which it can recognize a language.

If there are two edges going in the same direction between the same pair
of states, we can draw only one arrow and represent the choice of label by

the usual comma.
a

/x
@.e - . — b - .
'y

b,
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EXAMPLE

The simplest example of a useful Mealy machine is one that prints' out the
I’s complement of an input bit string. This means that we want to produce
a bit string that has a 1 wherever the input string has a 0 and a 0 wherever
the input has a 1. For example, the input 101 should become the output 010.
One machine that does this is:

0/1,1/0

If the input is 001010 the output is 110101. This is a case where the input
alphabet and output alphabet are both {0, 1}. [ |

EXAMPLE

We now consider a Mealy machine called the increment machine that assumes
that its input is a binary number and prints out the binary number that is one
larger. We assume that the input bit string is a binary number fed in backwards,
that is, units digit first (then 2°s digit, 4’s digit . . . ). The output string will
be the binary representation of the number one greater and will also be gen-
erated units bit first (backwards).

The machine will have three states: start, owe-carry, no-carry. The owe-
carry state represents the overflow when two bits equal to 1 are added—we
print a O and we carry a 1.

From the start state we read the first bit. If we read in a 0, we print a
1 and we do not owe a carry bit. If we read a 1, we print a 0 and we do
owe a carry bit. If at any point in the process we are in no-carry (which
means that we do not owe a carry), we print the next bit just as we read it
and remain in no-carry. However, if at some point in the process we are in
owe-carry, the situation is different. If we read a 0, we print a 1 and go to
the no-carry state. If we are in owe-carry and we read a 1, we print a 0 and
we loop back to owe-carry. The complete picture for this machine is:

0/0,1/1

0/1
@)
@’ 1/0
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Let us watch this machine in action on the binary representation for the
number eleven, 1011. The string is fed into the machine as 1101 (backwards).
The first 1 causes a 0 to be printed and sends us to owe-carry. The next 1
causes a 0 to be printed and loops back to owe-carry. The next input letter
is a 0 and causes a | to be printed on our way to no-carry. The next bit,
1, is printed out, as it is fed in, on the no-carry loop. The total output string
is 0011, which when reversed is 1100, and is, as desired, the binary repre-
sentation for the number twelve.

As simple as this machine is, it can be simplified even further (see Problem
18).

This machine has the typical Mealy machine property that the output string
is exactly as long as the input string. This means that if we ran this incre-
mentation machine on the input 1111 we would get 0000. We must interpret
the owe-carry state as an overflow situation if a string ever ends there.

There is a connection between Mealy machines and sequential circuits (which
we touch on at the end of this chapter) that makes them a very valuable
component of Computer Theory. The two examples we have just presented
are also valuable to computing. Once ‘we have an incrementer, we can build
a machine that can perform the addition of binary numbers, and then we can
use the 1’s complementing machine to build a subtracting machine based on
the following principle:

If a and b are strings of bits, then the subtraction a — b can be performed by (1)
adding the I's complement of b to a ignoring any overflow digit and (2) incre-
menting the results by 1.

For example,
14 — 5 (decimal) = 1110 — 0101 (binary)
— 1110 + I’s complement of 0101 + 1 (binary)

1110 + 1010 + 1 (binary)
[1]11001 binary — (dropping the [1]) = 9 (decimal)

18 — 7 = 10010 — 00111 — 10010 + 11000 + 1
= [1}J01011 — 01011 = 11 (decimal)

The same trick works in decimal notation if we use 9’s complements, that
is, replace each digit d in the second number by the digit (9 — d). For ex-
ample, 46 — 17— 46 + 82 + 1 = [1]29 — 29.

EXAMPLE

Even though a Mealy machine does not accept or reject an input string, it
can recognize a language by making its output string answer some questions
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about the input. We have discussed before the language of all words that have
a double letter in them. The Mealy machine below will take a string of a’s
and b’s and print out a string of 0’s and 1’s such that if the nth output character
is a 1 it means that the nth input letter is the second in a pair of double
letters. For example ababbaab becomes 00001010 with 1’s in the position of
the second of each pair of repeated letters.

we have a’/l
Just
read a

a/0

we have
Just b/1
read b

This is similar to the Moore machine that recognized the number of oc-
currences of the substring aab. This machine recognizes the occurrences of
aa or bb. Notice that the triple letter word aaa produces the output 011 since
the second and third letters are both the back end of a pair of double a’s.

So far, our definition of the equivalence of two machines has been that
they accept the same language. In this sense we cannot compare a Mealy
machine and a Moore machine. However, we may say that two output automata
are equivalent if they always give the same output string when presented with
the same input string. In this way, two Mealy machines may be equivalent
and two Moore machines may be equivalent, but a Moore machine can never
be equivalent to a Mealy machine because the length of the output string from
a Moore machine is one longer than that from a Mealy machine given the
same input. The problem is that a Moore machine always begins with one
automatic start symbol.

To get around this difficulty, we define a Mealy machine to be equivalent
to a Mpore machine whenever they always result in the same output if the
automatic start symbol for the Moore machine is deleted from the front of
the output.
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DEFINITION

Given the Mealy machine Me and the Moore machine Mo, which prints the
automatic start-state character x, we will say that these two machines are
equivalent if for every input string the output string from Mo is exactly x
concatenated with the output from Me. [

Rather than debate the merits of the two types of machine, we prove that
for every Moore machine there is an equivalent Mealy machine and for every
Mealy machine there is an equivalent Moore machine. We can then say that
the two types of machine are completely equivalent.

THEOREM 8

If Mo is a Moore machine, then there is a Mealy machine Me that is equivalent
to it.

PROOF

The proof will be by constructive algorithm. Consider any particular state in
Mo—all it g,. It gives instructions to print a certain character—call it 7. Let
us consider all the edges that enter this state. Each of them is labeled with
an input letter. Let us change this. Let us relabel all the edges coming into
qs. If they were previously labeled @ or b or ¢ . . ., let them now be labeled
alt or blt or ¢/t . . . and let us erase the ¢ from inside the state g4. This means
that we shall be printing a ¢ on the incoming edges before they enter g,.

becomes

We leave the outgoing edges from g, alone. They will be relabeled to print
the character associated with the state to which they lead.

If we repeat this procedure for every state go, ¢, . . . , we turn Mo into
a Mealy machine Me. As we move from state to state, the things that get
printed are exactly what Mo would have printed itself.

The symbol that used to be printed automatically when the machine started
in state g is no longer the first output character, but this does not stop the
rest of the output string from being the same.

Therefore, every Mo is equivalent to some Me. [ |
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EXAMPLE

Below, a Moore machine is converted into a Mealy machine by the algorithm
of the proof above.

becomes

THEOREM 9

For every Mealy machine Me there is a Moore machine Mo that is equivalent
to it.

PROOF

Again the proof will be by constructive algorithm.

We cannot just do the reverse of the previous procedure. If we were to
try to push the printing instruction from the edge as it is in Me to the inside
of the state as it should be for a Moore machine, we might end up with a
conflict. Two edges might come into the same state but have different printing
instructions, as in this example.

What we need then are twin copies of the same state. The edge a/0 will
go into gs4' (g4 copy 1) and the edge b/1 will go into g4* (g4 copy 2). The
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edge labeled b/0 will also go into ¢,'. Inside these states, we include the
printing instuctions q4'/0 and q,%/1. The arrows coming out of each of these
copies of what used to be g, must be the same as the edges coming out of
g4 originally. We get two sets of the output edges each equal to the original
out-edges but the one set of original in-edges is divided between the two
copies. The example above becomes:

b
a a/l a/l
b/1 b b/1

The instruction to print a 0 or a 1 is now found inside the state, not along
the edge.

State by state we repeat this procedure. If all the edges coming into the
object state have the same printing instruction, then we can simply move that
printing instruction into the state. This does not effect the edges coming out
of the state.

a/l b/1

a becomes

If there is more than one possibility for printing as we enter the state, then
we need a copy of the state for each character we might have to print. (We
may need as many copies as there are characters in I".) All the edges that
entered a certain state that used to be labeled

b/1

something [ t

now lead into the copy of that state that instructs us to print the character 7.
Each of the copies of the orginal state retains a complete set of the original
outgoing edges. The labels on the incoming edges lose their printing instruc-
tions. The letters on the outgoing edges retain them if they have not lost them
already. This algorithm slowly turns a Mealy into a Moore state by state.

One interesting consequence of this algorithm is that an edge that was a
loop in Me may become one edge that is not a loop and one that is a loop
in Mo. For example,



(c) ketabton.com: The Digital Library

166 AUTOMATA THEORY

e becomes

What happens in the example above is that the edge labeled a/0 has to
enter a version of g3 that prints a 0. We call this g;'/0. The loop labeled b/1
at g; has to enter a version of g; that prints a 1. We call this g;%/1. When
we enter g3 from the edge a/0, we enter g:'/0, but we must also be able to
loop with »’s while staying in a gs-like state. Therefore, an edge labeled b
must connect ¢3'/0 to g3*/1. Since we must be allowed to repeat as many b’s
as we want there must be a b loop at the state g;*/1. Each b loop we go
around prints another 1 when it reenters gs>. As with all such twin descendants,
they must both be connected to g¢ by a/0.

If there is ever a state that has no edges entering it, we can assign it any
printing instruction we want, even if this state is the start state.

Let us repeat this process for each state of Me, qo, ¢, . . .. This will
produce Mo. If we have to make copies of the start state in Me, we can let
any one of them be the start state in Mo since they all give the identical
directions for proceeding to other states. Having a choice of start states means
that the conversion of Me into Mo is not unique. We should expect this since
any Me is equivalent to more than one Mo. It is equivalent to the Mo with
automatic start symbol O, or to the Mo with automatic start symbol 1, . . ..

As we run a string on the Mo that we have produced, we move from state
to state very much as in the Me. It may not be the exact same state that we
enter but one of the clones of the original. But this copy sends us along the
same direction that the original did. We end up printing the same sequence
of output characters.

The only difference is that when we start up the machine initially we print
some unpredictable character, specified by the start state, that does not cor-
respond to any output from Me, because Me never prints before reading an
input letter. But we allowed for this discrepancy in the definition of equiv-
alence, so there is no problem. |

Together, Theorems 8 and 9 allow us to say
Me = Mo.
When we went from Mo to Me, we kept the same number of states and same
number of edges. When we go from Me to Mo, these can both increase drast-
ically.
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EXAMPLE

Let us start with the following Mealy machine:

b/1

We can begin the conversion process anywhere because the algorithm does
not specify the order of replacing states; so let us first consider the state gq.
Two edges come into this state, one labeled @/0 and one labeled b/1. Therefore,
we need two copies of this state: one that prints a 0 (called ¢o') and one that
will print a 1 (called go%). Both of these states must be connected to g, through
an edge labeled a/l and to ¢; through an edge labeled /0. There is no loop
at qo, so these two states are not connected to each other. The machine be-
comes:

b/1

b

We must select the start state for the new machine, so let us arbitrarily
select go>. Notice that we now have two edges that cross. This sometimes
happens, but aside from making a messier picture, there is no real problem’
in understanding which edge goes where. Notice that the edge from ¢, to gqq,
which used to be labeled @/0, is now only labeled @ because the instruction
to print the O is found in the state g,'/0. The same is true for the edge from
g3, which also loses its printing instruction.
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State g, has only two edges coming into it: one from ¢, labeled a/l and
a loop labeled b/1. So whenever we enter g, we are always printing a 1. We
have no trouble here transferring the print instructions from the edges into the
state. The machine now looks like this:

b

What we have now is a partially converted machine or a hybrid. We could
run an input string on this machine, and it would give us the same output
as the original Me. The rules are that if an edge says print, then print; if a
state says print, then print. If not, don’t.

Let us continue the conversion. State g; is easy to handle. Two edges come
into it, both labeled »/0, so we change the state to ¢3/0 and simplify the edge
labels to b alone.




(c) ketabton.com: The Digital Library

FINITE AUTOMATA WITH OUTPUT 169

The only job left is to convert state ¢,. It has some O-printing edges entering
it and some 1-printing edges (actually two of each, counting the loop). There-
fore, we must split it into two copies, ¢,' and ¢,°. Let the first print a 0 and
the second print a 1. The two copies will be connected by a b edge going
from g, to g;' (to print a 0). There will also be a b loop at ¢,'. The final
machine is this:

The student of Computer Science may already have met these machines in
courses on Computer Logic or Architecture. They are commonly used to de-
scribe the action of sequential circuits that involve flip-flops and other feedback
electronic devices for which the output of the circuit is not only a function
of the specific instantaneous inputs but also a function of the previous state
of the system. The total amount of history of the input string that can be
“remembered” in a finite automaton is bounded by the number of states the
automaton has. A machine can recognize a language of arbitrarily long words,
but it cannot remember a particular word that has more letters than the machine
has states. A 6-state machine cannot remember the last 7 input letters but it
can remember a specific five-lettet word like aabaa. Chapter 11 will deal with
this subject in more depth. Automata with input and output are sometimes
called transducers because of their connection with electronics.

EXAMPLE

Let us consider an example of a simple sequential circuit. The box labeled
NAND means “not and.” Its output wire carries the complement of the Boolean
AND of its input wires. The output of the box labeled DELAY is the same
as its previous input. It delays transmission of the signal along the wire by
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one step (clock pulse). The DELAY is sometimes called a D flip-flop. The
AND and OR are as usual. Current in a wire is denoted by the value 1, no
current by O.

input A B output
NAND —>»1 DELAY OR

We identify four states based on whether or not there is current at points
A and B in the circuit.

g is A=0 B =
g is A=0 B =
¢ is A=1 B =
1 B =

I

qs is A

The operation of this circuit is such that after an input of 0 or 1 the state
changes according to the following rules:

new B = old A
new A (input) NAND (old A OR old B)
output = (input) OR (old B)

[

At various discrete pulses of a time clock input is received, the state changes,
and output is generated.
Suppose we are in state go and we recive the input O:

new B =o0ldA =0

new A = (input) NAND (old A OR old B)
= (0) NAND (0 OR 0)
= 0 NAND O
=1

output = 0

OORO =
The new state is g, (since new 4 = 1, new B = 0).
If we are in state qo and we receive the input 1:

new B =o0ldA =0
new A = 1 NAND (OOR 0) = 1
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» output = 1OR0 =1
The new state is ¢, (since the new A = | and the new B = 0).

If we are in ¢q; and we receive the input O:

newB = oldA =0
new A = ONAND@OOR 1) =1
output = OOR 1 = 1

The new state is g,.

If we are in ¢, and we receive the input 1:

newB =o0ldA =0

newA = 1 NANDOOR 1) =0
output = 1OR1 =1
The new state is ¢o.
If we are in state ¢» and we receive the input O:
newB =oldA =1
new A = ONAND (1 OR0) = 1
output = OOR 0 = 0
The new state is g (since new A = 1, new B = 1).
If we are in g, and we receive the input 1:
newB = oldA = 1
newA = I NAND(1OR0) =0
output = 1 OR0 = 1

The new state is gq;.

If we are in g3 and we receive the input O:

new B = oldA = 1
new A = O NAND (1 OR 1)
output = OOR | = 1

The new state is g;.

i

If we are in ¢; and we receive the input 1:

newB = oldA = 1
new A INAND (1OR 1) =0
output = 1OR 1 =1

The new state is q;.
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After input 0 After input 1
Old state New state Qutput New state Output
9o 9> 0 q> 1
9 q 1 do 1
9 3 0 qQ 1
q3 qs 1 q 1

The action of this sequential feedback circuit is equivalent to the following
Mealy machine.

If we input two 0’s no matter which state we started from, we will get to
state g3. From there the input string 011011 will cause the output sequence

111011.
COMPARISON TABLE FOR AUTOMATA (version 2)

FA TG NFA NFA-A MOORE | MEALY
Start states One One or more One One One One
Final states } Some or none | Some or none | Some or none | Some or none None None
Letters Words from Letters Letters from Letters ito

Edge labels from X 3 from 3 3 and A from X i from X

o from I’

Number of | One for each Arbitrary Arbitrary Arbitrary One for One for

edges from letter in X each letter | each letter
each state in3 in¥
Deterministic Yes No No No Yes Yes
Output No No No No Yes Yes
Page defined 65 89 143 150 155 158
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PROBLEMS

Each of the following is a Moore machine with input alphabet £ = {a,b} and
output alphabet I' = {0,1}. In Problems 1 through 5, draw the machines given
the transition and output tables. In Problems 6 through 10, construct the tran-
sition and output tables given the pictorial representations of the machines.

1. | a I b Output
q0 q1 92 1
q1 qQ q 0
9 qQ 90 1
2 a b Qutput
9o qo q2 0
q q1 do 1
92 q2 qi 1
3. a b Output
9o qo qi 1
Q1 /) 92 0
92 q: q 1
q3 q q1 0
4. a b Output
9o q3 qz 0
Qi q 90 0
92 92 9 1
q3 90 Q1 0
5. a b Output
90 qQ 9 0
qi q2 q3 0
92 qs3 qa 1
q3 qa4 q4 0
qs 9o 9o 0
6 a a. b



(c) ketabton.com: The Digital Library

174 AUTOMATA THEORY

10.

I1. On each of the Moore machines in Problems 1 through 10, run the input
sequence aabab. What are the respective outputs?

12.  Even though a Moore machine does not define a language of the strings
that it accepts as input, we can still use it to recogonize a language in
the following sense. We can arrange that the last character printed out
by the machine is an A for accept or an R for reject. For example, the
following Moore machine will recognize the language of all words of
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the form (a + b)*aa(a + b)* in the sense that these words and only
these words will cause the last character printed by the machine to be

Show that all languages defined by regular expressions can be recognized
by Moore machines in this fashion.

Suppose we define a Less machine to be a Moore machine that does
not automatically print the character of the start state. The first character
it prints is the character of the second state it enters. From then on, for
every state it enters it prints a character, even when it reenters the start
state. In this way the input string gets to have some say in what the
first character printed is going to be. Show that these Less machines are
equivalent to Mealy machines in the direct sense, that is, for every Less
machine there is a Mealy machine that has the same output for every
input string.

Mealy machines can also be defined by transition tables. The rows and the

columns are both labeled with the names of the states. The entry in the table
is the label of the edge (or edges) going from the row state to the column
state (if there is no such edge, this entry is blank).

Construct the transition table for each of the four Mealy machines shown

below.

14.

15.

a/0 b/1 b/0
/0 a/0
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16. a/0
b/0
a/l

17.

18. The example of the increment machine on page 160 used three states
to perform its job. Show that two states are all that are needed.

19. (i) Convert the Moore machines in Problems 1 through 10 into Mealy
machines.

(i) Convert the Mealy machines in Problems 14 through 17 into Moore
machines.

20. Draw a Mealy machine equivalent to the following sequential circuit.

input [_l A B output
OR DELAY AND
ekl I

OR
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CHAPTER 10

REGULAR
LANGUAGES

A language that can be defined by a regular expression is called a regular
language. In the next chapter we address the important question, “Are all
languages regular?” The answer is no. But before beginning to prove this, we
discuss some of the properties of the class of all languages that are regular.

The information we already have about regular languages is summarized in
the following theorem.

THEOREM 10

If L, and L, are regular languages, then L, +L,, L,L, and L,* are also regular
languages.

Remark

L; + L, means the language of all words in either L, or L,. L;L, means the
language of all words formed by concatentating a word from L; with a word
from L,. L,* means strings that are the concatenation of arbitrarily many factors
from L;. The result stated in this theorem is often expressed by saying: The

177
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set of regular languages is closed under union, concatenation, and the Kleene
star operator.

PROOF 1 (by Regular Expressions)

If L, and L, are regular languages, there are regular expressions r, and r;
that define these languages. Then (r; + ry) is a regular expression that defines
the language L, + L,. The language L,L, can be defined by the regular expres-
sion rir,. The language L,* can be defined by the regular expression (r))*.
Therefore, all three of these sets of words are definable by regular expressions
and so are themselves regular languages. |

The proof of Theorem 10 above uses the fact that L, and L, must be
definable by regular expressions if they are regular languages. Regular lan-
guages can also be defined in terms of machines, and as it so happens machines
can also be used to prove this theorem.

PROOF 2 (by Machines)

Since L, and L, are regular languages, there must be TG’s that accept them.
Let TG, accept L, and TG, accept L,. Let us further assume that 7G, and
TG, each have a unique start state and a unique separate final state. If this
is not the case originally, we can modify the TG’s so that it becomes true
as in Theorem 6, Part 2.

The TG described below accepts the language L; + Li:

Starting at the — of TG,, our only option is to follow a path on 7G,.
Starting at the — of TG,, we can only follow a path on TG,. Starting at the
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new — state, we must choose to go to one machine or the other; once there,
we stay there. This machine proves that L, + L, is regular.
The TG described below accepts the language IL,L,:

———— —————

-~

~ - S

where 1 is the former + of 7G, and 2 is the former — of TG,.
The TG described below accepts the language L, *:

Here we begin at the — of TG, and trace a path to the + of TG,. At
this point, we could stop and accept the string or jump back, at no cost, to
the — of TG, and run another segment of the input string back down to +.
We can repeat this process as often as we want. The edge that goes directly
from — to + allows us to accept the word A, but otherwise it has no effect
on the language accepted. ||

EXAMPLE
Let the alphabet be 3 = {a,b}.
Let

L, = all words of two or more letters
that begin and end with the same letter

and
L, = all words that contain the substring aba

For these languages we will use the following TG’s and regular expressions:
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a. b
TG,
a, b a b
aba
r, r;
a(a + b)*a + b(a + b)*b (a + b)* aba (a + b)*

The language L, + L, is regular because it can be defined by the regular
expression:

[a(a+b)*a + b(a+b)*b] + [(a+b)* aba (a+b)*]

(for the purpose of clarity we have employed brackets instead of nested pa-
rentheses) and is accepted by the TG:
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The language L,L, is regular because it can be defined by the regular expres-
sion:

[a(a+Db)*a + b(a+b)*b] [(a+b)* aba (a+b)*]

and is accepted by the TG:

a, b
The language L,* is regular because it can be defined by the regular expres-
sion:
[a(a+Db)*a + b(a+b)*b]*

and is accepted by the TG:
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DEFINITION

If L is a language over the alphabet, 3, we define its complement, L', to
be the language of all strings of letters from 3, that are not words in L.

Many authors use the bar notation L to denote the complement of the lan-
guage L, but, as with most writing for computers, we will use the more
typable form.

EXAMPLE

If L is the language over the alphabet 3 = {a,b} of all words that have a
double a in them, then L’ is the language of all words that do not have a
double a. [ ]

It is important to specify the alphabet 3, or else the complement of L might
contain “cat”, “dog”, “frog”. . ., since these are definitely not strings in L.

Notice that the complement of the language L’ is the language L. We could
write this as

(LY = L.

This is a theorem from Set Theory that is not restricted only to languages.

THEOREM 11

If L is a regular language, then L’ is also a regular language. In other words,
the set of regular languages is closed under complementation.

PROOF

If L is a regular language, we know from Kleene’s Theorem that there is
some FA that accepts the language L. Some of the states of this FA are final
states and, most likely, some are not. Let us reverse the final status of each
state, that is, if it was a final state, make it a nonfinal state, and if it was
a nonfinal state, make it a final state. If an input string formerly ended in a
nonfinal state, it now ends in a final state and vice versa. This new machine
we have built accepts all input strings that were not accepted by the original
FA (all the words in L’) and rejects all the input strings that the FA used to
accept (the words in L). Therefore, this machine accepts exactly the language
L'. So by Kleene’s Theorem, L’ is regular.
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EXAMPLE

An FA that accepts only the strings aba and abb is shown below:

a, b

An FA that accepts all strings other than aba and abb is

a, b

Notice that we have to reverse the final/nonfinal status of the start state as
well. |
THEOREM 12
If L, and L, are regular languages, then L, N L, is also a regular language.
In other words, the set of regular languages is closed under intersection.
PROOF
By DeMorgan’s Law for sets of any kind (regular languages or not):

Ll n Lz — (Lll + Lzl),
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This is illustrated by the Venn diagrams below.

(Ly+ L) = =LNL,

This means that the language L, N L, consists of all words that are not in
either L,” or L,’. Since L, and L, are regular, then so are L;" and L,’. Since
L, and L," are regular, so is L;" + L,’. And since L," + L, is regular, then
so is (L;" + L,")', which means L, N L, is regular. ||

This is a case of “the proof is quicker than the eye.” When we start with
two languages L; and L,, which are known to be regular because they are
defined by FA’s, finding the FA for L, N L, is not as easy as the proof makes
it seem. If L, and L, are defined by regular expressions finding L, N L, can
be even harder. However, all the algorithms that we need for these construc-
tions have already been developed.

EXAMPLE
Let us work out one example in complete detail. We begin with two languages
over 3 = {a,b}.

L, = all strings with a double a

L, = all strings with an even number of a’s.

These languages are not the same, since aaa is in L; but not in L, and aba
is in L, but not in L;.

They are both regular languages because they are defined by the following
regular expressions (among others).

r, = (a + b)*aa(a + b)*

r, = b*(ab*ab*)*

The regular expression r, is somewhat new to us. A word in the language
L, can have some b’s in the front, but then whenever there is an g it is
balanced (after some b’s) by another a. This gives us factors of the form
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(ab*ab*). The word can have as many factors of this form as it wants. It
can end in an a or a b.

Since these two languages are regular, Kleene’s Theorem says that they can
also be defined by FA’s. The two smallest of these are:

FA,

FA,

In the first machine we stay in the start state until we read our first a,
then we move to the middle state. This is our opportunity to find a double
a. If we read another a from the input string while in the middle state, we
move to the final state where we remain. If we miss our chance and read a
b, we go back to ~. If we never get past the middle state, the word has
no double a and is rejected.

The second machine switches from left state to right state or from right
state to left state every time it reads an a. It ignores all b’s. If the string
begins on the left and ends on the left, it must have made an even number
of left/right switches. Therefore, the strings this machine accepts are exactly
those in L,.

Now the first step in building the machine (and regular expression) for
L, N L, is to find the machines that accept the complementary languages L,
and L,". Although it is not necessary for the successful execution of the al-
gorithm, the English description of these languages is:

L, = all strings that do not contain the substring aa

Ly

all strings having an odd number of a’s

In the proof of the theorem that the complement of a regular language is
regular we gave the algorithm for building the machines that accept these
languages. All that we have to do is reverse what is a final state and what
is not a final state. The machines for these languages are then
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FA;

FA,

Even if we are going to want both the regular expression and the FA for
the intersection language, we do not need to find the regular expressions that
go with these two component machines. However, it is good exercise and the
algorithm for doing this was presented as part of the proof of Kleene’s Theo-
rem. Recall that we go through stages of transition graphs with edges labeled
by regular expressions. FA," becomes:

State 3 is part of no path from — to +, so it can be dropped. When we
eliminate the edge from state 2 to state 1, we are destroying a loop of ab
at state 1, a loop of bb*a at state 2, and the path: state 2, state 1, +, which
adds a bb*-edge from 2 to +.
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The possible paths from — to + are now from — to state 1 to +, which
is labeled (b + ab)*, and from — to state 1 to state 2 to + labeled

(b + ab)*a(bb*a)*(A + bb*)
The regular expression we have produced for L,” is then:
(b + ab)* + (b + ab)*a(bb*a)*(A + b*)

There are many regular expressions for this set. Rather than use this com-
plicated formula, let us note that the term (b + ab)* alone covers all words
that have no double a and end in b. Therefore, we can produce the same set
by adding the factor (nothing or a) to the end of this expression:

r’ = (b + ab)*(A + a)

This is the regular expression we use for L;'.
Let us now do the same thing for the language L, . FA,' becomes:

Let us start the simplification of this picture by eliminating the edge from
state 1 to state 2. We must ask what paths this destroys that we must replace.
One path it destroys is a loop back to state 1. We replace this with a loop
at state 1 labeled ab*a, which is what the old loop through state 2 amounted
to. The other path this elimination destroys is the path from state 1 to state
2 to state +. We must include an edge for this path labeled ab*. This picture
is now:
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We can now see that there iS no way to get to state 2, so it cannot be
part of any path from — to +. Therefore, we can eliminate it and its two
edges. (Strictly speaking, to work entirely according to the algorithm, we should
eliminate its edges first and then notice that it can be dropped. We have taken
the liberty of taking an insightful shortcut.) The two loops at state 1 can be
combined to give:

O—=—CF=—0

We can now eliminate state 1 and we have

: : (b+ab*a)*ab* : :

which gives us the regular expression

r,’ = (b + ab*a)*ab*

This is one of several regular expressions that define the language of all
words with an odd number of a’s. Another is '

b*ab*(ab*ab*)*

which we get by adding the factor b*a in front of the regular expression for
L,. This works because words with an odd number of a’s can be interpreted
as b*a in front of words with an even number of a’s. The fact that these
two different regular expressions define the same language is not obvious. The
question, “How can we tell when two regular expressions are equal?”, will
be answered in Chapter 12.

We now have regular expressions for L,’ and L,’, so we can write the
regular expression for L' + L,'. This will be

riy + r, = (b + ab)*(A + a) + (b + ab*a)*ab*

We must now go in the other direction and make this regular expression into
an FA so that we can take its complement to get the FA that defines L, N L,.

To build the FA that corresponds to a complicated regular expression is no
picnic, as we remember from the proof of Kleene’s Theorem.

An alternative approach is to make the machine for L," + L," directly from
the machines for L," and L,’ without resorting to regular expressions. We have
already developed the method of building a machine that is the sum of two
FA’s also in the proof of Kleene’s Theorem.
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Let us label the states in the two machines for FA," and FA, as shown:
FA, FA,
b a

where the start states are x; and y, and the final states are x;, x;, and y,.
The six possible combination states are:

7y = x; or y; start, final (words ending here are accepted in FA,')

7 = Xx; Or y, final (words ending here are accepted on FA,’ and FA,')
73 = x, or y, final (words ending here are accepted on FA,")

74 = x; or y, final (words ending here are accepted on FA,’ and FA,")
Zs = x3 or y; not final

Ze = X3 Or y, final (words ending here are accepted on FA,")

The transition table for this machine is:

a b
+z; Z4 Zy
+2z; Z3 22
+ 23 Zg Zy
+24 25 b7}

25 26 Zs
+ 26 Zs Z6

And so the machine can be pictured like this:
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This is an FA that accepts the language L," + L,". If we reverse the status
of each state from final to nonfinal and vice versa, we produce an FA for
the language L, N L,. This is it:

This can be made into a regular expression as follows. First we observe
that there is only one — and one +, so we do not have to add extra terminal
states. Let us begin by removing the edge from z, to z;. The whole path from
z4 10 z; t0 z3 can be replaced with an edge labeled bb*a. Let us also eliminate
the edge from z; to z¢ and let z; go directly into + on an edge labeled ab*a.
There is no need to include in the z; path the possible looping back and forth
between zg and + that can be done once z3 leads into +. Once we get to
+, we can hop out and back again. We can then replace zs with a loop at
+ labeled ab*a.

The picture is now

There are now two paths that start at — and go back to —, the simple
loop at — and the circuit — to z; to z; to —. The second path can be reduced
to the loop labeled (abb*ab), and we can then remove the edge from z; to
—. From z; to + there are two paths: one by way of z; and the other direct.
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We can remove the edge z, to z; (and then the whole state z;) by labeling
the direct edge z; to + with both alternatives as shown below:

b+ab*a

_ a m at+bb*aab*a +

b+abb*ab

This whole machine reduces to the regular expression:
(b + abb*ab)*a(a + bb*aab*a)(b + ab*a)*

Even though we know this expression must be our answer because we know
how it was derived, let us try to analyze it anyway to see if we can understand
what this language means.in some more intuitive sense.

As it stands, there are four factors (the second is just an a and the first
and fourth are starred). Every time we use one of the options from the two
end factors we incorporate an even number of a’s into the word (either none
or two). The second factor gives us an odd number of a’s (exactly one). The
third factor gives us the option of taking either one or three a’s. In total, the
number of @’s must be even. So all the words in this language are in L,.

The second factor gives us an a, and then we must immediately concatenate
this with one of the choices from the third factor. If we choose the a, then
we have formed a double a. If we choose the other expression, bb*aab*a,
then we have formed a double a in a different way. By either choice the
words in this language all have a double a and are therefore in L,.

This means that all the words in the language of this regular expression
are contained in the language L, N L,. But are all the words in L, N L, in-
cluded in the language of this expression?

The answer to this is yes. Let us look at any word that is in L; N L,. It
has an even number of a’s and a double a somewhere in it. There are two
possibilities to consider separately:

1. Before the first double a there are an even number of a’s.
2. Before the first double a there are an odd number of a’s.

Words of type | come from the expression below.

{even number of a’s but not doubled) (first aa)
(even number of a’s may be doubled)

= (b + abb*ab)* (aa)}(b + ab*a)*

= type 1.
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Notice that the third factor defines the language L, and is a shorter expression
than the r; we used above.
Words of type 2 come from the expression:

(odd number of not doubled a’s) (first aa)
{odd number of a’s may be doubled)

Notice that the first factor must end in b, since none of its a’s is part of a
double a.

= [(b + abb*ab)*abb*] aa [b*a(b + ab*a)*]
= (b + abb*ab)*(a)(bb* aab*a)(b + ab*a)*
= type 2

Adding type ! and type 2 together (and factoring out like terms using the
distributive law), we obtain the same expression we got from the algorithm.
We now have two proofs that this is indeed a regular expression for the
language L, N L,. |

This completes the calculation that was started on page 184.

The proofs of the last three theorems are a tour de force of technique. The
first was proved by regular expressions and TG’s, the second by FA’s, and
the third by a Venn diagram.

We must confess now that the proof of the theorem that the intersection
of two regular languages is again a regular language was an evil pedagogical
trick. The theorem is not really as difficult as we made it seem. We chose
the hard way to do things because it was a good example of mathematical
thinking: Reduce the problem to elements that have already been solved.

This procedure is reminiscent of a famous story about a theoretical math-
ematician. Professor X is surprised one day to find his desk on fire. He runs
to the extinguisher and douses the flames. The next day he looks up from his
book to see that his wastepaper basket is on fire. Quickly he takes the basket
and empties it onto his desk which begins to burn. Having thus reduced the
problem to one he has already solved, he goes back to his reading. (The
students who find this funny are probably the ones who have been setting the
fires in his office.)

The following is a more direct proof that the intersection of two regular
languages is regular.

GOOD PROOF OF THEOREM 12

Let us recall the method we introduced as part of the proof of Kleene’s Theo-
rem to show that for any FA, and FA, there is an FA; that accepts the language
that is the union of these two languages, that is, FA; accepts any string ac-
cepted by either FA; or FA,.
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To prove this we showed how to build a machine with states z;, z;, . . . of
the form Xememing if the input is running on FA; Or Ysomeming if the input is
running on FA,. If either the x state or the y state was a final state, we made
the z state a final state.

Let us now build the exact same machine FA; but let us change the des-
ignation of final states. Let the z state be a final state only if both the cor-
responding x state and the corresponding y state are final states. Now FA,
accepts only strings that reach final states simultaneously on both machines.

The words in the language for FA; are words in both the languages for
FA; and FA,;. This is therefore a machine for the intersection language. I

Not only is the proof shorter but also the construction of the machine has
fewer steps.

EXAMPLE

In the proof of Kleene’s Theorem, we took the sum of the machine that accepts
words with a double a

a b

- X) X2 X1
X2 X3 X1
+Xx3 X3 X3

and the machine that accepts all words in EVEN-EVEN

a b

*n y3 Y2

Y2 Ya Y

y3 Y1 Ya

Ya y2 ¥3

The resultant union-machine was
a b Old States

tzl V4) Z3 Xy Oor y,
2y Z4 Zs X2 Or y3
23 26 Z] X1 Or y,
+24 Z7 zZg X3 Or ¥y
Zs 29 210 X1 Or y4
Z6 28 210 X2 O yq
+z7 Z4 211 X3 Or y3
+ 23 11 Z4 X3 Or ¥,
29 21 Zy X2 OF ¥
Z10 Zi2 Zs X1 01 ys
+zn Zg Z7 X3 Of Y4
+ 2z 2Z7 Z3 X2 Or y;
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The intersection machine is identical to this except that it has only one final
state. In order for the z state to be a final state, both the x and y states must
be final states. If FA, and FA, have only one final state, then FA; can have
only one final state (if it can be reached at all). The only final state in our
FA; is z4, which is (x; or y)).

This complicated machine is pictured below:

The dashed lines are perfectly good edges, but they have to cross other
edges. With a little imagination, we can see how this machine accepts all
EVEN-EVEN with a double a. All north-south changes are caused by b’s, all
east-west by a’s. To get into the inner four states takes a double a. |

EXAMPLE

Let us rework the example in the first proof once again, this time by the
quick method. This is like the citizens of the fabled city of Chelm who on
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learning that they did not have to carry all of their logs down from the top
of the mountain were so overjoyed that they carried them all back up again

so that they could use the clever work-saving method of rolling them down.

L, = all strings with a double a

FA,
b a a, b
O
b
L, = all strings with an even number of a’s
FA,

b a b

The machine that simulates the same input running on both machines at
once is:

a b Old States
— 2] Z4 Z X1 Or y;
Z) Z3 Zp X1 Or y,
Z3 Z6 Z1 X2 Or ¥
Z4 25 2y X2 Or y2
Z5 Zg Z5 X3 Ory,
Z6 Zs Ze X3 Or y2

To be accepted by FA; an input string must have its path end in x;. To
be accepted by FA,, an input string must have its path end in y,. To be



(c) ketabton.com: The Digital Library

196 AUTOMATA THEORY
accepted by both machines at once, an input string on the z-machine, starting
its processing in z;, must end its path in state zs and only zs. |

b

EXAMPLE
Let us work through one last example of intersection. Our two languages will
be

L, = all words that begin with an a

L, = all words that end with an a

r, =a(a+ b)*

r,=(a+ b)a
The intersection language will be
L, N L, = all words that begin and end with the letter a

The language is obviously regular since it can be defined by the regular
expression

a(a + b)*a + a

Note that the first term requires that the first and last a’s be different, which
is why we need the second choice “+ a.”

In this example we were lucky enough to “understand” the languages, so
we could concoct a regular expression that we ‘“understand” represents the
intersection. In general, this does not happen, so we follow the algorithm
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presented in the proof, which we can execute even without the benefit of
understanding.
For this we must begin with FA’s that define these languages:

a, b

As it turns out, even though the two regular expressions are very similar,
the machines are very different. There is a three-state version of FA, but no
two-state version of FA;.

We now build the transition table of the machine that runs its input strings
on FA, and FA, simultaneously.

State I Read a I Read b I New names

XL Or yi | X2 Or y2 | x3 Or y — 2y
X2 OF Y2 | X2 OF Y2 | Xp O Yy Z3
X3 Or y1 | X3 OF Y2 | X3 OF Y Z3
X2 Of Yy | X2 OF Y2 | X2 OI Yy Z4
X3 Or y2 1 X3 Or y, | X3 O'I' i Zs

The machine looks like this:
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If were building the machine for
L, + L, = all words in either L; or L, or in both

We would put +’s at any state representing acceptance by L, or L,, that
is, any state with an x, or a y;:

V4 +
Z4 +
zs +
Since we are instead constructing the machine for

L, N L, = all words in both L; and L,

we put a + only after the state that represents acceptance by both machines
at once:
Z; + =x 0r y,
Strings ending here are accepted by FA, if being run on FA, (by ending
in x;) and by FA, if being run on FA, (by ending in y,). [ |

Do not be fooled by this slight confusion
Zy = x; or y, = accepted by FA, and by FA,

The poor plus sign is perilously overworked.

2+ 2 (sometimes read “2 and 2 are 4”)
(a + b)* (a or b repeated as often as we choose)

a’ (a string of at least one a)

L+ L, (all words in L, or in L;)
+2y, 20 + (z is a final state, the machine accepts input

strings if they end here)

If humans were not smarter than machines, they could never cope with the
mess they make of their own notation.

PROBLEMS

For each of the following pairs of regular languages, find a regular expression
and an FA that each define L, N L,.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. (a

. (b

. (b

+

ab)*(a + A)

+

ab)*(a + A)

. (b + ab)*(a + A)

(ab*)*
(ab*)*
(ab*)*

all strings of even length
= (aa + ab + ba + bb)*

even length strings
even length strings
odd length strings
even length strings

(i) even length strings

(ii) even length strings

(1) even length strings

(ii) even length strings
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L, L,

. (a + b)*a b(a + b)*

. (@ + b)*a (a + b)*aa(a + b)*
. (a + b)*a (a + b)*b
+ b)b(a + b)* b(a + b)*

(a + b)b(a + b)* (a + b)*aa(a + b)*
(a + b)b(a + b)* (a + b)*b

(a + b)*aa(a + b)*
(b + ab*a)*ab*

(a + ba)*a

ba + b)*

a(a + b)*

(a + b)*aa(a + b)*

b(a + b)*

(a + b)*aa(a + b)*
(b + ab)*(a + A)
a(a + b)*
EVEN-EVEN

strings with an even number of a’s

strings with an odd number of a’s

strings with an odd number of a’s and
an odd number of b’s

strings with an odd number of a’s and
an even number of b’s
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20. We have seen that since the regular languages are closed under union
and complement, they must be closed under intersection. Find a col-
lection of languages that is closed under union and intersection but not
under complement.
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CHAPTER 11

NONREGULAR
LANGUAGES

By using FA’s and regular expressions, we have been able to define many
languages. Although these languages have had many different structures, they
took only a few basic forms: languages with required substrings, languages
that forbid some substrings, languages that begin or end with certain strings,
languages with certain even/odd properties, and so on. We will now turn our
attention to some new forms, such as the language PALINDROME of Chapter
3 or the language PRIME of all words a” where p is a prime number.  In
this chapter we shall see that neither of these is a regular language. We can
describe them in English, but they cannot be defined by an FA. More powerful
machines are needed to define them, machines that we build in later chapters.

DEFINITION

A language that cannot be defined by a regular expression is called a nonregular
language. ]

201
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By Kleene’s theorem, a nonregular language can also not be accepted by
any FA or TG. All languages are either regular or nonregular, none are both.
Let us first consider a simple case. Let us define the language L.

= {A ab aabb aaabbb aaaabbbb aaaaabbbbb . . .}
We could also define this language by the formula
L=1{ab forn=012345..}
or for short
L = {a"b"}

When the range of the abstract exponent n is unspecified we mean to imply
that it is 0,1,2,3,

We shall now show that this language is nonregular. Let us note, though,
that it is a subset of many regular languages, such as a*b*, which, however,
also includes such strings as dab and bb that {a"b"} does not.

Let us be very careful to note that {a"b"} is not a regular expression. It
involves the symbols { } and » that are not in the alphabet of regular expres-
sions. This is a language-defining expression that is not regular. Just because
this is not a regular expression does not mean that none exists; this we shall
now prove.

Suppose on the contrary that this language were regular. Then there would
have to exist some FA that accepts it. Let us picture one of these FA’s (there
might be several) in our mind. This FA might have many states. Let us say
that it has 95 states, just for the sake of argument. Yet we know it accepts
the word a%b°. The first 96 letters of this input string are all a’s and they
trace a path through this machine. The path cannot visit a new state with each
input letter read because there are only 95 states. Therefore, at some point
the path returns to a state that it has already visited. The first time it was in
that state it left by the a-road. The second time it is in that state it leaves
by the a-road again. Even if it only returns once we say that the path contains
a circuit in it. (A circuit is a loop that can be made of several edges.) First
the path wanders up to the circuit and then it starts to loop around the circuit,
maybe many times. It cannot leave the circuit until a b is read in. Then the
path can take a different turn. In this hypothetical example the path could
make 30 loops around a three-state circuit before the first b is read.

After the first b is read, the path goes off and does some other stuff fol-
lowing b edges and eventually winds up at a final state where the word a*®b°
is accepted.

Let us, for the sake of argument again, say that the circuit that the a-edge
path loops ‘around has seven states in it. The path enters the circuit, loops
around it madly and then goes off on the b-line to a final state. What would
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happen to the input string a®*7b%? Just as in the case of the input string
a®®b®, this string would produce a path through the machine that would walk
up to the same circuit (reading in only a’s) and begin to loop around it in
exactly the same way. However, the path for a®*7b% loops around this circuit
one more time than the path for a®°b*—precisely one extra time. Both paths,
at exactly the same state in the circuit, begin to branch off on the b-road.
Once on the b-road, they both go the same 96 b-steps and arrive at the same
final state. But this would mean that the input string a'®b*° is accepted by
this machine. But that string is not in the language L = {a"b"}.

This is a contradiction. We assumed that we were talking about an FA that
accepts exactly the words in L and then we were able to prove that the same
machine accepts some word that is not in L. This contradiction means that
the machine that accepts exactly the words in L does not exist. In other words,
L is nonregular.

Let us review what happened. We chose a word in L that was so large
(had so many letters) that its path through the FA had to contain a circuit.
Once we found that some path with a circuit could reach a final state, we
asked ourselves what happens to a path that is just like the first one, but that
loops around the circuit one extra time and then proceeds identically through
the machine. The new path also leads to the same final state, but it is generated
by a different input string—an input string not in the language L.

Perhaps the picture below can be of some help in understanding the idea
behind this discussion. Let the path for a®b° be:

®

o)

N\

Bl

We have not indicated all the edges in this FA, only those used in the
path of the word a°b°. State 6 is the only state for which we see both an a-
exit edge and a b-exit edge.

In the path this input string takes to acceptance we find two circuits. The
a-circuit 3-4-5-6 and the b-circuit 9-10. Let us concentrate on the a-circuit.
What would be the path through this FA of the input string a'*6°? The path
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for a'*b® would begin with the same nine steps as the path for a5’ ending
after nine steps in state 6. The input string a°6® now gives us a b to read,
which makes us go to state 7. However, the path for a'*b’ still has four more
a-steps to take, which is one more time around the circuit, and then it follows
the nirie b-steps.

The path for a'*b° is shown below:

e

aaa

;

Let us retun to our first consideration.

With the assumptions we made above (that there were 95 states and that
the circuit was 7 states long), we could also say that a''%%, a''’p%,
a'?p%, . . . are also accepted by this machine.

They can all be written in this form

(196( a7) m b96

where m is any integer 0,1,2,3, . . . . If m is O, the path through this machine
is the path for the word a®b®. If m is 1, the path looks the same, but it
loops the circuit one more time. If m = 2, the path loops the circuit two
more times. In general, a®*(a’)"b%® loops the circuit exactly m more times.
After doing this looping it gets off the circuit at exactly the same place a*®h%
does and proceeds along exactly the same route to the final state. All these
words, though not in L, must be accepted.

Suppose that we had considered a different machine to accept the language
L, perhaps a machine that has 732 states. When we input the word a’*3b'%,
the path that the a’s take must contain a circuit. We choose the word a’**p"*
to be efficient. The word a®*°b*** also must loop around a circuit in its a-
part of the path. Suppose the circuit that the a-part follows has 101 states.
Then a’**'9%p™3 would also have to be accepted by this machine, because
its path is the same in every detail except that it loops the circuit one more
time. This second machine must also accept some strings, that are not in L;
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= a®@"""p? form=1 2 3...

For each different machine we suggest to define L there is a different counter-
example proving that it accepts more than just the language L.

There are machines that include L in the language they accept, but for each
of them there are infinitely many extra words they must also accept.

All in all, we can definitely conclude that there is no FA that accepts all
the strings in L and only the strings in L. Therefore L is nonregular.

The reason why we cannot find an FA that accepts L is not because we
are stupid, but because none can exist.

The principle we have been using to discuss the language L above can be
generalized so that it applies to consideration of other languages. It is a tool
that enables us to prove that certain other languages are also nonreg-
ular. We shall now present the generalization of this idea, called the Pumping
Lemma for regular languages, which was discovered by Yehoshua Bar-Hillel,
Micha A. Perles, and Eliahu Shamir in 1961.

The name of this theorem is interesting. It is called “pumping” because we
pump more stuff into the middle of the word, swelling it up without changing
the front and the back part of the string. It is called a “lemma” because,
although it is a theorem, its main importance is as a tool in proving other
results of more direct interest, namely, it will help us prove that certain lan-
guages are nonregular.

THEOREM 13

Let L be any regular language that has infinitely many words. Then there exist
some three strings x, y, and z (where y is not the null string) such that all
the strings of the form :

xyz form=1 2 3

are words in L.

PROOF

If L is a regular language, then there is an FA that accepts exactly the words
in L. Let us focus on one such machine. Like all FA’s, this machine has
only finitely many states. But L has infinitely many words in it. This means
that there are arbitrarily long” words in L. (If there were some maximum on
the length of all the words in L, then L could have only finitely many words
in total.)
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Let w be some word in L that has more letters in it than there are states
in the machine we are considering. When this word generates a path through
the machine, the path cannot visit a new state for each letter because there
are more letters than states. Therefore, it must at some point revisit a state
that it has been to before. Let us break the word w up into three parts.

Part 1  All the letters of w starting at the beginning that lead up to the first state
that is revisited. Call this part x. Notice that x may be the null string if
the path for w revisits the start state as its first revisit.

Part 2 Starting at the letter after the substring x, let y denote the substring of w
that travels around the circuit coming back to the same state the circuit
began with. Since there must be a circuit, y cannot be the null string. y
contains the letters of w for exactly one loop around this circuit.

Part 3 Let z be the rest of w starting with the letter after the substring y and
going to the end of the string w. This z could be null. The path for z
could also possibly loop around the y circuit or any other. What z does
is arbitrary.

Clearly from the definition of these three substrings

w = xyz

and w is accepted by this machine.
What is the path through this machine of the input string

xyyz 2

It follows the path for w in the first part x and leads up to the beginning of
the place where w looped around a circuit. Then like w it inputs the string
y, which causes the machine to loop back to this same state again. Then,
again like w, it inputs a string y, which causes the machine to loop back to
this same state yet another time. Then, just like w, it proceeds along the path
dictated by the input string z and so ends on the same final state that w did.
This means that xyyz is accepted by this machine, and therefore it must be
in the language L.

If we traced the paths for xyyz, xyyyz, and xyyyyyyyyyyyyz, they would all
be the same. Proceed up to the circuit. Loop around the circuit some number
of times. Then proceed to the final state. All these must be accepted by the
machine and therefore are all in the language L. In fact, L must contain all
strings of the form:

'

xy'z forn=1 2 3-

as the theorem claims.
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Perhaps these pictures can be helpful in uﬁderstanding the argument above.

X

X
Notice that in this theorem it does not matter whether there is another circuit
traced in the z part or not. All we need to do is find one circuit, and then
we keep pumping it for all it is worth. Notice also that we did not assume

that the x, y, or z parts were repetitions of the same letter as was the case
in our discussion of {a"b"}. They could have been any arbitrary strings. W

yy z

EXAMPLE

Let us illustrate the action of the Pumping Lemma on a concrete example of
a regular language. The machine below accepts an infinite language and has
only six states.

Any word with six or more letters must correspond to a path that includes
a circuit. Some words with fewer than six letters correspond to paths with
circuits, such as baaa. The word we will consider in detail is

w = bbbababa

which has more than six letters and therefore includes a circuit. The path that
this word generates through the FA can be decomposed into three stages:
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The first part, the x-part, goes from the — state up to the first circuit. This
is only one edge and corresponds to the letter b alone. The second stage is
the circuit around states 2, 3, and 5. This corresponds to edges labeled b, b,
and a. We therefore say that the substring bba is the y-part of the word w.
After going around the circuit, the path procedes to states 3, 6, 3, and 6.
This corresponds to the substring baba of w, which constitutes the z-part.

= b bba baba
Xy z

N\ b b a 7N\ b a b o\ a
OO0~~~
\ v—/\ Y- M — Y /

X ¥ z

Now let us ask what would happen to the input string xyy:.
xXyyz=b bba bba baba

Clearly, the x- part (the letter &) would take this path from — to the beginning
of the circuit in the path of w. Then the y-part would circle the 01rcu1t in
the same way that the path for w does when it begins xy.

At this point, we are back at the beginning of the circuit. We mark off
the circuit starting at the first repeated state, which in this case is state 2 and
consider it to be made up of exactly as many edges as it takes to get back
there (in this case 3 edges). Even though in the original path for w we proceed
again from state 2 to state 3 as in the circuit, this is not part of the first
simple- looping and so not part of y. Therefore, we can string two y-parts
together since the second y begins in the state in which the first leaves us.
The second y-part circles the circuit again and leaves us in the correct state
to resume the path of the word w. We can continue after xyy with the z path
exactly as we continued w with the z path after its y-part. This means again
that the z path will take us to a + state for xyyz just as it did for w = xyz.
In other words, we will accept the word xyyz just as we accepted w.

Path for xyz Path for xyyz
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The same thing happens with xyyyz, xyyyyz, and in general for xy"z. This
is all that the Pumping Lemma says. |

Suppose for a moment that we did not already have a discussion of the
language

L=1{ab" forn=0 1 2 3 ...}

Let us see how we could apply the Pumping Lemma directly to this case.

The Pumping Lemma says that there must be strings x, y, and z such that
all words of the form xy"z are in L. Is this possible? A typical word of L
looks like

aaa . . . aaaabbbb . . . bbb

How do we break this into three pieces conformable to the roles x, y, and
z? If the middle section y is going to be made entirely of a’s, then when we
pump it to xyyz the word will have more a’s than b’s, which is not allowed
in L. Similarly, if the middle part, y, is composed of only b’s, then the word
xyyz will have more b’s than a’s. The solution is that the y part must have
some positive number of a’s and some positive number of b’s. This would
mean that y contains the substring ab. Then xyyz would have two copies of
the substring ab. But every word in L contains the substring ab exactly once.
Therefore, xyyz cannot be a word in L. This proves that the Pumping Lemma
cannot apply to L and therefore L is not regular.

EXAMPLE

Once we have shown that the language {a"h"} is nonregular, we can show
that the language EQUAL, of all words with the same total number of a’s
and b’s, is also nonregular. (Note the number of a’s and b’s do not have to
be even, they just have to be the same.)

EQUAL = {A ab ba aabb abab abba baab baba bbaa aaabbb . . .}

The language {a"b"} is the intersection of all words defined by the regular
expression a*b* and the language EQUAL.

{a"b"} = a*b* N EQUAL
Now if EQUAL were a regular language, then {a"b"} would be the intersection

of two regular languages and by Theorem 12 it would have to be regular
itself. Since {a"b"} is not regular, EQUAL cannot be. |
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For the example {a"b"}, and in most common instances, we do not need
the full force of the Pumping Lemma as stated. It is often just as decisive
to say that w can be decomposed into xyz where xyyz is also in the language.
The fact that xy"z is in the language for all » > 2 is also interesting and will
be quite useful when we discuss whether certain languages are finite or infinite,
but often n = 2 is adequate to show that a given language is nonregular.

The proof that we gave of the Pumping Lemma actually proved more than
was explicitly stated in the lemma. By the method of proof that we used we
showed additionally that the string x and the string y together do not have
any more letters than the machine in question has states. This is because as
we proceed through x and y we visit our first repeated state at the end of y;
before that, all the states were entered only once each.

The same argument that proved Theorem 13 proves the stronger theorem
below.

THEOREM 14

Let L be an infinite language accepted by a finite automaton with N states.
Then for all words w in L that have more than N letters there are strings x,
y, and z

where y is not null

and where length(x) + length(y) does not exceed N
such that

w = Xxyz
and all strings of the form
xy'z (form=1 2 3 ...
are in L. [ |
We put the end of proof symbol Ml right after the statement of the theorem
to indicate that we have already provided a proof of this result.

The purpose of stressing the question of length is illustrated by our next
example.

EXAMPLE

We shall show that the language PALINDROME is nonregular. We cannot
use the first version of the Pumping Lemma to do this because the strings
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X =a y=b z=a
satisfy the lemma and do not contradict the language. All words of the form
xy'z = ab’a

are in PALINDROME.
However, let us consider one of the FA’s that might accept this language.
Let us say that the machine we have in mind has 77 states. Now the palindrome
w = a®%ba®
must be accepted by this machine and it has more letters than the machine
has states. This means that we can break w into the three parts, x, y, and
z. But since the length of x and y must be in total 77 or less, they must
both be made of solid a’s, since the first 77 letters of w are all a’s. That
means when we form the word xyyz we are adding more a’s on to the front
of w. But we are not adding more a’s on to the back of w since all the rear
a’s are in the z part, which stays fixed at 80 a’s. This means that the string
xyyz is not a palindrome since it will be of the form

qmore than 80 b a80

But the second version of the Pumping Lemma said that PALINDROME has
to - include this string. Therefore, the second version does not apply to the
language PALINDROME, which means that PALINDROME is nonregular.
This demonstration did not really rely on the number of states in the hy-
pothetical machine being 77. Some people think that this argument would be
more mathematically sound if we called the number of states m. This is
silly. |

EXAMPLE
Let us consider the language

PRIME = {a” where p is a prime}
= {aa, aaa, aaaaa, aadaaaaq, ...}

Is PRIME a regular language? If it is, then there is some some FA that
accepts exactly these words. Let us keep one such automaton in mind. Let
us suppose, for the sake of argument, that it has 345 states. Let us choose
a prime number bigger than 345, for example 347. Then a**’ can be broken
into parts x, y, and z such that xy"z is in PRIME for any value of n. The
parts x, ¥, and z are all just strings of @’s. Let us take the value of n = 348.



(c) ketabton.com: The Digital Library

212 AUTOMATA THEORY

By the Pumping Lemma, the word xy***z must be in PRIME. Now

xY® z=xyzy¥

We can write this because the factors x, y, and z are all solid clumps of a’s,
and it does not matter in what order we concatenate them. All that matters
is how many a’s we end up with.

Let us write

347 _— 347 347

Xyz y o = a y

This is because x, y, and z came originally from breaking up a** into three
parts. We also know that y is some (nonempty) string of a’s. Let us say that

y = a™ for some integer m that we do not know.

347

a YT = g gy

= g347+34Im
= PHm+D)

These operations are all standard algebraic manipulations.

What we have arrived at is that there is an element in PRIME that is of
the form a to the power 347(m + 1). Now since m # 0, we know that 347(m+1)
is not a prime number. But this is a contradiction, since all the strings in
PRIME are of the form & where the exponent is a prime number. This con-
tradiction arose from the assumption that PRIME was a regular language.
Therefore PRIME is nonregular.

PROBLEMS

Prove that each of the following languages is nonregular

1. SQUARE = {a" where n is a square}

= {a, aaaa, aaaaaaaaa, ...}

This language could also be written as {a"}
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DOUBLE = {the set of all repeated strings, that is, all words of the form
ss where s is any string of a’s and b’s}
= {aa, bb, aaaa, abab, baba, bbbb, aaaaaa, aabaab,
abaaba, abbabb, . . .}

TRAILING-COUNT = { any string s followed by a number of a’s equal
to length(s)}\
= {aa, ba, aada, abaa, baaa, bbaa, aaaaaa,
aabaaa, abaaaa, abbaaa, . . .}

{a"b"*'} = {abb, aabbb, aaabbbb, . . .}
{a"b"a"} = {aba, aabbaa, aaabbbaaa, aaaabbbbaaaa, . . .}

G) {ab®™) = {abb aabbbb aaabbbbbb . . .}
(it) {a"ba"} = {aba, aabaa, aaabaaa, . . .}

{a"b"a™ where n = 0,1,2,...and m = 0,1,2, . . .}
= {A a aa ab aaa aba . ..}

EVENPALINDROME = {all words of the form s(reverse(s)) where s is
any string}.
= {all words in PALINDROME that have even length}
= {aa, bb, aaaa, abba, baab, bbbb, . . .}

ODDPALINDROME = {all words in PALINDROME that have odd length}
DOUBLEPRIME = {aPb? where p is any prime}
DOUBLESQUARE = {a”b” wheren = 1,2,3, ...}

PRIME-PRIME = {all words of a’s and b’s such that the total number
of a’s is a prime and the total number of b’s is a
prime, but not necessarily the same prime}

SQUAREA = {all words of a’s and b’s such that the number of a’s is
a square and the b’s are arbitrary}

(i) FACTORIAL = {a", n=1, 2, 3, ...} _
(i) DOUBLEFACTORIAL = {a"b", n=1, 2, 3. ...}
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Just for this problem let the alphabet be ¥ = {a,b,c}. Show that the
language of all words of the form a"b"c", for n = 1, 2, 3, . ..

= {abc, aabbcc, aaabbbece . . .}

is nonregular.

(i) Give an example of a regular language R and a nonregular language
N such that R + N is regular.

(ii) Give an example of a regular language R and a nonregular language
N such that R + N is nonregular.

Consider the following language:

PRIME’ = {a" where n is not a prime}
= {A a aaaa aaaaaa aaaaadaa . . .}

(i) Prove that PRIME' is nonregular.
(ii) Prove, however, that PRIME' does satisfy the Pumping Lemma.

(i) Show that if we add a finite set of words to a regular language the
result is a regular language.

(ii) Show that if we subtract a finite set of words from a regular language
the result is a regular language.

(i) Show that if we add a finite set of words to a nonregular language
the result is a nonregular language.

(i) Show that if we subtract a finite set of words from a nonregular
language the result is a nonregular language.

Consider what happens when an FA is built for an infinite language over
the one-letter alphabet = {a}. When the input is a string of a’s that
is longer than the number of states, the path it traces must take the form
of some initial sequence of edges followed by a circuit. Since all the
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words in the language accepted by the machine are strings of a’s, all
the long words accepted by this FA follow the same path up to the
circuit and then around and around as in the picture below:

Some of the states leading up to the circuit may be final states and
some of the states in the circuit may be final states. This means that
by placing + signs judiciously along the path to the circuit we can make
the machine accept any finite set of words §,. While going around the
circuit the first time the FA can accept another finite set of words S,.
If the length of the circuit is n all words of the form a” times a word
in S, will also be accepted on the second go-round of the circuit.

(i) Prove that if L is a regular language over the alphabet £ = {a} then
there are two finite sets of words S; and S, and an integer n such
that

L = Sl + Sz(a")*
(ii) Consider the language L defined as:
L = {a" where n is any integer with an even
number of digits in base 10}

={Aa%a'a? ..}

Prove that L is nonregular.
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DECIDABILITY

In this part of the book we have laid the foundations of the Theory of Finite
Automata. The pictures and tables that we have called “machines” can actually
be built out of electronic components and operate exactly as we have described.
Certain parts of a computer and certain aspects of a computer obey the rules
we have made up for FA’s. We have not yet arrived, though, at the math-
ematical model for a whole computer. That we shall present in Part III. But
before we leave this topic, we have some unfinished business to clear up.
Along the way we asked some very basic questions that we deferred consid-
ering. We now face three of these issues.

1. How can we tell if two regular expressions define the same language?
2. How can we tell if two FA’s are equivalent?

3. How can we tell if the language defined by an FA has finitely many or
infinitely many words in it?

In mathematical logic we say that a problem is effectively solvable if there
is an algorithm that provides the answer in a finite number of steps, no matter
what the particular inputs are. The maximum number of steps the algorithm
will take must be predictable before we begin to execute the procedure. For
example, if the problem was, “What is the solution to a quadratic equation?”

216
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then the quadratic formula provides an algorithm for calculating the answer
in a predetermined number of arithmetic operations: four multiplications, two
subtractions, one square root, and one division. The number of steps in the
algorithm is never greater than this no matter what the particular coefficients
of the polynomial are. Other suggestions for solving a quadratic equation (such
as “keep guessing until you find a number that satisfies the equation”) that
do not guarantee to work in a fixed number of steps are not considered effective
solutions.

DEFINITION

An effective solution to a problem that has a yes or no answer is called a
decision procedure. A problem that has a decision procedure is called
decidable. |

We want to decide whether two regular expressions determine the exact
same language. We might, very simply, use the two expressions to generate
many words from each language until we find one that obviously is not in
the language of the other. To be even more organized, we may generate the
words in size order, smallest first. In practice, this method works fairly well
but there is no mathematical guarantee that we find such an obvious benchmark
word at any time in the next six years. Suppose we begin with the two expres-
sions:

a(a + b)* and (b + A)(baa + ba*)*,

It is obvious that all the words in the language represented by the first expres-
sion begin with the letter a and all the words in the language represented by
the second expression begin with the letter b. These expressions have no word
in common; and this fact is very clear. However, consider these two expres-
sions:

(aa + ab + ba + bb)* and ((ba + ab)*(aa + bb)*)*

They both define the language of all strings over 2 = {a, b} with an even
number of letters. If we did not recognize this, how could we decide the
question ‘of whether they are equivalent? We could generate many examples
of words from the languages each represents, but we would not find a dif-
ference. Could we then conclude that they are equivalent? It is logically pos-
sible that the smallest example of a word that is in one language but not in
the other has 96 letters. Maybe the smallest example has 2 million letters.
This is not an effective procedure, and it does not decide the problem.
The following two expressions are even less clear:

((b*a)*ab*)* and A +a(a + b)* + (a + b)*aa(a + b)*
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They both define the language of all words that either start with an a or else
have a double a in them somewhere or else are null.. The suggestion that we
should “interpret what the regular expressions mean and see if they are the
same,” is, of course hopeless.

Before we answer the first major question of this chapter, let us note that
it is virtually the same as the second question. If we had a decision procedure
to determine whether two regular expressions were equivalent, we could use
it to determine whether two FA’s were equivalent. First, we would convert
the FA’s into regular expressions and then decide about the regular expressions.
The process of converting FA’s into regular expressions is an effective pro-
cedure that we developed in the proof of Kleene’s Theorem in Chapter 7. The
number of steps required can be predicted in advance based on the size of
the machine to be converted. Since the conversion process eliminates at least
one state with each step, a machine with 15 states will take at most 16 steps
to convert into a regular expression (counting the step that creates a unique
— and a unique +).

Similarly, if we had an effective procedure to determine whether two FA’s
were equivalent, we could use it to decide the problem for regular expressions
by converting them into FA’s.

Fortunately we have already developed all the algorithms necessary to decide
the “equivalency problem” for FA’s and regular expressions. We need only
recognize how to apply them.

Given two languages L; and L, defined either by regular expressions or by
FA’s, we have developed (in Chapter 10) the procedures necessary to produce
finite automata for the languages L,’, L,’, L, N L,', and L, N L,". Therefore,
we can produce an FA that accepts the language

(Ly NV Ly) + (L. N Ly

This machine accepts the language of all words that are in L, but not L, or
else in L, but not L,. If L, and L, are the same language, this machine cannot
accept any words. If this machine accepts even one word, then L, is not equal
to L,; even if the one word is the null word. If L, is equal to L,, then the
machine for the language above accepts nothing at all.

To make this discussion into an effective decision procedure, we must show
that we can tell by some algorithm when an FA accepts no words at all. This
is not a very hard task, and there are several good ways to do it. We make
a big fuss about this since it is so simple that it might seem unimportant,
which is wrong. It is a basic question in its own right—not just as part of
the decidability of the equivalence of regular languages.

How to determine whether an FA accepts any words:

Method 1  Conwert the FA into a regular expression. Every regular expression
defines some words. We can prove this by an algorithm. First delete
all stars. Then for each + we throw away the right half of the sum
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and the + sign itself. When we have no more *’s or +’s, we remove
the parentheses and we have a concatenation of a’s, b’s, and A’s.
These taken together form a word. For example:

(a + A)ab* + ba*)*(A + b*)*
becomes (after removing *’s)
(a + A)ab + ba) (A + b)
which becomes (throwing away right halves)
(a)(ab)(A)
which becomes (eliminating parentheses)

aab A

which is the word
aab

This word must be in the language of the regular expression since
the operations of choosing * = power 1, and + = left half, are both
legal choices for forming words. If every regular expression defines
at least one word, it seems at first glance that this means that every
FA must accept at least one word. How then could we ever show that
two languages are equal? If we first build an FA for the language

(Li N L") + (LN LyY)

and then when we convert this machine into a regular expression, is
it not true that by the argument above we must find some word in the
language of the regular expression and therefore L, # L, no matter
what they are? No. The hole in this reasoning is that the process of
converting this FA into a regular expression breaks down. We come
down to the last step where we usually have several edges running
from — to + that we add together to form the regular expression.
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However, when we get to this last step we suddenly realize that
there are no paths from — to + at all.

This could happen theoretically in three different ways: the machine
has no final states, such as this one:

a b a

or the final state is disconnected from the start state, as with this one:

S &

or the final state is unreachable from the start state, as with this one:

OO

We shall see later in this chapter which of these situations does
arise if the languages are actually equal.

Method 2 Examine the FA to see if there is any path from — to +. If there is
any path, then the machine must accept some words—for one, the
word that is the concatenation of the labels of the edges in the path
from — to + just discovered. In a large FA with thousands of states
and millions of directed edges, it may be impossible to decide if there
is a path from — to + without the aid of an effective procedure. One
such procedure is this:

Step 1 Paint the start state blue.

Step 2 From every blue state follow each edge that leads out of it and paint the
connecting state blue, then delete this edge from the machine.

Step 3 Repeat Step 2 until no new state is painted blue, then stop.

Step 4 When the procedure has stopped, if any of the final states are painted

blue, then the machine accepts some words and, if not, it does not.
Let us look at this procedure at work on the machine
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after Step 2 again:

after Step 2 again:

No new states were painted blue this time, so the procedure stops and
we examine the + state. The + state is not blue, so the machine accepts
no words.

While we were examining the second method we might have noticed that
Step 2 cannot be repeated more times than there are total states in the machine.
If the machine has N states, after N iterations of Step 2 either they are all
colored blue or we have already stopped. We can summarize this as a theorem.
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THEOREM 15

Let F be an FA with N states. Then if F accepts any words at all it accepts
some word with N or fewer letters.

PROOF

The shortest path from — to + (if there is any) cannot contain a circuit
because if we go from — to state 7 and then around a circuit back to state
7 and then to + it would have been shorter to go from — to state 7 to +
directly. If there is a path from — to + without a circuit, then it can visit
each state at most one time. The path can then have at most N edges and
the word that generates it can have at most N letters. n

The proof actually shows that the shortest word must have at most N — /
letters, since if the start state is a final state, then the word A is accepted
and with N — 1 letters we can visit the other N — 1 states. The FA below
has four states, but it accepts no word with fewer than three letters, so we
see that the bound N — 1 is the best possible.

@ ah O ab O ab R

This gives us a third method for determining whether an FA accepts any
words.

Method 3 Test all words with fewer than N letters by running them on the FA.
If the FA accepts none of them, then it accepts no words at all. There
are a predictable number of words to test, and each word takes a finite
predictable time to run, so this is an effective decision procedure.

These methods are all effective; the question of which is more efficient is
a whole other issue, one that we do not (often) raise in this book. As soon
as we know that there is at least one way to accomplish a certain task we
lose interest because our ultimate concern is the question, “What can be done
and what cannot?” The only motivation we have for investigating alternative
methods is that maybe they can be generalized to apply to new problems that
our original approach could not be extended to cover.



(c) ketabton.com: The Digital Library

DECIDABILITY 223

EXAMPLE

Let us illustrate the effective decision procedure described above that deter-
mines whether two regular expressions are equivalent. We shall laboriously
execute the entire process on a very simple example. Let the two regular
expressions be:

r, = a* and r, = A + aa*

Luckily in this case we can understand that these two define the same language.
Let us see how the decision procedure proves this. Some machines for FA,,
FA,’, FA,, and FA,’ are shown below:

FA}

If we did not know how to produce these, algorithms in previous chapters
would show us how. We have labeled the states with the letters p, ¢, r, and
s for clarity. Instead of using the logical formula:

(L N L") + (LN Ly)
we build our machine based on the equivalent Set Theory formula

(L, + L) + (L, + Ly

The machine for the first half of this formula is (FA," + FA))’
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qy0rn qy orry

q,0r 1y
a. b

The machine for the second half is (FA," + FA))’

a

Py Ors, Py Orsy

a, b

It was not an oversight that we failed to mark any of the states in these
two machines with a +. Neither machine has any final states. For (FA," + FA))’
to have a final state, the machine (FA,” + FA,) must have a nonfinal state.
The start state for this machine is (g, or r;). From there, if we read an a
we go to (g, or r3), and if we read instead a b we go to (g, or r;). If we
ever get to (q» or r;) we must stay there. From (q, or r;) an input b takes
us to (go or rp) and an input a leaves us at (g, or r3). All in all, from —
we cannot get to any other combination of states, such as the potential (g,
or ry) or (g, or r;). Now since ¢, is a + and r, and r; are both +, all
three states (g, or r1), (g1 or r3), and (g, or ry) are all +, which means that
the complement has no final states.

The exact same thing is true for the machine for the second half of the
formula. Clearly, if we added these two machines together we would get a
machine with nine states and no final state. Since it has no final state, it
accepts no words and the two languages L; and L, are equivalent. This ends
the decision procedure. There are no words in one language that are not in
the other, so the two regular expressions define the same language and are
equivalent.

This example is a paradigm for the general situation. The machine for
(Ly" + Ly)’ accepts only those words in L, but not in L,. If the languages
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are in fact equal, this machine will have no final states. The same will be
true for the machine for (L,” + L;)’. It will never be necessary to combine
these two machines, since if either accepts a word, then L, # L,.

When we listed three ways that a machine could accept no words the first
way was that there be no final states and the second and third ways were
that the final states not be reachable from the start state. We counted these
situations separately. When we form a machine by adding two machines to-
gether, we do not usually bother describing the states that are not reachable
from the start state. The algorithm that we described in Chapter 7 never gets
to consider combinations of states of the component machines that are never
referred to. However, if we used a different algorithm, based on writing down
the whole table of possible combinations and then drawing edges between the
resultant states as indicated, we would, in this example, produce a picture
with a final state but it would be unreachable from the start state. In the
example above, the full machine for (FA,” + FA;)’ is this:

a

qyorr

qporr

G2 Of 3

The only final state, (q; or r;), cannot be reached from anywhere (in par-
ticular not from the start state (q; or r;). So the machine accepts no words.
We can summarize what we have learned so far in the following theorem.

THEOREM 16

(i)  There is an effective procedure to decide whether a given FA accepts any
words.

(ii) There is an effective procedure to decide whether two FA’s are equivalent.

(iii) There is an effective procedure to decide whether two regular expressions
are equivalent. |
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Let us now answer our last question of decidability. How can we tell whether
an FA, or regular expression, accepts a finite language or an infinite language?

With regular expressions this is easy. The closure of any nonempty set,
whether finite or infinite, is itself infinite. Even the closure of one letter is
infinite. Therefore, if when building the regular expression from the recursive
definition we have ever had to use the closure operator, the resulting language
is infinite. This can be determined by scanning the expression itself to see
whether it contains the symbol *. If the regular expression does contain a *,
then the language is infinite. The one exception to this rule is A*, which is
just A. This one exception can however be very tricky. Of the two regular
expressions:

(A + a A%) (A* + A)* and (A + a A)* (A* + A)*
only the second defines an infinite language.

If the regular expression does not contain a *, then the language is nec-
essarily finite. This is because the other rules of building regular expressions
(any letter, sum, and product) cannot produce an infinite set from finite ones.
Therefore, as we could prove recursively, the result must be finite.

If we want to decide this question for an FA, we could first convert it to
a regular expression. On the other hand, there are ways to determine whether
an FA accepts an infinite language without having to perform the conversion.
THEOREM 17
Let F be an FA with N states. Then
(i)  If F accepts an input string w such that

N < length (w) < 2N
then F accepts an infinite language.

(ii) If F accepts infinitely many words, than F accepts some word w such that

N < length (w) < 2N

PROOF

(i)  If there is some word w with N or more letters, then by the second version
of the Pumping Lemma, we can break it into three parts:
w=xyz
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The infinitely many different words x y" z for n = 1, 2, 3 .. . are all
accepted by F.

Now we are supposing that F does accept infinitely many words. Then it
must accept a word so large that its path must contain a circuit, maybe
several circuits. Each circuit can contain at most N states because F has
only N states in total. Let us change the path of this long word by keeping
the first circuit we come to and bypassing all the others. To bypass a circuit
means to come up to it, go no more than part way around it, and leave at
the first occurrence of the state from which the path previously exited.
This one-circuit path corresponds to some word accepted by F. The word
can have at most 2N letters, since at most N states are on the one circuit
and at most N states are encountered off that circuit. If the length of this
word is more than N, then we have found a word whose length is in the
range that the theorem specifies. If, on the other hard, the length of this
word is less than N, we can increase it by looping around the one circuit
until the length is greater than N. The first time the length of the word (and
path) becomes greater than /V, it is still less than 2N, since we have increased
the word only by the length of the circuit, which is less than N. Eventually,
we come to an accepted word with a length in the proper range. |

EXAMPLE

Consider this example:

10+

®—0O

The first circuit is 2-3-4. It stays. The second circuit is 5-6-7-8. It is bypassed
to become 5-6-7-9.

The path that used to be

1-2-3-4-2-3-5-6-7-8-5-6-7-8-5-6-7-9-10

becomes

1-2-3-4-2-3-5-6-7-9-10

This demonstrates the existence of a simple one-circuit path in any FA that

accepts infinitely many words. [ |
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This theorem provides us with an effective procedure for determining whether
F accepts a finite language or an infinite language. We simply test the finitely
many strings with lengths between N and 2N by running them on the machine
and seeing if any reach a final state. If none does, the language is finite.
Otherwise it is infinite.

THEOREM 18

There is an effective procedure to decide whether a given FA accepts a finite
or an infinite language.

PROOF

If the machine has N states and the alphabet has m letters, then in total there
are

m + W+ N+ !
different input strings in the range
N < length of string < 2N.

We can test them all by running them on the machine. If any are accepted,
the language is infinite. If none are accepted, the language is finite. [ |

It may often be more efficient to convert the FA to a regular expression.
However, suppose the FA is an actual physical machine that is sitting in front
of us. We may not know its exact structure inside or it may be extremely
complicated. Even though we have an effective procedure for converting it
into a regular expression, we may not have the capacity (storage or time or
inclination) to do so. Yet there might be an automatic way of feeding in all
combinations of letters in the interesting range. Even if this situation never
arises, the theorem we have covered is a prototype for decidability of more
complex questions.

In the case where the machine has 3 states and the alphabet has 2 letters,
the number of strings we have to test is

P4+ 22 +22=8+16+32=756

which is not too bad. However, an FA with 3 states can be converted into
a regular expression in very few steps.
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PROBLEMS

Show by the method described in this chapter that the following pairs of FA’s
are equivalent.

=1} )
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5. FA,
b

FA,
a
O h
b
a b
() "

a

6. Using the method of intersecting each machine with the complement of
the other show that:

b

« a and a a
a a
b b

do not accept the same language.

7. Using the method of intersecting each machine with the complement of
the other, show that:

FA,

and

do not accept the same language.

8. List the 56 strings that will suffice to test whether a 3-state FA over
2 = {a, b} has a finite language.
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By using blue paint, determine which of the following FA’s accept any
words.

10.

11.
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12.
Which of the following FA’s accepts a finite language and which an
infinite one?

13. ()

(11) a b

(iif) b
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(IV) a

Without converting it into a regular expression or an FA, give an al-
gorithm that decides whether a TG accepts any words.

Without converting it into a regular expression or an FA, give an al-
gorithm that decides whether the language of an NFA is empty, finite,
or infinite.

Do the same as Problem 15 for NFA-A’s (see Chapter 8, Problem 9).
Be careful. The machine

a

&

has an infinite language, whereas the machine

A

has a one-word language.

Consider the following simplified algorithm to decide if an FA with
exactly N states has an empty language.

Step 1 Take the edges coming out of each. final state and turn them into
loops going back to the state they started from.

Step 2 Relabel all edges with the letter x. (We now have an NFA.)

Step 3 The original FA has a nonempty language if and only if this new
NFA accepts the word x".

Illustrate this algorithm and prove it always works.
Is this an effective procedure?



(c) ketabton.com: The Digital Library

234

18.

19.

20.
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By moving the start state, construct a decision procedure to determine
whether a given FA accepts at least one word that starts with an a.

(i)  Construct a decision procedure to determine whether a given FA
accepts at least one word that contains the letter b.

(i) Construct a decision procedure to determine whether a given FA
accepts some words of even length.

Given two regular expressions r; and r;, construct a decision procedure
to determine whether the language of r, is contained in the language of
r.
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CHAPTER 13

CONTEXT-FREE
GRAMMARS

Our overall goal is. the study of computers: What are they? Of what are they
composed? What can they and what can’t they do? What will they be able
to do in ten thousand years? The machines of Part I could not do much. This
is because they did not have enough components. We shall soon rectify this
shortcoming. In Part II we shall connect the topics of Part I directly to some
of the problems in Computer Science with which we are already familiar.

The earliest computers, just like the programmable hand calculators of the
1970s, accepted no instructions except those in their own machine language
or (almost equivalently) in their own assembly language. Every procedure, no
matter how complicated, had to be spelled out in the crudest set of instructions:
LOAD this, STORE that, ADD the contents of these two registers, and so
forth. It could take dozens of these primitive instructions to do anything useful.
In particular, it could take quite a few to evaluate one complicated arithmetic
expression.

For example, in statistics, we often want to calculate something like

S=\/(7—9)2+(9—9)2+(11—9)2
2

237
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Unfortunately, we cannot just throw this expression into the machine. One
of the first hurdles the inventors of computers had to overcome was the problem
of formula display. A human sees the picture of this formula drawn on five
different levels. A 2 is on the bottom. Above it is a division line. Above
that are the three subtractions. Above them and to the right are exponents
indicating that these subtractions are to be squared. Above all of that and to
the left is the square root sign. We must check the tail on the left of the
square root sign to be sure that the bottom 2 is included in the root taking.

This converts to numerous assembly language instructions, especially since
square roots are not standard hard-wired instructions on most computers.

The problem of making computers attractive to a wide variety of potential
users (a problem important to those people who wanted to sell computers)
clearly required that some “higher-level” language be invented—a language in
which one mathematical step, such as evaluating the formula above, could be
converted into one single computer instruction.

Because of the nature of early computer input devices, such as keypunches,
paper tape, magnetic tape, and typewriters, it was necessary to develop a way
of writing this expression in one line of standard typewriter symbols. Some
few new symbols could be invented if necessary, but the whole expression
had to be encoded in a way that did not require a five-level display or depend
on the perception of spatial arrangement. Formulas had to be converted into
linear strings of characters.

Several of the adjustments that had to be made were already in use in the
scientific literature for various other reasons. For example, the use of the slash
as a divide sign was already accepted by the mathematical public. Most pub-
lishers have special symbols for the popular fractions such as 3 and i, but
eight-elevenths was customarily written as 8/11.

Still, before the days of the computer no one would ever have dreamed of
writing a complicated compound fraction such as

+ 9

wn

4 +

1
2

S

21

w
.+_
N —

in the parentheses-laden one-line notation
((172) + 94 + (8/21) + (5/(3 + (1/2))

The most important reason for not using the one-line version unless nec-
essary is that in the picture version we can easily see that the number we are
looking at is a little more than 9 divided by a little more than 5, so it obviously
has a value between 1 and 2. Looking at the parentheses notation, it is not
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even obvious which of the slash marks separates the numerator from the de-
nominator of the major division.

The main advantage of the one-level version is that we can feed it into a
computer. At some time in the future a computer might be able to digest the
multilevel expression and the one-line nightmare can be forgotten forever.

How can a computer scan over this one-line string of typewriter characters
and figure out what is going on? That is, how can a computer convert this
string into its personal language of LOAD this, STORE that, and so on?

The conversion from a high-level language into assembler language code
is done by a program called the compiler. This is a superprogram. Its data
are other people’s programs. It processes them and prints out an equivalent
program written in assembler language. To do this it must figure out in what
order to perform the complicated set of arithmetic operations that it finds writ-
ten out in the one-line formula. It must do this in a mechanical, algorithmic
way. It cannot just look at the expression and understand it. Rules must be
given by which this string can be processed—rules, perhaps, like those the
machines we discussed in Part I could follow.

Consider the language of valid input strings over the alphabet

0123456789+ —/*)(

Could some FA, directed from state to state by the input of a one-line formula,
print out the equivalent assembly-language program? This would have to be
an output FA like the Mealy or Moore machines for which the output alphabet
would be assembler language statements.

The solution is not quite as easy as that, but it is within our reach.

We also want our machine to be able to reject strings of symbols that make
no sense as arithmetic expressions, such as “((9)+”. This input string should
not take us to a final state in the machine. However, we cannot know that
this is a bad input string until we have reached the last letter. If the + were
changed to a ), the formula would be valid. An FA that translated expressions
into instructions as it scanned left to right would already be turning out code
before it realized that the whole expression is nonsense.

Before we try to build a compiling machine, let us return to the discussion
of what is and what is not a valid arithmetic expression as defined in Chapter
3 by recursive definition.

All valid arithmetic expressions can be built up from the following rules.
Anything not produceable from these rules is not a valid arithmetic expression:

Rule 1 Any number is in the set AE.
Rule 2 If x and y are in AFE then so are:

x) =) x+y) -y (xsy)  (xly) (x**y)
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This time we have included parentheses around every component factor. This
avoids the ambiguity of expressions like 3 + 4 * 5 and 8/4/2 by making them
illegal. We shall present a better definition of this set later.

First we must design a machine that can figure out how a given input string
was built up from these basic rules. Then we should be able to translate this
sequence of rules into an assembler language program, since all of these rules
are pure assembler language instructions (with the exception of exponentiation,
which presents a totally different problem; but since this is not a course in
compiler design, we ignore this embarrassing fact).

For example, if we present the input string

B+ 4)*+=@6+7)

and the machine discovers that the way this can be produced from the rules
is by the sequence

3 is in AE

4 is in AE

(3 + 4) is in AE

6 is in AE

7 is in AE

(6 + 7) is in AE

((B+ 4)* (6 + 7)) is in AE

we can automatically convert this into

LOAD 3 in Register 1

LOAD 4 in Register 2

ADD the contents of Register 2 into Register 1
LOAD 6 in Register 3

LOAD 7 in Register 4

ADD the contents of Register 3 into Register 4
MULTIPLY Register 1 by Register 4

or some such sequence of instructions depending on the architecture of the
particular machine (not all computers have so many arithmetic registers) and
the requirements of the particular assembler language (multiplication is not
always available).

The hard part of the problem is to figure out by mechanical means how
the input string can be produced from the rules. The second part—given the
sequence of rules that create the expression to write a computer program to
duplicate this process—is easy.
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The designers of the first high-level languages realized that this problem is
analogous to the problem humans have to face hundreds of times every day
when they must decipher the sentences that they hear or read in English. Here
we have again the ever-present parallelism: Recognizing what a computer lan-
guage instruction is saying is analogous to recognizing what a sentence in a
human language means.

Elementary School used to be called Grammar School because one of the
most important subjects taught was English Grammar. A grammar is the set
of rules by which the valid sentences in a language are constructed. Our ability
to understand what a sentence means is based on our ability to understand
how it could be formed from the rules of grammar. Determining how a sen-
tence can be formed from the rules of grammar is called parsing the sentence.

When we hear or read a sentence in our native language, we do not go
through a conscious act of parsing. Exactly why this is the case is a question
for other sciences. Perhaps it is because we learned to speak as infants by a
trial and error method that was not as mathematical and rigorous as the way
in which we learn foreign languages later in life. When we were born we
spoke no language in which the grammar of our native tongue could be de-
scribed to us. However, when we learn a second language the rules of grammar
for that language can be explained to us in English. How we can possibly
learn our first language is a problem -discussed by linguists, psychologists,
philosophers, and worried parents. It does not concern us here because when
we come to teach a computer how to understand the languages it must rec-
ognize, a few printed circuits will do the trick.

Even though human languages have rules of grammar that can be stated
explicitly, it is still true that many invalid sentences, those that are not strictly
speaking grammatical, can be understood. Perhaps this is because there are
tacit alternative rules of grammar that, although not taught in school, never-
theless are rules people live by. But this will not concern us either. No com-
puter yet can forgive the mess, “Let x equal two times the radius times that
funny looking Greek letter with the squiggly top that sounds like a pastry,
you know what I mean?” The rules of computer language grammar are pre-
scriptive—no ungrammatical strings are accepted.

Since the English word “grammar” can mean the study of grammar as well
as the set of rules themselves, we sometimes refer to the set of rules as forming
a “generative grammar.” This emphasizes the point that from them and a dic-
tionary (the alphabet) we can generate all the sentences (words) in the language.

Let us look at the rule in English grammar that allows us to form a sentence
by juxtaposing a noun and a verb (assuming that the verb is in the correct
person and number). We might produce

Birds sing.
However, using the same rule might also produce

Wednesday sings. or Coal mines sing.
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If these are not meant to be poetical or metaphoric, they are just bad sentences.
They violate a different kind of rule of grammar, one that takes into account
the meaning of words as well as their person, number, gender, and case.

Rules that involve the meaning of words we call semantics and rules that
do not involve the meaning of words we call syntax. In English the meaning
of words can be relevant but in arithmetic the meaning of numbers is rarely
cataclysmic. In the high-level computer languages, one number is as good as
another.. If

X=B+9
is a valid formulation then so are
X =B+ 8 X =B + 473 X = B + 9999

So long as the constants do not become so large that they are out of range,
and we do not try to divide by 0, and we do not try to take the square root
of a negative number, and we do not mix fixed-point numbers with floating-
point numbers in bad ways, one number is as good as another. It could be
argued that such rules as “thou shalt not divide by zero” as well as the other
restrictions mentioned are actually semantic laws, but this is another interesting
point that we shall not discuss.

In general, the rules of computer language grammar are all syntactic and
not semantic.

There is another way in which the parsing of arithmetic expressions is easier
than the parsing of English sentences. To parse the English sentence, “Birds
sing.” it is necessary to look up in a dictionary whether “birds” is a noun or
a verb. To parse the arithmetic expression “(3 + 5)*6” it is not necessary to
know any other characteristics of the numbers 3, 5, and 6. We shall see more
differences between simple languages and hard languages as we progress through
Part II.

Let us go back to the analogy between computer languages and English.
Some of the rules of English grammar are these:

A sentence can be a subject followed by a predicate.

A subject can be a noun-phrase.

A noun-phrase can be an adjective followed by a noun-phrase.
A noun-phrase can be an article followed by a noun-phrase.
A noun-phrase can be a noun.

A predicate can be a verb followed by a noun-phrase.

NN s W=

A noun can be:
apple bear cat dog
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A verb. can be:

eats  follows gets hugs

An adjective can be:

itchy jumpy

An article can be:

a . an the

243

Let us, for the moment, restrict the possibility of forming sentences to the

laws stated above. Within this small model of English there are hundreds of
sentences we can form. For example:

The itchy bear hugs the jumpy dog.

sentence => subject predicate

= noun-phrase predicate

=> noun-phrase verb noun-phrase

= article noun-phrase verb noun-phrase

> article adjective noun-phrase verb noun-phrase

> article adjective noun verb noun-phrase

= article adjective noun verb article noun-phrase

= article adjective noun verb article adjective noun-phrase

= article adjective noun verb article adjective noun
= the adjective noun verb article adjective noun

= the itchy noun verb article adjective noun

> the itchy bear verb article adjective noun

> the itchy bear hugs article adjective noun

= the itchy bear hugs the adjective noun

= the itchy bear hugs the jumpy noun

=> the itchy bear hugs the jumpy dog

grammar stated above.

The method by which this sentence can be generated is outlined below:

Rule 1
Rule 2
Rule 6
Rule 4
Rule 3
Rule 5
Rule 4
Rule 3
Rule 5§
Rule 10
Rule 9
Rule 7
Rule 8
Ruie 10
Rule 9
Rule 7

The arrow indicates that a substitution was made according to the rules of

A law of grammar is in reality a suggestion for possible substitutions. What

happened above is that we started out with the initial symbol Sentence. We
then applied the rules for producing sentences listed in the generative grammar.
In most cases we had some choice in selecting which rule we wanted to apply.
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There is a qualitative distinction between the word “noun” and the word “bear.”
To show this we have underlined the words that stand for parts of speech and
are not to be considered themselves as words for the finished sentences. Of
course, in the complete set of rules for English the words “verb,” “adjective,”
and so on are all perfectly good words and would be included in our final
set of rules as usable words. They are all nouns. But in this model the term
verb is a transitory place holder. It means, “stick a verb here.” It must even-
tually be replaced to form a finished sentence.

Once we have put in the word “bear” we are stuck with it. No rule of
grammar says that a bear can be replaced by anything else. The words that
cannot be replaced by anything are called terminals. Words that must be
replaced by other things we call nonterminals. We will give a more general
definition of this shortly.

Midway through the production procedure we developed the sentence into
as many nonterminals as it was going to become.

9. article adjective noun verb article adjective noun

From this point on the procedure was only one of selecting which terminals
were to be inserted in place of the nonterminals. This middle stage in which
all the terminals are identified by their nonterminal names is the “grammatical
parse” of the sentence. We can tell what noun each adjective modifies because
we know how it got into the sentence in the first place. We know which
noun-phrase produced it. “Itchy” modifies “bear” because they were both in-
troduced in Step 5 by application of Rule 3.

There is an element of recursive definition lurking in these rules. We have
allowed a noun-phrase to be an adjective followed by a noun-phrase. This
could lead to:

noun-phrase = adjective noun-phrase

= adjective adjective noun-phrase

= adjective adjective adjective noun-phrase

= adjective adjective adjective noun

= itchy adjective adjective noun

> itchy itchy adjective noun
= itchy itchy itchy noun
> itchy itchy itchy bear

If we so desired, we could produce fifty itchy’s. Using the Kleene closure
operator we could write

noun-phrase = adjective* noun
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But now we are getting ahead of ourselves.
The rules we have given above for this simplified version of English allow
for many dumb sentences such as:

Itchy the apple eats a jumpy jumpy jumpy bear.

Because we are not considering the limitations of semantics, diction, or good
sense, we must consider this string of terminals as a good sentence. This is
what we mean by the phrase “formal language,” which we used in Part I. It
is a funny phrase because it sounds as if we mean the stuffy language used
in diplomatic circles. In reality it means that any string of symbols satisfying
the rules of grammar (syntax alone) is as good as any other. The word “formal”
here means “strictly formed by the rules,” not “highly proper.” The Queen of
England is unlikely to have made the remark above about Itchy the apple.

We can follow the same model for defining arithmetic expressions. We can
write the whole system of rules of formation as the list of possible substitutions
shown below:

Start — (AE)
AE — (AE + AE)
AE — (AE — AE)
AE — (AE * AE)

AE — (AE / AE)

AE — (AE ** AE)
AE > (AE)

AE — —(AE)

AE — ANY-NUMBER

Here we have used the word “Start” to begin the process, as we used the
word “Sentence” in the example of English. Aside from Start, the only other
nonterminal is AE. The terminals are the phrase “any number” and the symbols

Either we could be satisfied that we know what is meant by the words “any

number” or else we could define this phrase by a set of rules, thus converting
it from a terminal into a nonterminal.

Rule 1 ANY-NUMBER > FIRST-DIGIT
Rule 2 FIRST-DIGIT — FIRST-DIGIT OTHER-DIGIT
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Rule 3 FIRST-DIGIT—> 123456789
Rule 4 OTHER-DIGIT— 0123456789

Rules 3 and 4 offer choices of terminals. We put spaces between them to
indicate “choose one,” but we soon shall introduce another disjunctive symbol.

We can produce the number 1066 as follows:

Rule 1 ANY-NUMBER = FIRST-DIGIT

Rule 2 = FIRST-DIGIT OTHER-DIGIT
Rule 2 = FIRST-DIGIT OTHER-DIGIT
OTHER-DIGIT
Rule 2 => FIRST-DIGIT OTHER-DIGIT
OTHER-DIGIT OTHER-DIGIT
Rules 3 and 4 = 1066

Here we have made all our substitutions of terminals for nonterminals in
one swoop, but without any possible confusion. One thing we should note
about the definition of AE is that some of the grammatical rules involve both
terminals and nonterminals together. In English, the rules were either of the
form

one Nonterminal — string of Nonterminals
or
one Nonterminal — choice of terminals

In our present study, we shall see that the form of the grammar has great
significance.

The sequence of applications of the rules that produces the finished string
of terminals from the starting symbol is called a derivation. The grammatical
rules are often called productions. They all indicate possible substitutions. The
derivation may or may not be unique, by which we mean that by applying
productions to the start symbol in two different ways we may still produce
the same finished product. (See Problem 6 below.)

We are now ready to define the general concept of which all these examples
have been special cases. We call this new structure a context-free grammar
or CFG. The full meaning of the term “context-free” will be made clear later.
The concept of CFG’s was invented by the linguist Noam Chomsky in 1956.



(c) ketabton.com: The Digital Library

CONTEXT-FREE GRAMMARS 247

Chomsky gave several mathematical models for languages, and we shall see
more of his work later.

DEFINITION
A context-free grammar, called a CFG, is a collection of three things:

1 An alphabet 3 of letters called terminals from which we are going to
make strings that will be the words of a language.

2 A set of symbols called nonterminals, one of which is the symbol §,
standing for “start here.”

3 A finite set of productions of the form
one nonterminal — finite string of terminals and/or nonterminals

where the strings of terminals and nonterminals can consist of only terminals
or of only nonterminals, or any mixture of terminals and nonterminals or even
the empty string. We require that at least one production has the nonterminal
S as its left side. |

So as not to confuse terminals and nonterminals, we always insist that
nonterminals be designated by capital letters while terminals are usually des-
ignated by lowercase letters and special symbols.

DEFINITION

The language generated by a CFG is the set of all strings of terminals that
can be produced from the start symbol S using the productions as substitutions.
A language generated by a CFG is called a context-free language, abbreviated
CFL. [

There is no great uniformity of opinion among experts about the terminology
to be used here. The language generated by a CFG is sometimes called the
language defined by the CFG, or the language derived from the CFG, or
the language produced by the CFG. This is similar to the problem with regular
expressions. We should say “the language defined by the regular expression”
although the phrase “the language of the regular expression” has a clear mean-
ing. We usually call the sequence of productions that form a word a derivation
or a generation of the word.
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EXAMPLE

Let the only terminal be a.
Let the productions be:

ProD1 S — aS
PrRoD2 S— A

If we apply Production 1 six times and then apply Production 2, we generate
the following:

S > aS
> aaS
= aaaS
= aaaaS
> aaaaaS
= aaaaaaS
> aaaaaal

= qaaaaa

This is a derivation of a® in this CFG. The string a" comes from n ap-
plications of Production 1 followed by one application of Production 2. If we
apply Production 2 without Production 1, we find that the null string is itself
in the language of this CFG. Since the only terminal is a it is clear that no
words outside of a* can possibly be generated. The language generated by
this CFG is exactly a*. |

In the examples above, we used two different arrow symbols. The symbol
“—” we employ in the statement of the productions. It means “can be replaced
by”, as in § — aS. The other arrow symbol “=>” we employ between the
unfinished stages in the generation of our word. It means “can develop into”
as in aaS = aaaS. These “unfinished stages” are strings of terminals and non-
terminals that we shall call working strings.

Notice that in this last example we have both § — aS as a production in
the abstract and S = aS as the first step in a particular derivation.

EXAMPLE

Let the only terminal be a.
Let the productions be:

ProD1 S — SS
ProD2 S—a
ProD3 S— A
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In this language we can have the following derivation.

S>> 88
>S5S
= SaS
> SaSs
>AasSs
>Aaal
>AaaA

= aa

The language generated by this set of productions is also just the language
a*, but in this case the string aa can be obtained in many (actually infinitely
many) ways. In the first example there was a unique way to produce every
word in the language. This also illustrates that the same language can have
more than one CFG generating it. Notice above that there are two ways to
go from S§S to SSS—either of the two S§’s can be doubled. [ |

In the previous example the only terminal is a and the only nonterminal
is S. What then is A? It is not a nonterminal since there is no production of
the form '

A — something

Yet it is not a terminal since it vanishes from the finished string AaaA = aa.
As always, A is a very special symbol and has its own status. In the definition
of a CFG we said a nonterminal could be replaced by any string of terminals
and/or nonterminals even the empty string. To replace a nonterminal by A is
to delete it without leaving any tangible remains. For the nonterminal N the
production

N— A

means that whenever we want, N can simply be deleted from any place in
a working string.

EXAMPLE

Let the terminals be a and b, let the only nonterminal be S, and let the
productions be

ProD1 S — aS
ProD2 S — bS
ProD3 S—a
ProD4 S— b
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We can produce the word baab as follows:

S > bS (by Prob 2)
> baS (by Prop 1)
= baaS (by Prob 1)
= baab (by Prop 4)

The language generated by this CFG is the set of all possible strings of the
letters a and b except for the null string, which we cannot generate.
We can generate any word by the following algorithm:

At the beginning the working string is the start symbol S. Select a word to
be generated. Read the letters of the desired word from left to right one at
a time. If an a is read that is not the last letter of the word, apply Prop 1
to the working string. If a b is read that is not the last letter of the word,
apply Prop 2 to the working string. If the last letter is read and it is an g,
apply Prop 3 to the working string. If the last letter is read and it is a b,
apply ProD 4 to the working string.

At every stage in the derivation before the last, the working string has the
form

(string of terminals) §

At every stage in the derivation, to apply a production means to replace
the final nonterminal S. Productions 3 and 4 can be used only once and only
one of them can be used. For example, to generate babb we apply in order
Prods 2, 1, 2, 4, as below:

S = bS = baS = babS = babb [ |

EXAMPLE

Let the terminals be a and b. Let the nonterminals be S, X, and Y. Let the
productions be:

S—X
S—>Y
X—= A
Y—aY
Y— bY
Y—>a
Y—»b
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All the words in this language are either of type X, if the first production in
their derivation is

S—=X

or of type Y, if the first production in their derivation is
S—Y

The only possible continuation for words of type X is the production
X—>A

Therefore A is the only word of type X.

The productions whose left side is Y form a collection identical to the
productions in the previous example except that the start symbol S has been
replaced by the symbol Y. We can carry on from Y the same way we carried
on from § before. This does not change the language generated, which contains
only strings of terminals. Therefore, the words of type Y are exactly the same
as the words in the previous example. That means, any string of a’s and b’s
except the null string can be produced from Y as these strings were produced
before from S.

Putting the type X and the type Y words together, we see that the total
language generated by this CFG is all strings of a’s and b’s, null or otherwise.
The language generated is (a + b)*. [ |

EXAMPLE

Let the terminals be a and b. Let the only nonterminal be S.
Let the productions. be

S— a$
S— bS
S— a
S— b
S— A

The word ab can be generated by the derivation

S=>aS
> abS
= abA

= ab



(c) ketabton.com: The Digital Library

252 PUSHDOWN AUTOMATA THEORY

or by the derivation

S > as
= ab

The language of this CFG is also (a + b)*, but the sequence of productions
that is used to generate a specific word is not unique.

If we deleted the third and fourth productions, the language generated would
be the same. [ |

EXAMPLE

Let the terminals be a and b, let the nonterminals be § and X, and let the
productions be

S — XaaX
X— aX
X— bX
X— A
We already know from the previous example that the last three productions
will allow us to generate any word we want from the nonterminal X. If the
nonterminal X appears in any working string we can apply productions to turn

it into any word we want. Therefore, the words generated from S have the
form

anything aa anything
or
(a + b)*aa(a + b)*

which is the language of all words with a double g in them somewhere.
For example, to generate baabaab we can proceed as follows:

S = XaaX = bXaaX = baXaaX = baaXaaX = baabXaaX
= baabAaaX = baabaaX => baabaabX => baabaabA = baabaab

There are other sequences that also derive the word baabaab. n
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EXAMPLE

Let the terminals be a and b, let the nonterminals be S, X, and Y and let
the productions be

S— XY
X— aX
X— bX
X— a
Y— Ya
Y— Yb
Y— a

What can be derived from X? Let us look at the X productions alone.

X— aX
X— bX
X— a

Beginning with the nonterminal X and starting a derivation using the first two
productions we always keep a nonterminal X on the right end. To get rid of
the X for good we must eventually replace it with an a by the third production.
We can see that any string of terminals that comes from X must end in an
a and any words ending in an a can be derived from X. For example, to
derive the word babba from X we can proceed as follows:

X = bX = baX = babX = babbX = babba

Similarly, the words that can be derived from Y are exactly those that begin
with an a. To derive abbab, for example, we can proceed:

Y = Yb = Yab = Ybab = Ybbab = abbab

A Y always stays on the left end until it is replaced by an a. When an
X part is concatenated with a Y part, a double a is formed.

We can conclude that starting from S we can derive only words with a
double a in them, and all of these words can be derived.

For example, to derive babaabb we know that the X part must end at the
first a of the double a and that the Y part must begin with the second a.

S = XY = bXY = baXY = babXY = babaY
= baba¥Yb = babaYbb = babaabb [ ]
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EXAMPLE

Let the terminals be a and b. Let the three nonterminals be S, BALANCED,
and UNBALANCED. We treat these nonterminals as if they were each a single
symbol and nothing more confusing. Let the productions be

S— 5§
S — BALANCED §
S — S BALANCED
S— A
S — UNBALANCED S UNBALANCED
BALANCED — aa
BALANCED — bb
UNBALANCED — ab
UNBALANCED — ba

We shall show that the language generated from these productions is the set
of all words with an even number of a’s and an even number of b’s. This
is our old friend, the language EVEN-EVEN. ]

To prove this we must show two things: that all the words in EVEN-EVEN
can be generated from these productions and that every word generated from
these productions is in fact in the language EVEN-EVEN.

First we show that every word in EVEN-EVEN can be generated by these
productions. From our earlier discussion of the language EVEN-EVEN we
know that every word in this language can be written as a collection of substr-
ings of

type aa or type bb
or type (ab + ba) (aa + bb)* (ab + ba).

All three types can be generated from the nonterminal S from productions
above. The various substrings can be put together by repeated application of
the production

§S—8S

This production is very useful. If we apply it four times we can turn one S
into five §’s. Each of these §’s can be a syllable of any of the three types.
For example, the EVEN-EVEN word aababbab can be produced as follows:

S > BALANCED S
= aaS
= aa UNBALANCED S UNBALANCED
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= aa ba S UNBALANCED
= aa ba S ab
= aa ba BALANCED S ab
= aa ba bb § ab
= aa ba bb A ab

= aababbab

To see that all the words that are generated by these productions are in the
language EVEN-EVEN we need only to observe that words derived from §
can be decomposed into two-letter syllables and the unbalanced syllables, ab
and ba, come into the working string in pairs,, which add two a’s and two
b’s. Also, the balanced syllables add two of one letter and zero of the other
letter. The sum total of a’s and b’s will be the sum of even numbers of a’s

and even numbers of b’s. Both the a’s and the b’s in total will be even.

Therefore, the language generated by this CFG is exactly EVEN-EVEN.
|

EXAMPLE

Let the terminals be a and b. Let the nonterminals be S, A, and B. Let the
productions be

S— aB
S— bA
A—a

A— aS
A — bAA
B— b

B — bS
B — aBB

The language that this CFG generates is the language EQUAL of all strings
that have an equal number of a and b’s in them. This language begins

EQUAL = {ab ba aabb abab abba baab baba bbaa aaabbb . . .}

(Notice that previously we included A in this language, but for now it has
been dropped.)

To prove that this is the language that is generated by these productions we
need to demonstrate two things: first, that every word in EQUAL can be
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derived from S by these productions and, second, that every word generated
by these productions is in EQUAL.

To do this we should note that the nonterminal A stands for any word that
is a-heavy, that is, a word that has one more a than it has b’s (for example,
7 a’s and 6 b’s). The nonterminal B stands for any word that is b-heavy,
that is, that has one more b than it has a’s, (for example 4 b’s and 3 a’s).

We are really making three claims at once.

Claim 1  All words in EQUAL can be generated by some sequence of productions
beginning with the start symbol S.

Claim 2  All words that have one more a than b’s can be generated from these
productions by starting with the symbol A.

Claim 3  All words that have one more b than a’s can be generated from these
productions by starting with the symbol B.

If one of these three claims is false, then there is a smallest word of one
of these three types that cannot be generated as we claim it can. We are
looking for the smallest counterexample to any of these three claims. Let w
be the smallest counterexample. For all words shorter than w the three claims
must be true.

Which of these three claims does w disprove?

Let us first challenge Claim 1, by assuming that the word w is in the
language EQUAL, but it cannot be produced from these productions starting
with the symbol §. The word w either begins with an a or a b. Let us say
that it begins with an a. It then is of the form a(rest). Since w is in the
language EQUAL, the string (rest) must have exactly one more & in it than
a’s. By our claim (which holds for all words with fewer letters than w has),
we know that (rest) can then be generated from these productions, starting
with the symbol B. But then w can be generated from these productions starting
with the symbol §, since the production

S = aB

then leads to

= a(rest) = w

A similar contradiction arises if we assume that w started with the letter b.
In this case the letters of w after the b form an A-heavy string that can
be generated from A. S—bA then generates w. Therefore the smallest coun-
terexample to these claims cannot be a word in EQUAL. That means that w
does not disprove Claim 1.
Let us now entertain the possibility that w disproves Claim 2. That means
that there is a word w that has one more a than b’s but that cannot be produced
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from these productions starting with the symbol A, and further that all words
smaller than w satisfy all three claims.

There are two cases we need to consider. The first is that the word w
begins with the letter @ and the second is that the word w begins with the
letter b.

In the first case w must be of the form a(rest). Since w has one more a
than b’s, the substring (rest) has the same number of a’s and b’s. This means
that it can be generated from these rules starting with the letter S, because
(rest) has fewer letters than w does, and so Claim 1 applies to it.

However, if (rest) can be produced from S, then w can be produced from
A starting with the production

A > aS
which leads to
= a(rest) = w

This contradicts the premise of our counterexample. Therefore, w cannot
start with an a.

Now let us treat the second case. Suppose w begins with the letter 4. The
word w is still of the form b(rest), but now (rest) does not have the same
number of a’s and b’s. The string (rest) has two more a’s than it has b’s.
Let us scan down the string (rest) from left to right until we find a substring
that has exactly one more a than it has &’s. Call this the first half. What is
left must also have exactly one more a than it has b’s. Call it the second
half. Now we know that the word w is of the form

b(first half)(second half)

Both halves are of type A and can be generated from the symbol A since they
both have fewer letters than w has and Claim 2 must apply to them.
This time we can generate w starting with the production

A = bAA
leading eventually to
= b(first half)(second half)

Again, this contradicts the assumption that w is a counterexample to our
second claim.

The case where the smallest counterexample is of type B is practically iden-
tical to the case where w is of type A. If we reverse the letters a and & and
the letters A and B in the argument above we have the proof of this case.
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We have now covered all possibilities, and we can conclude that there can
be no smallest counterexample to any of our claims. Therefore, all three claims
are true. In particular, Claim 1 is true: All the words in EQUAL can be
generated from the symbol S.

Even though we have worked hard we are only half done. We still need
to show that all the words that can be generated from S are in the language
EQUAL.

Again we make three claims:

Claim 4 All words generated from § are in EQUAL.
Claim 5 All words generated from A have one more a than b’s.
Claim 6 All words generated from B have one more b than a’s.

Let us say that w is the smallest counterexample to any of these three claims.
Let us first consider whether w can violate Claim 4. Let us say that w is
produced from S but has unequal a’s and b’s. We are assuming that these
three claims are true when applied to all words with fewer letters than w.

If w is produced from S, it either comes from S — aB or from § — bA.
Since these cases are symmetric, let us say that w comes from § — aB. Now
since this B generates a word with one fewer letter than w, we know that the
three claims apply to the production that proceeds from this B. This means
in particular that what is generated from B satisfies Claim 6 above and that
it therefore generates a word with one more b than a. Therefore, w will have
exactly the same number of b’s and a’s. The word w, then, satisfies Claim
4 and is not a counterexample.

Now let us treat the case where the smallest counterexample, is a word
called w that disproves Claim 6; that is, it is generated from the symbol B
but does not have exactly one more b than a’s. It could not have come from
B — b since then it would have one more b than a (one b, no a’s). It could
not come from the production B — bS, since whatever is produced from the
S part is a string of length less than w, which must then satisfy Claim 4 and
have equal a’s and b’s leaving w in proper form. Lastly, it could not come
from B — aBB, since each of the B’s is known by Claim 6 to produce words
with one more b than a as long as the words are shorter than w. Taken
together, they have two more b’s than a’s and with an a in front they have
exactly one more b than a. But then w is not a counterexample to Claim 6.

All together, this contradicts the existence of any counterexample to Claim
6.

The case where the counterexample may be a word that disproves Claim
5 similarly leads to a contradiction. Therefore, there is no smallest counter-
example, and the three claims are true, and in particular Claim 4, which is
the one we needed. This concludes the proof that the language generated by
these productions is the language EQUAL.
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It is common for the same nonterminal to be the left side of more than
one production. We now introduce the symbol, |, a vertical line, to mean
disjunction (or). Using it we can combine all the productions that have the
same left side. For example,

S— aS
S— A

can be written simply as:
§S—>aS| A
The CFG

S—= X
S—Y
X— A
Y— aY
Y — bY
Y— a
Y— b

can be written as:

S— Xy
X—> A
Y—> aY|bY|al|b

We have committed a small sloppiness here. We have called a set of pro-
ductions a CFG when we know that by definition a CFG has three other parts.
This error is common and forgivable since the sets of terminals and nonter-
minals can be deduced by examining the productions.

The notation we are using for CFG’s is practically universal with the fol-
lowing minor changes:

Some authors use the symbol

6 »”

::=" instead of ‘“—7”.
Some authors call nonterminals variables.

Some authors use a small epsilon, &, or small lambda, A, instead of A to
denote the nuil string.
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Some authors indicate nonterminals by writing them in angle brackets:

(S) = X) | (1)
X)—> A
(V)= aV) | bY)|a]|b

We shall be careful to use capital letters for nonterminals and small letters
for terminals. Even if we did not do this, it would not be hard to determine
when a symbol is a terminal. All symbols that do not appear as the left parts
of productions are terminals with the exception of A.

Aside from these minor variations, we call this format—arrows, vertical
bars, terminals, and nonterminals—for presenting a CFG, BNF standing for
Backus Normal Form or Backus-Naur Form. It was invented by John W.
Backus for describing the high-level language ALGOL. Peter Naur was the
editor of the report in which it appeared, and that is why BNF has two possible
meanings.

A FORTRAN identifier (variable or storage location name) can, by defi-
nition, be up to six alphanumeric characters long but must start with a letter.
We can generate the language of all FORTRAN identifiers by a CFG.

§S— LETTERX X X X X
X — LETTER | DIGIT | A
LETTER — AB|IC|.. .| Z
DIGIT — 0[1/2] . . . |9

Not just the language of identifiers but the language of all proper FORTRAN
instructions can be defined by a CFG. This is also true of all the statements
in the languages PASCAL, BASIC, PL/I, and so on. This is not an accident.
As we shall see in Chapter 22, if we are given a word generated by a specified
CFG we can determine how the word was produced. This in turn enables us
to understand the meaning of the word just as identifying the parts of speech
helps us to understand the meaning of an English sentence. A computer must
determine the grammatical structure of a computer language statement before
it can execute the instruction.

Regular languages were easy to understand in the sense that we were able
to determine how a given word could be accepted by an FA. But the class
of languages they define is too restrictive for us. By this we mean that regular
languages cannot express all of the deep ideas we may wish to communicate.
Context free languages can handle more of these—enough for computer pro-
gramming. And even this is not the ultimate language class, as we see in
Chapter 20. We shall return to such philosophical issues in Part III.
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PROBLEMS
1. Consider the CFG:
S— aS | bb
Prove that this generates the language’ defined by the regular expression
a*bb
2. Consider the CFG:
S — XYX
X—>aX|bX|A
Y — bbb

Prove that this generates the language of all strings with a triple b in
them, which is the language defined by

(a + b)*bbb(a + b)*
3. Consider the CFG:

S — aX
X—>aX|bX| A

What is the language this CFG generates?

4. Consider the CFG:

S — XaXaX
X—>aX|bX| A

What is the language this CFG generates?

5. Consider the CFG:

S — SS | XaXaX | A
X—>bX|A

@) Prove that X can generate any b*.
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(i)
(iii)
(iv)

(v)

()

(ii)

PUSHDOWN AUTOMATA THEORY

Prove that XaXaX can generate any b*ab*ab*.
Prove that S can generate (b*ab*ab*)*.

Prove that the language of this CFG is the set of all words in(a + b)*
with an even number of a’s with the following exception: We consider
the word A to have an even number of a’s, as do all words with no
a’s, but of the words with no a’s only A can be generated.

Show how the difficulty in part (iv) can be alleviated by adding the
production

S— XS

For each of the CFG’s in Problems 1 through 5 determine whether
there is a word in the language that can be generated in two
substantially different ways. By “substantially,” we mean that if
two steps are interchangeable and it does not matter which comes
first, then the different derivations they give are considered “sub-
stantially the same” otherwise they are ‘“substantially different.”

For those CFG’s that do have two ways of generating the same word,
show how the productions can be changed so that the language gen-
erated stays the same but all words are now generated by substantially
only one possible derivation.

Consider the CFG:

S — XbaaX | aX
X—>Xa|Xb|A

What is the language this generates? Find a word in this language that can
be generated in two substantially different ways.

M

(ii)

®

(ii)

Consider the CFG for “some English” given in this chapter. Show
how these productions can generate the sentence:

Itchy the bear hugs jumpy the dog.

Change the productions so that an article cannot come between an
adjective and its noun.

Show how in the CFG for “some English” we can generate the
sentence:

The the the cat follows cat.

Change the productions so that the same noun cannot have more than
one article. Do this for the modification in Problem 8 also.
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10. Show that in the CFG for AE given in this chapter we can eliminate
the nonterminal AE. In which other CFG’s in this chapter can we elim-

inate a nonterminal?

Find a CFG for each of the languages defined by the following regular expres-

sions.
11. ab*
12. a*b*

13. (baa + abb)*

Find CFG’s for the following languages over the alphabet = = {a,b}.

14. @ All words in which the letter b is never tripled.
(i)  All words that have exactly two or three b’s.

15. (i)  All words that do not have the substring ab.
(>i1) All words that do not have the substring baa.

16. All words that have different first and last letters:

{ab ba aab abb baa bba . . .}

17. Consider the CFG:

S — AA
A — AAA
A— bA|Ab|a

Prove that the language generated by these productions is the set of all words
with an even number of a’s, but not no a’s. Contrast this grammar with the

CFG in Problem 5.
18. Describe the language generated by the following CFG:
S—S§

S — XXX
X—>aX|Xal|b
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19.

20.
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Write a CFG to generate the language of all strings that have more a’s
than b’s (not necessarily only one more, as with the nonterminal A for
the language EQUAL, but any number more a’s than b’s).

{a aa aab aba baa aaaa aaab . . .}

Let L be any language. Define the transpose of L to be the language
of all the words in L spelled backward (see Chapter 6, Problem 17).
For example, if
L = {a baa bbaab bbbaa}
then

transpose (L) = {a aab baabb aabbb}

Show that if L is a context-free language then the transpose of L is
context-free also.
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TREES

In old-fashioned English grammar courses students were often asked to diagram
a sentence. This meant that they were to draw a parse tree, which is a picture
with the base line divided into subject and predicate. All words or phrases
modifying these were drawn as appendages on connecting lines. For example,

The quick brown fox jumps over the lazy dog
becomes:

fox

I jumps
. .
- o
® <. -
\ %
=

\,\N‘Ol(x
32 hO

dog

aut

f\le\

265
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If the fox is dappled grey, then the parse tree would be:

fox I jumps
\ l
P
=
®

=]
£
©
-

(e®

dog

‘ \ \
dappled -~
K
since dappled modifies grey and therefore is drawn as a branch off the grey
line.
The sentence,
ways:

I shot the man with the gun.” can be diagrammed in two
|

2ed

[

shot

man
=
z ®
-
=
gun
-
=
«
or
| | shot man
I -
= s
® o
=
gun

au}
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In the first diagram “with the gun” explains how I shot. In the second
diagram “with the gun” explains who I shot.

These diagrams help us straighten out ambiguity. They turn a string of words
into an interpretable idea by identifying who does what to whom.

A famous case of ambiguity is the sentence, “Time flies like an arrow.”
We humans have no difficulty identifying this as a poetic statement, technically
a simile, meaning, “Time passes all too quickly, just as a speeding arrow
darts across the endless skies”—or some such euphuism.

This is diagrammed by the following parse tree:

time I flies

!

arrow

ue

Notice how the picture grows like a tree when “an” branches from “arrow.”
A Graph Theory tree, unlike an arboreal tree, can grow sideways or upside
down.

A nonnative speaker of English with no poetry in her soul (a computer,
for example) who has just yesterday read the sentence, “Horse flies like a
banana.” might think the sentence should be diagrammed as

flies L like I arrow

where she thinks “time flies” may have even shorter lives than drosophilae.

Looking in our dictionary, we see that “time” is also a verb, and if so in
this case, the sentence could be in the imperative mood with the understood
subject “you,” in the same way that “you” is the understood subject of the
sentence “Close the door.” A race track tout may ask a jockey to do a favor
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and “Time horses like a trainer” for him. The computer might think this sen-
tence should be diagrammed:

(you) time flies

A

arrow

ve

Someone is being asked to take a stopwatch and “time” some racing “flies”
just as “an arrow” might do the same job, although one is unlikely to meet
a straight arrow at the race track.

The idea of diagramming a sentence to show how it should be parsed carries
over easily to CFG’s. We start with the symbol §. Every time we use a
production to replace a nonterminal by a string, we draw downward lines from
the nonterminal to each character in the string.

Let us illustrate this on the CFG

S— AA
A— AAA |bA| Ab|a

We begin with S and apply the production § — AA.

A/S\A

To the left-hand A let us apply the production A — bA. To the right-hand A
let us apply A — AAA.

A/S\A
A /N

b A
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The b that we have on the bottom line is a terminal, so it does not descend
further. In the terminology of trees it is called a terminal node. Let the four
A’s, left to right, undergo the productions A — bA, A — a, A— a, A— Ab
respectively. We now have

NG

A /N
/\ /\

b A a a A b

Let us finish off the generation of a word with the productions A — a and
A a:

Reading from left to right, the word we have produced is bbaaaab.

As was the case with diagramming a sentence, we understand more about
the finished word if we see the whole tree. The third and fourth letters are
both a’s, but they are produced by completely different branches of the tree.

These tree diagrams are called syntax trees or parse trees or generation
trees or production trees or derivation trees. The variety of names comes
from the multiplicity of applications to linguistics, compiler design, and math-
ematical logic.

The only rule for formation of such a tree is that every nonterminal sprouts
branches leading to every character in the right side of the production that
replaces it. If the nonterminal N can be replaced by the string abcde:

N — abcde
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then in the tree we draw:

AN

There is no need to put arrow heads on the edges because the direction of
production is always downward.

EXAMPLE
One CFG for a subsystem of Propositional Calculus is:
S—> () [525|~S|plq

The only nonterminal is §. The terminals are p ¢ ~ D () where “D” is
the symbol for implication.
In this grammar consider the diagram:

/l\
/l\

\\

1IN
/1 /N

S

N\
VAN
I

q

{
Y — ) — ) —— L2

R —

This is a derivation tree for the 13-letter word.

(~~p>2(pD ~~q)) [ |
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We often say that to know the derivation tree for a given word in a given
grammar is to understand the meaning of that word.

The concept of “meaning” is one that we shall not deal with mathematically
in this book. We never presumed that the languages generated by our CFG’s
have any significance beyond being formal strings of symbols. However, in
some languages the meaning of a string of symbols is important to us for
reasons of computation. We shall soon see that knowing the tree helps us
determine how to evaluate and compute.

EXAMPLE

Let us concentrate for a moment on an example of a CFG for a simplified
version of arithmetic expressions:

§— S + §|S* S| number

Let us presume that we know precisely what is meant by “number.”
We are all familiar with the ambiguity inherent in the expression

3+ 4+5

Does it mean (3 + 4) * 5, which is 35, or does it mean 3 + (4 * 5), which
is 237

In the language defined by this particular CFG we do not have the option
of putting in parentheses for clarification. Parentheses are not generated by
any of the productions and are therefore not letters in the derived language.
There is no question that 3 + 4 * 5 is a word in the language of this CFG.
The only queston is what does this word mean in terms of calculation?

It is true that if we insisted on parentheses by using the grammar:

S— (S + 8| (S*S) | number
we could not produce the string 3 + 4 * 5 at all. We could only produce

S2E+)22E+E*HN)=>... 23 +@=*)5)
or

S E*NSS+H*8)=> ... 2B +4H+35)

neither of which is an ambiguous expression.
In the practical world we do not need to use all these cluttering parentheses
because we have adopted the convention of “hierarchy of operators,” which
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says that * is to be executed before +. This, unfortunately, is not reflected
in either grammar. Later, in Chapter 20, we present a grammar that generates
unambiguous arithmetic expressions that will mean exactly what we want them
to mean without the need for burdensome parentheses. For now, we can only
distinguish between these two possible meanings for the expression 3 + 4 * 5
by looking at the two possible derivation trees that might have produced it.

I\ O
V) A

3

We can evaluate an expression in parse-tree form from the tree picture itself
by starting ‘at the bottom and working our way up to the top, replacing each

nonterminal as we come to it by the result of the calculation that it produces.
This can be done as follows:

N SN LN
| AN AN =

3 S *
4 5

or

AN L /IND AN L
AN AN

195}

Iy

W ——
—_—

~

These examples show how the derivation tree can explain what the word

means in much the same way that the parse trees in English grammar explain
the meaning of sentences.
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In the special case of this particular grammar (not for CFG’s in general),
we can draw meaningful trees of terminals alone using the start symbol S only
once. This will enable us to introduce a new notation for arithmetic expres-
sions—one that has direct applications to Computer Science.

The method for drawing the new trees is based on the fact that + and »
are binary operations that combine expressions already in the proper form. The
expression 3 + (4 * 5) is a sum. A sum of what? A sum of a number and
a product. What product? The product of two numbers. Similarly (3 + 4) * 5
is a product of a sum and a number, where the sum is a sum of numbers.
Notice the similarity to the original recursive definition of arithmetic expres-
sions. These two situations are depicted in the following trees.

S S

+\ *
7 AN /+< hS
4 5 3 4
These are like derivation trees for the CFG:
§— S + S|S+S| number
except that we have eliminated most of the S§’s. We have connected the branches
directly to the operators instead.
The symbols * and + are no longer terminals, since they must be replaced
by numbers. These are actually standard derivation trees taken from a new

CFG in which §, * and + are nonterminals and number is the only terminal.
The productions are:

S — * | + | number

+ — ++ | +=*| + number | *+ | ** | * number | number + |

number * | number number

* > ++ | +*| + number | *+ | #+ | * number | number + |

number * | number number

As usual number has been underlined because it is only one symbol. The only
words in this language are strings of number. But we are interested in the
derivation trees themselves, not in these dull words.



(c) ketabton.com: The Digital Library

274 PUSHDOWN AUTOMATA THEORY

From these trees we can construct a new notation for arithmetic expressions.
To do this, we walk around the tree and write down the symbols, once each,
as we encounter them. We begin our trip on the left side of the start symbol
S heading south. As we walk around the tree, we keep our left hand always
on the tree.

i
// \ AN

-

The first symbol we encounter on the first tree is +. This we write down
as the first symbol of the expression in the new notation. Continuing to walk
around the tree, keeping it on our left, we first meet 3 then + again. We
write down the 3, but this time we do not write + down because we have
already included it in the string we are producing. Walking some more we
meet *, which we write down. Then we meet 4, then * again, then 5. So
we write down 4, then 5. There are no symbols we have not met, so our
trip is done. The string we have produced is:

+ 3*%45,
The second derivation tree when converted into the new notation becomés:

*+ +345.
\

\\
/\

\-@
*__:,\

i 3

This tree-walking method produces a string of the symbols +, #*, and
number, which summarizes the picture of the tree and thus contains the in-
formation necessary to understand the meaning of the expression. This is in-

formation that is lacking in our usual representation of arithmetic expressions,
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unless parentheses are required. We shall show that these strings are unam-
biguous in that each determines a unique calculation without the need for
establishing the convention of times before plus. These representations are said
to be in operator prefix notation because the operator is written in front of
the operands it combines.

Since $— § + § has changed from

+

SN\

+ S to
3 4

the left-hand tracing changes 3 + 4 into + 3 4.

To evaluate a string of characters in this new notation, we proceed as
follows. We read the string from left to right. When we find the first substring
of the form

operator-operand-operand (call this o0-0-0 for short)

we replace these three symbols with the one result of the indicated arithmetic
calculation. We then rescan the string from the left. We continue this process
until there is only one number left, which is the value of the entire original
expression.

In the case of the expression + 3 * 4 5, the first substring we encounter
of the form operator-operand-operand is * 4 5, so we replace this with the
result of the indicated multiplication, that is, the number 20. The string is
now + 3 20. This itself is in the form 0-0-0, and we evaluate it by performing
the addition. When we replace this with the number 23 we see that the process
of evaluation is complete.

In the case of the expression * + 3 4 5 we find that the 0-0-0 substring
is + 3 4. This we replace with the number 7. The string is then * 7 5, which
itself is in the 0-0-0 form. When we replace this with 35, the evaluation process
is complete.

Let us see how this process works on a harder example. Let us start with
the arithmetic expression

A+2)*«3+4 +5+6.

This is shown in normal notation, which is called operator infix notation
because the operators are placed in between the operands. With infix notation
we often need to use parentheses to avoid ambiguity, as is the case with the
expression above. To convert this to operator prefix notation, we begin by
drawing its derivation tree:
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Reading around this tree gives the equivalant prefix notation expression
* 4+ +12+3456

Notice that the operands are in the same order in prefix notation as they were
in infix notation, only the operators are scrambled and all parentheses are
deleted.

To evaluate this string we see that the first substring of the form operator-
operand-operand is + 1 2, which we replaced with the number 3. The eval-
uation continues as follows:

String First 0-0-0 substring

*+ +*3+3456 +34
g

*+*+3756 *x37
Y

*+ 2156 + 215
\ig

* 266 * 266
U
156

which is the correct value for the expression we started with.

Since the derivation tree is unambiguous, the prefix notation is also un-
ambiguous and does not rely on the tacit understanding of operator hierarchy
or on the use of parentheses.

This clever parenthesis-free notational scheme was invented by the Polish
logician Jan Lukasiewicz (1878—1956) and is often called Polish notation. There
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is a similar operator postfix notation, which is also called Polish notation, in
which the operation symbols (+, *, . . . ) come after the operands. This can
be derived by tracing around the tree from the other side, keeping our right
hand on the tree and then reversing the resultant string. Both of these methods
of notation are useful for computer science, and we consider them again in
Chapter 22. [ |

Let us return to the more general case of languages other than arithmetic
expressions. These may also suffer from the problem of ambiguity. Substantive
ambiguity is a difficult concept to define.

EXAMPLE
Let us consider the language generated by the following CFG:

Probp1 S — AB
PRoD2 A—a
Prop3 B— b

There are two different sequences of applications of the productions that gen-
erate the word ab. One is Prop 1, Probp 2, ProD 3. The other is ProD 1,
Prop 3, Prop 2.

S=>AB = aB = ab or S=> AB = Ab = ab

However, when we draw the corresponding syntax trees we see that the two
derivations are essentially the same:

S

A/S\B A/ \B

This example, then, presents no substantive difficulty because there is no
ambiguity of interpretation. This is related to the situation in Chapter 13 in
which we first built up the grammatical structure of an English sentence out
of noun, verb, and so on, and then substituted in the specific words of each
category either one at a time or all at once. When all the possible derivation
trees are the same for a given word then the word is unambiguous. [ |
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DEFINITION

A CFG is called ambiguous if for at least one word in the language that it
generates there are two possible derivations of the word that correspond to
different syntax trees. |

EXAMPLE

Let us reconsider the language PALINDROME, which we can now define by
the CFG below:

S—>aSa|bSh|a|b|A

At every stage in the generation of a word by this grammar the working string
contains only the one nonterminal S smack dab in the middle. The word grows
like a tree from the center out. For example.:

.. baSab = babSbab=>babbSbbab => babbaSabbab ...

When we finally replace S by a center letter (or A if the word has no center
letter) we have completed the production of a palindrome. The word aabaa
has only one possible generation:

S = aSa
= aaSaa
= aabaa

/I\

S
|
a S a
/ I\
S
|
b

a a

If any other production were applied at any stage in the derivation, a different
word would be produced.

We see then that this CFG is unambiguous. Proving this rigorously is left
to Problem 13 below.
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EXAMPLE

The language of all noennull strings of a’s can be defined by a CFG as follows:
S—aS|Sa|a

3

In this case the word a’ can be generated by four different trees:

/|
/

) e ;e S

I\
\, /|

Q

This CFG is therefore ambiguous.
However the same language can also be defined by the CFG:

S—aS|a

for which the word @ has only one production:

/I
/]
|

(See Problem 14 below). This CFG is not ambiguous. |

Q

From this last example we see that we must be careful to say that it is
the CFG that is ambiguous, not that the language itself is ambiguous.

So far in this chapter we have seen that derivation trees carry with them
an additional amount of information that helps resolve ambiguity in cases where
meaning is important. Trees can be useful in the study of formal grammars
in other ways.

For example, it is possible to depict the generation of all the words in the
language of a CFG simultaneously in one big (possibly infinite) tree.
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DEFINITION

For a given CFG we define a tree with the start symbol S as its root and
whose nodes are working strings of terminals and nonterminals. The descen-
dants of each node are all the possible results of applying every production
to the working string, one at a time. A string of all terminals is a terminal
node in the tree. The resultant tree is called the total language tree of the
CFG. n

EXAMPLE
For the CFG

S — aa | bX |aXX
X— ablb

the total language tree is:

// //\\

aabX abX  aXab aXb

VAR

aabab aabb abab abb aabab abab aahb abb

This total language has only seven different words. Four of its words (abb,
aabb, abab, aabab) have two different possible derivations because they appear
as terminal nodes in this total language tree in two different places. However,
the words are not generated by two different derivation trees and the grammar
is unambiguous. For example:

/l\
/\\
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EXAMPLE
Consider the CFG:
S— aSh | bS|a

We have the terminal letters a and b and three possible choices of substitutions
for § at any stage. The total tree of this language begins:

L l N
aaSbb/ab,%\ \\\

baSbh  bbS

/l\ l\\//l\\

3 3
Sh h%b hbaSb bbbS

Here we have circled the terminal nodes because they are the words in the
language generated by this CFG. We say “begins” because since the language
is infinite the total language tree is too.

We have already generated all the words in this language with one, two,
or three letters.

L={a ba aab bba...}

These trees may get arbitrarily wide as well as infinitely long. [ |
EXAMPLE
§— SAS | b
A— bal|b

Every string with some S’s and some A’s has many possible productions that
apply to it, two for each $ and two for each A.

/\

SAS

//\\\

SASAS bAS SbaS  SbS SASAS SAb

I

SASASAS bASAS SbaSAS SbSAS SASASAS ses
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The essence of recursive definition comes into play in an obvious way when
some nonterminal has a production with a right-side string containing its own
name, as in this case:

X — (blah) X (blah)

The total tree for such a language then must be infinite since it contains
the branch:

X = (blah) X (blah)
= (blah) (blah) X (blah) (blah)
= (blah)® X (blah)®

This has a deep significance which will be important to us shortly.
Surprisingly, even when the whole language tree is infinite, the language
may have only finitely many words.

EXAMPLE
Consider this CFG:

S— X|b
X— aX

The total language tree begins:

aaX

aaaX
R

Clearly the only word in this language is the single letter . X is a bad
mistake; it leads to no words. It is a useless symbol in this CFG. We shall
be interested in matters like this again in Chapter 23. [ ]
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1. Chomsky finds three different interpretations for “I had a book stolen.”

Explain them.

Below is a set of words and a set of CFG’s. For each word, determine if
the word is in the language of each CFG and, if it is, draw a syntax tree to

prove it.
Words

2. ab
3. aaaa
4. aabb
5. abaa
6. abba
7. baaa
8. abab
9. bbaa

10.  baab

CFG’s
CFG 1.

CFG 2.

CFG 3.

CFG 4.

CFG 5.

S— aSb | ab

S—>aS|bS|a

S— aS|aSh|X
X-—>aXa|a

S— aAS | a
A— SbA | SS | ba

S— aB | bA
A— a|aS|bAA
B— b|bS | aBB

11. Find an example of an infinite language that does not have any production

of the form

X — (blah) X (blah)
for any nonterminal X

12.  Show that the following CFG’s are ambiguous by finding a word with

two distinct syntax trees.
(i) S— SaSaS|b

(i) S—aSh|Sb|Sa|a
(iii) S —> aaS | aaaS|a

(ivy S—aS|aSh|X

X—>Xala
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(V) S—AA
A— AAA|a|bA | Ab

13.  Prove that the CFG
S—)aSaleb|alb|A

does generate exactly the language PALINDROME as claimed in the
chapter and is unambiguous.

14. Prove that the CFG
S—aS|a

is unambiguous.

15.  Show that the following CFG’s that use A are ambiguous
i S XaX
X—>aX|bX|A
(i) S—aSX|A
X—>aX|a
(iii) S—aS|bS|aaS| A

16. (i) Find unambiguous CFG’s that generate the three languages in
Problem 15.

(i1)  For each of the three languages generated in Problem 15, find an
unambiguous grammar that generates exactly the same language ex-
cept for the word A. Do this by not employing the symbol A in the
CFG’s at all.

17. Begin to draw the total language trees for the following CFG’s until we
can be sure we have found all the words in these languages with one,
two, three, or four letters. Which of these CFG’s are ambiguous?

i) S—aS|bS|a
(i) S—aSaS|b
Gii) S—> aSa|bSh|a
(iv) S— aSh|bX
X—>bX|b

(v) S— bA|aB
A— bAA | aS|a
B— aBB | bS|b
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18. Convert the following infix expressions into Polish notation.
(i) 1%2=+3
(i) 1*2+3

(i) 1*@2 + 3)

(ivy 1+Q2 +3)%4
V) (1 +2)+3)+4
i) 1+ @*@ + 4)
i) 1+ (2+3) + 4

19. Suppose that, while tracing around a derivation tree for an arithmetic
expression to convert it into operator prefix notation, we make the fol-
lowing change: When we encounter a number we write it down, but we
do not write down an operator until the second time we encounter it.
Show that the resulting string is correct operator postfix notation for the
diagrammed arithmetic expression. )

20. Invent a form of prefix notation for the system of Propositional Calculus
used in this chapter that enables us to write all well-formed formulas
without the need for parentheses (and without ambiguity).
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CHAPTER 15

REGULAR
GRAMMARS

Some of the examples of languages we have generated by CFG’s have been
regular languages, that is, they are definable by regular expressions. However,
we have also seen some nonregular languages that can be generated by CFG’s
(PALINDROME and EQUAL).

EXAMPLE
The CFG:
S — ab | aSh
generates the language
{a"b"}

Repeated applications of the second production results in the derivation
S = aSbh = aaSbb => aaaShbb => aaaaSbbbb ...
286
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Finally the first production will be applied to form a word having the same
number of a’s and b’s, with all the a’s first. This language as we demonstrated
in Chapter 11, is nonregular. ]

EXAMPLE
The CFG:
S— aSa | bSa| A
generates the language TRAILING-COUNT of all words of the form:
s q'oneth® for all strings s in (a + b)*

that is, any string concatenated with a string of as many a’s as the string has
letters. This language is also nonregular (See Chapter 11, Problem 10). W

What then is the relationship between regular languages and context-free
grammars?
Several possibilities come to mind:

1. All languages can be generated by CFG’s.

2. All regular languages can be generated by CFG’s, and so can some non-
regular languages but not all possible languages.

3. Some regular languages can be generated by CFG’s and some regular
languages cannot be generated by CFG’s. Some nonregular languages can
be generated by CFG’s and some nonregular languages cannot.

Of these three possibilities, number 2 is correct. In this chapter we shall
indeed show that all regular languages can be generated by CFG’s. We leave
the construction of a language that cannot be generated by any CFG for Chapter
20.

We now present a method for turning an FA into a CFG so that all the
words accepted by the FA can be generated by the CFG and only the words
accepted by the FA are generated by the CFG. The process of conversion is
easier than we might suspect. It is, of course, stated as a constructive algorithm
that we first illustrate on a simple example.

EXAMPLE

Let us consider the FA below, which accepts the language of all words with
a double a:
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b a

jo@B o Y

We have named the start state S, the middle state M, and the final state F.

The word abbaab is accepted by this machine. Rather than trace through
the machine watching how its input letters are read, as usual, let us see how
its path grows. The path has the following step-by-step development where a
path is denoted by the labels of its edges concatenated with the symbol for
the state in which it now sits:

S (We begin in §)

aM (We take an g-edge to M)

ab$ (We take an a-edge then a b-edge and we are in §)
abb$ (An a-edge, a b-edge, and a b-loop back to §)
abbaM (Another a-edge and we are in M)

abbaaF (Another a-edge and we are in F)

abbaabF (A b-loop back to F)

abbaab (The finished path: an g-edge a b-edge . . . )

This path development looks very much like a derivation of a word in a
CFG. What would the rules of production be?

(From § an a-edge takes us to M) S— aM
(From S a b-edge takes us to S) S— bS

(From M an a-edge takes us to F) M — aF
(From M a b-edge takes us to S) M — bS
(From F an a-edge takes us to F) F— aF
(From F a b-edge takes us to F) F — bF
(When at the final state F, we can F— A

stop if we want to).

We shall prove in a moment that the CFG we have just described generates
all paths from S to F and therefore generates all words accepted by the FA.

Let us consider another path from S to F, that of the word babbaaba. The
path development sequence is

(Start here) S
(A b-loop back to S) bS
(An g-edge to M) baM



(c) ketabton.com: The Digital Library

REGULAR GRAMMARS

(A b-edge back to S) bab$

(A b-loop back to S) babb$S

(An a-edge to M) babbaM
(Another g-edge to F) babbaaF
(A b-loop back to F) babbaabF
(An a-loop back to F) babbaabaF
(Finish up in F) babbaaba

289

This is not only a path development but also a derivation of the word

babbaaba from the CFG above.

The logic of this argument is roughly as follows. Every word accepted by
this FA corresponds to a path from S to F. Every path has a step-by-step
development sequence as above. Every development sequence is a derivation
in the CFG proposed. Therefore, every word accepted by the FA can be gen-

erated by the CFG.

The converse must also be true. We must show that any word generated
by this CFG is a word accepted by the FA. Let us take some derivation such

as

Production Used
S —» aM

M — bS

S - aM

M — aF

F — bF

F - A

This can be interpreted

Production Used
S - aM
M — bS
S - aM
M — aF
F — bF
F - A

Derivation
S > aM
> abS
> abaM
= abaaF
= abaabF
> abaab

as a path development:

Path Developed

Starting at § we take an g-edge to M
Then a b-edge to S

Then an a-edge to M

Then an g-edge to F

Then a b-edge to F

Now we stop
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The path, of course, corresponds to the word abaab, which must be in the
language accepted by the FA since its corresponding path ends at a final
state. [
The general rules for the algorithm above are:

CFG derivation — path development — path — word accepted
and

word accepted — path — path development — CFG derivation
For this correspondence to work, all that is necessary is that:

1. Every edge between states be a production:

c
becomes x_» .y

2. Every production correspond to an edge between states:

B
X —> ¢y comes from M

or to the possible termination at a final state:

and

X— A

only when X is a final state.

If a certain state Y is not a final state, we do not include a production of
the form

Y— A

for it.
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At every stage in the derivation the working string has this form:
(string of terminals) (one Nonterminal)

until, while in a final state, we apply a production replacing the single non-
terminal with A. It is important to take careful note of the fact that a path
that is not in a final state will be associated with a string that is not all
terminals, (i.e. not a word). These correspond to the working strings in the
middle of derivations, not to words in the language.

DEFINITION

For a given CFG a semiword is a string of terminals (maybe none) conca-
tenpated with exactly one nonterminal (on the right), for example,

(terminal) (terminal) . . . (terminal) (Nonterminal)

Contrast this with word, which is a string of all terminals, and working
string, which is a string of any number of terminals and nonterminals in any

order.

Let us examine next a case of an FA that has two final states.

One easy example of this is the FA for the language of all words without
double a@’s. This, the complement of the language of the last example, is also
regular and is accepted by the machine FA’.

FA’

Let us retain for the moment the names of the nonterminals we had before:
S for start, M for middle, and F for what used to be the final state, but is

not anymore.
The productions that describe the labels of the edges of the paths are still

S— aM | bS
M — bS | aF
F — aF | bF

as before.
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However, now we have a different set of final states. We can accept a
string with its path ending in § or M, so we include the productions:

S — A
and

M- A
but not

F— A

The following paragraph is the explanation for why this algorithm works:

Any path through the machine FA’ that starts at — corresponds to a string
of edge labels and simultaneously to a sequence of productions generating a
semiword whose terminal section is the edge label string and whose right-end
nonterminal is the name of the state the path ends in. If the path ends in a
final state, then we can accept the input string as a word in the language of
the machine, and simultaneously finish the generation of this word from the
CFG by employing the production:

(Nonterminal corresponding to final state) — A

Because our definition of CFG’s requires that we always start a derivation
with the particular start symbol S, it is always necessary to label the unique
start state in an FA with the nonterminal name S. The rest of the choice of
names of states is arbitrary.

This discussion was general and complete enough to be considered a proof
of the following theorem:

THEOREM 19

All regular languages can be generated by CFG’s.

This can also be stated as: All regular languages are CFL’s. [ |
EXAMPLE

The language of all words with an even number of a’s (with at least some
a’s) is regular since it can be accepted by this FA:
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Calling the states S, M, and F as before, we have the following corre-
sponding set of productions:

S — bS | aM
M — bM | aF
F— bF|aM | A

We have already seen two CFG’s for this language, but this CFG is sub-
stantially different. (Here we may ask a fundamental question: How can we
tell whether two CFG’s generate the same language? But fundamental questions
do not always have satisfactory answers.) [ |

Theorem 19 was discovered (or perhaps invented) by Noam Chomsky and
George A. Miller in 1958. They also proved the result below, which seems
to be the flip side of the coin.

THEOREM 20

If all the productions in a given CFG fit one of the two forms:
Nonterminal — semiword

or

Nonterminal — word

(where the word may be A) then the language generated by this CFG is regular.

PROOF

We shall prove that the language generated by such a CFG is regular by
showing that there is a TG that accepts the same language. We shall build
this TG by constructive algorithm.

Let us consider a general CFG in this form:
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Ny = wiN, N7 = wyo
N — woN; Ny — wy
N, — wsN,

where the N’s are the nonterminals, the w’s are strings of terminals, and the
parts w,N, are the semiwords used in productions. One of these N’s must be
S. Let N, = §.

Draw a small circle for each N and one extra circle labeled +. The circle
for S we label —.

For every production rule of the form:

Ny — wN,

draw a directed edge from state N, to N, and label it with the word w,.

. - .

If the two nonterminals above are the same the path is a loop.
For every production rule of the form:

N, = w,

draw a directed edge from N, to + and label it with the word w,.

. — Wy — .

We have now constructed a transition graph. Any path in this TG from —
to + corresponds to a word in the language of the TG (by concatenating
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labels) and simultaneously corresponds to a sequence of productions in the
CFG generating the same word. Conversely, every production of a word in
this CFG:

S=> wN=> wwN > wwwN ... = wwwww

corresponds to a path in this TG from — to +.
Therefore, the language of this TG is exactly the same as the language of
the CFG. Therefore, the language of the CFG is regular.

We should note that the fact that the productions in some CFG are all in
the required format does not guarantee that the grammar generates any words.
If the grammar is totally discombobulated, the TG that we form from it will
be crazy too and accept no words. However, if the grammar generates a lan-
guage of some words then the TG produced above for it will accept that
language.

DEFINITION

A CFG is called a regular grammar if each of its productions is of one of
the two forms

Nonterminal — semiword
or )
Nonterminal — word ]

The two previous proofs imply that all regular languages can be generated
by regular grammars and all regular grammars generate regular languages.

We must be very careful not to be carried away by the symmetry of these
theorems. Despite both theorems it is still possible that a CFG that is not in
the form of a regular grammar can generate a regular language. In fact we
have seen examples of this very phenomenon in Chapters 13 and 14.

EXAMPLE
Consider the CFG:
S— aaS | bbS | A
This is a regular grammar and so we may apply the algorithm to it. There

is only one nonterminal, S, so there will be only two states in the TG, —
and the mandated +. The only production of the form
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N, = w,
is

S— A
so there is only one edge into + and that is labeled A. The productions
S — aaS and S — bbS are of the form N, — wN, where the N’s are both S.
Since these are supposed to be made into paths from N; to N, they become

loops from § back to S. These two productions will become two loops at —
one labeled aa and one labeled bb. The whole TG is shown below:

aa

By Kleene’s theorem, any language accepted by a TG is regular, therefore
the language generated by this CFG (which is the same) is regular.
It corresponds to the regular expression

(aa + bb)*

EXAMPLE
Consider the CFG:

S — aaS | bbS | abX | baX | A
X — aaX | bbX | abS | baS

The algorithm tells us that there will be three states: —, X, +.
Since there is only one production of the form

N, = w,

there is only one edge into +. The TG is:
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which we immediately see accepts our old friend the language EVEN-EVEN.
(Do not be fooled by the A edge to the + state. It is the same as relabeling
the — state =*.) [ |
EXAMPLE

Consider the CFG:

S— aA | bB
A— aS|a
B— bS|b

The corresponding TG constructed by the algorithm in Theorem 20 is:

The language of this CFG is exactly the same as the language of the CFG
two examples ago except that it does not include the word A. This language
can be defined by the regular expression (aa + bb)*. ]
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We should also notice that the CFG above does not have any productions
of the form

N.,— A
For a CFG to accept the word A, it must have at least one production of
this form, called a A-production.
A theorem in the next chapter states that any CFL that does not include
the word A can be defined by a CFG that includes no A-productions. Notice
that a A-production need not imply that A is in the language, as with

S — aX
X— A
The language here is just the word a.
The CFG’s that are constructed by the algorithm in Theorem 19 always
have A-productions, but they do not always generate the word A. We know
this because not all regular languages contain the word A, but the algorithm

suggested in the theorem shows that they can all be converted into CFG’s
with A-productions.

PROBLEMS

Find CFG’s that generate these regular languages over the alphabet
3 = {a, b}:

1. The language defined by (aaa + b)*

2. The language defined by (a + b)* (bbb + aaa) (a + b)*

3. All strings without the substring aaa.

4. All strings that end in » and have an even number of b’s in total.
5. The set of all strings of odd length.

6. All strings with exactly one a or exactly one b.

7. Al strings with an odd number of a’s or an even number of b’s.
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For the following CFG’s find regular expressions that define the same language
and describe the language.

8.

10.

11.

12.

13.

14.

15.

16.

17.

S—aX|bS|a|b
X—aX|a

S—bS|ax|b
X—bX|aS|a

S — aaS | abS | baS | bbS | A

S—aB|bA| A
A— aS
B — bS

S— aB | bA
A—aBla
B— bA|b

S—aS|bX|a
X—>aX|bY|a
Y—>aY|a

S—aS|bX|a
X—aX|bY|bZ |a
Y—>aY|a
Z— aZ | bW
W—aW |a

S — bS | aX
X — bS|aY
Y—aY|bY|a |b

(1) Starting with the alphabet

={ab()+ %

find a CFG that generates all regular expressions.
(ii)  Is this language regular?

Despite the fact that a CFG is not in regular form it still might generate
a regular language. If so, this means that there is another CFG that

defines the same language and is in regular form. For each of the ex-
amples below, find a regular form version of the CFG.
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18.

19.

20.

PUSHDOWN AUTOMATA THEORY

i S—=XYZ
X— aX | bX | A
Y—aY|bY|A
Z—aZl|A

(1) §— XXX
X—aX|a
Y—>bY|b

(iii)) S—= XY
X—aX|Xala
Y—>aY|Ya|a

Each of the following CFG’s has a production using the symbol A and
yet A is not a word in its language. Show that there are other CFG’s
for these languages that do not use A. ‘

(i) S—aX|bX

X—albl|A
(i) S—aX|bS|alb
X—>aX|al|A
(iii) §— aS|bX
X—aX|A

Show how to convert a TG into a regular grammar without first con-
verting it to an FA.

Let us, for the purposes of this problem only, allow a production of the
form

N 1 —>r N. 2
where N; and N, are nonterminals and r is a regular expression. The
meaning of this formula is that in any working string we may substitute
for N, any string wN, where w is a word in the language defined by
r. This can be considered a short-hand way of writing an infinite family
of productions, one for each word in the language of r.
Let a grammar be called bad if all of its -productions are of the two
forms

Ni—rN;

N;— A
Bad grammars generate languages the same way CFG’s do.
Prove that even a bad grammar cannot generate a nonregular language,
by showing how to construct one regular expression that defines the same
language as the whole bad grammar.
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CHAPTER 16

CHOMSKY
NORMAL
FORM

Context-free grammars come in a wide variety of forms. By definition, any
finite string of terminals and nonterminals is a legal right-hand side of a pro-
duction, for example,

X — YaaYbaYXZabYb

This wide range of possibilities gives us considerable freedom, but it also adds
to the difficulty of analyzing the languages these possibilities represent. We
have seen in the previous chapter that it may be important to know the form
of the grammar. In this chapter, we shall show that all context-free languages
can be defined by CFG’s that fit a more restrictive format, one more amenable
to theoretical investigation.

The first problem we tackle is A. The null string is a perennial weed in
our garden. It gave us trouble with FA’s and TG’s, and it will give us trouble
now.

301
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We have not yet committed ourselves to a definite stand on the social
acceptability of A-productions, that is, productions of the form:

N— A

where N is any nonterminal. We have employed them but we do not pay
them equal wages. These A-productions will make our lives very difficult in
the discussions to come, so we must ask ourselves, do we need them at all?

Any context-free language in which A is a word must have some A-pro-
ductions in its grammar since otherwise we could never derive the word A
from S. This statement is obvious, but it should be given some justification.
A-productions are the only productions that shorten the working string. If we
begin with the string S and apply only non-A-productions, we never develop
a word of length 0.

However, there are some grammars that generate languages that do not
include the word A but that contain some A-productions anyway. One such
CFG that we have already encountered is

S —aX
X—>A

for the single word a. There are other CFG’s that generate this same language
that do not include any A-productions.

The following theorem, which is the work of Bar-Hillel, Perles, and Shamir,
shows that A-productions are not necessary in a grammar for a context-free
language that does not contain the word A. It proves an even stronger result.

THEOREM 21

If L is a context-free language generated by a CFG that includes A-productions,
then there is a different context-free grammar that has no A-productions that
generates either the whole language L (if L does not include the word A) or
else generates the language of all the words in L that are not A.

PROOF

We prove this by providing a constructive algorithm that will convert a CFG

that contains A-productions into a CFG that does not contain A-productions

that generates the same language with the possible exception of the word A.
Consider the purpose of the production

N—> A
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If we apply this production to some working string, say abAbNaB, we get
abAbaB. In other words, the net result is to delete N from the working string.
If N was just destined to be deleted, why did we let it get there in the first
place? Its mere presence in the working string cannot have affected the non-
terminals around it since productions are applied to one symbol at a time no
matter what its neighbors are. This is why we call these grammars context
free. A nonterminal in a working string in a derivation is not a catalyst; it
is not there to make other changes possible. It is only there so that eventually
it will be replaced by one of several possibilities. It represents a decision we
have yet to make, a fork in the road, a branching node in a tree.

If N is simply destined to be removed we need a means of avoiding putting
that N into the string at all. This is not quite so simple as it sounds.

Consider the following CFG for EVENPALINDROME (the language of ali

palindromes with an even number of letters):
S— aSa | bSb| A
In this grammar we have the following possible derivation:

S = aSa
= aaSaa
= aabSbaa
= aabbaa

We obviously need the nonterminal S in the production process even though
we delete it from the derivation when it has served its purpose.

The following rule seems to take care of using and deleting the nonterminals
involved in A-productions.

Proposed Replacement Rule
If, in a certain CFG, there is a production of the form
N—> A
among the set of productions, where N is any nonterminal (even S), then we
can modify the grammar by deleting this production and adding the following
list of productions in its place.
For all productions of the form:

X — (blah 1) N (blah 2)

where X is any nonterminal (even S or N) and where (blah 1) and (blah 2)
are anything at all (even involving N), add the production

X — (blah 1) (blah 2)
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Notice, we do not delete the production X — (blah 1) N (blah 2), only the
production N — A.

For all productions that involve more than one N on the right side add new
productions that have the other characters the same but that have all possible
subsets of N’s deleted.

For example, the production

X — aNbNa

makes us add

X — abNa (deleting only the first N)
X — aNba (deleting only the second N)

and

X — aba (deleting both N’s)

Also,

X — NN
makes us add

X—>N (deleting one N)
and

X— A (deleting both N’s)

Instead of using a production with an N and then dropping the N later we
simply use the correct form of -the production with the N already dropped.
There is then no need to remove N later and so no need for the lambda
production. This modification of the CFG will produce a new CFG that gen-
erates exactly the same words as the first grammar with the possible exception

of the word A. This is the end of the Proposed Replacement Rule. |

Let us see what happens when we apply this replacement rule to the fol-
lowing CFG.

S — aSa | bSb | A

We remove the production S — A and replace it with S — aa and S — bb,
which are the first two productions with the right-side S deleted.
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The CFG is now:
§ — aSa | bSb | aa | bb
which also generates EVENPALINDROME except for the word A, which can

no longer be derived.
The reason this rule works is that if the N was put into the working string

by the production

X — (blah 1) N (blah 2)
and later deleted by
N—>A
both steps could have been done at once by using the replacement production
X — (blah 1) (blah 2)

in the first place. We have seen that, in general, a change in the order in
which we apply the productions may change the word generated. However,
in this case, no matter how far apart the productions

X — (blah 1) N (blah 2)
and

N— A
may be in the sequence of the derivation, if the N removed from the working
string by the second production is the same N introduced by the first then
these two can be combined into the single production

X — (blah 1) (blah 2)

We must be careful not to remove N before it has served its full purpose.
For example, the following EVENPALINDROME derivation is generated in

the old CFG:
Derivation Production Used
S > aSa S — aSa
= aaSaa S — aSa
= aabSbhaa S — bSHh

= aabbaa S— A
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In the new CFG we can combine the last two steps into one:

Derivation Production Used
S = aSa S — aSa

= aaSaa S — aSa

= aabbaa S— bb

It is only the last two steps for which we use the replacement production:
S — bShb

becomes S — bb
S— A

We do not eliminate the entire possibility of using § to form words.

We can now use this proposed replacement rule to describe an algorithm
for eliminating all A-productions from a given grammar.

If a particular CFG has several nonterminals with A-productions, then we
replace these A-productions one by one following the steps of the proposed
replacement rule. As we saw, we will get more productions (new right sides
by deleting some N’s) but shorter derivations (by combining the steps that
formerly employed A-productions). We end up with a CFG that generates the
exact same language as the original CFG (with the possible exception of the
word A) but that has no A-productions.

A little discussion is in order here to establish that the new CFG actually
does generate all the non-A words the old CFG does and that it generates no
new words that the old CFG did not.

In the general case we might have something like this. In a long derivation
in a grammar that includes the productions B — aN and N —> A among other
stuff we might find:

S=> ...
>aANbBa
>aANbaNa from B — aN

>abbXybaNa
>abbXybaa from N — A

Notice that not all the N’s have to turn into A’s. The first N in the working
string did not, but the second does. We trace back to the step at which this
second N was originally incorporated into the working string. In this sketchy
example, it came from the production B — aN. In the new CFG we would
have a corresponding production B — a. If we had applied this production
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instead of B — aN, there would be no need later to apply N — A to this
particular N. Those never born need never die. (First statistician: “With all
the troubles in this world, it would be better if we were never born in the
first place.” Second statistician: “Yes, but how many are so lucky? Maybe
one in ten thousand.”) So we see that we can. produce all the old non-A words
with the new CFG even without A-productions.

To show that the new CFG with its new productions does not generate any
new words that the old CFG could not, we merely observe that each of the
new added productions is just a combination of old productions and any new
derivation corresponds to some old derivation that used the A-production.

Before we claim that this constructive algorithm provides the whole proof,
we must ask if it is finite. It seems that if we start with some nonterminals
Ni, N;, N3, which have A-productions and we eliminate these A-productions
one by one until there are none left, nothing can go wrong. Can it?

What can go wrong is that the proposed replacement rule may create new
A-productions that can not themselves be removed without again creating more.
For example, in this grammar

S —a|Xb|aYa
X—>Y|A
Y—>b|X

we have the A-production
X— A
so by the replacement rule we can eliminate this production and put in its
place the additional productions:
S—b (from § — Xb)
and
Y— A (from Y — X).

But now we have created a new A-production which was not there before.
So we still have the same number of A-productions we started with. If we
now use the proposed replacement rule to get rid of Y — A, we get

S — aa (from S — aYa)
and

X— A (from X — Y)
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But we have now re-created the production X — A. So we are back with our
old A-production. In this particular case the proposed replacement rule will
never eliminate all A-productions even in hundreds of applications.

Therefore, unfortunately, we do not yet have a proof of this theorem. How-
ever, we can take some consolation in having created a wonderful illustration
of the need for careful proofs. Never again will we think that the phrase “and
so we see that the algorithm is finite” is a silly waste of words.

Despite the apparent calamity, all is not lost. We can perform an ancient
mathematical trick and patch up the proof. The trick is to eliminate all the
A-productions at once.

DEFINITION (inside the proof of Theorem 21)
In a given CFG, we call a nonterminal N nullable if

1. There is a production N — A
or
2. There is a derivation that starts at N and leads to A.
N=>...2A
(end of definition, not proof) [ |

As we have seen, all nullable nonterminals are dangerous. We now state
the careful formulation of the algorithm.

Modified Replacement Rule

1. Delete all A-productions.
2. Add the following productions: For every production

X — old string

add enough new productions of the form X — . . . , that the right side will
account for any modification of the old string that can be formed by deleting
all possible subsets of nullable nonterminals, except that we do not allow
X — A to be formed even if all the characters in this old right-side string
are nullable.

For example, in the CFG
S—>a|Xb|aYa

X—>Y|A
Y—>bl|X
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we find that X and Y are nullable. So when we delete X — A we have to
check all productions that include X or Y to see what new productions to add:

Old Productions Productions Newly
with Nullables Formed by the Rule
X—>Y Nothing

X—A Nothing

Y= X Nothing

S — Xb S—b

S — aYa §— aa

The new CFG is

S—al|Xb|aYa|b]|aa
X—Y
Y>bl|X

It has no A-productions but generates the same language.

This modified replacement rule works the way we thought the first replace-
ment rule would work, that is, by looking ahead at which nonterminals in the
working string will be eliminated by A-productions and offering alternate sub--
stitutions in which they have already been eliminated.

Before we conclude this proof, we should ask ourselves whether the mod-
ified replacement rule is really workable, that is, is it an effective procedure
in the sense of our use of that term in Chapter 12? To apply the modified
replacement rule we must be able to identify all the nullable nonterminals at
once. How can we do this if the grammar is complicated? For example, in
the CFG

S — Xay | YY | aX | ZYX
X—>Za|bZ|ZZ|Yb
Y>> Ya|XY|A
Z— aX | YYY

all the nonterminals are nullable, as we can see from

S = ZYX = YYYYX = YYYYZZ = YYYYYYYZ = YYYYYYYYYY
= ... 2 AAAAAAAAAA = A

The solution to this problem is blue paint (the same shade used in Chapter
12). Let us start by painting all the nonterminals with A-productions blue. We
paint every occurrence of them, throughout the entire CFG, blue. Now for
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Step 2 we paint blue all nonterminals that produce solid blue strings. For
example, if

S — ZrX

and Z, Y, and X are all blue, then we paint S blue. Paint all other occurrences
of § throughout the CFG blue too. As with the FA’s, we repeat Step 2 until
nothing new is painted. At this point all nullable nonterminals will be blue.
This is an effective decision procedure to determine all nullables, and there-
fore the modified replacement rule is also effective.
This then successfully concludes the proof of this Theorem. |

EXAMPLE
Let us consider the following CFG for the language defined by (a + b)*a

S — Xa
X—>aX|bX| A

The only nullable nonterminal here is X, and the productions that have right
sides including X are:

New
Productions
Productions Formed by
with Nullables the Rule
S — Xa S—a
X— aX X—a
X — bX X—b

The full new CFG is:

S—Xal|a
X—>aX|bX|al|b

To produce the word baa we formerly used the derivation:

Derivation Production Used
S > Xa S— Xa

> bXa X — bX

= baXa X — aX

= baa X— A
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Now we combine the last two steps, and the new derivation in the new
CFG is:
S > Xa S— Xa
= bXa X — bX
= baa X—a
Since A was not a word generated by the old CFG, the new CFG generates
exactly the same language. ]
EXAMPLE

Consider this inefficient CFG for the language defined by

(a + b)*bb(a + b)*
S—= XY
X—Zb
Y — bW
Z— AB
W—-Z
A—aA|bA|A
B—Ba|Bb| A

From X we can derive any word ending in b; from Y we can derive any
word starting with b. Therefore, from S we can derive any word with a double

b.
Obviously, A and B are nullable. Based on that, Z— AB makes Z also

nullable. After that, we see that W is also nullable. X, ¥, and § remain
nonnullable. Alternately, of course, we could have arrived at this by azure
artistry.

The modified replacement algorithm tells us to generate new productions to
replace the A-productions as follows:

Additional New Productions

Old Derived from Old
X—7b X—>b
Y — bW Y—b
Z— AB Z—>AandZ— B
W—Z Nothing
A— dA A—a
A— bA A—>b
B — Ba B—a

B — Bb B—b
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Remember we do not eliminate all of the old productions, only the old

A-productions.
The fully modified new CFG is:

S— XY
X—>2Zb|b
Y- bW |b
Z—>AB|A|B
W—Z
A—aA|bA|alb
B—Ba|Bblal|b

Since A was not a word generated by the old CFG, the new CFG generates
exactly the same language. |

We now eliminate another needless oddity that plagues some CFG’s.

DEFINITION
A production of the form

one Nonterminal — one Nonterminal

is called a unit production. |

Bar-Hillel, Perles, and Shamir tell us how to get rid of these too.
THEOREM 22
If there is a CFG for the language L that has no A-productions, then there
is also a CFG for L with no A-productions and no unit productions.
PROOF

This will be another proof by constructive algorithm.
First we ask ourselves what is the purpose of a production of the form

A— B

where A and B are nonterminals.
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We can use it only to change some working string of the form
(blah) A (blah)
into the working string
(blah) B (blah)

why would we want to do that? We do it because later we want to apply a
production to the nonterminal B that is different from any that we could pro-
duce from A. For example,

B — (string)
)
(blah) A (blah) = (blah) B (blah) = (blah) (string) (blah)

which is a change we could not make without using A — B, since we had
no production A — (string).

It seems simple then to say that instead of unit productions all we need
are more choices for replacements for A. We now formulate a replacement
rule for, eliminating unit productions.

Proposed Elimination Rule
If A— B is a unit production and all the productions starting with B are
B — s | §2 | [

where s, s,, . . . are strings, then we can drop the production A — B and
instead include these new productions:

A—)S1|S2|...

Again we ask ourselves, will repeated applications of this proposed elim-
ination rule result in a grammar that does not include unit productions but
defines exactly the same language?

The answer is that we still have to be careful. A problem analogous to the
one that arose before can strike again.

The set of new productions we create may give us new unit productions.
For example, if we start with the grammar:

S— A|bb
A—>B|b
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B—Sla

and we try to eliminate the unit production A — B, we get instead
A—>S|a

to go along with the old productions we are retaining. The CFG is now:

S—> A|bb
A—b
B—S|a

We still have three unit productions:
S§S—-A A—>S B—S

If we now try to eliminate the unit production B — §, we create the new
unit production B — A. If we then use the proposed elimination rule on B — A,
we will get back B — S.

As was the case with A-productions, we must get rid of all unit productions
in one fell swoop to avoid infinite circularity.

Modified Elimination Rule

For every pair of nonterminals A and B, if the CFG has a unit production
A — B or if there is a chain of unit productions leading from A to B, such
as

ASX>X%>...>B

where X;, X, are some nonterminals, we then introduce new productions ac-
cording to the following rule: If the nonunit productions from B are

B—s |s|ss]. ..
where s, s, and s; are strings, create the productions:
A“)SliS2|53|. .
We do the same for all such pairs of A’s and B’s simultaneously. We can
then eliminate all unit productions.
This is what we meant to do originally. If in the derivation for some word

w the nonterminal A is in the working string and it gets replaced by a unit
production A — B, or by a sequence of unit productions leading to B, and
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further if B is replaced by the production B — s4, we can accomplish the same
thing and derive the same word w by employing the production A — s, directly
in the first place.

This modified elimination rule avoids circularity by removing all unit pro-
ductions at once. If the grammar contains no A-productions, it is not a hard
task to find all sequences of unit productions A — §; — §; — . . . — B, since
there are only finitely many unit productions and they chain up in only obvious
ways. In a grammar with A-productions, and nullable nonterminals X and Y,
the production § — ZYX is essentially a unit production. There are no A-
productions allowed by the hypothesis of the theorem so no such difficulty is

possible.

The modified method described in the proof is an effective procedure and
it proves the theorem. [ |
EXAMPLE

Let us reconsider the troubling example mentioned in the proof above
S— A|bb
A—>B|b
B—>S|a

Let us separate the units from the nonunits:

Unit Productions Decent Folks
S—>A S— bb
A—B A—b
B—S B—a

We list all unit productions and sequences of unit productions, one non-
terminal at a time, tracing each nonterminal through each sequence it heads.
Then we create the new productions that allow the first nonterminal to be
replaced by any of the strings that could replace the last nonterminal in the

sequence.
S—>A gives S—b
S—>A—>B gives S—a
A—B gives A—a
A—->B—>S§ gives A — bb
B—S gives B — bb

B—>S—A gives B—b
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The new CFG for this language is:

S—bb|b|a
A—blalbb
B—al|bbl|b

which has no unit productions.
Parenthetically, we may remark that this particular CFG generates a finite
language since there are no nonterminals in any string produced from S. I

In our next result we will separate the terminals from the nonterminals in
CFG productions.

THEOREM 23

If L is a language generated by some CFG, then there is another CFG that
generates all the non-A words of L, all of whose productions are of one of
two basic forms:

Nonterminal — string of only Nonterminals
or

Nonterminal — one terminal

PROOF

The proof will be by constructive algorithm. Suppose that in the given CFG
the nonterminals are §, Xy, X3, . . ..

(If these are not actually the names of the nonterminals in the CFG as
given, we can rename them without changing the final language. Let ¥ be
called X, let N be called X,. .. .)

Let us also assume that the terminals are a and b.

We now add two new nonterminals A and B and the productions

A— a
B— b

Now for every previous production involving terminals we replace each a
with the nonterminal A and each b with the nonterminal B. For example,

X3 4 X4aX,Sbe7a
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becomes
X; — X,AX,SBBX-A

which is a string of solid nonterminals.
Even if we start with a string of solid terminals

X¢ — aaba
we convert it into a string of solid nonterminals
X — AABA
All our old productions are now of the form
Nonterminal — string of Nonterminals
and the two new productions are of the form
Nonterminal — one terminal
Any derivation that formerly started with S and proceeded down to the word
aaabba
will now follow the same sequence of productions to derive the string
AAABBA

from the start symbol S. From here we apply A — a and B — b a number
of times to generate the word aaabba. This convinces us that any word that
could be generated by the original CFG can also be generated by the new
CFG.

We must also show that any word generated by the new CFG could also
be generated by the old CFG. Any derivation in the new CFG is a sequence
of applications of those productions which are modified old productions and
the two totally new productions from A and B. Because these two new pro-
ductions are the replacement of one nonterminal by one terminal nothing they
introduce into the working string is replaceable. They do not interact with the
other productions. If all applications of these two productions are deleted from
a derivation in the new CFG what will result from the productions left is a
working string of A’s and B’s. This reduced derivation completely corresponds
to a derivation of a word from the old CFG. It is the same word the new
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CFG had generated before we monkeyed with the derivation. This long-winded
discussion makes more precise the idea that there are no extraneous words
introduced into the new CFG. Therefore, this the new CFG proves the
theorem. |

EXAMPLE
Let us start with the CFG:

S '—>X] |X2aX2|aSb|b
X — XX, | b
X2 - aX;_ | aaX1

After the conversion we have:

S—')Xl Xl—)X2X2
S — X,AX, X,— B
S — ASB X, — AX,
S—B X, = AAX,
A—a
B—b

We have not employed the disjunction slash | but instead have written out
all the productions separately so that we may observe eight of the form:

Nonterminal — string of Nonterminals

and two of the form:
Nonterminal — one terminal |

In all cases where the algorithm of the theorem is applied the new CFG
has the same number of terminals as the old CFG and more nonterminals (one
new one for each terminal).

As with all our proofs by constructive algorithm, we have not said that this
new CFG is the best example of a CFG that fits the desired format. We say
only that it is one of those that satisfy the requirements.

One problem is that we may create unit productions where none existed
before. For example, if we follow the algorithm to the letter of the law,

X—a
will become

X—>A
A—a
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To avoid this problem, we should add a clause to our algorithm saying that
any productions that we find that are already in one of the desired forms,
should be left alone: “If it ain’t broke, don’t fix it.” Then we do not run the
risk of creating unit productions (or A-productions for that matter).

EXAMPLE
One student thought that it was a waste of effort to introduce a new nonterminal
to stand for a if the CFG already contained a production of the form Non-
terminal —a. Why not simply replace all a’s in long strings by this Nonter-
minal? For instance, why cannot

S — Na

N—alb

become
S — NN

N—alb

The answer is that bb is not generated by the first grammar but it is by the
second. The correct modified form is

S — NA
N—al|b

A—a

EXAMPLE

The CFG

S —> XY
X— XX
Y—->YY
X—a
Y—b

(which generates aa*bb*) and which is already in the desired format would,
if we mindlessly attacked it with our algorithm, become:
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S— XY
X— XX
Y—>YY
X—A
Y—B
A—a
B—b

which is also in the desired format but has unit productions. When we get
rid of the unit productions using the algorithm of Theorem 22 we return to
the original CFG.

To the true theoretician this meaningless waste of energy costs nothing. The
goal was to prove the existence of an equivalent grammar in the specified
format. The virtue here is to find the shortest, most understandable and most
elegant proof, not an algorithm with dozens of messy clauses and exceptions.
The problem of finding the best such grammar is also a question theoreticians
are interested in, but it is not the question presented in Theorem 23. [ |

The purpose of Theorem 23 was to prepare the way for the following theo-
rem developed by Chomsky.

THEOREM 24

For any context-free language L the non-A words of L can be generated by
a grammar in which all productions are of one of two forms:

Nonterminal — string of exactly two Nonterminals

Nonterminal — one terminal

PROOF

The proof will be by constructive algorithm.

From Theorems 21 and 22 we know that there is a CFG for L (or for all
L except A) that has no A-productions and no unit productions.

Let us suppose further that we start with a CFG for L that we have made
to fit the form specified in Theorem 23. Let us suppose its productions are:

§ = X\ XoX3X5 X = X3X4X10X4
§— X3X5 X —a

S—>b X 3> X4X9
The productions of the form

Nonterminal — one terminal
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we leave alone. We must now make the productions with right sides having
many nonterminals into productions with right sides that have only two non-
terminals.
For each production of the form
Nonterminal — string of Nonterminals

we propose the following expansion that involves the introduction of the new
nonterminals R, R, . . . . The production

S — X1 X5X3Xs

should be replaced by

S — XiR;
where R, = X3R;3
and where R; — X3:Xs

We use these new nonterminals nowhere else in the grammar; they are used
solely to split this one production into small pieces. If we need to expand
more productions we introduce new R’s with different subscripts.

Let us think of this as:

S — X(rest)) (where rest; = X,X3X5)
(resty) — Xo(rest,) (where rest, = X3Xg)
(resty) — X3Xy

This trick works just as well if we start with an odd number of nonterminals
on the right-hand side of the production:

Xz = XoX1 X1 X3Xo
should be replaced by

Xs — X5R, (where R, = X, X,X5X5)
R, — X\Rs (where Rs = X,1X3Xo)
Rs — X\R¢ (where Rg = X3Xo)

Rs — X3Xo

In this way we can convert productions with long strings of nonterminals
into sequences of productions with exactly two nonterminals on the right side.
As with the previous theorem, we are not finished until we have convinced
ourselves that this conversion has not altered the language the CFG generates.
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Any word formerly generated is still generatable by virtually the same steps,
if we understand that some productions have been expanded into several pro-
ductions that must be executed in sequence.

For example, in a derivation where we previously employed the production

Xg = XoX 1 X1 X3Xo
we must now employ the sequence of productions:

Xs — X5R,
R, — X\R;s
Rs — X \R¢
Re — X3Xg

in exactly this order.

This should give confidence that we can still generate all the words we
could before that change. The real problem is to show that with all these new
nonterminals and productions that we have not allowed any additional words
to be generated. Let us observe that since the nonterminal Rs occurs in only
the two productions

Ry — X\Rs
and
Rs — X|Rq
any sequence of productions that generates a word using Rs must have used
Ry — XiRs
to get Rs into the working string, and
Rs — X(R;

to remove it from the final string.
This combination has the net effect of a production like:

R4 d X1X1R6

Again R, could have been introduced into the working string only by one
specific production. Also Re can be removed only by one specific production.
In fact, the net effect of these R’s must be the same as the replacment of X;
by X»>XiX1X3X,. Because we use different R’s in the expansion of each pro-
duction the new nonterminals (R’s) cannot interact to give us new words. Each
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is on the right side of only one production and on the left side of only one
production. The net effect must be like that of the original production.

The new grammar generates the same language as the old grammar and is
in the desired form. n

DEFINITION

If a CFG has only productions of the form
Nonterminal - string of two Nonterminals
or of the form
Nonterminal — one terminal

it is said to be in Chomsky Normal Form, CNF. [ |

Let us be careful to realize that any context-free language that does not
contain A as a word has a CFG in CNF that generates exactly it. However,
if a CFL contains A, then when its CFG is converted by the algorithms above
into CNF the word A drops out of the language while all other words stay
the same.

EXAMPLE
Let us convert
S— aSa |bSb|al|b|aa|bb

(which generates the language PALINDROME except for A) into CNF. This
language is called NONNULLPALINDROME.
First we separate the terminals from the nonterminal as in Theorem 23:

S — ASA
S — BSB
S — AA
S — BB
§S—>a
S—b
A—a
B—b
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Notice that we are careful not to introduce the needless unit productions
§S— A and S — B.
Now we introduce the R’s:

S — AR, S — AA
R, — SA S— BB
S — BR, S—a
R, — SB S—b
A—a
B—b

This is in CNF, but it is quite a mess. Had we not seen how it was
constructed we would have some difficulty recognizing this grammar as a CFG
for NONNULLPALINDROME.

If we include with this list of productions the additional production S — A,
we have a CFG for the entire language PALINDROME.

|

EXAMPLE
Let us convert the CFG

S — bA | aB
A— bAA | aS|a
B—> aBB | bS | b

into CNF. Since we use the symbols A and B in this grammar already, let
us call the new nonterminals we need to incorporate to achieve the form of
Theorem 23, X (for a) and Y (for b).

The grammar becomes:

§— YA B — XBB
S— XB B—YS
A — YAA B—b
A— XS X—a
A—a Y—=b

Notice that we have left well enough alone in two instances:

A—a and B—b
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We need to simplify only two productions:

A— YR]
A — YAA becomes { R, — AA

and

B— XR2
B — XBB becomes { R, — BB

The CFG has now become:

S — YA|XB
A > YR |XS|a
B —> XR,|YS|b

X —a
Y —b
R] — AA
R2 — BB
which is in CNF. This is one of the more obscure grammars for the language
EQUAL. |
EXAMPLE

Consider the CFG

S — aaaa$ | aaaa
which generates the language a*" for n = 1 2 3. . ..
= {da* ab a. .}
We convert this to CNF as follows: First into the form of Theorem 23:
S — AAAAS

S — AAAA
A—a
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which in turn becomes

S — AR,
R, — AR,
R, — AR;
Ry — AS
S — AR,
R, — AR;
Rs— AA
A—a .

As the last topic in this chapter we show that not only can we standardize

the form of the grammar but we can also standardize the form of the deri-
vations.

DEFINITION

The leftmost nonterminal in a working string is the first nonterminal that we
encounter when we scan the string from left to right. [ |

EXAMPLE

In the string abNbaXYa, the leftmost nonterminal is N. [

DEFINITION
If a word w is generated by a CFG by a certain derivation and at each step

in the derivation a rule of production is applied to the leftmost nonterminal
in the working string, then this derivation is called a leftmost derivation.

EXAMPLE

Consider the CFG:
S — aSX | b

X—>Xbla
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The following is a leftmost derivation:
S = aSX

> aaSXX
= aabXX
= aabXbX
= aababX
= aababa

At every stage in the derivation the nonterminal replaced is the leftmost

one. [ ]

EXAMPLE
Consider the CFG:

S— XY
X— XX|a
Y — YY|b

We can generate the word aaabb through several different derivations, each
of which follows one of these two possible derivation trees:

N N
/\ /\ /\ /\
/\ /\
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Each of these trees becomes a leftmost derivation when we specify in what
order the steps are to be taken. If we draw a dotted line similar to the one
that traces the Polish notation for us, we see that it indicates the order of
productions in the leftmost derivation. We number the nonterminals in the order
in which we first meet them on the dotted line. This is the order in which
they must be replaced in a leftmost derivation.

ivation | Derivation |1
Derivation /
/ 7
/// S \\ /// § \\

N P \\\ \\ 2/ ///"\ \ \\
/2X { /AR'ZN 7 X RN
N AN ANG/AN
//—\\ ;0N \\ / CONNY S0 NN
3x / ix N 8y [ oy 3o bxiavi o ey

e/ - i // Nl |
ANV TN T
| :5X|6X|I|| | | 4X:5X|II :: : l |
| ' Il L] ! l [
AR I AR SRR R P O
Lol gl gt et I\b' fay) {aj (ay by Vb
‘\i/ \\a// \_/ \_J N ~ ~ ~ ~ ~

Derivation I Derivation II

1. $=>XY 1. $=>XY

2. > XXY 2. > XXY

3. > aXy 3. D XXXY

4. > aXxy 4. > axxy

5. > aaXy 5. = aaXY

6. = aaa¥ 6. = aaa¥

7. > aaalY 7. = aaalY

8. = aaabY 8. > aaabY

9. = aaabb 9. > aaabb

In each of these derivations we have drawn a dot over the head of the
leftmost nonterminal. It is the one that must be replaced in the next step if
we are to have a leftmost derivation. ||

The method illustrated above can be applied to any derivation in any CFG.
It therefore provides a proof by constructive algorithm the following theorem.
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THEOREM 25
Any word that can be generated by a given CFG by some derivation also has
a leftmost derivation. ]
EXAMPLE

Consider the CFG:
§S—>S2S5|~8{®plq
To generate the symbolic logic formula
@2 (pD9)

we use the following tree:

N,
/

_—
1,
—

AN
/

95

"—,
CIJ—7

N\
/

t
U

Ve,

AN
—

Remember that the terminal symbols are

()2~pg
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and the only nonterminal is §. We must always replace the left-most S.

S > ©)

> D9

>@DS)

> (p D)

>(@E2ED9)

> (D (~=SD )

> (p D (~p D)

>@P2(p>D9) [

PROBLEMS

Each of the following CFG’s has a production using the symbol A and yet
A is not a word in its language. Using the algorithm in this chapter, show
that there are other CFG’s for these languages that do not use A-productions.

1. S—aX|bX
X—al|b|A

2. S—>aX|bS|al|b
X—aX|alA

3. S—aS|bX
X—>aX|A

4. S— XaX | bX
X — XaX | XbX | A

5. Show that if a CFG does not have A-productions then there is another
CFG that does have A-productions and that generates the same language.
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Each of the following CFG’s has unit productions. Using the algorithm pre-

sented in this chapter, find CFG’s for these same languages that do not have
unit productions.

6.

S—aX|Yb
X—S
Y bY|b

S — AA
A— B|BB
B — abB | b | bb

S — AB
A—B
B—aB|Bb| A

Convert the following CFG’s to CNF.

9.

10.

11.

12.

13.

14.

15.

S—SS|a

§— aSa|SSala

S — aXX
X—>aS|bS|a

EFE—->E+ FE

E—-E*E

E— (E)

E—7

The terminals here are + * ( ) 7.

S — ABABAB

A—alA

B—b|A

Note that A is a word in this language but when converted into CNF
the grammar will no longer generate it.

S — SaS | SaShS | SbSaS | A

S— AS|SB
A— BS|SA
B — S§
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16.

17.

18.

19.

20.

PUSHDOWN AUTOMATA THEORY

S—X
X—-Y
Y= Z
Z— aa

S—SS|A
A— SS|AS|a

(i) Find the leftmost derivation for the word abba in the grammar:

S — AA
A — aB
B— bB| A
(ii)  Find the leftmost derivation for the word abbabaabbbabbab in the
CFG:
S — SSS | aXb

X — ba | bba | abb

Prove that any word that can be generated by a CFG has a right-most
derivation.

Show that if L is any language that does not contain the word A, then
there is a context-free grammar that generates L and that has the property
that the right-hand side of every production is a string that starts with
a terminal.

In other words all productions are of the form:

Nonterminal — terminal (arbitrary)
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CHAPTER 17

PUSHDOWN
AUTOMATA

In Chapter 15 we saw that the class of languages generated by CFG’s is
properly larger than the class of languages defined by regular expressions. This
means that all regular languages can be generated by CFG’s, and so can some
nonregular languages (for example, {a"b"} and PALINDROME).

After introducing the regular languages defined by regular expressions we
found a class of abstract machines (FA’s) with the following dual property:
For each regular language there is at least one machine that runs successfully
only on the input strings from that language and for each machine in the class
the set of words it accepts is a regular language. This correspondence was
crucial to our deeper understanding of this collection of languages. The Pump-
ing Lemma, complements, intersection, decidability . . . were all learned from
the machine aspect, not from the regular expression. We are now considering
a different class of languages but we want to answer the same questions; so
we would again like to find a machine formulation. We are looking for a
mathematical model of some class of machines that correspond analogously to
CFL’s; that is, there should be at least one machine that accepts each CFL
and the language accepted by each machine is context-free. We want CFL-
recognizers or CFL-acceptors just as FA’s are regular language recognizers and
acceptors. We are hopeful that an analysis of the machines will help us un-
derstand the languages in a deeper, more profound sense, just as an analysis
of FA’s led to theorems about regular languages. In this chapter we develop

333
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such a new class of machines. In the next chapter we prove that these new
machines do indeed correspond to CFL’s in the way we desire. In subsequent
chapters we shall learn that the grammars have as much to teach us about
the machines as the machines do about the grammars.

To build these new machines, we start with our old FA’s and throw in
some new gadgets that will augment them and make them more powerful.
Such an approach does not necessarily always work—a completely different
design may be required—but this time it will (it’s a stacked deck).

What we shall do first is develop a slightly different pictorial representation
for FA’s, one that will be easy to augment with the new gizmos.

We have, so far, not given a name to the part of the FA where the input
string lives while it is being run. Let us call this the INPUT TAPE. The
INPUT TAPE must be long enough for any possible input, and since any word
in a* is a possible input, the TAPE must be infinitely long (such a tape is
very expensive). The TAPE has a first location for the first letter of the input,
then a second location, and so on. Therefore, we say that the TAPE is infinite
in one direction only. Some people use the silly term “half-infinite” for this
condition (which is like being half sober).

We draw the TAPE as shown here:

L1 ] L I | 1

The locations into which we put the input letters are called cells. We name
the cells with lowercase Roman numerals.

cell i cell ii cell iii

I l I l

Below we show an example of an input TAPE already loaded with the
input string aaba. The character “A” is used to indicate a blank in a TAPE
cell.

The vast majority (all but four) of the cells on the input TAPE are empty,
that is, they are loaded with blanks, AAA . . ..

As we process this TAPE on the machine we read one letter at a time and
eliminate each as it is used. When we reach the first blank cell we stop. We
always presume that once the first blank is encountered the rest of the TAPE
is also blank. We read from left to right and never go back to a cell that
was read before.
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As part of our new pictorial representations for FA’s, let us introduce the
symbols

START ACCEPT REJECT

to streamline the design of the machine. The arrows (directed edges) into or
out of these states can be drawn at any angle. The START state is like a —
state connected to another state in a TG by a A edge. We begin the process
there, but we read no input letter. We just proceed immediately to the next
state. A start state has no arrows coming into it.

An ACCEPT state is a shorthand notation for a dead-end final state—once
entered, it cannot be left, such as:

all
letters

A REJECT state is a dead-end state that is not final.

all
letters

Since we have used the adjective “final” to apply only to accepting states in
FA’s, we call the new ACCEPT and REJECT states “halt states.” Previously
we could pass through a final state if we were not finished reading the input
data; halt states cannot be traversed. We can enter an ACCEPT or REJECT
state but we cannot exit.

We are changing our diagrams of FA’s so that every function a state per-
forms is done by a separate box in the picture. The most important job per-
formed by a state in an FA is to read an input letter and branch to other
states depending on what letter has been read. To do this job from now on
we introduce the READ states. These are depicted as diamond shaped boxes
as shown below:

(follow this path if what is
read is an a)

(follow this path if what is
read is a b)

(follow this path if a A was read, i.e., if the input
string was empty)



(c) ketabton.com: The Digital Library

336 PUSHDOWN AUTOMATA THEORY

Here again the directions of the edges in the picture above show only one
of the many possibilities. When the character A is read from the TAPE, it
means that we are out of input letters. We are then finished processing the
input string. The A-edge will lead to ACCEPT if the state we have stopped
in is a final state and to REJECT if the processing stops in a state that is
not a final state. In our old pictures for FA’s we never explained how we
knew we were out of input letters. In these new pictures we can recognize
this fact by reading a blank from the TAPE.

These suggestions have not altered the power of our machines. We have
merely introduced a new pictorial representation that will not alter their lan-
guage-accepting abilities.

The FA that used to be drawn like this:

b a a

b

(the FA that accepts all words ending in the letter a) becomes, in the new
symbolism, the machine below:

‘ START ’

‘ REJECT ’ ‘ ACCEPT )

Notice that the edge from START needs no label because START reads
no letter. All the other edges do require labels. We have drawn the edges as
straight-line segments, not curves and loops as before. We have also used the
electronic diagram notation for wires flowing into each other. For example,
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L

P
>

means

(they go the same place together).

Our machine is still an FA. The edges labeled A are not to be confused
with A-labeled edges. These A-edges lead only from READ boxes to halt
states. We have just moved the + and — signs out of the circles that used
to indicate states and into adjoining ovals. The “states” are now only READ-
boxes and have no final/nonfinal status. '

In the FA above, if we run out of input letters in the left READ state,
we will find a A on the INPUT TAPE and so take the A-edge to REJECT.
Reading a A in a READ state that corresponds to an FA final state sends us
to ACCEPT.

Let us give another example of the new pictorial notation:

EXAMPLE
b . ab
b
becomes
b
G- <O

A A
(REJ ECT ) ( REJECT )

These pictures look more like the “flowcharts” we are familiar with than
the old pictures for FA’s did. The general study of the flowchart as a math-
ematical structure is part of Computer Theory but beyond our intended scope.

The reason we bothered to construct new pictures for FA’s (which had
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perfectly good pictures already) is that it is now easier to make an addition
to our machine called the PUSHDOWN STACK or PUSHDOWN STORE.
This is a concept we may have already met in a course on Data Structures.
A PUSHDOWN STACK is a place where input letters (or other information)
can be stored until we want to refer to them again. It holds the letters it has
been fed in a long line (as many letters as we want). The operaton PUSH
adds a new letter to the line. The new letter is placed on top of the STACK,
and all the other letters are pushed back (or down) accordingly. Before the
machine begins to process an input string the STACK is presumed to be empty,
which means that every storage location in it initially contains a blank. If the
STACK is then fed the letters a, b, ¢, d by this sequence of instructions:

PUSH a
PUSH b
PUSH ¢
PUSH 4

then the top letter in the STACK is d, the second is ¢, the third is b, and
the fourth is a. If we now execute the instruction:

PUSH b

the letter » will be added to the STACK on the top. The d will be pushed
down to position 2, the c¢ to position 3, the other b to position 4, and the
bottom a to position 5.

One pictorial representation of a STACK with these letters in it is shown
below. Beneath the bottom a we presume that the rest of the STACK, which,
like the INPUT TAPE, has infinitely many storage locations, holds only blanks.

STACK

b
d

Pl s in

The instruction to take a letter out of the STACK is called POP. This
causes the letter on the top of the STACK to be brought out of the STACK
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(popped). The rest of the letters are moved up one location each. A PUSH-
DOWN STACK is called a LIFO file standing for “the LAST IN is the FIRST
OUT,” like a narrow crowded elevator. It is not like the normal storage area
of a computer, which allows random access (we can retrieve stuff from any-
where regardless of the order in which it was fed in). A PUSHDOWN STACK
lets us read only the top letter. If we want to read the third letter in the
STACK we must go POP, POP, POP, but then we have additionally popped
out the first two letters and they are no longer in the STACK. We also have
no simple instruction for determining the bottom letter in the STACK, or for
telling how many b’s are in the STACK, and so forth. The only STACK
operations allowed to us are PUSH and POP.

Popping an empty STACK, like reading an empty TAPE, gives us the blank
character A.

We can add a PUSHDOWN STACK and the operations PUSH and POP
to our new drawings of FA’s by including as many as we want of the states:

and the states:

—ei PUSH o ———p] PUSH b ey

The edges coming out of a POP state are labeled in the same way as the
edges from a READ state, one (for the moment) for each character that might
appear in the STACK including the blank. Note that branching can occur at
POP states but not at PUSH states. We can leave PUSH states only by the
one indicated route, although we can enter a PUSH state from any direction.

When FA’s have been souped up with a STACK and POP and PUSH states,
we call them pushdown automata, abbreviated PDA’s. These PDA’s were
introduced by Anthony G. Oettinger in 1961 and Marcel P. Schiitzenberger
in 1963 and were further studied by Robert J. Evey, also in 1963.

The notion of a PUSHDOWN STACK as a data structure had been around
for a while, but these mathematicians independently realized that when this
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structure is incorporated into an FA, its language-recognizing capabilities are
increased considerably. Schiitzenberger developed a mathematical theory of lan-
guages encompassing both FA’s and PDA’s. We shall discuss this more in

Chapter 18.
The precise definition will follow soon, after a few examples.

EXAMPLE

Consider the following PDA:

‘ START ’

PUSH a

a
(  REJECT ) ( REJECT ) ( ACCEPT ’ CREJECT )

Before we begin to analyze this machine in general, let us see it in operation
on the input string aaabbb. We begin by assuming that this string has been
put on the TAPE. We always start the operation of the PDA with the STACK

empty as shown:

TAPE | a | a« | « | &6 | o | o | A |

STACK

A

We must begin at START. From there we proceed directly into the upper
left READ, a state that reads the first letter of input. This is an a, so we
cross it off the TAPE (it has been read) and we proceed along the a edge
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from the READ state. This edge brings us to the PUSH a state that tells us
to push an a onto the STACK. Now the TAPE and STACK look like this:

TAPE | ¢ | o | a | o [ o [ » | a ]

STACK

a

The edge from the PUSH a box takes us back to the line feeding into the
same READ box, so we return to this state. We now read another a and
proceed as before along the a edge to push it into the STACK. Again we
are returned to the READ box. Again we read an a (our third), and again
this a is pushed onto the STACK. The TAPE and STACK now look like this:

TAPE | 4 | 4 | & | b | b [ b | a |

STACK

B la |a |s

After the third PUSH a, we are routed back to the same READ state again.
This time, however, we read the letter . This means that we take the b edge
out of this state down to the lower left POP. Reading the b leaves the TAPE
like this:

apE | 4 | 4 | 4 | 8 | o | b | a |

The state POP takes the top element off the STACK. It is an aq. It must
be an a or a A since the only letters pushed onto the STACK in the whole
program are a’s. If it were a A or the impossible choice, b, we would have
to go to the REJECT state. However, this time, when we pop the STACK
we get the letter a out, leaving the STACK like this:
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STACK

a

a

Following the a road from POP takes us to the other READ. The next
letter on the TAPE to be read is a b. This leaves the TAPE like this:

TaPE | 4 | 4 | 4 | 8 | 8 | » | a |

The b road from the second READ state now takes us back to the edge
feeding into the POP state. So we pop the STACK again and get another a.
The STACK is now down to only one a.

STACK

a

The a line from POP takes us again to this same READ. There is only
one letter left on the input TAPE, a b. We read it and leave the TAPE empty,
that is, all blanks. However, the machine does not yet know that the TAPE

is empty. It will discover this only when it next tries to read the TAPE and
finds a A.

TAPE | ¢ | 4 | 4 | b ] 8 | # | a |

The b that we just read loops us back into the POP state. We then take
the last a from the STACK, leaving it also empty—all blanks.

STACK

A

The a takes us from POP to the right side READ again. This time the
only thing we can read from the TAPE is a blank, A. The A-edge takes us
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to the other POP on the right side. This POP now asks us to take a letter
from the STACK, but the STACK is empty. Therefore, we say that we pop
a A.
This means that we must follow the A-edge, which leads straight to the
halt state ACCEPT. Therefore, the word aaabbb is accepted by this machine.
More than this can be observed. The language of words accepted by this
machine is exactly:

{ab", n=0 1 2 ...}

Let us see why.
The first part of the machine

PUSH «

is a circuit of states that reads from the TAPE some number of a’s in a row
and pushes them into the STACK. This is the only place in the machine where
anything is pushed into the STACK. Once we leave this circuit, we cannot
return, and the STACK contains everything it will ever contain.

After we have loaded the STACK with all the a’s from the front end of
the input string, we read yet another letter from the input TAPE. If this char-
acter is a A, it means that the input word was of the form 4", where n might
have been 0 (i.e., some word in a*).

If this is the input, we take the A-line all the way to the right-side POP
state. This tests the STACK to see if it has anything in it. If it has, we go
to REJECT. If the STACK is empty at this point, the input string must have
been the null word, A, which we accept.

Let us now consider the other logical possibility, that after loading the front
a’s from the input (whether there are many or none) onto the STACK we
read a b. This must be the first b in the input string. It takes us to a new
section of the machine into another small circuit.
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( Rresect ) REJECT

On reading this first » we immediately pop the STACK. The STACK can
contain some a’s or only A’s. If the input string started with a b, we would
be popping the STACK without ever having pushed anything onto it. We would
then pop a A and go to REJECT. If we pop a b, something impossible has
happened. So we go to REJECT and call the repairperson. If we pop an a
we go to the lower right READ state that asks us to read a new letter.

As long as we keep popping a’s from the STACK to match the b’s we
are reading from the TAPE, we circle between these two states happily: POP
a, READ b, POP a, READ b. If we pop a A from the STACK, it means
that we ran out of STACK a’s before the TAPE ran out of input b’s. This
A-edge brings us to REJECT. Since we entered this two-state circuit by reading
a b from the TAPE before popping any a’s, if the input is a word of the
form a"b", then the b’s will run out first.

If while looping around this circuit we hit an a on the TAPE, the READ
state sends us to REJECT because this means the input is of the form

(some a’s) (some b’s) (another a) . . .

We cannot accept any word in which we come to an a after having read
the first b. To get to ACCEPT the second READ state must read a blank and
send us to the second POP state. Reading this blank means that the word ends
after its clump of b’s. All the words accepted by this machine must therefore
be of the form a*b* but, as we shall now see, only some of these words
successfully reach the halt state ACCEPT.

Eventually the TAPE will run out of letters and the READ state will turn
up a blank. An input word of the form a"b" puts n a’s into the STACK. The
first b read then takes us to the second circuit. After n trips around this circuit,
we have popped the last a from the STACK and have read the other (n—1)
b’s and a blank from the TAPE. We then exit this section to go to the last
test.

We have exhausted the TAPE’s supply of b’s, so we should check to see
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A

‘ ACCEPT ’ ( REJECT >

that the STACK is empty. We want to be sure we pop a A, otherwise we
reject the word because there must have been more a’s in the front than b’s
in the back. For us to get to ACCEPT, both TAPE and STACK must empty
together. Therefore, the set of words this PDA accepts is exactly the language

@b, n=0 12 3...}
]

We have already shown that the language accepted by the PDA above could
not be accepted by any FA, so pushdown automata are more powerful than
finite automata. We can say more powerful because all regular languages can
be accepted by some PDA since they can be accepted by some FA and an
FA (in the new notation) is exactly like a PDA that never uses its STACK.
Propriety dictates that we not present the formal proof of this fact until after
we give the formal definition of the terms involved. We present the definition
of PDA’s in a few pages.

We shall prove in the next chapter that PDA’s are exactly the machines
we need for recognizing CFL’s. Every CFL can be defined as the language
accepted by some PDA and the language accepted by any PDA can be defined
by some CFG—a situation exactly analogous to the relationship between regular
expressions and FA’s—a context-free Kleene’s Theorem.

Let us take a moment to consider what makes these machines more powerful
than FA’s. The reason is that even though they too have only finitely many
states to roam among, they do have an unlimited capacity for memory. They
can know where they have been, and how often. The reason no FA could
accept the language {a"b"} was that for large enough n the ¢" part had to run
around in a circuit and the machine could not keep track of how many times
it had looped around. It could therefore not distinguish between a"b”" and some
a™b". However, the PDA has a primitive memory unit. It can keep track of
how many a’s are read in at the beginning. It can know how many times a
circuit is traversed in general by putting a count cell, PUSH a, inside the
loop.
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Is this mathematical model then as powerful as a whole computer? Not
quite yet; but that goal will be reached soon.

There are two points we must discuss. The first is that we need not restrict
ourselves to using the same alphabet for input strings as we use for the STACK.
In the example above, we could have read an a from the TAPE and then
pushed an X into the STACK and let the X’s count the number of a’s. In
this case, when we test the STACK with a POP state, we branch on X or
A. The machine would then look like this:

{ START ’ ACCEPT

a \ A
PUSH X READ

b

REJECT

We have drawn this version of the PDA with some minor variations of
display but no substantive change in function. '

The READ states must provide branches for a, b, or A. The POP states
must provide branches for X or A. We eliminated two REJECT states, by
having all rejecting edges go into the same state.

When we do define PDA’s, we shall require the specification of the TAPE
alphabet £ and the STACK alphabet I", which may be different. Although in
Chapter 9 we used I' to denote an output alphabet, we should not make the
mistake of thinking that the STACK is an output device. It is an internal part
of the PDA.

The second point that we should discuss is the possibility of nondeterminism.
In our search for the machine equivalent to CFG’s we saw that a memory
device of some kind is required to accept the language {a"»"}. Is the addition
of the STACK enough of a change to allow these new machines to accept
all CFL’s? Consideration of the language PALINDROME will soon convince
us that the new machines (PDA’s) will have to be nondeterministic if they
are to correspond to CFG’s.

This is not like biology where we are discovering what is or is not part
of a kangaroo; we are inventing these machines and we can put into them
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whatever characteristics we need. In our new notation nondeterminism can be
expressed by allowing more than one edge with the same label to leave a
given branching state, READ or POP.

A deterministic PDA is one (like the pictures we drew above) for which
every input string has a unique path through the machine. A nondeterministic
PDA is one for which at certain times we may have to choose among possible
paths through the machine. We say that an input string is accepted by such
a machine if some set of choices leads us to an ACCEPT state. If for all
possible paths that a certain input string can follow it always ends at a REJECT
state, then the string must be rejected. This is analogous to the definition of
acceptance for TG’s, which are also nondeterministic. As with TG’s, non-
determinism here will also allow the possibility of too few as well as too
many- edges leading from a branch state. We shall have complete freedom not
to put a b-edge leading out of a particular READ state. If a b is, by chance,
read from the INPUT TAPE by that state, processing cannot continue. As with
TG’s, we say the machine crashes and the input is rejected. To have no b-
edge leading out of a branch state (READ or POP) is the same as having
exactly one b-edge that leads straight to REJECT.

The PDA’s that are equivalent to CFG’s is the class of nondeterministic
ones. For FA’s we found that nondeterminism (which gave us TG’s and NFA’s)
did not increase the power of the machine to accept new languages. For PDA’s,
this is different. The following Venn diagram shows the relative power of
these three types of machines:

Languages accepted by
nondeterministic PDA

Languages accepted by
deterministic PDA

Languages accepted by
FA or NFA or TG

Before we give a concrete example of a language accepted by a nondeter-
ministic PDA that cannot be accepted by a deterministic PDA, let us consider
a new language.
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EXAMPLE

Let us introduce the PALINDROMEX, language of all words of the form
s X reverse(s)

where s is any string in (a + b)*.
The words in this language are

{X aXa bXb aaXaa abXba baXab bbXbb aaaXaaa aabXbaa . ..}

All these words are palindromes in that they read the same forward and
backward. They all contain exactly one X, and this X marks the middle of
the word. We can build a deterministic PDA that accepts the language
PALINDROMEX. Surprisingly, it has the same basic structure as the PDA
we had for the language {a"b"}.

In the first part of the machine the STACK is loaded with the letters from
the input string just as the initial a’s from a"b" were pushed onto the STACK.
Conveniently for us, the letters go into the STACK first letter on the bottom,
second letter on top of it, and so on till the last letter pushed in ends up on
top. When we read the X we know we have reached the middle of the input.
We can then begin to compare the front half of the word (which is reversed
in the STACK) with the back half (still on the TAPE) to see that they match.

We begin by storing the front half of the input string in the STACK with
this part of the machine.

‘ START ’

PUSH a z READ

PUSH b

If we READ an a, we PUSH an a. If we READ a b, we PUSH a b, and
on and on until we encounter the X on the TAPE.

After we take the first half of the word and stick it into the STACK, we
have reversed the order of the letters and it looks exactly like the second half
of the word. For example, if we begin with the input string

abbXbba



(c) ketabton.com: The Digital Library

PUSHDOWN AUTOMATA 349

then at the moment we are just about to read the X we have:

apE | 4 | # | # | x [ o | 6 [ o | a |

Isn’t it amazing how palindromes seem perfect for PUSHDOWN STACK'’s?

When we read the X we do not put it into the STACK. It is used up in
the process of transferring us to phase two. This is where we compare what
is left on the TAPE with what is in the STACK. In order to reach ACCEPT,
these two should be the same letter for letter, down to the blanks.

REJECT

If we read an a, we had better pop an a (pop anything else and we REJECT),
if we read a b, we had better pop a b (anything else and we REJECT), if
we read a blank, we had better pop a blank; when we do, we accept. If we
ever read a second X, we also go to REJECT.

The machine we have drawn is deterministic. The input alphabet here is
3 = {a, b, X}, so each READ state has four edges coming out of it.
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READ

The STACK alphabet has two letters I' = {a, b}, so each POP has three
edges coming out of it:

At each READ and each POP there is only one direction the input can
take. Each string on the TAPE generates a unique path through this PDA.

We can draw a less complicated picture for this PDA without the REJECT
states if we do not mind having an input string crash when it has no path
to follow. This means that when we are in a READ or a POP state and find
there is no edge with a label corresponding to the character we have just
encountered, we terminate processing, reject the input string, and say that the
execution crashed. (We allowed a similar rejection process in TG’s.)

The whole PDA (without REJECT’s) is pictured below:

{ START ’

PUSH a

PUSH b |

X

ACCEPT
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Let us now consider what kind of PDA could accept the language ODD-
PALINDROME. This is the language of all strings of a’s and b’s that are
palindromes and have an odd number of letters. The words in this language
are just like the words in PALINDROMEX except that the middle letter X
has been changed into an a or a b.

ODDPALINDROME = {a@ b aaa aba bab bbb . ..}

The problem here is that the middle letter does not stand out, so it is harder
to recognize where the first half ends and the second half begins. In fact, it’s
not only harder; it’s impossible. A PDA, just like an FA, reads the input
string sequentially from left to right and has no idea at any stage how many
letters remain to be read. In PALINDROMEX we knew that X marked the
spot; now we have lost our treasure map. If we accidentally push into the
STACK even one letter too many, the STACK will be larger than what is
left on the TAPE and the front and back will not match. The algorithm we
used to accept PALINDROMEX cannot be used without modification to accept
ODDPALINDROME. We are not completely lost, though. The algorithm can
be altered to fit our needs by introducing one nondeterministic jump. That we
choose this approach does not mean that there is not a completely different
method that might work deterministically, but the introduction of nondeter-
minism here seems quite naturally suited to our purpose.
Consider:

PUSH a

PUSH &

ACCEPT

This machine is the same as the previous machine except that we have
changed the X into the choice: a or b.
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The machine is now nondeterministic since the left READ state has two
choices for exit edges labeled ¢ and two choices for b:

If we branch at the right time (exactly at the middle letter) along the former
X-edge, we can accept all words in ODDPALINDROME. If we do not choose
the right edge at the right time, the input string will be rejected even if it
is in ODDPALINDROME. Let us recall, however, that for a word to be
accepted by a nondeterministic machine (NFA or TG or PDA) all that is
necessary is that some choice of edges does lead to ACCEPT.

For every word in ODDPALINDROME, if we make the right choices the
path does lead to acceptance.

The word aba can be accepted by this machine if it follows the dotted
path.

¢ 2 ACCEPT

It will be rejected if it tries to push two, three, or no letters into the STACK
before taking the right-hand branch to the second READ state.

We present a better method of tracking the action of a word on a PDA
in the next example. [ |

Let us now consider a slightly different language.
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Recall the language:

EVENPALINDROME = {s reverse(s), where s is in (a + b)*}
={A aa bb aaaa abba baab bbbbaaaaaa . . .}

This is the language of all palindromes with an even number of letters.
One machine to accept this language is pictured below:

( stArT ) POP, ad

a b
a b b a
PUSHa READ, POP, READ,
[ 4
b R\
PUSH & 3
POP,
A
ACCEPT

We have labeled the READ states 1 and 2 and the POP states 1, 2 and
3 so that we can identify them in discussion. These numbers do not indicate
that we are to READ or POP more than one letter. They are only labels.
Soda-POP, grand-POP and POP-corn would do as well. The names will help
us trace the path of an input string through the machine.

This machine is nondeterministic. At READ; when we read an a from the
TAPE we have the option of following an a-edge to PUSH a or an g-edge
of POP,. If we read a b in READ,;, we also have two alternatives: to go to
PUSH b or to go to POP,. If we read a A in READ,, we have only one
choice: to go to POP;.

Let us take notice of what we have done here. In the PDA for
PALINDROMEX, the X-edge took us into a second circuit, one that had the
form: Read from TAPE—compare with STACK—read from TAPE—compare
with STACK . . .. In this machine, we begin the process of “read from
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TAPE—compare with STACK” in READ,. The first letter of the second half
of the word is read in READ;, then we immediately go to the POP that
compares the character read with what is on top of the STACK. After this
we cycle READ,—~POP—-READ,—~POP— . . . .

It will be easier to understand this machine once we see it in action.

Let us run the string babbab. Initially we have:

TaPE | b | a | o | 5 | a | b | A& ]

We can trace the path by which this input can be accepted by the successive
rows in the table below:

STATE STACK TAPE

START A - babbabA - - -
READ, A - babbabA - - -
PUSH b bA - - - babbabA - - -
READ, bA - - - pabbabA - - -
PUSH a abA - - - pdbbabA - - -
READ, abA - - - bdbbabA - - -
PUSH » babA - - - bdbbabA - - -
READ;, babA - - - babbabA - - -

If we are going to accept this input string this is where we must make the
jump out of the left circuit into the right circuit. The trace continues:

POP, abA - - - babpabA - - -
READ, abh - - - BappabA - - -
POP, bA - - - bapbdbA - - -
READ, bA - - - BABBABA - - -
POP, A--- bapbaps - - -
READ, A--- Pabbdpa - - -
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(We have just read the first of the infinitely many blanks on the TAPE.)

POP; A PAPbabAA - - -
(Popping a blank (Reading a blank from
from an empty an empty tape still
stack still leaves leaves blanks)
blanks)
ACCEPT A Papbapa - - -

Notice that to facilitate the drawing of this table we have rotated the STACK
so that it reads left to right instead of top to bottom.

Since this is a nondeterministic machine, there are other paths this input
could have taken. However, none of them leads to acceptance.

Below we trace an unsuccessful path.

STATE STACK TAPE
START A babbab

READ,
(We had no choice A babbab
but to go here)

PUSH b b pabbab

(We could have (We know there (Notice that the
chosen to go to POP, . are infinitely TAPE remains
instead) many blanks unchanged except

underneath this b) by READ

statements)

READ,
(We had no choice
but to go here from b bdbbab
PUSH »

POP;
(Here we exercised A
bad judgment and (When we pop the
made a poor choice, b, what is left is bdbbab
PUSH a would have all A’s)
been better)

CRASH

(This means that when
we were in POP; and
found a b on top of
the STACK we tried
to take the b-edge
out of POP;.
However, there is no
b-edge out of POP,.)
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Another unsuccessful approach to accepting the input babbab is to loop
around the circuit READ,—PUSH six times until the whole string has been
pushed onto the STACK. After this, a A will be read from the TAPE and
we have to go to POP;. This POP will ask if the STACK is empty. It won’t
be, so the path will CRASH right here.

The word A is accepted by this machine through the sequence:

START — READ, — POP; — ACCEPT [ |

As above, we shall not put all the ellipses (. ..) into the tables repre-
senting traces. We understand that the TAPE has infinitely many blanks on
it without having to write:

BabbabA . . .

As we shall see in Theorem 39, deterministic PDA’s do not accept all
context-free languages. The machine we need for our purpose is the nonde-
terministic pushdown automaton. We shall call this machine the PDA and only
use DPDA (deterministic pushdown automaton) on special occasions (Chapter
21). There is no need for the abbreviation NPDA, any more than there is for
NTG (nondeterministic transition graph).

In constructing our new machines we had to make several architectural
decisions. Should we include a memory device?—yes. Should it be a stack,
a queue or random access?—a stack. One stack or more?—one. Determinis-
tic>—no. Finitely many states?—yes. Can we write on the INPUT TAPE?—
no. Can we reread the input?>—no. Remember we are not trying to discover
the structure of a naturally occurring creature; we are concocters trying to
invent a CFL-recognizing machine. The test of whether our decisions are cor-
rect will come in the next chapter.

We can now give the full definition of PDA’s.

DEFINITION
A pushdown automaton, PDA, is a collection of eight things:

An alphabet 3. of input letters.

2. An input TAPE (infinite in one direction). Initially the string of input
letters is placed on the TAPE starting in cell i. The rest of the TAPE
is blank.

3. An alphabet I of STACK characters.

A pushdown STACK (infinite in one direction). Initially the STACK is
empty (contains all blanks).

5. One START state that has only out-edges, no in-edges.
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6. Halt states of two kinds: some ACCEPT and some REJECT. They have
in-edges and no out-edges

7. Finitely many nonbranching PUSH states that introduce characters onto
the top of the STACK. They are of the form

—PUSH X|—

where X is any letter in 1.

8. Finitely many branching states of two Kkinds:
(i) States that read the next unused letter from the TAPE

<>

which may have out-edges labeled with letters from 2 and the blank
character A, with no restrictions on duplication of labels and no in-
sistance that there be a label for each letter of X, or A.

And

(ii)  States that read the top character of the STACK

which may have out-edges labeled with the letters of I" and the blank
character A, again with no restrictions.

We further require that the states be connected so as to become a connected
directed graph.
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To run a string of input letters on a PDA means to begin from the START
state and follow the unlabeled edges and those labeled edges that apply (making
choices of edges when necessary) to produce a path through the graph. This
path will end either at a halt state or will crash in a branching state when
there is no edge corresponding to the letter/character read/popped. When letters
are read from the TAPE or characters are popped from the STACK they are
used up and vanish.

An input string with a path that ends in ACCEPT is said to be accepted.
An input string that can follow a selection of paths is said to be accepted if
at least one of these paths leads to ACCEPT. The set of all input strings
accepted by a PDA is called the language accepted by the PDA, or the
language recognized by the PDA. [ |

We should make a careful note of the fact that we have allowed more than
one exit edge from the START state. Since the edges are unlabeled this branch-
ing has to be nondeterministic. We could have restricted the START state to
only one exit edge. This edge could immediately lead into a PUSH state in
which we would add some arbitrary symbol to the STACK, say a Weasel.
The PUSH Weasel would then lead into a POP state having several edges
coming out of it all labeled Weasel. POP goes the Weasel, and we make our
nondeterministic branching. Instead of this we allow the START state itself
to have several out-edges.

Even though these are nondeterministic like TG’s, unlike TG’s we do not
allow edges to be labeled with words, only with single characters. Nor do we
allow A-edges. Edges labeled with A are completely different.

PDA’s as we have defined them are only language acceptors. Later we shall
consider adding output capabilities.

We have not, as some authors do, specified that the STACK has to be
empty at the time of accepting a word. Some go so far as to define acceptance
by empty STACK as opposed to halt states. We shall address this point with
a theorem later in this chapter.

EXAMPLE
Consider the language generated by the CFG:
S—>S+S|s*S|4

The terminals are +, *, and 4 and the only nonterminal is S.
The following PDA accepts this language:
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PUSH, S
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ACCEPT

"PUSH; S

PUSHg *

PUSH, S

This is a funny looking PDA kwith one POP, four READ’s and seven PUSH’s.
Instead of proving that this machine accepts exactly the language generated
by this CFG, we only trace the acceptance of the string

4 + 4

* 4

This machine offers plenty of opportunity for making nondeterministic choices.
The path we illustrate is one to acceptance; there are many that fail.

STATE STACK TAPE

START A 4+ 44
PUSH, § S 4 +4+4
POP A 44+ 4+4
PUSH, S S 44+ 44
PUSH; + + 5 4 +4+4
PUSH, S S+ S 44+ 44
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STATE STACK TAPE
POP + S 4+ 4+4
READ, + S +4+4
POP S + 44
READ, S 4+4
POP A 44
PUSH:; § S 4+4
PUSH; xS 4+4
PUSH;, § S*S 4%4
POP ) 4+4
READ, ) *4
POP S «4
READ; S 4
POP A 4
READ, A A
POP A A
READ, A A
ACCEPT A A

Note that this time we have erased the TAPE letters read instead of striking
them. [ ]

THEOREM 26

For every regular language L there is some PDA that accepts it.

PROOF

We have actually discussed this matter already, but we could not formally
prove anything until we had settled on the definition of a PDA.

Since L is regular, it is accepted by some FA. The constructive algorithm
for converting an FA into an equivalent PDA was presented at the beginning
of this chapter. , |

One important difference between a PDA and an FA is the length of the
path formed by a given input. If a string of seven letters is fed into an FA,
it follows a path exactly seven edges long. In a PDA, the path could be longer
or shorter. The PDA below accepts the regular language of all words beginning
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with an a. But no matter how long the input string, the path is only one or
two edges long.

Since we can continue to process the blanks on the TAPE even after all
input letters have been read, we can have arbitrarily long or even infinite paths
caused by very short input words. For example, the following PDA accepts
only the word b, but it must follow a seven-edge path to acceptance:

The following machine accepts all words that start with an a in a path of
two edges and loops forever on any input starting with a b. (We can consider
this an infinite path if we so desire.)

START

ACCEPT

b

We shall be more curious about the consequences of infinite paths later.
The following result will be helpful to us in the next chapter.
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THEOREM 27

Given any PDA, there is another PDA that accepts exactly the same language
with the additional property that whenever a path leads to ACCEPT the STACK
and the TAPE contain only blanks.

PROOF

We present a constructive algorithm that will convert any PDA into a PDA
with the property mentioned.
Whenever we have the machine part:

ACCEPT

we replace it with the diagram below:

any non-A

any non-A

ACCEPT
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Technically speaking, we should have labeled the top loop “any letter in
2” and the bottom loop “any character in I .”

The new PDA formed accepts exactly the same language and finishes all
successful runs with empty TAPE and empty STACK. |

PROBLEMS
Convert the following FA’s into equivalent PDA’s:

1.
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Consider the following deterministic PDA:

START

ACCEPT

REJECT

REJECT

ACCEPT

Using a trace table like those in this chapter, show what happens to the
INPUT TAPE and STACK as each of the following words proceeds through
the machine.

3. (i) abb
(i) abab
(iii) aabb

(iv) aabbbb
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4. (i) What is the language accepted by this PDA?
(i1) Find a CFG that generates this language.
(iii) Is this language regular?

5. Consider the following PDA.

START

ACCEPT =>| PUSHa

ACCEPT

Trace the following words on this PDA:
(i) aaabbb

(i)  aaabab
(iii) aaabaa
(iv) aaaabb

365
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6.

7.

8.

PUSHDOWN AUTOMATA THEORY
Prove that the language accepted by the machine in Problem 5 is

L = {a"S, where S starts with b and length(S) = n}.

Find a CFG that defines the language in Problem 6.

Prove that the language of the machine in Problem 5 is not regular.

Consider the following nondeterministic PDA

‘ START }

PUSH x

ACCEPT

In this machine REJECT occurs when a string crashes.
Notice here that the STACK alphabet is I' = {x}.

9.

10.

11.

(i)  Show that the string ab can be accepted by this machine by taking
the branch from READ,; to POP, at the correct time.

(i)  Show that the string bbba can also be accepted by giving the trace
that shows when to take the branch.

Show that this PDA accepts the language of all words with an even
number of letters (excluding A). Remember, it is also necessary to show
that all words with odd length can never lead to ACCEPT.

Here we have a nondeterministic PDA for a language that could have
been accepted by an FA. Find such an FA. Find a CFG that generates
this language.
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Consider the following nondeterministic PDA:

12.

13.

‘ START >

PUSH x

ACCEPT

Here the STACK alphabet is again

(i)
(i)
(iii)
@iv)
)

(i)

I = {x}

Show that the word aa can be accepted by this PDA by dem-
onstrating a trace of its path to ACCEPT.

Show that the word babaaa can be accepted by this PDA by dem-
onstrating a trace of its path indicating exactly where we must take
the branch from READ, to READ,

Show that the string babaaab cannot be accepted.
Show that the string babaaaa cannot be accepted.

Show that the language of this machine is

TRAILINGCOUNT = {s g'ne®}
= {any string s followed by as many a’s as s has letters}

We know that this language is not regular; show that there is a CFG
that generates it.
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14.

16.

17.

18.

19.

PUSHDOWN AUTOMATA THEORY

Build a deterministic PDA to accept the language {a"b""'}.
(As always, when unspecified the condition on n is assumed to be
n=123..)

Let the input alphabet be X = {a, b, c} and let L be the language of
all words in which all the a’s come before the b’s and there are the
same number of a’s as b’s and arbitrarily many ¢’s that can be in front,
behind, or among the a’s and b’s. Some words in L are abc, caabeb,
ccacaabeccbecbe.

(i) Write out all the words in this language with six or fewer letters.
(i)  Show that the language L is not regular.

(iii) Find a PDA (deterministic) that accepts L.

(iv) Find a CFG that generates L.

Find a PDA (nondeterministic) that accepts all PALINDROMES where
the alphabet is 2 = {a,b}.

We have seen that an FA with N states can be converted into an equiv-
alent PDA with N READ states (and no POP states). Show that for any
FA with N states there is some PDA with only one READ state (and
several POP states) but which uses N different STACK symbols and

.accepts the same language.

Let L be some regular language in which all the words happen to have
an even length. Let us define the new language Twist (L) to be the set
of all the words of L twisted, where by twisted we mean the first and
second letters have been interchanged, the third and fourth letters have
been interchanged, etc.

For example, if

L = {ba abba babb...}

Twist (L) = {ab baab abbb...}

Build a PDA that accepts Twist (L).

Given any language L that does not include A let us define its cousin
language |L| as follows: for any string of a’s and b’s, if the word formed
by concatenating the second, fourth, sixth,... letters of this string is a
word in L then the whole string is a word in |L|. For instance, if bbb
is a word in L then ababbbb and bbababa are both words in |L|.



(c) ketabton.com: The Digital Library

20.

PUSHDOWN AUTOMATA 369

(i) Show that if there is some PDA that accepts L then there is some
PDA that accepts |L|.

(i)  If L is regular, is |L| necessarily regular too?

Let L be the language of all words that have the same number of a’s

and b’s and that, as we read them from left to right, never have more
b’s than a’s. For example,

abaaabbabb
is good but
abaabbba

is no good since at a certain point we had four b’s but only three a’s.
All the words in L with six letters are:

aaabbb aababb aabbab
abaabb ababab

(i) Write out all the words in L with eight letters (there are 14).
(ii) Find a PDA that accepts L.
(iii) Prove that L is not regular.
(iv) Find a CFG that defines L.

(v) If we think of an a as an open parenthesis “(” and a b as a close
parenthesis ”)” then L is the language of the sequences of parentheses
that might occur in arithmetic expressions. Explain.
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CHAPTER 18

CFG = PDA

We are now ready to prove that the set of all languages accepted by PDA’s
is the same as the set of all languages generated by CFG’s.
We prove this in two steps.
THEOREM 28
Given a language L generated by a particular CFG, there is a PDA that accepts
exactly L.
THEOREM 29
Given a language L that is accepted by a certain PDA, there exists a CFG

that generates exactly L.

These two important theorems were -both discovered independently by
Schiitzenberger, Chomsky, and Evey.

370
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PROOF OF THEOREM 28

The proof will be by constructive algorithm. From Theorem 24 in Chapter
16, we can assume that the CFG is in CNF. (The problem of A will be

handled later.)

Before we describe the algorithm that associates a PDA with a given CFG
in its most general form, we shall illustrate it on one particular example. Let

us consider the folowing CFG in

CNF

S— SB
S— AB
A— CC
B—b
C—a

We now propose the nondeterministic PDA pictured below.

( START }

ACCEPT

PUSH S C

PUSH B

PUSH B PUSH C

PUSH S

PUSH A PUSH C
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In this machine the STACK alphabet is
r={s A B, C}
while the TAPE alphabet is only
2 = {a, b}

We begin by pushing the symbol § onto the top of the STACK. We then
enter the busiest state of this PDA, the central POP. In this state we read the
top character of the STACK.

The STACK will always contain nonterminals exclusively. Two things are
possible when we pop the top of the STACK. Either we replace the removed
nonterminal with two other nonterminals, thereby simulating a production (these
are the edges pointing downward) or else we do not replace the nonterminal
at all but instead we go to a READ state, which insists we read a specific
terminal from the TAPE or else it crashes (these edges point upward). To get
to ACCEPT we must have encountered READ states that wanted to read ex-
actly those letters that were originally on the INPUT TAPE in their exact
order. We now show that to do this means we have simulated a left-most
derivation of the input string in this CFG.

Let us consider a specific example. The word aab can be generated by left-
most derivation in this grammar as follows:

Working-String Generation Production Used

S > AB S — AB Step 1
= CCB A— CC Step 2
= aCB C—a Step 3
= aaB C—a Step 4
= aab B—b Step 5

In CNF all working strings in left-most derivations have the form:
(string of terminals) (string of Nonterminals)

To run this word on this PDA we must follow the same sequence of pro-
ductions, keeping the STACK contents at all times the same as the string of
nonterminals in the working string of the derivation.

We begin at START with

STACK TAPE

|
A r aab
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Immediately we push the symbol S onto the STACK.

STACK | TAPE
S | aab

We then head into the central POP. The first production we must simulate is
S — AB. We pop the S and then we PUSH B, PUSH A arriving at this:

STACK | TAPE
AB I aab

Note that the contents of the STACK is the same as the string of nonterminals
in the working string of the derivation after Step 1.

We again feed back into the central POP. The production we must now
simulate is a A — CC. This is done by popping the A and following the path
PUSH C, PUSH C.

The situation is now:

STACK | TAPE
CCB | aab

Notice that here again the contents of the STACK is the same as the string
of nonterminals in the working string of the derivation after Step 2.

Again we feed back into the central POP. This time we must simulate the
production C — a. We do this by popping the C and then reading the a from
the TAPE. This leaves:

STACK I TAPE
CB | dab

We do not keep any terminals in the STACK, only the nonterminal part
of the working string. Again the STACK contains the string of nonterminals
in Step 3 of the derivation. However, the terminal that would have appeared
in front of these in the working string has been cancelled from the front of
the TAPE. Instead of keeping the terminals in the STACK, we erase them
from the INPUT TAPE to ensure a perfect match.

The next production we must simulate is another C — a. Again we POP
C and READ a. This leaves:

STACK I TAPE
B | ddb
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Here again we can see that the contents of the STACK is the string of
nonterminals in the working string in Step 4 of the derivation. The whole
working string is aaB, the terminal part aa corresponds to what has been struck
from the TAPE.

This time when we enter the central POP we simulate the last production
in the derivation, B — b. We pop the B and read the b. This leaves:

STACK | TAPE
A | ddb

This A represents the fact that there are no nonterminals left in the working
string after Step 5. This, of course, means that the generation of the word
is complete.

We now reenter the POP, and we must make sure that both STACK and
TAPE are empty.

POP A — READ; — ACCEPT

The general principle is clear. To accept a word we must follow its left-
most derivation from the CFG. If the word is

ababbbaab

and at some point in its left-most Chomsky derivation we have the working
string

ababbZWyV

then at this point in the corresponding PDA-processing the status of the STACK
and TAPE should be

STACK I TAPE
WV | dBdbpbaab

the used-up part of the TAPE being the string of terminals and the contents
of the STACK being the string of nonterminals of the working string. This
process continues until we have derived the entire word. We then have

STACK | TAPE
A | AbabbbAdD

At this point we POP A, go to READ;, and ACCEPT.
There is noticeable nondeterminism in this machine at the POP state. This
parallels, reflects, and simulates the nondeterminism present in the process of
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generating a word. In a left-most derivation if we are to replace the nonterminal
N we have one possibility for each production that has N as the left side.
Similarly in this PDA we have one path leaving POP for each of these possible
productions. Just as the one set of productions must generate any word in the
language, the one machine must have a path to accept any legal word once
it sits on the INPUT TAPE. The point is that the choices of which lines to
take out of the central POP tell us how to generate the word through left-
most derivation, since each branch represents a production.

It should also be clear that any input string that reaches ACCEPT has got
there by having each of its letters read by simulating Chomsky productions
of the form:

Nonterminal — terminal

This means that we have necessarily formed a complete left-most derivation
of this word through CFG productions with no terminals left over in the STACK.
Therefore, every word accepted by this PDA is in the language of the CFG.

One more example may be helpful. Consider the randomly chosen CFG (in
CNF) below:

S — AB B — AB B—a
A — BB A—a B—b

By the same technique as used before, we produce the following PDA:

< START ’
l PUSH S '7
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We shall trace simultaneously how the word baaab can be generated by
this CFG and how it can be accepted by this PDA.

Left-most derivation State STACK TAPE
START A baaab

S PUSH § S baaab
POP A baaab

PUSH B B baaab

= AB PUSH A AB baaab
POP B baaab

PUSH B BB baaab

= BBB PUSH B BBB baaab
POP BB baaab

= bBB READ; BB paaab
POP B baaab

PUSH B BB baaab

= bABB PUSHA . ABB paaab
POP BB baaab

= baBB READ, BB pdaab
POP B bdaab

= baaB READ; B bddab
POP A badab

PUSH B B bddab

= baaAB PUSH A AB Pddab
POP B bddab

= baaaB READ, B beddb
POP A beddb
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Left-most derivation State STACK TAPE
= baaab READ; A baddp
POP A bdddb
READ, A bhddp
ACCEPT A baddp

At every stage we have the following equivalence:

working string

= (letters cancelled from TAPE) (string of nonterminals from STACK)

At the beginning this means:

working string = §
letters cancelled = none

string of nonterminals in STACK = §

At the end this means:

working string = the whole word
letters cancelled = all
STACK= A

Now that we understand this example, we can give the rules for the general

case.

If we are given a CFG in CNF as follows:

X = X52X;5
X, — X3X,

X; — XX,

X3—>a
X4—->a

X5_>b
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where the start symbol § = X, and the other nonterminals are X, X3, . . . we
build the following machine:

Begin with

< START ’

\
PUSH X, @

For each production of the form:

X — XXk

we include this circuit from the POP back to itself:

PUSH X;

For all productions of the form

we include this circuit:

b READ >
X,

/POP

When the stack is finally empty, which means we have converted our last
nonterminal to a terminal and the terminals have matched the INPUT TAPE,
we follow this path:
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A
@ @ 2 ACCEPT

From the reasons and examples given above, we know that all words gen-
erated by the CFG will be accepted by this machine and all words accepted
will have left-most derivations in the CFG.

This does not quite finish the proof. We began by assuming that the CFG
was in CNF, but there are some context-free languages that cannot be put
into CNF. They are the languages that include the word A. In this case, we
can convert all productions into one of the two forms acceptable to CNF while
the word A must still be included.

To include this word, we need to add another circuit to the PDA, a simple
loop at the POP

:

This kills the nonterminal § without replacing it with anything and the next
time we enter the POP we get a blank and proceed to accept the word. [l

-

EXAMPLE

The language PALINDROME (including A) can be generated by the following
CFG in CNF (plus one A-production)

S — AR, S—a
R, — SA S—b
S — BR, A—a
R,— SB B—b
S — AA S—>A

S — BB
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The PDA that the algorithm in the proof of Theorem 28 instructs us to build

is:

‘ START ’

| PUS@I

LPUSHR_,I LPUSH A I F’USH 1{?]

|
LH LH = !_iT & stfwl

Let us examine how the input string abaaba is accepted by this PDA.

Leftmost Derivation State Tape Stack
START abaaba A
PUSH § abaaba S
POP abaaba A
PUSH R, abaaba Ry
S = AR, PUSH A abaaba AR,

POP abaaba R

= aR, READ; dbaaba R,
POP dbaaba A
PUSH A dbaaba A

= aSA PUSH S dbaaba SA
POP dbaaba A
PUSH R, dbaaba RA

= aBR.,A PUSH B dbaaba BR,A
POP dbaaba RA

= abR,A READ, dbaaba R,A
POP dpaaba A
PUSH B dbaaba BA
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Leftmost Derivation State Tape Stack
= abSBA PUSH § dbaaba SBA
POP dbaaba BA
PUSH A dbaaba ABA
= abAABA PUSH A gpaaba AABA
POP dpaaba ABA
= abaABA READ, dbdaba ABA
POP dbdaba BA
= abaaBA READ, dbddba BA
POP dbddba A
= abaabA READ, dbgdba A
POP #bddba 4
= abaaba READ; dbddbdA A
POP dbddbdA 4
READ, dbddbd A 4
ACCEPT dbddpg A A

Notice how different this is from the PDA’s we developed in Chapter 17 for
the languages EVENPALINDROME and ODDPALINDROME. ||

We have actually proven a stronger theorem than Theorem 28. We have
proven that every CFL can be accepted by a PDA that has only one POP
state. After we have proven Theorem 29, we shall know that every language
accepted by a PDA is a CFL and therefore every PDA is equivalent to a PDA
with exactly one POP state.

Now we have to prove the other half of the equivalence theorem, that every
language accepted by a PDA is context-free.

PROOF OF THEOREM 29

This is a long proof by constructive algorithm. In fact, it is unquestionably
the most tortuous proof in this book; parental consent is required. We shall
illustrate each step with a particular example. It is important, though, to realize
that the algorithm we describe operates successfully on all PDA’s and we are
not merely proving this theorem for one example alone.

The requirements for a proof are that it convince and explain. The following
arguments should do both if we are sufficiently perseverant.

Before we can convert a PDA into a CFG we have to convert it into a
standard form, which we call conversion form. To achieve this conversion
form, it is necessary for us to introduce a new “marker state” called a HERE
state. We can put the word HERE into a box shaped like a READ state in
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the middle of any edge and we say that we are passing through that state any
time we travel on the edge that it marks. Like the READ and the POP states,
the HERE states can be numbered with subscripts.

One use of a HERE state is so that

READ,

can become
READ,

Notice that a HERE state does not read the TAPE nor pop the STACK.
It just allows us to describe being on the edge as being in a state. A HERE
state is a legal fiction—a state with no status, but we do permit branching to
occur at such points. Because the edges leading out of HERE states have no
labels, this branching is necessarily nondeterministic.

DEFINITION (inside the Proof of Theorem 29)
A PDA is in conversion form if it meets all of the following conditions:

1. There is only one ACCEPT state.
There are no REJECT states.

3. Every READ or HERE is followed immediately by a POP; that is, every
edge leading out of any READ or HERE state goes directly into a POP
state.

4. No two POP’s exist in a row on the same path without a READ or HERE
between them whether or not there are any intervening PUSH states. (POP’s
must be separated by READ’s or HERE’s.)

5. All branching, deterministic or nondeterministic, occurs at READ or HERE

states, none at POP states, and every edge has only one label (no multiple
labels).

6. Even before we get to START, a “bottom of STACK” symbol $ is placed
on the STACK. If this symbol is ever popped in the processing, it must
be replaced immediately. The STACK is never popped beneath this sym-
bol. Right before entering ACCEPT this symbol is popped out and left
out.
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7. The PDA must begin with the sequence:

$ HERE
START PUSH $ or
READ

8. The entire input string must be read before the machine can accept the
word. [ |

It is now our job to show that all the PDA’s as we defined them before
can be made over into conversion form without affecting the languages they

accept.
Condition 1 is easy to accommodate. If we have a PDA with several

ACCEPT states, let us simply erase all but one of them and have all the
edges that formerly went into the others feed into the one remaining:

ACCEPT ACCEPT —_— ACCEPT

becomes

ACCEPT —

i=(p

Condition 2 is also easy. Since we are dealing with nondeterministic ma-
chines, if we are at a state with no edge labeled with the character we have
just read or popped we simply crash. For an input string to be accepted, there
must be a safe path to ACCEPT; the absence of such a path is tantamount
to REJECT. Therefore, we can erase all REJECT states and the edges leading
to them without affecting the language accepted by the PDA:

b
REJECT

becomes simply

B0
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If a b is read in this READ state, there is no path to follow and
CRASH =REJECT must occur.

Now let us consider Condition 3. A READ in a certain PDA might not
have a POP immediately following it; we might find something like this:

READg

What we do is insert a POP and immediately put back on the STACK whatever
might have been removed by this additional POP.
We need to have a PUSH for every letter of I' every time we do this.

> READ,

This looks like a silly waste of states, but it does mean that we can satisfy
condition 3 without changing the language accepted.
We may need to insert some HERE states to satisfy Condition 4:

POP, - POP,

: @ PoP,

To satisfy Condition 5, we must convert all branching at POP states into
branching at READ or HERE states. This is done as follows.

becomes
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This:

becomes this:

If the POP, state in the original picture was going to pop a b and branch
to READ;,, then in the modified version below, its path through the machine
must be the one that at READ, takes the a-edge to POP,, not the a-edge to
POP;. If an a was going to be popped by POP,, the path to POP; has to be
taken to avoid crashing. All paths through these two segments of PDA’s are
the same, but in the second picture the deterministic branching at POP; has
been replaced by nondeterministic branching at READ;.

We must also modify the funny extra POP x — PUSH x situations that
we introduced for Condition 3. Instead of using:

PUSH a

READ, POP READ,

PUSH &
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which entailed branching at the POP state, we must use the equivalent:

| PUSH a

PUSH b

Instead of a deterministic branch at a POP state, we have made a non-
deterministic branch at a READ state or a HERE state.

Condition 6 is another easy one. We simply presume that the STACK ini-
tially looks like:

STACK

©

When we change a PDA into conversion form, we must also remember that
instead of popping a A from an empty STACK we shall find the symbol $.
If we wanted (for some reason) to POP several A’s off of an empty STACK,
we shall have to be satisfied with several POP $ — PUSH $ combinations.
They work just as well.

If we ever have a PDA that wants to accept an input string without emptying
the whole STACK (including $), we could just insert some states that empty
the STACK harmlessly right before the ACCEPT, exactly as we did in the
proof of Theorem 27.

Condition 7 makes no new demands if the STACK already satisfies Con-
dition 6.

Condition 8 can be satisfied by the algorithm of Theorem 27 from Chapter
17.

Now let us take a whole PDA and change it into conversion form. The
PDA we use is one that accepts the language

{a*"b"} = {aab aaaabb aaaaaabbb . . .}
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The PDA is:

START

A
'._. PUSH « ACCEPT @

Every a from the beginning of the input tape is pushed onto the STACK.
Then for every b that follows, two a’s are popped. Acceptance comes if both
TAPE and STACK empty at the same time. The words accepted must therefore
be of the form a*b" forn = 1, 2, 3 .. ..

Here we have already deleted the REJECT state and useless READ and
POP alternative edges. To make this PDA. satisfy all the conditions for con-
version form, we must remake it into:

$
PUSH $ POP, START

PUSH a PUSH a
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To begin with, we must start with the sequence demanded by Condition
7. This makes us insert a new POP state called POP,. Now in the original
machine we began a circuit “READ,—PUSH a—READ,—PUSH a . . .”. Be-
cause of Condition 3, every READ must be followed by a POP so the pair
“READ,—PUSH a” must become “READ;—POPs—PUSH &—PUSH a.” The
first PUSH is to return the a that was popped out. The second PUSH adds
the a to the STACK. The first time through this loop, the top of the STACK
does not contain an a yet and what is popped is the $, which must immediately
be returned to the STACK. This is the purpose of the nondeterministic branch
“POPs—PUSH $—PUSH a.” This branch also adds an a to the STACK. This
branch will be taken the first time out of READ,; but if ever again it will
cause a CRASH and lead to the acceptance of no new words.

The next violation of conversion form in the original picture was that POP,
was immediately followed by POP, without a READ in between. This is fixed
by inserting a HERE. (There is only one HERE state in this whole machine,
so there is no reason to number it.)

The last change is that instead of POP; finding a blank, it should find the
stack-end symbol $.

The new form of this PDA obviously accepts exactly the same language
as before, {a*"b"}. (By our convention, when the range of n is unspecified,
it is presumed to be n = 1,2,3. .. )

Now that we have put this PDA into conversion form, we can explain why
we ever wanted to impose these eight conditions on a poor helpless machine.
Any PDA in conversion form can be considered as a collection of primitive
parts—path segments—each of the form:

From To Reading Popping Pushing

START READ One or no Exactly Any string
or READ or HERE input one STACK onto the

HERE ACCEPT letters character STACK

The states START, READ, HERE, and ACCEPT are called the joints of the
machine. Between two consecutive joints on a path exactly one character is
popped and any arbitrary number can be pushed. Because no edge has a mul-
tiple label, between any two joints the machine can read no letters at all from
the INPUT TAPE or else exactly one specified letter. This was the purpose
of imposing all the conversion conditions.

The PDA above can be drawn as a set of joints with “arcs” (path segments)
between them much like a TG.
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ACCEPT

Once a PDA is in conversion form, we can describe the entire machine as
a list of all the primitive joint-to-joint path segments (the “arcs” mentioned
above). Such a list is called a summary table. A summary table for a PDA
satisfies the same purpose as a transition table for an FA. It explains the total
action on the inputs without recourse to pictorial tepresentation. This may seem
like a step backwards, since the pictures make more sense than the tables—
which is why we do not commonly use tables for FA’s. However, for the
purpose of completing the proof of Theorem 29 (which is what we are still
in the midst of doing), the summary table will be very useful.

The PDA we have just converted corresponds to the summary table below.

From To READ POP PUSH Row
where where what what what Number
START READ, $ $ 1
READ; READ, a $ a$ 2
READ, READ, a a aa 3
READ, HERE b a — 4
HERE READ, A a — 5
READ, HERE b a — 6
READ, ACCEPT A $ — 7
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In the last column we have assigned a number to each row for our future
purposes. Each path segment corresponds to one row of the table.
Notice that in Row, we summarized

PUSH $ PUSH a
PUSH a$

since it means add the $ first, then the a.

In our definition of conversion form, we made sure that all branching occurs
at the joints READ and HERE. This means that no branching can occur in
the middle of any row of the summary table.

Every word that can be accepted by the PDA corresponds to some path
from START to ACCEPT. We can view these paths as made up not of the
components “edges” but of the components “rows of summary table.” A path
is then broken into a sequence of these path segments.

For example, in the PDA above the word aaaabb can be accepted by the
machine through the path

START — POP, — PUSH $ — READ, — POP¢ — PUSH $ — PUSH a
— READ, — POPs — PUSH @ — PUSH a — READ; — POP; — PUSH a
— PUSH a — READ, — POPs — PUSH a — PUSH a — READ, —
POP, — HERE — POP, — READ, — POP, — HERE — POP, — READ,
— POP; — ACCEPT

This is a nondeterministic machine, and there are other paths that this input
could take, but they all crash somewhere; only this path leads to acceptance.
Instead of this long list of states, we could describe the path of this word
through the machine as a sequence of rows from the summary table. The path
above can be described as

as

Row;—Row,—Row;—Row;—Row,—Row;—Rowg—Rows—Row,

Let us repeat that acceptance by a PDA is determined by the existence of
a path from START to ACCEPT. In FA’s, paths correspond in a natural
fashion to strings of letters. In a PDA paths correspond in a natural way to
strings of Row’s from the summary table.

The approach that we have taken for PDA’s is to define them originally
by a pictorial representation and imagine a correspondence between input strings
and paths through the machine-graph. To abstract the grammar (CFG) of the
language that the PDA accepts, we have had to begin by changing our PDA’s
first into conversion form and then into summary tables. This is to make an
algebraic nonpictorial representation of our PDA’s that we can then convert
into a grammar. Most authors define PDA’s originally as summary tables of
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some kind and the pictorial representations as directed graphs are rarely given.
The proof of Theorem 29 in such a treatment is much shorter, since the proof
can begin at the point we have just reached. Something is lost, though, in
not seeing a PDA as a picture. This is best illustrated by comparing the sum-
mary table above with the first pictorial representation of the PDA. It is much
easier to understand the looping and the language from the picture.

As definitions, both the pictures and the tables describe the same type of
language-accepting device. The question of which is superior cannot be an-
swered without knowing the specific application. Our application is education
and the most understandable formulation is the best.

Notice that the HERE state reads nothing from the TAPE, so we have put
A in the “READ-what” column. We could put a dash or a ¢ there just as
well. A blank (A) would be wrong, since it means something else; to say that
we read a A means the TAPE must be empty. A A on the other hand means,
by convention, that we do not read the TAPE.

The order in which we put the rows in the summary table does not matter
as long as every path segment of the PDA between two consecutive joints is
represented as some row.

The summary table carries in it all the information that is found in the
pictorial representation of the PDA. Every path through the PDA is a sequence
of rows of the summary table. However, not every sequence of rows from
the summary table represents a viable path. Right now it is very important
for us to determine which sequences of rows do correspond to possible paths
through the PDA, since the paths are directly related to the language accepted.

Some sequences of rows are impossible; for example, we cannot immediately
follow Row, with Row, because Row, leaves us in HERE while Rows begins
in READ,. We must always be careful that the end joints connect up logically.

This requirement is necessary but not sufficient to guarantee that a sequence
of rows can be a path. Row, leaves us in READ; and Row 3 starts in READ,,
yet Row;-Row; cannot be the beginning of a path. This is because Row, pushes
a $, whereas Row;, which pops an a obviously presumes that the top of the
STACK is an a. We must have some information about the STACK before
we can string rows together.

Even if we arranged the rows so that the pushes and pops match up, we
still might get into trouble. A path formed by a sequence of rows with four
Row;’s and six Rows’s is impossible. This is true for a subtle reason. Six
Rows’s will pop six a’s from the STACK, however, since Row, can only be
used once to obtain one a in the STACK and four Rows’s can contribute only
four more a’s to the STACK, we are short one a.

The question of which sequences of rows make up a path is very tricky.
To represent a path, a sequence of rows must be joint consistent (the rows
meet up end to end) and STACK consistent (when a row pops a character,
it should be there, at the top of the STACK).

Let now us define the row-language of a particular PDA represented by
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a summary table. It is the language whose alphabet letters are the names of
the rows in the summary table

3 = {Row; Row, ... Rowy}

and having as legal words all those sequences of alphabet letters that correspond
to paths from START to ACCEPT that might possibly be followed by some
input strings, that is, all sequences from START to ACCEPT that are joint
consistent and STACK consistent.
Clearly, all valid words in this language begin with Row; and end with
Row-, but as we saw above, there are more requirements than just those.
Consider, for example,

RowsRowsRow;Rowg

This is a string of length four, but this string is not a word in the row-
language for three reasons: (1) It does not represent a path that begins with
START or ends with ACCEPT; (2) it is not joint consistent; (3) it is not
STACK consistent.

Not only are we going to look for rules to tell us which strings of rows
are words, but we shall produce a CFG for the row-language. From this CFG
we can produce another CFG, a grammar for the language of strings of a’s
and b’s accepted by the original PDA.

Let us pause here to outline the global strategy of this proof.

1. We start with any PDA drawn as defined in Chapter 17.
We redraw the PDA to meet the requirements of conversion form.

3. From the machine in conversion form, we build a summary table and
number the rows.

4. Every word accepted by the PDA corresponds to at least one path from
START to ACCEPT and, as we shall soon see, every stack-consistent
path from START to ACCEPT corresponds to some word. Therefore we
define the row-language to be the set of all sequences of rows that cor-
respond to paths.

5. We determine a CFG that generates all the words in the row-language.

6. We convert this CFG for the row-language into a CFG that generates all
the words in the original language of a’s and b's that are accepted by
the PDA, thus proving Theorem 29.

We are now up to Step 5.
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We had to build half this house before we could take our first look at the
blueprints.

One thing we have to do is to keep track of the contents of the STACK.
Since we are going to want to produce a CFG that generates the row-language,
we need to introduce nonterminals that contain the information we need to
ensure joint and STACK consistency. We have to know about the beginning
and end positions of the path segments to which certain row strings correspond
and about the contents of the STACK. It is not necessary to maintain any
information about what characters are read from the TAPE. If what is on the
TAPE is what the rows want to read then the input string will be accepted.
Once we know what the rows are we can find an input word that gives them
what they want to read. We shall see the implications of this observation later,
but every joint- and STACK-consistent path actually is the path through the
PDA taken by some input string.

The nonterminals in the row-language grammar have the following form:

Net(X,Y,Z)

where the X and Y can be any joint; START, HERE, or ACCEPT, and Z is
any character from the stack alphabet I'. This whole expression is one non-
terminal even though it is at least 10 printer’s symbols long. These odd non-
terminals stand for the following sentence:

There is some path going from joint X to joint Y, perhaps passing through some
other joints (READ or HERE states), which has the net effect on the STACK of
removing the symbol Z, where by “net effect” we mean that while there might be
extra things put onto the STACK during the path, they are eventually removed
and the STACK is never popped below the initial Z that is on the top of the STACK
to begin with and that is popped out somewhere along the way.

We have never seen a nonterminal be such a complicated looking item as
Net(X,Y,Z), but we have had nonterminals before with meanings that could
be expressed in a sentence (as in the CFG for EQUAL).

This complicated description of the “net effect” on the STACK means, for

instance, that the sequence of the STACK operations:

b
z oo [ 6 a

has the net effect of popping one Z since it represents the stack states:
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The net STACK effect is the same as the simple POP Z, and no character
was presumed to be in the STACK below the top Z. The symbol “7” here
represents the unknown and unexamined part of the STACK. The picture

.z

by itself is also an acceptable sequence for a STACK operation governed by
a nonterminal Net(X,Y,Z).

However
z
@ @ - PUSH a
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is not, because it presupposes knowledge about what is in the STACK under
the top Z. If there were a b under the Z initially, this sequence would fail
(crash). We never presume knowledge of what is available in the STACK in
the statement Net(X,Y,Z) beyond knowing that Z is on top.

For a given PDA some set of all the possible sentences Net(X,Y,Z) are
true and some are false. Our job, given a PDA, is to determine which Net
statements are true and how they fit together. To do this, we must first examine
every row of the table to see which ones have the net effect of popping exactly
one letter. There are other paths that are composed of several rows that can
also be described by a single Net statement, but we shall discover these by
a separate procedure later.

Let us recall the summary table that we have developed for the PDA for
the language {a*"b"}. Row, of this table says essentially:

Net(READ,,HERE, a)

which means, “we can go from READ, to HERE at the total cost of popping
an a from the top of the stack.”

In other words, Row, is a single Net row. However, let us suppose that
we have a row in the summary table for some arbitrary PDA that looks like
this:

FROM TO READ POP PUSH ROW
READ, READ; b b abb 11

As it stands, Row;; is not a Ner-style sentence because the trip from READ,
to READ; does not subtract one letter from the STACK; the net effect is
rather that it adds two. However, there is a particular way that Row;; can
interact with some other Ner-style sentences. For instance, if we knew that
the following three nonterminals could be realized as path segments for this
machine

Net(READ;,READ;,a)
Net(READ;,READ,,b)
Net(READ,;,READ;,b)

then, using Row;;, we could conclude that the nonterminal:

Net(READy,READ;,b)
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could also be realized as a path segment. This is because we can go first
from READ, to READ; using Row;; which eats the b at the top of the STACK
but leaves the letters abb in its place, with the net effect of adding ab. The
first a takes us from READ; to READ; by the path implied by
Net(READ;,READ;,a). The next b takes us from READ; along some path to
READ;, as guaranteed by Net(READ;,READ;,b). Then the last b takes us
from READ, to READg by some path guaranteed by the last Net. The total
cost of the trip has been the top b. Thanks to the abb we added, during this
whole trip we have never popped the STACK beneath the top b.

Let us write this as:

Net(READy,READs,b)
— Rowy,Net(READ;,READ,,a)Net(READ,,READ, ,b)Net(READ, ,READ;,b)

In other words, the sentence that says that we can go from READ; to
READ; at the cost of b can be replaced by the concatenation of the sentences
Rowyy, Net ... Net...Net....

This will be a production in our row-language. We begin with the non-
terminal Net(READy,READg,b), and we produce a string that has one terminal,
Row,;, and some nonterminals, Ner . . . Net . . . Net . . . . Notice that Row,,
takes us from READ, to READ;, the first Net from READ; to READ,, the
second from READ,, to READ,, and the last from READ, to READs, giving
us the trip promised on the left side of the production at the appropriate cost.

This hypothetical Row;; that we are presuming exists for some PDA could
also be used in other productions, for example,

Net(READg ,READlo,a)
— Row;Net(READ;,READ,,a)Net(READ,,READ,,b)Net(READ,,READ,y,b)

assuming, of course, that these additional Netr’s are available, by which we
mean realizable by actual paths.

The general formulation for creating productions from rows of the summary
table is as follows:

If the summary table includes the row

FROM TO READ POP PUSH ROW
READ, READy u w mm; . ..m, i
then for any sequence of joint states, S;, S»...S,, we include the row-

language CFG production
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Net(READ,, S,,w) — Row; Net(READ,,S,,m,) . . . Net(S,_;,S,,m,)

This is a great number of productions and a large dose of generality all
at once. Let us illustrate the point on an outrageous, ludicrous example.

Suppose that someone offered us a ride from Philadelphia to L.A. if we
would trade him our old socks for his sunglasses and false teeth. We would
say “terrific” because we could then go from Philadelphia to Denver for the
price of the old socks. How? First we get a ride to L.A. by trading the socks
to him for the sunglasses and false teeth. Then we find someone who will
drive us from L.A. to Chicago for a pair of sunglasses and another nice guy
who will drive us from Chicago to Denver for a pair of false teeth.

Denver e kﬁe‘tf‘_— * Chicago Philadflphia
1055
/ck:f* Flasses + teeth
S0
L,.A.
FROM | TO READ POP PUSH ROW
Phila L.A. anything socks sunglasses, false teeth 77

Net(Phila,Denver,socks)
~— Rowy; Net(L.A.,Chi,shades)Net(Chi,Denver,teeth)

The fact that we have written this production does not mean that it can
ever be part of the derivation of an actual word in the row-language. The
idea might look good ‘on paper, but where do we find the clown who will
drive us from Chicago to Denver for the used choppers?

So too with the other productions formed by this general rule.

We can replace Net(this and that) with Net(such and such), but can we
ever boil it all down to a string of rows? We have seen in working with
CFG’s in general, that replacing one nonterminal with a string of others does
not always lead to a word in the language.

In the example of the PDA for which we built the summary table, Row;
says that we can go from READ, back to READ,; and replace an a with aa.
This allows the formation of many productions of the form:

Net(READ,,X,a) — Row; Net(READ,.Y,a)Net(Y,X,a)

where X and Y could be READ,, READ,, or READs;—or even HERE. Also
X could be ACCEPT, as in this possibility:
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Net(READ|,ACCEPT,a) — Row; Net(READ,,READ,,a)Net(READ,,ACCEPT ,a)

There are three rules for creating productions in what we shall prove is-a
CFG for the row-language of a PDA presented to us in a summary table.

Rule 1

Rule 2

We have the nonterminal S, which starts the whole show, and the pro-
duction

§ — Net(START,ACCEPT,$)
which means that we can consider any total path through the machine as
a trip from START to ACCEPT at the cost of popping one symbol, $,
and never referring to the STACK below $.
This rule is the same for all PDA’s.

For every row of the summary table that has no PUSH entry, such as:

FROM TO READ POP PUSH ROW

X Y anything Z — i

Rule 3

we include the production:
Net(X,Y,Z) — Row;

This means that Net(X,Y,Z), which stands for the hypothetical trip
from X to Y at the net cost Z, is really possible by using Row; alone. It
is actualizable in this PDA.

Let us remember that since this is the row-language we are generating,
this production is in the form:

Nonterminal — terminal

In general, we have no guarantee that there are any such rows that
push nothing, but if no row decreases the size of the STACK, it can
never become empty and the machine will never accept any words.

For completeness we restate the expansion rule above.

For each row in the summary table that has some PUSH we introduce a
whole family of productions. For every row that pushes 7 characters onto
the STACK, such as:
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FROM TO READ POP PUSH ROW
X Y anything Z my...m, i

for all sets of n READ, HERE, or ACCEPT states Sy, S, . . . S,, we
create the productions:

Net(X,S,.,Z) — Row; Net(Y,S,,m;) . . . Net(S,_1,5,,M,)

Remember the fact that we are creating productions does not mean that
they are all useful in the generation of words. We merely want to guar-
antee that we get all the useful productions, and the useless ones will
not hurt us.

No other productions are necessary.

We shall prove in a moment that these are all the productions in the CFG
defining the row-language. That is, the language of all sequences of rows
representing every word accepted by the machine can be generated by these
productions from the start symbol S.

Many productions come from these rules. As we have observed, not all of
them are used in the derivation of words because some of these Ner-variables
can never be realized as actual paths, just as we could include the nonterminal
Net(NY,LA,5¢) in the optimistic hope that some airline will run a great sale.
Only those nonterminals that can be eventually replaced by strings of solid
terminals will ever be used in producing words in the row-language.

This is like the case with this CFG:

S—>X|Y
X — aXX
Y— ab

The production X — aXX is totally useless in producing words.

We shall now prove that this CFG with all the Net’s is exactly the CFG
for the row-language. To do that, we need to show two things: first, that every
string generated by the CFG is a string of rows representing an actual path
through the PDA from START to ACCEPT, and second, that all the paths
corresponding to accepted input strings are equivalent to row-words generated
by this CFG.

Before we consider this problem in the abstract, let us return to the concrete
illustration of the summary table for the PDA that accepts

{ a2n bn}
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We shall make a complete list of all the productions that can be formed
from the rows of the summary table using the three rules above.
Rule 1, always, gives us only the production:

Prop 1 S — Net(START,ACCEPT,$)
Rule 2 applies to Rows 4, 5, 6, and 7, creating the productions:

ProD 2 Net(READ,HERE a) — Row,
ProD 3 Net(HERE,READ,,a) — Rows
Prop 4 Net(READ,,HERE ,a) — Rows
ProD 5 Net(READ,,ACCEPT,$) — Row;

Lastly, Rule 3 applies to Rows 1, 2, and 3. When applied to Rov;q it
generates:

Net(START,X,$) — Row, Net(READ,.X,$)

where X can take on the different values READ,;, READ,, HERE, or ACCEPT.
This gives us these four new productions:

PrOD 6 Net(START,READ,,$)
ProD 7 Net(START,READ,,$)
ProD 8 Net(START,HERE,$)
ProD 9 Net(START,ACCEPT.$)

Row; Net(READ,,READ,,$)
Row; Net(READ;,READ,,$)
Row; Net(READ,,HERE,$)
Row, Net(READ;,ACCEPT,$)

RN

When applied to Row,, Rule 3 generates:

Net(READ|,X,$) — Row, Net(READ,,Y,a) Net(Y,X,$)

where X can be any joint state but START, and Y can be any joint state but
START or ACCEPT (since we cannot return to START or leave ACCEPT).

The new productions derived from Row, are of the form above with all
possible values for X and Y:

Prop 10 Net(READ;,READ,,$)

— Row,Net(READ,,READ,,a)Net(READ,,READ,,$)
Prop 11 Net(READ|,READ,,$)

— Row;Net(READ,READ,,a)Net(READ,,READ,,$)
Prop 12 Net(READ,|,READ,,$)

— Row,Net(READ,,HERE,a)Net(HERE,READ,,$)
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Net(READ,,READ,,$)

— Row,Net(READ,,READ, ,a)Net(READ,,READ,,$)
Net(READ,,READ,,$)

— Row,Net(READ,,READ,,a)Net(READ,,READ,,$)
Net(READ,READ,,$)

— Row,Net(READ,,HERE,a)Net(HERE,READ,,$)

Net(READ,,HERE,$)
— Row,Net(READ,,READ;,a)Net(READ, ,HERE,$)

Net(READ,,HERE,$)
— Row,Nert(READ|,READ;,a)Net(READ,,HERE,$)

Net(READ,,HERE,$)
— Row,Net(READ,,HERE,a)Net(HERE ,HERE,$)

Net(READ,,ACCEPT,$)
— Row,Net(READ, ,READ;,a)Net(READ;,ACCEPT,$)

Net(READ,,ACCEPT,$)
— Row,Net(READ,,READ,,a)Net(READ,,ACCEPT,$)

Net(READ,,ACCEPT,$)
— Row,Net(READ,,HERE,a)Net(HERE,ACCEPT,$)

When Rule 3 is applied to Rows, it generates productions of the form:

Net(READ,,X,a) — Row; Net(READ,,Y,a) Net(Y,X,a)

where X can be READ,, READ,, HERE, or ACCEPT and Y can only be
READ,, READ,, or HERE.
This gives 12 new productions:

Probp

Probp

Prob

ProD

Prop

Prop

22

23

24

25

26

27

Net(READ,,READ,,a)

— Row;Net(READ|,READ,,a)Net(READ, ,READ,a)
Net(READ,,READ, ,a)

— Row;Net(READ,,READ,,a)Net(READ,,READ,,a)
Net(READ,;,READ;,a)

— Row;Net(READ, ,HERE, a)Net(HERE,READ, ,a)

Net(READ|,READ;,a)
— Row;3Net(READ,,READ,a)Net(READ, ,READ;,a)

Net(READ,|,READ;,a)
— Row;Net(READ{,READ;,a)Net(READ;,READ;,a)

Net(READ,,READ,,a)
— Row;Net(READ, ,HERE,a)Net(HERE,READ,,a)
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Prop 28

Prop 29

Prob 30

Prop 31

ProD 32

Probp 33
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Net(READ; , HERE a)

—> Row;Net(READ|,READ,,a)Net(READ, , HERE,a)
Net(READ,,HERE,a)

— RowsNet(READ,,READ;,a)Net(READ, , HERE,a)

Net(READ, ,HERE,a)
— Row;Net(READ, , HERE ,a)Net(HERE ,HERE ,a)

Net(READ, ,ACCEPT ,a)
— Row;Net(READ|,READ,,a)Net(READ,,ACCEPT,a)

Net(READ,,ACCEPT,a)
— RowiNet(READ,,READ;,a)Net(READ,, ACCEPT ,a)

Net(READ,,ACCEPT,a)
—> Row;Net(READ; , HERE, a)Net(HERE,ACCEPT ,a)

This is the largest CFG we have ever tried to handle. We have:

7 terminals: Row; Row,,. . . Row;

29 nonterminals: S, 16 of the form Net(, , $)
12 of the form Net(, , a)

33 productions: Prop 1 ... Prop 33

We know that not all of these will occur in an actual derivation starting at
S. For example, Net(READ,,ACCEPT,a) cannot happen, since to go from
READ, to ACCEPT we must pop a $, not an a.

To see which productions can lead toward words, let us begin to draw the
left-most total language tree of the row-language. By “left-most” we mean that
from every working string node we make one branch for each production that
applies to the left-most nonterminal. Branching only on the left-most nonter-
minal avoids considerable duplication without losing any words of the language,
because all words that can be derived have left-most derivations (Theorem 25).

In this case the tree starts simply as:

S

l
Net(START ,ACCEPT.$)
l

RowNet(READ, ,ACCEPT,$)

1

(1,9)

This is because the only production that has § as its left-hand side is Prop
1. The only production that applies after that is Prop 9. The numbers in
parentheses at the right show which sequence of productions was used to arrive
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at each node in the tree. The left-most (and only) nonterminal now is
Net(READ,,ACCEPT,$). There are exactly three productions that can apply
here: »

Prop 19 Probp 20 Prop 21

So the tree now branches as follows:

Net(READ,,ACCEPT.,$)

Row,;Row;Net(READ,,READ;,a)Net(READ, , ACCEPT,$) (1,9, 19)
Row,Row,Net(READ,READ,,a)Net(READ,, ACCEPT,$) (1, 9, 20)
L Row,Row,Net(READ, ,HERE a)Net(HERE , ACCEPT,$) (1,9, 21)

(1,9
|
(1,9,19) (1,9,20) (1,9,21)

Let us consider the branch (1,9,19). Here the left-most nonterminal is
Net(READ,,READ;,a). The productions that apply to this nonterminal are PrRoD
22, Prop 23, and ProD 24. Application of Prop 23 gives us an expression
that includes Net(READ,,READ,,a), but there is no production for which this
Net is the left-hand side. (This corresponds to the fact that there are no paths
from READ, to READ, in this PDA.) Therefore, PrRoD 23 can never be used
in the formation of a word in this row-language.

This is also true of ProD 24, which creates the expression Net(HERE,
READ,,a). No matter how many times we apply Prob 22, we still have a
factor of Net(READ,,READ,,a). There is no way to remove this nonterminal
from a working string. Therefore, any branch incorporating this nonterminal
can never lead to a string of only terminals. The situation is similar to this
CFG:

S— b|X
X—aX

We can never get rid of the X. So we get no words from starting with § — X.
Therefore, we might as well drop this nonterminal from consideration.

We could produce just as many words in the row-language if we dropped
Prop 22, Prop 23, and ProD 24. Therefore, we might as well eliminate ProD
19, since this created the situation that led to these productions, and it can
give us no possible lines, only hopeless ones. We now see that we might as
well drop the whole branch (1,9,19).
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Now let us examine the branch (1,9,20). The left-most nonterminal here
is Net(READ,;,READ;,a). The productions that apply to this nonterminal are

ProD 25 Prop 26 Probp 27.

Of these, PRoD 25 generates a string that involves Net(READ,,READ,a),
which we saw before led to the death of the branch (1,9,19). So Prob 25
is also poison.

We have no reason at the moment not to apply ProD 26 or Prop 27. The
tree, therefore, continues:

(1,9, 20)

[Row,RoszowWet(READl,READ;,a)Net(READzREADza)Net(READz,ACCEPT,$) (1, 9, 20, 26)
RowRow;Row;Net/(READ, , HERE, a)Net(HERE,READ;,a)Net(READ,, ACCEPT,$) (1, 9, 20, 27)

(1,9,20)

(1,9,20,26) (1,9,20,27)

Let us continue the process along one branch of the tree.

(1,9,20,27)
{
Row;Row;Row;RowNet(HERE,READ,,a)NetREAD,,ACCEPT,$)  (1,9,20,27,2)
)
Row;Row,Row;sRow,RowsNet(HERE,ACCEPT,$) (1,9,20,27,2,3)
)

Row;Row;Row;RowsRowsRows (1,9,20,27,2,3,5)

This is the shortest word in the entire row-language. The total language
tree is infinite.

In this particular case, the proof that this is the CFG for the row-language
is easy, and it reflects the ideas in the general proof that the CFG formed by
the three rules we stated is the desired CFG.

For one thing, it is clear that every derivation from these rules is a realizable
path of rows. This is because each production says:

We can make this trip at this cost
if
We can make these trips at these costs
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If it all boils down to a set of Rows, then the subtrips can be made along
the deterministic edges of the PDA corresponding to the rows of the summary
table: When we put them together, the longer trip based on these path segments
becomes realizable.

How do we know that every path through the PDA is derivable from the
productions that the rules create? Every trip through the PDA can be broken
up into the segments of net cost. The STACK is set initially at $ and row
by row some things are popped and some are pushed. Some rows push more
than one letter and some push none. The ones that push more than one letter
are the ones that enable us to execute the rows that pop but do not push.
This is STACK economics. We can write down directly,

“The profit from Row; is such and such.”
“The cost of Row; is so and so0.”

For the machine to operate properly, the total cost must be equal to the
profit plus the initial $, and the profit must come first. We can never be in
debt more than one $. (That is why we chose the symbol “$.”)

For example, let us examine the word Row;Row;Row;Row,RowsRow.:

Row, Row, Row; Row, Row; Row,
Net change  Net change  Net change Net change  Net change  Net change
0 +a +a —a —a -3

The table shows that as soon as we have a row with a profit we must decide
where to spend it. If Row; has a profit of +a, then we can say we will
spend it on Rows. Row; enables Rows to follow it.

From To READ POP PUSH Row
READ, READ, a aa 3
HERE READ, a — 5

This matching is summarized by the production:
Net(READ|,READ;,a) — Row;Net(READ, ,HERE , a)Net(HERE,READ,,a)

which is our Prop 27.

Any allocation we can make of the STACK profit from the push rows to
the STACK losses of the nonpush rows must correspond to a production in
the grammar we have created since the rules we gave for CFG production
formation inciuded all possible ways of spending the profit.



(c) ketabton.com: The Digital Library

406 PUSHDOWN AUTOMATA THEORY

Let us look at a typical abstract case of the application of Rule 3. Let us
start with some hypothetical Rowy below

From To READ POP PUSH Row
A B C D EFG H

and generate all productions of the form:
Net(A,Z,D) — RowyNet(B,X,E)Net(X,Y,F)Net(Y,Z,G)

This tells us to distribute the profit of Rowy, which is EFG, in all possible
ways to pass through any sequence of joints X,Y,Z. We start at A and do
Rowy. We are now in B and have to spend EFG. We travel from B, but by
the time we get to X we have spent the top E. We may have passed through
many other states and popped and pushed plenty, but when we reach X the
E is gone and the F and G are on the top of the STACK. Similarly, by the
time we get to Y the F is gone and by Z the G is gone.

Any trip from A to Z that nets D and starts with Rowy must be of this
form. After Rowy an E is on top of the STACK. At some point that £ must
be popped. Let us call the joint that we get to when the E is popped X. Call
the joint we get to when the F is first popped Y. The joint we get to when
the G is popped must be Z, since that fulfills Net(A,Z,D).

All trips of the right-side form are trips that go from A to Z at net cost
D, and all Net(A,Z,D) must be of the right-side form.

This argument shows that this CFG generates the row-language correspond-
ing to all trips through the PDA.

Where are we now in the proof of Theorem 29?7 Let us recapitulate.

I. Starting with any PDA as defined in the previous section, we can convert
it into conversion form without changing its language.

II. From conversion form we can build a summary table that has all the
information about the PDA broken into rows, each of which describes
a simple path between joint states (READ, HERE, START, and AC-
CEPT). The rows are of the form:

|  Fom [ To | READ | PoP | PusH | RowNumber |

III. There is a set of rules describing how to create a CFG for the language
whose words are all the row sequences corresponding to all the paths
through the PDA that can be taken by input strings on their way to
acceptance.



(c) ketabton.com: The Digital Library

CFG = PDA 407

The rules create productions of the three forms:

Rule 1 § — Net(START,ACCEPT,$)
Rule 2 Net(X,Y,Q) — Row;
Rule 3 Net(A,B,C) — Row; Net(4,X,Y) . . . Net(Q,B,W)

What we need now to complete the proof of Theorem 29 (to which we
are dedicating our natural-born lives) is to create the CFG that generates the
language accepted by the PDA—not just its row-language, but the language
of strings of a’s and b’s. The grammar for the row-language is a good start
but it is not the grammar we are looking for which is the CFG for the language
of strings accepted by the PDA.

We can finish this off in one simple step. In the summary table every row
had an entry that we have ignored until now, that is, the READ column.

Every row reads a, b, A, or A from the INPUT TAPE. There is no am-
biguity because an edge from a READ state cannot have two labels. So every
row sequence corresponds to a sequence of letters read from the INPUT TAPE.
In order for this path to be successfully followed through the PDA the TAPE
must first be loaded with the word that is the concatenation of the READ
demands of the rows. We can convert the row-language into the language of
the PDA by adding to the CFG for the row-language the set of productions
created by a new rule, Rule 4.

Rule 4 For every row

From To READ POP Push Row
A B C ) D EFGH 1

create the production:
Row; > C

For example, in the summary table for the PDA that accepts that language
{a®"b"} we have seven rows. Therefore we create the seven new productions:

ProD 34 Row, — A
ProD 35 Row; = a
ProD 36 Row; — a
Prop 37 Row, — b
Prop 38 Rows — A
ProD 39 Rowg — b
Prop 40 Row; — A
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The symbols, Row,;, Row, .. . that used to be terminals in the row-
language are now nonterminals. From every row sequence we can produce a
word. For example,

Row Row,Row;Row,RowsRow-
becomes:
AaabAA

Treating A like a A (to be painfully technical, by the production A — A)
we have the word:

aab
Clearly this word can be accepted by this PDA by following the path
Row;—Row,—Row;—Row,—Rows—Row,

The derivations of the words from the productions of this CFG not only
tell us which words are accepted by this PDA but also indicate a path by
which the words may be accepted, which may be useful information.

Remember that since this is a nondeterministic machine, there may be sev-
eral paths that accept the same word. But for every legitimate word there will
be at least one complete path to ACCEPT.

The language generated by this CFG is exactly the language accepted by
the PDA originally. Therefore, we may say that, for any PDA there is a CFG
that generates the same language the machine accepts. [ |

EXAMPLE

We shall now illustrate the complete process of equivalence, as given by the
two theorems in this chapter, on one simple example. We shall start with a
CFG and convert it into a PDA (using the algorithm of Theorem 28), and
we then convert this very PDA back into a CFG (using the algorithm of
Theorem 29).

The language of this illustration is the collection of all strings of an even
number of a’s:

EVENA = (aa)* = a* = {aa aaaa aaaaaa ..}
One obvious grammar for this language is

S— SS | aa
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The left-most total language tree begins:

N
SS8S /\ aaS
PN X

SSSS aa8S aaSS aaaaq

N NN N

SSSSS aaSSS aaSSS aaaaS aaSSS aaaal

N

aaaaaa

Before we can use the algorithm of Theorem 28 to build a PDA that accepts
this language, we must put it into CNF. We therefore first employ the algorithm
of Theorem 24:

§— S§|AA

A—a

The PDA we produce by the algorithm of Theorem 28 is:

( START ) ACCEPT

PUSH S

PUSH S PUSH A
PUSH S PUSH A

Y |
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We shall now use the algorithm of Theorem 29 to turn this machine back
into a CFG. First we must put this PDA into conversion form:

START

$
ACCEPT

Notice that the branching that used to take place at the grand central POP
must now take place at the grand central HERE. Notice also that since we
insist there be a POP after every READ, we must have three POP’s following
READ,. Who among us is so brazen as to claim to be able to glance at this
machine and identify the language it accepts?

The next step is to put this PDA into a summary table:
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From TO READ POP PUSH ROW
START HERE — $ S$ 1
HERE HERE — M Ss 2
HERE HERE — S AA 3
HERE READ; — A — 4
READ, HERE a S N 5
READ, HERE a 3 3 6
READ, HERE a A A 7
HERE READ, — $ $ 8
READ, ACCEPT A $ — 9

We are now ready to write out all the productions in the row-language.
We always begin with the production from Rule I:

§ — Net(START,ACCEPT,$)
There are two rows with no PUSH parts and they give us, by Rule 2:
Net(HERE,READ,,A) — Row,

Net(READ,,ACCEPT,$) — Rows

From Row,; we get 12 productions of the form:
Net(START,X,$) — Row,Net(HERE,Y ,$)Net(Y,X,$)

where X = HERE, READ,, READ,, or ACCEPT and Y = HERE, READ,
or READ;.

From Row, we get eight productions of the form:
Net(HERE, X,S) — Row, Net(HERE,Y,S) Net(Y,X,S)
where X = HERE, READ,, READ,, or ACCEPT and Y = HERE or READ,.
From Row; we get eight productions of the form:
Net(HERE, X,S) — Row; Net(HERE,Y,A)Net(Y,X,A)

where X = HERE, READ,, READ,, or ACCEPT and Y = HERE or READ,.
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From Rows we get the four productions:
Net(READ, ,X,S) — Rows Net(HERE,X,S)

where X = HERE, READ,, READ,, or ACCEPT.
From Rows we get the four productions:

Net(READ|,X,$) — Rowg Net(HERE, X, $)

where X = HERE, READ,, READ,, or ACCEPT.
From Row,; we get the four productions:

Net(READ,,X,A) — Row; Net(HERE,X,A)

where X = HERE, READ,;, READ,, or ACCEPT.
From Rowg we get the one production:

Net(HERE,ACCEPT,$) — Row; Net(READ,,ACCEPT.,$).

All together, this makes a grammar of 44 productions for the row-language.

We shall now do something we have not discussed before. We can trim
from the row-language grammar all the productions that are never used in the
derivation of words. For example, in the simple grammar

S—a|X|Ya
X— XX

it is clear that only the production § — a is ever used in the derivation of
words in the language. The productions § — X, § — Ya and X — XX, as well
as the nonterminals X and Y, are all useless.

We have not previously demonstrated an algorithm for pruning grammars,
but we can develop one now, from the principles of common sense (tenets
heretofore eschewed).

At all times we shall look only at the formal grammar, never at the original
PDA, since the insight we can find in this simple PDA will not always be
so easy to come by in more complicated cases. We must try to follow rules
that can apply in all cases.

Our question is: In a derivation from S to a string of the terminals, Row,,
Row,, . . ., Rowsg, which productions can obviously never be used?

If we are ever to turn a working string into a string of solid terminals, we
need to use some productions at the end of the derivation that do not introduce
nonterminals into the string. In this grammar only two productions are of the
form:

Nonterminal — string of terminals
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They are:
Net(HERE,READ,,A) — Row,
and
Net(READ,, ACCEPT,$) — Rowg

If any words are generated by this row-language grammar at all, then one
of these productions must be employed as the last step in the derivation.

In the step before the last, we should have a working string that contains
all terminals except for one of the possible nonterminals Net(HERE,READ,,A)
or Net(READ,,ACCEPT,$).

Still counting backward from the final string, we ask: What production could
have been used before these two productions to give us such a working string?
It must be a production in which the right side contains all terminals and one
or both of the nonterminals above.

Of the 44 productions, there are only two that fit this description:

Net(HERE,ACCEPT,$) — Rows Net(READ,, ACCEPT,$)
Net(READ,,READ,,A) — Row; Net(HERE,READ;,A)

This gives us two more useful nonterminals, Net(HERE,ACCEPT,$) and

Net(READ,,READ,,A).
We have now established that any working string containing terminals and
some of the four nonterminals:

Net(HERE,READ,, A)
Net(READ,,ACCEPT,$)
Net(HERE,ACCEPT, $)
Net(READ,,READ, A)

can be turned by these productions into a string of all terminals.

Again we ask the question: What could have introduced these nonterminals
into the working string?

There are only two productions with right sides that have only terminals
and these four nonterminals. They are:

Net(HERE,READ,,S) — RowsNet(HERE,READ, ,A)Net(READ;,READ, ,A)
and

Net(READ,,ACCEPT,$) — Rows Net(HERE,ACCEPT,$)
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We shall call these two nonterminals “useful” as we did before. We can
now safely say that any working string that contains terminals and these six
nonterminals can be turned into a word.

Again we ask the question: How can these new useful nonterminals show
up in a word? The answer is that there are only two productions with right
sides that involve only nonterminals known to be useful. They are:

Net(READ,READ,,S) — Rows Net(HERE,READ,,S)

and

Net(START, ACCEPT,$) — Row, Net(HERE,READ,,S)Net(READ,,ACCEPT,$)

So now we can include Net(READ,,READ,,S) and Net(START,ACCEPT,$)
on our list of useful symbols because we know that any working string that
contains them and the other useful symbols can be turned by the productions
into a word of all terminals. This technique should be familiar by now. From
here we can almost smell the blue paint.

Again we ask which of the remaining productions have useful right sides,
that is, which produce strings of only useful symbols? Searching through the
list we find two more. They are:

Net(HERE,READ,,S) — Row,Net(HERE,READ,,S)Net(READ,,READ,,S)
and

§ — Net(START,ACCEPT,$)

This makes both Net(HERE,READ,,S) and S useful. This is valuable in-
formation since we know that any working string working composed only of
useful symbols can be turned into a string of all terminals. When applied to
the working string of just the letter S, we can conclude that there is some
language that can be generated from the start symbol. The row-language there-
fore contains some words.

When we now go back through the list of 44 productions looking for any
others that have right sides composed exclusively of useful symbols we find
no new productions. In other words, each of the other remaining productions
introduces onto its right-side some nonterminal that cannot lead to a word.

Therefore, the only useful part of this grammar lies within the 10 produc-
tions we have just considered above. Let us recapitulate them:

Prop 1 § — Net(START,ACCEPT,$)
ProD 2 Net(START,ACCEPT,$) — Row Net(HERE,READ,,S)Net(READ, ,ACCEPT.$)
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ProD 3 Net(HERE,READ,,S) — Row;Net(HERE,READ,,S)Net(READ, ,READ,,S)
Prop 4 Net(HERE,READ,,S) — Row;Net(HERE,READl,A)Net(READ,,READl,A)
ProD 5 Net(HERE,READ,A) — Row,

ProD 6 Net(READ;,READ,,S) — RowsNet(HERE,READ,,S)

ProD 7 Net(READ,ACCEPT,$) — RowsNet(HERE,ACCEPT,$)

ProD 8 Net(READ,READ,,A) — Row;Net(HERE,READ,,A)

ProD 9 Net(HERE,ACCEPT,$) - RowsNet(READ,,ACCEPT,$)

ProD 10 Net(READ,,ACCEPT,$) — Row,

We can now make an observation from looking at the grammar that could
have been made by looking at the PDA alone. For this particular machine
and grammar, each row appears in only one production.

The CFG above is the grammar for the row-language. To obtain the gram-
mar for the actual language of the PDA, we must also include the following
productions:

Prop 11 Row, — A
ProD 12 Row, = A
Prop 13 Row; — A
Prop 14 Row,; — A
ProD 15 Rows — a
ProD 16 Rowg — a
ProD 17 Row; — a
Prop 18 Rows — A
ProD 19 Rowgs — A

This grammar is too long and has too many nonterminals for us simply to
look at it and tell immediately what language it generates. So we must perform
a few obvious operations to simplify it. We have been very careful never to
claim that we have rules that will enable us to understand the language of a
CFG. However, there are a few tricks we can employ to help us a little.

First, let us observe that if N is a nonterminal that appears on the left side
of productions all of which are of the form:

N — string of terminals

then we can eliminate N from the CFG entirely by substituting these right-
side strings for N wherever N occurs in the productions (and of course dropping
the productions from N). This is similar to the way in which we eliminated
unit productions in Chapter 16. This simplification will not change the language
generated by the CFG.
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This trick applies to the CFG before us in many places. For example, the
production '

Rowg — a

is of this form and this is the only production from this nonterminal. We can
therefore replace the nonterminal Rowg throughout the grammar with the letter
a.

Not only that, but the production

Row, — A

is also of the form specified in the trick. Therefore, we can use it to eliminate
the nonterminal Row, from the grammar. In fact, all the nonterminals of the
form Row; can be so eliminated.

Prop 1 is a unit production, so we can use the algorithm for eliminating
unit productions (given in Theorem 22) to combine it with ProD 2. The result
18:

S — Net(HERE,READ,S)Net(READ;,ACCEPT,$)
‘As we said before any nonterminal N that has only one production:
N — some string

can be eliminated from the grammar by substituting the right-side string for
N everywhere it appears.

As we shall presently show this rule can be used to eliminate all the non-
terminals in the present CFG except for the symbol § and Net(HERE,READ,,S),
which is the left side of two different productions.

We ‘shall illustrate this process in separate stages. First, we obtain:

PrOD. 1 and 2 S — Net(HERE,READ,,S)Net(READ,,ACCEPT,$)
Prob 3 Net(HERE,READ,,S) — Net(HERE,READ,,S)
Net(READ,,READ,,S)
Prob 4 and 5 Net(HERE,READ,,S) — Net(READ,,READ,,A)
ProD 6 Net(READ|,READ,,S) — aNet(HERE,READ,,S)
Prop 7. Net(READ;,ACCEPT,$) — aNet(HERE,ACCEPT,$)
ProD 8 and 5 Net(READ,READ,,A) — a
Prob 9 and 10 Net(HERE,ACCEPT,$) — A

Notice that the READ,’s completely disappear.
We can now combine ProD 9 and 10 with ProD 7. ProD 8 and 5 can be
combined with Prop 4 and 5. Also ProD 6 can be combined with Prop 1
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and 2 to give:
S — Net(HERE,READ,,S)a

Now let us rename the nonterminal Net(HERE,READ,,S) calling it X. The
entire grammar has been reduced to

S— Xa
X — XaX
X—a

This CFG generates the same language as the PDA. However, it is not
identical to the CFG with which we started. To see that this CFG does generate
EVENA, we draw the beginning of its left-most total language tree.

XaXa aa

XaXaXaXa XaXa aaXaXa

aa

It is clear what is happening. All words in the language have only a’s as
letters. All working strings have an even number of symbols (terminals plus
nonterminals). The production § — Xa can be used only once in any derivation,
from then on the working string has an even length. The substitution X — XaX
would keep an even-length string even just as X — a would.

So the final word must have an even number of letters in it, all a’s. We
must also show that all even-length strings of a’s can be derived. To do this,
we can say, that to produce a*" we use S — Xa once, then X — XaX left-
most n—1 times, and then X — a exactly n times.

For example, to produce a®:

S = Xa =2 XaXa > XaXaXa = XaXaXaXa = aaXaXaXa
> aaaaXaXa = aaaaaaXa > a® |

Before finishing our discussion of Theorem 29 we should say a word about
condition 8 in the definition of conversion form. On the surface it seems that
we never made use of this property of the PDA in our construction of the
CFG. We didn’t. However, it is an important factor in showing that the CFG
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generates the language accepted by the machine. According to our definition
of PDA it is possible for a machine to accept an input string without reading
the whole string. One example is a machine that accepts all strings beginning
with an a. From START we go to a READ state which checks the first letter.
If it is an a we accept. The path through the machine that the word abb takes
is identical to the path for the word aaa. If we converted this machine into
a CFG the row-language version of a successful path would correspond only
to the word a. However, if we insist on condition 8 then each row-language
word will correspond to a different unique word in the language of the PDA.

PUSHDOWN AUTOMATA THEORY

PROBLEMS

For each of the CFG’s below, construct a PDA that accepts the same language

they generate, using the algorithm of Theorem 28.

1.

() S — aSbb | abb
(i) S—SS|al|b

S — XaaX
X — aX|bX|A

S— aS|aShS | a
S—= XY
X—aX|bX|a
Y—>Ya|Yb|a
S— Xa | Yb
X—Sb|b

Y— Sala

(i) S— Saa|aSa| aaS

(i)  How many words of length 12 are there in this language?

i S—=>©)S)|a
Parentheses are terminals here.

(i) How many words are there in this language with exactly four a’s?
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(i S— XaY|YbX
X—YY|aY|b
Y— b|bb

(ii) Draw the total language tree.

Explain briefly why it is not actually necessary to convert a CFG into
CNF to use the algorithm of Theorem 28 to build a PDA that accepts
the same language.

Let us consider the set of all regular expressions to be a language over
the alphabet

2={ab () + = A}
Let us call this language REGEX.
@) Prove that REGEX is nonregular.
(i)  Prove that REGEX is context-free by producing a grammar for it.
(iii) Draw a PDA that accepts REGEX.
(iv) Draw a deterministic PDA that accepts REGEX.

(i) Draw a PDA in conversion form that has twice as many READ
states as POP states.

(ii) - Draw a PDA in conversion form that has twice as many POP states
as READ states.

(i) In a summary table for a PDA, can there be more rows with
PUSH than rows with no PUSH?

(i)  In a summary table for PDA, can there be more rows that PUSH more
than one letter than there are rows that PUSH no letter?

(iii)  On a path through a PDA generated by a word in the language of the
PDA, can there be more rows that PUSH more than one letter than
rows that PUSH no letters?

Consider the PDA used as an example in the proof of Theorem 29, the
PDA for the language {a®"b"}. Of the 33 productions listed in this chapter
as being in the CFG for the row-language, it was shown that some (for
example, Prop 22, ProD 23, Prop 24, and ProD 19) can be dropped
from the grammar since they can never be used in the derivation of any
word in the row-language. Which of the remaining 23 nonterminals can
be used in any productions? Why?

Write out the reduced CFG for the row-language formed by deleting the
useless nonterminals in Problem 13 above. Draw the total language tree
to demonstrate that the language accepted by the PDA is in fact {a*'b"}.
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Consider this PDA:

@
(i)
(iii)

®
(i)
0]
(ii)

START

PUSH b PUSH a PUSH a

REJECT

a
POP
b
( Acceer )
What is the language of words it accepts?

Put it into conversion form.
Build a summary table for this PDA.

Write out the CFG for the row-language. Do not list useless Ners.
Write out the CFG for the language accepted by this machine.

Simplify the CFG of Problem 16 by deleting unused productions.
Prove this CFG generates the language of the machine above.

Starting with the CFG

S — aSb | ab

for {a"b"}

(1)
(ii)
(iii)
(iv)
@)

(ii)

Put this CFG into CNF.
Take this CNF and make a PDA that accepts this language.

Take this PDA and put it into conversion form. (Feel free to eliminate
useless paths and states.)

Now take this PDA and build a summary table for it.

From the summary table produced in Problem 18, write out the
productions of the CFG that generate the row-language of the PDA.

Convert this to the CFG that generates the actual language of the PDA
(not the row-language).

Prove that every context-free language over the alphabet {a,b} can be
accepted by a PDA with three READ states.
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CHAPTER 19

CONTEXT-FREE
LANGUAGES

In Part I after finding machines that act as acceptors or recognizers for regular
languages, we discussed some properties of the whole class of regular lan-
guages. We showed that the union, the product, the Kleene closure, the com-
plement, and the intersection of regular languages are all regular. We are now
at the same point in our discussion of context-free languages. In this section
we prove that the union, the product, and the Kleene closure of context-free
languages are context-free. What we shall not do is show that the complement
and intersection of context-free languages are context-free. Rather, we show
in the next two chapters that this is not true in general.

THEOREM 30
If L, and L, are context-free languages, then their union, L, + L,, is also a

context-free language. In other words, the context-free languages are closed
under union.

421
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PROOF 1 (by Grammars)

This will be a proof by constructive algorithm, which means that we shall
show how to create the grammar for L, + L, out of the grammars for L, and
Lz.

Since L, and L, are context-free languages, there must be some CFG’s that
generate them.

Let the CFG for L, have the start symbol S and the nonterminals A, B,
C ... Let us change this notation a little by renaming the start symbol S,
and the nonterminals A,, B, C, ... All we do is add the subscript 1 onto
each character. For example, if the grammar were originally

S— aS|S8S|AS|A
A— AA|b

it would become

Sl —> dS] I S]Sl | A]S] | A
A\ - A‘Al ‘ b

where the new nonterminals are S, and A,.

Notice that we leave the terminals alone. Clearly, the language generated
by this CFG is the same as before, since the added 1’s do not affect the
strings of terminals derived.

Let us do something comparable to a CFG that generates L,. We add a
subscript 2 to each symbol. For example,

S— AS|SB|A
A—aA|a
B—bB|b

becomes

Sz—>A2S2 I Ssz l A
A2—>aA2|a
Bz“‘)sz|b

Again we should note that this change in the names of the nonterminals
has no effect on the language generated.

Now we build a new CFG with productions and nonterminals that are those
of the rewritten CFG for L; and the rewritten CFG for L, plus the new start
symbol S and the additional production:

S—S5, 1|85,
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Because we have been careful to see that there is no overlap in the use
of nonterminals, once we begin § — §; we cannot then apply any productions
from the grammar for L,. All words with derivations that start § — §; belong
to L;, and all words with derivations that begin S — S, belong to L.

All words from both languages can obviously be generated from S. Since
we have created a CFG that generates the language L, + L,, we conclude it
is a context-free language. |
EXAMPLE
Let L; be PALINDROME. One CFG for L, is

S—aSa | bSh |a|b| A
Let L, be {a"b" where n = 0}. One CFG for L, is
S—aSh | A
Theorem 30 recommends the following CFG for L, + L;:

S'*S]lSz
S1—>aS1a[bS1b|a|b|A

S2—> aSzb | A
[ |

No guarantee was made in this proof that the grammar proposed for L, + L,
was the simplest or most intelligent CFG for the union language, as we can
see from the following.

EXAMPLE

One CFG for the language EVENPALINDROME is
§— aSa | bSH | A

One CFG for the language ODDPALINDROME is
S—aSa | bSb | a | b

Using the algorithm of the proof above we produce the following CFG for
PALINDROME:

PALINDROME = EVENPALINDROME + ODDPALINDROME
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S_>51|SZ
S1—>aS1a|bSlb|A
Sz—>aSza|bS2b|a|b

We have seen more economical grammars for this language before. n

No stipulation was made in this theorem that the set of terminals for the
two languages had to be the same.

EXAMPLE

Let L, be PALINDROME over the alphabet %, = {a,b}, while L, is
{c"d" where n = 0} over the alphabet 3, = {c,d}. Then one CFG that generates

L| + L2 1s:
S— 5 | S,
S,—>aSa|bSh|lalb|A
S, — CSzd | A
This is a language over the alphabet {a,b,c,d}. [

In the proof of this theorem we made use of the fact that context-free
languages are generated by context-free grammars. However, we could also
have proven this result using the alternative fact that context-free languages
are those accepted by PDA’s.

PROOF 2 (by Machines)

Since L, and L, are context-free languages, we know (from the previous chap-
ter) that there is a PDA, that accepts L, and a PDA, that accepts L,.

We can construct a PDA; that accepts the language of L, + L, by amal-
gamating the START states of these two machines. This means that we draw
only one START state and from it come all the edges that used to come from
either prior START state.
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In PDA, in PDA,

START START

becomes
In PDA,

START

Once an input string starts on a path on this combined machine, it follows
the path either entirely within PDA, or entirely within PDA, since there are
no cross-over edges. -

Any input reaching an ACCEPT state has been accepted by one machine
or the other and so is in L, or in L,. Also any word in L; + L, can find
its old path to acceptance on the subpart of PDA; that resembles PDA, or
PDA,. |

Notice how the nondeterminism of the START state is important in the

proof above. We could also do this amalgamation of machines using a single-
edge START state by weaseling our way out, as we saw in Chapter 17.

EXAMPLE

Consider these two machines:

PDA,

( START ) PDA,
START

PUSH a

PUSH b

ACCEPT ACCEPT
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PDA, accepts the language of all words that contain a double a. PDA,
accepts all words that begin with an a. The machine for L, + L, is:

PDA,

PUSH g START

PUSH b

ACCEPT

Notice that we have drawn PDA; with only one ACCEPT state by combining
the ACCEPT states from PDA, and PDA,.

This was not mentioned in the algorithm in the proof, but it only simplifies
the picture without changing the substance of the machine.

THEOREM 31

If L, and L, are context-free languages, then so is L,L,. In other words, the
context-free languages are closed under product.

PROOF 1 (by Grammars)

Let CFG, and CFG, be context-free grammars that generate L, and L,, re-
spectively. Let us begin with the same trick we used last time: putting a 1
after every nonterminal in CFG,; (including §) and a 2 after every nonterminal
in CF Gz.

Now we form a new CFG using all the old productions in CFG, and CFG;
and adding the new START symbol S and the production

S — S1S2
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Any word generated by this CFG has a front part derived from S, and a
rear derived from S,. The two sets of productions cannot cross over and interact
with each other because the two sets of nonterminals are completely disjoint.
It is therefore in the language L.L,.

The fact that any word in LiL, can be derived in this grammar should be
no surprise. [

(We have taken a little liberty with mathematical etiquette in our use of
the phrase “. . . should be no surprise.” It is more accepted to use the cliches
“obviously . . .” or “clearly . . .” or “trivially . . .”. But it is only a matter
of style. A proof only needs to explain enough to be convincing. Other virtues
a proof might have are that it be interesting lead to new results or be con-
structive. The proof above is at least the latter.)

E3]

EXAMPLE
Let L, be PALINDROME and CFG, be
S—aSa |bShb|a|b]| A
Let L, be {a"b" where n = 0} and CFG, be
S— aSb | A
The algorithm in the proof recommends the CFG:

§— Si$:
S,—aSa|bSihlalb|A
S, — aSp | A

for the language LL,. [

(?)PROOF 2 (by Machines)

For the previous theorem we gave two proofs: one grammatical and one me-
chanical. There is an obvious way to proceed to give a machine proof for
this theorem too. The front end of the word should be processed by one PDA
and the rear end of the word processed on the second PDA. Let us see how
this idea works out. )

If we have PDA, that accepts L, and PDA, that accepts L,, we can try to
build the machine PDA; that accepts L,L, as follows.
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Draw a black dot. Now take all the edges of PDA, that feed into any
ACCEPT state and redirect them into the dot. Also take all the edges that
come from the START state of PDA, and draw them coming out of the dot.
Erase the old PDA, ACCEPT and the old PDA, START states.

becomes —_->\. /
/A

This kind of picture is not legal in a pushdown automaton drawing because
we did not list “a black dot” as one of the pieces in our definition of PDA.
The black dot is not necessary. We wish to connect every state that leads to
ACCEPT-PDA, to every state in PDA, that comes from START-PDA,. We
can do this by edges drawn directly pointing from one machine to another.
Alternately the edges from PDA, can lead into a new artificial state: PUSH
OVER, that is followed immediately by POP OVER whose nondeterministic
edges all labeled OVER continue to PDA,. Let us call this the black dot.

For an input string to be accepted by the new PDA its path must first reach
the black dot and then proceed from the dot to the ACCEPT states of PDA,.
There is no path from the START (of PDA,) to ACCEPT (of PDA,) without
going through the dot. The front substring with a path that leads up to the
dot would be accepted by PDA,, and the remaining substring with a path that
leads from the dot to ACCEPT would be accepted by PDA,. Therefore, all
words accepted by this new machine are in the language L,L,.

It is also obvious that any word in L,L, is accepted by this new machine.

Not so fast.

We did not put an end-of-proof mark, Hl, after the last sentence because
the proof actually is not valid. It certainly sounds valid. But it has a subtle
flaw, which we shall illustrate.

When an input string is being run on PDA; and it reaches ACCEPT, we
may not have finished reading the entire INPUT TAPE. The two PDA’s that
were given in the example above (which we have redrawn below) illustrate
this point perfectly. In the first we reach the ACCEPT state right after reading
a double a from the INPUT TAPE. The word baabbb will reach ACCEPT
on this machine while it still has three b’s unread.
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The second machine presumes that it is reading the first letter of the L,
part of the string and checks to be sure that the very first letter it reads is
an a.

If we follow the algorithm as stated above, we produce the following. From

PDA, PDA,

< START ’ START

PUSH b [

PUSH a

we get

PUSH b | . \

a

ACCEPT

The resultant machine will reject the input string (baabbb)(aa) even though
it is in the language L,L, because the black dot is reached after the third letter
and the next letter it reads is a b, not the desired ¢, and the machine will
crash. Only words containing aaa are accepted by this machine.

For this technique to work, we must insist that PDA,, which accepts L,
have the property that it reads the whole input string before accepting. In other
words, when the ACCEPT state is encountered, there must be no unread input
left. What happens if we try to modify PDA, to meet this requirement? Suppose
we use PDA; version 2 as below, which employs a technique from the proof
of Theorem 27:
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< START ,

ACCEPT

This machine does have the property that when we get to ACCEPT there
is nothing left on the TAPE. This is guaranteed by the READ loop right
before ACCEPT. However, when we process the input (baabbb)(aa), we shall
read all eight letters before reaching ACCEPT and there will be nothing left
to process on PDA, because we have insisted that the TAPE be exhausted by
the first machine. Perhaps it is better to leave the number of letters read before
the first ACCEPT up to the machine to decide nondeterministically.

If we try to construct PDA; using PDA; version 3 as shown below, with
a nondeterministic feed into the black dot, we have another problem.

‘ START ’

1' READ

a b a, b

ACCEPT
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This conglomerate will accept the input (baabbb)(bba) by reading the first
two b’s of the second factor in the PDA, part and then branching through the
black dot to read the last letter on the second machine. However, this input
string actually is in the language L,L,, since it is also of the form (babbbbb)(a).

So this PDA; version works in this particular instance, but does it work
in all cases? Are we convinced that even though we have incorporated some
nondeterminism there are no undesirable strings accepted?

As it stands, the discussion above is no proof. Luckily this problem does
not affect the first proof, which remains valid. This explains why we put the
“?” in front of the word “proof” above. No matter how rigorous a proof
appears, or how loaded with mathematical symbolism, it is always possible
for systematic oversights to creep in undetected. The reason we have proofs
at all is to try to stop this. But we never really know. We can never be sure
that human error has not made us blind to substantial faults. The best we can
do, even in purely symbolic abstract mathematics, is to try to be very very
clear and complete in our arguments, to try to understand what is going on,
and to try many examples.

THEOREM 32

If L is a context-free language, then L* is one too. In other words, the context-
free languages are closed under Kleene star.

PROOF

Let us start with a CFG for the language L. As always, the start symbol for
this language is the symbol S. Let us as before change this symbol (but no
other nonterminals) to §; throughout the grammar. Let us then add to the list
of productions the new production:

Now we can, by repeated use of this production, start with S and derive:

S = 518 = S5 2 15518 =2 5185888
> 51515151518 = 815:8:5:8;

Following each of these §,’s independently through the productions of the
original CFG, we can form any word in L* made up of five concatenated
words from L. To convince ourselves that the productions applied to the various
separate word factors do not interfere in undesired ways we need only think
of the derivation tree. Each of these S,’s is the root of a distinct branch. The
productions along one branch of the tree do not effect those on another. Sim-
ilarly, any word in L* can be generated by starting with enough copies of

S;. n
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EXAMPLE
If the CFG is
S—aSa |bSb|al|b|A

(which generates PALINDROME), then one possible CFG for PALINDROME*
is

S—XS|A
X—aXa|bXb|a|b|A

Notice that we have used the symbol X instead of the nonterminal S;, which

was indicated in the algorithm in the proof. Of course, this makes no
difference. |

PROBLEMS

In Problems 1 through 14, find CFG’s for the indicated languages over
3 = {a, b}. When n appears as an exponent, it means n = 1, 2, 3, . . .

1. All words that start with an a or are of the form a"b".
2. All words that start with a b or are of the form a"b".

3. All words that have an equal number of a’s and b’s or are of the form
ab”.

4. All words of the form a™b", where m > n or the form a"b".
5. All words in EVEN-EVEN*.
6. All words of the form

ab"a™d™, where n, m =1 2 3 ... but m need not = n
= {abab aabbab abaabb . . .aaaabbbbab aaabbbaaabbb. . )}
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All words of the form

ab’a’, where x, y,z = 123 . .. gndx +z =y
= {abba aabba abbbaa aabbbbaa . . .}

Hint: The concatenation of a word of the form a"b" with a word of the
form b™a™ gives a word of the form a*h’a’, where y = x + z.

All words of the form

a’b*a™b*", where n, m =1 2 3 ...butmneednot = n

= {abbabb abbaabbbb aabbbbabb. . .}

All words of the form

*»a’, where x, y,z =1 2 3 ...andy = 2x + 2z
= {abbbba abbbbbbaa aabbbbbba . . .}

All words of the form

@)

(i)

a*b’a’, wherex, y,z =1 2 3 ...andy =2x + 2
= {abbba abbbbaa aabbbbba. . .}

All words of the form

a‘b’a’, wherex, y,z =1 2 3
and
y=5+7z

For any two positive integers p and q the language of all words of
the form

a*b’a’, where x, y,z =1 2 3
and

y=px + qz
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12. (i) All words of the form

a*'b’a’b”, where x, y, z, w = 1 2 3
and
y>x and z>w
and
xX+z=y+w
Hint: Think of these words as:
(@ bP) (b? a?) (a" b")

(i)  What happens if we throw away the restrictions y > x and z > w?

13. (1) Find a CFG for the tanguage of all words of the form

a’v or b'a", where n = 1 2 3

(it)  Is the Kleene closure of the language in part (i) the language of all
words with an equal number of @’s and b’s that we have called EQUAL?

(ii1)  Using the algorithm from Theorem 32, find the CFG that generates
the closure of the language in part (i).

(iv) Compare this to the CFG for the language EQUAL given before.
(v)  Write out all the words in

(Language of part (i))*

that have eight or fewer letters.

14.  Use the results of Theorems 30, 31, and 32 and a little ingenuity and
the recursive definition of regular languages to provide a new proof that
all regular languages are context-free.

15. (i) Find a CFG for the language:
L, = a(bb)*

(ii) Find a CFG for the language L,*.

Using the appropriate algorithm from this chapter,
(i) Find a CFG for the language L, = (bb)*a.
(iv) Find a CFG for L,*.

(v) Find a CFG for

L; = bba*bb + bb
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(vi) Find a CFG for L;*
(vii) Find a CFG for

Li* + L,* + Ls*
(viii) Compare the CFG in (vii) to
S— aS|bbS| A
Show that they generate the same language.

A substitution is the action of taking a language L and two strings of
terminals called s, and s, and changing every word of L by substituting
the string s, for each g and the string s, for each b in the word. This
turns L into a completely new language. Let us say for example that
L was the language defined by the regular expression:

a*(bab* + aa)*
and say that:
S, =bb s, =a
then L would become the language defined by the regular expression
(bb)*(abba* + bbbb)*

(i)  Prove that after any substitution any regular language is still regular.
(iiy  Prove that after any substitution a CFL is still context-free.

Find PDA’s that accept
i {a"", wheren,m =1 2 3...andn# m}
(i) {a'p’a’, wherex,y,z=1 2 3...andx + z = y.}

(iii) L,L,, where
L, = all words with a double a
L, = all words that end in a

If L is any language, then we can define L* as the collection of all
words that are formed by concatenating at least one word from L. This
is related to the definition of L* in the same way just as the regular
expression a* is related to the regular expression a*.

(1)) If AisawordinL, show that L* = L*

(ii)  Show that L* is always the product of the languages L and L*:

Lt = LL*
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(iii) If L is a CFL, we have shown how to find a CFG that generates L*.
Show how to find a CFG that generates L*.

(iv) If L is a CFL, show how to build a PDA for L*. Show how to build
a PDA for L™ from the PDA for L.

Let L; be any finite language and let L, be accepted by PDA,. Show
how to build a PDA that accepts LL,.

(i)  Some may think that the machine argument that tried to prove
Theorem 31 could be made into a real proof by using the algo-
rithms of Theorem 27 to convert the first machine into one that
empties its STACK and TAPE before accepting. If while emptying
the TAPE a nondeterministic leap is made to the START state of
the second machine, it appears that we can accept exactly the
language L,L,. Demonstrate the folly of this belief.

(ii)  Show that Theorem 31 can have a machine proof if the machines are
those developed in Theorem 28.

(iii) Provide a machine proof for Theorem 32.
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CHAPTER 20

NON-CONTEXT-FREE
LANGUAGES

We are now going to answer the most important question about context-free
languages: Are all languages context-free? No.

To prove this we have to make a very careful study of the mechanics of
word production from grammars. Let us consider a CFG that is in Chomsky
normal form. All of its productions are of the form:

Nonterminal — Nonterminal Nonterminal
or else
Nonterminal — terminal

Let us, for the moment, abandon the disjunctive BNF notation:
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and instead write each production as a separate line and number them:

Prop1l N— ...
ProD2 N— ...
ProD3 N— . ..

In the process of a particular left-most derivation for a particular word in
a context-free language, we have two possibilities:

1. No production has been used more than once.
2. At least one production has been repeated.

Every word with a derivation that satisfies the first possibility can be defined
by a string of production numbers that has no repetitions. Since there are only
finitely many productions to begin with, there can be only finitely many words
of this nature.

For example, if there are 106 productions,

Prop 1
Prop 2
ProbD 3

Prop 106

then there are exactly 106! possible permutations of them. Some of these
sequences of productions when applied to the start symbol § will lead to the
generation of a word by left-most derivation and some (many) will not.

Suppose we start with S and after some partial sequence of applications of
productions we arrive at a string of all terminals. Since there is no left-most
nonterminal, let us say that the remaining productions that we may try to apply
leave this word unchanged.

We are considering only left-most derivations. If we try to apply a pro-
duction with a left-side nonterminal that is not the same as the left-most non-
terminal in the working string, the system crashes—the sequence of productions
does not lead to a word.

For example, consider the CFG for EVENPALINDROME:

ProD1 S — aSa
ProD 2 S — bSH
PRoD3 S— A
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All possible permutations of the three productions are:

ProD 1 S = aSa ProD 1 S = aSa
Prop 2 = abSha ProD 3 = aa
ProD 3 > abba ProD 2 >aa
ProD 2 S = bSh ProbD 2 S > bSh
ProD 1 = baSab Prob 3 => bb
ProD 3 = baab ProD 1 > bb
ProD 3 S=>A ProD 3 S=>A
ProD 1 > A ProD 2 > A
ProD 2 > A ProD 1 > A

The only words in EVENPALINDROME that can be generated without
repetition of production are A, aa, bb, abba, and baab. Notice that aaaa,
which is just as short as abba, cannot be produced without repeating PrROD

1.
In general, not all sequences of productions lead to left-most derivations.

For example, consider the following CFG for the language ab*:

ProD1 S — XY
Prop2 X—a
ProD3 Y- bY
Prob4 Y— A

Only productions with a left side that is S can be used first. The only
possible first production in a left-most derivation here is Prop 1. After this,
the left-most nonterminal is X, not Y, so that PrRoD 3 does not apply yet. The
only sequences of productions (with no production used twice) that lead to
words in this case are:

ProD 1 S > XY Prop 1 S=>XY
ProD 2 = aY PrROD 2 > aY
ProD 3 > abY and ProD 4 >a
ProD 4 > ab ProD 3 >a

So the only words in this language that can be derived without repeated pro-
ductions are a and ab.
THEOREM 33

Let G be a CFG in Chomsky normal form. Let us call the productions of the
form:



(c) ketabton.com: The Digital Library

440 PUSHDOWN AUTOMATA THEORY

Nonterminal — Nonterminal Nonterminal
live and the productions of the form:
Nonterminal — terminal
dead.
There are only finitely many words in the language generated by G with
a left-most derivation that does not use any of the live productions at least
twice. In other words, if we are restricted to using the live productions at

most once each, we can generate only finitely many words by left-most der-
ivations.

PROOF
The question we shall consider is: How many nonterminals are there in the
working strings at different stages in the production of a word?
Suppose we start (in some abstract CFG in CNF that we need not specify)
with:
S > AB

The right side, the working string, has exactly two nonterminals. If we apply
the live production:

A— XY
we get:
> XYB
which has three nonterminals. Now applying the dead production:
X—b
we get:
= bYB
with two nonterminals. But now applying the live production:

Y — SX
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we get:
= bSXB

with three nonterminals again.

Every time we apply a live production we increase the number of nonter-
minals by one. Every time we apply a dead production we decrease the number
of nonterminals by one. Since the net result of a derivation is to start with
one nonterminal, S, and end up with none (a word of solid terminals), the
net effect is to lose a nonterminal. Therefore, in all cases, to arrive at a string
of only terminals, we must apply one more dead production than live pro-
duction.

For example (again these derivations are in some arbitrary, uninteresting
CFG’s in CNF),

S>b S>> Xy S=> AB

> aY > XYB
> aa = bXB
> bSXB
or or = baXB
= baaB
= baab
0 live 1 live 3 live
1 dead 2 dead 4 dead

Let us suppose that the grammar G has exactly

p live productions

and
g dead productions

Since any derivation that does not reuse a live production can have at most
p live productions, it must have at most (p + 1) dead productions. Each letter
in the final word comes from the application of some dead production. There-
fore, all words generated from G without repeating any live productions have
at most (p + 1) letters in them.

Therefore, we have shown that the words of the type described in this
theorem cannot be more than (p + 1) letters long. Therefore, there can be
at most finitely many of them. [ |

Notice that this proof applies to any derivation, not just left-most derivations.
However, we are interested only in the left-most situation.
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Suppose that a left-most Chomsky derivation used the same live production
twice. What would be the consequences?
Let us start with a CFG for the language NONNULLPALINDROME:

S— aSa |bSb|a|b|aalbb

We can easily see that all palindromes except A can be generated from this
grammar. We “Chomsky-ize” it as follows:

Original Form Form of Theorem 23 CNF
S — aSa S — ASA S — AX
S — bSh S — BSB X— SA
S— a S— a S— BY
S— b S— b Y— SB
S— aa S— AA §— AA
S— bb S— BB S — BB
A— a S— a
B> b S— b
A— a

B— b

The left-most derivation of the word abaaba in this grammar is:

S > AX
>alX
>a SA
> a BYA
> ab YA
= ab SBA
= ab AABA
= aba ABA
= abaa BA
= abaab A
= abaaba

When we start with a CFG in CNF, in all left-most derivations, each in-
termediate step is a working string of the form:

= (string of solid terminals) (string of solid Nonterminals)

This is a special property of left-most Chomsky working strings. To em-
phasize this separation of the terminals and the nonterminals in the derivation
above, we have inserted a meaningless space between the two substrings.

Let us consider some arbitrary, unspecified CFG in CNF.
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Suppose that we employ some live production, say,
Z—> XY

twice in the derivation of some word w in this language. That means that at
one point in the derivation, just before the duplicated production was used the
first time, the left-most Chomsky working string had the form

> (51) Z (52)

where s; is a string of terminals and s, is a string of nonterminals. At this
point the left-most nonterminal is Z. We now replace this Z with XY according
to the production and continue the derivation. Since we are going to apply
this production again at some later point, the left-most Chomsky working string
will sometime have the form:

> (s1) (53) Z (s4)

where s, is the same string of terminals unchanged from before (once the
terminals have been derived in the front they stay put, nothing can dislodge
them) s3 is a newly formed string of terminals, and s, is the string of non-
terminals remaining. We are now about to apply the production Z— XY for
the second time.

Where did this second Z come from? Either the second Z is a tree des-
cendant of the first Z or else it comes from something in the old s,. By the
phrase “tree descendant” we mean that in the derivation tree there is an ever-
downward path from one Z to the other.

Let us look at an example of each possibility.
Case 1. Let us consider an arbitrary grammar:

S— AZ
Z— BB
B—ZA
A—a
B—b

as we proceed with the derivation of some word we find:

S > AZ
> aZ
= aBB
= abB
=> abzZA
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s
N
7\
B B
1|> @/ \A

As we see from the derivation tree, the second Z was derived (descended)
from the first. We can see this from the diagram because there is a downward
path from the first Z to the second.

On the other hand we could have something like this.
Case 2. In the arbitrary grammar:

S— AA
A — BC
C— BB
A—a
B—b

as we proceed with the derivation of some word we find:
S > AA
= BCA

= bCA
= bBBA

A/S\A
o\
!; / \B

Two times the left-most nonterminal is B, but the second B is not descended

from the first B in the tree. There is no downward path from the first B to
the second B.
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We shall now show that in an infinite language we can always find an
example of Case 1.

THEOREM 34
If G is a CFG in CNF that has
p live productions
and
g dead productions
and if w is a word generated by G that has more than 2” letters in it, then
somewhere in every derivation tree for w there is an example of some non-

terminal (call it Z) being used twice as the left-most nonterminal where the
second Z is descended from the first Z.

PROOF
Why did we include the arithmetical condition that:
length(w) > 2°?
This condition ensures that the production tree for w has more than p rows
(generations). This is because at each row in the derivation tree the number

of symbols in the working string can at most double.
For example, in some abstract CFG in CNF we may have a derivation tree

that looks like this:
s\

NN\
NN N N

X B A Yy C C D A
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(In this figure the nonterminals are chosen completely arbitrarily.) If the bottom
row has more than 27 letters, the tree must have more than p + 1 rows.

Let us consider the last terminal that was one of the letters formed on the
bottom row of the derivation tree for w by a dead production, say,

X—b»b

The letter b is not necessarily the right-most letter in w, but it is a letter
formed after more than p generations of the tree. That means it has more than
p direct ancestors up the tree.

From the letter b we trace our way back up through the tree to the top,
which is the start symbol S. In this backward trace we encounter one non-
terminal after another in the inverse order in which they occurred in the de-
rivation. Each of these nonterminals represents a production. If there are more
than p rows to retrace, then there have been more than p productions in the
ancestor path from b to S.

But there are only p different live productions possible in the grammar G;
so if more than p have been used in this ancestor-path, then some live pro-
ductions have been used more than once.

The nonterminal on the left side of this repeated live production has the
property that it occurs twice (or more) on the descent line from S to b. This
then is a nonterminal that proves our theorem.

Before stamping the end-of-proof box, let us draw an illustration, a totally
arbitrary tree for a word w in a grammar we have not even written out:

/\
/\
/\/\
/\ /N

Y a a X Y

/\| /N

b B Y b

I |

b @ b a
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The word w is babaababa. Let us trace the ancestor-path of the circled
terminal a from the bottom row up.

a came from Y by the production ¥ — a

Y came from X by the production X —> BY
X came from S by the production § — XY
S came from B by the production B — SX
B came from X by the production X — BY
X came from S by the production § — XY

If the ancestor chain is long enough, one production must be used twice.
In this example, X — BY is used twice and S — XY is used twice. The two
X’s that have boxes drawn around them satisfy the conditions of the theorem.
One of them is descended from the other in the derivation tree of w. [ |

DEFINITION

In a given derivation of a word in a given CFG a nonterminal is said to be
self-embedded if it ever occurs as a tree descendant of itself. |

Theorem 34 says that in any CFG all sufficiently long words have left-most
derivations that include a self-embedded nonterminal.

EXAMPLE

Consider the CFG for NONNULLPALINDROME

S — AX S—b
X— SA S — AA
S — BY S— BB
Y — SB A—a
S—a B—b

There are six live productions, so, according to Theorem 34, it would re-
quire a word of more than 2° = 64 letters to guarantee that each derivation
has a self-embedded nonterminal in it.

If we are only looking for one example of a self-embedded nonterminal we
can find such a tree much more easily than that. Consider this derivation tree
for the word aabaa.
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............................................. — Level 1

/\

................................... — Level 2

/ N\
.......................... — Level 3

/ \

.......................... — Level 4

/ \
@ 008 A ecrciecnierirenniiieines — e — — Leveib

|

b 1 — Level 6

This tree has six levels, so it cannot quite guarantee a self-embedded non-
terminal, but it has one anyway. Let us begin with the b on level 6 and trace
its path back up to the top:

“The b came from S which came from X, which came from S, which came
from X, which came from §”.

In this way we find that the production X — SA was used twice in this tree

N
N
S/\A

The self-embedded nonterminal that we find in the example above, using
the algorithm given in the proof of Theorem 34, is not just a nonterminal that
is descended from itself. It is more. It is a nonterminal, say Z, that was
replaced by a certain production that later gave birth to another Z that was
also replaced by the same production in the derivation of the word. Specif-
ically, the first X was replaced by the production X — SA and so was its
descendant. We can use this fact, with the self-embedded X’s in this example
to make some new words.

The tree above proceeds from S down to the first X. Then from the second
X the tree proceeds to the final word. But once we have reached the second
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X, instead of proceeding with the generation of the word as we have it here,
we could instead have repeated the same sequence of productions that the first
X initiated, thereby arriving at a third X. The second can cause the third exactly

as the first caused

the second. From this third X we could proceed to a final

string of all terminals in a manner exactly as the second X did.

Let us review this logic once more slowly. The first X can start a subtree
that produces the second X, and the second X can start a subtree that produces
all terminals, but it does not have to. Instead the second can begin a subtree
exactly like the first’s. This will then produce a third X. From this third X

we can produce a

string of all terminals as the second X used to. Instead of

having this list of productions applied

the middle section

Down
to the
first X

S -

Down
to the
second X

Down
to the
end of the
word

of productions could have been repeated:

Down to the S— -

first X

Down to the
second X

Repeat the
last section of
productions

Now down to
the end of
the word

Everyone should feel the creeping sensation of familiarity. Is this not like
finding a circuit and looping around it an extra time?

Let us illustrate

this process with a completely arbitrary concrete example.
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Suppose we have these productions in a nonsense CFG to illustrate the point.

S — AB
S— BC
A — BA
C — BB
B — AB
A—a
B—>b
C—b

One word that has a self-embedded nonterminal is aabab.

Step Number Derivation Productions
Used
1 S > AB S — AB
2 = BAB A— BA
3 => ABAB B — AB
4 = aBAB A—a
5 = aABAB B — AB
6 = aaBAB A—a
7 > aabAB B—b
8 = aabaB A—>a
9 = aabab B—b

From line 2 to line 3 we employed the production B — AB. This same
production is employed from line 4 to line 5. Not only that, but the second
left-most B is a descendant of the first.

-Therefore, we can make new words in this language by repeating the se-
quence of productions used in lines 3, 4, and 5 as if the production for line
5 was the beginning of the same sequence again:

Derivation Productions Used
S = AB S — AB
= BAB A — BA
= ABAB B — AB
= aBAB A—a Identical
= 4ABAB B — AB sequence
of
2 aZigﬁB g - ZB  productions
a —_

= aaaBAB A—a



(c) ketabton.com: The Digital Library

NON-CONTEXT-FREE LANGUAGES 451
= aaabAB B—b
= aaabaB A—>a
= aaabab B—b

The sequence can be repeated as often as we wish.

Derivation Productions Used

S > AB S — AB
> BAB A — BA
—> ABAB B — AB
= aBAB A—>a
= aABAB B — AB \ ,

Identical

= aaBAB A—a ™~ repeated
= aaABAB B — AB sequences
= aaaBAB A—>a o Of.
= aaaABAB B — AB / productions
= aaaaBAB A—a
= aaaaABAB B — AB
= aaaaaBAB A—>a
= aaaaabAB B—b
= aaaaabaB A—>aq
= aaaaabab B—b

This repetition can be explained in tree diagrams as follows. What is at
first

Derivation tree for aabab

PaN
N

AN,

N
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can become

Derivation tree for aaaaabab

Even though the self-embedded nonterminals must be along the same descent
line in the tree, they do not have to be consecutive nodes (as in the example
above) but may be more distant relatives.

For the arbitrary CFG

S— AB
A — BC
C— AB
A—a
B—b

One possible derivation tree is
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In this case we find the self-embedded nonterminal A in the dotted triangle.
Not only is A self-embedded, but it has already been used twice the same
way (two identical dotted triangles).

Again we have the option of repeating the sequence of productions in the
triangle as many times as we want.

This is why in the last theorem it was important that the repeated nonter-
minals be along the same line of descent.

This entire situation is analogous to the Pumping Lemma of Chapter 11,
so it should be no surprise that this technique was discovered by the same
people: Bar-Hillel, Perles, and Shamir. The following theorem, called “the
Pumping Lemma for context-free languages,” states the consequences of re-
iterating a sequence of productions from a self-embedded nonterminal.

THEOREM 35

If G is any CFG in CNF with p live productions and w is any word generated
by G with length greater than 27, then we can break w up into five substrings:

W=uUuvxy:
such that x is not A and v and y are not both A and such that all the words
uvxyz

uvvxyyz
uvvyxyyyz = wxy"z form=1, 2, 3,...

UVVYVXYYyyz

can also be generated by G.



(c) ketabton.com: The Digital Library

454 PUSHDOWN AUTOMATA THEORY

PROOF

From our previous theorem, we know that if the length of w is greater than
2°, then there are repeated nonterminals along the same descent line in each
tree diagram for w; that is, there are always self-embedded nonterminals.

Let us now fix in our minds one specific derivation of w in G. Let us call
one self-embedded nonterminal P and let the production it uses to regenerate
itself be

P— QR

(These names are all arbitrary.)
Let us suppose that the tree for w looks like this:

The triangle indicated encloses the whole part of the tree generated from
the first P down to where the second P is produced. It is not clear whether
the second P comes from the Q-branch or the R-branch of the tree, nor does
it matter.

Let us divide w into these five parts:

u = the substring of all the letters of w generated to the left of the triangle
above. (This may be A.)
v = the substring of all the letters w generated by the derivation inside the

triangle to the left of the lower nonterminal P.
(This may be A.)
x = the substring of w descended from the lower P.
(This may not be A since this nonterminal must turn into some
terminals.)



(c) ketabton.com: The Digital Library

NON-CONTEXT-FREE LANGUAGES 455

y = the substring of w of the terminals generated by the derivation
inside the triangle to the right of the lower P.
(This may be A, but, as we shall see, not if v = A.)

z = the substring of all the letters of w generated to the right of the
triangle. (This may be A.)

Pictorially: s
3 /5N |
] [
P
| /N |
| Q R |
| |
I P
! I// N |
u [ X

For example, the following is a complete tree in an unspecified grammar.

A/S\B

M\
v

u

b/ Y~ V—
¥y 2z

= <

Now it is possible that either u or z or both might be A, as in the following
example where § is the self-embedded nonterminal and all the letters of w
are generated inside the triangle:

/. \ AN
V4 N\ N
S A a
L]
u=A v=A x = ba y=a z2=A
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However, either v is not A or y is not A or both are not A. This is because
in the picture

even though the lower P can come from the upper Q or from the upper R,
there must still be some other letters in w that come from the other branch,
the branch that does not produce this P.

This is important, since if it were ever possible that
v=y=A
then
uvixyz

would not be an interesting collection of words.

Now let us ask ourselves, what happens to the end word if we change the
derivation tree by repeating the productions inside the triangle? In particular,
what is the word generated by this doubled tree (which we know to be a valid
derivation tree in G)?

As we see can from the picture, we shall be generating the word

Uuvvxyyz
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Remember that u, v, x, y, z are all strings of @’s and b’s, and this is
another word generated by the same grammar. The u part comes from S to
the left of the whole triangle. The first v is what comes from inside the first
triangle to the left of the second P. The second v comes from the stuff in
the second triangle to the left of the third P. The x part comes from the third
P. The first y part comes from the stuff in the second triangle to the right
of the third P. The second y comes from the stuff in the first triangle to the
right of the second P. The z, as before, comes from S from the stuff to the
right of the first triangle.

It may be helpful for a minute to forget grammars and concentrate on tree
surgery. We start with two identical derivations of w drawn as trees. From
the first tree we clip off the branch growing from the first P. On the second
tree we clip off the branch growing from the second P. Then we graft the
branch from the first tree onto the second tree at the cut node. The resultant
tree is necessarily a possible derivation tree in this grammar. What word does
it produce? The grafted branch from the first tree produces the string vxy. The
pruned branch the second tree lost produced only the string x. Replacing x
by vxy turns wvxyz into uvvxyyz.

If we tripled the triangle we would get

which is a derivation tree for the word
UVVVXYYYZ
which must therefore also be in the language generated by G.
In general, if we repeat the triangle n times we get a derivation tree for
the word

uvtxy z

which must therefore also be in the language generated by G. n



(c) ketabton.com: The Digital Library

458 PUSHDOWN AUTOMATA THEORY
EXAMPLE

We shall analyze a specific case in detail and then consider the situation in
its full generality. Let us consider the following CFG in CNF:

S— PQ
Q—0S|b

P—a

The word abab can be derived from these productions by the following der-
ivation tree.

S

P/\Q
/ \
Q S
// /' \
P

Here we see three instances of self-embedded nonterminals. The top S has
another § as a descendant. The Q on the second level has two (Q’s as des-
cendants, one on the third level and one of the fourth level. Notice, however,
that the two P’s are not descended one from the other, so neither is self-
embedded. For the purposes of our example, we shall focus on the self-embed-
ded Q’s of the second and third levels, although it would be just as good to
look at the self-embedded S’s. The first Q is replaced by the production Q — QS,
while the second is replaced by the production Q — b. Even though the two
Q’s are not replaced by the same productions, they are self-embedded and we
can apply the technique of this theorem.

If we draw this diagram:

§ = PQ
= aQ
> aQSs
= ab$
= abPQ
> abaQ
= abab

we can see that the word w can be broken into the five parts uvxyz as follows.
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a b a b
u x ¥

We have located a self-embedded nonterminal Q and we have drawn a triangle
enclosing the descent from Q to Q. The u-part is the part generated by the
tree. to the left of the triangle. This is only the letter a. The v-part is the
substring of w generated inside the triangle to the left of the repeated non-
terminal. Here, however, the repeated nonterminal Q, is the left-most character
on the bottom of the triangle. Therefore, v = A. The x-part is the substring
of w descended directly from the second occurrence of the repeated nonterminal
(the second Q). Here that is clearly the single letter b. The y-part is the rest
of w generated inside the triangle, that is, whatever comes from the triangle
to the right of the repeated nonterminal. In this example this refers to every-
thing that descends from the second §, which is the only thing at the bottom
of the triangle to the right of the Q. What is descended from this S is the
substring ab. The z-part is all that is left of w, that is, the substring of w
that is generated to the right of the triangle. In this case, that is nothing,
z = A

u=a v=A x=b y = ab z=A

The following diagram shows what would happen if we repeated the triangle
from the second Q just as it descends from the first Q.

If we now fill in the picture by adding the terminals that descend from the
P, the O, and the S’s, as we did in the original tree, we complete the new
derivation tree as follows.
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S

\_,_/

Here we can see that the repetition of the triangle does not effect the u-
part. There was one u-part and there still is only one wu-part. If there were
a z-part, that too would be left alone, since these are defined outside the
triangle. There is no v-part in this example, but we can see that the y-part
(its right-side counterpart) has become doubled. Each of the two triangles gen-
erates exactly the same y-part. In the middle of all this the x-part has been
left alone. There is still only one bottom repeated nonterminal from which the
x-part descends. The word with this derivation tree can be written as uvvxyyz.

uvvxyyz=aAAbabab A
ababab

It

If we had tripled the triangle instead of only doubling it, we would obtain
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This word we can easily recognize as
uvvvxxyyyz=aAAAbababab A

In general, after n occurrences of the triangle we obtain a derivation of the
word

uvtxy z
[
Now that we understand this specific example in excruciating detail, we can
speed up our analysis of the general case.
In general, a derivation tree with a self-embedded nonterminal N looks like

/N

AN

——

w

Let us decompose w into the five substrings u,v,x,y,z as defined above.

Let us reiterate the production sequence from N to N as it occurs in the
triangle.

S

/N

'N

TSN

y_y__/\._v_z\_,,_/\__y_/\_w_/\_v_/\_,_/
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And again

S

/\

A NN N N NN
u v v v x y y y z

.

After n triangles we have

K V...V X y...y z
——— ——
n of them n of them

=u V' x Y'z

All the trees we have described are valid derivation trees in our initial
grammar, so all the words they generate must be in the language generated
by that grammar.

As before, the reason this is called the Pumping Lemma and not the Pump-
ing Theorem is that it is to be used for some presumedly greater purpose. In

particular, it is used to prove that certain languages are not context-free or as
we shall say, they are non-context-free.

EXAMPLE

Let us consider the language:

{ab"a" forn=123...}
= {aba aabbaa aaabbbaaa . . .}

Let us think about how this language could be accepted by a PDA. As we
read the first a’s, we must accurately store the information about exactly how
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many a’s there were, since a'®b*a*® must be rejected but a*b*°a® must be
accepted. We can put this count into the STACK. One obvious way is to put
the a’s themselves directly into the STACK, but there may be other ways of
doing this. Next we read the b’s and we have to ask the STACK if the number
of b’s is the same as the number of a’s. The problem is that asking the
STACK this question makes the STACK forget the answer afterward, since
we pop stuff out and cannot put it back until we see that the STACK is
empty. There is no temporary storage possible for the information that we
have popped out. The method we used to recognize the language {a"b"} was
to store the a’s in the STACK and then destroy them one-for-one with the
b’s. After we have checked that we have the correct number of &’s, the STACK
is empty. No record remains of how many a’s there were originally. Therefore,
we can no longer check whether the last clump of a’s in a"b"a” is the correct
size. In answering the first question, the information was lost. This STACK
is like a student who forgets the entire course after the final exam.

All we have said so far is, “We don’t see how this language can be context-
free since we cannot think of a PDA to accept it.” This is, of course, no
proof. Maybe someone smarter can figure out the right PDA.

Suppose we try this scheme. For every a we read from the initial cluster
we push two a’s into the STACK. Then when we read b’s we match them
against the first half of the a’s in the STACK. When we get to the last clump
of a’s we have exactly enough left in the STACK to match them also. The

proposed PDA is this.

( START ’

Match
0 -€——— inputa's
against stack a's

Read n a's; put Match b's
2n a's in stack for stack a's

Stack and
—~——— tape empty
simultaneously

The problem with this idea is that we have no way of checking to be sure
that the b’s use up exactly half of the a’s in the STACK. Unfortunately, the
word a'°®a'? is also accepted by this PDA. The first 10 a’s are read and 20
are put into the STACK. Next 8 of these are matched against b’s. Lastly,
the 12 final a’s match the a’s remaining in the STACK and the word is
accepted even though we do not want it in our language.

The truth is that nobody is ever going to build a PDA that accepts this
language. This can be proven using the Pumping Lemma. In other words, we
can prove that the language {a"b"a"} is non-context-free.



(c) ketabton.com: The Digital Library

464 PUSHDOWN AUTOMATA THEORY

To do this, let us assume that this language could be generated by some
CFG in CNF. No matter how many live productions this grammar has, some
word in this language is bigger than 2”. Let us assume that the word

w = l%0p2004200

is big enough (if it’s not, we’ve got a bag full of much bigger ones).
Now we show that any method of breaking w into five parts

W=uvixyz
will mean that
uvixyz

cannot be in {a"b"a"}.
There are many ways of demonstrating this, but let us take the quickest.

Observation
All words in {a"b"a"} have exactly one occurrence of the substring ab no matter
what n is. Now if either the v-part or the y-part has the substring ab in it,
then

uvi x y' z

will have more than one substring of ab, and so it cannot be in {a"b"a"}.
Therefore, neither v nor y contains ab.

Observation
All words in {a"b"a"} have exactly one occurrence of the substring ba no matter
what n is. Now if either the v part or the y part has the substring ba in it,
then
uvtxyz

has more than one such substring, which no word in {a"b"a"} does. Therefore,
neither v nor y contains ba.

The only possibility left is that v and y must be all a’s, all b’s, or A
otherwise they would contain either ab or ba. But if v and y are blocks of
one letter, then

uvixy z

has increased one or two clumps of solid letters (more a’s if v is a’s, etc.).
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However, there are three clumps of solid letters in the words in {a"b"a"}, and
not all three of those clumps have been increased equally. This would destroy
the form of the word.

For example, if

aZOObZOOaZOO
— a200b70 b40 b90‘182 a3 allS
u v x y z
then
uvxyz
—_ (a200b70) (b40)2 (b90a82) (a3)2 (0115)
= a200b240a203

# a"b"a" for any n

The b’s and the second clump of a’s were increased, but not the first a’s.
The exponents are no longer the same.

We must emphasize that there is no possible decomposition of this w into
uvxyz. It is not good enough to show that one partition into five parts does
not work. It should be understood that we have shown that any attempted
partition into uvxyz must fail to have uvvxyyz in the language.

Therefore,' the Pumping Lemma cannot successfully be applied to the lan-
guage {a"b"a"} at all. But the Pumping Lemma does apply to all context-free
languages.

Therefore, {a"b"a"} is not a context-free language. [

EXAMPLE

Let us take, just for the duration of this example, a language over the alphabet
3 = {a,b,c}. Consider the language:

{a"b"c® forn =123...}
= {abc  aabbcc  aaabbbcce . . .}

We shall now prove that this language is non-context-free.
Suppose it were context-free and suppose that the word

w = g200p200,200
is large enough so that the Pumping Lemma applies to it. That means larger

than 27, where p is the number of live productions. We shall now show that
no matter what choices are made for the five parts u, v, x, y, z:
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uvt x vtz

cannot be in the language.
Again we begin with some observations.

Observation
All words in a"b"c" have:

Only one substring ab
Only one substring bc
No substring ac
No substring ba
No substring ca
No substring cb

no matter what n is. 7
If v or y is not a solid block of one letter (or A), then

uvxyz

would have more of some of the two-letter substrings ab, ac, ba, bc, ca, cb
than it is supposed to have. On the other hand, if v and y are solid blocks
of one letter (or A), then one or two of the letters a, b, ¢ would be increased
in the word wvvxyyz while the other letter (or letters) would not increase in
quantity. But all the words in a"b"c" have equal numbers of a’s, b’s, and c’s.
Therefore, the Pumping Lemma cannot apply to the language {a"b"c"}, which
means that this language is non-context-free. |

Theorem 13 and Theorem 35 have certain things in common. They are both

called “Pumping Lemma,” and they were both proven by Bar-Hillel, Perles,
and Shamir. What else?

THEOREM 13

If wis a word in a regular language L and w is long enough, then w can
be decomposed into three parts:

w=xyz
such that all the words

Xy

must also be in L. [ |
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THEOREM 35

If w is a word in a context-free language L and w is long enough, then w
can be decomposed into five parts:

W=uvxyz
such that all the words
uv x y' x
must also be in L. ]

The proof of Theorem 13 is that the path for w must be so long that it
contains a sequence of edges that we can repeat indefinitely. The proof of
Theorem 35 is that the derivation for w must be so long that it contains a
sequence of productions that we can repeat indefinitely.

We use Theorem 13 to show that {a"b"} is not regular because it cannot
contain both xyz and xyyz.

We use Theorem 35 to show that {a"b"a"} is not context-free because it
cannot contain both uvxyz and uvvxyyz.

One major difference is that the Pumping Lemma for regular languages acts
on the machines while the Pumping Lemma for context-free languages acts
on the algebraic representation, the grammar. Is it possible to pump a PDA?
Is it possible to pump a regular expression? The symbol “=” we have been
using means “after one substitution turns into” as in S = XS or AbXSB = AbXSbh.

There is another useful symbol that is employed in this subject. It is

*
“=>" and it means “after some number of substitutions turns into.” For ex-
ample, for the CFG:

S— 885 |b
we could write:
S > bbb
instead of:
S = S$85 = S5b = Sbb = bbb
In the CFG:

S— SA | BS | BB X— A
A—>X|a B—b
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we called A nullable because A — X and X — A. In the new notation we
could write:

*
A> A
In fact, we can give a neater definition for the word nullable based on the

symbol :*> It is:

N is nullable if N > A

This would have been of only marginal advantage in the proof of Theorem
21, since the meaning of the word nullable is clear enough anyway. It is
usually our practice to introduce only that terminology and notation necessary
to prove our theorems.

*
The use of the * in the combination symbol = is analogous to the Kleene
use of *. It still means some undetermined number of repetitions.

In this chapter we made use of the human ability to understand pictures
and to reason from them abstractly. Language and mathematical symbolism
are also abstractions; the ability to reason from them is also difficult to explain.

But it may be helpful to reformulate the argument in algebraic notation using
*

=

Our definition of a self-embedded nonterminal was one that appeared among
its own descendants in a derivation tree. This can be formulated symbolically
as follows:

DEFINITION

In a particular CFG, a nonterminal N is called self-embedded if there are
strings of terminals v and y not both null, such that

*
N = wNy |
This definition does not involve any tree diagrams, any geometric intuition,
or any possibility of imprecision.
The Pumping Lemma can now be stated as follows.

Algebraic Form of the Pumping Lemma

If wis a word in a CFL and if w is long enough, [length(w) > 2’1,then there
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exists a nonterminal N and strings of terminals #, v, x, y, and z (where v
and y are not both A) such that:

= uvxyz
S S un:
N :‘> vNy
N :; X
and therefore

uvtx y"z
must all be words in this language for any n.

The idea in the Algebraic Proof is

*x
S = uNz

;> u (vNy) z
= (w) N (y2)

= (uv) NY) (y2)
= (?) N (%)

= @?) Ny (%)

= w’ Ny
é w'" N y'z
S x y'z. ]

Some people are more comfortable with the algebraic argument and some
are more comfortable reasoning from the diagrams. Both techniques can be
mathematically rigorous and informative. There is no need for a blood feud
between the two camps.

There is one more similarity between the Pumping Lemma for contex-free
languages and the Pumping Lemma for regular languages. Just as Theorem
13 tequired Theorem 14 to finish the story, so Theorem 35 requires Theorem
36 to achieve its full power.

Let us look in detail at the proof of the Pumping Lemma. We start with
a word w of more than 27 letters. The path from some bottom letter back up
to S contains more nonterminals than there are live productions. Therefore,
some nonterminal is repeated along the path. Here is the new point: If we
look for the first repeated nonterminal backing up from the letter, the second
occurrence will be within p steps up from the terminal row (the bottom). Just
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because we said that length(w) > 27 does not mean it is only a little bigger.
Perhaps length(w) = 10”. Even so, the upper of the first self-embedded non-
terminal pair scanning from the bottom encountered is within p steps of the
bottom row in the derivation tree.

What significance does this have? It means that the total output of the upper
of the two self-embedded nonterminals produces a string not longer than 27
letters in total. The string it produces is vxy. Therefore, we can say that

length (vxy) < 2°

This observation turns out to be very useful, so we call it a theorem: the
Pumping Lemma with Length.

THEOREM 36

Let L be a CFL in CNF with p live productions.
Then any word w, in L with length > 27 can be broken into five parts:

w = uvxyz
such that

length (vxy) < 27
length (x) > 0
length (v) + length (y) > 0

and such that all the words

uvvxyyz

UVVYXYYYZ W xy
UVVVVXYYYYZ

"z
are all in the language L. [ |
The discussion above has already proven this result.

We now demonstrate one application of a language that cannot be shown
to be non-context-free by Theorem 35 but can be by Theorem 36.

EXAMPLE
Let us consider the language:

L = {a"b™a"b™}
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where n and m are integers 1, 2, 3 ... and n does not necessarily equal m.
L = {abab aabaab abbabb aabbaabb aaabaaab . . .}

If we tried to prove that this language was non-context-free using Theorem
35 we could have

= A

= first a’s = a*

= middle b’s = b’

second a’s = a*

= last b’s = b’
w'" xy" z

=A@V @)y

!

N e o= < o=
|

all of which are in L. Therefore we have no contradiction and the Pumping
Lemma does apply to L.

Now let us try a Theorem 36-type approach. If L did have a CFG that
generates it, let that CFG in CNF have p live productions. Let us look at the
word

PP P P
a’ b* a* b

This word has length long enough for us to apply Theorem 36 to it. But from
Theorem 36 we know:
length(vxy) < 27

so v and y cannot be solid blocks of one letter separated by a clump of the
other letter, since the separator letter clump is longer than the length of the
whole substring vxy.

By the usual argument (counting substrings of “ab” and “ba”), we see that
v and y must be one solid letter. But because of the length condition the
letters must all come from the same clump. Any of the four clumps will do:

P AP NP P
a2b2a2b2

However, this now means that some words not of the form
a’bma'b"
must also be in L. Therefore, L is non-context-free. [ |

The thought that unifies the two Pumping Lemmas is that if we have a
finite procedure to recognize a language, then some word in the language is
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so long that the procedure must begin to repeat some of its steps and at that
point we can pump it further to produce a family of words. But what happens
if the finite procedure can have infinitely many different steps? We shall con-
sider this possibility in Chapter 24.

PROBLEMS
1. Study this CFG for EVENPALINDROME;:

S — aSa
S — bSh
S— A

List all the derivation trees in this language that do not have two
equal nonterminals on the same line of descent, that is, that do not have
a self-embedded nonterminal.

2. Consider the CNF for NONNULLEVENPALINDROME given below:

S — AX
X— SA
S — BY
Y— SB
S— AA
S — BB
A—a
B—b

(1) Show that this CFG defines the language it claims to define.

(i)  Find all the derivation trees in this grammar that do not have a self-
embedded nonterminal.

(iii) Compare this result with Problem 1.

3. The grammar defined in Problem 2 has six live productions. This means
that the second theorem of this section implies that all words of more
than 2% = 64 letters must have a self-embedded nonterminal. Find a
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better result. What is the smallest number of letters that guarantees that
a word in this grammar has a self-embedded nonterminal in each of its
derivations. Why does the theorem give the wrong number?

4. Consider the grammar given below for the language defined by a*ba*.

S — AbA
A—Aa| A

(i)  Convert this grammar to one without A-productions.
(i) Chomsky-ize this grammar.

(iii)) Find all words that have derivation trees that have no self-embedded
nonterminals.

5. Consider the grammar for {a"b"}:
S — aSh | ab

(i)  Chomsky-ize this grammar.
(ii)  Find all derivation trees that do not have self-embedded nonterminals.

6. Instead of the concept of live productions in CNF, let us define a live
nonterminal to be one appearing as the left side of a live production.
A dead nonterminal, N, is one with only productions of the single form:
N — terminal
If m is the number of live nonterminals in a CFG in CNF, prove
that any word w of length more than 2™ will have self-embedded non-

terminals.

7. Illustrate the theorem in Problem 6 on the CFG in Problem 2.

8. Apply the theorem of Problem 6 to the following CFG for

NONNULLPALINDROME:
S — AX S—a
X— SA S—b
S — BY A—a
Y— SB B—b
§— AA

S — BB
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9. Why must the repeated nonterminals be along the same line of descent
for the trick of reiteration in Theorem 34 to work?

10. Prove that the language

{a"b"a"b" forn =1234...}
= {abab aabbaabb . . .}

is non-context-free.

11. Prove that the language

{a"bab'a” forn=1234...}
= {ababa aabbaabbaa . . .}

is non-context-free.

12.  Let L be the language of all words of any of the following forms:

{a*, a"b", a'b"a, a"b"a’b”, a'b'a’b'a*...forn=123...}

= {a aa ab aaa aba aaaa aabb aaaaa ababa aaaaaa aaabbb aabbaa . . .

(i) How many words does this language have with 105 letters?
(i)  Prove that this language is non-context-free.

13. Is the language

{a’b*a" forn =1 2 3 ...}
= {abbba aabbbbbbaa . . .}

context-free? If so, find a CFG for it. If not, prove so.
14, Consider the language:

{a"b"c” forn,m =1 2 3 ..., nnotnecessarily = m}
= {abc abcc abbc aabbec . . .}

Is it context-free? Prove that your answer is correct.
15. Show that the language

{anbncndn forn =1 2 3}
= {abcd aabbccdd . . .}

1S non-context free.
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Let us recall the definition of substitution given in Chapter 19, Problem
16. Given a language L and two strings s, and s,, a substitution is the
replacement of every a in the words in L by the string s, and the re-
placement of every b by the string s,. In Chapter 19 we proved that if
L is any CFL and s, and s, are any strings, then the replacement language
is also a CFL. Use this theorem to provide an alternative proof of the
fact that {a"b"c"} is a non-context-free language.

Using the result about replacements from Problem 16, provide two other
proofs of the fact that the language in Problem 15 is non-context-free.

Why does the Pumping Lemma argument not show that the language
PALINDROME is not context-free? Show how v and y can be found
such that uv'xy"z are all also in PALINDROME no matter what the word
w is.

Let VERYEQUAL be the language of all words over % = {a,b,c} that
have the same number of a’s and b’s and c’s.

VERYEQUAL
= {abc acb bac bca cab cba aabbcc aabebc. . .}

Notice that the order of these letters does not matter.
Prove that VERYEQUAL is non-context-free.

The language EVENPALINDROME can be defined as all words of the
form

s reverse(s)

where s is any string of letters from {a,b}*. Let us define the language
UPDOWNUP as:
L = {all words of the form s(reverse(s))s wheres is in (a + b)*}

= {aaa bbb aaaaaa abbaab baabba bbbbbb
. . aaabbaaaaaab}

Prove that L is non-context-free.
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CHAPTER 21

INTERSECTION
AND
COMPLEMENT

In Chapter 19 we proved that the union, product, and Kleene star closure of
context-free languages are also context-free. This left open the question of
intersection and complement. We now close this question.

THEOREM 37

The intersection of two context-free languages may or may not be context-
free.
PROOF
We shall break this proof into two parts: may and may not.
May
All regular languages are context-free (Theorem 19). The intersection of two
regular languages is regular (Theorem 12). Therefore, if L, and L, are regular
and context-free then

LiNL
is both regular and context-free.

476
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May Not

L, = {a"b"a™, wherenm = 123 ...

but n is not necessarily the same as m}
= {aba abaa aabba ..}

To prove that this language is context-free, we present a CFG that generates
it.
S—> XA

X — aXb | ab
A—>aAla

We could alternately have concluded that this language is context-free by ob-
serving that it is the product of the CFL {a"b"} and the regular language aa*
Let

L, = {a"p"a™, wherenam =123 ...
but n is not necessarily the same as m}
= {aba aaba abbaa . . .}

Be careful to notice that these two languages are different.
To prove that this language is context-free, we present a CFG that generates
it:
S — AX
X — aXb | ab
A—aAla

Alternately we could observe that L, is the product of the regular language
aa* and the CFL {b"a"}.
Both languages are context-free, but their intersection is the language

Ly=L NL,={a"ba" forn=123...}

since any word in both languages has as many starting a’s as middle b’s (to
be in L;) and as many middle b’s as final a’s (to be in L,).

But in Chapter 20 we proved that this language L; is non-context-free.
Therefore, the intersection of two context-free languages can be non-context-

free. [ ]
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EXAMPLE (May)

If L, and L, are two CFL’s and if L, is contained in L,, then the intersection
is L, again, which is still context-free, for example,

Li={a" forn=123...}
L, = PALINDROME
L, is contained in L,; therefore,
L] N Lz = L]
which is context-free.

Notice that in this example we do not have the intersection of two regular
languages since PALINDROME is nonregular. |

EXAMPLE (May)
Let:

L
L

PALINDROME

language of a*b*a* = language of aa*bb*aa*

Il

In this case,
LyNL,

is the language of all words with as many final a’s as initial a’s with only
b’s in between.

LiNL, ={aba nm=123...

where n is not necessarily equal to m}
= {aba abba aabaa aabbaa ...}

This language is still context-free since it can be generated by this grammar:

S — aSa | aBa
B— bB|b

or accepted by this PDA:
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ACCEPT

First, all the front a’s are put into the STACK. Then the b’s are ignored.
Then we alternately READ and POP a’s till both the INPUT TAPE and STACK

run out simultaneously.
Again note that these languages are not both regular (one is, one is

not). [ |
We mention that these two examples are not purely regular languages be-
cause the proof of the theorem as given might have conveyed the wrongful

impression that the intersection of CFL’s is a CFL only when the CFL’s are
regular.

EXAMPLE (May Not)
Let L, be the language

EQUAL = all words with the same number of a’s and b’s

We know this language is context-free because we have seen a grammar
that generates it:

S — bA | aB
A— bAA | aS | a
B— aBB | bS|b

Let L, be the language

L, ={ab"a" nm=123...n=morn +m}
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The language L, was shown to be context-free in the previous éxample. Now:

Ly=L NL, ={ab*a" forn=123...}
= {abba aabbbbaa . . .}

To be in L, = EQUAL, the b-total must equal the a-total, so there are 2n
b’s in the middle if there are n a’s in the front and in the back.

We use the Pumping Lemma of Chapter 20 to prove that this language is
non-context-free.

As always, we observe that the sections of the word that get repeated cannot
contain the substrings ab or ba, since all words in L; have exactly one of
each substring. This means that the two repeated sections (the v-part and y-
part) are each a clump of one solid letter. If we write some word w of L,
as

W=uvixy:z

then we can say of v and y that they are either all a’s or all b’s or one is
A. However, if one is solid a’s, that means that to remain a word of the
form a"b"a" the other must also be solid a’s since the front and back a’s
must remain equal. But then we would be increasing both clumps of a’s with-
out increasing the b’s, and the word would then not be in EQUAL. If neither
v nor y have a’s, then they increase the b’s without the a’s and again the
word fails to be in EQUAL.

Therefore, the Pumping Lemma cannot apply to L;, so L; is non-context-
free. [ |

The question of when the intersection of two CFL’s is a CFL is apparently
very interesting. If an algorithm were known to answer this question it would
be printed right here. Instead we shall move on to the question of complements.

The story of complements is similarly indecisive.

THEOREM 38

The complement of a context-free language may or may not be context-free.

PROOF

The proof is in two parts:
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May
If L is regular, then L' is also regular and both are context-free.
May Not

This is one of our few proofs by indirect argument.

Suppose the complement of every context-free language were context-free.
Then if we started with two such languages, L, and L,, we would know that
L' and L,’ are also context-free. Furthermore,

L' + L)

would have to be context free by Theorem 30.
Not only that but,

L/ + L)Y

would also have to be context-free, as the complement of a context-free lan-
guage. But,

L' + L)Y =LNL

and so the intersection of L, and L, must be context-free. But L; and L, are
any arbitrary CFL’s, and therefore all intersections of context-free languages
would have to be context-free. But by the previous theorem we know that
this is not the case.

Therefore, not all context-free languages have context-free complements.

EXAMPLE (May)

All regular languages have been covered in the proof above. There are also
some nonregular but context-free languages that have context-free complements.
One example is the language of palindromes with an X in the center,
PALINDROMEX. This is a language over the alphabet {a, b, X}.

= {w X reverse(w), where w is any string in (a+b)*}
= {X aXa bXb aaXaa abXba baXab bbXbb . . .}

This language can be accepted (as we have seen in Chapter 17) by a de-
terministic PDA such as the one below:
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1 START )

b, A
POP
PUSH a e :
X 8/ X )
READ READ ﬂECT
b b \__
PUSH &
A POP
A a, A
a b b
REJECT POP
A
ACCEPT

Since this is a deterministic machine, every input string determines some
path from START to a halt state, either ACCEPT or REJECT. We have drawn
in all possible branching edges so that no input crashes. The strings not ac-
cepted all go to REJECT. In every loop there is a READ statement that requires
a fresh letter of input so that no input string can loop forever. (This is an
important observation, although there are other ways to guarantee no infinite
looping.)

To construct a machine that accepts exactly those input strings that this
machine rejects, all we need to do is reverse the status of the halt states from
ACCEPT to REJECT and vice versa. This is the same trick we pulled on
FA’s to find machines for the complement language.

In this case, the language L' of all input strings over the alphabet
2 = {a, b, X} that are not in L is simply the language accepted by:

(  sTarT ) I
a

POP b.a
PUSH a
a a
X (
READ READ X ACCEPT }
b b L_.
PUSH &
A POP
a a, A
a b b

ACCEPT d POP

REJECT
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We may wonder why this trick cannot be used to prove that the complement
of any context-free language is context-free, since they all can be defined by
PDA’s. The answer is nondeterminism.

If we have a nondeterministic PDA then the technique of reversing the status
of the halt states fails.

Let us explain why. Remember that when we work with nondeterministic
machines we say that any word that has some path to ACCEPT is in the
language of that machine. In a nondeterministic PDA a word may have two
possible paths, the first of which leads to ACCEPT and the second of which
leads to REJECT. We accept this word since there is at least one way it can
be accepted. Now if we reverse the status of each halt state we still have
two paths for this word: the first now leads to REJECT and the second now
leads to ACCEPT. Again we have to accept this word since at least one path
leads to ACCEPT. The same word cannot be in both a language and its
complement, so the halt-status-reversed PDA does not define the complement
language.

Let us be more concrete about this point. The following (nondeterministic)
PDA accepts the language NONNULLEVENPALINDROME:

‘ START ’

L

( ACCEPT ) ( ReJeCT >
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We have drawn this machine so that, except for the nondeterminism at the
first READ, the machine offers no choice of path, and every alternative is
labeled. All input strings lead to ACCEPT or REJECT, none crash or loop
forever.

Let us reverse the status of the halt states to create this PDA

( START ’

‘ REJECT ) ( ACCEPT ’

The word abba can be accepted by both machines. To see how it is accepted
by the first PDA, we trace its path.
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STATE STACK TAPE
START A abba
READ 1 A dbba
PUSH a a dbba
READ 1 a dbba
PUSH b ba dbba
READ 1 ba @bba

(Choice) POP 2 a dbba
READ 2 a abbd
POP 1 A 4bbd
READ 2 A dbbdA
POP 3 A dbbdA
ACCEPT

To see how it can be accepted by the second PDA we trace this path:

STATE STACK | TAPE
START A abba
READ 3 A dbba
PUSH a a dbba
READ 3 a dbba

(Choice) POP 5 A dbba
ACCEPT

There are many more paths this word can take in the second PDA that
also lead to acceptance. Therefore halt-state reversal does not always change
a PDA for L into a PDA for L'. [

We still owe an example of a context-free language with a complement that
is non-context-free.

EXAMPLE (May Not)

Whenever we are asked for an example of a non-context-free language {a"b"a"}
springs to mind. We seem to use it for everything. Surprisingly enough, its
complement is context-free, as we shall now show.
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This example takes several steps. First let us define the language M,, as
follows:

M,, = {a"b%’, wherep, g, r =123 ...
but p > g while r is arbitrary}
= {aaba aaaba aabaa aaabaa aaabba . . .}

We know this language is context-free because it is accepted by the fol-
lowing CFG:

S — AXA
X — aXb | ab
A—>aAla

The X part is always of the form @"b", and when we attach the A-parts
we get a string defined by the expression:

(aa*) (a"b") (aa*)
= a’b%a’, where p > ¢q

(Note: We are mixing regular expressions with things that are not regular
expressions, but the meaning is clear anyway.)

This language can be shown to be context-free in two other ways. We could
observe that M,, is the product of the three languages a* and {a"b"} and a™

M, = {a*} {a"b"} {a™}

Since the product of two context-free languages is context-free, so is the
product of three context-free languages.

We could also build a PDA to accept it. The machine would have three
READ statements. The first would read the initial clump of a’s and push them
into the STACK. The second would read b’s and correspondingly pop a’s.
When the second READ hits the first a of the third clump it knows the b’s
are over, so it pops another a to be sure the initial clump of a’s (in the
STACK) was larger than the clump of b’s. Even when the input passes this
test the machine is not ready to accept. We must be sure that there is nothing
else on the INPUT TAPE but unread a’s. If there is a b hiding behind these
a’s the input must be rejected. We therefore move into the third READ state
which loops as long as a’s are read, crashes if a b is read, and accepts as
soon as a blank is encountered.
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Let us also define another language:

M, = {@ba’, wherep, q r =123 ...
but ¢ > p while r is arbitrary}
= {abba abbaa abbba abbaaa aabbba . ..}

This language too is context-free since it can be generated by

S — XBA

X — aXb | ab
B—bB|b
A—aAla

which we can interpret as

Together this gives:
(a"b")(bb*)(aa*)
= a’bld", where q¢ > p
We can also write M,, as the product of three context-free languages:
M, = {a't"} {b*} {a*}

Of course, there is also a PDA that accepts this language (see Problem 2
below).

Let us also define the language

M, = {@b%a’, wherep, g, r =123 ...
but p > r while g is arbitrary}

= {aaba aaaba aabba aaabaa . . .}
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This language is also context-free, since it can be generated by the CFG

§ — AX

X — aXa | aBa
B—bB|b
A—>aAla

First we observe:

A>a* ad B>b*
Therefore, the X-part is of the form
a"bb*a"
So the words generated are of the form

(aa*)(a"bb*a™)

= d’bd", wherep > r

We can see that this language is the product of context-free languages after
we show that {a"b*a"} is context-free (see Problem 3 below).

Let us also define the language

M,, = {a’b%a’, wherep, g, r =123 ...
but r > p while g is arbitrary}
= {abaa abaaa aabaaa abbaaa . . .}

One CFG for this language is

S—> XA

X — aXa | aBa
B—bB|b
A—aAla

which gives
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X :*> ab*a"
S > (a"bb*a")(aa*)
= a’b’a’, where r > p
We can see that this language too is the product of context-free languages
when we show that {a"b*a"} is context-free.
Let us also define the language
M, = {a’b%’, wherep, q, r =123 ...
but g > r while p is arbitrary}
= {abba aabba abbba abbbaa . . .}

One CFG for this language is

S — ABX
X— bXa | ba
B— bB|b
A—aAla

which gives:

(aa*)(bb*)(b"a™)
= a’bia’, where g > r

M, = {a"} {b"} {b"a"}
This language could also be defined by PDA (Problem 4 below).

Let us also define:

M,, = {&’b%a’, wherep,q,r = 1 2 3
but r > g while p is arbitrary}
= {abaa aabaa abaaa abbaaa ...}

One CFG that generates this language is

S — AXA
X — bXa | ba
A—aAla
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- (aa*)(b"a")(aa*)
= ag’ba’, where r > ¢q
M, =
{a*} {pa"} {a™}
This can also be accepted by a PDA (Problem 5 below).

We need to define one last language.

M = {the complement of the language defined by aa*bb*aa*}
= {all words not of the form a’b%a" forp, q, r = 123 ...}
={a b aa ab ba bb aaa aab abb baa bab ...}

M is context-free since it is regular (the complement of a regular language is
regular by Theorem 11 and all regular languages are context-free by Theorem
26).

We could build a PDA for this language too (Problem 6 below).

Let us finally assemble the language L, the union of these seven languages.

L=My,+M, +M, +M,+ My, + M, +M

L is context-free since it is the union of context-free languages (Theorem
30).
What is the complement of L? All words that are nor of the form

arbia”

are in M, which is in L, so they are not in L’. This means that L' contains
only words of the form

a’bia’

But what are the possible values of p, ¢, and r? If p > ¢, then the word
is in M,,, so it is in L and not in L'. Also, if g > p, then the word is in
M, so it is in L and not in L'. Therefore, p = ¢ for all words in L.

If g > r, then the word is in M, and hence in L and not in L'. If r > ¢,
the word is in M,, and so in L and not L'. Therefore, ¢ = r for all words
in L'

Since p = g and ¢ = r, we know that p = r. Therefore, the words

a'b"a"
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are the only possible words in L'. All words of this form are in L’ since
none of them is any of the M’s. Therefore,

L' ={adba" forn=1 2 3 ...}

But we know that this language is non-context-free from Chapter 20. There-
fore, we have constructed a CFL, L, that has a non-context-free
complement. |

We might observe that we did not need M,, and M,, in the formation of
L. The union of the other five alone completely defines L. We included them
only for the purposes of symmetry.

THEOREM 39

A deterministic PDA (DPDA) is a PDA for which every possible input string
corresponds to a unique path through the machine. If we further require that
no input loops forever, we say that we have a DPDA that always stops. Not
all languages that can be accepted by PDA’s can be accepted by a DPDA
that always stops.

PROOF

The language L defined in the previous example is one such language. It can
be generated by CFG’s, so it can be accepted by some PDA. Yet if it were
acceptable by any deterministic PDA that always stops, then its complement
would have to be context-free, since we could build a PDA for the complement
by reversing ACCEPT and REJECT states. However, the complement of this
language is not a context-free language. Therefore, no such deterministic ma-
chine for L exists. L can be accepted by some PDA but not by any DPDA
that always stops. ‘ |

It is also true that the language PALINDROME cannot be accepted by a
deterministic PDA that always stops, but this is harder to prove. It can be
proven that any language accepted by a DPDA can also be accepted by a
DPDA that always stops. This means that the better version of Theorem 39
is “Not all CFL’s can be accepted by DPDA’s,” or to put it another way

PDA # DPDA

We shall defer further discussion of this point to Problem 20 below.
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Although we cannot tell what happens when we intersect two general CFL’s,
we can say something useful about a special case.

THEOREM 40

The intersection of a context-free language with a regular language is always
context-free.

PROOF

We prove this by a constructive algorithm of the sort we developed for Kleene’s
Theorem is Chapter 7.

Let C be a context-free language that is accepted by the PDA, P. Let R
be a regular language that is accepted by the FA, F. We now show how to
take P and F and construct a PDA from them called A that will have the
property that the language that A accepts is exactly C M R.

The method will be very similar to the method we used to build the FA
to accept the union of two regular languages. Before we start, let us assume
P is in the form of Theorem 27 so that it reads the whole input string before

accepting.
If the states of F are called x;, x,, . . . and the READ and POP states of
P are called y,, y,, ... then the new machine we want to build will have

states labeled “x; and y;,” meaning that the input string would now be in state
x; if running on F and in state y; if running on P. We do not have to worry
about the PUSH states of P since no branching takes place there. At a point
in the processing when the PDA A wants to accept the input string, it must
first consult the status of the current simulated x-state. If this x-state is a final
state, the input can be accepted because it is accepted on both machines.

This is a general theoretical discussion. Let us now look at an example.

Let C be the language EQUAL of words with the same total number of
a’s and b’s. Let the PDA to accept this language be:
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START

Y “ \READ/ : Y
PUSH a PUSH &
b READ, e 2
A POP, e a b POP, 2
a b
PUSH a PUSH b

A

ACCEPT

This is a new machine to us, so we should take a moment to dissect it.
At every point in the processing the STACK will contain whichever letter has
been read more, a or b, and will contain as many of that letter as the number
of extra times it has been read. If we have read from the TAPE six more
b’s than a’s, then we shall find six b’s in the STACK. If the STACK is
empty at any time, it means an equal number of a’s and b’s have been read.

The process begins in START and then goes to READ;. Whatever we read
in READ, is our first excess letter and is pushed onto the STACK. The rest
of the input string is read in READ,.
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If during the processing we read an a, we go and consult the STACK. If
the STACK contains excess b’s, then one of them will be cancelled against
the a we just read, POP,—READ;. If the STACK is empty, then the a just
read is pushed onto the STACK as a new excess letter. If the STACK is
found to contain a’s already, then we must replace the one we popped out
for testing as well as add the new one just read to the amount of total excess
in the STACK. In all, two a’s must be pushed onto the STACK.

When we are finally out of input letters in READ,, we go to POP; to be
sure there are no excess letters being stored in the STACK. Then we accept.

This machine reads the entire INPUT TAPE before accepting and never
loops forever.

Let us intersect this with the FA below that accepts all words ending in
the letter a

Now let us manufacture the joint intersection machine. We cannot move
out of x; until after the first READ in the PDA.

START and x,

At this point in the PDA we branch to separate PUSH states each of which
takes us to READ,. However, depending on what is read in READ,, we will
either want to be in “READ, and x;” or “READ, and x,,” so these must be
two different states:

( staRTx )

READL ™2 ol pUsHa
1
b 31 PUSH b
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From “READ, and x,” if we read an a we shall have to be in “POP, and
x;,” whereas if we read a b we shall be in “POP, and x,.” In this particular
machine, there is no need for “POP, and x;” since POP, can only be entered
by reading an @ and x; can only be entered by reading a b. For analogous
reasons, we do not need a state called “POP, and x,” either.

We shall eventually need both “POP; and x,” and “POP; and x,” because
we have to keep track of the last input letter.

Even if “POP; and x,” should happen to pop a A, it cannot accept since
x, is not a final state and so the word ending there is rejected by the FA.

The whole machine looks like this.

START, x,

PUSH a

PUSH &

We did not even bother drawing “POP; x;.” If a blank is read in “READ,,

x,” the machine peacefully crashes.

This illustrates the technique for intersecting a PDA with an FA. The process
is straightforward. Mathematicians with our current level of sophistication can
extract the general principles of this constructive algorithm and should consider
this proof complete. [

EXAMPLE

Let us consider the language DOUBLEWORD:
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DOUBLEWORD = {ww where w is an string of a’s and b’s}

= {A aa bb aaaa abab baba bbbb aaaaaa . . .}

Let us assume for a moment that DOUBLEWORD were a CFL. Then when
we intersect it with any regular language, we must get a context-free language.
Let us intersect DOUBLEWORD with the regular language defined by

aa*bb*aa*bb*

A word in the intersection must have both forms, this means it must be

ww where w = a"b™ for some n and m =12 3 ...

This observation may be obvious, but we shall prove it anyway. If w con-
tained the substring ba, then ww would have two of them, but all words in
aa*bb*aa*bb* have exactly one such substring. Therefore, the substring ba
must be the crack in between the two w’s in the form ww. This means w
begins with a and ends with b. Since it has no ba, it must be a"b™.

The intersection language is therefore:

{a"b™a"b™}
But we showed in the last chapter that this language was non-context-free.
Therefore, DOUBLEWORD cannot be context-free either. [ ]
PROBLEMS

1. Which of the following are context-free?

(1)
(ii)
(111)
(iv)
(v)
(vi)

(vii)

(a)(@ + b)* N ODDPALINDROME
EQUAL N {a"b"a"}

{a"b"} N PALINDROME'
EVEN-EVEN’ N PALINDROME
{a"b"}’ N PALINDROME

PALINDROME N {a"b"*"a™ where nm = 1, 2, 3 ...
n=morn + m}

PALINDROME'NEQUAL
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2. Build a PDA for M,, as defined above.
3. Show that {a"b*a"} is a CFL.
4. Build a PDA for M,, as defined above.
5. Build a PDA for M,, as defined above.
6. Build a PDA for M as defined above.
7. @) Show that

L, = {a&’b%a’V’, where p,q,r are arbitrary whole numbers}

is context-free.
(i)  Show that

L, = {@®b%a?b?}

is context-free.
(i11) Show that

Ly = {&’VPa’b’}

is context-free.
(ivy Show that

LiNL, N L,
is non-context-free.
8. Recall the language VERYEQUAL over the alphabet 2, = {a,b,c}

VERYEQUAL = {all strings of a’s, b’s, and ¢’s that have the same
total number of a’s as b’s as c¢’s}

Prove that VERYEQUAL is non-context-free by using a theorem in this
chapter. (Compare with Chapter 20, Problem 19.)

9. (i) Prove that the complement of the language L
L = {a"b", where n # m}

is context-free but that neither L nor L’ is regular.
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11.

12.

13.

14.
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(ii)  Show that:

L, = {a"b", where n = m}
and

L, = {a"b™, where m = n}
are both context-free and not regular.

(iii) Show that their intersection is context-free and nonregular.
(iv)  Show that their union is regular.

(i)  Prove that the language
Ll — {anbman+m}

is context-free.
(ii)  Prove that the language

L, = {a"b"a™, where either n = mor n # m}

is context-free.
(iii) Is their intersection context-free?

In this chapter we proved that the complement of {a"b"a"} is context-
free. Prove this again by exhibiting one CFG that generates it.

Consider all the strings in (a+b+c)*.
We have shown that {a"b"c"} is non-context-free. Is its complement
context-free?

(1) Let L be a CFL. Let S = {w,, w,, w3, ws} be a set of four words
from L. Let M be the language of all the words of L except for
those in S (we might write M = L — §). Show that M is context-
free.

(i) Let R be a regular language contained in L. Let “L — R” represent
the language of all words of L that are not words of R. Prove that
L — RisaCFL.
6) Show that:
L = {ab"ab"a}

is nonregular but context-free.
(ii)  Show that:

L = {ab"ab™a, wheren + m or n = m}
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is regular.
(iii) Find a regular language that when intersected with a context-free
language becomes nonregular but context-free.

(i) Show that the language
L = {a"b™, where m = n or m = 2n}

cannot be accepted by a deterministic PDA

(ii))  Show that L is the union of two languages that can be accepted by
deterministic PDA’s.

(iii) Show that the union of languages accepted by DPDA’s is not nec-
essarily a language accepted by a DPDA.

(iv) Show that the intersection of languages accepted by DPDA’s is not
necessarily a language accepted by a DPDA.

The algorithm given in the proof of Theorem 40 looks mighty inviting.
We are tempted to use the same technique to build the intersection ma-
chine of two PDA’s. However we know that the intersection of two

CFL’s is not always a CFL.

(i)  Explain why the algorithm fails when it attempts to intersect two
PDA’s.

(ii) Can we adapt it to intersect two DPDA’s?

(i) Take a PDA for PALINDROMEX and intersect it with an FA for
a*Xa*. (This means actually build the intersection machine.)

(i)  Analyze the resultant machine and show that the language it accepts
is {a"Xa"}.

(i) Intersect a PDA for {a"b"} with an FA for a(a+b)*. What lan-
guage is accepted by the resultant machine?

(i) Intersect a PDA for {a"b"} with an FA for b(a+b)* What language
is accepted by the resultant machine?

(iii) Intersect a PDA for {a"b"} with an FA for (a+b)* aa(a+ b)*

(iv) Intersect a PDA for {a"b"} with an FA for EVEN-EVEN.

Intersect a PDA for PALINDROME with an FA that accepts the language
of all words of odd length. Show, by exa:nining the machine, that it
accepts exactly the language ODDPALINDROME.
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Show that any language that can be accepted by a DPDA can be accepted
by a DPDA that always stops. To do this, show how to modify an
existing DPDA to eliminate the possibility of infinite looping. Infinite
looping can occur in two ways:

1. The machine enters a circuit of edges that it cannot leave and that
never reads the TAPE.

2. The machine enters a circuit of edges that it cannot leave and that
reads infinitely many blanks from the TAPE.

Show how to spot these two situations and eliminate them by converting
them to REJECT’s.
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CHAPTER 22

PARSING

We have spent a considerable amount of time discussing context-free languages,
even though we have proven that this class of languages is not all encom-
passing. Why should we study in so much detail, grammars so primitive that
they cannot even define the set {a"b"a"}?

We are not merely playing an interesting intellectual game. There is a more
practical reason: Computer programming languages are context-free. (We must
be careful here to say that the languages in which the words are computer
language instructions are context-free. The languages in which the words are
computer language programs are mostly not.) This makes CFG’s of funda-
mental importance in the design of compilers.

Let us begin with the definition of what constitutes a valid storage location
identifier in a higher-level language such as ADA, BASIC, COBOL,. . ..
These user-defined names are often called variables. In some languages their
length is limited to a maximum of six characters, where the first must be a
letter and each character thereafter is either a letter or a digit. We can sum-
marize this by the CFG:

identifier — letter (letter + digit + A)°
letter >A|B|C|...|Z
digit—0|1]|2]|3...]9

501




(c) ketabton.com: The Digital Library

502 PUSHDOWN AUTOMATA THEORY

Notice that we have used a regular expression for the right side of the first
production instead of writing out all the possibilities:

identifier — letter | letter letter |
letter digit | letter letter letter |
letter letter digit | letter digit digit | . . .

There are 63 different strings of nonterminals represented by
_ letter (letter + digit + A)

and the use of this shorthand notation is more understandable than writing out
the whole list.

The first part of the process of compilation is the scanner. This program
reads through the original source program and replaces all the user-defined
identifier names which have personal significance to the programmer, such as
DATE, SALARY, RATE, NAME, MOTHER, . . . , with more manageable
computer names that will help the machine move this information in and out
of the registers as it is being processed. The scanner is also called a lexical
analyzer because its job is to build a lexicon (which is from Greek what
“dictionary” is from Latin).

A scanner must be able to make some sophisticated decisions such as rec-
ognizing that DO33I is an identifier in the assignment statement

DO33I = 1100

while DO33I is part of a loop instruction in the statement

DO33I = 1,100

(or in some languages DO331 = 1TO100).

Other character strings, such as IF, ELSE, END, . . ., have to be rec-
ognized as reserved words even though they also fit the definition of identifier.

All this aside, most of what a scanner does can be performed by an FA,
and scanners are usually written with this model in mind.

Another task a compiler must perform is to “understand” what is meant by
arithmetic expressions such as

A3l xS + (7« (BIL + 4))

After the scanner replaces all numbers and variables with the identifier labels
iy, I, ... ., this becomes:

ip*iy + (i3 % (is + is)
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The grammars we presented earlier for AE (arithmetic expression) were
ambiguous. This is not acceptable for programming since we want the computer
to know and execute exactly what we mean by this formula.

Two possible solutions were mentioned earlier.

1. Require the programmer to insert parentheses to avoid ambiguity.
For example, instead of the ambiguous 3 + 4 * 5 insist on

B+4)s5
or
3+ (4*5)

2. Find a new grammar for the same language that is unambiguous because
the interpretation of “operator hierarchy” (that is * before +) is built into
the system.

Programmers find the first solution too cumbersome and unnatural. Fortu-
nately, there are grammars (CFG’s) that satisfy the second requirement.

We present one such for the operations + and * alone, called PLUS-TIMES.
The rules of production are:

S— E
E—->T+E|T
T—>F*T|F
F— (E)]|i

Loosely speaking, E stands for an expression, T for a term in a sum, F
for a factor in a product, and i for any identifier. The terminals clearly are

+ * ()i

since these symbols occur on the right side of productions but never on the
left side.
To generate the word i + i * i by left-most derivation we must proceed:

S>FE
>T+ E
>F + E
>i+E
>i+T
>i+ F=*T
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Si+isT
>i+i*F
i+ ixi

The syntax tree for this is

T
/

t—m—tn

E

~—m—ny

I
1™\
I

T
|
i F
[
13

It is clear from this tree that the word represents the addition of an identifier
with the product of two identifiers. In other words, the multiplication will be
performed before the addition, just as we intended it to be in accordance with
conventional operator hierarchy. Once the computer can discover a derivation
for the formula, it can generate a machine-language program to accomplish
the same task.

Given a word generated by a particular grammar, the task of finding its
derivation is called parsing.

Until now we have been interested only in whether a string of symbols was
a word in a certain language. We were worried only about the possibility of
generation by grammar or acceptance by machine. Now we find that we want
to know more. We want to know not just whether a string can be generated
by a CFG but also how. We contend that if we know the (or one of the)
derivation tree(s) of a given word in a particular language, then we know
something about the meaning of the word. This chapter is different from the
other chapters in this part because here we are seeking to understand what a
word says by determining how it can be generated.

There are many different approaches to the problem of CFG parsing. We
shall consider three of them. The first two are general algorithms based on
our study of derivation trees for CFG’s. The third is specific to arithmetical
expressions and makes use of the correspondence between CFG’s and PDA’s.

The first algorithm is called top-down parsing. We begin with a CFG and
a target word. Starting with the symbol S, we try to find some sequence of
productions that generates the target word. We do this by checking all pos-
sibilities for left-most derivations. To organize this search we build a tree of
all possibilities, which is like the whole language tree of Chapter 14. We grow
each branch until it becomes clear that the branch can no longer present a
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viable possibility; that is, we discontinue growing a branch of the whole lan-
guage tree as soon as it becomes clear that the target word will never appear
on that branch, even generations later. This could happen, for example, if the
branch includes in its working string a terminal that does not appear anywhere
in the target word or does not appear in the target word in a corresponding
position. It is time to see an illustration.

Let us consider the target word

i+ i*i

in the language generated by the grammar PLUS-TIMES.
We begin with the start symbol S. At this point there is only one production
we can possibly apply, § — E. From FE there are two possible productions:

E—->T+ E E—-T

In each case, the left-most nonterminal is 7 and there are two productions

possible for replacing this 7.
The top-down left-most parsing tree begins as shown below:

T
/TrE | T~

F*T+E F+E F*T F

In each of the bottom four cases the left-most nonterminal is F, which is
the left side of two possible productions.

S

E

__— \T
T

T+FE
) / | ‘I"\l"
F*T+E F+ E F*T
(EY*T+E (*T+E (EY+F +E (E)*T 5T (F) [

(1) 2 (3) 4 (5) (6) 7 ®

Of these, we can drop branches number 1, 3, 5, and 7 from further con-
sideration because they have introduced the terminal character “(”, which is
not the first (or any) letter of our word. Once a terminal character appears
in a working string, it never leaves. Productions change the nonterminals into
other things, but the terminals stay forever. All four of those branches can
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produce only words with parentheses in them, not i + i * i. Branch 8 has
ended its development naturally in a string of all terminals but it is not our
target word, so we can discontinue the investigation of this branch too. Our
pruned tree looks like this:

|
T+E TI'
F*T+E F+E F*T
~ |
i*T+E i+ E *T

2) 4) (6)

Since branches 7 and 8 both vanished, we dropped the line that produced
them:
T=>F

All three branches have actually derived the first two terminal letters of the
words that they can produce. Each of the three branches left starts with two
terminals that can never change. Branch 4 says the word starts with “i + ”,
which is correct, but branches 2 and 6 can now produce only words that start
“i * 7, which is not in agreement with our desired target word. The second
letter of all words derived on branches 2 and 6 is #*; the second letter of the
target word is +. We must kill these branches before they multiply.

Deleting branch 6 prunes the tree up to the derivation E => T, which has
proved fruitless as none of its offshoots can produce our target word. Deleting
branch 2 tells us that we can eliminate the left branch out of 7 + E. With
all of the pruning we have now done, we can conclude that any branch leading
to i + [ * i must begin

S>2E>T+E>F+E>Ii+E

Let us continue this tree two more generations. We have drawn all derivation
possibilities. Now it is time to examine the branches for pruning.

N
+—t——t —ty—n

ST B

i+ T+E i+ T
7 VAN

i+F*T+E i+F+E i+F*T i+F

© 1o 1y 12
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At this point we are now going to pull a new rule out of our hat. Since
no production in any CFG can decrease the length of the working string of
terminals and nonterminals on which it operates (each production replaces one
symbol by one or more), once the length of a working string has passed five
it can never produce a final word of length only five. We can therefore delete
branch 9 on this basis alone. No words that it generates can have as few as
five letters.

Another observation we can make is that even though branch 10 is not too
long and even though it begins with a correct string of terminals, it can still
be eliminated because it has produced another + in the working string. This
is a terminal that all descendants on the branch will have to include. However,
there is no second + in the word we are trying to derive. Therefore, we can
eliminate branch 10, too.

This leaves us with only branches 11 and 12 which continue to grow.

S
|
E
I
TTE
FTE
i+ E
|
i+T\
i+ F*T i+ F

(13) (14) (15) (16)

1yeil

Now branches 13 and 15 have introduced the forbidden terminal “(”, while
branch 16 has terminated its growth at the wrong word. Only branch 14 de-

serves to live.
(At this point we draw the top half of the tree horizontally.)

SO E>T+E>>F+E>i+E>i+T=> i+ F=*T

i+ ixT

i+ i*F=*T
(dead, too long)

In this way we have discovered that the word i + i *# i can be generated
by this CFG and we have found the one left-most derivation which generates
it.
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To recapitulate the algorithm: From every live node we branch for all pro-
ductions applicable to the left-most nonterminal. We kill a branch for having
the wrong initial string of terminals, having a bad terminal anywhere in the
string, simply growing too long, or turning into the wrong string of terminals.

Using the method of tree search known as backtracking it is not necessary
to grow all the live branches at once. Instead we can pursue one branch
downward until either we reach the desired word or else we terminate it be-
cause of a bad character or excessive length. At this point we back up to a
previous node to travel down the next road until we find the target word or
another dead end, and so on. Backtracking algorithms are more properly the
subject of a different course. As usual, we are more interested in showing
what can be done, not in determining which method is best.

We have only given a beginner’s list of reasons for terminating the de-
velopment of a node in the tree. A more complete set of rules is:

1. Bad Substring: If a substring of solid terminals (one or more) has been
introduced into a working string in a branch of the total-language tree,
all words derived from it must also include that substring unaltered. There-
fore, any substring that does not appear in the target word is cause for
eliminating the branch.

2.  Good Substrings But Too Many: The working string has more occurrences
of the particular substring than the target word does. In a sense Rule 1
is a special case of this.

3.  Good Substrings But Wrong Order: If the working string is YabXYbaXX
but the target word is bbbbaab, then both substrings of terminals devel-
oped so far, ab and ba, are valid substrings of the target word but they
do not occur in the same order in the working string as in the word. So
the working string cannot develop into the target word.

4. Improper Outer-terminal Substring: Substrings of terminals developed at
the beginning or end of the working string will always stay at the ends
at which they first appear. They must be in perfect agreement with the
target word or the branch must be eliminated.

5. Excess Projected Length: If the working string is aXbbYYXa and if all
the productions with a left side of X have right sides of six characters,
then the shortest length of the ultimate words derived from this working
string must have length atleast 1 + 6 + 1 + 1 + 1 + 1+ 6 + 1 = 18.
If the target word has fewer than 18 letters, kill this branch.

6. Wrong Target Word: If we have only terminals left but the string is not
the target word, forget it. This is a special case of Rule 4, where the
substring is the entire word.

There may be even more rules depending on the exact nature of the grammar.
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EXAMPLE
Let us recall the CFG for the language EQUAL:

S— aB | bA
A — a|aS | bAA
B— b|bS|aBB

The word bbabaa is in EQUAL. Let us determine a left-most derivation
for this word by top-down parsing.
From the start symbol S the derivation tree can take one of two tracks.

S

7\

aB bA
(1) )

All words derived from branch I must begin with the letter a, but our target
word does not. Therefore, by Rule 4, only branch 2 need be considered. The
left-most nonterminal is A. There are three branches possible at this point.

S
|
- bA
ba baS bbAA

3 (G )

Branch 3 is a completed word but not our target word. Branch 4 will
generate only words with an initial string of terminals ba, which is not the
case with bbabaa. Only branch 5 remains a possibility. The left-most non-
terminal in the working string of branch 5 is the first A. Three productions

apply to it:
S
|
i\
/b ITA\
bbaA bbaSA bbbAAA

(6) )] ®

Branches 6 and 7 seem perfectly possible. Branch 8, however, has generated
the terminal substring bbb, which all of its descendants must bear. This sub-
string does not appear in our target word, so we can eliminate this branch
from further consideration.
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In branch 6 the left-most nonterminal is the A, in branch 7 it is the S.

S
|
T
bbAA
bbaA bbaSA
bbaa bbaaS bbabAA bbaaBA bbabAA

()] (10) (11) (12) (13)

Branch 9 is a string of all terminals, but not the target word. Branch 10
has the initial substring bbaa; the target word does not. This detail also kills
branch 12. Branch 11 and branch 13 are identical. If we wanted all the left-
most derivations of this target word, we would keep both branches growing.
Since we need only one derivation, we may just as well keep branch 13 and
drop branch 11 (or vice versa); whatever words can be produced on one branch
can be produced on the other.

S = bA = bbAA = bbaSA = bbabAA

bbabaA bbabaSA bbabbAAA
(14) (15) (16)

Only the working string in branch 14 is not longer than the target word.
Branches 15 and 16 can never generate a six-letter word.

S = bA = bbAA = bbaSA = bbabAA = bbabaA

bbabaa bbabaaS bbababAA
an (18) (19)

Branches 18 and 19 are too long, so it is a good thing that branch 17 is our
word. This completes the derivation. [ |

The next parsing algorithm we shall illustrate is the bottom-up parser. This
time we do not ask what were the first few productions used in deriving the
word, but what were the last few. We work backward from the end to the
front, the way sneaky people do when they try to solve a maze.

Let us again consider as our example the word i + i * i generated by the
CFG PLUS-TIMES

If we are trying to reconstruct a left-most derivation, we might think that
the last terminal to be derived was the last letter of the word. However, this
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is not always the case. For example, in the grammar

S — Abb

A—a

the word abb is formed in two steps, but the final two b’s were introduced
in the first step of the derivation, not the last. So instead of trying to reconstruct
specifically a left-most derivation, we have to search for any derivation of our
target word. This makes the tree much larger. We begin at the bottom of the
derivation tree, that is, with the target word itself, and step by step work our
way back up the tree seeking to find when the working string was the one
single S.
Let us reconsider the CFG PLUS-TIMES:

S— E
ES>T+E|T
T—>F*T|F

F— (E)]i

To perform a bottom-up search, we shall be reiterating the following step:
Find all substrings of the present working string of terminals and nonterminals
that are right halves of productions and substitute back to the nonterminal that
could have produced them.

Three substrings of i + i * i are right halves of productions; namely, the
three i’s, anyone of which could have been produced by an F. The tree of
possibilities begins as follows:

P+ i*i

F+ixi i+ Fxi i+ i*F

Even though we are going from the bottom of the derivation tree to the
top S, we will still draw the tree of possibilities, as all our trees, from the
top of the page downward.

We can save ourselves some work in this particular example by realizing
that all of the i’s come from the production F — i and the working string
we should be trying to derive is F + F * F. Strictly speaking, this insight
should not be allowed since it requires an idea that we did not include in the
algorithm to begin with. But since it saves us a considerable amount of work,
we succumb to the temptation and write in one step
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Not all the F’s had to come from T — F. Some could have come from
T— F*T, so we cannot use the same trick again.
i+ i * |
—F + F+F
T+ FxF F+T*F F+F»*T
The first two branches contain substrings that could be the right halves of

E— T and T — F. The third branch has the additional possibility of T — F * T.
The tree continues

i+i

F+|F*F
/F+T*F\
T+ F*F, F+F«T

E+F«F T+T+F T+F+T T+TsF F+E+F F+T+*T T+F+«T F+T+T F+FsE F+T

)] ) 3) 4) (5) (6) )] )] 9 (10)

We never have to worry about the length of the intermediate strings in
bottom-up parsing since they can never exceed the length of the target word.
At each stage they stay the same length or get shorter. Also, no bad terminals
are ever introduced since no new terminals are ever introduced at all, only
nonterminals. These are efficiencies that partially compensate for the ineffi-
ciency of not restricting ourselves to left-most derivations.

There is the possibility that a nonterminal is bad in certain contexts. For
example, branch 1 now has an F as its left-most character. The only production
that will ever absorb that E is S — E. This would give us the nonterminal
S, but S is not in the right half of any production. It is true that we want
to end up with the S; that is the whole goal of the tree. However, we shall
want the entire working string to be that single S, not a longer working string
with S as its first letter. The rest of the expression in branch 1, “ + F » F”,
is not just going to disappear. So branch 1 gets the ax. The E’s in branch
5 and branch 9 are none too promising either, as we shall see in a moment.

When we go backward, we no longer have the guarantee that the “inverse”
grammar is unambiguous even though the CFG itself might be. In fact, this
backward tracing is probably not unique, since we are not restricting ourselves
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to finding a left-most derivation (even though we could with a little more
thought; see Problem 10 below). We should also find the trails of right-most
derivations and whatnot. This is reflected in the occurrence of repeated expres-
sions in the branches. In our example, branch 2 is now the same as branch
4, branch 3 is the same as branch 7, and branch 6 is the same as branch 8.
Since we are interested here in finding any one derivation, not all derivations,
we can safely kill branches 2, 3, and 6 and still find a derivation—if one
exists.

The tree grows ferociously, like a bush, very wide but not very tall. It
would grow too unwieldy unless we made the following observation.

Observation

No intermediate working string of terminals and nonterminals can have the
substring “£ * ”. This is because the only production that introduces the * is

T—>F=*T

so the symbol to the immediate left of a * is originally F. From this F we
can only get the terminals “)” or “i” next to the star. Therefore, in a top-
down derivation we could never create the substring “E * ™ in this CFG, so
in bottom-up this can never occur in an intermediate working string leading
back to §. Similarly, “E + ” and “ * E” are also forbidden in the sense that
they cannot occur in any derivation. The idea of forbidden substrings is one
that we played with in Chapter 3. We can now see the importance of the
technigues we introduced there for showing certain substrings never occur (and
everybody thought Theorems 2, 3, and 4 were completely frivolous). With
the aid of this observation we can eliminate branches 5 and 9.

The tree now grows as follows (pruning away anything with a forbidden
substring):

i+isi
F+F*F
F+T*F F+F«T
T+7T*F T+F*K’+TI/"*T F

+7
| ™
+T F+E

/ - |

T+T*T T+T+T T+T T+T+T T

(1) (12) (13) (14) (15) (16)
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Branches 11, 12, and 13 are repeated in 14 and 15, so we drop the former.
Branch 14 has nowhere to go, since none of the T”s can become E’s without
creating forbidden substrings. So branch 14 must be dropped. From branches
15 and 16 the only next destination is “T + E”, so we can drop branch 15
since 16 gets us there just as well by itself. The tree ends as follows:

i+i* &EF+FsF S F+F«sT & F+T S F+H+EETHELEELS
which is the same as
SSEDTH+ESFHEDD F+AT > F+F*T D> F+F+F > i+ix*i

(The symbol < used above should be self-explanatory.)

EXAMPLE
Let us again consider the grammar:

S — aB | bA
A— alaS|bAA
B— b | bS | aBB

and again let us search for a derivation of a target word, this time through
bottom-up parsing. Let us analyze the grammar before parsing anything.
If we ever encounter the working string

bAAaB

in a bottom-up parse in this grammar, we shall have to determine the working
strings from which it might have been derived. We scan the string looking
for any substrings of it that are the right sides of productions. In this case
there are five of them:

b bA bAA a aB

Notice how they may overlap. This working string could have been derived
in five ways:

BAAaB = bAAaB (B — b)
SAaB = bAAaB (S — bA)
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AaB = bAAaB (A — bAA)
bAAAB = bAAaB (A — a)
bAAS = bAAaB (S — aB)

Let us make some observations peculiar to this grammar.

1. All derivations in this grammar begin with either S — aB or § — bA, so
the only working string that can ever begin with a nonterminal is the
working string is S. For example the pseudo-working string AbbA cannot
occur in a derivation.

2. Since the application of each rule of production creates one new terminal
in the working string, in any derivation of a word of length 6 (or n),
there are exactly 6 (or n) steps.

3. Since every rule of production is in the form
Nonterminal — (one terminal) (string of 0, 1, or 2 Nonterminals)

in a left-most derivation we take the first nonterminal from the string of
nonterminals and replace it with terminals followed by nonterminals.
Therefore, all working strings will be of the form

terminal terminal . . . terminal Nonterminal Nonterminal . . . Nonterminal
= terminal* Nonterminal*
= (string of terminals) (string of Nonterminals)

If we are searching backward and have a working string before us, then
the working strings it could have come from have all but one of the same
terminals in front and a small change in nonterminals where the terminals and
the nonterminals meet. For example,

baabbababaBBABABBBAAAA
could have been left-most produced only from these three working strings.
baabbababABBABABBBAAAA,
baabbababSBABABBBAAAA,
baabbababBABABBBAAAA

We now use the bottom-up algorithm to find a’left-most derivation for the
target word bbabaa.
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On the bottom row there are two S’s. Therefore, there are two left-most
derivations of this word in this grammar:

S = bA = bbAA = bbaSA = bbabAA = bbabaA = bbabaa
S = bA = bbAA = bbaA = bbabAA = bbabaA => bbabaa

Notice that all the other branches in this tree die simultaneously, since they
now contain no terminals. [ |

There are, naturally, dozens of programming modifications possible for both
parsing algorithms. This includes using them in combination, which is a good
idea since both start out very effectively before their trees start to spread.

Both of these algorithms apply to all CFG’s. For example, these methods
can apply to the following CFG definition of a small programming language:

S — ASSIGNMENTS$ | GOTO$ | IF$ | IO$
ASSIGNMENTS$ — i = ALEX
GOTO$ — GOTO NUMBER
IF$ — IF CONDITION THEN S | IF CONDITION THEN S ELSE S
CONDITION — ALEX = ALEX | ALEX + ALEX | ALEX > ALEX
CONDITION — CONDITION AND CONDITION

| CONDITION OR CONDITION | NOT CONDITION
I0$ — READ i | PRINT i

(where ALEX stands for algebraic expression). Notice that the names of the
types of statements all end in $ to distinguish them as a class.
The terminals are

{ = GOTO IF THEN ELSE # > AND OR NOT READ PRINT }

plus whatever terminals are introduced in the definitions of i, ALEX, and NUMBER.
In this grammar we might wish to parse the expression:

IFi>iTHENi =i+ i*i

so that the instruction can be converted into machine language. This can be
done by finding its derivation from the start symbol. The problem of code
generation from a derivation tree is the easiest part of compiling and too
language dependent for us to worry about in this course.
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Our last algorithm for “understanding” words in order to evaluate expressions
is one based on the prefix notation mentioned in Chapter 14. This applies not
only to arithmetic expressions but also to many other programming language
instructions as well.

We shall assume that we are now using postfix notation, where the two
operands immediately precede the operator:

A+ B becomes AB +
(A+ B)*xC becomes AB + C+
A*(B + C=*D) becomes ABCD=* + »

An algorithm for converting standard infix notation into postfix notation was
given in Chapter 14. Once an expression is in postfix, we can evaluate it
without finding its derivation from a CFG, although we originally made use
of its parsing tree to convert the infix into postfix in the first place. We are
assuming here that our expressions involve only numerical values for the iden-
tifiers (i’s) and only the operations + and *, as in the language PLUS-TIMES.

We can evaluate these postfix expressions by a new machine similar to a
PDA. Such a machine requires three new states.

1. [ADD}: This state pops the top two entries off the STACK, adds them,
and pushes the result onto the top of the STACK.

2. :This state pops the top two entries off the STACK, multiplies them,
and pushes the result onto the top of the STACK.

3. : This prints the entry that is on top of the stack and accepts the
input string. It is an output and a halt state.

The machine to evaluate postfix expressions can now be built as below,

where the expression to be evaluated has been put on the INPUT TAPE in
the usual fashion—one character per cell starting in the first cell.

‘ START '
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Let us trace the action of this machine on the input string:
75+24+ 6+
which is postfix for

T+5)*Q2+4)+6="78

STATE STACK TAPE

START A 75+ 24+ +6 +
READ A 5+24+ *6+
PUSH i 7 5+ 24+ *6 +
READ 7 + 24+ *6 +
PUSH i 57 + 24+ 6 +
READ 57 24 + =6 +
ADD 12 24 + %6 +
READ 12 4 + *6 +
PUSH i 212 4 + »6 +
READ 212 + * 6 +
PUSH i 42 12 + *6 +
READ 42 12 * 6 +
ADD 5 12 *6 +
READ 6 12 6 +
MPY 72 6 +
READ 72 +
PUSH i 6 72 +
READ 6 72 A
ADD 78 A
READ 78 A
PRINT 78 A

Notice that when we arrive at PRINT the stack has only one element in
1t.

What we have been using here is a PDA with arithmetic and output ca-
pabilities. Just as we expanded FA’s to Mealy and Moore machines, we can
expand PDA’s to what are called pushdown transducers. These are very
important but belong to the study of the Theory of Compilers.

The task of converting infix arithmetic expressions (normal ones) into postfix
can also be accomplished by a pushdown transducer as an alternative to de-
pending on a dotted line circling a parsing tree. This time all we require is
a PDA with an additional PRINT instruction. The input string will be read
off of the TAPE character by character. If the character is a number (or, in
our example, the letters a, b, ¢), it is immediately printed out, since the
operands in postfix occur in the same order as in the infix equivalent. The
operators, however, + and * in our example, must wait to be printed until
after the second operand they govern has been printed. The place where the
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operators wait is, of course, the STACK. If we read a + b, we print a, push
+, print b, pop +, print +. The output states we need are

and

“POP-PRINT” prints whatever it has just popped, and the READ-PRINT prints
the character just read. The READ-PUSH pushes whatever character “+” or
“#” or “(” labels the edge leading into it. These are all the machine paris we
need.

One more comment should be made about when an operator is ready to
be popped. The second operand is recognized by encountering (1) a right
parenthesis, (2) another operator having equal or lower precedence, or (3) the
end of the input string.

When a right parenthesis is encountered, it means that the infix expression
is complete back up to the last left parenthesis.

For example, consider the expression
a* (b +c)y+ b+ c
The pushdown transducer will do the following:

1. Read a, print a
2. Read *, push =
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Read (, push (

Read b, print b

Read +, push +

Read ¢, print ¢

Read ), pop +, print +

Pop (

Read +, we cannot push + on top of * because of operator precedence,
so pop *, print *, push +

10. Read b, print b

11. Read +, we cannot push + on top of +, so print +
12. Read ¢, print ¢

13. Read A, pop +, print +.

I

The resulting output sequence is
abc + *b + ¢ +

which indeed is the correct postfix equivalent of the input. Notice that operator
precedence is “built into” this machine. Generalizations of this machine can

handle any arithmetic expressions including —, /, and **.
The diagram of the pushdown transducer to convert infix to postfix is given
on page 522.

The table on page 523 traces the processing of the input string:
(@a+ b)y*>» b+ c*a)
Notice that the printing takes place on the right end of the output sequence.

One trivial observation is that this machine will never print any parentheses.
No parentheses are needed to understand postfix or prefix notation. Another
is that every operator and operand in the original expression will be printed
out. The major observation is that if the output of this transducer is then fed
into the previous transducer, the original infix arithmetic expression will be
evaluated correctly. In this way we can give a PDA an expression in normal
arithmetic notation, and the PDA will evaluate it.
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STATE STACK TAPE OUTPUT
START A (@+b)s(b+c*a
READ A a+by*b +c*a)
PUSH ( ( at+by*b +c*a)
READ ( +b)*(b + c*a)
PRINT ( + b)*(b + c*a) a
READ ( by*b + c*a) a
POP A by* b+ c*a) a
PUSH ( ( by* (b + c*a) a
PUSH + + ( by« + c*a) a
READ + ( )* (b + c*a) a
PRINT + ( Y* (b + c*a) ab
READ + ( *(b+cra ab
POP ( *b+cxa ab
PRINT ( *(b + c*a) ab +
POP A *(b+c*a) ab +
READ A b+ c*a) ab +
POP A b+ c*a ab +
PUSH = * b+ c*a) ab +
READ * b+ c*a) ab +
PUSH ( (* b+ c*a ab +
READ (* + c*a) ab +
PRINT (* + c*a) ab + b
READ (* c*a) ab + b
POP * c*a ab + b
PUSH ( (= c*a) ab + b
PUSH + + (= c*a ab + b
READ + (* * q) ab + b
PRINT + (* * q) ab + bc
READ + (= a) ab + bc
POP (* a) ab + bc
PUSH + + (* a) ab + bc
PUSH = * 4+ (* a) ab + bc
READ * 4 (* ) ab + bc
PRINT * 4 (* ) ab + bca
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STATE STACK TAPE OUTPUT
READ 4 (= A ab + bca

POP + (* A ab + bca
PRINT + (= A ab + bca *
POP (* A ab + bca *
PRINT (* A ab + bca * +
POP * A ab + bca * +
READ * A ab + bca * +
POP A A ab + bca * +
PRINT A A ab + bca * + =
POP A A ab + bca * + =
ACCEPT A A ab + bca* + *

PROBLEMS

Using top-down parsing, find the left-most derivation in the grammar PLUS-
TIMES for the following expressions.

Loi+i+i

2. ixitini

3.0 ix (i + i)

4. G+ D) +i
500Gy + (@)

Using bottom-up parsing, find any derivation in the grammar PLUS-TIMES
for the following expressions.

6. i*()

7. (@ + (@)
8. (i*i+ i
9. i*(i + i)

10. (i*i)*i
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The following is a version of an unambiguous grammar for arithmetic expres-
sions employing — and / as well as + and =*.
S— E

E->T|E+T|E-T|-T
T—>F | T*»F | TI/F
F— (E)| i

Find a left-most derivation in this grammar for the following expressions using
the parsing algorithms specified.

11.

12.

13.
14.

15.

16.

17.
18.

19.

20.

G+ —i*sH/li—i
(Do this by inspection, that means guesswork. Do we divide by zero
here?)

i/ i+ i (Top-down)
i*i/i—1i (Top-down)

i/ il i (Top-down)
Note that this is not ambiguous in this particular grammar. Do we eval-
uate right to left or left to right?

i — i — i (Bottom-up)

Using the second pushdown transducer, convert the following arithmetic
expressions to postfix notation and then evaluate them on the first push-
down transducer.

D 2+7+2)
) 3+4+7
(i) B+5) +7+3

A(iv) (3#*4 + 5)* (2 + 3 *4)Hint: The answer is 238.

Design a pushdown transducer to convert infix to prefix.
Design a pushdown transducer to evaluate prefix.
Create an algorithm to convert prefix to postfix.

The transducers we designed in this chapter to evaluate postfix notation
and to convert infix to postfix have a funny quirk: they can accept some
bad input strings and process them as if they were proper.

(i)  For each machine, find an example of an accepted bad input.
(i)  Correct these machines so that they accept only proper inputs.



(c) ketabton.com: The Digital Library

CHAPTER 23

DECIDABILITY

In Part II we have been laying the foundations of the Theory of Formal Lan-
guages. Among the many avenues of investigation we have left open are some
questions that seem very natural to ask, such as the following.

1. How can we tell whether or not two different CFG’s define the same
language?
2. Given a particular CFG, how can we tell whether or not it is ambiguous?

3. Given a CFG, how can we tell whether or not it has an equivalent PDA
that is deterministic?

4. Given a CFG that is ambiguous, how can we tell whether or not there
is a different CFG that generates the same language but is not ambiguous?

5. How can we tell whether or not the complement of a given context-free
language is also context-free?

6. How can we tell whether or not the intersection of two context-free lan-
guages is also context-free?

7. Given two context-free grammars, how can we tell whether or not they
have a word in common?

8. Given a CFG, how can we tell whether or not there are any words that
it does not generate? (Is its language all (a + b)* or not?)

526
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These are very fine questions, yet, alas, they are unanswerable. There are
no algorithms to resolve any of these questions. This is not because computer
theorists have been too lazy to find them. No algorithms have been found
because no such algorithms exist—anywhere—ever.

We are using the word “exist” in a special philosophical sense. Things that
have not yet been discovered but that can someday be discovered we still call
existent, as in the sentence, “The planet Jupiter existed long before it was
discovered by man.” On the other hand, certain concepts lead to mathematical
contradictions, so they cannot ever be encountered, as in, “The planet on which
2 + 2 = 5,” or “The smallest planet on which 2 + 2 = 5,” or “The tallest
married bachelor.” In Part III we shall show how to prove that some computer
algorithms are just like married bachelors in that their very existence would
lead to unacceptable contradictions. Suppose we have a question that requires
a decision procedure. If we prove that no algorithm can exist to answer it,
we say that the question is undecidable. Questions 1 through 8 are undecidable.

This is not a totally new concept to us; we have seen it before, but not
with this terminology. In geometry, we have learned how to bisect an angle
given a straightedge and compass. We cannot do this with a straightedge alone.
No algorithm exists to bisect an angle using just a straightedge. We have also
been told (although the actual proof is quite advanced) that even with a straight-
edge and compass we cannot trisect an angle. Not only is it true that no one
has ever found a method for trisecting an angle, nobody ever will. And that
is a theorem that has been proven.

We shall not present the proof that questions 1 through 8 are undecidable,
but toward the end of the book we will prove something very similar.

What Exists What Does Not Exist
1. What is known 1. Married bachelors
2. What will be known 2. Algorithms for
questions 1 through 8
above

3. What might have been 3. A good 5¢ cigar
known but nobody will
ever care enough to
figure it out

There are, however, some other fundamental questions about CFG’s that
we can ansSwer.

1. Given a CFG, can we tell whether or not it generates any words at all?
This is the question of emptiness.

2. Given a CFG, can we tell whether or not the language it generates is
finite or infinite? This is the question of finiteness.
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3. Given a CFG and a particular string of letters w, can we tell whether or
not w can be generated by the CFG? This is the question of membership.

Now we have a completely different story. The answer to each of these
three easier questions is “yes.” Not only do algorithms to make these three
decisions exist, but they are right here on these very pages. The best way to
prove that an algorithm exists is to spell it out.

THEOREM 41

Given any CFG, there is an algorithm to determine whether or not it can
generate any words.

PROOF

The proof will be by constructive example. We show there exists such an
algorithm by presenting one.

In Theorem 21 of Chapter 16 we showed that every CFG that does not
generate A can be written without A-productions.

In that proof we showed how to decide which nonterminals are nullable.
The word A is a word generated by the CFG if and only if S is nullable.
We already know how to decide whether the start symbol S is nullable:

¥
S =>A?
Therefore, the problem of determining whether A is a word in the language
of any CFG has already been solved.
Let us assume now that A is not a word generated by the CFG. In that
case, we can convert the CFG to CNF preserving the entire language.
If there is a production of the form
S—1t

where ¢ is a terminal, then ¢ is a word in the language.
If there are no such productions we then propose the following algorithm.

Step 1 'For each nonterminal N that has some productions of the form
N—t

where ¢ is a terminal or string of terminals, we choose one of these
productions and throw out all other productions for which N is on the
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left side. We then replace N by ¢ in all the productions in which N is on
the right side, thus eliminating the nonterminal N altogether. We may
have changed the grammar so that it no longer accepts the same language.
It may no longer be in CNF. That is fine with us. Every word that can
be generated from the new grammar could have been generated by the
old CFG. If the old CFG generated any words, then the new one does
also.

Repeat Step 1 until either it eliminates S or it eliminates no new nonter-
minals. If S has been eliminated, then the CFG produces some words,
if not then it does not. (This we need to prove.)

The algorithm is clearly finite, since it cannot run Step 1 more times
than there are nonterminals in the original CNF version. The string of
nonterminals that will eventually replace S is a word that could have been
derived from § if we retraced in reverse the exact sequence of steps that
lead from the terminals to S.

If Step 2 makes us stop while we still have not replaced S, then we
can show that no words are generated by this CFG. If there were any
words in the language we could retrace the tree from any word and follow
the path back to S.

For example, if we have the derivation tree:

/S\

X Y
A/ \Y 3/ \B

B/l [ [

T ‘
a b b

then we can trace backward as follows (the relevant productions can be
read from the tree):

B—b

must be a production, so replace all B’s with b’s:
Y— BB

is a production, so replace Y with bb:

A—a
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is a production, so replace A with a:
X— AY
is a production, so replace X with abb.
S— XY

is a production, so replace S with abbbb.
Even if the grammar included some other production; for example

B—d (where d is some other terminal)

we could still retrace the derivation from abbbb to S, but we could just
as well end up replacing S by adddd—if we chose to begin the backup
by replacing all B’s by d instead of by b.

The important fact is that some sequence of backward replacements will
reach back to S if there is any word in the language.
The proposed algorithm is therefore a decision procedure. |

EXAMPLE
Consider this CFG:

S —> XY
X — AX
X — AA
A—a
Y - BY
Y — BB
B—b

Step 1 Replace all A’s by a and all B’s by b. This gives:

S —= XY
X — aX
X — aa
Y — bY
Y — bb
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Step 1 Replace all X’s by aa and all Y’s by bb

S — aabb

Step 1 -Replace all $’s by aabb.
Step2 Terminate Step 1 and discover that S has been eliminated. Therefore, the
CFG produces at least one word. [ |

EXAMPLE
Consider this CFG:

S —->XY
X— AX
A—a
Y — BY
Y — BB
B—b

Step 1 Replace all A’s by a and all B’s by b. This gives:

S — XY
X—aX
Y - bY
Y — bb
Step I Replace all Y’s by &b. This gives:

S — Xbb

X — aX
Step 2 Terminate Step 1 and discover that S is still there. This CFG generates

no words. |

EXAMPLE
Consider this CFG:

S —= XY

X—>7ZX

Z—a

X — AX
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X —>7Z
Y — BB
B—b
A— XA

Step 1 Replace all Z’s by a and all B’s by b. This gives:

S —> XY
X —aX
X — AX
X — aa
Y — bb
A— XA

Step 1 Replace all X’s by aa and all Y’s by bb. This gives:

S — aabb
A — adA

Step 1 Replace all S’s with aabb. This gives:
A — aaA

Step 2 Terminate Step 1 and discover that S has been eliminated. This CFG
generates at least one word, even though when we terminated Step 1
there were still some productions left. We notice that the nonterminal A
can never be used in the derivation of a word. |

As a final word on this topic, we should note that this algorithm does not
depend on the CFG’s being in CNF, as we shall see in the probiems below.

We have not yet gotten all the mileage out of the algorithm in the previous
theorem. We can use it again to prove:

THEOREM 42

There is an algorithm to decide whether or not a given nonterminal X in a
given CFG is ever used in the generation of words.

PROOF

Following the algorithm of the previous theorem until no new nonterminals
can be eliminated will tell us which nonterminals can produce strings of ter-



(c) ketabton.com: The Digital Library

DECIDABILITY 533

minals. Clearly, all nonterminals left cannot produce strings of terminals and
all those replaced can.

However, it is not enough to know that a particular nonterminal (call it X)
can produce a string of terminals. We must also determine whether it can be
reached from S in the middle of a derivation. :

In other words, there are two things that could be wrong with X.

1. X produces strings of terminals but cannot be reached from S. For example
in

S — Ya|Yb
Y—>ab
X—aY|b

2. X can be reached from S but only in working strings that involve useless
- nonterminals that prevent word derivations. For example in

S—>Ya|Yb|a
Y—>XZ
X — ab
Z—->Y

Here Z is useless in the production of words, so Y is useless in the pro-
duction of words, so X is useless in the production of words.

The algorithm that will resolve these issues is'of the blue paint variety.

Step 1 Use the algorithm of Theorem 41 to find out which nonterminals cannot
produce strings of terminals. Call these useless.

Step 2 Purify the grammar by eliminating all productions involving the useless
nonterminals. If X has been eliminated, we are done. If not, proceed.

Step 3 Paint all X’s blue.

Step 4 If any nonterminal is the left side of a production with anything blue on
the right, paint it blue, and paint all occurrences of it throughout the
grammar blue, too.

Step 5 The key to this approach is that all the remaining productions are guar-
anteed to terminate. This means that any blue on the right gives us blue
on the left (not just all blue on the right, the way we pared down the
row grammar in Chapter 18). Repeat Step 4 until nothing new is painted
blue.

Step 6 If S is blue, X is a useful member of the CFG, since there are words
with derivations that involve X-productions. If not, X is not useful.
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Obviously, this algorithm is finite, since the only repeated part is Step 4
and that can be repeated only as many times as there are nonterminals in the
grammar.

It is also clear that if X is used in the production of some word, then §
will be painted blue, since if we have

S => ... (blah) X (blah) > ... = word
then the nonterminal that put X into the derivation in the first place will be
blue, and the nonterminal that put that one in will be blue,-and the nonterminal
from which that came will be blue . . . up to §.

Now let us say that S is blue. Let us say that it caught the blue through
this sequence: X made A blue and A made B blue and B made C blue . . . up
to S. The production in which X made A blue looked like this:

A — (blah) X (blah)

Now the two (blah)’s might not be strings of terminals, but it must be true

that any nonterminals in the (blah)’s can be turned into strings of terminals

because they survived Step 2. So we know that there is a derivation from A
to a string made up of X with terminals

*
A = (string of terminals) X (string of terminals)
We also know that there is a production of the form

B = (blah) A (blah)

that can likewise be turned into

*
B = (string of terminals) A (string of terminals)
*
= (string of terminals) X (string of terminals)

We now back all the way up to S and realize that there is a derivation

*

S = (string of terminals) X (string of terminals)
*
= (word)

Therefore, this algorithm is exactly the decision procedure we need to decide
if X is actually ever used in the production of a word in this CFG. [ |
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EXAMPLE
Consider the CFG

S — ABa | bAZ | b
A—> Xb | bZa

B — bAA

X — aZa | aaa

Z — ZAbA

We quickly see that X terminates (goes to all terminals, whether or not it
can be reached from §). Z is useless (because it appears in all of its pro-
ductions). A is blue. B is blue. § is blue. So X must be involved in the
production of words. To see one such word we can write:

A— Xb
B — bAA

Now since A is useful, it must produce some string of terminals. In fact,

A 5 aaab
So, B ; bAaaab
= bXbaaab
Now
S — ABa
é aaabBa

*
= aaabbXbaaaba

We know that X is useful, so this is a working string in the derivation of an
actual word in the language of this grammar. ]

The last two theorems have been part of a project, designed by Bar-Hillel,
Perles, and Shamir to settle a more important question.

THEOREM 43

There is an algorithm to decide whether a given CFG generates an infinite
language or a finite language.
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PROOF

The proof will be by constructive algorithm. We shall show that there exists
such a procedure by presenting one. If any word in the language is long enough
to apply the Pumping Lemma (Theorem 35) to, we can produce an infinite
sequence of new words in the language.

If the language is infinite, then there must be some words long enough so
that the Pumping Lemma applies to them. Therefore, the language of a CFG
is infinite if and only if the Pumping Lemma can be applied.

The essence of the Pumping Lemma was to find a self-embedded nonter-
minal X, that is, one such that some derivation tree starting at X leads to
another X.

We shall show in a moment how to tell if a particular nonterminal is self-
embedded, but first we should also note that the Pumping Lemma will work
only if the nonterminal that we pump is involved in the derivation of any
words in the language. Without the algorithm of Theorem 42, we could be
building larger and larger trees, none of which are truly derivation trees. For
example, in the CFG:

S—>aX|b
X — XXb

the nonterminal X is certainly self-embedded, but the language is finite none-
theless.
So the first step is:

Step 1 Use the algorithm of Theorem 42 to determine which nonterminals are
not used to produce any words. Eliminate all productions involving them.

Step 2 Use the following algorithm to test each of the remaining nonterminals
in turn to see if it is self-embedded. When a self-embedded one is dis-
covered stop.

To test X:

(i)  Change all X’s on the left side of productions into the Russian let-
ter 2K, but leave all the X’s on the right side of productions alone.

(ii)  Paint all X’s blue.
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(iii) If Y is any nonterminal that is the left side of any production with
some blue on the right side, then paint all ¥’s blue.

(iv) Repeat Step 2 (iii) until nothing new is painted blue.
(v) If XK is blue, the X is self-embedded; if not, not.

Step 3 If any nonterminal left in the grammar after Step 1 is self-embedded, the
language generated is infinite. If not, then the language is finite.

The explanation of why this procedure is finite and works is identical to
the explanation in the proof of Theorem 42. [

EXAMPLE

Consider the grammar:

S — ABa | bAZ | b
A— Xb | bZa

B — bAA

X — aZa | bA | aaa
Z — ZAbA

This is the grammar of the previous example with the additional production
X — bA. As before, Z is useless while all other nonterminals are used in the
production of words. We now test to see if X is self-embedded.

First we trim away Z:

S — ABa | b
A—Xb
B — bAA
X — bA | aaa

Now we introduce:

S — ABa|b
A —Xb
B — bAA
X — bA | aaa

Now the paint:

X is blue
A — Xb, so0 A is blue
XK — bA, so K is blue
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B — A, so B is blue
S — ABa, so S is blue

Conclusion:
X is blue, so the language generated by this CFG is infinite. [ |

We now turn our attention to the last decision problem we can handle for
CFG’s.

THEOREM 44

Given a CFG and a word w in the same alphabet, we can decide whether or
not w can be generated by the CFG.

PROOF

This theorem should have a one-word proof: “Parsing.” When we try to parse
w in the CFG we arrive at a derivation or a dead-end. Let us carefully explain
why this is a decision procedure.

If we were using top-down parsing, we would start with S and produce the
total language tree until we either found the word w or terminated all branches
for the reasons given in Chapter 21: forbidden substring, working string too
long, and so on.

Let us now give a careful argument to show that this is a finite process.

Assume that the grammar is in CNF.

First let us show that starting with § we need exactly (length(w) — 1)
applications of live productions N — XY, to generate w, and exactly length(w)
applications of dead productions, N — ¢. This is clear since live productions
increase the number of symbols in the working string by one, and dead pro-
ductions do not increase the total number of symbols at all but increase the
number of terminals by one. We start with one symbol and end with length(w)
symbols. Therefore we have applied (length(w) — 1) live productions. Starting
with no terminals in the working string (S alone), we have finished up with
length(w) terminals. Therefore, we have applied exactly length(w) dead pro-
ductions. If we count as a step one use of any production rule, then the total
number of steps in the derivation of w must be:

number of live productions + number of dead productions
= 2 length(w) — 1

Therefore, once we have developed the total language tree this number of
levels down, either we have produced w or else we never will.
Therefore, the process is finite and takes at most
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p2length(w) -1
steps where p is the number of productions in the grammar. |

There is one tricky point here. We have said that this algorithm is a decision
procedure since it is finite. However, the number

2length(w) — 1

p

can be phenomenally large. We must be careful to note that the algorithm is
called finite because once we are given the grammar (in CNF) and the word
w, we can predict ahead of time (before running the algorithm) that the pro-
cedure must end within a known number of steps. This is what it means for
an algorithm to be a finite decision procedure. It is conceivable that for some
grammar we could not specify an upper bound on the number of steps the
derivation of w might have. We might then have to consider suggestions such
as, “Keep trying all possible sequences of productions no matter how long.”
However, this would not be a decision procedure since if w is not generatable
by the grammar our search would be infinite, but at no time would we know
that we could not finally succeed. We shall see some non-context-free gram-
mars later that have this unhappy property.

The decision procedure presented in the proof above is adequate to prove
that the problem has an algorithmic solution, but in practice the number of
steps is often much too large even to think of ever doing the problem this
way. Although this is a book on theory and such mundane considerations as
economy and efficiency should not, in general, influence us, the number of
steps in the algorithm above is too gross to let stand unimproved.

We now present a much better algorithm discovered by John Cocke and
subsequently published by Tadao Kasami (1965) and Daniel H. Younger (1967),
called the CYK algorithm.

Let us again assume that the grammar is in CNF.

First let us make a list of all the nonterminals in the grammar, including
S.

S Ny N N3...

These will be the column headings of a large table. Under each symbol let
us list all the single-letter terminals that they can generate. These we read off
from the dead productions, N — t. '

It is possible that some nonterminals generate no single terminals, in which
case we leave the space under them blank.

On the next row below this we list for each nonterminal all the words of
length 2 that it generates. For N; to generate a word of length 2 it must have
a production of the form N, — N,N;, where N, generates a word of length
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1 and N; also generates a word of length 1. We do not rely on human insight
to construct this row, but follow a mechanical procedure: For each production
of the form N, — N,N;, we multiply the set of words of length 1 that N,
generates (already in the table) by the set of words of length 1 that N; generates
(this set is also already in the table). This product set we write down on the
table in row 2 under the column N,.

Now we construct the next row of the table: all the words of length 3. A
nonterminal N, generates a word of length 3 if it has a live production
N, —> N,N; and N, generates a word of length 1 and N3 generates a word of
length 2 or else N, generates a word of length 2 and N3 generates a word
of length 1. To produce the list of words in row 3 under N; mechanically,
we go to row 1 under N, and multiply that set of words by the set of words
found in row 2 under N;. To this we add (also in row 3) the product of row
2 under N, times row 1 under N;. We must do this for every live production
to complete row 3.

We continue constructing this table. The next row has all the words of
length 4. Those derived from N, by the production Ny — N, N; are the union
of the products:

(all words of length 1 from N,) (all words of length 3 from N;)
+ (all words of length 2 from N,) (all words of length 2 from N;)
+ (all words of length 3 from N,) (all words of length 1 from N;)

All the constituent sets of words mentioned here have already been calculated
in this table.

We continue this table until we have all words of lengths up to length(w)
generated by each nonterminal. We then check to see if w is among those
generated from S. This will definitively decide the question.

We can streamline this procedure slightly by eliminating from the table all
small words generated that cannot be substrings of w since these could not
be part of the forming of w. Also at the next-to-the-last row of words (of
(Iength(w) — 1)) we need only generate the entries in those columns X and
Y for which there is a production of the form

S — XY

and then the only entry we need calculate in the last row (the row of words
of length w) is the one under S.

EXAMPLE
Consider the CFG:

S — XY
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X— XA

Y — AY

A—a

X—>alb

Let us test to see if the word babaa is generated by this grammar.
First we write out the nonterminals as column heads.

Y—a

The first row is the list of all the single terminals each generates.

X

ab

51

Notice that S generates no single terminal. Now to construct the next row of
the table we must find all words of length 2 generated by each nonterminal.

X

Length 1

ab

Length 2 Jaa ba | aa ba

aa

The entries in row 2 in the S column come from the live production § — XV,
so we multiply the set of words generated by X in row 1 times the words
generated by Y in row 1. Also X — XA and Y — AY give multiplications that
generate the words in row 2 in the X and Y columns. Notice that A is the
left side of no live production, so its column has stopped growing. A produces

no words longer than one letter.
The third row is

S X Y
Length 1 ab
Length 2 {aa ba {aa ba | aa
aaa |aaa aaa
Length 3 baa baa
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The entry for column S comes from $ — XY:

(all words of length 1 from X) (all words of length 2 from Y)
+ (all words of length 2 from X) (all words of length 1 from Y)
= {a + b} {aa} + {aa + ba} {a}
= aqaa + baa + aaa + baa
= gaa + baa

Notice that we have eliminated duplications. However we should eliminate
more. Our target word w does not have the substring aaa, so retaining that
possibility cannot help us form w. We eliminate this string from the table
under column S, under column X, and under column Y. We can no longer
claim that our table is a complete list of all words of lengths 1, 2, or 3
generated by the grammar, but it is a table of all strings generated by the
grammar that may help derive w. We continue with row 4.

Length 1 ab a a
Length 2 Jaa bb {aa ba | aa
Length 3 | baa | baa

aaaa | baaa

Length 4 baaa

In column S we have

(all words of length 1 from X) (all words of length 3 from Y)
+ (all words of length 2 from X) (all words of length 2 from Y)
+ (all words of length 3 from X) (all words of length 1 from Y)
= {a + b} {nothing} + {aa + ba} {aa} + {baa} {a}
= aaaa + baaa + baaa
= aaaa + baaa

To calculate row 4 in column X, we use the production X — XA

(all words of length 1 from X) (all words of length 3 from A)
+ (all words of length 2 from X) (all words of length 2 from A)
+ (all words of length 3 from X) (all words of length 1 from A)
= {a + b} {nothing} + {aa + ba} {nothing} + {baa} {a}

= baaa
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Row 4 in column Y is done similarly:

(all words of length 1 from A) (all words of length 3 from Y)
+ (all words of length 2 from A) (all words of length 2 from Y)
+ (all words of length 3 from A) (all words of length 1 from Y)
= {a} {nothing} + {nothing} {aa} + {nothing} {a}
= nothing

Again we see that we have generated some words that are not possible
substrings of w. Both aaaa and baaa are unacceptable and will be dropped.
This makes the whole row empty. No four-letter words generated by this gram-
mar are substrings of w.

The next row is as far as we have to go, since we have to know only all
the five-letter words that are generated by S to decide the fate of our target
word w = babaa. These are:

(all words of length 1 from X) (all words of length 4 from Y)
+ (all words of length 2 from X) (all words of length 3 from Y)
+ (all words of length 3 from X) (all words of length 2 from ¥)
+ (all words of length 4 from X) (all words of length 1 from Y)
= {a + b} {nothing} + {aa + ba} {nothing} + {baa} {aa}
+ {nothing} {a}
= baaaa
The only five-letter word in this table is baaaa, but unfortunately baaaa
is not w, so we know conclusively that w is not generated by this grammar.
This was not so much work, especially when compared with the

Pz length(w) — 1 — g9 — 10,077,696

strings of productions the algorithm proposed in the proof of Theorem 44 would
have made us check. [

Let’s run through this process quickly on one more example.

EXAMPLE
Consider the grammar:

S — AX | BY
X— SA
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Y — SB
A—a
B—b
S—alb

This is a CNF grammar for ODDPALINDROME. Let w be the word ababa.
This word does not contain a double a or a double b, so we should eliminate
all generated words that have either substring. However, for the sake of making
the table a complete collection of odd palindromes of length 5 or less, we

shall not make use of this efficient shortcut.

S has two live productions, so the words generated by S of length 5 are:

(all words of length 1 from A) (all words of length 4 from X)
+ (all words of length 2 from A) (all words of length 3 from X)
+ (all words of length 3 from A) (all words of length 2 from X)
+ (all words of length 4 from A) (all words of length 1 from X)
+
(all words of length 1 from B) (all words of length 4 from Y)
+ (all words of length 2 from B) (all words of length 3 from Y)
+ (all words of length 3 from B) (all words of length 2 from Y)
+ (all words of length 4 from B) (all words of length 1 from Y)

The CYK table is:

S X Y A
Length 1 ab a b
Length 2 aa ba ab bb
aaa aba
Length 3 bab bbb
Length 4 aaaa abaa aaab abab

baba bbba babb bbbb

aaaaa aabaa
ababa abbba
baaab babab
bbabb bbbbb

Length 5

We do find w among the words of length 5 generated from S.

If we had eliminated all words with double letters, we would have had an
even quicker search; but since we know what this language looks like, we
write out the whole table to get an understanding of the meaning of the non-

terminals X and Y.
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PROBLEMS

Decide whether or not the following grammars generate any words using the
algorithm of Theorem 40.

1. §— aSa|bSh

2. S—>XY
X—8Y
Y— SX
X—a
Y—b

3. S—AB
A — BC
C—> DA
B— CD
D—a
A—b

4. §S—> XS
X—YX
Y—>YY
Y— XX
X—a

5. S— AB
A — BSB
B — AAS
A— CC
B— CC
C—S8S
A—alb
C—b|bb

6. Modify the proof of Theorem 40 so that it can be applied to any CFG;
not just those in CNF.

For each of the following grammars decide whether the language they generate
is finite or infinite using the algorithm in Theorem 43.

7. §—>XS|b
X—YZ
Z—> XY
Y— ab
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10.

11.

12.

13.

14.

15.

PUSHDOWN AUTOMATA THEORY

S— XS |b
X—YZ
Z— XY
X— ab
S— XY | bb
X—YX
Y — XY |SS
S — XY | bb
X—VYY
Y — XY |SS
S— XY
X— AA|YY | b
A— BC
B — AC
C— BA
Y—a
S— XY
X—>AA| XY |b
A — BC
B — AC
C— BA
Y—a
i S—>S85|b

X—>S§|8X|a
(i) S— XX

X— SS|a
Modify Theorem 43 so that the decision procedure works on all CFG’s,
not just those in CNF.
Prove that all CFG’s with only the one nonterminal S and one or more

live productions and one or more dead productions generate an infinite
language.

For the following grammars and words decide whether or not the word is

generated by the grammar using the CYK algorithm.

16.

S§—SS w = abba
S—a

S— bb
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17. §— XS w = baab
X— XX
X—a
S—b
18. (i) S— XY w = abbaa
X—38Y
Y —» 8§
X—al|bb
Y— aa
(i) S—AB|CD|a|b w = bababab
A—a
B— SA
C— DS
D—b
19. Modify the CYK-algorithm so that it applies to any CFG, not just those
in CNF.

20. . We stated at the beginning of this chapter that the problem of determining
whether a given PDA accepts all possible inputs is undecidable. This is
not true for deterministic PDA’s. Show how to decide whether the lan-
guage accepted by a DPDA is all of (a + b)" or not.
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CHAPTER 24

TURING
MACHINES

At this point it will help us to recapitulate the major themes of the previous
two parts and outline all the material we have yet to present in the rest of

the book all in one large table.

Language Language Example
Defined [Corresponding[Nondeterminism|Cjosed What Can | of
by Acceptor = determinism?| ynder be Decided | Application
Finite Union, .
Regular automaton product, EqulYalence, Text editors,
. Yes Kleene star,|emptiness, | @
expression .. . : finiteness q
Transition intersection, | 11 > |circuits
graph complement|membership
Context Union . Programming
ontexi- Pushdown No ’ Emptiness language
free automaton product,  |finiteness statemnents
grammar Kleene star | membership ders
compilers
Turing Union,
Type 0 machine, product,
grammar | Post machine, Yes Kleene star | Not much | Computers
| 2PDA, nPDA
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We see from the lower right entry in the table that we are about to fulfill
the promise made in the introduction. We shall soon provide a mathematical
model for the entire family of modern-day computers. This model will enable
us not only to study some theoretical limitations on the tasks that computers
can perform, it will also be a model that we can use to show that certain
operations carn be done by computer. This new model will turn out to be
surprisingly like the models we have been studying so far.

Another interesting observation we can make about the bottom row of the
table is that we take a very pessimistic view of our ability to decide the
important questions about this mathematical model (which as we see is called
a Turing machine).

We shall prove that we cannot even decide if a given word is accepted by
a given Turing machine. This situation is unthinkable for FA’s or PDA’s, but
now it is one of the unanticipated facts of life—a fact with grave repercussions.

There is a definite progression in the rows of this table. All regular lan-
guages are context-free languages, and we shall see that all context-free lan-
guages are Turing machine languages. Historically, the order of invention of
these ideas is:

1. Regular languages and FA’s were developed by Kleene, Mealy, Moore,
Rabin, and Scott in the 1950s.

2. CFG’s and PDA’s were developed later, by Chomsky, Oettinger,
Schiitzenberger, and Evey, mostly in the 1960s.

3. Turing machines and their theory were developed by Alan Mathison Turing
and Emil Post in the 1930s and 1940s.

It is less surprising that these dates are out of order than that Turing’s work
predated the invention of the computer itself. Turing was not analyzing a
specimen that sat on the table in front of him; he was engaged in inventing
the beast. It was directly from the ideas in his work on mathematical models
that the first computers were built. This is another demonstration that there
is nothing more practical than a good abstract theory.

Since Turing machines will be our ultimate model for computers, they will
necessarily have output capabilities. Output is very important, so important that
a program with no output statements might seem totally useless because it
would never convey to humans the result of its calculations. We may have
heard it said that the one statement every program must have is an output
statement. This is not exactly true. Consider the following program (written
in no particular language):

READ X

IF X = 1 THEN END

IF X = 2 THEN DIVIDE X BY 0

IF X > 2 THEN GOTO STATEMENT 4

AW O -
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Let us assume that the input is a positive integer. If the program terminates

naturally, then we know X was 1. If it terminates by creating overflow or
was interrupted by some error message warning of illegal calculation (crashes),
then we know that X was 2. If we find that our program was terminated
because it exceeded our alloted time on the computer, then we know X was
greater than 2. We shall see in a moment that the same trichotomy applies
to Turing machines.

DEFINITION

A Turing machine, denoted TM, is a collection of six things:

1.

An alphabet 3, of input letters, which for clarity’s sake does not contain
the blank symbol A.

A Tape divided into a sequence of numbered cells each containing one
character or a blank. The input word is presented to the machine one
letter per cell beginning in the left-most cell, called cell i. The rest of
the TAPE is initially filled with blanks, A’s.

cell i cell ii cell iii cell iv cell v

I I |
O

A Tape HEaD that can in one step read the contents of a cell on the
TapE, replace it with some other character, and reposition itself to the
next cell to the right or to the left of the one it has just read. At the
start of the processing, the TAPE HEAD always begins by reading the input
in cell i. The TApE HEAD can never move left from cell i. If it is given
orders to do so, the machine crashes.

An alphabet, I', of characters that can be printed on the TAPE by the
Tape Heap. This can include 3. Even though we allow the TapE HEAD
to print a A we call this erasing and do not include the blank as a letter
in the alphabet T.

A finite set of states including exactly one START state from which we
begin execution (and which we may reenter during execution) and some
(maybe none) HALT states that cause execution to terminate when we
enter them. The other states have no functions, only names:

q1, G2, q3, - - . or 1, 2, 3,
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6. A program, which is a set of rules that tell us, on the basis of the letter
the TapE HeaD has just read, how to change states, what to print and
where to move the TapE HEAD. We depict the program as a collection
of directed edges connecting the states. Each edge is labeled with a triplet
of information:

(letter, letter, direction)

The first letter (either A or from X or I') is the character the TapE HEAD
reads from the cell to which it is pointing. The second letter (also A or
from I') is what the Tape Heap prints in the cell before it leaves. The
third component, the direction, tells the TAPE HEAD whether to move one
cell to the right, R, or one cell to the left, L.

No stipulation is made as to whether every state has an edge leading from
it for every possible letter on the TAPE. If we are in a state and read a letter
that offers no choice of path to another state, we crash; that means we ter-
minate execution unsuccessfully. To terminate execution of a certain input suc-
cessfully we must be led to a HALT state. The word on the input TapE is
then said to be accepted by the TM.

A crash also occurs when we are in the first cell on the TAPE and try to
move the Tape Heap left.

By definition, all Turing machines are deterministic. This means that there
is no state g that has two or more edges leaving it labeled with the same first
letter.

For example,

is not allowed. [ |

EXAMPLE

The following is the Tape from a Turing machine about to run on the input
aba

i i i v v i
l[a|b]alalalal.. .
0

TaPE HEAD
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The program for this TM is given as a directed graph with labeled edges
as shown below

(a,a.R)
(@a.R) &.5.8)
(b,b,R / ; AAR
START 1 . 2 ) \:3/ ¢ ) { HALT 4 ’

(b,6,R)

Notice that the loop at state 3 has two labels. The edges from state 1 to
state 2 could have been drawn as one edge with two labels.

We start, as always, with the TApE HEAD reading cell i and the program
in the start state, which is here labeled state L. We depict this as

1
aba

The number on top is the number of the state we are in. Below that is the
current meaningful contents of the string on the TAPE up to the beginning of
the infinite run of blanks. It is possible that there may be a A inside this
string. We underline the character in the cell that is about to be read.

At this point in our example, the TapE HEAD reads the letter a and we
follow the edge (a,a,R) to state 2. The instructions of this edge to the TAPE
HEAD are “read an a, print an a, move right.”

The TaPE now looks like this:

i i v

[a'b'aIAI...
A

Notice that we have stopped writing the words “TAaPpE HEAD” under the
indicator under the Tapg. It is still the TAPE HEAD nonetheless.
We can record the execution process by writing:

1 2

aba — aba

At this point we are in state 2. Since we are reading the b in cell ii, we
must take the ride to state 3 on the edge labeled (b,6,R). The TapE HEAD
replaces the b with a b and moves right one cell. The idea of replacing a
letter with itself may seem silly, but it unifies the structure of Turing machines.
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We could instead have constructed a machine that uses two different types of
instructions: either print or move, not both at once. Our system allows us to
formulate two possible meanings in a single type of instruction.

(a, a, R) means move, but do not change the TapE cell
(a, b, R) means move and change the TAPE cell

This system does not give us a one-step way of changing the contents of the
Tape cell without moving the TapE HEAD, but we shall see that this too can
be done by our TM’s.
Back to our machine. We are now up to
.2 _ 3
aba aba  aba

The TapE now looks like this.
i nooiii v
IJ—[ b | al A | .
0

We are in state 3 reading an a, so we loop. That means we stay in state
3 but we move the TapE HEAD to cell iv.

3 3

aba — abal

This is one of those times when we must indicate a A as part of the
meaningful contents of the TAPE.
We are now in state 3 reading a A, so we move to state 4.

3 N 4
abaA  abaAA

The input string aba has been accepted by this TM. This particular machine
did not change any of the letters on the TAPE, so at the end of the run the
TAPE still reads abaA . . . . This is not a requirement for the acceptance of
a string, just a phenomenon that happened this time.

In summary, the whole execution can be depicted by the following execution

chain, also called a process chain, or a trace of execution, or simply a
trace:
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1 2 3 3

—

aba  aba — aba - abaA — HALT

This is a new use for the arrow. It is neither a production nor a derivation.

Let us consider which input strings are accepted by this TM. Any first
letter, a or b, will lead us to state 2. From state 2 to state 3 we require that
we read the letter ». Once in state 3 we stay there as the TApE HEAD moves
right and right again, moving perhaps many cells until it encounters a A. Then
we get to the HALT state and accept the word. Any word that reaches state
3 will eventually be accepted. If the second letter is an a, then we crash at
state 2. This is because there is no edge coming from state 2 with directions
for what happens when the TapE HEAD reads an a.

The language of words accepted by this machine is: All words over the
alphabet {a,b} in which the second letter is a b.

This is a regular language because it can also be defined by the regular
expression:

(a+b)b(a+Db)*
This TM is also reminiscent of FA’s, making only one pass over the input
string, moving its TaApE HEAD always to the right, and never changing a letter
it has read. TM’s can do more tricks, as we shall soon see.

EXAMPLE

Consider the following TM.

(a,a,R)
(B,B,R) (B,B,L) (B,B,R)

C_\mm ) @aR Q ®BL (" Q (AAR)
_ 4

(AAR) /;\ (@,0,L)

\6

(a,a,L)

We have only drawn the program part of the TM, since initial appearance
of the TAPE depends on the input word. This is a more complicated example
of a TM. We analyze it by first explaining what it does and then recognizing
how it does it.

The language this TM accepts is {a"b"}.
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By examining the program we can see that the TAPE HEAD may print any
of the letters @, A or B, or a A, and it may read any of the letters a, b, A
or B or a blank. Technically, the input alphabet is 3 = {a, b} and the output
alphabet is I' = {a, A, B}, since A is the symbol for a blank or empty cell
and is not a legal character in an alphabet. Let us describe the algorithm,
informally in English, before looking at the directed graph that is the program.

Let us assume that we start with a word of the language {a"b"} on the
TAPE. We begin by taking the a in the first cell and changing it to the character
A. (If the first cell does not contain an a, the program should crash. We can
arrange this by having only one edge leading from START and labeling it to
read an a.) The conversion from a to A means that this a has been counted.
We now want to find the b in the word that pairs off with this a. So we
keep moving the TAPE HEAD to the right, without changing anything it passes
over, until it reaches the first 5. When we reach this b, we change it into
the character B, which again means that it too has been counted. Now we
move the TapE HEAD back down to the left until it reaches the first uncounted
a. The first time we make our descent down the TAPE this will be the a in
cell ii.

How do we know when we get to the first uncounted a? We cannot tell
the TapE HeaD to “find cell ii.” This instruction is not in its repertoire. We
can, however, tell the TaApE HEAD to keep moving to the left until it gets to
the character A. When it hits the A we bounce one cell to the right and there
we are. In doing this the TAPE HEAD passed through cell ii on its way down
the TapE. However, when we were first there we did not recognize it as our
destination. Only when we bounce off of our marker, the first A encountered,
do we realize where we are. Half the trick in programming TM’s is to know
where the TApE HEAD is by bouncing off of landmarks.

When we have located this left-most uncounted a we convert it into an A
and begin marching up the TapE looking for the corresponding b. This means
that we skip over some a’s and over the symbol B, which we previously
wrote, leaving them unchanged, until we get to the first uncounted b. Once
we have located it, we have found our second pair of @ and b. We count
this second b by converting it into a B, and we march back down the TapE
looking for our next uncounted a. This will be in cell iii. Again, we cannot
tell the Tape Heap, “find cell iii.” We must program it to find the intended
cell. The same instructions as given last time work again. Back down to the
first A we meet and then up one cell. As we march down we walk through
a B and some a’s until we first reach the character A. This will be the second
A, the one in cell ii. We bounce off this to the right, into cell iii, and find
an a. This we convert to A and move up the TAPE to find its corresponding
b.

This time marching up the TAPE we again skip over a’s and B’s until we
find the first 5. We convert this to B and march back down looking for the
first unconverted a. We repeat the pairing process over and over.

What happens when we have paired off all the a’s and b’s? After we have
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converted our last b into a B and we move left looking for the next a we
find that after marching left back through the last of the B’s we encounter an
A. We recognize that this means we are out of little a’s in the initial field
of a’s at the beginning of the word.

We are about ready to accept the word, but we want to make sure that
there are no more b’s that have not been paired off with a’s, or any extraneous
a’s at the end. Therefore we move back up through the field of B’s to be
sure that they are followed by a blank, otherwise the word initially may have
been aaabbbb or aaabbba.

When we know that we have only A’s and B’s on the Tapg, in equal
number, we can accept the input string.

The following is a picture of the contents of the TAPE at each step in the
processing of the string aaabbb. Remember, in a trace the TAPE HEAD is
indicated by the underlining of the letter it is about to read.

aaabbb
Aaabbdbb
Aaabbdb
Aaabbb
AaaBbb
AaaBbb
AaaBbb
AaaBbb
AAaBbbd
AAaBbb
AAaBbb
AAaBBb
AAaBBb
AAaBBb
AAaBBb
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AAABBb
AAABBObD
AAABBB
AAABBB
AAABBB
AAABBB
AAABBB
AAABBB
AAABBBA

HALT

Based on this algorithm we can define a set of states that have the following
meanings:

State 1

State 2

State 3

This is the start state, but it is also the state we are in whenever we are
about to read the lowest unpaired a. In a PDA we can never return to
the START state, but in a TM we can. The edges leaving from here
must convert this a to the character A and move the TAPE HEAD right
and enter state 2.

This is the state we are in when we have just converted an a to an A
and we are looking for the matching b. We begin moving up the TAPE.
If we read another a, we leave it alone and continue to march up the
TaPE, moving the TAPE HEAD always to the right. If we read a B, we
also leave it alone and continue to move the Tape HEAD right. We cannot
read an A while in this state. In this algorithm all the A’s remain to the
left of the TAPE HEAD once they are printed. If we read A while we are
searching for the b we are in trouble because we have not paired off our
a. So we crash. The first b we read, if we are lucky enough to find one,
is the end of the search in this state. We convert it to B, move the TAPE
HEAD left and enter state 3.

This is the state we are in when we have just converted a b to B. We
should now march left down the TAPE looking for the field of unpaired
a’s. If we read a B, we leave it alone and keep moving left. If and when
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we read an a, we have done our job. We must then go to state 4, which
will try to find the left-most unpaired a. If we encounter the character
b while moving to the left, something has gone very wrong and we
should crash. If, however, we encounter the character A before we hit
an g, we know that used up the pool of unpaired a’s at the beginning
of the input string and we may be ready to terminate execution. Therefore,
we leave the A alone and reverse directions to the right and move into
state 5.

We get here when state 3 has located the right-most end of the field of
unpaired a’s. The TAPE and TAPE HEAD situation looks like this:

lalalalalalalBlBlBl0]0]06]...

A

In this state we must move left through a block of solid a’s (we crash
if we encounter a b, a B, or a A) until we find an A. When we do, we
bounce off it to the right, which lands us at the left-most uncounted a.
This means that we should next be in state 1 again.

When we get here it must be because state 3 found that there were no
unpaired a’s left and it bounced us off the right-most A. We are now
reading the left-most B as in the picture below:

. jalalalalals|slalsls]. ..

A

It is now our job to be sure that there are no more a’s or b’s left in this
word. We want to scan through solid B’s until we hit the first blank.
Since the program never printed any blanks, this will indicate the end
of the input string. If there are no more surprises before the A, we then
accept the word by going to the state HALT. Otherwise we crash. For
example, aabba would become AABBa and then crash because while

searching for the A we find an a.

This explains the TM program that we began with. It corresponds to the
description above state for state and edge for edge.

Let us trace the processing of the input string aabb by looking at its ex-
ecution chain:
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This explains the TM program that we began with. It corresponds to the
description above state for state and edge for edge.

Let us trace the processing of the input string aabb by looking at its ex-
ecution chain:

1 2 2 3 4 1
aabb — Aabb — Aabb — AaBb — AaBb — AaBb
2 2 3 3 5 5
— AABb — AABb — AABB — AABB — AABB — AABB

5
—> AABBA — HALT

It is clear that any string of the form @"b" will reach the HALT state. To
show that any string that reaches the HALT state must be of the form a"b"
we trace backward. To reach HALT we must get to state 5 and read a A.
To be in state 5 we must have come from state 3 from which we read an
A and some number of B’s while moving to the right. So at the point we
are in state 3 ready to terminate, the TapE and Tape HeAaD situation is as
shown below:

2|lalels]s]. . IB[a]. ..
N

To be in state 3 means we have begun at START and circled around the
loop some number of times.

( START—1/L 7@ 3
()
—/

Every time we go from START to state 3 we have converted an a to an A
and a b to a B. No other edge in the program of this TM changes the contents
of any cell on the TAPE. However many B’s there are, there are just as many
A’s. Examination of the movement of the TAPE HEaD shows that all the A’s
stretch in one connected sequence of cells starting at cell i. To go from state
3 to HALT shows that the whole TAPE has been converted to A’s then B’s
followed by blanks. Putting this all together, to get to HALT the input word
must be a"b" for some n > 0. |

EXAMPLE

Consider the following TM
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(b,b,R) (b,b,L)
(a,a,R) (a,a,L)

(8,A.R)
1 START

1

\/

(b,AR)

(b,AL) @Sﬁ'ﬂl

(a,a,R) (b,b,L)
(b,6,R) (a,0,L)

This looks like another monster, yet it accepts the familiar language
PALINDROME and does so by a very simple deterministic algorithm.

We read the first letter of the input string and erase it, but we remember
whether it was an a or a b. We go to the last letter and check to be sure
it is the same as what used to be the first letter. If not, we crash, but if so,
we erase it too. We then return to the front of what is left of the input string
and repeat the process. If we do not crash while there are any letters left,
then when we get to the condition where the whole TaPE is blank we accept
the input string. This means that we reach the HALT state. Notice that the
input string itself is no longer on the TAPE.

The process, briefly, works like this:

abbabba
bbabba
bbabb
babb
bab
ab

a
A
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We mentioned above that when we erase the first letter we remember what
it was as we march up to the last letter. Turing machines have no auxiliary
memory device, like a PUSHDOWN STACK, where we could store this in-
formation, but there are ways around this. One possible method is to use some
of the blank space further down the TaPE for making notes. Or, as in this
case, the memory comes in by determining what path through the program
the input takes. If the first letter is an a, we are off on the
state 2—state 3—state 4 loop. If the first letter is a b, we are off on the
state 5—state 6—state 7 loop.

All of this is clear from the descriptions of the meanings of the states below:

State 1 When we are in this state, we read the first letter of what is left of the
input string. This could be because we are just starting and reading cell
i or because we have been returned here from state 4 or state 7. If we
read an a, we change it to a A (erase it), move the TAPE HEAD to the
right, and progress to state 2. If we read a b, we erase it and move the
TaPE HEAD to the right and progress to state 5. If we read a A where
we expect the string to begin, it is because we have erased everything,
or perhaps we started with the input word A. In either case, we accept
the word and we shall see that it is in EVENPALINDROME.

(a,A,R)
2
(A,AR)
1 START 8 HALT

bAR

State 2 We get here because we have just erased an a from the front of the input
string and we want to get to the last letter of the remaining input string
to see if it too is an a. So we move to the right through all the a’s and
b’s left in the input until we get to the end of the string at the first A.
When that happens we back up one cell (to the left) and move into state
3.

(b.b,R)
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State 3 We get here only from state 2, which means that the letter we erased at

State 4

the start of the string was an a and state 2 has requested us now to read
the last letter of the string. We found the end of the string by moving
to the right until we hit the first A. Then we bounced one cell back to
the left. If this cell is also blank, then there are only blanks left on the
Tape. The letters have all been successfully erased and we can accept
the word. So we go to HALT. If there is something left of the input
string, but the last letter is a b, the input string was not a palindrome.
Therefore we crash by having no labeled edge to go on. If the last non-
A letter is an a, then we erase it, completing the pair, and begin moving
the TapE HEAD left, down to the beginning of the string again to pair
off another set of letters. We should note that if the word is accepted by
going from state 3 to HALT then the a that is erased in moving from
state 1 to state 2 is not balanced by another erasure but was the last letter
left in the erasure process. This means that it was the middle of a word
in ODDPALINDROME:

Notice that when we read the A and move to HALT we still need to
include in the edge’s label instructions to write something and move the
Tape HEAD somewhere. The label (A, a, R) would work just as well,
or (A, B, R). However, (A, a, L) might be a disaster. We might have
started with a one-letter word, say a. State 1 erases this a. Then state 2
reads the A in cell ii and returns us to cell i where we read the blank.
If we try to move left from cell i we crash on the very verge of accepting
the input string.

Like state 2, this is a travel state searching for the beginning of what is
left of the input string. We keep heading left fearlessly because we know
that cell i contains a A, so we shall not fall off the edge of the earth and
crash by going left from cell i. When we hit the first A, we back up one
position to the right, setting ourselves up in state 1 ready to read the
first letter of what is left of the string:

(b,b,L)

(a,a,L)
(Pesn (5
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State 5 We get to state 5 only from state 1 when the letter it has just erased was
a b. In other words, state 5 corresponds exactly to state 2 but for strings
beginning with a b. It too searches for the end of the string:

(a,a,R)
(b,b,R)

O O

State 6 We get here when we have erased a b in state 1 and found the end of
the string in state 5. We examine the letter at hand. If it is an g, then
the string began with b and ended with a, so we crash since it is not in
PALINDROME. If it is a b, we erase it and hunt for the beginning
again. If it is a A, we know that the string was an ODDPALINDROME
with middle letter 5. This is the twin of state 3.

State 7 This state is exactly the same as state 4. We try to find the beginning
of the string.

Putting all these states together, we get the picture we started with.

Let us trace the running of this TM on the input string ababa:

1 2 oL 22 2
ababa Ababa Ababa Ababa Ababa

— 2 — 3 — 4 — 4 — 4
AbabaA Ababa AbabA = AbabA = AbabA

- 4 o 3 - 5 5 5 o, 5
AbabA AbabA = AAgbA ~ AAabA = AAabA

- 6 - 7 — 7 — 1‘ - 2
AAabA AAgAA " AAaAA T AAgAA  AAAAA

3 8
T AAAAA T HALT

(See Problem 7 below for comments on this machine.) [ |
Our first example was no more than a converted FA, and the language it

accepted was regular. The second example accepted a language that was con-
text-free and nonregular and the TM given employed separate alphabets for
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writing and reading. The third machine accepted a language that was also
context-free but that could be accepted only by a nondeterministic PDA, whereas
the TM that accepts it is deterministic.

We have seen that we can use the TAPE for more than a PUSHDOWN
STACK. In the last two examples we ran up and down the TAPE to make
observations and changes in the string at both ends and in the middle. We
shall see later that the TAPE can be used for even more tasks: It can be used
as work space for calculation and output.

In these three examples the TM was already assembled. In this next example
we shall design the Turing machine for a specific purpose.

EXAMPLE

Let us build a TM to accept the language EVEN-EVEN—the collection of all
strings with an even number of @’s and an even number of b’s.
Let this be our algorithm:

Starting with the first letter let us scan up the string replacing all the a’s
by A’s. During this phase we shall skip over all b’s. Let us make our first
replacement of A for @ in state 1, then our second in state 2, then our
third in state 1 again, and so on alternately until we reach the first blank.
If the first blank is read in state 2, we know that we have replaced an odd
number of a’s and we must reject the input string. We do this by having
no edge leaving state 2 which wants to read the TAPE entry A. This will
cause a crash. If we read the first blank in state 1, then we have replaced
an even number of a’s and must process b’s. This could be done by the
program segment below:

1 START

(4,4,L1)

Now suppose that from state 3 we go back to the beginning of the string
replacing b’s by B’s in two states: the first B for b in state 3, the next in
state 4, then in state 3 again, and so on alternately, all the time ignoring
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the A’s. If we do this we run into a subtle problem. Since the word starts
in cell i, we do not have a blank space to bounce off when we are reading
back down the string. When we read what is in cell i we do not know
we are in cell i and we try to move the Tape HEAD left, thereby crashing.
Even the input strings we want to accept will crash.

There are several ways to avoid this. The solution we choose for now
is to change the a’s and b’s at the same time as we first read up the string.
This will allow us to recognize input strings of the form EVEN-EVEN
without having to read back down the TarE.

Let us define the four states:

State 1
State 2
State 3
State 4

We have read an even number of @’s and an even number of b’s.
We have read an even number of ¢’s and an odd number of b’s.
We have read an odd number of a’s and an even number of b’s.
We have read an odd number of a’s and an odd number of b’s.

If we are in state 1 and we read an a we go to state 3. There is no need
to change the letters we read into anything else since one scan over the input
string settles the question of acceptance. If we read a b from state 1, we leave
it alone and go to state 2 and so on. This is the TM:

(b,b,R)

(b,b,R)

If we run out of input in state 1, we accept the string by going to HALT
along the edge labeled (A,A,R).

This machine should look very familiar. It is the FA that accepts the lan-
guage EVEN-EVEN dressed up to look like a TM. [ |

This leads us to the following observation.
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THEOREM 45

Every regular language has a TM that accepts exactly it.

PROOF

Consider any regular language L. Take an FA that accepts L. Change the edge
labels a and b to (a,a,R) and (b,b,R), respectively. Change the — state to the
word START. Erase the plus sign out of each final state and instead add to
each of these an edge labeled (A,A,R) leading to a HALT state. Voila, a TM.

We read the input string moving from state to state in the TM exactly as
we would on the FA. When we come to the end of the input string, if we
are not in a TM state corresponding to a final state in the FA, we crash when
the TApE HEAD reads the A in the next cell. If the TM state corresponds to
an FA final state, we take the edge labeled (A,A,R) to HALT. The acceptable
strings are the same for the TM and the FA. |

The connection between TM’s and PDA’s will be shown in Chapter 26.
Let us consider some more examples of TM’s.

EXAMPLE

We shall now design a TM that accepts the language EQUAL, that is, the
language of all strings with the same number of a’s and b’s. EQUAL is a
nonregular language, so the trick of Theorem 45 cannot be employed.

Since we want to scan up and down the input string, we need a method
of guaranteeing that on our way down we can find the beginning of the string
without crashing through the left wall of cell i. One way of being safe i~ to
insert a new symbol, #, at the beginning of the input TAPE in cell i to the
left of the input string. This means we have to shift the input string one cell
to the right without changing it in any way except for its location on the
Tape. This problem arises so often that we shall write a program segment to
achieve this that will be used in the future as a standard preprocessor or
subroutine called INSERT #.

Over the alphabet 3 = {a,b} we need only 5 states.

State 1| START

State 2 We have just read an a.
State 3 'We have just read a b.

State 4 We have just read a A.

State 5 Return to the beginning. This means leave the Tare HEAD reading cell
ii.
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The first part of the TM is this:

(A HR)

We start out in state 1. If we read an a, we go to state 2 and replace the
a in cell i with the beginning-of-TAPE symbol #. Once we are in state 2, we
know we owe the TAPE an a, so whatever we read next we print the a and
g0 to a state that remembers whatever symbol was just read. There are two
possibilities. If we read another a, we print the prior a and still owe an a,
so we stay in state 2. If we read a b, we print the a we owed and move
to state 3, owing the TAPE a b.

Whenever we are in state 3 we read the next letter, and as we go to a
new state we print the old b we already read but do not yet print the new
letter. The state we go to now must remember what the new letter was and
print it only after reading yet another letter. We are always paying last month’s
bill. We are never up to date until we read a blank. This lets us print the
last @ or b and takes us to state 4.

Eventually, we get to state 5. In state 5 we rewind the TApE HEAD moving
backward to the #, and then we leave ourselves in cell ii. There we are
reading the first letter of the input string and ready to connect the edge from
state 5 into the START state of some second process.

The idea for this algorithm is exactly like the Mealy machine of Chapter
9, which added 1 to a binary input string.

The problem we have encountered and solved is analogous to the problem
of shifting a field of data one storage location up the TAPE. Writing-over causes
erasing, so a temporary storage location is required. In this case, the infor-
mation is stored in the program by the identity of the state we are in. Being
in state 2, 3, or 4 tells us what we have just read.

Some authors define a TM so that the input string is placed on the TAPE
beginning in cell ii with a complimentary # already placed in cell i. Some
people like to begin running a TM with the input string surrounded on the
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TapE with #’s in front and at the end. For example, before we processed the
input babb we would make the TAPE look like this:

[#]o]afofe]#]a

0

Such requirements would obviate the need for using INSERT #, but it is
still a very useful subroutine and we shall want it later.
Variations of this subroutine can be written to

1. Insert any other character into cell i while moving the data to the right.

2. Insert any character into any specified cell leaving everything to the left
as it is and moving the entire TAPE contents on the right one cell down
the TAPE.

3. Insert any character into any cell, on a TAPE with input strings from any
alphabet.

Let us illustrate the operation of INSERT # on the input string abba:

1 N 2 N 3 N 3 - 2 . 4
abba #bba #aba #aba #abbA #abbaA
5 5 5 5 5 unknown

™ #abbaA  #abba  #abba  #abba  #abba  #abba

The last state is “unknown” because we are in whatever state we got to on
our departure from state 5. We cannot specify it in general because INSERT
# will be used in many different programs. Here “unknown” will be called
state 6.

Thus far, we have been doing bookkeeping. We have not addressed the
question of the language EQUAL. We can now begin the algorithm of pairing
off a’s and b’s. The method we use is to X out an a and then X out a b
and repeat this until nothing at all is left. There are many good ways to accept
EQUAL; the one we shall use is not the most efficient, but Turing machines
run on imagination, which is cheaper than petroleum.

In state 6 we start at the left of the input string and scan upward for the
first a. When we find it, we change it to an X and move to state 7. This
state returns the TApE HEaD to cell ii by backing up until it bumps off the
symbol #. Now we scan upward looking for the first unchanged b. If we hit
the end of the word before we find the matching b, we read a A and crash
because the input string has more a’s than b’s. If we do find an unused b,
then in state 8 we change it to an X. In state 9 we return the TapE Heap
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to cell ii and state 6 to repeat the whole process. If, in state 6, while searching
for the first unused @ we find there are no more left (by encountering a A),
we go to state 10. State 10 begins at the end of the string and rewinds us
to cell ii reading only X’s. If it encounters any unused b’s, it crashes. In that
case we have cancelled all the a’s but not all the b’s, so the input must have
had more b’s than «’s. If the TApE HEAD can get all the way back to #
reading only X’s, then every letter in the input string has been converted to
X and the machine accepts the string.

(X,X,R) (X,X,L) (X,X,R) (X,X,L)
(b,b,R) (b,bL) (a,a,R) (a,a,L)

Q 4R /“Q (@XL) /;Q AR ﬂ (b.X.L)

o U

(X.X,L)

Let us follow the operation on baab starting in state 6. Starting in state
6 means that we have already inserted a # to the left of the input on the
TAPE “in states 1 through 5.

6 6 7 7 8
— — - —
#baab #baab #bXab #bXab #bXab
9 6 6 6 7
— — — — —
#XXab #XXab #XXab #XXab #XXXb
7 7 8 8 8
— — - — —
#XXXb #XXXb #XXXb #XXXb #XXXb
8 9 9 9 9
—> — — — —
#XXXb #XXXX  #XXXX  #XXXX #XXXX
6 6 6 6 6
— — - — —
#XXXX  #XXXX #XXXX  #XXXX #XXXXA
10 10 10 10

- — — — — ~—  — HALT
#XXXXA & #XXXX ~ #XXXX ~ #XXXX  #XXXX '
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Notice that even after we have turned all a@’s and b’s to X’s, we still have
many steps left to check that there are no more non-X characters left. [ ]
EXAMPLE

Now we shall consider a valid but problematic machine to accept the language
of all strings that have a double a in them somewhere:

(A,AR)
(b,b,R)

CISTART J\ (@.a.R) /2\ (@a.R) ( HALD ]
®.b,R) ’\I/

The problem is that we have labeled the loop at the start state with the
extra option (A,A,R). This is still a perfectly valid TM because it fits all the
clauses in the definition. Any string without a double a that ends in the letter
a will get to state 2, where the TapE HEaD will read a A and crash. What
happens to strings without a double @ that end in b? When the. last letter of
the input string has been read, we are in state 1. We read the first A and
return to state 1, moving the TAPE HEAD further up the Tare full of A’s. In
fact, we loop forever in state 1 on the edge labeled (A,A,R).

All the strings in {a,b}* can be divided into three sets:

1. Those with a double a. They are accepted by the TM.
2. Those without aa that end in a. They crash.
3. Those without aa that end in b. They loop forever. |

Unlike on an FA, on a TM an input string cannot just run out of gas in
some middle state. Since the input string is just the first part of an infinite
TapE, there are always infinitely many A’s to read after the meaningful input
has been exhausted.

These three possibilities exist for every TM, although for the examples we
met previously the third set is empty. This last example is our first TM that
can loop forever.

We have seen that certain PDA’s also loop forever on some inputs. In Part
II this was a mild curiosity; in Part III it will be a major headache.
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DEFINITION

Every Turing machine T over the alphabet X divides the set of strings 2*
into three classes:

1. ACCEPT(T) is the set of all strings leading to a HALT state. This is
also called the language accepted by T.

2. REIJECT(T) is the set of all strings that crash during execution by moving
left from cell i or by being in a state that has no exit edge that wants
to read the character the Tape HEeaD is reading.

3. LOOP(T) is the set of all other strings, that is, strings that loop forever
while running on T. [

We shall consider this issue in more detail later. For now we should simply
bear in mind the resemblance of this definition to the output-less computer
program at the beginning of this chapter.

EXAMPLE

Let us consider the non-context-free language {a"h"a"}. This language can be
accepted by the following interesting procedure:

Step 1

Step 2

Step 3

We presume that we are reading the first letter of what remains on the
input. Initially this means we are reading the first letter of the input string,
but as the algorithm progresses we may find ourselves back in this step
reading the first letter of a smaller remainder. If no letters are found (a
blank is read), we go to HALT. If what we read is an a, we change it
to a * and move the TAPE HEAD right. If we read anything else, we crash.
This is all done in state 1.

In state 2 we skip over the rest of the a’s in the initial clump of a’s
looking for the first . This will put us in state 3. Here we search for
the last b in the clump of b’s: We read b’s continually until we encounter
the first a (which takes us to state 4) and then bounce off that a to the
left. If after the b’s we find a A instead of an a, we crash. Now that we
have located the last b in the clump we do something clever: We change
it into an a, and we move on to state 5. The reason it took so many TM
states to do this simple job is that if we allowed, say, state 2 to skip over
b’s as well as a’s, it would merrily skip its way to the end of the input.
We need a separate TM state to keep track of where we are in the data.
The first thing we want to do here is find the end of the clump of a’s

(this is the second clump of a’s in the input). We do this in state 5 by
reading right until we get to a A. If we read a b after this second clump
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of a’s, we crash. If we get to the A we know that the input is in fact of
the form a*b*a*. When we have located the end of this clump we turn
the last two a’s into A’s. Because we changed the last b into an a this
is tantamount to killing off a b and an a. If we had turned that b into a
A, it would have meant A’s in the middle of the input string and we
would have had trouble telling where the real ends of the string were.
Instead, we turned a b into an a and then erased two a’s off the end.
We are now in state 8 and we want to return to state 1 and do this whole
thing again. Nothing could be easier. We skip over a’s and b’s, moving
the TapeE HEAD left until we encounter one of the *’s that fill the front
end of the Tape. Then we move one cell to the right and begin again in
state 1.

The TM looks like this:

(a,a,R) (b,b,R)
bR Q’\ a,L
EZJ( (=)
(@.*.R) (b.a.R)
(a,a,R)
(AAER) START
) s
(**R) (AAL)
(a,AL) (@A,L
2 ) (D >@
(a,a,L) \_/
(b,b,L)

Let us trace the action of this machine on the input string
aaabbbaaa:

START 2 2 2 3

— — — -
aaabbbaaa  *aabbbaaa  *aabbbaaa  *aabbbaaa  *aabbbaaa

3 3 4 5 5

— e — -—>
*aabbbaaa  *aabbbaaa  *aabbbaaa  *aabbaaaa  *aabbaaaa

5 5 6 7 8

— — - —
*aabbaaaa *aabbaaaalA *aabbaaaa  *aabbaaa *aabbaa
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8 8 8 8 8
- — — — —
*aabbaa *aabbaa *aabbaa *aabbaa *aabbaa
8 1 2 2 3
— — — — —
*aabbaa *aabbaa **abbaa **abbaa **abbaa
3 4 5 5 5
— — — — -
**abbaa **abbaa **qbaaa **abaaa **gbaaal
6 7 8 8 8
— — — — —
**abaaa **abaa **aba **aba **aba
8 1 2 3 4
— — — —
**aba **aba ***Qa ***bg ***Qa
5 5 6 7 8
- - —> — —>
***aa ***aaA ***ag ***g **i
1 HALT

Ak A - *EXAA

After designing the machine and following the trace several things shouid
be obvious to us:

The only words accepted are of the form a"b"a” (here n = 0,1,2,3 .. .)

2. When the machine halts, the Tape will hold as many *’s as there were
b’s in the input.

3. If the input was a™b™a™, the TapE HEap will be in cell (m + 2) when
the machine halts. n

This example suggests that TM’s are more powerful than PDA’s since no
PDA could accept this language. We can only say ‘“suggests” at this point,
because we have not yet proven that TM’s can accept all context-free lan-
guages. The possibility remains that there might be some language that a PDA
accepts that a TM cannot. We have to wait until a later chapter to prove that
TM’s can accept all context-free languages.

Let us do two last examples, both of TM subroutines.

EXAMPLE

In butlding the TM for EQUAL, we developed a TM subroutine that can insert
a character in front of an input string on a TM TapeE. We mentioned that a
slight modification allows us to use this routine to insert any new character
at any point in a TM TapeE and shift the rest of the input one cell to the
right.
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Let us consider how to do this. We start with some arbitrary string on the
Tape. Let us just say for the purpose of example that what is on the Tare
is a string of a’s, b’s, and X’s with A’s after it. Suppose further that the
Tape HEAD is pointing to the very cell in the middle of the string where we
want to insert a new character, let us say a b. We want everything to the
right of this spot moved one cell up the TAPE.

What we need is a symbol unlike any that is on the TAPE now, say Q.
The following TM subroutine will accomplish this job:

(a,a,R)

(Aa,R)

(b.b,L)
? @b.R) {& SXX.L)

Out
Notice that we leave the TapE HEaD reading the next cell after the cell
where the insertion occurred.

o x[1s]s]x][a]a
0

4

lolx]elafolo]x]afa

0
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Note that the exact program of the subroutine INSERT depends on the exact
alphabet that it is required to act on. If there could be any of 15 different
symbols on the TAPE we need 15 different loops in the insertion routine, one
separate loop to shift each character. To be very very precise, we should say
that there is a whole family of subroutines called INSERT—one for each al-
phabet and each character to be inserted. [ |

EXAMPLE

For our last example we shall build a TM subprogram that deletes, that is,
it erases the contents of the cell the TAPE HEAD is initially pointing to, moving
the contents of each of the nonempty cells to its right down one cell to the
left to close up the gap and leaving the TarE HEAD positioned one cell past
where it was at the start. For example:

. JFlrl1lE{N]D]A
0

o lrlileln|n]a

Just as with INSERT, the exact program of DELETE depends on the al-
phabet of letters found on the TAPE.

Let us suppose the characters on the TAPE are from the alphabet {a,b,c}

One subroutine to do this job is shown on the next page.

What we have done here is (1) erased the target cell, (2) moved to the
right end of the non-A data, (3) worked our way back down the TAPE running
the inverse of INSERT. We could just as easily have done the job on one
pass up the Tapg, but then the TaApE HEAD would have been left at the end
of the data and we would have lost our place; there would be no memory of
where the deleted character used to be. The way we have written it, the TAPE
HeaD is left in the cell immediately after the deletion cell.
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(c,c,R)
®.b.R)
(@A) (@.a.R)
(5.AR)
@aR)
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PROBLEMS

For Problems 1 and 2, consider the following TM:

(a,a,L)
(b,b,L)

(a,a,R)
(b,b,R)

1 START

1. Trace the execution chains of the following input strings on this machine.

@) aaa
(1) aba
(iii)  baaba
(iv) ababb

2. The language accepted by this TM is all words with an odd number of
letters that have a as the middle letter. Show that this is true by ex-
plaining the algorithm the machine uses and the meaning of each state.
Pay attention to the two necessary parts that must always be demon-
strated:

(i)  Anything that has an a in the middle will get to HALT
and
(i)  Anything that gets to HALT has an a in the middle.
3. (i) Build a TM that accepts the language of all words that contain the
substring bbb.

(ii))  Build a TM that accepts the language of all words that do not contain
the substring bbb.
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W

Problems 8, 9, and 10 refer to the following TM. We assume that the input
string is put on the TAPE with the symbol # inserted in front of it in cell
i. For example, the input ba will be run with the TAPE initially in the form
#baA . . . . In this chapter we saw how to do this using TM states. Here,

TURING MACHINES

Build a TM that accepts the language ODDPALINDROME.
Build a TM that accepts all strings with more a’s than b’s.

(i) Build a TM that accepts the language {a"p""'}.
(i)  Build a TM that accepts the language {a"b*"}.

(i)  Show that the TM given in this chapter for the language

PALINDROME has more states than it needs by coalescing states 4

and 7.

(ii))  Show that the TM given above for the language {a"b"} can be drawn

with one fewer state.

consider it already done. The TM is then:

(a,A,R)

(a,a,R)

( sTaRrT }(#'#'R) m BB /;\ ©bR
' N

(b,b,L) b,Y.L)
@al) /7  @XD
(AAL)
(@al) (BBL) (AAL)
(b.b,L)

(*, *R)
(A,A,R)

(A,A,L)
(X,X,L)
(Y,Y.L)

(a,a,R)
(b.b,R)
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10.

1.

12.

13.

14.

TURING THEORY

Trace the execution chains of the following input strings on this machine.

(i) aa
(il) aaa
(iil) aaaa

(iv) aabaab
(v) abab

The language this TM accepts is DOUBLEWORD, the set of all words
of the form ww where w is a nonnull string in {a,b}*.

DOUBLEWORD = {aa bb aaaa abab baba bbbb
aaaaad aabaab . . .}

(i)  Explain the meaning of each state and prove that all words in
DOUBLEWORD are accepted by this TM.

(ii) Show that all words not in DOUBLEWORD are rejected by this
machine.

(i)  Show that states 11 and 12 can be combined without changing the
language. ‘
(i)  What other changes can be made?

Return to the example in the text of a TM to accept EVEN-EVEN based
on the algorithm

1. Move up the string changing a’s to A’s

2. Move down the string changing b’s to B’s

We can modify this algorithm in the following way: To avoid the prob-
lem of crashing on the way down the TaPE change the letter in the first
cell to X if it is an a and to Y if it is a b. This way, while charging

down the TAPE we can recognize when we are in cell i.
Draw this TM.

Follow the up-down method for a TM that recognizes EVEN-EVEN as
explained in Problem 11 but use INSERT, not the X, Y trick, to build
the Turing machine.

Build a TM that accepts the language EVEN-EVEN based on the sub-
routine DELETE given in this chapter.

In the subroutine INSERT given in this chapter, is it necessary to separate
states 4 and 5 or can they somehow be combined?
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15. On the TM given in this chapter for the language {a"b"a"}, trace the
following words:

Q1) aabbaa
(ii)  aabbaaa
(iii) aabaa
(iv) aabbaabb

(v)  Characterize the nature of the different input strings that crash in each
of the eight states.

16. Build a TM to accept the language {a"h"a"} based on the following al-
gorithm:

(i)  Check that the input is in the form a*b*a*.
(ii) Use DELETE in an intelligent way.

17. Trace the subroutine DELETE in the following situations:

) [afp]alofal. ..
N

(ii) IalblalalAl...

(iii) lalolalonla]...

18. Draw a TM that does the same job as DELETE but leaves the TaPE
HeAD pointing to the first blank cell. One way to do this is by reading
a letter, putting it into the cell behind it and moving two cells up the
TAPE.

19. () Draw a TM that loops forever on all words ending in a and crashes
on all others.

(i) Draw a TM that loops forever on the input string bab leaving the
TapE different each time through the loop.

20. Draw a TM that accepts the language PALINDROME', the complement
of PALINDROME. This is, although we did not prove so, a non-context-
free language.
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CHAPTER 25

POST
MACHINES

We have used the word “algorithm” many times in this book. We have tried
to explain what an algorithm is by saying that it is a procedure with instructions
so carefully detailed that no further information is necessary. The person/ma-
chine executing the algorithm should know how to handle any situation that
may possibly arise. Without the need for applying any extra intelligence it
should be possible to complete the project. Not only that, but before even
begining we should be able, just by looking at the algorithm and the data,
to predict an upper limit on the number of steps the entire process will take.
This is the guarantee that the procedure is finite.

All of this sounds fine, but it still does not really specify what an algorithm
is. This is an unsatisfactory definition, since we have no precise idea of what
a “procedure” is. Essentially, we have merely hidden one unknown word be-
hind another. Intuitively, we know that arithmetic operations are perfectly ac-
ceptable steps in an algorithm, but what else is? In several algorithms we have
allowed ourselves the operation of painting things blue without specifying what
shade or how many coats. An algorithm, it seems, can be made of almost
anything.

The question of determining appropriate components for mathematical al-
gorithms was of great interest earlier in this century. People were discovering

584
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that surprisingly few basic operations were sufficient to perform many so-
phisticated tasks, just as shifting and adding are basic operations that can be
used to replace hard-wired multiplication in a computer. The hope was to find
a small set of basic operations and a machine that could perform them all,
a kind of “universal algorithm machine,” since it could run any algorithm.
The mathematical model itself would provide a precise definition of the concept
of algorithm. We could use it to discuss in a meaningful way the possibility
of finding algorithms for all mathematical problems. There may even be some
way to make it program itself to find its own algorithms so that we need
never work on mathematics again.

In 1936, the same fruitful year Turing introduced the Turing machine, Emil
Leon Post (1897-1954) created the Post machine, which he hoped would prove
to be the “universal algorithm machine” sought after. One condition that must
be satisifed by such a “universal algorithm machine” (we have kept this phrase
in quotes because we cannot understand it in a deeper sense until later) is
that any language that can be precisely defined by humans (using English or
pictures or hand signals) should be accepted (or recognized) by some version
of this machine. This would make it more powerful than an FA or a PDA.
There are nonregular languages and non-context-free languages, but there should
not be any non-Turing or non-Post languages. In this part of the book- we
shall see to what extent Post and Turing succeeded in achieving their goal.

DEFINITION
A Post machine, denoted PM, is a collection of five things:

1. The alphabet X of input letters plus the special symbol #. We generally
use 2 = {a,b}

2. A linear storage location (a place where a string of symbols is kept) called
the STORE, or QUEUE, which initially contains the input string. This
location can be read, by which we mean the left-most character can be
removed for inspection. The STORE can also be added to, which means
a new character can be concatenated onto the right of whatever is there
already. We allow for the possibility that characters not in 2 can be used
in the STORE, characters from an alphabet I" called the store alphabet.

3. READ states, for example,
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which remove the left-most character from the STORE and branch ac-
cordingly. The only branching in the machine takes place at the READ
states. There may be a branch for every character in 2 or I'. Note the
A branch that means that an empty STORE was read. PM’s are deter-
ministic, so no two edges from the READ have the same label.

4. ADD states:

ADD a ADD b ADD #

which concatenate a character onto the right end of the string in STORE.
This is different from PDA PUSH states, which concatenate characters
onto the left. Post machines have no PUSH states. No branching can take

place at an ADD state. It is possible to have an ADD state for every
letter in 3 and I'.

5. A START state and some halt states called ACCEPT and REJECT:

l l
D =D GD

If we are in a READ state and there is no labeled edge for the character
we have read then we crash, which is equivalent to taking a labeled edge

into a REJECT state. We can draw our PM’s with or without REJECT
states. [ |

The STORE is a first-in first-out or FIFO stack in contradistinction to a
PUSHDOWN or LIFO STACK. The contents of an originally empty STORE
after the operations

ADD a ADD b ADDb |
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is the string
abb

If we then read the STORE, we take the ¢ branch and the STORE will
be reduced to bb.

A Post machine does not have a separate INPUT TAPE unit. In processing
a string, we assume that the string was initially loaded into the STORE and
we begin executing the program from the START state on. If we wind up
in an ACCEPT state, we accept the input string. If not, not. At the moment
we accept the input string the STORE could contain anything. It does not
have to be empty nor need it contain the original input string.

As usual, we shall say that the language defined (or accepted) by a Post
machine is the set of strings that it accepts. A Post machine is yet another
language recognizer or acceptor.

As we have defined them, Post machines are deterministic, that is, for every
input string there is only one path through the machine; we have no alternative
at any stage. We could also define a nondeterministic Post machine, NPM.
This would allow for more